Official implementation of the Fake News Revealer paper
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 1.8KB

2 years ago
3 years ago
1 year ago
1 year ago
2 years ago
2 years ago
2 years ago
1 year ago
1 year ago
1 year ago
1 year ago
1 year ago
2 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. # Fake News Revealer
  2. Official implementation of the ["Fake News Revealer (FNR): A Similarity and Transformer-Based Approach to Detect
  3. Multi-Modal Fake News in Social Media"](https://link.springer.com/article/10.1007/s13278-023-01065-0) paper .
  4. Please do not hesitate to contact me if you have any questions regarding the paper and its implementation. Here is [my email address.](mailto:[email protected])
  5. ## Requirments
  6. FNR is built in Python 3.6 using PyTorch 1.8. Please use the following command to install the requirements:
  7. ```
  8. pip install -r requirements.txt
  9. ```
  10. ## How to Run
  11. First, place the data address and configuration into the config file in the data directory, and then follow the train
  12. and test commands.
  13. ### train
  14. To run with Optuna for parameter tuning use this command:
  15. ```
  16. python main --data "DATA NAME" --use_optuna "NUMBER OF OPTUNA TRIALS" --batch "BATCH SIZE" --epoch "EPOCHS NUMBER"
  17. ```
  18. To run without parameter tuning, adjust your parameters in the config file and then use the below command:
  19. ```
  20. python main --data "DATA NAME" --batch "BATCH SIZE" --epoch "EPOCHS NUMBER"
  21. ```
  22. ### test
  23. In the test step, at first, make sure to have the requested 'checkpoint' file then run the following line:
  24. ```
  25. python main --data "DATA NAME" --just_test "REQUESTED TRIAL NUMBER"
  26. ```
  27. ## Bibtex
  28. Cite our paper using the following bibtex item:
  29. ```
  30. @article{
  31. ghorbanpour_ramezani_fazli_rabiee_2023,
  32. title = {FNR: A Similarity and transformer-based approach to detect multi-modal fake news in Social Media}, volume={13},
  33. author = {Ghorbanpour, Faeze and Ramezani, Maryam and Fazli, Mohammad Amin and Rabiee, Hamid R.},
  34. DOI = {10.1007/s13278-023-01065-0},
  35. number = {1},
  36. volume={13},
  37. pages={1--15},
  38. publisher={Springer},
  39. journal = {Social Network Analysis and Mining},
  40. year= {2023}
  41. }
  42. ```