| @@ -0,0 +1,89 @@ | |||
| from hyper_tunning import load_data | |||
| import os | |||
| from ray.tune.schedulers import ASHAScheduler | |||
| from ray.tune import CLIReporter | |||
| from ray import tune | |||
| from functools import partial | |||
| from hyper_tunning import train_melu | |||
| import numpy as np | |||
| def main(num_samples, max_num_epochs=20, gpus_per_trial=2): | |||
| data_dir = os.path.abspath("/media/external_10TB/10TB/maheri/melu_data5") | |||
| load_data(data_dir) | |||
| config = { | |||
| # "l1": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
| # "l2": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)), | |||
| # "lr": tune.loguniform(1e-4, 1e-1), | |||
| # "batch_size": tune.choice([2, 4, 8, 16]) | |||
| "transformer": tune.choice(['kronoker']), | |||
| "meta_algo":tune.choice(['gbml']), | |||
| "first_order":tune.choice([False]), | |||
| "adapt_transform":tune.choice([True,False]), | |||
| # "local_lr":tune.choice([5e-6,5e-4,5e-3]), | |||
| # "lr":tune.choice([5e-5,5e-4]), | |||
| "local_lr":tune.loguniform(5e-6,5e-3), | |||
| "lr":tune.loguniform(5e-5,5e-3), | |||
| "batch_size":tune.choice([16,32,64]), | |||
| "inner":tune.choice([7,5,4,3,1]), | |||
| "test_state":tune.choice(["user_and_item_cold_state"]), | |||
| # "epochs":tune.choice([5,10,20,25]), | |||
| } | |||
| scheduler = ASHAScheduler( | |||
| metric="loss", | |||
| mode="min", | |||
| max_t=30, | |||
| grace_period=6, | |||
| reduction_factor=2) | |||
| reporter = CLIReporter( | |||
| # parameter_columns=["l1", "l2", "lr", "batch_size"], | |||
| metric_columns=["loss", "ndcg1","ndcg3", "training_iteration"]) | |||
| result = tune.run( | |||
| partial(train_melu, data_dir=data_dir), | |||
| resources_per_trial={"cpu": 4, "gpu": gpus_per_trial}, | |||
| config=config, | |||
| num_samples=num_samples, | |||
| scheduler=scheduler, | |||
| progress_reporter=reporter, | |||
| log_to_file=True, | |||
| # resume=True, | |||
| local_dir="./hyper_tunning_all_cold", | |||
| name="melu_all_cold", | |||
| ) | |||
| best_trial = result.get_best_trial("loss", "min", "last") | |||
| print("Best trial config: {}".format(best_trial.config)) | |||
| print("Best trial final validation loss: {}".format( | |||
| best_trial.last_result["loss"])) | |||
| print("Best trial final validation ndcg1: {}".format( | |||
| best_trial.last_result["ndcg1"])) | |||
| print("Best trial final validation ndcg3: {}".format( | |||
| best_trial.last_result["ndcg3"])) | |||
| # | |||
| print("=======================================================") | |||
| print(result.results_df) | |||
| print("=======================================================\n") | |||
| # best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"]) | |||
| # device = "cpu" | |||
| # if torch.cuda.is_available(): | |||
| # device = "cuda:0" | |||
| # if gpus_per_trial > 1: | |||
| # best_trained_model = nn.DataParallel(best_trained_model) | |||
| # best_trained_model.to(device) | |||
| # | |||
| # best_checkpoint_dir = best_trial.checkpoint.value | |||
| # model_state, optimizer_state = torch.load(os.path.join( | |||
| # best_checkpoint_dir, "checkpoint")) | |||
| # best_trained_model.load_state_dict(model_state) | |||
| # | |||
| # test_acc = test_accuracy(best_trained_model, device) | |||
| # print("Best trial test set accuracy: {}".format(test_acc)) | |||
| if __name__ == "__main__": | |||
| # You can change the number of GPUs per trial here: | |||
| main(num_samples=150, max_num_epochs=25, gpus_per_trial=1) | |||
| @@ -0,0 +1,66 @@ | |||
| import random | |||
| from torch.nn import L1Loss | |||
| import numpy as np | |||
| from fast_adapt import fast_adapt | |||
| from sklearn.metrics import ndcg_score | |||
| def hyper_test(embedding,head, total_dataset, adaptation_step): | |||
| test_set_size = len(total_dataset) | |||
| random.shuffle(total_dataset) | |||
| a, b, c, d = zip(*total_dataset) | |||
| losses_q = [] | |||
| ndcgs11 = [] | |||
| ndcgs33=[] | |||
| for iterator in range(test_set_size): | |||
| try: | |||
| supp_xs = a[iterator].cuda() | |||
| supp_ys = b[iterator].cuda() | |||
| query_xs = c[iterator].cuda() | |||
| query_ys = d[iterator].cuda() | |||
| except IndexError: | |||
| print("index error in test method") | |||
| continue | |||
| learner = head.clone() | |||
| temp_sxs = embedding(supp_xs) | |||
| temp_qxs = embedding(query_xs) | |||
| evaluation_error,predictions = fast_adapt(learner, | |||
| temp_sxs, | |||
| temp_qxs, | |||
| supp_ys, | |||
| query_ys, | |||
| adaptation_step, | |||
| get_predictions=True) | |||
| l1 = L1Loss(reduction='mean') | |||
| loss_q = l1(predictions.view(-1), query_ys) | |||
| losses_q.append(float(loss_q)) | |||
| predictions = predictions.view(-1) | |||
| y_true = query_ys.cpu().detach().numpy() | |||
| y_pred = predictions.cpu().detach().numpy() | |||
| ndcgs11.append(float(ndcg_score([y_true], [y_pred], k=1, sample_weight=None, ignore_ties=False))) | |||
| ndcgs33.append(float(ndcg_score([y_true], [y_pred], k=3, sample_weight=None, ignore_ties=False))) | |||
| del supp_xs, supp_ys, query_xs, query_ys, predictions, y_true, y_pred, loss_q | |||
| # calculate metrics | |||
| try: | |||
| losses_q = np.array(losses_q).mean() | |||
| except: | |||
| losses_q = 100 | |||
| try: | |||
| ndcg1 = np.array(ndcgs11).mean() | |||
| ndcg3 = np.array(ndcgs33).mean() | |||
| except: | |||
| ndcg1 = 0 | |||
| ndcg3 = 0 | |||
| return losses_q,ndcg1,ndcg3 | |||
| @@ -0,0 +1,157 @@ | |||
| import os | |||
| import torch | |||
| import torch.nn as nn | |||
| from ray import tune | |||
| import pickle | |||
| from options import config | |||
| from embedding_module import EmbeddingModule | |||
| import learn2learn as l2l | |||
| import random | |||
| from fast_adapt import fast_adapt | |||
| import gc | |||
| from learn2learn.optim.transforms import KroneckerTransform | |||
| from hyper_testing import hyper_test | |||
| # Define paths (for data) | |||
| master_path= "/media/external_10TB/10TB/maheri/melu_data5" | |||
| def load_data(data_dir=master_path,test_state='warm_state'): | |||
| training_set_size = int(len(os.listdir("{}/warm_state".format(data_dir))) / 4) | |||
| supp_xs_s = [] | |||
| supp_ys_s = [] | |||
| query_xs_s = [] | |||
| query_ys_s = [] | |||
| for idx in range(training_set_size): | |||
| supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
| supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
| query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(data_dir, idx), "rb"))) | |||
| query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(data_dir, idx), "rb"))) | |||
| total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
| del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
| trainset = total_dataset | |||
| test_set_size = int(len(os.listdir("{}/{}".format(data_dir, test_state))) / 4) | |||
| supp_xs_s = [] | |||
| supp_ys_s = [] | |||
| query_xs_s = [] | |||
| query_ys_s = [] | |||
| for idx in range(test_set_size): | |||
| supp_xs_s.append(pickle.load(open("{}/{}/supp_x_{}.pkl".format(data_dir, test_state, idx), "rb"))) | |||
| supp_ys_s.append(pickle.load(open("{}/{}/supp_y_{}.pkl".format(data_dir, test_state, idx), "rb"))) | |||
| query_xs_s.append(pickle.load(open("{}/{}/query_x_{}.pkl".format(data_dir, test_state, idx), "rb"))) | |||
| query_ys_s.append(pickle.load(open("{}/{}/query_y_{}.pkl".format(data_dir, test_state, idx), "rb"))) | |||
| test_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) | |||
| del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
| random.shuffle(test_dataset) | |||
| val_size = int(test_set_size * 0.2) | |||
| validationset = test_dataset[:val_size] | |||
| testset = test_dataset[val_size:] | |||
| return trainset, validationset,testset | |||
| def train_melu(conf, checkpoint_dir=None, data_dir=None): | |||
| embedding_dim = config['embedding_dim'] | |||
| print("inajm1:",checkpoint_dir) | |||
| fc1_in_dim = config['embedding_dim'] * 8 | |||
| fc2_in_dim = config['first_fc_hidden_dim'] | |||
| fc2_out_dim = config['second_fc_hidden_dim'] | |||
| fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) | |||
| fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) | |||
| linear_out = torch.nn.Linear(fc2_out_dim, 1) | |||
| head = torch.nn.Sequential(fc1, fc2, linear_out) | |||
| emb = EmbeddingModule(config).cuda() | |||
| transform = None | |||
| if conf['transformer'] == "kronoker": | |||
| transform = KroneckerTransform(l2l.nn.KroneckerLinear) | |||
| elif conf['transformer'] == "linear": | |||
| transform = l2l.optim.ModuleTransform(torch.nn.Linear) | |||
| # define meta algorithm | |||
| if conf['meta_algo'] == "maml": | |||
| head = l2l.algorithms.MAML(head, lr=conf['local_lr'], first_order=conf['first_order']) | |||
| elif conf['meta_algo'] == 'metasgd': | |||
| head = l2l.algorithms.MetaSGD(head, lr=conf['local_lr'], first_order=conf['first_order']) | |||
| elif conf['meta_algo'] == 'gbml': | |||
| head = l2l.algorithms.GBML(head, transform=transform, lr=conf['local_lr'], | |||
| adapt_transform=conf['adapt_transform'], first_order=conf['first_order']) | |||
| head.cuda() | |||
| net = nn.Sequential(emb,head) | |||
| criterion = nn.MSELoss() | |||
| all_parameters = list(emb.parameters()) + list(head.parameters()) | |||
| optimizer = torch.optim.Adam(all_parameters, lr=conf['lr']) | |||
| if checkpoint_dir: | |||
| model_state, optimizer_state = torch.load( | |||
| os.path.join(checkpoint_dir, "checkpoint")) | |||
| net.load_state_dict(model_state) | |||
| optimizer.load_state_dict(optimizer_state) | |||
| # loading data | |||
| train_dataset,validation_dataset,test_dataset = load_data(data_dir,test_state=conf['test_state']) | |||
| print(conf['test_state']) | |||
| batch_size = conf['batch_size'] | |||
| num_batch = int(len(train_dataset) / batch_size) | |||
| a, b, c, d = zip(*train_dataset) | |||
| for epoch in range(config['num_epoch']): # loop over the dataset multiple times | |||
| for i in range(num_batch): | |||
| optimizer.zero_grad() | |||
| meta_train_error = 0.0 | |||
| # print("EPOCH: ", epoch, " BATCH: ", i) | |||
| supp_xs = list(a[batch_size * i:batch_size * (i + 1)]) | |||
| supp_ys = list(b[batch_size * i:batch_size * (i + 1)]) | |||
| query_xs = list(c[batch_size * i:batch_size * (i + 1)]) | |||
| query_ys = list(d[batch_size * i:batch_size * (i + 1)]) | |||
| batch_sz = len(supp_xs) | |||
| # iterate over all tasks | |||
| for task in range(batch_sz): | |||
| sxs = supp_xs[task].cuda() | |||
| qxs = query_xs[task].cuda() | |||
| sys = supp_ys[task].cuda() | |||
| qys = query_ys[task].cuda() | |||
| learner = head.clone() | |||
| temp_sxs = emb(sxs) | |||
| temp_qxs = emb(qxs) | |||
| evaluation_error = fast_adapt(learner, | |||
| temp_sxs, | |||
| temp_qxs, | |||
| sys, | |||
| qys, | |||
| conf['inner']) | |||
| evaluation_error.backward() | |||
| meta_train_error += evaluation_error.item() | |||
| del(sxs,qxs,sys,qys) | |||
| supp_xs[task].cpu() | |||
| query_xs[task].cpu() | |||
| supp_ys[task].cpu() | |||
| query_ys[task].cpu() | |||
| # Average the accumulated gradients and optimize (After each batch we will update params) | |||
| for p in all_parameters: | |||
| p.grad.data.mul_(1.0 / batch_sz) | |||
| optimizer.step() | |||
| del (supp_xs, supp_ys, query_xs, query_ys) | |||
| gc.collect() | |||
| # test results on the validation data | |||
| val_loss,val_ndcg1,val_ndcg3 = hyper_test(emb,head,validation_dataset,adaptation_step=conf['inner']) | |||
| with tune.checkpoint_dir(epoch) as checkpoint_dir: | |||
| path = os.path.join(checkpoint_dir, "checkpoint") | |||
| torch.save((net.state_dict(), optimizer.state_dict()), path) | |||
| tune.report(loss=val_loss, ndcg1=val_ndcg1,ndcg3=val_ndcg3) | |||
| print("Finished Training") | |||
| @@ -43,6 +43,8 @@ def parse_args(): | |||
| help='MAML/MetaSGD/GBML') | |||
| parser.add_argument('--gpu', type=int, default=0, | |||
| help='number of gpu to run the code') | |||
| parser.add_argument('--epochs', type=int, default=config['num_epoch'], | |||
| help='number of gpu to run the code') | |||
| @@ -108,7 +110,6 @@ if __name__ == '__main__': | |||
| # META LEARNING | |||
| print("META LEARNING PHASE") | |||
| # head = l2l.algorithms.MetaSGD(head, lr=config['local_lr'],first_order=True) | |||
| # define transformer | |||
| transform = None | |||
| @@ -119,11 +120,11 @@ if __name__ == '__main__': | |||
| # define meta algorithm | |||
| if args.meta_algo == "maml": | |||
| head = l2l.algorithms.MAML(head, lr=config['local_lr'],first_order=args.first_order) | |||
| head = l2l.algorithms.MAML(head, lr=args.lr_inner,first_order=args.first_order) | |||
| elif args.meta_algo == 'metasgd': | |||
| head = l2l.algorithms.MetaSGD(head, lr=config['local_lr'],first_order=args.first_order) | |||
| head = l2l.algorithms.MetaSGD(head, lr=args.lr_inner,first_order=args.first_order) | |||
| elif args.meta_algo == 'gbml': | |||
| head = l2l.algorithms.GBML(head, transform=transform, lr=config['local_lr'],adapt_transform=args.adapt_transform, first_order=args.first_order) | |||
| head = l2l.algorithms.GBML(head, transform=transform, lr=args.lr_inner,adapt_transform=args.adapt_transform, first_order=args.first_order) | |||
| if use_cuda: | |||
| head.cuda() | |||
| @@ -131,7 +132,7 @@ if __name__ == '__main__': | |||
| # Setup optimization | |||
| print("SETUP OPTIMIZATION PHASE") | |||
| all_parameters = list(emb.parameters()) + list(head.parameters()) | |||
| optimizer = torch.optim.Adam(all_parameters, lr=config['lr']) | |||
| optimizer = torch.optim.Adam(all_parameters, lr=args.lr_meta) | |||
| # loss = torch.nn.MSELoss(reduction='mean') | |||
| # Load training dataset. | |||
| @@ -157,7 +158,7 @@ if __name__ == '__main__': | |||
| a, b, c, d = zip(*total_dataset) | |||
| print("\n\n\n") | |||
| for iteration in range(config['num_epoch']): | |||
| for iteration in range(args.epochs): | |||
| for i in range(num_batch): | |||
| optimizer.zero_grad() | |||
| meta_train_error = 0.0 | |||
| @@ -254,7 +255,7 @@ if __name__ == '__main__': | |||
| del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) | |||
| print("===================== " + test_state + " =====================") | |||
| test(emb,head, test_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch'],adaptation_step=args.inner_eval) | |||
| test(emb,head, test_dataset, batch_size=config['batch_size'], num_epoch=args.epochs,adaptation_step=args.inner_eval) | |||
| print("===================================================\n\n\n") | |||
| print(args) | |||
| @@ -54,7 +54,8 @@ def test(embedding,head, total_dataset, batch_size, num_epoch,adaptation_step=co | |||
| temp_qxs, | |||
| supp_ys, | |||
| query_ys, | |||
| config['inner'], | |||
| # config['inner'], | |||
| adaptation_step, | |||
| get_predictions=True) | |||
| l1 = L1Loss(reduction='mean') | |||
| @@ -88,4 +89,8 @@ def test(embedding,head, total_dataset, batch_size, num_epoch,adaptation_step=co | |||
| print("nDCG3: ", np.array(ndcgs33).mean()) | |||
| # print("nDCG3: ", np.array(ndcgs333).mean()) | |||
| print("is there nan? " + str(np.any(np.isnan(ndcgs11)))) | |||
| print("is there nan? " + str(np.any(np.isnan(ndcgs33)))) | |||
| print("is there nan? " + str(np.any(np.isnan(losses_q)))) | |||