You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

tv_resnet.py 18KB

1 year ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. from typing import Dict, Iterable, Type, Any, Callable, Union, List, Optional
  2. import torch
  3. import torch.nn as nn
  4. from torch import Tensor
  5. from torch.nn import functional as F
  6. from ..interpreting.interpretable import CamInterpretableModel
  7. from ..interpreting.relcam.relprop import RPProvider, RelProp
  8. from ..interpreting.relcam import modules as M
  9. __all__ = [
  10. "ResNet",
  11. "resnet18",
  12. "resnet34",
  13. "resnet50",
  14. "resnet101",
  15. "resnet152",
  16. "resnext50_32x4d",
  17. "resnext101_32x8d",
  18. "wide_resnet50_2",
  19. "wide_resnet101_2",
  20. ]
  21. def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
  22. """3x3 convolution with padding"""
  23. return nn.Conv2d(
  24. in_planes,
  25. out_planes,
  26. kernel_size=3,
  27. stride=stride,
  28. padding=dilation,
  29. groups=groups,
  30. bias=False,
  31. dilation=dilation,
  32. )
  33. def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
  34. """1x1 convolution"""
  35. return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
  36. class BasicBlock(nn.Module):
  37. expansion: int = 1
  38. def __init__(
  39. self,
  40. inplanes: int,
  41. planes: int,
  42. stride: int = 1,
  43. downsample: Optional[nn.Module] = None,
  44. groups: int = 1,
  45. base_width: int = 64,
  46. dilation: int = 1,
  47. norm_layer: Optional[Callable[..., nn.Module]] = None,
  48. ) -> None:
  49. super().__init__()
  50. if norm_layer is None:
  51. norm_layer = nn.BatchNorm2d
  52. if groups != 1 or base_width != 64:
  53. raise ValueError("BasicBlock only supports groups=1 and base_width=64")
  54. if dilation > 1:
  55. raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
  56. # Both self.conv1 and self.downsample layers downsample the input when stride != 1
  57. self.conv1 = conv3x3(inplanes, planes, stride)
  58. self.bn1 = norm_layer(planes)
  59. self.relu = nn.ReLU()
  60. self.relu2 = nn.ReLU()
  61. self.conv2 = conv3x3(planes, planes)
  62. self.bn2 = norm_layer(planes)
  63. self.downsample = downsample
  64. self.stride = stride
  65. self.add = M.Add()
  66. def forward(self, x: Tensor) -> Tensor:
  67. out = self.conv1(x)
  68. out = self.bn1(out)
  69. out = self.relu(out)
  70. out = self.conv2(out)
  71. out = self.bn2(out)
  72. if self.downsample is not None:
  73. x = self.downsample(x)
  74. out = self.add([out, x])
  75. out = self.relu2(out)
  76. return out
  77. @RPProvider.register(BasicBlock)
  78. class BasicBlockRelProp(RelProp[BasicBlock]):
  79. def rel(self, R, alpha):
  80. out = RPProvider.get(self.module.relu2)(R, alpha)
  81. out, x = RPProvider.get(self.module.add)(out, alpha)
  82. if self.module.downsample is not None:
  83. x = RPProvider.get(self.module.downsample)(x, alpha)
  84. out = RPProvider.get(self.module.bn2)(out, alpha)
  85. out = RPProvider.get(self.module.conv2)(out, alpha)
  86. out = RPProvider.get(self.module.relu)(out, alpha)
  87. out = RPProvider.get(self.module.bn1)(out, alpha)
  88. x1 = RPProvider.get(self.module.conv1)(out, alpha)
  89. return x + x1
  90. class Bottleneck(nn.Module):
  91. # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
  92. # while original implementation places the stride at the first 1x1 convolution(self.conv1)
  93. # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
  94. # This variant is also known as ResNet V1.5 and improves accuracy according to
  95. # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
  96. expansion: int = 4
  97. def __init__(
  98. self,
  99. inplanes: int,
  100. planes: int,
  101. stride: int = 1,
  102. downsample: Optional[nn.Module] = None,
  103. groups: int = 1,
  104. base_width: int = 64,
  105. dilation: int = 1,
  106. norm_layer: Optional[Callable[..., nn.Module]] = None,
  107. ) -> None:
  108. super().__init__()
  109. if norm_layer is None:
  110. norm_layer = nn.BatchNorm2d
  111. width = int(planes * (base_width / 64.0)) * groups
  112. # Both self.conv2 and self.downsample layers downsample the input when stride != 1
  113. self.conv1 = conv1x1(inplanes, width)
  114. self.bn1 = norm_layer(width)
  115. self.conv2 = conv3x3(width, width, stride, groups, dilation)
  116. self.bn2 = norm_layer(width)
  117. self.conv3 = conv1x1(width, planes * self.expansion)
  118. self.bn3 = norm_layer(planes * self.expansion)
  119. self.relu = nn.ReLU()
  120. self.relu2 = nn.ReLU()
  121. self.relu3 = nn.ReLU()
  122. self.downsample = downsample
  123. self.stride = stride
  124. self.add = M.Add()
  125. def forward(self, x: Tensor) -> Tensor:
  126. out = self.conv1(x)
  127. out = self.bn1(out)
  128. out = self.relu(out)
  129. out = self.conv2(out)
  130. out = self.bn2(out)
  131. out = self.relu2(out)
  132. out = self.conv3(out)
  133. out = self.bn3(out)
  134. if self.downsample is not None:
  135. x = self.downsample(x)
  136. out = self.add([out, x])
  137. out = self.relu3(out)
  138. return out
  139. @RPProvider.register(Bottleneck)
  140. class BottleneckRelProp(RelProp[Bottleneck]):
  141. def rel(self, R, alpha):
  142. out = RPProvider.get(self.module.relu3)(R, alpha)
  143. out, x = RPProvider.get(self.module.add)(out, alpha)
  144. if self.downsample is not None:
  145. x = RPProvider.get(self.module.downsample)(x, alpha)
  146. out = RPProvider.get(self.module.bn3)(out, alpha)
  147. out = RPProvider.get(self.module.conv3)(out, alpha)
  148. out = RPProvider.get(self.module.relu2)(out, alpha)
  149. out = RPProvider.get(self.module.bn2)(out, alpha)
  150. out = RPProvider.get(self.module.conv2)(out, alpha)
  151. out = RPProvider.get(self.module.relu)(out, alpha)
  152. out = RPProvider.get(self.module.bn1)(out, alpha)
  153. x1 = RPProvider.get(self.module.conv1)(out, alpha)
  154. return x + x1
  155. class ResNet(CamInterpretableModel):
  156. def __init__(
  157. self,
  158. block: Type[Union[BasicBlock, Bottleneck]],
  159. layers: List[int],
  160. num_classes: int = 1000,
  161. zero_init_residual: bool = False,
  162. groups: int = 1,
  163. width_per_group: int = 64,
  164. replace_stride_with_dilation: Optional[List[bool]] = None,
  165. norm_layer: Optional[Callable[..., nn.Module]] = None,
  166. binary: bool = False,
  167. ) -> None:
  168. super().__init__()
  169. if norm_layer is None:
  170. norm_layer = nn.BatchNorm2d
  171. self._norm_layer = norm_layer
  172. self.inplanes = 64
  173. self.dilation = 1
  174. if replace_stride_with_dilation is None:
  175. # each element in the tuple indicates if we should replace
  176. # the 2x2 stride with a dilated convolution instead
  177. replace_stride_with_dilation = [False, False, False]
  178. if len(replace_stride_with_dilation) != 3:
  179. raise ValueError(
  180. "replace_stride_with_dilation should be None "
  181. f"or a 3-element tuple, got {replace_stride_with_dilation}"
  182. )
  183. self.groups = groups
  184. self.base_width = width_per_group
  185. self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
  186. self.bn1 = norm_layer(self.inplanes)
  187. self.relu = nn.ReLU()
  188. self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
  189. self.layer1 = self._make_layer(block, 64, layers[0])
  190. self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
  191. self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
  192. self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
  193. self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
  194. self._binary = binary
  195. if binary:
  196. self.fc = nn.Sequential(
  197. nn.Linear(512 * block.expansion, 1),
  198. nn.Sigmoid(),
  199. nn.Flatten(0)
  200. )
  201. else:
  202. self.fc = nn.Linear(512 * block.expansion, num_classes)
  203. for m in self.modules():
  204. if isinstance(m, nn.Conv2d):
  205. nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
  206. elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
  207. nn.init.constant_(m.weight, 1)
  208. nn.init.constant_(m.bias, 0)
  209. # Zero-initialize the last BN in each residual branch,
  210. # so that the residual branch starts with zeros, and each residual block behaves like an identity.
  211. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
  212. if zero_init_residual:
  213. for m in self.modules():
  214. if isinstance(m, Bottleneck):
  215. nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
  216. elif isinstance(m, BasicBlock):
  217. nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
  218. def _make_layer(
  219. self,
  220. block: Type[Union[BasicBlock, Bottleneck]],
  221. planes: int,
  222. blocks: int,
  223. stride: int = 1,
  224. dilate: bool = False,
  225. ) -> nn.Sequential:
  226. norm_layer = self._norm_layer
  227. downsample = None
  228. previous_dilation = self.dilation
  229. if dilate:
  230. self.dilation *= stride
  231. stride = 1
  232. if stride != 1 or self.inplanes != planes * block.expansion:
  233. downsample = nn.Sequential(
  234. conv1x1(self.inplanes, planes * block.expansion, stride),
  235. norm_layer(planes * block.expansion),
  236. )
  237. layers = []
  238. layers.append(
  239. block(
  240. self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
  241. )
  242. )
  243. self.inplanes = planes * block.expansion
  244. for _ in range(1, blocks):
  245. layers.append(
  246. block(
  247. self.inplanes,
  248. planes,
  249. groups=self.groups,
  250. base_width=self.base_width,
  251. dilation=self.dilation,
  252. norm_layer=norm_layer,
  253. )
  254. )
  255. return nn.Sequential(*layers)
  256. def _forward_impl(self, x: Tensor) -> Tensor:
  257. # See note [TorchScript super()]
  258. x = self.conv1(x)
  259. x = self.bn1(x)
  260. x = self.relu(x)
  261. x = self.maxpool(x)
  262. x = self.layer1(x)
  263. x = self.layer2(x)
  264. x = self.layer3(x)
  265. x = self.layer4(x)
  266. x = self.avgpool(x)
  267. x = torch.flatten(x, 1)
  268. x = self.fc(x)
  269. return x
  270. def forward(self, x: Tensor, y: Tensor) -> Dict[str, Tensor]:
  271. p = self._forward_impl(x)
  272. if self._binary:
  273. return dict(
  274. positive_class_probability=p,
  275. loss=F.binary_cross_entropy(p, y),
  276. )
  277. return dict(
  278. categorical_probability=p.softmax(dim=1),
  279. loss=F.cross_entropy(p, y.long()),
  280. )
  281. @property
  282. def target_conv_layers(self) -> List[nn.Module]:
  283. """
  284. Returns:
  285. The convolutional layers to be interpreted. The result of
  286. the interpretation will be sum of the grad-cam of these layers
  287. """
  288. return [self.layer4]
  289. def get_categorical_probabilities(self, *inputs, **kwargs) -> torch.Tensor:
  290. """
  291. A method to get probabilities assigned to all the classes in the model's forward,
  292. with shape (B, C), in which B is the batch size and C is number of classes
  293. Args:
  294. *inputs: Inputs to the model
  295. **kwargs: Additional arguments
  296. Returns:
  297. Tensor of categorical probabilities
  298. """
  299. if self._binary:
  300. p = self.forward(*inputs, **kwargs)['positive_class_probability']
  301. return torch.stack([1 - p, p], dim=1)
  302. return self.forward(*inputs, **kwargs)['categorical_probability']
  303. @property
  304. def ordered_placeholder_names_to_be_interpreted(self) -> Iterable[str]:
  305. """
  306. Returns:
  307. Input module for interpretation
  308. """
  309. return ['x']
  310. @RPProvider.register(ResNet)
  311. class ResNetRelProp(RelProp[ResNet]):
  312. def rel(self, R: torch.Tensor, alpha: float = 1) -> torch.Tensor:
  313. if RPProvider.get(self.module.fc).Y.ndim == 1:
  314. R = R[:, -1]
  315. R = RPProvider.get(self.module.fc)(R, alpha=alpha)
  316. R = R.reshape_as(RPProvider.get(self.module.avgpool).Y)
  317. R = RPProvider.get(self.module.avgpool)(R, alpha=alpha)
  318. R = RPProvider.get(self.module.layer4)(R, alpha=alpha)
  319. R = RPProvider.get(self.module.layer3)(R, alpha=alpha)
  320. R = RPProvider.get(self.module.layer2)(R, alpha=alpha)
  321. R = RPProvider.get(self.module.layer1)(R, alpha=alpha)
  322. R = RPProvider.get(self.module.maxpool)(R, alpha=alpha)
  323. R = RPProvider.get(self.module.relu)(R, alpha=alpha)
  324. R = RPProvider.get(self.module.bn1)(R, alpha=alpha)
  325. R = RPProvider.get(self.module.conv1)(R, alpha=alpha)
  326. return R
  327. def _resnet(
  328. arch: str,
  329. block: Type[Union[BasicBlock, Bottleneck]],
  330. layers: List[int],
  331. pretrained: bool,
  332. progress: bool,
  333. **kwargs: Any,
  334. ) -> ResNet:
  335. model = ResNet(block, layers, **kwargs)
  336. #if pretrained:
  337. #state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
  338. #model.load_state_dict(state_dict)
  339. return model
  340. def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  341. r"""ResNet-18 model from
  342. `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
  343. Args:
  344. pretrained (bool): If True, returns a model pre-trained on ImageNet
  345. progress (bool): If True, displays a progress bar of the download to stderr
  346. """
  347. return _resnet("resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
  348. def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  349. r"""ResNet-34 model from
  350. `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
  351. Args:
  352. pretrained (bool): If True, returns a model pre-trained on ImageNet
  353. progress (bool): If True, displays a progress bar of the download to stderr
  354. """
  355. return _resnet("resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
  356. def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  357. r"""ResNet-50 model from
  358. `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
  359. Args:
  360. pretrained (bool): If True, returns a model pre-trained on ImageNet
  361. progress (bool): If True, displays a progress bar of the download to stderr
  362. """
  363. return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
  364. def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  365. r"""ResNet-101 model from
  366. `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
  367. Args:
  368. pretrained (bool): If True, returns a model pre-trained on ImageNet
  369. progress (bool): If True, displays a progress bar of the download to stderr
  370. """
  371. return _resnet("resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
  372. def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  373. r"""ResNet-152 model from
  374. `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
  375. Args:
  376. pretrained (bool): If True, returns a model pre-trained on ImageNet
  377. progress (bool): If True, displays a progress bar of the download to stderr
  378. """
  379. return _resnet("resnet152", Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
  380. def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  381. r"""ResNeXt-50 32x4d model from
  382. `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
  383. Args:
  384. pretrained (bool): If True, returns a model pre-trained on ImageNet
  385. progress (bool): If True, displays a progress bar of the download to stderr
  386. """
  387. kwargs["groups"] = 32
  388. kwargs["width_per_group"] = 4
  389. return _resnet("resnext50_32x4d", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
  390. def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  391. r"""ResNeXt-101 32x8d model from
  392. `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
  393. Args:
  394. pretrained (bool): If True, returns a model pre-trained on ImageNet
  395. progress (bool): If True, displays a progress bar of the download to stderr
  396. """
  397. kwargs["groups"] = 32
  398. kwargs["width_per_group"] = 8
  399. return _resnet("resnext101_32x8d", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
  400. def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  401. r"""Wide ResNet-50-2 model from
  402. `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
  403. The model is the same as ResNet except for the bottleneck number of channels
  404. which is twice larger in every block. The number of channels in outer 1x1
  405. convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
  406. channels, and in Wide ResNet-50-2 has 2048-1024-2048.
  407. Args:
  408. pretrained (bool): If True, returns a model pre-trained on ImageNet
  409. progress (bool): If True, displays a progress bar of the download to stderr
  410. """
  411. kwargs["width_per_group"] = 64 * 2
  412. return _resnet("wide_resnet50_2", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
  413. def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
  414. r"""Wide ResNet-101-2 model from
  415. `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
  416. The model is the same as ResNet except for the bottleneck number of channels
  417. which is twice larger in every block. The number of channels in outer 1x1
  418. convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
  419. channels, and in Wide ResNet-50-2 has 2048-1024-2048.
  420. Args:
  421. pretrained (bool): If True, returns a model pre-trained on ImageNet
  422. progress (bool): If True, displays a progress bar of the download to stderr
  423. """
  424. kwargs["width_per_group"] = 64 * 2
  425. return _resnet("wide_resnet101_2", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)