@@ -29,5 +29,3 @@ for i=1:m | |||
LogMsg(sprintf('DumpDataset for %s%s iter %d/%d into %s%s.', dataFilePath, dataFileName, iter, i, outPath, outFile)); | |||
end | |||
%fprintf('Completed DumpDataset.\n'); | |||
@@ -682,6 +682,7 @@ function [ rand_score, purity, p_triads, missing_nodes_mapping, removed_nodes] = | |||
% cases we are using the GED as the main measure | |||
fprintf('^%s', newPredictedGraph) | |||
%remap the original data so that the known nodes match the | |||
%predicted data and the missing nodes match the predicted | |||
% nodes created from each cluster | |||
@@ -712,8 +713,7 @@ function [ rand_score, purity, p_triads, missing_nodes_mapping, removed_nodes] = | |||
small_data4 = newPredictedGraph; | |||
small_data4(indices_to_remove,:) = []; | |||
small_data4(:,indices_to_remove) = []; | |||
%%% Sigal 27.1.13 - save reduce graphs for GED | |||
Sigal 27.1.13 - save reduce graphs for GED | |||
if dumpSmallFlag == 1 | |||
saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_calculation_type, withAttrWeight, num_missing_nodes, small_data, 1); | |||
saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_calculation_type, withAttrWeight, num_missing_nodes, small_data2, 2); | |||
@@ -767,8 +767,7 @@ function [ rand_score, purity, p_triads, missing_nodes_mapping, removed_nodes] = | |||
small_data2(:,indices_to_remove) = []; | |||
%fprintf('&%s', small_data2) | |||
%fprintf('&&%s', small_data) | |||
%%% Sigal 27.1.13 - save reduce graphs for GED | |||
Sigal 27.1.13 - save reduce graphs for GED | |||
withAttrWeight = origWithAttrWeight+1000*(1-percent_known_placeholders)*10; | |||
if dumpSmallFlag == 1 | |||
saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_calculation_type, withAttrWeight, num_missing_nodes, small_data, 1); | |||
@@ -930,6 +929,7 @@ end %main function | |||
% sigal - 29.10.13 | |||
% calc only PHs affinity | |||
function [affinity] = CalcPHsAffinity( data, affType, actual_graph_size, num_missing_nodes, num_attr_nodes, attWeight, addMissingAtt) | |||
global affinity_calculation_shortest_path; | |||
global affinity_calculation_euclid; | |||
@@ -1320,7 +1320,7 @@ end % function BuildTrueClustering | |||
function saveSmallData(dumpSmallDataPath, dataFileName, iter, affinity_type, withAttr, missNodes, small_data, i) | |||
%%% Sigal 24.1.13 - TODO | |||
Sigal 24.1.13 - TODO | |||
outFile = sprintf('%s_%d_%d_%d_%d_small_data_%d', dataFileName, iter, missNodes, affinity_type, withAttr, i); | |||
if affinity_type == 9 % save instead a dummy size (1) and the best_alg | |||
SaveIntMatrixToFile(strcat(dumpSmallDataPath, outFile,'_edges.txt'), small_data, 1); | |||
@@ -1411,4 +1411,3 @@ function [sumPurity] = CalcSumPurity(clusteringResults, indices) | |||
end | |||
sumPurity = sum(crossPurity,2); | |||
end % function CalcSumPurity | |||
@@ -1,6 +1,6 @@ | |||
% Map attribute to categories | |||
% Use 0 for null/no value, 1 for unknown/private value (if exist) and then real values | |||
function [outAttributes, attUpperRange, selectedAttr, attStat] = PrepareAttributes5(dataFilePath, dataFileName, numNodes, expectedAttrCols, maxAttStat, inSelectedAttr, debug, debugPath) | |||
Map attribute to categories | |||
Use 0 for null/no value, 1 for unknown/private value (if exist) and then real values | |||
function [outAttributes, attUpperRange, selectedAttr, attStat] = PrepareAttributes5(dataFilePath, dataFileName, expectedAttrCols, maxAttStat, inSelectedAttr, debug, debugPath) | |||
outNoneValue = 0; | |||
@@ -45,8 +45,8 @@ load(strcat(dataFilePath, dataFileName), 'attributes'); | |||
m = size(attributes,1); % num nodes/lines | |||
n = size(attributes,2); % num attributes/cols | |||
if n ~= expectedAttrCols || m ~= numNodes | |||
fprintf('PrepareAttributes - Invalid size: expecting (%dx%d), got (%dx%d)\n',numNodes,expectedAttrCols,m,n); | |||
if n ~= expectedAttrCols | |||
fprintf('PrepareAttributes - Invalid size: expecting (%d), got (%dx%d)\n',expectedAttrCols,m,n); | |||
return; | |||
end | |||
@@ -79,7 +79,7 @@ if selectedAttr(countryCol) == 1 | |||
for i=1:maxCountry | |||
indices = (new_values==i); | |||
count = sum(indices); | |||
if count/numNodes > maxAttStat | |||
if count/m > maxAttStat | |||
new_values(indices) = 0; | |||
end | |||
end | |||
@@ -108,7 +108,7 @@ end | |||
% calculate statistics and filter according to zero & maxAttStat | |||
attStat = zeros(1,n); | |||
for a = 1:n | |||
attStat(a) = nnz(outAttributes(:,a))/numNodes; | |||
attStat(a) = nnz(outAttributes(:,a))/m; | |||
if attStat(a) == 0 | |||
selectedAttr(a)=0; | |||
elseif selectedAttr(a)>0 && attStat(a) > maxAttStat && a>1 % don't filter country |
@@ -48,6 +48,7 @@ function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( | |||
for i = missing_nodes_all_neighbors | |||
neighbors = find(data(i,:)); | |||
missing_neighbors = intersect(neighbors, missing_nodes_list); | |||
missing_neighbors = sort(missing_neighbors, 'descend'); | |||
for curr_missing_neighbor = missing_neighbors | |||
if data(i,curr_missing_neighbor) == 1 | |||
@@ -103,6 +104,213 @@ function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( | |||
end %function RemoveRandomNodes3 | |||
%sigal - move old implementation to function | |||
function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles) | |||
missing_nodes_all_neighbors = zeros(1, size(data,2)); | |||
%randomize a list of nodes to remove and sort it | |||
if size(missing_nodes_mapping,1)> 0 | |||
%Sigal 23.1.14 - second row is the profile mapping | |||
missing_nodes = missing_nodes_mapping(1:2,:); %%sort(missing_nodes_mapping(1,:) , 2, 'descend'); | |||
%find all missing node neighbors | |||
for curr_missing_node = missing_nodes(1,:) % first row is the removed nodes | |||
missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(curr_missing_node,:); | |||
missing_nodes_all_neighbors(1,curr_missing_node)=1; | |||
end | |||
else | |||
missing_nodes = []; | |||
end | |||
% outlier1 - nodes with only one edge | |||
numEdges = sum(data,1); | |||
invalidNodes1a = (numEdges==1); %%numEdges<3); %%(numEdges==1); | |||
missing_nodes_all_neighbors(1,invalidNodes1a) = 1; | |||
%invalidNodes1b = (numEdges>7); %% 6.13 (mem issues) use 7 | |||
%invalidNodes1b = (numEdges>15); %%25); %%(numEdges==1); %% sigal - 6.2.13 max=15 (sarit) | |||
%invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 | |||
%missing_nodes_all_neighbors(1,invalidNodes1b) = 1; | |||
% outlier2 - nodes with less than numAttPerPH attributes | |||
% sigal 31.1.14 - support remove without attributes | |||
if totalAttNum > 0 && numAttPerPH > 0 | |||
numAttr = sum(attData,2)'; | |||
invalidNodes2 = (numAttr<numAttPerPH); | |||
missing_nodes_all_neighbors(1,invalidNodes2) = 1; | |||
else | |||
invalidNodes2 = zeros(1,size(invalidNodes1a,2)); | |||
end | |||
% outlier statistics | |||
count = nnz(invalidNodes1a|invalidNodes2); | |||
if count*1.5 > size(data,2) | |||
fprintf('RemoveRandomNodes2: too many outliers nodes %d.\n',count); | |||
end | |||
%sigal - 23.1.14 - choose image profile | |||
imagesProfiles = 1:1:numImagesProfiles; | |||
if size(missing_nodes,1)> 0 | |||
usedProfiles = missing_nodes(2,:); | |||
imagesProfiles(usedProfiles)=[]; | |||
end | |||
for i=1:num_nodes_to_remove | |||
valid_nodes = find(missing_nodes_all_neighbors~=1); | |||
if(size(valid_nodes,2) < 1) | |||
fprintf('Full Graph') | |||
end | |||
inx = ceil(rand(1)*size(valid_nodes,2)); | |||
node = valid_nodes(inx); | |||
%sigal - 23.1.14 - choose image profile | |||
profile = ceil(rand(1)*size(imagesProfiles,2)); | |||
newNode = [node;imagesProfiles(profile)]; | |||
imagesProfiles(profile) = []; | |||
% add selected node to missing_nodes list and update the all neighbors list | |||
missing_nodes = [missing_nodes newNode]; | |||
missing_nodes_all_neighbors(1,node)=1; | |||
missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(node,:); | |||
end | |||
end %ChooseMissingNodes | |||
% sigal - append col & row for the placeholder | |||
function [data] = ExpandDataByOne(data, friend, non_neighbors_distance) | |||
new_col = ones(size(data, 1), 1) * non_neighbors_distance; | |||
new_col(friend) = 1; | |||
data = [data new_col]; | |||
new_row = ones(1,size(data, 2)) * non_neighbors_distance; | |||
new_row(friend) = 1; | |||
data = [data; new_row]; | |||
data(size(data, 1), size(data,2)) = 0; | |||
end %ExpandDataByOne | |||
% sigal - append row for the placeholder | |||
function [attData] = ExpandAttByOne(attData, orgNode, non_neighbors_distance, totalAttNum, numAttPerPH) | |||
if totalAttNum>0 && numAttPerPH>0 | |||
attIndices = find(attData(orgNode, :)==1); | |||
while size(attIndices,2) > numAttPerPH | |||
inx = ceil(rand(1)*size(attIndices,2)); | |||
attIndices(:,inx) = []; | |||
end | |||
else | |||
attIndices=[]; | |||
end | |||
new_row = ones(1,size(attData, 2)) * non_neighbors_distance; | |||
for i=1:size(attIndices,2) | |||
new_row(i)=1; | |||
end | |||
attData = [attData; new_row]; | |||
end %ExpandAttByOne | |||
function [ data, attData, missing_nodes_mapping ] = RemoveRandomNodesWithImages( data, attData, totalAttNum, num_missing_nodes, missing_nodes_mapping, numImagesProfiles, non_neighbors_distance, missingNodesInput ) | |||
%RemoveRandomNodes Remove num_missing_nodes from data. If some nodes are | |||
%removed already, provide missing_nodes_mapping | |||
% Detailed explanation goes here | |||
if nargin < 7 | |||
non_neighbors_distance = 0; | |||
end | |||
if nargin >= 8 % i.e. getting missingNodesInput | |||
missing_nodes = missingNodesInput; | |||
else | |||
%%data_orig = data; | |||
numAttPerPH = 0; | |||
% if the mapping is larger than the number of nodes we want to remove, empty | |||
% it and start a new mapping. This can happen if we finished looping over | |||
% the number of missing nodes and started a new iteration of an outer loop. | |||
if size(missing_nodes_mapping,2) > num_missing_nodes | |||
missing_nodes_mapping = []; | |||
num_nodes_to_remove = num_missing_nodes; | |||
else | |||
num_nodes_to_remove = num_missing_nodes - size(missing_nodes_mapping,2); | |||
end | |||
% randomly choose missing nodes | |||
%missing_nodes = ChooseMissingNodes_old(num_nodes_to_remove, data, missing_nodes_mapping, non_neighbors_distance); | |||
missing_nodes = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles); | |||
%sort the list and create a list of the new nodes that each missing node is mapped to - each link | |||
%to a missing node is replaced by a link to a new, "UNK" node | |||
%Sigal 23.1.14 - missing_nodes is now matrix with two rows: | |||
% first the removed node and second the selected profile) | |||
% no need to call unique as validation is already done in ChooseMissingNodes | |||
%missing_nodes = sort( unique(missing_nodes), 'descend'); | |||
%missing_nodes = sort( missing_nodes , 2, 'descend'); | |||
missing_nodes_mapping = missing_nodes; | |||
missing_nodes_list = sort(missing_nodes(1,:),'descend'); | |||
%replace each link to a missing node with a link to a new node | |||
%find all missing node neighbors | |||
missing_nodes_all_neighbors = zeros(1, size(data,2)); | |||
for curr_nissing_node = missing_nodes_list | |||
missing_nodes_all_neighbors = missing_nodes_all_neighbors | data(curr_nissing_node,:); | |||
end | |||
missing_nodes_all_neighbors = find(missing_nodes_all_neighbors); | |||
%for each node in missing_nodes_all_neighbors add edges to placeholder | |||
for i = missing_nodes_all_neighbors | |||
neighbors = find(data(i,:)); | |||
missing_neighbors = intersect(neighbors, missing_nodes_list); | |||
missing_neighbors = sort(missing_neighbors, 'descend'); | |||
for curr_missing_neighbor = missing_neighbors | |||
if data(i,curr_missing_neighbor) == 1 | |||
% append col & row for the placeholder | |||
data = ExpandDataByOne(data, i, non_neighbors_distance); | |||
% sigal 31.1.14 - support remove without attributes | |||
if totalAttNum > 0 | |||
attData = ExpandAttByOne(attData, curr_missing_neighbor, non_neighbors_distance, totalAttNum, numAttPerPH); | |||
end | |||
%add the new UNK node to the missing nodes mapping j is the index of the missing node | |||
%look for the first zero in column j of the missing nodes mapping and put the new node | |||
%index there | |||
added_node = 0; | |||
%add it in the first position which equals zero | |||
%sigal 23.1.14 - find index according to actual structure (not sorted) | |||
j = find( missing_nodes_mapping(1,:) == curr_missing_neighbor, 1); | |||
for k = 1 : size(missing_nodes_mapping,1) | |||
if missing_nodes_mapping(k, j) == 0 | |||
%if we start with 1000 nodes, and we have 5 missing nodes, after | |||
%adding one node at this point, the size of the graph is 1001. 5 nodes | |||
%will be removed so the correct index of the new node will be 1001 - 5 = 996. | |||
%The next one is 997 and so on. | |||
missing_nodes_mapping(k, j) = size(data,1) - num_missing_nodes; | |||
added_node = 1; | |||
break; | |||
end | |||
end | |||
%if all the column is non-zero, add a new row and put it there | |||
if added_node == 0 | |||
missing_nodes_mapping = [missing_nodes_mapping; zeros(1, size(missing_nodes_mapping,2))]; | |||
missing_nodes_mapping(size(missing_nodes_mapping,1), j) = size(data,1) - num_missing_nodes; | |||
end | |||
end %if friend | |||
end %missing_neighbors | |||
end %missing_nodes_all_neighbors | |||
end % if getting missingNodesInput | |||
%remove the missing nodes from the matrix (missing nodes MUST be sorted in descending order!! | |||
%so that removing one does not affect the index of the others) | |||
for j = 1:size(missing_nodes_list,2) | |||
missing_node_idx = missing_nodes_list(j); | |||
%remove column | |||
data(:, missing_node_idx) = []; | |||
%remove row | |||
data(missing_node_idx, :) = []; | |||
% sigal 31.1.14 - support remove without attributes | |||
if totalAttNum > 0 | |||
attData(missing_node_idx, :) = []; | |||
end | |||
end | |||
end %function RemoveRandomNodes3 | |||
%sigal - move old implementation to function | |||
function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData, totalAttNum, numAttPerPH, missing_nodes_mapping, numImagesProfiles) | |||
missing_nodes_all_neighbors = zeros(1, size(data,2)); | |||
@@ -125,8 +333,8 @@ function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData | |||
missing_nodes_all_neighbors(1,invalidNodes1a) = 1; | |||
%invalidNodes1b = (numEdges>7); %% 6.13 (mem issues) use 7 | |||
%invalidNodes1b = (numEdges>15); %%25); %%(numEdges==1); %% sigal - 6.2.13 max=15 (sarit) | |||
invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 | |||
missing_nodes_all_neighbors(1,invalidNodes1b) = 1; | |||
%invalidNodes1b = (numEdges>8); %%15); %% sigal/sarit - 9.12.13 max=8 | |||
%missing_nodes_all_neighbors(1,invalidNodes1b) = 1; | |||
% outlier2 - nodes with less than numAttPerPH attributes | |||
% sigal 31.1.14 - support remove without attributes | |||
if totalAttNum > 0 && numAttPerPH > 0 | |||
@@ -137,7 +345,7 @@ function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData | |||
invalidNodes2 = zeros(1,size(invalidNodes1a,2)); | |||
end | |||
% outlier statistics | |||
count = nnz(invalidNodes1a|invalidNodes1b|invalidNodes2); | |||
count = nnz(invalidNodes1a|invalidNodes2); | |||
if count*1.5 > size(data,2) | |||
fprintf('RemoveRandomNodes2: too many outliers nodes %d.\n',count); | |||
end | |||
@@ -151,7 +359,12 @@ function [missing_nodes] = ChooseMissingNodes(num_nodes_to_remove, data, attData | |||
for i=1:num_nodes_to_remove | |||
valid_nodes = find(missing_nodes_all_neighbors~=1); | |||
inx = ceil(rand(1)*size(valid_nodes,2)); | |||
if(size(valid_nodes,2) < 1) | |||
fprintf('Full Graph') | |||
end | |||
inx = ceil(rand(1)*size(valid_nodes,2)); | |||
node = valid_nodes(inx); | |||
%sigal - 23.1.14 - choose image profile | |||
profile = ceil(rand(1)*size(imagesProfiles,2)); | |||
@@ -196,3 +409,4 @@ function [attData] = ExpandAttByOne(attData, orgNode, non_neighbors_distance, to | |||
end %ExpandAttByOne | |||
@@ -1,5 +1,5 @@ | |||
function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, addAttPercStr) | |||
%function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, normF1, normF2, normF3, addAttPercStr) | |||
function [] = RunExpSrv8s(iterStartStr, iterEndStr, netSizeStr, normF1, normF2, normF3, addAttPercStr) | |||
function [] = RunExpSrv8s(iterStartStr, iterEndStr, addAttPercStr) | |||
%affinity calculation types | |||
% affinity_calculation_shortest_path = 0; | |||
@@ -51,10 +51,9 @@ percentKnownPHsVec = 1; | |||
% ds_100k = [20000 25000 50000 75000 100000]; | |||
% ds_100km = [100001]; | |||
% ds_Train = [2001 2049]; | |||
ds_GridTrain = [12]; | |||
ds_GridTrain = [45]; | |||
% input netSize | |||
netSize = str2num(netSizeStr); | |||
% if find(ds_10k==netSize) | |||
% ds_str = 'Datasets_10K/'; | |||
% num_missing_nodes_arr = [10 20 30 50 70 100];%[10 100 150]; | |||
@@ -83,16 +82,14 @@ netSize = str2num(netSizeStr); | |||
% fprintf('RunExpSrv8s:Invalid netSize %d.\n',netSize); | |||
% return; | |||
% end | |||
ds_str = 'graph_production/produced_graphs/'; | |||
num_missing_nodes_arr = [1 2 3]; | |||
ds_str = 'in/'; | |||
num_missing_nodes_arr = [2]; | |||
fprintf('RunExpSrv8s: netSize %d, dataset %s\n',netSize,ds_str); | |||
rootDir = '../'; | |||
%rootDir = '/Users/armin/Desktop/DML/projects/graphgenproj/'; %Facebook/'; | |||
%rootDir = 'D:/__SN_Jan14_FF75/'; %Facebook/'; | |||
filePrefix = 'testgraph_*'; % 'facebook_sparse_'; % | |||
netSizes = netSize; %%[2048 4096 5000 8192 10000 16384 32768]; | |||
%Sigal - 13.2.14 - images data | |||
imagesDir = strcat(rootDir,'Images/'); | |||
@@ -107,7 +104,7 @@ imgSimType = 1; %% 0=realData, 1=rand(uniform distribution), 2=randn(normal dist | |||
datasetDir = strcat(rootDir,ds_str); %'Datasets_10K/'); %'Facebook/Datasets_10K/'); %'Traing_16K/'); %% TODO sigal - change rootDir path before EXE build | |||
factor_str = sprintf('F%d%d%d_',normFactorVec); | |||
images_str = sprintf('I%dP%dM%d_',imgSimType,imgSimProbDiff*10,imgMissProb*10); | |||
results_dir = strcat(datasetDir,'testImg_noTh_',netSizeStr,'/',factor_str,images_str,'Iter_',iterStartStr,iterEndStr,'/'); | |||
results_dir = strcat(datasetDir,'testImg_noTh_','/',factor_str,images_str,'Iter_',iterStartStr,iterEndStr,'/'); | |||
fprintf('RunExpSrv8b: results_dir %s\n',results_dir); | |||
runAlgFlag = 1; | |||
@@ -139,13 +136,7 @@ LogMsg(sprintf('%s Start RunExpSrv8s RunExperiment (random %d, addMissingAtt %.2 | |||
% end | |||
% LogMsg(sprintf('Select %d attributes out of %d ...', sum(attSelected), size(attSelected,2))); | |||
for nodes = netSizes | |||
fprintf('----------!!!!%d---------', nodes); | |||
if size(strfind(filePrefix, 'facebook'),1)>0 | |||
prefix = sprintf('%s%s%d_%s',datasetDir,filePrefix,nodes,'*.mat'); % '0*.txt.mat'); | |||
else | |||
prefix = sprintf('%s%s%d_%s',datasetDir,filePrefix,nodes,'*.txt.mat'); % '0*.txt.mat'); | |||
end | |||
prefix = sprintf('%s%s_%s',datasetDir,filePrefix,'*.txt.mat'); % '0*.txt.mat'); | |||
files = dir(prefix); | |||
firstIter = 1; | |||
@@ -155,66 +146,67 @@ for nodes = netSizes | |||
end | |||
for i = 1:size(files,1) % loop over the list of networks | |||
try | |||
file = files(i).name; | |||
file = files(i).name; | |||
if size(strfind(filePrefix, 'facebook'),1)>0 | |||
LogMsg(sprintf('facebook netwrok, skipping attributes ...')); | |||
attributes = []; | |||
attUpperRange = []; | |||
else | |||
% sigal 12/6/13 - use binary attribute mat file | |||
attFile = strrep(file, '.txt.mat', '.usr.mat'); | |||
[attributes, attUpperRange, attSelected, attStat] = PrepareAttributes5(datasetDir, attFile, nodes, numAttrCols, maxAttStat, attSelected); | |||
[attributes, attUpperRange, attSelected, ~] = PrepareAttributes5(datasetDir, attFile, numAttrCols, maxAttStat, attSelected); | |||
LogMsg(sprintf('Select %d attributes out of %d ...', sum(attSelected), size(attSelected,2))); | |||
end | |||
if runAlgFlag == 1 | |||
date_now = clock; | |||
date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6))); | |||
% make sure dump & results directories exist | |||
if (firstIter == 1 && i == 1) | |||
firstIter = 0; | |||
if isdir(results_dir) == 0 | |||
mkdir(results_dir); | |||
if runAlgFlag == 1 | |||
date_now = clock; | |||
date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6))); | |||
% make sure dump & results directories exist | |||
if (firstIter == 1 && i == 1) | |||
firstIter = 0; | |||
if isdir(results_dir) == 0 | |||
mkdir(results_dir); | |||
end | |||
dumpFilePath = sprintf('%sdumpKronEM_%s/', results_dir, date_now); | |||
if (dumpKronEM == 1) | |||
mkdir(dumpFilePath); | |||
end | |||
dump_data_dir = sprintf('%sdumpData_%s/', results_dir, date_now); | |||
if dumpGED == 1 && isdir(dump_data_dir) == 0 | |||
mkdir(dump_data_dir) | |||
end | |||
end | |||
dumpFilePath = sprintf('%sdumpKronEM_%s/', results_dir, date_now); | |||
if (dumpKronEM == 1) | |||
mkdir(dumpFilePath); | |||
% run algorithm (file load is done internaly) | |||
[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_S8b(datasetDir, file, ... | |||
attributes, attUpperRange, attWeight, addMissingAtt, normFactorVec, affinities, num_missing_nodes_arr, attAffinityThreshold, ... | |||
imagesData, numImagesProfiles, imgMissProb, imgSimType, imgSimProbDiff, percentKnownPHsVec, dumpGED, dump_data_dir, iter); | |||
%[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_Sparse(datasetDir, file, affinities, 1); | |||
% dump graph data for KronEM runs | |||
if dumpKronEM == 1 | |||
DumpDataset(datasetDir, file, iter, removed_nodes, dumpFilePath); | |||
end | |||
dump_data_dir = sprintf('%sdumpData_%s/', results_dir, date_now); | |||
if dumpGED == 1 && isdir(dump_data_dir) == 0 | |||
mkdir(dump_data_dir) | |||
% save results | |||
out_file = sprintf('%sres_%s_%s.mat', results_dir, file, date_now); | |||
save(out_file); | |||
file_name = sprintf('%s_%s','../output/mine/',file); | |||
if(iter == 0) | |||
copyfile('../output/graphed_0.mat',file_name); | |||
end | |||
end | |||
% run algorithm (file load is done internaly) | |||
[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_S8b(datasetDir, file, ... | |||
attributes, attUpperRange, attWeight, addMissingAtt, normFactorVec, affinities, num_missing_nodes_arr, attAffinityThreshold, ... | |||
imagesData, numImagesProfiles, imgMissProb, imgSimType, imgSimProbDiff, percentKnownPHsVec, dumpGED, dump_data_dir, iter); | |||
%[rand_score,purity,p_triads,missing_nodes_mapping,removed_nodes] = MissingNodes_Sparse(datasetDir, file, affinities, 1); | |||
% dump graph data for KronEM runs | |||
if dumpKronEM == 1 | |||
DumpDataset(datasetDir, file, iter, removed_nodes, dumpFilePath); | |||
end | |||
% save results | |||
out_file = sprintf('%sres_%s_%s.mat', results_dir, file, date_now); | |||
save(out_file); | |||
LogMsg(sprintf('Results for file %s,iter %d at %s',file,iter,out_file)); | |||
%fprintf('Completed RunExperiment cycle - results at %s.\n',out_file); | |||
LogMsg(sprintf('Results for file %s,iter %d at %s',file,iter,out_file)); | |||
%fprintf('Completed RunExperiment cycle - results at %s.\n',out_file); | |||
end | |||
catch | |||
fprintf('An Error Occured!!!!!') | |||
end | |||
% beep; | |||
end | |||
end | |||
end | |||
date_now = clock; | |||
date_now = strcat(num2str(date_now(1)),'_',num2str(date_now(2)),'_', num2str(date_now(3)),'_', num2str(date_now(4)), num2str(date_now(5)),'_', num2str(date_now(6))); | |||
LogMsg(sprintf('%s Completed RunExpSrv8s RunExperiment (random %d).',date_now,randSeed)); | |||
end | |||
end |
@@ -8,7 +8,7 @@ clc; | |||
% calc GED vice the orignal graph | |||
% end | |||
%graphDist = []; | |||
rootDir = '/Users/armin/Desktop/DML/projects/graphgenproj/graph_production/' ; | |||
rootDir = 'C:\Users\Iraj\Desktop\DML\' ; | |||
datasetDir = strcat(rootDir,'produced_graphs/'); %' '; % sigal 28.8.12 | |||
resultsDir = strcat(rootDir,'results_ged/'); | |||
file1Iter = []; % networks options [1:1:10] - selection iter |