|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- # Fake News Revealer
-
- Official implementation of the ["Fake News Revealer (FNR): A Similarity and Transformer-Based Approach to Detect
- Multi-Modal Fake News in Social Media"](https://link.springer.com/article/10.1007/s13278-023-01065-0) paper .
-
- Please do not hesitate to contact me if you have any questions regarding the paper and its implementation. Here is [my email address.](mailto:[email protected])
-
-
-
- ## Requirments
- FNR is built in Python 3.6 using PyTorch 1.8. Please use the following command to install the requirements:
-
- ```
- pip install -r requirements.txt
- ```
-
- ## How to Run
- First, place the data address and configuration into the config file in the data directory, and then follow the train
- and test commands.
-
- ### train
- To run with Optuna for parameter tuning use this command:
-
- ```
- python main --data "DATA NAME" --use_optuna "NUMBER OF OPTUNA TRIALS" --batch "BATCH SIZE" --epoch "EPOCHS NUMBER"
- ```
-
- To run without parameter tuning, adjust your parameters in the config file and then use the below command:
- ```
- python main --data "DATA NAME" --batch "BATCH SIZE" --epoch "EPOCHS NUMBER"
- ```
-
- ### test
- In the test step, at first, make sure to have the requested 'checkpoint' file then run the following line:
- ```
- python main --data "DATA NAME" --just_test "REQUESTED TRIAL NUMBER"
- ```
-
- ## Bibtex
- Cite our paper using the following bibtex item:
-
- ```
- @article{
- ghorbanpour_ramezani_fazli_rabiee_2023,
- title = {FNR: A Similarity and transformer-based approach to detect multi-modal fake news in Social Media}, volume={13},
- author = {Ghorbanpour, Faeze and Ramezani, Maryam and Fazli, Mohammad Amin and Rabiee, Hamid R.},
- DOI = {10.1007/s13278-023-01065-0},
- number = {1},
- volume={13},
- pages={1--15},
- publisher={Springer},
- journal = {Social Network Analysis and Mining},
- year= {2023}
- }
- ```
-
|