|  |  |  |  |  |  | 
													
												
													
														|  |  | # self.hidden_size = out_size |  |  | # self.hidden_size = out_size | 
													
												
													
														|  |  | self.out_size = embed_size |  |  | self.out_size = embed_size | 
													
												
													
														|  |  | self.hidden_size = embed_size |  |  | self.hidden_size = embed_size | 
													
												
													
														|  |  | self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) |  |  |  | 
													
												
													
														|  |  |  |  |  | # self.rnn = nn.LSTM(embed_size,self.hidden_size,2,dropout=0.2) | 
													
												
													
														|  |  |  |  |  | self.rnn = nn.GRU(input_size=embed_size,hidden_size=self.hidden_size, num_layers=1) | 
													
												
													
														|  |  |  |  |  | 
 | 
													
												
													
														|  |  | # nn.init.xavier_normal_(self.rnn.all_weights) |  |  | # nn.init.xavier_normal_(self.rnn.all_weights) | 
													
												
													
														|  |  | 
 |  |  | 
 | 
													
												
													
														|  |  | def forward(self, inputs): |  |  | def forward(self, inputs): | 
													
												
											
												
													
														|  |  |  |  |  |  | 
													
												
													
														|  |  | x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1) |  |  | x = torch.stack([inputs[:,0,0,:],inputs[:,0,1,:],inputs[:,1,1,:]],dim=1) | 
													
												
													
														|  |  | x = x.transpose(0,1) |  |  | x = x.transpose(0,1) | 
													
												
													
														|  |  | 
 |  |  | 
 | 
													
												
													
														|  |  | _,(x,c) = self.rnn(x) |  |  |  | 
													
												
													
														|  |  |  |  |  | # _,(x,c) = self.rnn(x) | 
													
												
													
														|  |  |  |  |  | x,c = self.rnn(x) | 
													
												
													
														|  |  | x = x[-1] |  |  | x = x[-1] | 
													
												
													
														|  |  | x = x.squeeze(0) |  |  | x = x.squeeze(0) | 
													
												
													
														|  |  | 
 |  |  | 
 |