|
|
@@ -1,20 +1,28 @@ |
|
|
|
# an implementation for "Learning Deep Generative Models of Graphs" |
|
|
|
from baselines.graphvae.util import load_data |
|
|
|
import os |
|
|
|
|
|
|
|
import random |
|
|
|
from statistics import mean |
|
|
|
|
|
|
|
import networkx as nx |
|
|
|
import numpy as np |
|
|
|
from sklearn.metrics import roc_auc_score, average_precision_score |
|
|
|
|
|
|
|
from main import * |
|
|
|
|
|
|
|
|
|
|
|
class Args_DGMG(): |
|
|
|
def __init__(self): |
|
|
|
### CUDA |
|
|
|
self.cuda = 1 |
|
|
|
self.cuda = 0 |
|
|
|
|
|
|
|
### model type |
|
|
|
self.note = 'Baseline_DGMG' # do GCN after adding each edge |
|
|
|
self.note = 'Baseline_DGMG' # do GCN after adding each edge |
|
|
|
# self.note = 'Baseline_DGMG_fast' # do GCN only after adding each node |
|
|
|
|
|
|
|
### data config |
|
|
|
# self.graph_type = 'caveman_small' |
|
|
|
# self.graph_type = 'grid_small' |
|
|
|
self.graph_type = 'IMDBBINARY' |
|
|
|
self.graph_type = 'grid_small' |
|
|
|
# self.graph_type = 'ladder_small' |
|
|
|
# self.graph_type = 'enzymes_small' |
|
|
|
# self.graph_type = 'barabasi_small' |
|
|
@@ -26,14 +34,13 @@ class Args_DGMG(): |
|
|
|
self.node_embedding_size = 64 |
|
|
|
self.test_graph_num = 200 |
|
|
|
|
|
|
|
|
|
|
|
### training config |
|
|
|
self.epochs = 2000 # now one epoch means self.batch_ratio x batch_size |
|
|
|
self.load_epoch = 2000 |
|
|
|
self.epochs_test_start = 100 |
|
|
|
self.epochs_test = 100 |
|
|
|
self.epochs_log = 2 |
|
|
|
self.epochs_save = 100 |
|
|
|
self.epochs = 100 # now one epoch means self.batch_ratio x batch_size |
|
|
|
self.load_epoch = 100 |
|
|
|
self.epochs_test_start = 10 |
|
|
|
self.epochs_test = 10 |
|
|
|
self.epochs_log = 10 |
|
|
|
self.epochs_save = 10 |
|
|
|
if 'fast' in self.note: |
|
|
|
self.is_fast = True |
|
|
|
else: |
|
|
@@ -51,7 +58,6 @@ class Args_DGMG(): |
|
|
|
self.figure_prediction_save_path = 'figures_prediction/' |
|
|
|
self.nll_save_path = 'nll/' |
|
|
|
|
|
|
|
|
|
|
|
self.fname = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) |
|
|
|
self.fname_pred = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_pred_' |
|
|
|
self.fname_train = self.note + '_' + self.graph_type + '_' + str(self.node_embedding_size) + '_train_' |
|
|
@@ -61,13 +67,12 @@ class Args_DGMG(): |
|
|
|
self.save = True |
|
|
|
|
|
|
|
|
|
|
|
def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast = False): |
|
|
|
def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast=False): |
|
|
|
model.train() |
|
|
|
graph_num = len(dataset) |
|
|
|
order = list(range(graph_num)) |
|
|
|
shuffle(order) |
|
|
|
|
|
|
|
|
|
|
|
loss_addnode = 0 |
|
|
|
loss_addedge = 0 |
|
|
|
loss_node = 0 |
|
|
@@ -81,16 +86,17 @@ def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast |
|
|
|
order_mapping = dict(zip(graph.nodes(), node_order)) |
|
|
|
graph = nx.relabel_nodes(graph, order_mapping, copy=True) |
|
|
|
|
|
|
|
|
|
|
|
# NOTE: when starting loop, we assume a node has already been generated |
|
|
|
node_count = 1 |
|
|
|
node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden |
|
|
|
|
|
|
|
node_embedding = [ |
|
|
|
Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden |
|
|
|
|
|
|
|
loss = 0 |
|
|
|
while node_count<=graph.number_of_nodes(): |
|
|
|
node_neighbor = graph.subgraph(list(range(node_count))).adjacency_list() # list of lists (first node is zero) |
|
|
|
node_neighbor_new = graph.subgraph(list(range(node_count+1))).adjacency_list()[-1] # list of new node's neighbors |
|
|
|
while node_count <= graph.number_of_nodes(): |
|
|
|
node_neighbor = graph.subgraph( |
|
|
|
list(range(node_count))).adjacency_list() # list of lists (first node is zero) |
|
|
|
node_neighbor_new = graph.subgraph(list(range(node_count + 1))).adjacency_list()[ |
|
|
|
-1] # list of new node's neighbors |
|
|
|
|
|
|
|
# 1 message passing |
|
|
|
# do 2 times message passing |
|
|
@@ -110,7 +116,7 @@ def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast |
|
|
|
if is_fast: |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
# calc loss |
|
|
|
loss_addnode_step = F.binary_cross_entropy(p_addnode,Variable(torch.ones((1,1))).cuda()) |
|
|
|
loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.ones((1, 1))).cuda()) |
|
|
|
# loss_addnode_step.backward(retain_graph=True) |
|
|
|
loss += loss_addnode_step |
|
|
|
loss_addnode += loss_addnode_step.data |
|
|
@@ -122,9 +128,8 @@ def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast |
|
|
|
loss_addnode += loss_addnode_step.data |
|
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
edge_count = 0 |
|
|
|
while edge_count<=len(node_neighbor_new): |
|
|
|
while edge_count <= len(node_neighbor_new): |
|
|
|
if not is_fast: |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
@@ -142,19 +147,20 @@ def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast |
|
|
|
|
|
|
|
# 5 f_nodes |
|
|
|
# excluding the last node (which is the new node) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1,0)) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1, |
|
|
|
node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1, 0)) |
|
|
|
# get ground truth |
|
|
|
a_node = torch.zeros((1,p_node.size(1))) |
|
|
|
a_node = torch.zeros((1, p_node.size(1))) |
|
|
|
# print('node_neighbor_new',node_neighbor_new, edge_count) |
|
|
|
a_node[0,node_neighbor_new[edge_count]] = 1 |
|
|
|
a_node[0, node_neighbor_new[edge_count]] = 1 |
|
|
|
a_node = Variable(a_node).cuda() |
|
|
|
# add edge |
|
|
|
node_neighbor[-1].append(node_neighbor_new[edge_count]) |
|
|
|
node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor)-1) |
|
|
|
node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor) - 1) |
|
|
|
# calc loss |
|
|
|
loss_node_step = F.binary_cross_entropy(p_node,a_node) |
|
|
|
loss_node_step = F.binary_cross_entropy(p_node, a_node) |
|
|
|
# loss_node_step.backward(retain_graph=True) |
|
|
|
loss += loss_node_step |
|
|
|
loss_node += loss_node_step.data |
|
|
@@ -177,142 +183,14 @@ def train_DGMG_epoch(epoch, args, model, dataset, optimizer, scheduler, is_fast |
|
|
|
|
|
|
|
loss_all = loss_addnode + loss_addedge + loss_node |
|
|
|
|
|
|
|
if epoch % args.epochs_log==0: |
|
|
|
if epoch % args.epochs_log == 0: |
|
|
|
print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format( |
|
|
|
epoch, args.epochs,loss_all.item(), args.graph_type, args.node_embedding_size)) |
|
|
|
|
|
|
|
epoch, args.epochs, loss_all, args.graph_type, args.node_embedding_size)) |
|
|
|
|
|
|
|
# loss_sum += loss.data[0]*x.size(0) |
|
|
|
# return loss_sum |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_DGMG_forward_epoch(args, model, dataset, is_fast = False): |
|
|
|
model.train() |
|
|
|
graph_num = len(dataset) |
|
|
|
order = list(range(graph_num)) |
|
|
|
shuffle(order) |
|
|
|
|
|
|
|
|
|
|
|
loss_addnode = 0 |
|
|
|
loss_addedge = 0 |
|
|
|
loss_node = 0 |
|
|
|
for i in order: |
|
|
|
model.zero_grad() |
|
|
|
|
|
|
|
graph = dataset[i] |
|
|
|
# do random ordering: relabel nodes |
|
|
|
node_order = list(range(graph.number_of_nodes())) |
|
|
|
shuffle(node_order) |
|
|
|
order_mapping = dict(zip(graph.nodes(), node_order)) |
|
|
|
graph = nx.relabel_nodes(graph, order_mapping, copy=True) |
|
|
|
|
|
|
|
|
|
|
|
# NOTE: when starting loop, we assume a node has already been generated |
|
|
|
node_count = 1 |
|
|
|
node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden |
|
|
|
|
|
|
|
|
|
|
|
loss = 0 |
|
|
|
while node_count<=graph.number_of_nodes(): |
|
|
|
node_neighbor = graph.subgraph(list(range(node_count))).adjacency_list() # list of lists (first node is zero) |
|
|
|
node_neighbor_new = graph.subgraph(list(range(node_count+1))).adjacency_list()[-1] # list of new node's neighbors |
|
|
|
|
|
|
|
# 1 message passing |
|
|
|
# do 2 times message passing |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
|
|
|
|
# 2 graph embedding and new node embedding |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
graph_embedding = calc_graph_embedding(node_embedding_cat, model) |
|
|
|
init_embedding = calc_init_embedding(node_embedding_cat, model) |
|
|
|
|
|
|
|
# 3 f_addnode |
|
|
|
p_addnode = model.f_an(graph_embedding) |
|
|
|
if node_count < graph.number_of_nodes(): |
|
|
|
# add node |
|
|
|
node_neighbor.append([]) |
|
|
|
node_embedding.append(init_embedding) |
|
|
|
if is_fast: |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
# calc loss |
|
|
|
loss_addnode_step = F.binary_cross_entropy(p_addnode,Variable(torch.ones((1,1))).cuda()) |
|
|
|
# loss_addnode_step.backward(retain_graph=True) |
|
|
|
loss += loss_addnode_step |
|
|
|
loss_addnode += loss_addnode_step.data |
|
|
|
else: |
|
|
|
# calc loss |
|
|
|
loss_addnode_step = F.binary_cross_entropy(p_addnode, Variable(torch.zeros((1, 1))).cuda()) |
|
|
|
# loss_addnode_step.backward(retain_graph=True) |
|
|
|
loss += loss_addnode_step |
|
|
|
loss_addnode += loss_addnode_step.data |
|
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
edge_count = 0 |
|
|
|
while edge_count<=len(node_neighbor_new): |
|
|
|
if not is_fast: |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
graph_embedding = calc_graph_embedding(node_embedding_cat, model) |
|
|
|
|
|
|
|
# 4 f_addedge |
|
|
|
p_addedge = model.f_ae(graph_embedding) |
|
|
|
|
|
|
|
if edge_count < len(node_neighbor_new): |
|
|
|
# calc loss |
|
|
|
loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.ones((1, 1))).cuda()) |
|
|
|
# loss_addedge_step.backward(retain_graph=True) |
|
|
|
loss += loss_addedge_step |
|
|
|
loss_addedge += loss_addedge_step.data |
|
|
|
|
|
|
|
# 5 f_nodes |
|
|
|
# excluding the last node (which is the new node) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1,0)) |
|
|
|
# get ground truth |
|
|
|
a_node = torch.zeros((1,p_node.size(1))) |
|
|
|
# print('node_neighbor_new',node_neighbor_new, edge_count) |
|
|
|
a_node[0,node_neighbor_new[edge_count]] = 1 |
|
|
|
a_node = Variable(a_node).cuda() |
|
|
|
# add edge |
|
|
|
node_neighbor[-1].append(node_neighbor_new[edge_count]) |
|
|
|
node_neighbor[node_neighbor_new[edge_count]].append(len(node_neighbor)-1) |
|
|
|
# calc loss |
|
|
|
loss_node_step = F.binary_cross_entropy(p_node,a_node) |
|
|
|
# loss_node_step.backward(retain_graph=True) |
|
|
|
loss += loss_node_step |
|
|
|
loss_node += loss_node_step.data*p_node.size(1) |
|
|
|
|
|
|
|
else: |
|
|
|
# calc loss |
|
|
|
loss_addedge_step = F.binary_cross_entropy(p_addedge, Variable(torch.zeros((1, 1))).cuda()) |
|
|
|
# loss_addedge_step.backward(retain_graph=True) |
|
|
|
loss += loss_addedge_step |
|
|
|
loss_addedge += loss_addedge_step.data |
|
|
|
break |
|
|
|
|
|
|
|
edge_count += 1 |
|
|
|
node_count += 1 |
|
|
|
|
|
|
|
|
|
|
|
loss_all = loss_addnode + loss_addedge + loss_node |
|
|
|
|
|
|
|
# if epoch % args.epochs_log==0: |
|
|
|
# print('Epoch: {}/{}, train loss: {:.6f}, graph type: {}, hidden: {}'.format( |
|
|
|
# epoch, args.epochs,loss_all[0], args.graph_type, args.node_embedding_size)) |
|
|
|
|
|
|
|
|
|
|
|
return loss_all[0]/len(dataset) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_DGMG_epoch(args, model, is_fast=False): |
|
|
|
model.eval() |
|
|
|
graph_num = args.test_graph_num |
|
|
@@ -321,10 +199,11 @@ def test_DGMG_epoch(args, model, is_fast=False): |
|
|
|
for i in range(graph_num): |
|
|
|
# NOTE: when starting loop, we assume a node has already been generated |
|
|
|
node_neighbor = [[]] # list of lists (first node is zero) |
|
|
|
node_embedding = [Variable(torch.ones(1,args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden |
|
|
|
node_embedding = [ |
|
|
|
Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden |
|
|
|
|
|
|
|
node_count = 1 |
|
|
|
while node_count<=args.max_num_node: |
|
|
|
while node_count <= args.max_num_node: |
|
|
|
# 1 message passing |
|
|
|
# do 2 times message passing |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
@@ -338,7 +217,7 @@ def test_DGMG_epoch(args, model, is_fast=False): |
|
|
|
p_addnode = model.f_an(graph_embedding) |
|
|
|
a_addnode = sample_tensor(p_addnode) |
|
|
|
# print(a_addnode.data[0][0]) |
|
|
|
if a_addnode.data[0][0]==1: |
|
|
|
if a_addnode.data[0][0] == 1: |
|
|
|
# print('add node') |
|
|
|
# add node |
|
|
|
node_neighbor.append([]) |
|
|
@@ -349,7 +228,7 @@ def test_DGMG_epoch(args, model, is_fast=False): |
|
|
|
break |
|
|
|
|
|
|
|
edge_count = 0 |
|
|
|
while edge_count<args.max_num_node: |
|
|
|
while edge_count < args.max_num_node: |
|
|
|
if not is_fast: |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
@@ -360,19 +239,20 @@ def test_DGMG_epoch(args, model, is_fast=False): |
|
|
|
a_addedge = sample_tensor(p_addedge) |
|
|
|
# print(a_addedge.data[0][0]) |
|
|
|
|
|
|
|
if a_addedge.data[0][0]==1: |
|
|
|
if a_addedge.data[0][0] == 1: |
|
|
|
# print('add edge') |
|
|
|
# 5 f_nodes |
|
|
|
# excluding the last node (which is the new node) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1,:].expand(node_embedding_cat.size(0)-1,node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1,:],node_new_embedding_cat),dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1,0)) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1, |
|
|
|
node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1, 0)) |
|
|
|
a_node = gumbel_softmax(p_node, temperature=0.01) |
|
|
|
_, a_node_id = a_node.topk(1) |
|
|
|
a_node_id = int(a_node_id.data[0][0]) |
|
|
|
# add edge |
|
|
|
node_neighbor[-1].append(a_node_id) |
|
|
|
node_neighbor[a_node_id].append(len(node_neighbor)-1) |
|
|
|
node_neighbor[a_node_id].append(len(node_neighbor) - 1) |
|
|
|
else: |
|
|
|
break |
|
|
|
|
|
|
@@ -386,14 +266,139 @@ def test_DGMG_epoch(args, model, is_fast=False): |
|
|
|
return graphs_generated |
|
|
|
|
|
|
|
|
|
|
|
def test_DGMG_2(args, model, test_graph, is_fast=False): |
|
|
|
model.eval() |
|
|
|
graph_num = args.test_graph_num |
|
|
|
|
|
|
|
graphs_generated = [] |
|
|
|
# for i in range(graph_num): |
|
|
|
# NOTE: when starting loop, we assume a node has already been generated |
|
|
|
node_neighbor = [[]] # list of lists (first node is zero) |
|
|
|
node_embedding = [ |
|
|
|
Variable(torch.ones(1, args.node_embedding_size)).cuda()] # list of torch tensors, each size: 1*hidden |
|
|
|
|
|
|
|
node_max = len(test_graph.nodes()) |
|
|
|
node_count = 1 |
|
|
|
while node_count <= node_max: |
|
|
|
# 1 message passing |
|
|
|
# do 2 times message passing |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
|
|
|
|
# 2 graph embedding and new node embedding |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
graph_embedding = calc_graph_embedding(node_embedding_cat, model) |
|
|
|
init_embedding = calc_init_embedding(node_embedding_cat, model) |
|
|
|
|
|
|
|
# 3 f_addnode |
|
|
|
p_addnode = model.f_an(graph_embedding) |
|
|
|
a_addnode = sample_tensor(p_addnode) |
|
|
|
|
|
|
|
if a_addnode.data[0][0] == 1: |
|
|
|
# add node |
|
|
|
node_neighbor.append([]) |
|
|
|
node_embedding.append(init_embedding) |
|
|
|
if is_fast: |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
else: |
|
|
|
break |
|
|
|
|
|
|
|
edge_count = 0 |
|
|
|
while edge_count < args.max_num_node: |
|
|
|
if not is_fast: |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
graph_embedding = calc_graph_embedding(node_embedding_cat, model) |
|
|
|
|
|
|
|
# 4 f_addedge |
|
|
|
p_addedge = model.f_ae(graph_embedding) |
|
|
|
a_addedge = sample_tensor(p_addedge) |
|
|
|
|
|
|
|
if a_addedge.data[0][0] == 1: |
|
|
|
# 5 f_nodes |
|
|
|
# excluding the last node (which is the new node) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1, |
|
|
|
node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1, 0)) |
|
|
|
a_node = gumbel_softmax(p_node, temperature=0.01) |
|
|
|
_, a_node_id = a_node.topk(1) |
|
|
|
a_node_id = int(a_node_id.data[0][0]) |
|
|
|
# add edge |
|
|
|
|
|
|
|
node_neighbor[-1].append(a_node_id) |
|
|
|
node_neighbor[a_node_id].append(len(node_neighbor) - 1) |
|
|
|
else: |
|
|
|
break |
|
|
|
|
|
|
|
edge_count += 1 |
|
|
|
node_count += 1 |
|
|
|
|
|
|
|
# clear node_neighbor and build it again |
|
|
|
node_neighbor = [] |
|
|
|
for n in range(node_max): |
|
|
|
temp_neighbor = [k for k in test_graph.edge[n]] |
|
|
|
node_neighbor.append(temp_neighbor) |
|
|
|
|
|
|
|
# now add the last node for real |
|
|
|
# 1 message passing |
|
|
|
# do 2 times message passing |
|
|
|
try: |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
|
|
|
|
# 2 graph embedding and new node embedding |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
graph_embedding = calc_graph_embedding(node_embedding_cat, model) |
|
|
|
init_embedding = calc_init_embedding(node_embedding_cat, model) |
|
|
|
|
|
|
|
# 3 f_addnode |
|
|
|
p_addnode = model.f_an(graph_embedding) |
|
|
|
a_addnode = sample_tensor(p_addnode) |
|
|
|
|
|
|
|
if a_addnode.data[0][0] == 1: |
|
|
|
# add node |
|
|
|
node_neighbor.append([]) |
|
|
|
node_embedding.append(init_embedding) |
|
|
|
if is_fast: |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
|
|
|
|
edge_count = 0 |
|
|
|
while edge_count < args.max_num_node: |
|
|
|
if not is_fast: |
|
|
|
node_embedding = message_passing(node_neighbor, node_embedding, model) |
|
|
|
node_embedding_cat = torch.cat(node_embedding, dim=0) |
|
|
|
graph_embedding = calc_graph_embedding(node_embedding_cat, model) |
|
|
|
|
|
|
|
# 4 f_addedge |
|
|
|
p_addedge = model.f_ae(graph_embedding) |
|
|
|
a_addedge = sample_tensor(p_addedge) |
|
|
|
|
|
|
|
if a_addedge.data[0][0] == 1: |
|
|
|
# 5 f_nodes |
|
|
|
# excluding the last node (which is the new node) |
|
|
|
node_new_embedding_cat = node_embedding_cat[-1, :].expand(node_embedding_cat.size(0) - 1, |
|
|
|
node_embedding_cat.size(1)) |
|
|
|
s_node = model.f_s(torch.cat((node_embedding_cat[0:-1, :], node_new_embedding_cat), dim=1)) |
|
|
|
p_node = F.softmax(s_node.permute(1, 0)) |
|
|
|
a_node = gumbel_softmax(p_node, temperature=0.01) |
|
|
|
_, a_node_id = a_node.topk(1) |
|
|
|
a_node_id = int(a_node_id.data[0][0]) |
|
|
|
# add edge |
|
|
|
|
|
|
|
node_neighbor[-1].append(a_node_id) |
|
|
|
node_neighbor[a_node_id].append(len(node_neighbor) - 1) |
|
|
|
else: |
|
|
|
break |
|
|
|
|
|
|
|
edge_count += 1 |
|
|
|
node_count += 1 |
|
|
|
except: |
|
|
|
print('error') |
|
|
|
# save graph |
|
|
|
node_neighbor_dict = dict(zip(list(range(len(node_neighbor))), node_neighbor)) |
|
|
|
graph = nx.from_dict_of_lists(node_neighbor_dict) |
|
|
|
graphs_generated.append(graph) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return graphs_generated |
|
|
|
|
|
|
|
|
|
|
|
########### train function for LSTM + VAE |
|
|
@@ -422,10 +427,10 @@ def train_DGMG(args, dataset_train, model): |
|
|
|
train_DGMG_epoch(epoch, args, model, dataset_train, optimizer, scheduler, is_fast=args.is_fast) |
|
|
|
time_end = tm.time() |
|
|
|
time_all[epoch - 1] = time_end - time_start |
|
|
|
# print('time used',time_all[epoch - 1]) |
|
|
|
print('time used', time_all[epoch - 1]) |
|
|
|
# test |
|
|
|
if epoch % args.epochs_test == 0 and epoch >= args.epochs_test_start: |
|
|
|
graphs = test_DGMG_epoch(args,model, is_fast=args.is_fast) |
|
|
|
graphs = test_DGMG_epoch(args, model, is_fast=args.is_fast) |
|
|
|
fname = args.graph_save_path + args.fname_pred + str(epoch) + '.dat' |
|
|
|
save_graph_list(graphs, fname) |
|
|
|
# print('test done, graphs saved') |
|
|
@@ -439,104 +444,178 @@ def train_DGMG(args, dataset_train, model): |
|
|
|
np.save(args.timing_save_path + args.fname, time_all) |
|
|
|
|
|
|
|
|
|
|
|
def neigh_to_mat(neigh, size): |
|
|
|
ret_list = np.zeros(size) |
|
|
|
for i in neigh: |
|
|
|
ret_list[i] = 1 |
|
|
|
return ret_list |
|
|
|
|
|
|
|
|
|
|
|
def calc_lable_result(test_graphs, returned_graphs): |
|
|
|
labels = [] |
|
|
|
results = [] |
|
|
|
i = 0 |
|
|
|
for test_graph in test_graphs: |
|
|
|
n = len(test_graph.nodes()) |
|
|
|
returned_graph = returned_graphs[i] |
|
|
|
label = neigh_to_mat([k for k in test_graph.edge[n - 1]], n) |
|
|
|
try: |
|
|
|
result = neigh_to_mat([k for k in returned_graph.edge[n - 1]], n) |
|
|
|
except: |
|
|
|
result = np.zeros(n) |
|
|
|
labels.append(label) |
|
|
|
results.append(result) |
|
|
|
i += 1 |
|
|
|
return labels, results |
|
|
|
|
|
|
|
|
|
|
|
def evaluate(labels, results): |
|
|
|
mae_list = [] |
|
|
|
roc_score_list = [] |
|
|
|
ap_score_list = [] |
|
|
|
precision_list = [] |
|
|
|
recall_list = [] |
|
|
|
iter = 0 |
|
|
|
for result in results: |
|
|
|
label = labels[iter] |
|
|
|
iter += 1 |
|
|
|
part1 = label[result == 1] |
|
|
|
part2 = part1[part1 == 1] |
|
|
|
part3 = part1[part1 == 0] |
|
|
|
part4 = label[result == 0] |
|
|
|
part5 = part4[part4 == 1] |
|
|
|
tp = len(part2) |
|
|
|
fp = len(part3) |
|
|
|
fn = part5.sum() |
|
|
|
if tp + fp > 0: |
|
|
|
precision = tp / (tp + fp) |
|
|
|
else: |
|
|
|
precision = 0 |
|
|
|
recall = tp / (tp + fn) |
|
|
|
precision_list.append(precision) |
|
|
|
recall_list.append(recall) |
|
|
|
|
|
|
|
positive = result[label == 1] |
|
|
|
if len(positive) <= len(list(result[label == 0])): |
|
|
|
negative = random.sample(list(result[label == 0]), len(positive)) |
|
|
|
else: |
|
|
|
negative = result[label == 0] |
|
|
|
positive = random.sample(list(result[label == 1]), len(negative)) |
|
|
|
preds_all = np.hstack([positive, negative]) |
|
|
|
labels_all = np.hstack([np.ones(len(positive)), np.zeros(len(positive))]) |
|
|
|
|
|
|
|
if len(labels_all) > 0: |
|
|
|
roc_score = roc_auc_score(labels_all, preds_all) |
|
|
|
ap_score = average_precision_score(labels_all, preds_all) |
|
|
|
|
|
|
|
roc_score_list.append(roc_score) |
|
|
|
ap_score_list.append(ap_score) |
|
|
|
|
|
|
|
mae = 0 |
|
|
|
for x in range(len(result)): |
|
|
|
if result[x] != label[x]: |
|
|
|
mae += 1 |
|
|
|
|
|
|
|
mae = mae / len(label) |
|
|
|
mae_list.append(mae) |
|
|
|
|
|
|
|
mean_roc = mean(roc_score_list) |
|
|
|
mean_ap = mean(ap_score_list) |
|
|
|
mean_precision = mean(precision_list) |
|
|
|
mean_recall = mean(recall_list) |
|
|
|
mean_mae = mean(mae_list) |
|
|
|
print('roc_score ' + str(mean_roc)) |
|
|
|
print('ap_score ' + str(mean_ap)) |
|
|
|
print('precision ' + str(mean_precision)) |
|
|
|
print('recall ' + str(mean_recall)) |
|
|
|
print('mae ' + str(mean_mae)) |
|
|
|
return mean_roc, mean_ap, mean_precision, mean_recall |
|
|
|
|
|
|
|
|
|
|
|
def load_data(dataset, degree_as_tag): |
|
|
|
''' |
|
|
|
dataset: name of dataset |
|
|
|
test_proportion: ratio of test train split |
|
|
|
seed: random seed for random splitting of dataset |
|
|
|
''' |
|
|
|
|
|
|
|
print('loading data') |
|
|
|
g_list = [] |
|
|
|
label_dict = {} |
|
|
|
feat_dict = {} |
|
|
|
|
|
|
|
with open('dataset/%s/%s.txt' % (dataset, dataset), 'r') as f: |
|
|
|
n_g = int(f.readline().strip()) |
|
|
|
for i in range(n_g): |
|
|
|
row = f.readline().strip().split() |
|
|
|
n, l = [int(w) for w in row] |
|
|
|
if not l in label_dict: |
|
|
|
mapped = len(label_dict) |
|
|
|
label_dict[l] = mapped |
|
|
|
g = nx.Graph() |
|
|
|
node_tags = [] |
|
|
|
node_features = [] |
|
|
|
n_edges = 0 |
|
|
|
for j in range(n): |
|
|
|
g.add_node(j) |
|
|
|
row = f.readline().strip().split() |
|
|
|
tmp = int(row[1]) + 2 |
|
|
|
if tmp == len(row): |
|
|
|
# no node attributes |
|
|
|
row = [int(w) for w in row] |
|
|
|
attr = None |
|
|
|
else: |
|
|
|
row, attr = [int(w) for w in row[:tmp]], np.array([float(w) for w in row[tmp:]]) |
|
|
|
if not row[0] in feat_dict: |
|
|
|
mapped = len(feat_dict) |
|
|
|
feat_dict[row[0]] = mapped |
|
|
|
node_tags.append(feat_dict[row[0]]) |
|
|
|
|
|
|
|
if tmp > len(row): |
|
|
|
node_features.append(attr) |
|
|
|
|
|
|
|
n_edges += row[1] |
|
|
|
for k in range(2, len(row)): |
|
|
|
g.add_edge(j, row[k]) |
|
|
|
|
|
|
|
if node_features != []: |
|
|
|
node_features = np.stack(node_features) |
|
|
|
node_feature_flag = True |
|
|
|
else: |
|
|
|
node_features = None |
|
|
|
node_feature_flag = False |
|
|
|
|
|
|
|
assert len(g) == n |
|
|
|
|
|
|
|
g_list.append(g) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
########### train function for LSTM + VAE |
|
|
|
def train_DGMG_nll(args, dataset_train,dataset_test, model,max_iter=1000): |
|
|
|
# check if load existing model |
|
|
|
fname = args.model_save_path + args.fname + 'model_' + str(args.load_epoch) + '.dat' |
|
|
|
model.load_state_dict(torch.load(fname)) |
|
|
|
|
|
|
|
fname_output = args.nll_save_path + args.note + '_' + args.graph_type + '.csv' |
|
|
|
with open(fname_output, 'w+') as f: |
|
|
|
f.write('train,test\n') |
|
|
|
# start main loop |
|
|
|
for iter in range(max_iter): |
|
|
|
nll_train = train_DGMG_forward_epoch(args, model, dataset_train, is_fast=args.is_fast) |
|
|
|
nll_test = train_DGMG_forward_epoch(args, model, dataset_test, is_fast=args.is_fast) |
|
|
|
print('train', nll_train, 'test', nll_test) |
|
|
|
f.write(str(nll_train) + ',' + str(nll_test) + '\n') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return g_list, len(label_dict) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
my_graph = nx.Graph() |
|
|
|
edges = nx.read_edgelist("data/main_graphs_COLLAB/my.txt") |
|
|
|
my_graph.add_edges_from(edges.edges()) |
|
|
|
integers = nx.convert_node_labels_to_integers(my_graph) |
|
|
|
d_graph = nx.grid_2d_graph(2, 3) |
|
|
|
integers2 = nx.convert_node_labels_to_integers(d_graph) |
|
|
|
args = Args_DGMG() |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda) |
|
|
|
print('CUDA', args.cuda) |
|
|
|
print('File name prefix',args.fname) |
|
|
|
|
|
|
|
print('File name prefix', args.fname) |
|
|
|
|
|
|
|
graphs = [] |
|
|
|
for i in range(4, 10): |
|
|
|
graphs.append(nx.ladder_graph(i)) |
|
|
|
model = DGM_graphs(h_size = args.node_embedding_size).cuda() |
|
|
|
model = DGM_graphs(h_size=args.node_embedding_size).cuda() |
|
|
|
|
|
|
|
if args.graph_type == 'ladder_small': |
|
|
|
graphs = [] |
|
|
|
for i in range(2, 11): |
|
|
|
graphs.append(nx.ladder_graph(i)) |
|
|
|
args.max_prev_node = 10 |
|
|
|
# if args.graph_type == 'caveman_small': |
|
|
|
# graphs = [] |
|
|
|
# for i in range(2, 5): |
|
|
|
# for j in range(2, 6): |
|
|
|
# for k in range(10): |
|
|
|
# graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1)) |
|
|
|
# args.max_prev_node = 20 |
|
|
|
if args.graph_type=='caveman_small': |
|
|
|
graphs = [] |
|
|
|
for i in range(2, 3): |
|
|
|
for j in range(6, 11): |
|
|
|
for k in range(20): |
|
|
|
graphs.append(caveman_special(i, j, p_edge=0.8)) |
|
|
|
args.max_prev_node = 20 |
|
|
|
if args.graph_type == 'grid_small': |
|
|
|
graphs = [] |
|
|
|
for i in range(2, 4): |
|
|
|
for i in range(2, 3): |
|
|
|
for j in range(2, 4): |
|
|
|
graphs.append(nx.grid_2d_graph(i, j)) |
|
|
|
args.max_prev_node = 15 |
|
|
|
if args.graph_type == 'barabasi_small': |
|
|
|
graphs = [] |
|
|
|
for i in range(4, 21): |
|
|
|
for j in range(3, 4): |
|
|
|
for k in range(10): |
|
|
|
graphs.append(nx.barabasi_albert_graph(i, j)) |
|
|
|
args.max_prev_node = 20 |
|
|
|
|
|
|
|
if args.graph_type == 'enzymes_small': |
|
|
|
graphs_raw = Graph_load_batch(min_num_nodes=10, name='ENZYMES') |
|
|
|
graphs = [] |
|
|
|
for G in graphs_raw: |
|
|
|
if G.number_of_nodes()<=20: |
|
|
|
graphs.append(G) |
|
|
|
args.max_prev_node = 15 |
|
|
|
|
|
|
|
if args.graph_type == 'citeseer_small': |
|
|
|
_, _, G = Graph_load(dataset='citeseer') |
|
|
|
G = max(nx.connected_component_subgraphs(G), key=len) |
|
|
|
G = nx.convert_node_labels_to_integers(G) |
|
|
|
graphs = [] |
|
|
|
for i in range(G.number_of_nodes()): |
|
|
|
G_ego = nx.ego_graph(G, i, radius=1) |
|
|
|
if (G_ego.number_of_nodes() >= 4) and (G_ego.number_of_nodes() <= 20): |
|
|
|
graphs.append(G_ego) |
|
|
|
shuffle(graphs) |
|
|
|
graphs = graphs[0:200] |
|
|
|
args.max_prev_node = 15 |
|
|
|
else: |
|
|
|
graphs, num_classes = load_data(args.graph_type, True) |
|
|
|
small_graphs = [] |
|
|
|
for i in range(len(graphs)): |
|
|
|
if graphs[i].number_of_nodes() < 13: |
|
|
|
small_graphs.append(graphs[i]) |
|
|
|
graphs = small_graphs |
|
|
|
args.max_prev_node = 12 |
|
|
|
args.max_prev_node = 5 |
|
|
|
|
|
|
|
# remove self loops |
|
|
|
for graph in graphs: |
|
|
@@ -547,58 +626,22 @@ if __name__ == '__main__': |
|
|
|
# split datasets |
|
|
|
random.seed(123) |
|
|
|
shuffle(graphs) |
|
|
|
graphs_len = len(graphs) |
|
|
|
graphs_test = graphs[int(0.8 * graphs_len):] |
|
|
|
graphs_train = graphs[0:int(0.8 * graphs_len)] |
|
|
|
# graphs_len = len(graphs) |
|
|
|
# graphs_test = graphs[int(0.8 * graphs_len):] |
|
|
|
# graphs_validate = graphs[int(0.7 * graphs_len):int(0.8 * graphs_len)] |
|
|
|
# graphs_train = graphs[0:int(0.7 * graphs_len)] |
|
|
|
|
|
|
|
args.max_num_node = max([graphs[i].number_of_nodes() for i in range(len(graphs))]) |
|
|
|
# args.max_num_node = 2000 |
|
|
|
# show graphs statistics |
|
|
|
print('total graph num: {}, training set: {}'.format(len(graphs), len(graphs_train))) |
|
|
|
|
|
|
|
print('max number node: {}'.format(args.max_num_node)) |
|
|
|
print('max previous node: {}'.format(args.max_prev_node)) |
|
|
|
test_graph = nx.grid_2d_graph(2, 3) |
|
|
|
test_graph.remove_node(test_graph.nodes()[5]) |
|
|
|
train_DGMG(args, graphs, model) |
|
|
|
|
|
|
|
# save ground truth graphs |
|
|
|
# save_graph_list(graphs, args.graph_save_path + args.fname_train + '0.dat') |
|
|
|
# save_graph_list(graphs, args.graph_save_path + args.fname_test + '0.dat') |
|
|
|
# print('train and test graphs saved') |
|
|
|
|
|
|
|
## if use pre-saved graphs |
|
|
|
# dir_input = "graphs/" |
|
|
|
# fname_test = args.graph_save_path + args.fname_test + '0.dat' |
|
|
|
# graphs = load_graph_list(fname_test, is_real=True) |
|
|
|
# graphs_test = graphs[int(0.8 * graphs_len):] |
|
|
|
# graphs_train = graphs[0:int(0.8 * graphs_len)] |
|
|
|
# graphs_validate = graphs[0:int(0.2 * graphs_len)] |
|
|
|
|
|
|
|
# print('train') |
|
|
|
# for graph in graphs_validate: |
|
|
|
# print(graph.number_of_nodes()) |
|
|
|
# print('test') |
|
|
|
# for graph in graphs_test: |
|
|
|
# print(graph.number_of_nodes()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### train |
|
|
|
train_DGMG(args,graphs,model) |
|
|
|
|
|
|
|
### calc nll |
|
|
|
# train_DGMG_nll(args, graphs_validate,graphs_test, model,max_iter=1000) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_graph = nx.convert_node_labels_to_integers(test_graph) |
|
|
|
test_DGMG_2(args, model, test_graph) |
|
|
|
|
|
|
|
# labels, results = calc_lable_result(test_graphs, eval_graphs) |
|
|
|
|
|
|
|
# for j in range(1000): |
|
|
|
# graph = graphs[0] |
|
|
|
# # do random ordering: relabel nodes |
|
|
|
# node_order = list(range(graph.number_of_nodes())) |
|
|
|
# shuffle(node_order) |
|
|
|
# order_mapping = dict(zip(graph.nodes(), node_order)) |
|
|
|
# graph = nx.relabel_nodes(graph, order_mapping, copy=True) |
|
|
|
# print(graph.nodes()) |
|
|
|
# evaluate(labels, results) |