123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- from trainer import *
- from utils import *
- from sampler import *
- import json
-
- import argparse
-
-
- def get_params():
- args = argparse.ArgumentParser()
- args.add_argument("-data", "--dataset", default="electronics", type=str)
- args.add_argument("-seed", "--seed", default=None, type=int)
- args.add_argument("-K", "--K", default=3, type=int) #NUMBER OF SHOT
-
- args.add_argument("-dim", "--embed_dim", default=100, type=int)
- args.add_argument("-bs", "--batch_size", default=1024, type=int)
- args.add_argument("-lr", "--learning_rate", default=0.001, type=float)
-
- args.add_argument("-epo", "--epoch", default=100000, type=int)
- args.add_argument("-prt_epo", "--print_epoch", default=100, type=int)
- args.add_argument("-eval_epo", "--eval_epoch", default=1000, type=int)
-
- args.add_argument("-b", "--beta", default=5, type=float)
- args.add_argument("-m", "--margin", default=1, type=float)
- args.add_argument("-p", "--dropout_p", default=0.5, type=float)
-
- args.add_argument("-gpu", "--device", default=0, type=int)
- args.add_argument("--number_of_neg",default=5,type=int)
-
-
-
- args = args.parse_args()
- params = {}
- for k, v in vars(args).items():
- params[k] = v
-
-
-
- # params['device'] = torch.device('cuda:'+str(args.device))
- params['device'] = args.device
- # params['device'] = torch.device('cpu')
-
- return params, args
-
- if __name__ == '__main__':
- print(torch.cuda.is_available())
- params, args = get_params()
-
- if params['seed'] is not None:
- SEED = params['seed']
- torch.manual_seed(SEED)
- torch.cuda.manual_seed(SEED)
- torch.backends.cudnn.deterministic = True
- np.random.seed(SEED)
- random.seed(SEED)
-
- print("===============", torch.cuda.device_count(), "=======")
- user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(args.dataset, args.K)
-
- sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=args.batch_size, maxlen=args.K, n_workers=3,params=params)
-
- sampler_test = DataLoader(user_input_test, user_test, itemnum, params)
-
- sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params)
-
- print("===============", torch.cuda.device_count(), "=======")
-
- trainer = Trainer([sampler, sampler_valid, sampler_test], itemnum, params)
- print("===============", torch.cuda.device_count(), "=======")
- trainer.train()
-
- sampler.close()
|