from collections import OrderedDict import torch import torch.nn as nn from torch.nn import functional as F class Embedding(nn.Module): def __init__(self, num_ent, parameter): super(Embedding, self).__init__() # self.device = torch.device('cuda:0') self.device = torch.device(parameter['device']) self.es = parameter['embed_dim'] self.embedding = nn.Embedding(num_ent + 1, self.es) nn.init.xavier_uniform_(self.embedding.weight) def forward(self, triples): idx = [[[t[0], t[2]] for t in batch] for batch in triples] idx = torch.LongTensor(idx).to(self.device) return self.embedding(idx) class MetaLearner(nn.Module): def __init__(self, K, embed_size=100, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0.5): super(MetaLearner, self).__init__() self.embed_size = embed_size self.K = K # self.out_size = out_size # self.hidden_size = out_size self.out_size = embed_size self.hidden_size = embed_size self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) # nn.init.xavier_normal_(self.rnn.all_weights) def forward(self, inputs): size = inputs.shape x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1) x = x.transpose(0,1) _,(x,c) = self.rnn(x) x = x[-1] x = x.squeeze(0) return x.view(size[0], 1, 1, self.out_size) class EmbeddingLearner(nn.Module): def __init__(self): super(EmbeddingLearner, self).__init__() def forward(self, h, t, r, pos_num): score = -torch.norm(h + r - t, 2, -1).squeeze(2) p_score = score[:, :pos_num] n_score = score[:, pos_num:] return p_score, n_score def bpr_loss(p_scores, n_values,device): ratio = int(n_values.shape[1] / p_scores.shape[1]) temp_pvalues = torch.tensor([],device=device) for i in range(p_scores.shape[1]): temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) d = torch.sub(temp_pvalues,n_values) t = F.logsigmoid(d) loss = -1 * (1.0/n_values.shape[1]) * t.sum(dim=1) loss = loss.sum(dim=0) return loss def bpr_max_loss(p_scores, n_values,device): s = F.softmax(n_values,dim=1) ratio = int(n_values.shape[1] / p_scores.shape[1]) temp_pvalues = torch.tensor([],device=device) for i in range(p_scores.shape[1]): temp_pvalues = torch.cat((temp_pvalues,p_scores[:,i,None].expand(-1,ratio)),dim=1) d = torch.sigmoid(torch.sub(temp_pvalues,n_values)) t = torch.mul(s,d) loss = -1 * torch.log(t.sum(dim=1)) loss = loss.sum() return loss def top_loss(p_scores, n_values,device): ratio = int(n_values.shape[1] / p_scores.shape[1]) temp_pvalues = torch.tensor([],device=device) for i in range(p_scores.shape[1]): temp_pvalues = torch.cat((temp_pvalues, p_scores[:, i, None].expand(-1, ratio)), dim=1) t1 = torch.sigmoid(torch.sub(n_values , temp_pvalues)) t2 = torch.sigmoid(torch.pow(n_values,2)) t = torch.add(t1,t2) t = t.sum(dim=1) loss = t / n_values.shape[1] loss = loss.sum(dim=0) return loss class MetaTL(nn.Module): def __init__(self, itemnum, parameter): super(MetaTL, self).__init__() # self.device = torch.device(parameter['device']) self.device = parameter['device'] self.beta = parameter['beta'] # self.dropout_p = parameter['dropout_p'] self.embed_dim = parameter['embed_dim'] self.margin = parameter['margin'] self.embedding = Embedding(itemnum, parameter) self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500, num_hidden2=200, out_size=100, dropout_p=0) self.embedding_learner = EmbeddingLearner() # self.loss_func = nn.MarginRankingLoss(self.margin) self.loss_func = bpr_loss self.rel_q_sharing = dict() def split_concat(self, positive, negative): pos_neg_e1 = torch.cat([positive[:, :, 0, :], negative[:, :, 0, :]], 1).unsqueeze(2) pos_neg_e2 = torch.cat([positive[:, :, 1, :], negative[:, :, 1, :]], 1).unsqueeze(2) return pos_neg_e1, pos_neg_e2 def forward(self, task, iseval=False, curr_rel=''): # transfer task string into embedding support, support_negative, query, negative = [self.embedding(t) for t in task] K = support.shape[1] # num of K num_sn = support_negative.shape[1] # num of support negative num_q = query.shape[1] # num of query num_n = negative.shape[1] # num of query negative rel = self.relation_learner(support) rel.retain_grad() rel_s = rel.expand(-1, K+num_sn, -1, -1) if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys(): rel_q = self.rel_q_sharing[curr_rel] else: sup_neg_e1, sup_neg_e2 = self.split_concat(support, support_negative) p_score, n_score = self.embedding_learner(sup_neg_e1, sup_neg_e2, rel_s, K) # y = torch.Tensor([1]).to(self.device) self.zero_grad() # sorted,indecies = torch.sort(n_score, descending=True,dim=1) # n_values = sorted[:,0:p_score.shape[1]] # loss = self.loss_func(p_score, n_values, y) loss = self.loss_func(p_score,n_score,device=self.device) loss.backward(retain_graph=True) grad_meta = rel.grad rel_q = rel - self.beta*grad_meta self.rel_q_sharing[curr_rel] = rel_q rel_q = rel_q.expand(-1, num_q + num_n, -1, -1) que_neg_e1, que_neg_e2 = self.split_concat(query, negative) p_score, n_score = self.embedding_learner(que_neg_e1, que_neg_e2, rel_q, num_q) return p_score, n_score