123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- import sys
- import copy
- import torch
- import random
- import numpy as np
- from collections import defaultdict, Counter
- from multiprocessing import Process, Queue
-
- # sampler for batch generation
- def random_neq(l, r, s,user_train):
- # t = np.random.randint(l, r)
- # while t in s:
- # t = np.random.randint(l, r)
- # return t
-
- user = random.choice(list(user_train.keys()))
- item = random.choice(user_train[user])
-
- while item in s:
- user = random.choice(list(user_train.keys()))
- item = random.choice(user_train[user])
- return item
-
-
- def trans_to_cuda(variable):
- if torch.cuda.is_available():
- return variable.cuda()
- else:
- return variable
-
-
- def trans_to_cpu(variable):
- if torch.cuda.is_available():
- return variable.cpu()
- else:
- return variable
-
- # train/val/test data generation
- def data_load(fname, num_sample):
- usernum = 0
- itemnum = 0
- user_train = defaultdict(list)
-
- # assume user/item index starting from 1
- f = open('/home/maheri/metaTL/data/%s/%s_train.csv' % (fname, fname), 'r')
- for line in f:
- u, i, t = line.rstrip().split('\t')
- u = int(u)
- i = int(i)
- usernum = max(u, usernum)
- itemnum = max(i, itemnum)
- user_train[u].append(i)
- f.close()
-
- # read in new users for testing
- user_input_test = {}
- user_input_valid = {}
- user_valid = {}
- user_test = {}
-
-
- User_test_new = defaultdict(list)
- f = open('/home/maheri/metaTL/data/%s/%s_test_new_user.csv' % (fname, fname), 'r')
- for line in f:
- u, i, t = line.rstrip().split('\t')
- u = int(u)
- i = int(i)
- User_test_new[u].append(i)
- f.close()
-
- for user in User_test_new:
- if len(User_test_new[user]) > num_sample:
- if random.random()<0.3:
- user_input_valid[user] = User_test_new[user][:num_sample]
- user_valid[user] = []
- user_valid[user].append(User_test_new[user][num_sample])
- else:
- user_input_test[user] = User_test_new[user][:num_sample]
- user_test[user] = []
- user_test[user].append(User_test_new[user][num_sample])
-
-
- return [user_train, usernum, itemnum, user_input_test, user_test, user_input_valid, user_valid]
-
-
-
-
-
-
-
- class DataLoader(object):
- def __init__(self, user_train, user_test, itemnum, parameter):
- self.curr_rel_idx = 0
-
- self.bs = parameter['batch_size']
- self.maxlen = parameter['K']
-
- self.valid_user = []
- for u in user_train:
- if len(user_train[u]) < self.maxlen or len(user_test[u]) < 1: continue
- self.valid_user.append(u)
-
- self.num_tris = len(self.valid_user)
-
- self.train = user_train
- self.test = user_test
-
- self.itemnum = itemnum
-
-
- def next_one_on_eval(self):
- if self.curr_tri_idx == self.num_tris:
- return "EOT", "EOT"
-
- u = self.valid_user[self.curr_tri_idx]
-
- self.curr_tri_idx += 1
-
- seq = np.zeros([self.maxlen], dtype=np.int32)
- pos = np.zeros([self.maxlen - 1], dtype=np.int32)
- # neg = np.zeros([self.maxlen*30 - 1], dtype=np.int32)
- neg = np.zeros([self.maxlen * 5], dtype=np.int32)
-
- idx = self.maxlen - 1
-
- ts = set(self.train[u])
- for i in reversed(self.train[u]):
- seq[idx] = i
- if idx > 0:
- pos[idx - 1] = i
- # if i != 0: neg[idx - 1] = random_neq(1, self.itemnum + 1, ts,self.train)
- idx -= 1
- if idx == -1: break
-
- for i in range(len(neg)):
- neg[i] = random_neq(1, self.itemnum + 1, ts,self.train)
-
- curr_rel = u
- support_triples, support_negative_triples, query_triples, negative_triples = [], [], [], []
- for idx in range(self.maxlen-1):
- support_triples.append([seq[idx],curr_rel,pos[idx]])
- # support_negative_triples.append([seq[idx],curr_rel,neg[idx]])
- # support_negative_triples.append([seq[-1],curr_rel,neg[idx]])
-
- # for idx in range(len(neg)):
- # support_negative_triples.append([seq[-1],curr_rel,neg[idx]])
- for j in range(5):
- for idx in range(self.maxlen-1):
- support_negative_triples.append([seq[idx], curr_rel, neg[j * self.maxlen + idx]])
-
- rated = ts
- rated.add(0)
- query_triples.append([seq[-1],curr_rel,self.test[u][0]])
- for _ in range(100):
- t = np.random.randint(1, self.itemnum + 1)
- while t in rated: t = np.random.randint(1, self.itemnum + 1)
- negative_triples.append([seq[-1],curr_rel,t])
-
- support_triples = [support_triples]
- support_negative_triples = [support_negative_triples]
- query_triples = [query_triples]
- negative_triples = [negative_triples]
-
- return [support_triples, support_negative_triples, query_triples, negative_triples], curr_rel
|