123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- from itertools import cycle
-
- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
- import seaborn as sns
- from numpy import interp
- from sklearn.decomposition import PCA
- from sklearn.manifold import TSNE
- from sklearn.metrics import accuracy_score, f1_score, precision_recall_curve, average_precision_score
- from sklearn.metrics import classification_report, roc_curve, auc
- from sklearn.preprocessing import OneHotEncoder
-
-
- def metrics(truth, pred, prob, file_path):
- truth = [i.cpu().numpy() for i in truth]
- pred = [i.cpu().numpy() for i in pred]
- prob = [i.cpu().numpy() for i in prob]
-
- pred = np.concatenate(pred, axis=0)
- truth = np.concatenate(truth, axis=0)
- prob = np.concatenate(prob, axis=0)
- prob = prob[:, 1]
-
- f_score_micro = f1_score(truth, pred, average='micro', zero_division=0)
- f_score_macro = f1_score(truth, pred, average='macro', zero_division=0)
- f_score_weighted = f1_score(truth, pred, average='weighted', zero_division=0)
- accuarcy = accuracy_score(truth, pred)
-
- s = ''
- print('accuracy', accuarcy)
- s += 'accuracy' + str(accuarcy) + '\n'
- print('f_score_micro', f_score_micro)
- s += 'f_score_micro' + str(f_score_micro) + '\n'
- print('f_score_macro', f_score_macro)
- s += 'f_score_macro' + str(f_score_macro) + '\n'
- print('f_score_weighted', f_score_weighted)
- s += 'f_score_weighted' + str(f_score_weighted) + '\n'
-
- fpr, tpr, thresholds = roc_curve(truth, prob)
- AUC = auc(fpr, tpr)
- print('AUC', AUC)
- s += 'AUC' + str(AUC) + '\n'
- df = pd.DataFrame(dict(fpr=fpr, tpr=tpr))
- df.to_csv(file_path)
-
- return s
-
-
- def report_per_class(truth, pred):
- truth = [i.cpu().numpy() for i in truth]
- pred = [i.cpu().numpy() for i in pred]
-
- pred = np.concatenate(pred, axis=0)
- truth = np.concatenate(truth, axis=0)
-
- report = classification_report(truth, pred, zero_division=0, output_dict=True)
-
- s = ''
- class_labels = [k for k in report.keys() if k not in ['micro avg', 'macro avg', 'weighted avg', 'samples avg']]
- for class_label in class_labels:
- print('class_label', class_label)
- s += 'class_label' + str(class_label) + '\n'
- s += str(report[class_label])
- print(report[class_label])
-
- return s
-
-
- def multiclass_acc(truth, pred):
- truth = [i.cpu().numpy() for i in truth]
- pred = [i.cpu().numpy() for i in pred]
-
- pred = np.concatenate(pred, axis=0)
- truth = np.concatenate(truth, axis=0)
-
- return accuracy_score(truth, pred)
-
-
- def roc_auc_plot(truth, score, num_class=2, fname='roc.png'):
- truth = [i.cpu().numpy() for i in truth]
- score = [i.cpu().numpy() for i in score]
-
- truth = np.concatenate(truth, axis=0)
- score = np.concatenate(score, axis=0)
-
- enc = OneHotEncoder(handle_unknown='ignore')
- enc.fit(truth.reshape(-1, 1))
- label_onehot = enc.transform(truth.reshape(-1, 1)).toarray()
-
- fpr_dict = dict()
- tpr_dict = dict()
- roc_auc_dict = dict()
- for i in range(num_class):
- fpr_dict[i], tpr_dict[i], _ = roc_curve(label_onehot[:, i], score[:, i])
- roc_auc_dict[i] = auc(fpr_dict[i], tpr_dict[i])
- # micro
- fpr_dict["micro"], tpr_dict["micro"], _ = roc_curve(label_onehot.ravel(), score.ravel())
- roc_auc_dict["micro"] = auc(fpr_dict["micro"], tpr_dict["micro"])
-
- # macro
- all_fpr = np.unique(np.concatenate([fpr_dict[i] for i in range(num_class)]))
- mean_tpr = np.zeros_like(all_fpr)
- for i in range(num_class):
- mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i])
- mean_tpr /= num_class
- fpr_dict["macro"] = all_fpr
- tpr_dict["macro"] = mean_tpr
- roc_auc_dict["macro"] = auc(fpr_dict["macro"], tpr_dict["macro"])
-
- plt.figure()
-
- lw = 2
- plt.plot(fpr_dict["micro"], tpr_dict["micro"],
- label='micro-average ROC curve (area = {0:0.2f})'
- ''.format(roc_auc_dict["micro"]),
- color='deeppink', linestyle=':', linewidth=4)
-
- plt.plot(fpr_dict["macro"], tpr_dict["macro"],
- label='macro-average ROC curve (area = {0:0.2f})'
- ''.format(roc_auc_dict["macro"]),
- color='navy', linestyle=':', linewidth=4)
-
- colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
- for i, color in zip(range(num_class), colors):
- plt.plot(fpr_dict[i], tpr_dict[i], color=color, lw=lw,
- label='ROC curve of class {0} (area = {1:0.2f})'
- ''.format(i, roc_auc_dict[i]))
- plt.plot([0, 1], [0, 1], 'k--', lw=lw)
- plt.xlim([0.0, 1.0])
- plt.ylim([0.0, 1.05])
- plt.xlabel('False Positive Rate')
- plt.ylabel('True Positive Rate')
- plt.legend(loc="lower right")
- plt.savefig(fname)
- # plt.show()
-
-
- def precision_recall_plot(truth, score, num_class=2, fname='pr.png'):
- truth = [i.cpu().numpy() for i in truth]
- score = [i.cpu().numpy() for i in score]
-
- truth = np.concatenate(truth, axis=0)
- score = np.concatenate(score, axis=0)
-
- enc = OneHotEncoder(handle_unknown='ignore')
- enc.fit(truth.reshape(-1, 1))
- label_onehot = enc.transform(truth.reshape(-1, 1)).toarray()
-
- # Call the Sklearn library, calculate the precision and recall corresponding to each category
- precision_dict = dict()
- recall_dict = dict()
- average_precision_dict = dict()
- for i in range(num_class):
- precision_dict[i], recall_dict[i], _ = precision_recall_curve(label_onehot[:, i], score[:, i])
- average_precision_dict[i] = average_precision_score(label_onehot[:, i], score[:, i])
- print(precision_dict[i].shape, recall_dict[i].shape, average_precision_dict[i])
-
- # micro
- precision_dict["micro"], recall_dict["micro"], _ = precision_recall_curve(label_onehot.ravel(),
- score.ravel())
- average_precision_dict["micro"] = average_precision_score(label_onehot, score, average="micro")
-
- # macro
- all_fpr = np.unique(np.concatenate([precision_dict[i] for i in range(num_class)]))
- mean_tpr = np.zeros_like(all_fpr)
- for i in range(num_class):
- mean_tpr += interp(all_fpr, precision_dict[i], recall_dict[i])
- mean_tpr /= num_class
- precision_dict["macro"] = all_fpr
- recall_dict["macro"] = mean_tpr
- average_precision_dict["macro"] = auc(precision_dict["macro"], recall_dict["macro"])
-
- plt.figure()
- plt.subplots(figsize=(16, 10))
- lw = 2
- plt.plot(precision_dict["micro"], recall_dict["micro"],
- label='micro-average Precision-Recall curve (area = {0:0.2f})'
- ''.format(average_precision_dict["micro"]),
- color='deeppink', linestyle=':', linewidth=4)
-
- plt.plot(precision_dict["macro"], recall_dict["macro"],
- label='macro-average Precision-Recall curve (area = {0:0.2f})'
- ''.format(average_precision_dict["macro"]),
- color='navy', linestyle=':', linewidth=4)
-
- colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
- for i, color in zip(range(num_class), colors):
- plt.plot(precision_dict[i], recall_dict[i], color=color, lw=lw,
- label='Precision-Recall curve of class {0} (area = {1:0.2f})'
- ''.format(i, average_precision_dict[i]))
- plt.plot([0, 1], [0, 1], 'k--', lw=lw)
-
- plt.xlabel('Recall')
- plt.ylabel('Precision')
- plt.ylim([0.0, 1.05])
- plt.xlim([0.0, 1.0])
-
- plt.legend(loc="lower left")
- plt.savefig(fname=fname)
- # plt.show()
-
-
- def saving_in_tensorboard(config, x, y, fname='embedding'):
- x = [i.cpu().numpy() for i in x]
- y = [i.cpu().numpy() for i in y]
-
- x = np.concatenate(x, axis=0)
- y = np.concatenate(y, axis=0)
- z = pd.DataFrame(y)[0].apply(lambda i: config.classes[i]).values
-
- # config.writer.add_embedding(mat=x, label_img=y, metadata=z, tag=fname)
-
-
- def plot_tsne(config, x, y, fname='tsne.png'):
- x = [i.cpu().numpy() for i in x]
- y = [i.cpu().numpy() for i in y]
-
- x = np.concatenate(x, axis=0)
- y = np.concatenate(y, axis=0)
-
- y = pd.DataFrame(y)[0].apply(lambda i: config.classes[i]).values
-
- tsne = TSNE(n_components=2, verbose=1, init="pca", perplexity=10, learning_rate=1000)
- tsne_proj = tsne.fit_transform(x)
-
- fig, ax = plt.subplots(figsize=(16, 10))
-
- palette = sns.color_palette("bright", 2)
- sns.scatterplot(tsne_proj[:, 0], tsne_proj[:, 1], hue=y, legend='full', palette=palette)
-
- ax.legend(fontsize='large', markerscale=2)
- plt.title('tsne of ' + str(fname.split('/')[-1].split('.')[0]))
- plt.savefig(fname=fname)
- plt.show()
-
-
- def save_loss(ids, predictions, targets, l, path):
- ids = [i.cpu().numpy() for i in ids]
- predictions = [i.cpu().numpy() for i in predictions]
- targets = [i.cpu().numpy() for i in targets]
- losses = [i[0].cpu().numpy() for i in l]
- classifier_losses = [i[1].cpu().numpy() for i in l]
- similarity_losses = [i[2].cpu().numpy() for i in l]
-
- pd.DataFrame({'id': ids, 'predicted_label': predictions, 'real_label': targets, 'losses': losses,
- 'classifier_losses': classifier_losses, 'similarity_losses': similarity_losses}).to_csv(path)
-
-
- def save_embedding(x, fname='embedding.tsv'):
- x = [i.cpu().numpy() for i in x]
-
- x = np.concatenate(x, axis=0)
-
- embedding_df = pd.DataFrame(x)
-
- embedding_df.to_csv(fname, sep='\t', index=False, header=False)
-
-
- def save_2D_embedding(x, fname=''):
- x = [[i.cpu().numpy() for i in j] for j in x]
-
- for i, batch in enumerate(x):
- embedding_df = pd.DataFrame(batch)
- embedding_df.to_csv(fname + '/batch ' + str(i) + '.csv', sep=',')
-
-
- def plot_pca(config, x, y, fname='pca.png'):
- x = [i.cpu().numpy() for i in x]
- y = [i.cpu().numpy() for i in y]
-
- x = np.concatenate(x, axis=0)
- y = np.concatenate(y, axis=0)
-
- y = pd.DataFrame(y)[0].apply(lambda i: config.classes[i]).values
-
- pca = PCA(n_components=2)
- pca_proj = pca.fit_transform(x)
-
- fig, ax = plt.subplots(figsize=(16, 10))
-
- palette = sns.color_palette("bright", 2)
- sns.scatterplot(pca_proj[:, 0], pca_proj[:, 1], hue=y, legend='full', palette=palette)
-
- ax.legend(fontsize='large', markerscale=2)
- plt.title('pca of ' + str(fname.split('/')[-1].split('.')[0]))
- plt.savefig(fname=fname)
- # plt.show()
|