import os import torch import pickle from MeLU import MeLU from options import config from model_training import training from data_generation import generate from evidence_candidate import selection from model_test import test from embedding_module import EmbeddingModule import learn2learn as l2l from embeddings import item, user import random import numpy as np from learnToLearnTest import test from fast_adapt import fast_adapt import gc if config['use_cuda']: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" master_path= "/media/external_10TB/10TB/maheri/melu_data5" # DATA GENERATION print("DATA GENERATION PHASE") if not os.path.exists("{}/".format(master_path)): os.mkdir("{}/".format(master_path)) # preparing dataset. It needs about 22GB of your hard disk space. generate(master_path) # TRAINING print("TRAINING PHASE") embedding_dim = config['embedding_dim'] fc1_in_dim = config['embedding_dim'] * 8 fc2_in_dim = config['first_fc_hidden_dim'] fc2_out_dim = config['second_fc_hidden_dim'] use_cuda = config['use_cuda'] fc1 = torch.nn.Linear(fc1_in_dim, fc2_in_dim) fc2 = torch.nn.Linear(fc2_in_dim, fc2_out_dim) linear_out = torch.nn.Linear(fc2_out_dim, 1) head = torch.nn.Sequential(fc1,fc2,linear_out) if use_cuda: emb = EmbeddingModule(config).cuda() else: emb = EmbeddingModule(config) # META LEARNING print("META LEARNING PHASE") # head = l2l.algorithms.MetaSGD(head, lr=config['local_lr'],first_order=True) transform = l2l.optim.ModuleTransform(torch.nn.Linear) head = l2l.algorithms.GBML(head , transform=transform , lr=config['local_lr'] , adapt_transform=True,first_order=False) if use_cuda: head.cuda() # Setup optimization print("SETUP OPTIMIZATION PHASE") all_parameters = list(emb.parameters()) + list(head.parameters()) optimizer = torch.optim.Adam(all_parameters, lr=config['lr']) # loss = torch.nn.MSELoss(reduction='mean') # Load training dataset. print("LOAD DATASET PHASE") training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4) supp_xs_s = [] supp_ys_s = [] query_xs_s = [] query_ys_s = [] for idx in range(training_set_size): supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, idx), "rb"))) supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, idx), "rb"))) query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, idx), "rb"))) query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, idx), "rb"))) total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) del(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) training_set_size = len(total_dataset) batch_size = config['batch_size'] # torch.cuda.empty_cache() random.shuffle(total_dataset) num_batch = int(training_set_size / batch_size) a, b, c, d = zip(*total_dataset) print("\n\n\n") for iteration in range(config['num_epoch']): for i in range(num_batch): optimizer.zero_grad() meta_train_error = 0.0 meta_train_accuracy = 0.0 meta_valid_error = 0.0 meta_valid_accuracy = 0.0 meta_test_error = 0.0 meta_test_accuracy = 0.0 print("EPOCH: ", iteration, " BATCH: ", i) supp_xs = list(a[batch_size * i:batch_size * (i + 1)]) supp_ys = list(b[batch_size * i:batch_size * (i + 1)]) query_xs = list(c[batch_size * i:batch_size * (i + 1)]) query_ys = list(d[batch_size * i:batch_size * (i + 1)]) batch_sz = len(supp_xs) if use_cuda: for j in range(batch_size): supp_xs[j] = supp_xs[j].cuda() supp_ys[j] = supp_ys[j].cuda() query_xs[j] = query_xs[j].cuda() query_ys[j] = query_ys[j].cuda() for task in range(batch_sz): # print("EPOCH: ", iteration," BATCH: ",i, "TASK: ",task) # Compute meta-training loss learner = head.clone() temp_sxs = emb(supp_xs[task]) temp_qxs = emb(query_xs[task]) evaluation_error = fast_adapt(learner, temp_sxs, temp_qxs, supp_ys[task], query_ys[task], config['inner'] ) evaluation_error.backward() meta_train_error += evaluation_error.item() # Print some metrics print('Iteration', iteration) print('Meta Train Error', meta_train_error / batch_sz) # print('Meta Train Accuracy', meta_train_accuracy / batch_sz) # print('Meta Valid Error', meta_valid_error / batch_sz) # print('Meta Valid Accuracy', meta_valid_accuracy / batch_sz) # print('Meta Test Error', meta_test_error / batch_sz) # print('Meta Test Accuracy', meta_test_accuracy / batch_sz) # Average the accumulated gradients and optimize for p in all_parameters: p.grad.data.mul_(1.0 / batch_sz) optimizer.step() # torch.cuda.empty_cache() del(supp_xs,supp_ys,query_xs,query_ys) gc.collect() print("===============================================\n") # save model final_model = torch.nn.Sequential(emb,head) torch.save(final_model.state_dict(), master_path + "/models_gbml.pkl") # testing print("start of test phase") for test_state in ['warm_state', 'user_cold_state', 'item_cold_state', 'user_and_item_cold_state']: test_dataset = None test_set_size = int(len(os.listdir("{}/{}".format(master_path, test_state))) / 4) supp_xs_s = [] supp_ys_s = [] query_xs_s = [] query_ys_s = [] for idx in range(test_set_size): supp_xs_s.append(pickle.load(open("{}/{}/supp_x_{}.pkl".format(master_path, test_state, idx), "rb"))) supp_ys_s.append(pickle.load(open("{}/{}/supp_y_{}.pkl".format(master_path, test_state, idx), "rb"))) query_xs_s.append(pickle.load(open("{}/{}/query_x_{}.pkl".format(master_path, test_state, idx), "rb"))) query_ys_s.append(pickle.load(open("{}/{}/query_y_{}.pkl".format(master_path, test_state, idx), "rb"))) test_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)) del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s) print("===================== " + test_state + " =====================") test(emb,head, test_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch']) print("===================================================\n\n\n")