|
|
@@ -76,6 +76,7 @@ def train_model(model, optimizer, loss_func, train_loader, valid_loader, n_epoch |
|
|
|
trn_loss /= train_loader.dataset_len |
|
|
|
val_loss = eval_epoch(model, valid_loader, loss_func, gpu_id) |
|
|
|
val_loss /= valid_loader.dataset_len |
|
|
|
print("loss epoch " + str(epoch) + ": " + str(trn_loss)) |
|
|
|
if val_loss < min_loss: |
|
|
|
angry = 0 |
|
|
|
min_loss = val_loss |
|
|
@@ -104,7 +105,7 @@ def create_model(data, hidden_size, gpu_id=None): |
|
|
|
def cv(args, out_dir): |
|
|
|
save_args(args, os.path.join(out_dir, 'args.json')) |
|
|
|
test_loss_file = os.path.join(out_dir, 'test_loss.pkl') |
|
|
|
|
|
|
|
print("cuda available: " + str(torch.cuda.is_available())) |
|
|
|
if torch.cuda.is_available() and (args.gpu is not None): |
|
|
|
gpu_id = args.gpu |
|
|
|
else: |