import argparse import torch from media import media_path class Config: def __init__(self): self.parser = argparse.ArgumentParser() self.add_arguments() self.args = self.parse() self.post_process() def parse(self): return self.parser.parse_args() def add_arguments(self): self.parser.add_argument('--device', type=int, default=0, help='Device number to use for training') self.parser.add_argument('--gpu_count', type=int, default=1, help='Number of GPUs available') self.parser.add_argument('--seed', type=int, default=1234, help='Set seed for reproducability') self.parser.add_argument('--batch_size', type=int, default=16, help='batch size for training ') self.parser.add_argument('--virtual_batch_size', type=int, default=16, help='batch size for updating model parameters') self.parser.add_argument('--epochs', type=int, default=5, help='Number of epochs for training') self.parser.add_argument('--lr', type=float, default='2e-3', help='Learning rate') self.parser.add_argument('--weight_decay', type=float, default=0.1, help='Weight decay for optimizer') self.parser.add_argument('--optimizer_eps', type=float, default=1e-8, help='optimizer eps') self.parser.add_argument("--scheduler", type=int, default=1, help="Uses scheduler if 1") self.parser.add_argument('--scheduler_warmup_ratio', type=float, default=0.06, help='Scheduler warmup ratio * total steps = warmup steps') self.parser.add_argument('--max_length', type=int, default=128, help='Max length for tokenization') self.parser.add_argument('--peft_mode', type=str, default='lora', choices=['lora', 'bitfit', 'full', 'lorabitfit'], help='PEFT mode for fine-tuning') self.parser.add_argument('--rank', type=int, default=8, help='Rank for lora') self.parser.add_argument('--alpha', type=int, default=16, help='Alpha for lora') self.parser.add_argument('--dataset', type=str, default='sst2', choices=['sst2', 'mnli', 'qqp', 'qnli'], help='Dataset name') self.parser.add_argument('--toy_example', type=int, default=0, help='if 1, the first 1024 data from train dataset will be used for training') self.parser.add_argument("--dp", type=int, default=0, help="Fine-tune using differential privacy if 1") self.parser.add_argument("--epsilon", type=int, default=3, help="Epsilon in privacy budget") self.parser.add_argument("--delta", type=float, default=1e-5, help="Delta in privacy budget") self.parser.add_argument('--clipping_mode', type=str, default='default', choices=['default', 'ghost'], help='Clipping mode for DP fine-tuning') self.parser.add_argument("--clipping_threshold", type=float, default=0.1, help="Max grad norm") self.parser.add_argument("--use_wandb", type=int, default=0, help="Uses wandb if 1") self.parser.add_argument("--wandb_project_name", type=str, default="Project-DP", help="Wandb project name") self.parser.add_argument("--run_name", type=str, default=None, help="run name") self.parser.add_argument("--two_step_training", type=int, default=0, help="if 1, first finetunes lora then bitfit") def post_process(self): assert self.args.virtual_batch_size % self.args.batch_size == 0, "virtual_batch_size should be devisible by batch_size" self.args.device = torch.device(f'cuda:{self.args.device}' if torch.cuda.is_available() else "cpu") self.args.media_path = media_path