123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- import os
- import argparse
-
- import numpy as np
- import pandas as pd
-
- from tqdm import tqdm
-
- tqdm.pandas()
-
- DATA_DIR = './data'
- OUTPUT_DIR = './output'
-
- cancers_with_ILMN = ['Pancreas'] # gene_id: ILMN_
- cancers_with_NM = ['Nervous System'] # gene_id: NM_/NR/_
- cancers_with_ENS_version = ['Blood']
-
-
- def read_data(folder: str, file_path: str):
- if file_path.endswith('.tsv'):
- return pd.read_csv(f'{DATA_DIR}/{folder}/{file_path}', sep='\t', header=0, low_memory=False)
- return None
-
-
- def read_data_csv(folder: str, file_path: str):
- return pd.read_csv(f'{DATA_DIR}/{folder}/{file_path}', header=0, low_memory=False)
-
-
- def read_chunk_by_chunk(folder: str, file_path: str, columns=None):
- df = pd.DataFrame()
- for chunk in pd.read_csv(f"{DATA_DIR}/{folder}/{file_path}", sep='\t', header=0, low_memory=False, chunksize=1e6):
- df = pd.concat([df, chunk[columns] if columns else chunk], ignore_index=True)
- return df
-
-
- def save_tsv(df, output_path, file_path):
- if not os.path.exists(output_path):
- os.makedirs(output_path)
- df.to_csv(f'{output_path}/{file_path}', sep='\t')
-
-
- def get_mutation_data(cancer_type, mutation_path, mutation_type=None):
- columns = ['icgc_donor_id', 'gene_affected', 'mutation_type']
- data = read_chunk_by_chunk(cancer_type, mutation_path, columns)
- if mutation_type:
- data = data[data['mutation_type'] == mutation_type] \
- .drop(columns=['mutation_type'])
- return data.dropna()
-
-
- def get_expression_data(cancer_type, expression_path):
- columns = ['icgc_donor_id', 'gene_id']
- data = read_chunk_by_chunk(cancer_type, expression_path, columns)
- return data.dropna()
-
-
- def get_genes(genes_path, gene_class=None):
- genes = pd.read_csv(genes_path, sep='\t', header=0)
- genes.gene_symbol = list(map(lambda g: g[1:-1], genes.gene_symbol))
- if gene_class:
- genes = genes[genes['gene_class'] == gene_class]
- genes = genes[['gene_name', 'gene_symbol']] \
- .rename({'gene_name': 'gene_ensembl_id'}, axis=1)
- return genes
-
-
- def store_summary(df, output_path, file_name):
- if not os.path.exists(output_path):
- os.makedirs(output_path)
- save_tsv(df, OUTPUT_DIR, f'result-{file_name}.tsv')
- print(f'>>> Summary for {file_name} (considering mutation and expression):')
- print('\tDonors in Common:', df.shape[0])
- print('\tGenes in Common:', df.shape[1])
-
-
- def perform_analysis(args, cancer_type):
- genes = get_genes(args.genes_path)
-
- ### Mutation
- mut = get_mutation_data(cancer_type, args.mutation_path, mutation_type='single base substitution')
- mut_data = mut.rename({'gene_affected': 'gene_ensembl_id'}, axis=1)
- sign_mut_samples = pd.merge(genes, mut_data, how='left', on='gene_ensembl_id') \
- .drop(columns=['gene_ensembl_id']) \
- .drop_duplicates() \
- .dropna()
-
- ### Expression
- expr = get_expression_data(cancer_type, args.expression_path)
-
- #### Before this part the R script needs to have been run to convert Illumina probe to gene
- if cancer_type in cancers_with_ILMN:
- ILMN_genes = pd.read_csv(f'./{DATA_DIR}/{cancer_type}/converted_genes.csv')['Gene']
- expr['gene_symbol'] = ILMN_genes
- expr = expr.dropna()
- if cancer_type in cancers_with_ENS_version + cancers_with_NM:
- converted_genes = pd.read_csv(f'./{DATA_DIR}/{cancer_type}/converted_genes.csv')
- expr = pd.merge(expr, converted_genes, how='left', left_on="gene_id", right_on='initial_id')
- expr = expr.rename({'Gene': 'gene_symbol'}, axis=1)
- expr = expr.dropna()
- else:
- expr = expr.rename({'gene_id': 'gene_symbol'}, axis=1)
-
- ## Merge datasets
- ### Find intersection
- cols = ['icgc_donor_id', 'gene_symbol']
- mut_data = sign_mut_samples[cols]
- expr_data = expr[cols]
-
- common_donors = np.intersect1d(mut_data[['icgc_donor_id']], expr_data[['icgc_donor_id']])
- print('Initial common donors:', common_donors.shape)
- common_genes = np.intersect1d(mut_data[['gene_symbol']], expr_data[['gene_symbol']])
- print('Initial common genes:', common_genes.shape)
-
- # Narrow down both datasets
- final_mut = pd.merge(pd.Series(common_genes, name='gene_symbol'), mut_data, how='left', on='gene_symbol')
- final_mut = pd.merge(pd.Series(common_donors, name='icgc_donor_id'), final_mut, how='left', on='icgc_donor_id')
- final_expr = pd.merge(pd.Series(common_genes, name='gene_symbol'), expr_data, how='left', on='gene_symbol')
- final_expr = pd.merge(pd.Series(common_donors, name='icgc_donor_id'), final_expr, how='left', on='icgc_donor_id')
-
- updated_common_genes = np.intersect1d(final_expr.gene_symbol.unique(), final_mut.gene_symbol.unique())
- updated_common_donor = np.intersect1d(final_expr.icgc_donor_id.unique(), final_mut.icgc_donor_id.unique())
- final_mut = pd.merge(pd.Series(updated_common_genes, name='gene_symbol'), final_mut, how='left', on='gene_symbol')
- final_mut = pd.merge(pd.Series(updated_common_donor, name='icgc_donor_id'), final_mut, how='left',
- on='icgc_donor_id')
- final_expr = pd.merge(pd.Series(updated_common_genes, name='gene_symbol'), final_expr, how='left', on='gene_symbol')
- final_expr = pd.merge(pd.Series(updated_common_donor, name='icgc_donor_id'), final_expr, how='left',
- on='icgc_donor_id')
-
- final_mut.sort_values(by='gene_symbol', inplace=True)
- final_expr.sort_values(by='gene_symbol', inplace=True)
- sorted_common_genes = np.sort(updated_common_genes)
-
- ### Matrix generation
- result_mut = pd.DataFrame(index=updated_common_donor, columns=updated_common_genes).fillna(0)
- for idx, row in tqdm(final_mut.drop_duplicates().groupby('icgc_donor_id')['gene_symbol'].apply(list).iteritems()):
- result_mut.loc[idx, row] = 1
-
- result_expr = pd.DataFrame(index=updated_common_donor, columns=updated_common_genes).fillna(0)
- for idx, row in tqdm(final_expr.drop_duplicates().groupby('icgc_donor_id')['gene_symbol'].apply(list).iteritems()):
- result_expr.loc[idx, row] = 1
-
- result_values = result_expr.values * result_mut.values
- result = pd.DataFrame(data=result_values, index=updated_common_donor, columns=updated_common_genes)
-
- #### Store results
- store_summary(result, OUTPUT_DIR, f'result-{cancer_type}.csv')
-
-
- def run(args):
- if not args.cancer_type:
- if args.run_all:
- sub_folders = [f.name for f in os.scandir(args.data_path) if f.is_dir()]
- for cancer_type in sub_folders:
- perform_analysis(args, cancer_type)
- else:
- raise Exception('Either set --cancer-type or set run_all to True')
- if not os.path.exists(f'{args.data_path}/{args.cancer_type}'):
- raise Exception('arg --cancer-type is not a valid directory')
- perform_analysis(args, args.cancer_type)
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
-
- parser.add_argument('--cancer-type', type=str, default='Test')
- parser.add_argument('--run-all', type=bool, default=False)
-
- parser.add_argument('--data-path', type=str, default='./data')
- parser.add_argument('--genes-path', type=str, default='./data/genes_list.tsv')
-
- parser.add_argument('--expression-path', type=str, default='exp_array.tsv')
- parser.add_argument('--mutation-path', type=str, default='simple_somatic_mutation.open.tsv')
- parser.add_argument('--output-path', type=str, default='./output')
-
- run(parser.parse_args())
|