|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512 |
- from typing import Dict, Iterable, Type, Any, Callable, Union, List, Optional
-
- import torch
- import torch.nn as nn
- from torch import Tensor
- from torch.nn import functional as F
-
- from ..interpreting.interpretable import CamInterpretableModel
- from ..interpreting.relcam.relprop import RPProvider, RelProp
- from ..interpreting.relcam import modules as M
-
-
- __all__ = [
- "ResNet",
- "resnet18",
- "resnet34",
- "resnet50",
- "resnet101",
- "resnet152",
- "resnext50_32x4d",
- "resnext101_32x8d",
- "wide_resnet50_2",
- "wide_resnet101_2",
- ]
-
-
- def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
- """3x3 convolution with padding"""
- return nn.Conv2d(
- in_planes,
- out_planes,
- kernel_size=3,
- stride=stride,
- padding=dilation,
- groups=groups,
- bias=False,
- dilation=dilation,
- )
-
-
- def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
-
-
- class BasicBlock(nn.Module):
- expansion: int = 1
-
- def __init__(
- self,
- inplanes: int,
- planes: int,
- stride: int = 1,
- downsample: Optional[nn.Module] = None,
- groups: int = 1,
- base_width: int = 64,
- dilation: int = 1,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- if groups != 1 or base_width != 64:
- raise ValueError("BasicBlock only supports groups=1 and base_width=64")
- if dilation > 1:
- raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
- # Both self.conv1 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = norm_layer(planes)
- self.relu = nn.ReLU()
- self.relu2 = nn.ReLU()
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = norm_layer(planes)
- self.downsample = downsample
- self.stride = stride
-
- self.add = M.Add()
-
- def forward(self, x: Tensor) -> Tensor:
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- x = self.downsample(x)
-
- out = self.add([out, x])
- out = self.relu2(out)
-
- return out
-
-
- @RPProvider.register(BasicBlock)
- class BasicBlockRelProp(RelProp[BasicBlock]):
-
- def rel(self, R, alpha):
- out = RPProvider.get(self.module.relu2)(R, alpha)
- out, x = RPProvider.get(self.module.add)(out, alpha)
-
- if self.module.downsample is not None:
- x = RPProvider.get(self.module.downsample)(x, alpha)
-
- out = RPProvider.get(self.module.bn2)(out, alpha)
- out = RPProvider.get(self.module.conv2)(out, alpha)
-
- out = RPProvider.get(self.module.relu)(out, alpha)
- out = RPProvider.get(self.module.bn1)(out, alpha)
- x1 = RPProvider.get(self.module.conv1)(out, alpha)
-
- return x + x1
-
-
- class Bottleneck(nn.Module):
- # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
- # while original implementation places the stride at the first 1x1 convolution(self.conv1)
- # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
- # This variant is also known as ResNet V1.5 and improves accuracy according to
- # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
-
- expansion: int = 4
-
- def __init__(
- self,
- inplanes: int,
- planes: int,
- stride: int = 1,
- downsample: Optional[nn.Module] = None,
- groups: int = 1,
- base_width: int = 64,
- dilation: int = 1,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- ) -> None:
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- width = int(planes * (base_width / 64.0)) * groups
- # Both self.conv2 and self.downsample layers downsample the input when stride != 1
- self.conv1 = conv1x1(inplanes, width)
- self.bn1 = norm_layer(width)
- self.conv2 = conv3x3(width, width, stride, groups, dilation)
- self.bn2 = norm_layer(width)
- self.conv3 = conv1x1(width, planes * self.expansion)
- self.bn3 = norm_layer(planes * self.expansion)
- self.relu = nn.ReLU()
- self.relu2 = nn.ReLU()
- self.relu3 = nn.ReLU()
- self.downsample = downsample
- self.stride = stride
-
- self.add = M.Add()
-
- def forward(self, x: Tensor) -> Tensor:
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu2(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- x = self.downsample(x)
-
- out = self.add([out, x])
- out = self.relu3(out)
-
- return out
-
-
- @RPProvider.register(Bottleneck)
- class BottleneckRelProp(RelProp[Bottleneck]):
-
- def rel(self, R, alpha):
- out = RPProvider.get(self.module.relu3)(R, alpha)
- out, x = RPProvider.get(self.module.add)(out, alpha)
-
- if self.downsample is not None:
- x = RPProvider.get(self.module.downsample)(x, alpha)
-
- out = RPProvider.get(self.module.bn3)(out, alpha)
- out = RPProvider.get(self.module.conv3)(out, alpha)
-
- out = RPProvider.get(self.module.relu2)(out, alpha)
- out = RPProvider.get(self.module.bn2)(out, alpha)
- out = RPProvider.get(self.module.conv2)(out, alpha)
-
- out = RPProvider.get(self.module.relu)(out, alpha)
- out = RPProvider.get(self.module.bn1)(out, alpha)
- x1 = RPProvider.get(self.module.conv1)(out, alpha)
-
- return x + x1
-
-
- class ResNet(CamInterpretableModel):
- def __init__(
- self,
- block: Type[Union[BasicBlock, Bottleneck]],
- layers: List[int],
- num_classes: int = 1000,
- zero_init_residual: bool = False,
- groups: int = 1,
- width_per_group: int = 64,
- replace_stride_with_dilation: Optional[List[bool]] = None,
- norm_layer: Optional[Callable[..., nn.Module]] = None,
- binary: bool = False,
- ) -> None:
- super().__init__()
- if norm_layer is None:
- norm_layer = nn.BatchNorm2d
- self._norm_layer = norm_layer
-
- self.inplanes = 64
- self.dilation = 1
- if replace_stride_with_dilation is None:
- # each element in the tuple indicates if we should replace
- # the 2x2 stride with a dilated convolution instead
- replace_stride_with_dilation = [False, False, False]
- if len(replace_stride_with_dilation) != 3:
- raise ValueError(
- "replace_stride_with_dilation should be None "
- f"or a 3-element tuple, got {replace_stride_with_dilation}"
- )
- self.groups = groups
- self.base_width = width_per_group
- self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = norm_layer(self.inplanes)
- self.relu = nn.ReLU()
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
-
- self._binary = binary
- if binary:
- self.fc = nn.Sequential(
- nn.Linear(512 * block.expansion, 1),
- nn.Sigmoid(),
- nn.Flatten(0)
- )
- else:
- self.fc = nn.Linear(512 * block.expansion, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
- elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
-
- # Zero-initialize the last BN in each residual branch,
- # so that the residual branch starts with zeros, and each residual block behaves like an identity.
- # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
- if zero_init_residual:
- for m in self.modules():
- if isinstance(m, Bottleneck):
- nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
- elif isinstance(m, BasicBlock):
- nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
-
- def _make_layer(
- self,
- block: Type[Union[BasicBlock, Bottleneck]],
- planes: int,
- blocks: int,
- stride: int = 1,
- dilate: bool = False,
- ) -> nn.Sequential:
- norm_layer = self._norm_layer
- downsample = None
- previous_dilation = self.dilation
- if dilate:
- self.dilation *= stride
- stride = 1
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes * block.expansion, stride),
- norm_layer(planes * block.expansion),
- )
-
- layers = []
- layers.append(
- block(
- self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
- )
- )
- self.inplanes = planes * block.expansion
- for _ in range(1, blocks):
- layers.append(
- block(
- self.inplanes,
- planes,
- groups=self.groups,
- base_width=self.base_width,
- dilation=self.dilation,
- norm_layer=norm_layer,
- )
- )
-
- return nn.Sequential(*layers)
-
- def _forward_impl(self, x: Tensor) -> Tensor:
- # See note [TorchScript super()]
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- x = torch.flatten(x, 1)
- x = self.fc(x)
-
- return x
-
- def forward(self, x: Tensor, y: Tensor) -> Dict[str, Tensor]:
- p = self._forward_impl(x)
- if self._binary:
- return dict(
- positive_class_probability=p,
- loss=F.binary_cross_entropy(p, y),
- )
- return dict(
- categorical_probability=p.softmax(dim=1),
- loss=F.cross_entropy(p, y.long()),
- )
-
- @property
- def target_conv_layers(self) -> List[nn.Module]:
- """
- Returns:
- The convolutional layers to be interpreted. The result of
- the interpretation will be sum of the grad-cam of these layers
- """
- return [self.layer4]
-
- def get_categorical_probabilities(self, *inputs, **kwargs) -> torch.Tensor:
- """
- A method to get probabilities assigned to all the classes in the model's forward,
- with shape (B, C), in which B is the batch size and C is number of classes
-
- Args:
- *inputs: Inputs to the model
- **kwargs: Additional arguments
-
- Returns:
- Tensor of categorical probabilities
- """
- if self._binary:
- p = self.forward(*inputs, **kwargs)['positive_class_probability']
- return torch.stack([1 - p, p], dim=1)
- return self.forward(*inputs, **kwargs)['categorical_probability']
-
- @property
- def ordered_placeholder_names_to_be_interpreted(self) -> Iterable[str]:
- """
- Returns:
- Input module for interpretation
- """
- return ['x']
-
-
- @RPProvider.register(ResNet)
- class ResNetRelProp(RelProp[ResNet]):
-
- def rel(self, R: torch.Tensor, alpha: float = 1) -> torch.Tensor:
- if RPProvider.get(self.module.fc).Y.ndim == 1:
- R = R[:, -1]
- R = RPProvider.get(self.module.fc)(R, alpha=alpha)
- R = R.reshape_as(RPProvider.get(self.module.avgpool).Y)
- R = RPProvider.get(self.module.avgpool)(R, alpha=alpha)
-
- R = RPProvider.get(self.module.layer4)(R, alpha=alpha)
- R = RPProvider.get(self.module.layer3)(R, alpha=alpha)
- R = RPProvider.get(self.module.layer2)(R, alpha=alpha)
- R = RPProvider.get(self.module.layer1)(R, alpha=alpha)
-
- R = RPProvider.get(self.module.maxpool)(R, alpha=alpha)
- R = RPProvider.get(self.module.relu)(R, alpha=alpha)
- R = RPProvider.get(self.module.bn1)(R, alpha=alpha)
- R = RPProvider.get(self.module.conv1)(R, alpha=alpha)
- return R
-
-
- def _resnet(
- arch: str,
- block: Type[Union[BasicBlock, Bottleneck]],
- layers: List[int],
- pretrained: bool,
- progress: bool,
- **kwargs: Any,
- ) -> ResNet:
- model = ResNet(block, layers, **kwargs)
- #if pretrained:
- #state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
- #model.load_state_dict(state_dict)
- return model
-
-
- def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNet-18 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet("resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
-
-
- def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNet-34 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet("resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
-
-
- def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNet-50 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
-
-
- def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNet-101 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet("resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
-
-
- def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNet-152 model from
- `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- return _resnet("resnet152", Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
-
-
- def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNeXt-50 32x4d model from
- `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs["groups"] = 32
- kwargs["width_per_group"] = 4
- return _resnet("resnext50_32x4d", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
-
-
- def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""ResNeXt-101 32x8d model from
- `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs["groups"] = 32
- kwargs["width_per_group"] = 8
- return _resnet("resnext101_32x8d", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
-
-
- def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""Wide ResNet-50-2 model from
- `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
- The model is the same as ResNet except for the bottleneck number of channels
- which is twice larger in every block. The number of channels in outer 1x1
- convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
- channels, and in Wide ResNet-50-2 has 2048-1024-2048.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs["width_per_group"] = 64 * 2
- return _resnet("wide_resnet50_2", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
-
-
- def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
- r"""Wide ResNet-101-2 model from
- `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
- The model is the same as ResNet except for the bottleneck number of channels
- which is twice larger in every block. The number of channels in outer 1x1
- convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
- channels, and in Wide ResNet-50-2 has 2048-1024-2048.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- progress (bool): If True, displays a progress bar of the download to stderr
- """
- kwargs["width_per_group"] = 64 * 2
- return _resnet("wide_resnet101_2", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
|