from typing import Dict import torch from torch.nn import functional as F import torchvision from ..lap_inception import LAPInception class RSNALAPInception(LAPInception): def __init__(self, aux_weight: float, pool_factory, adaptive_pool_factory): super().__init__(aux_weight, n_classes=1, pool_factory=pool_factory, adaptive_pool_factory=adaptive_pool_factory) def forward(self, x: torch.Tensor, y: torch.Tensor = None) -> Dict[str, torch.Tensor]: x = x.repeat_interleave(3, dim=1) # B 3 224 224 if self.training: out, aux = torchvision.models.Inception3.forward(self, x) # B 1 out, aux = out.flatten(), aux.flatten() # B else: out = torchvision.models.Inception3.forward(self, x).flatten() # B aux = None if y is not None: main_loss = F.binary_cross_entropy(out, y) if aux is not None: aux_loss = F.binary_cross_entropy(aux, y) loss = (main_loss + self.aux_weight * aux_loss) / (1 + self.aux_weight) else: loss = main_loss return { 'positive_class_probability': out, 'loss': loss } return { 'positive_class_probability': out }