@@ -50,46 +50,9 @@ class ClustringModule(torch.nn.Module): | |||
# 1*k, k*d, 1*d | |||
value = torch.mm(C, self.array) | |||
# simple add operation | |||
# new_task_embed = value + mean_task | |||
# new_task_embed = value | |||
new_task_embed = mean_task | |||
# print("injam1:", new_task_embed) | |||
# print("injam2:", self.array) | |||
list_dist = [] | |||
# list_dist = torch.norm(new_task_embed - self.array, p=2, dim=1,keepdim=True) | |||
list_dist = torch.sum(torch.pow(new_task_embed - self.array,2),dim=1) | |||
stack_dist = list_dist | |||
# print("injam3:", stack_dist) | |||
## Second, find the minimum squared distance for softmax normalization | |||
min_dist = min(list_dist) | |||
# print("injam4:", min_dist) | |||
## Third, compute exponentials shifted with min_dist to avoid underflow (0/0) issues in softmaxes | |||
alpha = config['kmeans_alpha'] # Placeholder tensor for alpha | |||
list_exp = [] | |||
for i in range(self.clusters_k): | |||
exp = torch.exp(-alpha * (stack_dist[i] - min_dist)) | |||
list_exp.append(exp) | |||
stack_exp = torch.stack(list_exp) | |||
sum_exponentials = torch.sum(stack_exp) | |||
# print("injam5:", stack_exp, sum_exponentials) | |||
## Fourth, compute softmaxes and the embedding/representative distances weighted by softmax | |||
list_softmax = [] | |||
list_weighted_dist = [] | |||
for j in range(self.clusters_k): | |||
softmax = stack_exp[j] / sum_exponentials | |||
weighted_dist = stack_dist[j] * softmax | |||
list_softmax.append(softmax) | |||
list_weighted_dist.append(weighted_dist) | |||
stack_weighted_dist = torch.stack(list_weighted_dist) | |||
kmeans_loss = torch.sum(stack_weighted_dist, dim=0) | |||
return C, new_task_embed, kmeans_loss | |||
new_task_embed = value + mean_task | |||
return C, new_task_embed | |||
class Trainer(torch.nn.Module): | |||
@@ -119,9 +82,9 @@ class Trainer(torch.nn.Module): | |||
def aggregate(self, z_i): | |||
return torch.mean(z_i, dim=0) | |||
def forward(self, task_embed, y, training, adaptation_data=None, adaptation_labels=None): | |||
def forward(self, task_embed, y, training,adaptation_data=None,adaptation_labels=None): | |||
if training: | |||
C, clustered_task_embed, k_loss = self.cluster_module(task_embed, y) | |||
C, clustered_task_embed = self.cluster_module(task_embed, y) | |||
# hidden layers | |||
# todo : adding activation function or remove it | |||
hidden_1 = self.fc1(task_embed) | |||
@@ -141,7 +104,7 @@ class Trainer(torch.nn.Module): | |||
y_pred = self.linear_out(hidden_3) | |||
else: | |||
C, clustered_task_embed, k_loss = self.cluster_module(adaptation_data, adaptation_labels) | |||
C, clustered_task_embed = self.cluster_module(adaptation_data, adaptation_labels) | |||
beta_1 = torch.tanh(self.film_layer_1_beta(clustered_task_embed)) | |||
gamma_1 = torch.tanh(self.film_layer_1_gamma(clustered_task_embed)) | |||
beta_2 = torch.tanh(self.film_layer_2_beta(clustered_task_embed)) | |||
@@ -159,4 +122,4 @@ class Trainer(torch.nn.Module): | |||
y_pred = self.linear_out(hidden_3) | |||
return y_pred, C, k_loss | |||
return y_pred |
@@ -9,15 +9,15 @@ import numpy as np | |||
def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/new_data_dir3") | |||
data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/define_task_melu_data") | |||
load_data(data_dir) | |||
config = { | |||
# "l1": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
# "l2": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
# "lr": tune.loguniform(1e-4, 1e-1), | |||
# "batch_size": tune.choice([2, 4, 8, 16]) | |||
"transformer": tune.choice(['kronoker']), | |||
"meta_algo": tune.choice(['gbml', 'metasgd']), | |||
"meta_algo": tune.choice(['gbml']), | |||
"first_order": tune.choice([False]), | |||
"adapt_transform": tune.choice([True, False]), | |||
# "local_lr":tune.choice([5e-6,5e-4,5e-3]), | |||
@@ -25,7 +25,7 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
"local_lr": tune.loguniform(5e-6, 5e-3), | |||
"lr": tune.loguniform(5e-5, 5e-3), | |||
"batch_size": tune.choice([16, 32, 64]), | |||
"inner": tune.choice([1, 3, 5, 7]), | |||
"inner": tune.choice([7, 5, 4, 3, 1]), | |||
"test_state": tune.choice(["user_and_item_cold_state"]), | |||
"embedding_dim": tune.choice([16, 32, 64]), | |||
@@ -37,22 +37,8 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
'cluster_final_dim': tune.choice([64, 32]), | |||
'cluster_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
'cluster_k': tune.choice([3, 5, 7, 9, 11]), | |||
'temperature': tune.choice([0.001, 0.1, 0.5, 1.0, 2.0, 10.0]), | |||
'temperature': tune.choice([0.1, 0.5, 1.0, 2.0, 10.0]), | |||
'trainer_dropout_rate': tune.choice([0, 0.01, 0.1]), | |||
'use_cuda': tune.choice([True]), | |||
# item | |||
'num_rate': tune.choice([6]), | |||
'num_genre': tune.choice([25]), | |||
'num_director': tune.choice([2186]), | |||
'num_actor': tune.choice([8030]), | |||
# user | |||
'num_gender': tune.choice([2]), | |||
'num_age': tune.choice([7]), | |||
'num_occupation': tune.choice([21]), | |||
'num_zipcode': tune.choice([3402]), | |||
'num_epoch': tune.choice([30]), | |||
} | |||
scheduler = ASHAScheduler( | |||
@@ -66,15 +52,16 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
metric_columns=["loss", "ndcg1", "ndcg3", "training_iteration"]) | |||
result = tune.run( | |||
partial(train_melu, data_dir=data_dir), | |||
resources_per_trial={"cpu": 8, "gpu": gpus_per_trial}, | |||
resources_per_trial={"cpu": 4, "gpu": gpus_per_trial}, | |||
config=config, | |||
num_samples=num_samples, | |||
scheduler=scheduler, | |||
progress_reporter=reporter, | |||
log_to_file=True, | |||
# resume=True, | |||
local_dir="./hyper_tunning_all_cold2", | |||
local_dir="./hyper_tunning_all_cold", | |||
name="melu_all_cold_clustered", | |||
) | |||
best_trial = result.get_best_trial("loss", "min", "last") | |||
@@ -110,4 +97,4 @@ def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
if __name__ == "__main__": | |||
# You can change the number of GPUs per trial here: | |||
main(num_samples=150, max_num_epochs=30, gpus_per_trial=1) | |||
main(num_samples=150, max_num_epochs=25, gpus_per_trial=1) |
@@ -3,7 +3,7 @@ import torch | |||
import torch.nn as nn | |||
from ray import tune | |||
import pickle | |||
# from options import config | |||
from options import config | |||
from embedding_module import EmbeddingModule | |||
import learn2learn as l2l | |||
import random | |||
@@ -47,7 +47,7 @@ def load_data(data_dir=None, test_state='warm_state'): | |||
random.shuffle(test_dataset) | |||
random.shuffle(trainset) | |||
val_size = int(test_set_size * 0.3) | |||
val_size = int(test_set_size * 0.2) | |||
validationset = test_dataset[:val_size] | |||
testset = test_dataset[val_size:] | |||
@@ -55,12 +55,18 @@ def load_data(data_dir=None, test_state='warm_state'): | |||
def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
print("inajm1:", checkpoint_dir) | |||
embedding_dim = conf['embedding_dim'] | |||
fc1_in_dim = conf['embedding_dim'] * 8 | |||
fc2_in_dim = conf['first_fc_hidden_dim'] | |||
fc2_out_dim = conf['second_fc_hidden_dim'] | |||
emb = EmbeddingModule(conf).cuda() | |||
# fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
# fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
# linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
# head = torch.nn.Sequential(fc1, fc2, linear_out) | |||
emb = EmbeddingModule(config).cuda() | |||
transform = None | |||
if conf['transformer'] == "kronoker": | |||
@@ -68,7 +74,7 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
elif conf['transformer'] == "linear": | |||
transform = l2l.optim.ModuleTransform(torch.nn.Linear) | |||
trainer = Trainer(conf) | |||
trainer = Trainer(config) | |||
# define meta algorithm | |||
if conf['meta_algo'] == "maml": | |||
@@ -79,7 +85,9 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
trainer = l2l.algorithms.GBML(trainer, transform=transform, lr=conf['local_lr'], | |||
adapt_transform=conf['adapt_transform'], first_order=conf['first_order']) | |||
trainer.cuda() | |||
# net = nn.Sequential(emb, head) | |||
criterion = nn.MSELoss() | |||
all_parameters = list(emb.parameters()) + list(trainer.parameters()) | |||
optimizer = torch.optim.Adam(all_parameters, lr=conf['lr']) | |||
@@ -97,7 +105,7 @@ def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
a, b, c, d = zip(*train_dataset) | |||
for epoch in range(conf['num_epoch']): # loop over the dataset multiple times | |||
for epoch in range(config['num_epoch']): # loop over the dataset multiple times | |||
for i in range(num_batch): | |||
optimizer.zero_grad() | |||
meta_train_error = 0.0 |
@@ -145,7 +145,7 @@ if __name__ == '__main__': | |||
if config['use_cuda']: | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) | |||
master_path = "/media/external_10TB/10TB/maheri/define_task_melu_data2" | |||
master_path = "/media/external_10TB/10TB/maheri/define_task_melu_data" | |||
config['master_path'] = master_path | |||
# DATA GENERATION |
@@ -62,7 +62,7 @@ def test(embedding, head, total_dataset, batch_size, num_epoch, test_state=None, | |||
ndcgs3.append(float(ndcg_score([y_true], [y_pred], k=3, sample_weight=None, ignore_ties=False))) | |||
del supp_xs, supp_ys, query_xs, query_ys, y_true, y_pred, loss_q, temp_sxs, temp_qxs, predictions, l1 | |||
# torch.cuda.empty_cache() | |||
torch.cuda.empty_cache() | |||
# calculate metrics | |||
losses_q = np.array(losses_q).mean() |