|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- import numpy as np
- import scipy.sparse as sp
- import networkx as nx
- from baselines.graphvae.graphvae_model import graph_show
- from baselines.graphvae.util import *
- import baselines.graphvae.util as util
- from data import bfs_seq, encode_adj, decode_adj
-
-
- def sparse_to_tuple(sparse_mx):
- if not sp.isspmatrix_coo(sparse_mx):
- sparse_mx = sparse_mx.tocoo()
- coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
- values = sparse_mx.data
- shape = sparse_mx.shape
- return coords, values, shape
-
-
- def mask_test_edges(adj):
- # Function to build test set with 10% positive links
- # NOTE: Splits are randomized and results might slightly deviate from reported numbers in the paper.
- # TODO: Clean up.
-
- # Remove diagonal elements
- adj = adj - sp.dia_matrix((adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape)
- adj.eliminate_zeros()
- # Check that diag is zero:
- assert np.diag(adj.todense()).sum() == 0
-
- adj_triu = sp.triu(adj)
- adj_tuple = sparse_to_tuple(adj_triu)
- edges = adj_tuple[0]
- edges_all = sparse_to_tuple(adj)[0]
- num_test = int(np.floor(edges.shape[0] / 10.))
- num_val = int(np.floor(edges.shape[0] / 20.))
-
- all_edge_idx = list(range(edges.shape[0]))
- np.random.shuffle(all_edge_idx)
- val_edge_idx = all_edge_idx[:num_val]
- test_edge_idx = all_edge_idx[num_val:(num_val + num_test)]
- test_edges = edges[test_edge_idx]
- val_edges = edges[val_edge_idx]
- train_edges = np.delete(edges, np.hstack([test_edge_idx, val_edge_idx]), axis=0)
-
- def ismember(a, b, tol=5):
- rows_close = np.all(np.round(a - b[:, None], tol) == 0, axis=-1)
- return np.any(rows_close)
-
- test_edges_false = []
- while len(test_edges_false) < len(test_edges):
- idx_i = np.random.randint(0, adj.shape[0])
- idx_j = np.random.randint(0, adj.shape[0])
- if idx_i == idx_j:
- continue
- if ismember([idx_i, idx_j], edges_all):
- continue
- if test_edges_false:
- if ismember([idx_j, idx_i], np.array(test_edges_false)):
- continue
- if ismember([idx_i, idx_j], np.array(test_edges_false)):
- continue
- test_edges_false.append([idx_i, idx_j])
-
- val_edges_false = []
- while len(val_edges_false) < len(val_edges):
- idx_i = np.random.randint(0, adj.shape[0])
- idx_j = np.random.randint(0, adj.shape[0])
- if idx_i == idx_j:
- continue
- if ismember([idx_i, idx_j], train_edges):
- continue
- if ismember([idx_j, idx_i], train_edges):
- continue
- if ismember([idx_i, idx_j], val_edges):
- continue
- if ismember([idx_j, idx_i], val_edges):
- continue
- if val_edges_false:
- if ismember([idx_j, idx_i], np.array(val_edges_false)):
- continue
- if ismember([idx_i, idx_j], np.array(val_edges_false)):
- continue
- val_edges_false.append([idx_i, idx_j])
-
- assert ~ismember(test_edges_false, edges_all)
- assert ~ismember(val_edges_false, edges_all)
- assert ~ismember(val_edges, train_edges)
- assert ~ismember(test_edges, train_edges)
- assert ~ismember(val_edges, test_edges)
-
- data = np.ones(train_edges.shape[0])
-
- # Re-build adj matrix
- adj_train = sp.csr_matrix((data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape)
- adj_train = adj_train + adj_train.T
-
- # NOTE: these edge lists only contain single direction of edge!
- return adj_train, train_edges, val_edges, val_edges_false, test_edges, test_edges_false
-
-
- if __name__ == '__main__':
- colors = [(0.7509279299037631, 0.021203049355839054, 0.24561203044115132)]
- graphs = []
- graph = nx.grid_2d_graph(2, 3)
- graphs.append(graph)
- graphs.append(nx.grid_2d_graph(2,4))
- adj = nx.to_numpy_matrix(graph)
- # print("*** before")
- # print(adj)
- # graph_show(nx.from_numpy_matrix(adj), "1", colors)
- # adj = move_random_node_to_the_last_index(adj)
- # print("*** after")
- # print(adj)
- # graph_show(nx.from_numpy_matrix(adj), "2", colors)
- prepare_kronEM_data(graphs, "salam", True)
- print(adj)
- # print("*** 1) ")
- # print(adj)
- # # adj_copy = adj.copy()
- # random_idx_for_delete = np.random.randint(adj.shape[0])
- # print("*** index")
- # print(random_idx_for_delete)
- # deleted_node = adj[:, random_idx_for_delete].copy()
- # for i in range(deleted_node.__len__()):
- # if i >= random_idx_for_delete and i < deleted_node.__len__() - 1:
- # deleted_node[i] = deleted_node[i + 1]
- # elif i == deleted_node.__len__() - 1:
- # deleted_node[i] = 0
- # adj[:, random_idx_for_delete:adj.shape[0] - 1] = adj[:, random_idx_for_delete + 1:adj.shape[0]]
- # adj[random_idx_for_delete:adj.shape[0] - 1, :] = adj[random_idx_for_delete + 1:adj.shape[0], :]
- # adj = np.delete(adj, -1, axis=1)
- # adj = np.delete(adj, -1, axis=0)
- # print("************")
- # print(adj)
- # print(deleted_node)
- # adj = np.concatenate((adj, deleted_node[:deleted_node.shape[0]-1]), axis=1)
- # adj = np.concatenate((adj, np.transpose(deleted_node)), axis=0)
- # print("*** 2) ")
- # print(adj)
- # graph_show(nx.from_numpy_matrix(adj), "2", colors)
- # max_prev_node = 12
- # len = adj_copy.shape[0]
- # x = np.zeros((graph.number_of_nodes() - 1, max_prev_node)) # here zeros are padded for small graph
- # x[0, :] = 1 # the first input token is all ones
- # y = np.zeros((graph.number_of_nodes() - 1, max_prev_node)) # here zeros are padded for small graph
- #
- # column_vector = adj_copy[:, adj_copy.shape[0] - 1]
- # incomplete_adj = adj_copy.copy()
- # incomplete_adj = incomplete_adj[:, :incomplete_adj.shape[0] - 1]
- # incomplete_adj = incomplete_adj[:incomplete_adj.shape[0] - 1, :]
- # x_idx = np.random.permutation(incomplete_adj.shape[0])
- #
- # x_idx_prime = np.concatenate((x_idx, [adj.shape[0] - 1]), axis=0)
- # column_vector = column_vector[np.ix_(x_idx_prime)]
- #
- # incomplete_adj = incomplete_adj[np.ix_(x_idx, x_idx)]
- # #
- # incomplete_matrix = np.asmatrix(incomplete_adj)
- # G = nx.from_numpy_matrix(incomplete_matrix)
- # # then do bfs in the permuted G
- # start_idx = np.random.randint(incomplete_adj.shape[0])
- # x_idx = np.array(bfs_seq(G, start_idx))
- # incomplete_adj = incomplete_adj[np.ix_(x_idx, x_idx)]
- # adj_encoded = encode_adj(incomplete_adj.copy(), max_prev_node=12)
- # #
- # x_idx_prime = np.concatenate((x_idx, [adj.shape[0] - 1]), axis=0)
- # column_vector = column_vector[np.ix_(x_idx_prime)]
- # adj = nx.to_numpy_matrix(graph)
- # adj_copy = adj.copy()
- # column_vector = adj_copy[:, adj_copy.shape[0] - 1]
- # incomplete_adj = adj_copy.copy()
- # incomplete_adj = incomplete_adj[:, :incomplete_adj.shape[0] - 1]
- # incomplete_adj = incomplete_adj[:incomplete_adj.shape[0] - 1, :]
- # x_idx = np.random.permutation(incomplete_adj.shape[0])
- #
- # x_idx_prime = np.concatenate((x_idx, [adj.shape[0] - 1]), axis=0)
- # column_vector = column_vector[np.ix_(x_idx_prime)]
- #
- # incomplete_adj = incomplete_adj[np.ix_(x_idx, x_idx)]
- # #
- # incomplete_matrix = np.asmatrix(incomplete_adj)
- # G = nx.from_numpy_matrix(incomplete_matrix)
- # # then do bfs in the permuted G
- # start_idx = np.random.randint(incomplete_adj.shape[0])
- # x_idx = np.array(bfs_seq(G, start_idx))
- # incomplete_adj = incomplete_adj[np.ix_(x_idx, x_idx)]
- # #
- # x_idx_prime = np.concatenate((x_idx, [adj.shape[0] - 1]), axis=0)
- # column_vector = column_vector[np.ix_(x_idx_prime)]
- # row_vector = np.transpose(column_vector)
- # complete_adj = incomplete_adj.copy()
- # complete_adj = np.concatenate((complete_adj, column_vector[:adj_copy.shape[0] - 1]), axis=1)
- # complete_adj = np.concatenate((complete_adj, row_vector), axis=0)
- # adj_encoded = encode_adj(complete_adj.copy(), 12)
- # decoded = decode_adj(adj_encoded[:adj_encoded.shape[0]-1, :])
- # graph_show(nx.from_numpy_matrix(incomplete_adj), "incomplete", colors)
- # decoded = decode_adj(adj_encoded)
- # complete = np.concatenate((decoded, column_vector[:column_vector.shape[0]-1]), axis=1)
- # complete = np.concatenate((complete, np.transpose(column_vector)), axis=0)
- # graph_show(nx.from_numpy_matrix(complete), "complete", colors)
- #
-
- # graph_show(nx.from_numpy_matrix(adj_copy), "1", colors)
- # x = np.zeros((graph.number_of_nodes(), args.max_prev_node)) # here zeros are padded for small graph
- # x[0, :] = 1 # the first input token is all ones
- # y = np.zeros((graph.number_of_nodes(), args.max_prev_node)) # here zeros are padded for small graph
- # generate input x, y pairs
-
-
- # graphs.append(graph)
- # print(nx.to_numpy_matrix(graph))
- # graph = nx.grid_2d_graph(2, 2)
- # print("********************************")
- # print(nx.to_numpy_matrix(graph))
- # graphs.append(graph)
- # util.prepare_kronEM_data(graphs, "salam")
- # nx.write_adjlist(graph, "sala.txt")
- # # colors = [(0.7509279299037631, 0.021203049355839054, 0.24561203044115132)]
- # # graph_show(graph, "1", colors)
- # file = open("copy.txt", "w")
- # adj = nx.to_numpy_matrix(graph)
- # print(adj)
- # with file as f:
- # for line in adj:
- # np.savetxt(f, line, fmt='%.2f')
- # print("**** 1)")
- # print(adj)
- # random_index = np.random.randint(adj.shape[0])
- # random_index = 2
- # print("*** random_index")
- # print(random_index)
- # adj[:, random_index] = 0
- # adj[random_index, :] = 0
- # print("**** 2)")
- # print(adj)
- # graph_show(nx.from_numpy_matrix(adj), "2", colors)
- # adj[:, random_index] = 1
- # adj[random_index, :] = 1
- # print("**** 3)")
- # print(adj)
- # graph_show(nx.from_numpy_matrix(adj), "3", colors)
-
- # print(adj)
- # print(adj[:-1, :-1])
- # print(adj[:,-1])
- # label_padded = np.zeros(10)
- # label_padded[:4] = adj[-1,:]
- # print(label_padded)
- # graph = nx.barabasi_albert_graph(100,4)
- # matrix = nx.to_numpy_matrix(graph)
- # G = nx.karate_club_graph()
- # print("Node Degree")
- # for v in G:
- # print('%s %s' % (v, G.degree(v)))
- # colors = [(0.7509279299037631, 0.021203049355839054, 0.24561203044115132)]
- # graph_show(G, "Karate", colors)
- # adj_label = adj + sp.eye(adj.shape[0])
- # print(adj)
- # print(adj_label)
- # def preprocess_graph(adj):
- # adj = sp.coo_matrix(adj)
- # adj_ = adj + sp.eye(adj.shape[0])
- # rowsum = np.array(adj_.sum(1))
- # degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
- # adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
- # # return sparse_to_tuple(adj_normalized)
- # return sparse_mx_to_torch_sparse_tensor(adj_normalized)
|