from trainer import * from utils import * from sampler import * import json import argparse def get_params(): args = argparse.ArgumentParser() args.add_argument("-data", "--dataset", default="electronics", type=str) args.add_argument("-seed", "--seed", default=None, type=int) args.add_argument("-K", "--K", default=3, type=int) #NUMBER OF SHOT args.add_argument("-dim", "--embed_dim", default=100, type=int) args.add_argument("-bs", "--batch_size", default=1024, type=int) args.add_argument("-lr", "--learning_rate", default=0.001, type=float) args.add_argument("-epo", "--epoch", default=100000, type=int) args.add_argument("-prt_epo", "--print_epoch", default=100, type=int) args.add_argument("-eval_epo", "--eval_epoch", default=1000, type=int) args.add_argument("-b", "--beta", default=5, type=float) args.add_argument("-m", "--margin", default=1, type=float) args.add_argument("-p", "--dropout_p", default=0.5, type=float) args.add_argument("-gpu", "--device", default=1, type=int) args = args.parse_args() params = {} for k, v in vars(args).items(): params[k] = v params['device'] = torch.device('cuda:'+str(args.device)) # params['device'] = torch.device('cpu') return params, args if __name__ == '__main__': params, args = get_params() if params['seed'] is not None: SEED = params['seed'] torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True np.random.seed(SEED) random.seed(SEED) user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(args.dataset, args.K) sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=args.batch_size, maxlen=args.K, n_workers=3) sampler_test = DataLoader(user_input_test, user_test, itemnum, params) sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params) trainer = Trainer([sampler, sampler_valid, sampler_test], itemnum, params) trainer.train() sampler.close()