Browse Source

tanp loss (kl loss)

define_task
mohamad maheri 2 years ago
parent
commit
dc38c4018f
2 changed files with 2 additions and 2 deletions
  1. 1
    1
      fast_adapt.py
  2. 1
    1
      learnToLearn.py

+ 1
- 1
fast_adapt.py View File

alpha = config['alpha'] alpha = config['alpha']
beta = config['beta'] beta = config['beta']
d = config['d'] d = config['d']
a = torch.div(1, torch.add(1, torch.exp(torch.mul(-1, torch.mul(alpha, torch.sub(torch.mul(d, c), beta))))))
a = torch.div(1, torch.add(1, torch.exp(torch.mul(-1, torch.mul(alpha, torch.sub(torch.mul(d, c.squeeze()), beta))))))
# a = 1 / (1 + torch.exp((-1) * alpha * (d * c - beta))) # a = 1 / (1 + torch.exp((-1) * alpha * (d * c - beta)))
b = torch.mul(a, torch.mul(torch.sub(1, a), torch.sub(1, torch.mul(2, a)))) b = torch.mul(a, torch.mul(torch.sub(1, a), torch.sub(1, torch.mul(2, a))))
# b = 1 * a * (1 - a) * (1 - 2 * a) # b = 1 * a * (1 - a) * (1 - 2 * a)

+ 1
- 1
learnToLearn.py View File

kmeans_model = KMeans(n_clusters=config['cluster_k'], init="k-means++").fit(user_embeddings) kmeans_model = KMeans(n_clusters=config['cluster_k'], init="k-means++").fit(user_embeddings)
tr.cluster_module.array.data = torch.Tensor(kmeans_model.cluster_centers_).cuda() tr.cluster_module.array.data = torch.Tensor(kmeans_model.cluster_centers_).cuda()


if iteration > (0):
if iteration > 0:
# indexes = data_batching(indexes, C_distribs, batch_size, training_set_size, config['cluster_k']) # indexes = data_batching(indexes, C_distribs, batch_size, training_set_size, config['cluster_k'])
# random.shuffle(indexes) # random.shuffle(indexes)
C_distribs = [] C_distribs = []

Loading…
Cancel
Save