|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- import torch
- import ast
-
-
- class Config:
- name = ''
- DatasetLoader = None
- debug = False
- data_path = ''
- output_path = ''
-
- train_image_path = ''
- validation_image_path = ''
- test_image_path = ''
-
- train_text_path = ''
- validation_text_path = ''
- test_text_path = ''
-
- train_text_embedding_path = ''
- validation_text_embedding_path = ''
-
- train_image_embedding_path = ''
- validation_image_embedding_path = ''
-
- batch_size = 256
- epochs = 50
- num_workers = 2
- head_lr = 1e-03
- image_encoder_lr = 1e-04
- text_encoder_lr = 1e-04
- attention_lr = 1e-3
- classification_lr = 1e-03
-
- max_grad_norm = 5.0
-
- head_weight_decay = 0.001
- attention_weight_decay = 0.001
- classification_weight_decay = 0.001
-
- patience = 30
- delta = 0.0000001
- factor = 0.8
-
- image_model_name = '../../../../../media/external_10TB/10TB/ghorbanpoor/vit-base-patch16-224'
- image_embedding = 768
- num_img_region = 64 # 16 #TODO
- text_encoder_model = "../../../../../media/external_10TB/10TB/ghorbanpoor/bert-base-uncased"
- text_tokenizer = "../../../../../media/external_10TB/10TB/ghorbanpoor/bert-base-uncased"
-
- text_embedding = 768
- max_length = 32
-
- pretrained = True # for both image encoder and text encoder
- trainable = False # for both image encoder and text encoder
- temperature = 1.0
-
- # image size
- size = 224
-
- num_projection_layers = 1
- projection_size = 64
- dropout = 0.3
- hidden_size = 128
- num_region = 64 # 16 #TODO
- region_size = projection_size // num_region
-
- classes = ['real', 'fake']
- class_num = 2
-
- loss_weight = 1
- class_weights = [1, 1]
-
- writer = None
-
- has_unlabeled_data = False
- step = 0
- T1 = 10
- T2 = 150
- af = 3
-
- wanted_accuracy = 0.76
-
- def optuna(self, trial):
- self.head_lr = trial.suggest_loguniform('head_lr', 1e-5, 1e-1)
- self.image_encoder_lr = trial.suggest_loguniform('image_encoder_lr', 1e-6, 1e-3)
- self.text_encoder_lr = trial.suggest_loguniform('text_encoder_lr', 1e-6, 1e-3)
- self.classification_lr = trial.suggest_loguniform('classification_lr', 1e-5, 1e-1)
- self.attention_lr = trial.suggest_loguniform('attention_lr', 1e-5, 1e-1)
-
- self.attention_weight_decay = trial.suggest_loguniform('attention_weight_decay', 1e-5, 1e-1)
- self.head_weight_decay = trial.suggest_loguniform('head_weight_decay', 1e-5, 1e-1)
- self.classification_weight_decay = trial.suggest_loguniform('classification_weight_decay', 1e-5, 1e-1)
-
- self.projection_size = trial.suggest_categorical('projection_size', [256, 128, 64])
- self.hidden_size = trial.suggest_categorical('hidden_size', [256, 128, 64, ])
- self.dropout = trial.suggest_categorical('drop_out', [0.1, 0.3, 0.5, ])
-
- def __str__(self):
- s = ''
- members = [attr for attr in dir(self) if not callable(getattr(self, attr)) and not attr.startswith("__")]
- for member in members:
- s += member + '\t' + str(getattr(self, member)) + '\n'
- return s
-
- def assign_hyperparameters(self, s):
- for line in s.split('\n'):
- s = line.split('\t')
- try:
- attr = getattr(self, s[0])
- if type(attr) not in [list, set, dict]:
- setattr(self, s[0], type(attr)(s[1]))
- else:
- setattr(self, s[0], ast.literal_eval(s[1]))
-
- except:
- print(s[0], 'doesnot exist')
|