Browse Source

Adding validation phase

master
mohamad maheri 3 years ago
parent
commit
b67a7f99e1
4 changed files with 155 additions and 27 deletions
  1. 13
    0
      MeLU.py
  2. 48
    26
      main.py
  3. 89
    0
      model_test.py
  4. 5
    1
      model_training.py

+ 13
- 0
MeLU.py View File

@@ -61,23 +61,35 @@ class MeLU(torch.nn.Module):
self.fast_weights = OrderedDict()

def forward(self, support_set_x, support_set_y, query_set_x, num_local_update):

# this line added my maheri
self.keep_weight = deepcopy(self.model.state_dict())

for idx in range(num_local_update):
if idx > 0:
self.model.load_state_dict(self.fast_weights)

# weight_for_local_update = list(self.model.state_dict().values())
weight_for_local_update = list(self.model.state_dict().values())

support_set_y_pred = self.model(support_set_x)
loss = F.mse_loss(support_set_y_pred, support_set_y.view(-1, 1))
self.model.zero_grad()
grad = torch.autograd.grad(loss, self.model.parameters(), create_graph=True)

# local update
for i in range(self.weight_len):
if self.weight_name[i] in self.local_update_target_weight_name:
self.fast_weights[self.weight_name[i]] = weight_for_local_update[i] - self.local_lr * grad[i]
else:
self.fast_weights[self.weight_name[i]] = weight_for_local_update[i]

self.model.load_state_dict(self.fast_weights)
# self.fast_weights = OrderedDict()
query_set_y_pred = self.model(query_set_x)
self.model.load_state_dict(self.keep_weight)


return query_set_y_pred

def global_update(self, support_set_xs, support_set_ys, query_set_xs, query_set_ys, num_local_update):
@@ -98,6 +110,7 @@ class MeLU(torch.nn.Module):
losses_q.backward()
self.meta_optim.step()
self.store_parameters()

return

def get_weight_avg_norm(self, support_set_x, support_set_y, num_local_update):

+ 48
- 26
main.py View File

@@ -5,43 +5,65 @@ import pickle
from MeLU import MeLU
from options import config
from model_training import training
from model_test import test
from data_generation import generate
from evidence_candidate import selection


if __name__ == "__main__":

# master_path= "./ml"
master_path = "/media/external_3TB/3TB/rafie/maheri/melr"
# master_path = "/media/external_10TB/10TB/pourmand/ml"
master_path = "/media/external_10TB/10TB/maheri/melu_data"
if not os.path.exists("{}/".format(master_path)):
print("inajm")
print("generating data phase started")
os.mkdir("{}/".format(master_path))
# preparing dataset. It needs about 22GB of your hard disk space.
generate(master_path)

# # training model.
# melu = MeLU(config)
# model_filename = "{}/models.pkl".format(master_path)
# if not os.path.exists(model_filename):
# # Load training dataset.
# training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4)
# supp_xs_s = []
# supp_ys_s = []
# query_xs_s = []
# query_ys_s = []
# for idx in range(training_set_size):
# supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, idx), "rb")))
# supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, idx), "rb")))
# query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, idx), "rb")))
# query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, idx), "rb")))
# total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s))
# del(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)
# training(melu, total_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch'], model_save=True, model_filename=model_filename)
# else:
# trained_state_dict = torch.load(model_filename)
# melu.load_state_dict(trained_state_dict)
#
# # selecting evidence candidates.
# training model.
melu = MeLU(config)
model_filename = "{}/models2.pkl".format(master_path)
if not os.path.exists(model_filename):
print("training phase started")
# Load training dataset.
training_set_size = int(len(os.listdir("{}/warm_state".format(master_path))) / 4)
supp_xs_s = []
supp_ys_s = []
query_xs_s = []
query_ys_s = []
for idx in range(training_set_size):
supp_xs_s.append(pickle.load(open("{}/warm_state/supp_x_{}.pkl".format(master_path, idx), "rb")))
supp_ys_s.append(pickle.load(open("{}/warm_state/supp_y_{}.pkl".format(master_path, idx), "rb")))
query_xs_s.append(pickle.load(open("{}/warm_state/query_x_{}.pkl".format(master_path, idx), "rb")))
query_ys_s.append(pickle.load(open("{}/warm_state/query_y_{}.pkl".format(master_path, idx), "rb")))
total_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s))
del(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)
training(melu, total_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch'], model_save=True, model_filename=model_filename)
else:
trained_state_dict = torch.load(model_filename)
melu.load_state_dict(trained_state_dict)

print("training finished")
# selecting evidence candidates.
# evidence_candidate_list = selection(melu, master_path, config['num_candidate'])
# for movie, score in evidence_candidate_list:
# print(movie, score)


print("start of test phase")
test_dataset = None
test_set_size = int(len(os.listdir("{}/user_cold_state".format(master_path))) / 4)
supp_xs_s = []
supp_ys_s = []
query_xs_s = []
query_ys_s = []
for idx in range(test_set_size):
supp_xs_s.append(pickle.load(open("{}/user_cold_state/supp_x_{}.pkl".format(master_path, idx), "rb")))
supp_ys_s.append(pickle.load(open("{}/user_cold_state/supp_y_{}.pkl".format(master_path, idx), "rb")))
query_xs_s.append(pickle.load(open("{}/user_cold_state/query_x_{}.pkl".format(master_path, idx), "rb")))
query_ys_s.append(pickle.load(open("{}/user_cold_state/query_y_{}.pkl".format(master_path, idx), "rb")))
test_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s))
del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)

model_filename = "{}/models_test.pkl".format(master_path)
test(melu, test_dataset, batch_size=config['batch_size'], num_epoch=config['num_epoch'])

+ 89
- 0
model_test.py View File

@@ -0,0 +1,89 @@
import os
import torch
import pickle
import random
from MeLU import MeLU
from options import config, states
from torch.nn import functional as F
from torch.nn import L1Loss
# from pytorchltr.evaluation import ndcg
import matchzoo as mz
import numpy as np


def test(melu, total_dataset, batch_size, num_epoch):
if config['use_cuda']:
melu.cuda()

test_set_size = len(total_dataset)

trained_state_dict = torch.load("/media/external_10TB/10TB/maheri/melu_data/models2.pkl")
melu.load_state_dict(trained_state_dict)
melu.eval()

random.shuffle(total_dataset)
a, b, c, d = zip(*total_dataset)

losses_q = []
predictions = None
predictions_size = None

# y_true = []
# y_pred = []
ndcgs1 = []
ndcgs3 = []

for iterator in range(test_set_size):
# trained_state_dict = torch.load("/media/external_10TB/10TB/maheri/melu_data/models.pkl")
# melu.load_state_dict(trained_state_dict)
# melu.eval()

try:
supp_xs = a[iterator].cuda()
supp_ys = b[iterator].cuda()
query_xs = c[iterator].cuda()
query_ys = d[iterator].cuda()
except IndexError:
print("index error in test method")
continue

num_local_update = config['inner']
query_set_y_pred = melu.forward(supp_xs, supp_ys, query_xs, num_local_update)

l1 = L1Loss(reduction='mean')
loss_q = l1(query_set_y_pred, query_ys)
print("testing - iterator:{} - l1:{} ".format(iterator,loss_q))
losses_q.append(loss_q)

# if predictions is None:
# predictions = query_set_y_pred
# predictions_size = torch.FloatTensor(len(query_set_y_pred))
# else:
# predictions = torch.cat((predictions,query_set_y_pred),0)
# predictions_size = torch.cat((predictions_size,torch.FloatTensor(len(query_set_y_pred))),0)
# y_true.append(query_ys.cpu().detach().numpy())
# y_pred.append(query_set_y_pred.cpu().detach().numpy())

y_true = query_ys.cpu().detach().numpy()
y_pred = query_set_y_pred.cpu().detach().numpy()
ndcgs1.append(mz.metrics.NormalizedDiscountedCumulativeGain(k=1)(y_true,y_pred))
ndcgs3.append(mz.metrics.NormalizedDiscountedCumulativeGain(k=3)(y_true, y_pred))


del supp_xs, supp_ys, query_xs, query_ys


# calculate metrics
print(losses_q)
print("======================================")
losses_q = torch.stack(losses_q).mean(0)
print("mean of mse: ",losses_q)
print("======================================")

# n1 = ndcg(d, predictions.cuda(), predictions_size.cuda(), k=1)
# n1 = mz.metrics.NormalizedDiscountedCumulativeGain(k=1)(np.array(y_true),np.array(y_pred))
n1 = np.array(ndcgs1).mean()
print("nDCG1: ",n1)
n3 = np.array(ndcgs3).mean()
print("nDCG3: ", n3)


+ 5
- 1
model_training.py View File

@@ -11,13 +11,16 @@ def training(melu, total_dataset, batch_size, num_epoch, model_save=True, model_
if config['use_cuda']:
melu.cuda()

print("mode: " + str(config['use_cuda']))

training_set_size = len(total_dataset)
melu.train()
for _ in range(num_epoch):
for epoch in range(num_epoch):
random.shuffle(total_dataset)
num_batch = int(training_set_size / batch_size)
a,b,c,d = zip(*total_dataset)
for i in range(num_batch):
print("training - epoch:{} - batch:{}".format(epoch,i))
try:
supp_xs = list(a[batch_size*i:batch_size*(i+1)])
supp_ys = list(b[batch_size*i:batch_size*(i+1)])
@@ -26,6 +29,7 @@ def training(melu, total_dataset, batch_size, num_epoch, model_save=True, model_
except IndexError:
continue
melu.global_update(supp_xs, supp_ys, query_xs, query_ys, config['inner'])
del supp_xs,supp_ys,query_xs,query_ys

if model_save:
torch.save(melu.state_dict(), model_filename)

Loading…
Cancel
Save