import typing from typing import Dict, Iterable from collections import OrderedDict import torch from torch.nn import functional as F import torchvision from ..lap_inception import LAPInception class CelebALAPInception(LAPInception): def __init__(self, tag:str, aux_weight: float, pool_factory, adaptive_pool_factory): super().__init__(aux_weight, n_classes=1, pool_factory=pool_factory, adaptive_pool_factory=adaptive_pool_factory) self._tag = tag @property def additional_kwargs(self) -> typing.OrderedDict[str, bool]: r""" Returns a dictionary from additional `kwargs` names to their optionality """ return OrderedDict({ f'{self._tag}': True, }) def forward(self, x: torch.Tensor, **gts: torch.Tensor) -> Dict[str, torch.Tensor]: # x: B 3 224 224 if self.training: out, aux = torchvision.models.Inception3.forward(self, x) # B 1 out, aux = out.flatten(), aux.flatten() # B else: out = torchvision.models.Inception3.forward(self, x).flatten() # B aux = None output = dict() output['positive_class_probability'] = out if f'{self._tag}' not in gts: return output gt = gts[f'{self._tag}'] r""" Class weighted loss """ loss = torch.mean(torch.stack(tuple( F.binary_cross_entropy(out[gt == i], gt[gt == i]) for i in gt.unique() ))) output['loss'] = loss return output """ INTERPRETATION """ @property def ordered_placeholder_names_to_be_interpreted(self) -> Iterable[str]: """ :return: input module for interpretation """ return ['x']