from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import lap
import numpy as np
import scipy
from cython_bbox import bbox_overlaps as bbox_ious
from scipy.spatial.distance import cdist

chi2inv95 = {
    1: 3.8415,
    2: 5.9915,
    3: 7.8147,
    4: 9.4877,
    5: 11.070,
    6: 12.592,
    7: 14.067,
    8: 15.507,
    9: 16.919}

def merge_matches(m1, m2, shape):
    O,P,Q = shape
    m1 = np.asarray(m1)
    m2 = np.asarray(m2)

    M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
    M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))

    mask = M1*M2
    match = mask.nonzero()
    match = list(zip(match[0], match[1]))
    unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
    unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))

    return match, unmatched_O, unmatched_Q


def _indices_to_matches(cost_matrix, indices, thresh):
    matched_cost = cost_matrix[tuple(zip(*indices))]
    matched_mask = (matched_cost <= thresh)

    matches = indices[matched_mask]
    unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0]))
    unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1]))

    return matches, unmatched_a, unmatched_b


def linear_assignment(cost_matrix, thresh):
    if cost_matrix.size == 0:
        return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
    matches, unmatched_a, unmatched_b = [], [], []
    cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
    for ix, mx in enumerate(x):
        if mx >= 0:
            matches.append([ix, mx])
    unmatched_a = np.where(x < 0)[0]
    unmatched_b = np.where(y < 0)[0]
    matches = np.asarray(matches)
    return matches, unmatched_a, unmatched_b


def ious(atlbrs, btlbrs):
    """
    Compute cost based on IoU
    :type atlbrs: list[tlbr] | np.ndarray
    :type atlbrs: list[tlbr] | np.ndarray
    :rtype ious np.ndarray
    """
    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
    if ious.size == 0:
        return ious

    ious = bbox_ious(
        np.ascontiguousarray(atlbrs, dtype=np.float),
        np.ascontiguousarray(btlbrs, dtype=np.float)
    )

    return ious


def iou_distance(atracks, btracks):
    """
    Compute cost based on IoU
    :type atracks: list[STrack]
    :type btracks: list[STrack]
    :rtype cost_matrix np.ndarray
    """

    if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
        atlbrs = atracks
        btlbrs = btracks
    else:
        atlbrs = [track.tlbr for track in atracks]
        btlbrs = [track.tlbr for track in btracks]
    _ious = ious(atlbrs, btlbrs)
    cost_matrix = 1 - _ious

    return cost_matrix

def embedding_distance(tracks, detections, metric='cosine'):
    """
    :param tracks: list[STrack]
    :param detections: list[BaseTrack]
    :param metric:
    :return: cost_matrix np.ndarray
    """

    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    #for i, track in enumerate(tracks):
        #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    return cost_matrix

def embedding_distance2(tracks, detections, metric='cosine'):
    """
    :param tracks: list[STrack]
    :param detections: list[BaseTrack]
    :param metric:
    :return: cost_matrix np.ndarray
    """

    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    #for i, track in enumerate(tracks):
        #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    track_features = np.asarray([track.features[0] for track in tracks], dtype=np.float)
    cost_matrix2 = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    track_features = np.asarray([track.features[len(track.features)-1] for track in tracks], dtype=np.float)
    cost_matrix3 = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    for row in range(len(cost_matrix)):
        cost_matrix[row] = (cost_matrix[row]+cost_matrix2[row]+cost_matrix3[row])/3
    return cost_matrix


def vis_id_feature_A_distance(tracks, detections, metric='cosine'):
    track_features = []
    det_features = []
    leg1 = len(tracks)
    leg2 = len(detections)
    cost_matrix = np.zeros((leg1, leg2), dtype=np.float)
    cost_matrix_det = np.zeros((leg1, leg2), dtype=np.float)
    cost_matrix_track = np.zeros((leg1, leg2), dtype=np.float)
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    if leg2 != 0:
        cost_matrix_det = np.maximum(0.0, cdist(det_features, det_features, metric))
    if leg1 != 0:
        cost_matrix_track = np.maximum(0.0, cdist(track_features, track_features, metric))
    if cost_matrix.size == 0:
        return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))
    if leg1 > 10:
        leg1 = 10
        tracks = tracks[:10]
    if leg2 > 10:
        leg2 = 10
        detections = detections[:10]
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track

def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False):
    if cost_matrix.size == 0:
        return cost_matrix
    gating_dim = 2 if only_position else 4
    gating_threshold = chi2inv95[gating_dim]
    measurements = np.asarray([det.to_xyah() for det in detections])
    for row, track in enumerate(tracks):
        gating_distance = kf.gating_distance(
            track.mean, track.covariance, measurements, only_position)
        cost_matrix[row, gating_distance > gating_threshold] = np.inf
    return cost_matrix


def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98):
    if cost_matrix.size == 0:
        return cost_matrix
    gating_dim = 2 if only_position else 4
    gating_threshold = chi2inv95[gating_dim]
    measurements = np.asarray([det.to_xyah() for det in detections])
    for row, track in enumerate(tracks):
        gating_distance = kf.gating_distance(
            track.mean, track.covariance, measurements, only_position, metric='maha')
        cost_matrix[row, gating_distance > gating_threshold] = np.inf
        cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance
    return cost_matrix