|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import os
- import argparse
-
- import numpy as np
- import pandas as pd
-
- from tqdm import tqdm
-
- tqdm.pandas()
-
- DATA_DIR = './data'
-
-
- def read_data(folder: str, file_path: str):
- if file_path.endswith('.tsv'):
- return pd.read_csv(f'{DATA_DIR}/{folder}/{file_path}', sep='\t', header=0, low_memory=False)
- return None
-
-
- def read_data_csv(folder: str, file_path: str):
- return pd.read_csv(f'{DATA_DIR}/{folder}/{file_path}', header=0, low_memory=False)
-
-
- def read_chunk_by_chunk(folder: str, file_path: str, columns=None):
- df = pd.DataFrame()
- for chunk in pd.read_csv(f"{DATA_DIR}/{folder}/{file_path}", sep='\t', header=0, low_memory=False, chunksize=1e6):
- df = pd.concat([df, chunk[columns] if columns else chunk], ignore_index=True)
- return df
-
-
- def save_tsv(df, output_path, file_path):
- if not os.path.exists(output_path):
- os.makedirs(output_path)
- df.to_csv(f'{output_path}/{file_path}', sep='\t')
-
-
- def get_mutation_data(cancer_type, mutation_path, mutation_type=None):
- columns = ['icgc_donor_id', 'gene_affected', 'mutation_type']
- data = read_chunk_by_chunk(cancer_type, mutation_path, columns)
- if mutation_type:
- data = data[data['mutation_type'] == mutation_type] \
- .drop(columns=['mutation_type'])
- return data.dropna()
-
-
- def get_genes(genes_path, gene_class=None):
- genes = pd.read_csv(genes_path, sep='\t', header=0)
- genes.gene_symbol = list(map(lambda g: g[1:-1], genes.gene_symbol))
- if gene_class:
- genes = genes[genes['gene_class'] == gene_class]
- genes = genes[['gene_name', 'gene_symbol']] \
- .rename({'gene_name': 'gene_ensembl_id'}, axis=1)
- return genes
-
-
- def perform_analysis(args, cancer_type):
- genes = get_genes(args.genes_path)
- print('Converting', cancer_type, end='...')
-
-
- ### Mutation
- mut = get_mutation_data(cancer_type, args.mutation_path, mutation_type='single base substitution')
- mut_data = mut.rename({'gene_affected': 'gene_ensembl_id'}, axis=1)
- sign_mut_samples = pd.merge(genes, mut_data, how='left', on='gene_ensembl_id') \
- .drop(columns=['gene_ensembl_id']) \
- .drop_duplicates() \
- .dropna()
- sign_mut_samples.to_csv(f'{DATA_DIR}/{cancer_type}/symbol_mutation.tsv', sep='\t')
- print('done')
-
-
- def run(args):
- if not args.cancer_type:
- if args.run_all:
- sub_folders = [f.name for f in os.scandir(args.data_path) if f.is_dir()]
- for cancer_type in sub_folders:
- perform_analysis(args, cancer_type)
- else:
- raise Exception('Either set --cancer-type or set run_all to True')
- if not os.path.exists(f'{args.data_path}/{args.cancer_type}'):
- raise Exception('arg --cancer-type is not a valid directory')
- perform_analysis(args, args.cancer_type)
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
-
- parser.add_argument('--cancer-type', type=str) # , default='Test'
- parser.add_argument('--run-all', type=bool, default=False)
-
- parser.add_argument('--data-path', type=str, default='./data')
- parser.add_argument('--genes-path', type=str, default='./data/genes_list.tsv')
-
- parser.add_argument('--expression-path', type=str, default='exp_array.tsv')
- parser.add_argument('--mutation-path', type=str, default='simple_somatic_mutation.open.tsv')
- parser.add_argument('--output-path', type=str, default='./output')
-
- run(parser.parse_args())
|