|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- import numpy as np
- import scipy.optimize
-
- import torch
- import torch.nn as nn
- from torch.autograd import Variable
- from torch import optim
- import torch.nn.functional as F
- import torch.nn.init as init
-
- import model
- # from baselines.graphvae.faez_test import graph_show
- # import networkx as nx
-
-
- class GraphVAE(nn.Module):
- def __init__(self, input_dim, hidden_dim, latent_dim, max_num_nodes, pool='sum'):
- '''
- Args:
- input_dim: input feature dimension for node.
- hidden_dim: hidden dim for 2-layer gcn.
- latent_dim: dimension of the latent representation of graph.
- '''
- super(GraphVAE, self).__init__()
- self.hidden_dim = hidden_dim
- self.conv1 = model.GraphConv(input_dim=input_dim, output_dim=hidden_dim)
- self.bn1 = nn.BatchNorm1d(input_dim)
- self.conv2 = model.GraphConv(input_dim=hidden_dim, output_dim=hidden_dim)
- self.bn2 = nn.BatchNorm1d(input_dim)
- self.act = nn.ReLU()
-
- output_dim = max_num_nodes * (max_num_nodes + 1) // 2
- # self.vae = model.Main_MLP_VAE_plain(hidden_dim, latent_dim, output_dim)
- self.vae = model.Main_MLP_VAE_plain(input_dim * hidden_dim, latent_dim, output_dim)
- # self.feature_mlp = model.MLP_plain(latent_dim, latent_dim, output_dim)
-
- self.max_num_nodes = max_num_nodes
- for m in self.modules():
- if isinstance(m, model.GraphConv):
- m.weight.data = init.xavier_uniform(m.weight.data, gain=nn.init.calculate_gain('relu'))
- elif isinstance(m, nn.BatchNorm1d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
- self.pool = pool
-
- def recover_adj_lower(self, l):
- # NOTE: Assumes 1 per minibatch
- adj = torch.zeros(self.max_num_nodes, self.max_num_nodes)
- adj[torch.triu(torch.ones(self.max_num_nodes, self.max_num_nodes)) == 1] = l
- return adj
-
- def recover_full_adj_from_lower(self, lower):
- diag = torch.diag(torch.diag(lower, 0))
- return lower + torch.transpose(lower, 0, 1) - diag
-
- def edge_similarity_matrix(self, adj, adj_recon, matching_features,
- matching_features_recon, sim_func):
- S = torch.zeros(self.max_num_nodes, self.max_num_nodes,
- self.max_num_nodes, self.max_num_nodes)
- for i in range(self.max_num_nodes):
- for j in range(self.max_num_nodes):
- if i == j:
- for a in range(self.max_num_nodes):
- S[i, i, a, a] = adj[i, i] * adj_recon[a, a] * \
- sim_func(matching_features[i], matching_features_recon[a])
- # print("***")
- # print(S[i, i, a, a])
- # with feature not implemented
- # if input_features is not None:
- else:
- for a in range(self.max_num_nodes):
- for b in range(self.max_num_nodes):
- if b == a:
- continue
- S[i, j, a, b] = adj[i, j] * adj[i, i] * adj[j, j] * \
- adj_recon[a, b] * adj_recon[a, a] * adj_recon[b, b]
- # print("^^^")
- # print(S[i, j, a, b])
- # print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
- return S
-
- def mpm(self, x_init, S, max_iters=50):
- x = x_init
- for it in range(max_iters):
- x_new = torch.zeros(self.max_num_nodes, self.max_num_nodes)
- for i in range(self.max_num_nodes):
- for a in range(self.max_num_nodes):
- x_new[i, a] = x[i, a] * S[i, i, a, a]
- pooled = [torch.max(x[j, :] * S[i, j, a, :])
- for j in range(self.max_num_nodes) if j != i]
- neigh_sim = sum(pooled)
- x_new[i, a] += neigh_sim
- norm = torch.norm(x_new)
- x = x_new / norm
- return x
-
- def deg_feature_similarity(self, f1, f2):
- return 1 / (abs(f1 - f2) + 1)
-
- def permute_adj(self, adj, curr_ind, target_ind):
- ''' Permute adjacency matrix.
- The target_ind (connectivity) should be permuted to the curr_ind position.
- '''
- # order curr_ind according to target ind
- ind = np.zeros(self.max_num_nodes, dtype=np.int)
- ind[target_ind] = curr_ind
- adj_permuted = torch.zeros((self.max_num_nodes, self.max_num_nodes))
- adj_permuted[:, :] = adj[ind, :]
- adj_permuted[:, :] = adj_permuted[:, ind]
- return adj_permuted
-
- def pool_graph(self, x):
- if self.pool == 'max':
- out, _ = torch.max(x, dim=1, keepdim=False)
- elif self.pool == 'sum':
- out = torch.sum(x, dim=1, keepdim=False)
- return out
-
- def forward(self, input_features, adj):
- # cpu_numpy = adj.squeeze(0).cpu().numpy()
- # print("********** 0)")
- # print(cpu_numpy)
- #
- # graph_show(nx.from_numpy_matrix(cpu_numpy), "1")
- x = self.conv1(input_features, adj)
- x = self.act(x)
- x = self.bn1(x)
- x = self.conv2(x, adj)
- # x = self.bn2(x)
-
- # pool over all nodes
- # graph_h = self.pool_graph(x)
- graph_h = x.view(-1, self.max_num_nodes * self.hidden_dim)
- # vaemax_num_nodes
- h_decode, z_mu, z_lsgms = self.vae(graph_h)
- out = F.sigmoid(h_decode)
- out_tensor = out.cpu().data
- print("*** h_decode")
- print(h_decode)
- print("*** out_tensor")
- print(out_tensor)
- recon_adj_lower = self.recover_adj_lower(out_tensor)
- recon_adj_tensor = self.recover_full_adj_from_lower(recon_adj_lower)
-
- # set matching features be degree
- out_features = torch.sum(recon_adj_tensor, 1)
-
- adj_data = adj.cpu().data[0]
- adj_features = torch.sum(adj_data, 1)
-
- S = self.edge_similarity_matrix(adj_data, recon_adj_tensor, adj_features, out_features,
- self.deg_feature_similarity)
-
- # initialization strategies
- init_corr = 1 / self.max_num_nodes
- init_assignment = torch.ones(self.max_num_nodes, self.max_num_nodes) * init_corr
- assignment = self.mpm(init_assignment, S)
- # matching
- # use negative of the assignment score since the alg finds min cost flow
- row_ind, col_ind = scipy.optimize.linear_sum_assignment(-assignment.numpy())
- # order row index according to col index
- adj_permuted = self.permute_adj(adj_data, row_ind, col_ind)
- adj_vectorized = adj_permuted[torch.triu(torch.ones(self.max_num_nodes, self.max_num_nodes)) == 1].squeeze_()
- adj_vectorized_var = Variable(adj_vectorized).cuda()
-
-
- adj_recon_loss = self.adj_recon_loss(adj_vectorized_var, out[0])
-
-
- loss_kl = -0.5 * torch.sum(1 + z_lsgms - z_mu.pow(2) - z_lsgms.exp())
- loss_kl /= self.max_num_nodes * self.max_num_nodes # normalize
- # print('kl: ', loss_kl)
-
- loss = adj_recon_loss + loss_kl
-
- return loss
-
- def forward_test(self, input_features, adj):
- self.max_num_nodes = 4
- adj_data = torch.zeros(self.max_num_nodes, self.max_num_nodes)
- adj_data[:4, :4] = torch.FloatTensor([[1, 1, 0, 0], [1, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 1]])
- adj_features = torch.Tensor([2, 3, 3, 2])
-
- adj_data1 = torch.zeros(self.max_num_nodes, self.max_num_nodes)
- adj_data1 = torch.FloatTensor([[1, 1, 1, 0], [1, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1]])
- adj_features1 = torch.Tensor([3, 3, 2, 2])
- S = self.edge_similarity_matrix(adj_data, adj_data1, adj_features, adj_features1,
- self.deg_feature_similarity)
-
- # initialization strategies
- init_corr = 1 / self.max_num_nodes
- init_assignment = torch.ones(self.max_num_nodes, self.max_num_nodes) * init_corr
- # init_assignment = torch.FloatTensor(4, 4)
- # init.uniform(init_assignment)
- assignment = self.mpm(init_assignment, S)
- # print('Assignment: ', assignment)
-
- # matching
- row_ind, col_ind = scipy.optimize.linear_sum_assignment(-assignment.numpy())
- print('row: ', row_ind)
- print('col: ', col_ind)
-
- permuted_adj = self.permute_adj(adj_data, row_ind, col_ind)
- print('permuted: ', permuted_adj)
-
- adj_recon_loss = self.adj_recon_loss(permuted_adj, adj_data1)
- print(adj_data1)
- print('diff: ', adj_recon_loss)
-
- def adj_recon_loss(self, adj_truth, adj_pred):
- return F.binary_cross_entropy(adj_pred, adj_truth)
|