DeepTraCDR: Prediction Cancer Drug Response using multimodal deep learning with Transformers
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

main_case_study.py 7.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. import argparse
  2. import numpy as np
  3. import pandas as pd
  4. import torch
  5. import scipy.sparse as sp
  6. from sklearn.model_selection import KFold
  7. from sklearn.metrics import roc_auc_score, average_precision_score
  8. from model import DeepTraCDR, Optimizer
  9. from utils import evaluate_auc, common_data_index
  10. from data_sampler import TargetSampler
  11. from data_loader import load_data
  12. # Clear CUDA cache to optimize memory usage
  13. torch.cuda.empty_cache()
  14. def main():
  15. # Parse command-line arguments for model configuration
  16. parser = argparse.ArgumentParser(description="DeepTraCDR Case Study for Drug Response Prediction")
  17. parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
  18. help="Device to run the model (cuda:0 or cpu)")
  19. parser.add_argument('-data', type=str, default='gdsc',
  20. help="Dataset to use (e.g., gdsc or ccle)")
  21. parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer")
  22. parser.add_argument('--layer_size', nargs='+', type=int, default=[512],
  23. help="List of layer sizes for the GCN model")
  24. parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for loss function")
  25. parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs")
  26. parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training")
  27. parser.add_argument('--patience', type=int, default=100, help="Patience for early stopping")
  28. parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer")
  29. parser.add_argument('--k_fold', type=int, default=5, help="Number of folds for cross-validation")
  30. args = parser.parse_args()
  31. # Load dataset-specific drug response data
  32. if args.data == "gdsc":
  33. # Define target drug CIDs (e.g., Dasatinib=5330286, GSK690693=11338033)
  34. target_drug_cids = np.array([5330286, 11338033, 24825971])
  35. # Load cell-drug binary response matrix
  36. cell_drug = pd.read_csv(
  37. "/media/external_16TB_1/ali_kianfar/Data/GDSC/cell_drug_binary.csv",
  38. index_col=0, header=0
  39. )
  40. cell_drug.columns = cell_drug.columns.astype(np.int32)
  41. drug_cids = cell_drug.columns.values
  42. # Extract target drug responses and compute positive sample count
  43. cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32)
  44. target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0]
  45. target_indexes = common_data_index(drug_cids, target_drug_cids)
  46. elif args.data == "ccle":
  47. # Define target drug CIDs for CCLE dataset
  48. target_drug_cids = np.array([5330286])
  49. # Load cell-drug binary response matrix
  50. cell_drug = pd.read_csv(
  51. "/media/external_16TB_1/ali_kianfar/Data/CCLE/cell_drug_binary.csv",
  52. index_col=0, header=0
  53. )
  54. cell_drug.columns = cell_drug.columns.astype(np.int32)
  55. drug_cids = cell_drug.columns.values
  56. # Extract target drug responses and compute positive sample count
  57. cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32)
  58. target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0]
  59. target_indexes = common_data_index(drug_cids, target_drug_cids)
  60. # Load additional data (adjacency matrix, fingerprints, expression, etc.)
  61. full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args)
  62. full_adj_np = full_adj.copy() # Copy for sampler usage
  63. # Print data shapes for verification
  64. print(f"Adjacency matrix shape: {full_adj.shape}")
  65. print(f"Expression data shape: {exprs.shape}")
  66. print(f"Null mask shape: {null_mask.shape}")
  67. # Convert adjacency matrix to PyTorch tensor
  68. if isinstance(full_adj, np.ndarray):
  69. full_adj = torch.from_numpy(full_adj).float().to(args.device)
  70. # Initialize k-fold cross-validation
  71. k = args.k_fold
  72. n_kfolds = 5 # Number of k-fold iterations
  73. all_metrics = {'auc': [], 'auprc': []}
  74. # Perform k-fold cross-validation
  75. for n_kfold in range(n_kfolds):
  76. kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold)
  77. idx_all = np.arange(target_pos_num)
  78. for fold, (train_idx, test_idx) in enumerate(kfold.split(idx_all)):
  79. print(f"\n--- Fold {fold+1}/{k} (Iteration {n_kfold+1}/{n_kfolds}) ---")
  80. # Initialize data sampler for training and testing
  81. sampler = TargetSampler(
  82. response_mat=full_adj_np,
  83. null_mask=null_mask,
  84. target_indexes=target_indexes,
  85. pos_train_index=train_idx,
  86. pos_test_index=test_idx
  87. )
  88. # Initialize DeepTraCDR model
  89. model = DeepTraCDR(
  90. adj_mat=full_adj,
  91. cell_exprs=exprs,
  92. drug_finger=drug_fingerprints,
  93. layer_size=args.layer_size,
  94. gamma=args.gamma,
  95. device=args.device
  96. )
  97. # Initialize optimizer for training
  98. opt = Optimizer(
  99. model=model,
  100. train_data=sampler.train_data,
  101. test_data=sampler.test_data,
  102. test_mask=sampler.test_mask,
  103. train_mask=sampler.train_mask,
  104. adj_matrix=full_adj,
  105. evaluate_fun=evaluate_auc,
  106. lr=args.lr,
  107. wd=args.wd,
  108. epochs=args.epochs,
  109. test_freq=args.test_freq,
  110. patience=args.patience,
  111. device=args.device
  112. )
  113. # Train the model and retrieve best metrics
  114. true, pred, best_auc, best_auprc = opt.train()
  115. all_metrics['auc'].append(best_auc)
  116. all_metrics['auprc'].append(best_auprc)
  117. print(f"Fold {fold+1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}")
  118. # Compute and display average metrics across all folds
  119. print(f"\nFinal Average Metrics (Across {n_kfolds*k} Folds):")
  120. for metric, values in all_metrics.items():
  121. mean = np.mean(values)
  122. std = np.std(values)
  123. print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}")
  124. # Perform case study: Predict missing responses for target drugs
  125. print("\n--- Case Study: Predicting Missing Responses for Target Drugs ---")
  126. model.eval()
  127. with torch.no_grad():
  128. final_pred, cell_emb, drug_emb = model() # Shape: [num_cells, num_drugs]
  129. # Create a DataFrame to sort cell lines by predicted sensitivity
  130. num_cells, num_drugs = final_pred.size()
  131. cell_names = cell_drug.index.values # Cell line names
  132. cid_list = cell_drug.columns.values # Drug CIDs
  133. # Identify top 10 sensitive cell lines for each target drug
  134. for d in range(num_drugs):
  135. cid = cid_list[d]
  136. if cid in [5330286, 11338033]: # Focus on Dasatinib or GSK690693
  137. drug_preds = final_pred[:, d].cpu().numpy()
  138. sorted_idx = np.argsort(-drug_preds) # Sort in descending order
  139. top_10_cells = [(cell_names[i], drug_preds[i]) for i in sorted_idx[:10]]
  140. drug_name = "Dasatinib" if cid == 5330286 else "GSK690693"
  141. print(f"\nTop 10 Sensitive Cell Lines for {drug_name} (CID={cid}):")
  142. for rank, (cell, score) in enumerate(top_10_cells, start=1):
  143. print(f"{rank}. Cell: {cell}, Score: {score:.4f}")
  144. if __name__ == "__main__":
  145. # Set high precision for matrix multiplication
  146. torch.set_float32_matmul_precision('high')
  147. main()