Browse Source

using ray for hyper-parameter tanning

RNN
mohamad maheri 3 years ago
parent
commit
6029ca93a1
5 changed files with 234 additions and 20 deletions
  1. 138
    0
      hyper_main.py
  2. 73
    0
      hyper_tunning.py
  3. 10
    8
      models.py
  4. 11
    10
      trainer.py
  5. 2
    2
      utils.py

+ 138
- 0
hyper_main.py View File

@@ -0,0 +1,138 @@
from ray.tune.schedulers import ASHAScheduler
from ray.tune import CLIReporter
from ray import tune
from functools import partial
from hyper_tunning import train_metatl
import argparse
import numpy as np
import torch
import random
from trainer import *
from utils import *
from sampler import *
import copy

def get_params():
args = argparse.ArgumentParser()
args.add_argument("-data", "--dataset", default="electronics", type=str)
args.add_argument("-seed", "--seed", default=None, type=int)
args.add_argument("-K", "--K", default=3, type=int) #NUMBER OF SHOT

# args.add_argument("-dim", "--embed_dim", default=100, type=int)
args.add_argument("-bs", "--batch_size", default=1024, type=int)
# args.add_argument("-lr", "--learning_rate", default=0.001, type=float)

args.add_argument("-epo", "--epoch", default=1000, type=int)
# args.add_argument("-prt_epo", "--print_epoch", default=100, type=int)
# args.add_argument("-eval_epo", "--eval_epoch", default=1000, type=int)

# args.add_argument("-b", "--beta", default=5, type=float)
# args.add_argument("-m", "--margin", default=1, type=float)
# args.add_argument("-p", "--dropout_p", default=0.5, type=float)

# args.add_argument("-gpu", "--device", default=1, type=int)

args = args.parse_args()
params = {}
for k, v in vars(args).items():
params[k] = v

params['device'] = torch.device('cuda:0')
return params, args



def main(num_samples, gpus_per_trial=2):

params, args = get_params()

if params['seed'] is not None:
SEED = params['seed']
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
np.random.seed(SEED)
random.seed(SEED)

user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(args.dataset, args.K)

batch_size = params['batch_size']
# sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=batch_size, maxlen=args.K, n_workers=1)
# sampler_test = DataLoader(user_input_test, user_test, itemnum, params)
# sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params)

config = {
# "l1": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)),
# "l2": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)),
# "lr": tune.loguniform(1e-4, 1e-1),
# "batch_size": tune.choice([2, 4, 8, 16])
"embed_dim" : tune.choice([50,75,100,125,150,200]),
# "batch_size" : tune.choice([128,256,512,1024,2048]),
"learning_rate" : tune.choice([0.1,0.01,0.005,0.001,0.0001]),
"beta" : tune.choice([0.1,1,5,10]),
"margin" : tune.choice([1]),

# "sampler":sampler,
# "sampler_test":sampler_test,
# "sampler_valid":sampler_valid,

"itemnum":itemnum,
"params":params,
}

scheduler = ASHAScheduler(
metric="MRR",
mode="max",
max_t=params['epoch'],
grace_period=200,
reduction_factor=2)
reporter = CLIReporter(
# parameter_columns=["l1", "l2", "lr", "batch_size"],
metric_columns=["MRR","NDCG10","NDCG5","NDCG1","Hits10","Hits5","Hits1","training_iteration"])
result = tune.run(
train_metatl,
resources_per_trial={"cpu": 4, "gpu": gpus_per_trial},
config=config,
num_samples=num_samples,
scheduler=scheduler,
progress_reporter=reporter,
log_to_file=True,
# resume=True,
local_dir="./ray_local_dir",
name="metatl_rnn1",
)

best_trial = result.get_best_trial("MRR", "max", "last")
print("Best trial config: {}".format(best_trial.config))
print("Best trial final validation loss: {}".format(
best_trial.last_result["loss"]))
print("Best trial final validation MRR: {}".format(
best_trial.last_result["MRR"]))
print("Best trial final validation NDCG@1: {}".format(
best_trial.last_result["NDCG@1"]))

#
print("=======================================================")
print(result.results_df)
print("=======================================================\n")

# best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"])
# device = "cpu"
# if torch.cuda.is_available():
# device = "cuda:0"
# if gpus_per_trial > 1:
# best_trained_model = nn.DataParallel(best_trained_model)
# best_trained_model.to(device)
#
# best_checkpoint_dir = best_trial.checkpoint.value
# model_state, optimizer_state = torch.load(os.path.join(
# best_checkpoint_dir, "checkpoint"))
# best_trained_model.load_state_dict(model_state)
#
# test_acc = test_accuracy(best_trained_model, device)
# print("Best trial test set accuracy: {}".format(test_acc))


if __name__ == "__main__":
# You can change the number of GPUs per trial here:
main(num_samples=150, gpus_per_trial=1)

+ 73
- 0
hyper_tunning.py View File

@@ -0,0 +1,73 @@
import os
import torch
import torch.nn as nn
from ray import tune
import pickle
import random
import gc
from trainer import Trainer
import numpy as np
from utils import *
from sampler import *
import os


def train_metatl(conf,checkpoint_dir=None):

SEED = conf["params"]['seed']
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
np.random.seed(SEED)
random.seed(SEED)

params = conf['params']
user_train, usernum_train, itemnum, user_input_test, user_test, user_input_valid, user_valid = data_load(params['dataset'], params['K'])
sampler = WarpSampler(user_train, usernum_train, itemnum, batch_size=params['batch_size'], maxlen=params['K'], n_workers=1)
sampler_test = DataLoader(user_input_test, user_test, itemnum, params)
sampler_valid = DataLoader(user_input_valid, user_valid, itemnum, params)

ps = {
"batch_size" : conf["params"]['batch_size'],
"learning_rate" : conf['learning_rate'],
"epoch" : conf["params"]['epoch'],
"beta" : conf['beta'],
"embed_dim" : conf['embed_dim'],
"margin" : conf['margin'],
"K" : conf["params"]['K'],

}

trainer = Trainer([sampler, sampler_valid, sampler_test], conf["itemnum"], ps)

# trainer.train()

for epoch in range(ps['epoch']):

for e in range(100):
# sample one batch from data_loader
train_task, curr_rel = trainer.train_data_loader.next_batch()
loss, _, _ = trainer.do_one_step(train_task, iseval=False, curr_rel=curr_rel)

# do evaluation on specific epoch
valid_data = trainer.eval(istest=False, epoch=(-1))

# print('Epoch {} Testing...'.format(e))
# test_data = self.eval(istest=True, epoch=e)

if checkpoint_dir:
model_state, optimizer_state = torch.load(
os.path.join(checkpoint_dir, "checkpoint"))
trainer.MetaTL.load_state_dict(model_state)
trainer.optimizer.load_state_dict(optimizer_state)

with tune.checkpoint_dir(epoch) as checkpoint_dir:
path = os.path.join(checkpoint_dir, "checkpoint")
torch.save((trainer.MetaTL.state_dict(), trainer.optimizer.state_dict()), path)

tune.report(
MRR=valid_data["MRR"], NDCG10=valid_data['NDCG@10'], NDCG5=valid_data["NDCG@5"], NDCG1=valid_data["NDCG@1"],
Hits10=valid_data["Hits@10"], Hits5=valid_data["Hits@5"], Hits1=valid_data["Hits@1"],
training_iteration=epoch*100
)


+ 10
- 8
models.py View File

@@ -6,7 +6,7 @@ from torch.nn import functional as F
class Embedding(nn.Module):
def __init__(self, num_ent, parameter):
super(Embedding, self).__init__()
self.device = parameter['device']
self.device = torch.device('cuda:0')
self.es = parameter['embed_dim']
self.embedding = nn.Embedding(num_ent + 1, self.es)
@@ -22,9 +22,11 @@ class MetaLearner(nn.Module):
super(MetaLearner, self).__init__()
self.embed_size = embed_size
self.K = K
self.out_size = out_size
self.hidden_size = out_size
self.rnn = nn.LSTM(embed_size,self.hidden_size,1)
# self.out_size = out_size
# self.hidden_size = out_size
self.out_size = embed_size
self.hidden_size = embed_size
self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2)
# nn.init.xavier_normal_(self.rnn.all_weights)

def forward(self, inputs):
@@ -53,15 +55,15 @@ class EmbeddingLearner(nn.Module):
class MetaTL(nn.Module):
def __init__(self, itemnum, parameter):
super(MetaTL, self).__init__()
self.device = parameter['device']
self.device = torch.device('cuda:0')
self.beta = parameter['beta']
self.dropout_p = parameter['dropout_p']
# self.dropout_p = parameter['dropout_p']
self.embed_dim = parameter['embed_dim']
self.margin = parameter['margin']
self.embedding = Embedding(itemnum, parameter)

self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=100, num_hidden1=500,
num_hidden2=200, out_size=100, dropout_p=self.dropout_p)
self.relation_learner = MetaLearner(parameter['K'] - 1, embed_size=self.embed_dim, num_hidden1=500,
num_hidden2=200, out_size=100, dropout_p=0)

self.embedding_learner = EmbeddingLearner()
self.loss_func = nn.MarginRankingLoss(self.margin)

+ 11
- 10
trainer.py View File

@@ -18,9 +18,10 @@ class Trainer:
self.batch_size = parameter['batch_size']
self.learning_rate = parameter['learning_rate']
self.epoch = parameter['epoch']
self.print_epoch = parameter['print_epoch']
self.eval_epoch = parameter['eval_epoch']
self.device = parameter['device']
# self.print_epoch = parameter['print_epoch']
# self.eval_epoch = parameter['eval_epoch']
self.eval_epoch = 50
self.device = torch.device('cuda:0')

self.MetaTL = MetaTL(itemnum, parameter)
self.MetaTL.to(self.device)
@@ -74,9 +75,9 @@ class Trainer:
train_task, curr_rel = self.train_data_loader.next_batch()
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel)
# print the loss on specific epoch
if e % self.print_epoch == 0:
loss_num = loss.item()
print("Epoch: {}\tLoss: {:.4f}".format(e, loss_num))
# if e % self.print_epoch == 0:
# loss_num = loss.item()
# print("Epoch: {}\tLoss: {:.4f}".format(e, loss_num))
# do evaluation on specific epoch
if e % self.eval_epoch == 0 and e != 0:
print('Epoch {} Validating...'.format(e))
@@ -121,9 +122,9 @@ class Trainer:
# print current temp data dynamically
for k in data.keys():
temp[k] = data[k] / t
sys.stdout.write("{}\tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
sys.stdout.flush()
# sys.stdout.write("{}\tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
# t, temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
# sys.stdout.flush()

# print overall evaluation result and return it
for k in data.keys():
@@ -131,7 +132,7 @@ class Trainer:

if istest:
print("TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
print("TEST: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
temp['MRR'], temp['NDCG@10'], temp['NDCG@5'], temp['NDCG@1'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
else:
print("VALID: \tMRR: {:.3f}\tNDCG@10: {:.3f}\tNDCG@5: {:.3f}\tNDCG@1: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(

+ 2
- 2
utils.py View File

@@ -32,7 +32,7 @@ def data_load(fname, num_sample):
user_train = defaultdict(list)

# assume user/item index starting from 1
f = open('data/%s/%s_train.csv' % (fname, fname), 'r')
f = open('/home/maheri/metaTL/data/%s/%s_train.csv' % (fname, fname), 'r')
for line in f:
u, i, t = line.rstrip().split('\t')
u = int(u)
@@ -50,7 +50,7 @@ def data_load(fname, num_sample):


User_test_new = defaultdict(list)
f = open('data/%s/%s_test_new_user.csv' % (fname, fname), 'r')
f = open('/home/maheri/metaTL/data/%s/%s_test_new_user.csv' % (fname, fname), 'r')
for line in f:
u, i, t = line.rstrip().split('\t')
u = int(u)

Loading…
Cancel
Save