from collections import OrderedDict import torch import torch.nn as nn from torch.nn import functional as F class Embedding(nn.Module): def __init__(self, num_ent, parameter): super(Embedding, self).__init__() self.device = torch.device('cuda:0') self.es = parameter['embed_dim'] self.embedding = nn.Embedding(num_ent + 1, self.es) nn.init.xavier_uniform_(self.embedding.weight) def forward(self, triples): idx = [[[t[0], t[2]] for t in batch] for batch in triples] idx = torch.LongTensor(idx).to(self.device) return self.embedding(idx) class MetaLearner(nn.Module): def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5): super(MetaLearner, self).__init__() self.embed_size = embed_size self.K = K # self.out_size = out_size # self.hidden_size = out_size self.out_size = embed_size self.hidden_size = embed_size self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) # nn.init.xavier_normal_(self.rnn.all_weights) def forward(self, inputs): size = inputs.shape x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1) x = x.transpose(0,1) _,(x,c) = self.rnn(x) x = x[-1] x = x.squeeze(0) return x.view(size[0], 1, 1, self.out_size) class EmbeddingLearner(nn.Module): def __init__(self): super(EmbeddingLearner, self).__init__() def forward(self, h, t, r, pos_num): score = -torch.norm(h + r - t, 2, -1).squeeze(2) p_score = score[:, :pos_num] n_score = score[:, pos_num:] return p_score, n_score class MetaTL(nn.Module): def __init__(self, itemnum, parameter): super(MetaTL, self).__init__() self.device = torch.device('cuda:0') self.beta = parameter['beta'] # self.dropout_p = parameter['dropout_p'] self.embed_dim = parameter['embed_dim'] self.margin = parameter['margin'] self.embedding = Embedding(itemnum, parameter) self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0) self.embedding_learner = EmbeddingLearner() self.loss_func = nn.MarginRankingLoss(self.margin) self.rel_q_sharing = dict() def split_concat(self, positive, negative): pos_neg_e1 = torch.cat([positive[:, :, 0, :], negative[:, :, 0, :]], 1).unsqueeze(2) pos_neg_e2 = torch.cat([positive[:, :, 1, :], negative[:, :, 1, :]], 1).unsqueeze(2) return pos_neg_e1, pos_neg_e2 def forward(self, task, iseval=False, curr_rel=''): # transfer task string into embedding support, support_negative, query, negative = [self.embedding(t) for t in task] K = support.shape[1] # num of K num_sn = support_negative.shape[1] # num of support negative num_q = query.shape[1] # num of query num_n = negative.shape[1] # num of query negative rel = self.relation_learner(support) rel.retain_grad() rel_s = rel.expand(-1, K+num_sn, -1, -1) if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys(): rel_q = self.rel_q_sharing[curr_rel] else: sup_neg_e1, sup_neg_e2 = self.split_concat(support, support_negative) p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K) y = torch.Tensor([1]).to(self.device) self.zero_grad() loss = self.loss_func(p_score, n_score, y) loss.backward(retain_graph=True) grad_meta = rel.grad rel_q = rel - self.beta*grad_meta self.rel_q_sharing[curr_rel] = rel_q rel_q = rel_q.expand(-1, num_q + num_n, -1, -1) que_neg_e1, que_neg_e2 = self.split_concat(query, negative) p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q) return p_score, n_score