123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn import MultiheadAttention, TransformerEncoder, TransformerEncoderLayer
- from sklearn.metrics import roc_auc_score, average_precision_score
- from utils import torch_corr_x_y, cross_entropy_loss, prototypical_loss
-
-
- class AdjacencyMatrixConstructor(nn.Module):
- """
- Constructs normalized adjacency matrices for graph-based computations.
- These matrices are used for aggregating cell and drug features in the GCN model.
- """
- def __init__(self, original_adj_mat, device="cpu"):
- super().__init__()
- # Convert numpy array to torch tensor if necessary and move to specified device
- if isinstance(original_adj_mat, np.ndarray):
- original_adj_mat = torch.from_numpy(original_adj_mat).float()
- self.adj = original_adj_mat.to(device)
- self.device = device
-
- def forward(self):
- """
- Computes normalized adjacency matrices for cell and drug aggregations.
- Returns four matrices: aggregated cell, aggregated drug, self-cell, and self-drug.
- """
- with torch.no_grad():
- # Compute degree normalization matrices
- degree_x = torch.pow(torch.sum(self.adj, dim=1) + 1, -0.5)
- degree_y = torch.pow(torch.sum(self.adj, dim=0) + 1, -0.5)
- d_x = torch.diag(degree_x)
- d_y = torch.diag(degree_y)
-
- # Compute aggregated Laplacian matrices
- agg_cell_lp = torch.mm(torch.mm(d_x, self.adj), d_y) # [num_cells x num_drugs]
- agg_drug_lp = torch.mm(torch.mm(d_y, self.adj.T), d_x) # [num_drugs x num_cells]
-
- # Compute self-loop Laplacian matrices
- self_cell_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=1) + 1, -1), 1))
- self_drug_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=0) + 1, -1), 1))
-
- return (
- agg_cell_lp.to(self.device),
- agg_drug_lp.to(self.device),
- self_cell_lp.to(self.device),
- self_drug_lp.to(self.device)
- )
-
-
- class FeatureLoader(nn.Module):
- """
- Loads and preprocesses cell expression and drug fingerprint features.
- Applies transformations to project features into a common embedding space.
- """
- def __init__(self, cell_exprs, drug_fingerprints, device="cpu"):
- super().__init__()
- self.device = device
-
- # Convert input features to torch tensors and move to device
- self.cell_exprs = torch.from_numpy(cell_exprs).float().to(device)
- self.drug_fingerprints = [torch.from_numpy(fp).float().to(device) for fp in drug_fingerprints]
-
- # Projection layers for drug fingerprints
- self.drug_proj = nn.ModuleList([
- nn.Sequential(
- nn.Linear(fp.shape[1], 512),
- nn.BatchNorm1d(512),
- nn.GELU(),
- nn.Dropout(0.5)
- ).to(device) for fp in drug_fingerprints
- ])
-
- # Transformer encoder for drug features
- self.transformer = TransformerEncoder(
- TransformerEncoderLayer(
- d_model=512,
- nhead=8,
- dim_feedforward=2048,
- batch_first=True
- ),
- num_layers=1
- ).to(device)
-
- # Normalization layers
- self.cell_norm = nn.LayerNorm(cell_exprs.shape[1]).to(device)
- self.drug_norm = nn.LayerNorm(512).to(device)
-
- # Encoder for cell features
- self.cell_encoder = nn.Sequential(
- nn.Linear(cell_exprs.shape[1], 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.5),
- nn.Linear(1024, 512)
- ).to(device)
-
- def forward(self):
- """
- Processes cell and drug features to produce encoded representations.
- Returns encoded cell and drug features in a common 512-dimensional space.
- """
- # Normalize and encode cell features
- cell_feat = self.cell_norm(self.cell_exprs) # [num_cells x num_cell_features]
- cell_encoded = self.cell_encoder(cell_feat) # [num_cells x 512]
-
- # Project and transform drug fingerprints
- projected = [proj(fp) for proj, fp in zip(self.drug_proj, self.drug_fingerprints)] # List of [num_samples x 512]
- stacked = torch.stack(projected, dim=1) # [num_samples x num_drugs x 512]
- drug_feat = self.transformer(stacked) # [num_samples x num_drugs x 512]
- drug_feat = self.drug_norm(drug_feat.mean(dim=1)) # [num_samples x 512]
-
- return cell_encoded, drug_feat
-
-
- class GraphEncoder(nn.Module):
- """
- Encodes cell and drug features using graph-based aggregation and attention mechanisms.
- Produces final embeddings for cells and drugs.
- """
- def __init__(self, agg_cell_lp, agg_drug_lp, self_cell_lp, self_drug_lp, device="cpu"):
- super().__init__()
- self.agg_cell_lp = agg_cell_lp
- self.agg_drug_lp = agg_drug_lp
- self.self_cell_lp = self_cell_lp
- self.self_drug_lp = self_drug_lp
- self.device = device
-
- # Encoder for aggregated cell features
- self.cell_encoder = nn.Sequential(
- nn.Linear(512, 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.5),
- nn.Linear(1024, 512)
- ).to(device)
-
- # Encoder for aggregated drug features
- self.drug_encoder = nn.Sequential(
- nn.Linear(512, 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.5),
- nn.Linear(1024, 512)
- ).to(device)
-
- # Attention mechanism for cell-drug interactions
- self.attention = MultiheadAttention(embed_dim=512, num_heads=8, batch_first=True).to(device)
- self.residual = nn.Linear(512, 512).to(device)
-
- # Final fully connected layer
- self.fc = nn.Sequential(
- nn.Linear(1024, 512),
- nn.BatchNorm1d(512),
- nn.GELU(),
- nn.Dropout(0.5)
- ).to(device)
-
- def forward(self, cell_features, drug_features):
- """
- Encodes cell and drug features using graph aggregation and attention.
- Returns final cell and drug embeddings.
- """
- # Aggregate features using Laplacian matrices
- cell_agg = torch.mm(self.agg_cell_lp, drug_features) + torch.mm(self.self_cell_lp, cell_features) # [num_cells x 512]
- drug_agg = torch.mm(self.agg_drug_lp, cell_features) + torch.mm(self.self_drug_lp, drug_features) # [num_drugs x 512]
-
- # Encode aggregated features
- cell_fc = self.cell_encoder(cell_agg) # [num_cells x 512]
- drug_fc = self.drug_encoder(drug_agg) # [num_drugs x 512]
-
- # Apply attention mechanism
- attn_output, _ = self.attention(
- query=cell_fc.unsqueeze(0), # [1 x num_cells x 512]
- key=drug_fc.unsqueeze(0), # [1 x num_drugs x 512]
- value=drug_fc.unsqueeze(0) # [1 x num_drugs x 512]
- )
- attn_output = attn_output.squeeze(0) # [num_cells x 512]
-
- # Combine attention output with residual connection
- cell_emb = cell_fc + self.residual(attn_output) # [num_cells x 512]
-
- # Apply final activation
- cell_emb = F.gelu(cell_emb) # [num_cells x 512]
- drug_emb = F.gelu(drug_fc) # [num_drugs x 512]
-
- return cell_emb, drug_emb
-
-
- class GraphDecoder(nn.Module):
- """
- Decodes cell and drug embeddings to predict interaction scores.
- Combines embeddings and applies a correlation-based adjustment.
- """
- def __init__(self, emb_dim, gamma):
- super().__init__()
- self.gamma = gamma
-
- # Decoder network for combined embeddings
- self.decoder = nn.Sequential(
- nn.Linear(2 * emb_dim, 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.2),
- nn.Linear(1024, 1)
- )
-
- # Learnable weight for balancing scores and correlation
- self.corr_weight = nn.Parameter(torch.tensor(0.5))
-
- def forward(self, cell_emb, drug_emb):
- """
- Decodes cell and drug embeddings to produce interaction scores.
- Returns a matrix of interaction probabilities.
- """
- # Expand embeddings for pairwise combinations
- cell_exp = cell_emb.unsqueeze(1).repeat(1, drug_emb.size(0), 1) # [num_cells x num_drugs x emb_dim]
- drug_exp = drug_emb.unsqueeze(0).repeat(cell_emb.size(0), 1, 1) # [num_cells x num_drugs x emb_dim]
-
- # Combine cell and drug embeddings
- combined = torch.cat([cell_exp, drug_exp], dim=-1) # [num_cells x num_drugs x 2*emb_dim]
-
- # Compute interaction scores
- scores = self.decoder(combined.view(-1, 2 * cell_emb.size(1))).view(cell_emb.size(0), drug_emb.size(0)) # [num_cells x num_drugs]
-
- # Compute correlation between embeddings
- corr = torch_corr_x_y(cell_emb, drug_emb) # [num_cells x num_drugs]
-
- # Combine scores and correlation with learnable weight
- return torch.sigmoid(self.gamma * (self.corr_weight * scores + (1 - self.corr_weight) * corr))
-
-
- class DeepTraCDR(nn.Module):
- """
- Main Graph Convolutional Network model for predicting cell-drug interactions.
- Combines feature loading, graph encoding, and decoding.
- """
- def __init__(self, adj_mat, cell_exprs, drug_fingerprints, layer_size, gamma, device="cpu"):
- super().__init__()
- self.device = device
-
- # Convert adjacency matrix to tensor if necessary
- if isinstance(adj_mat, np.ndarray):
- adj_mat = torch.from_numpy(adj_mat).float()
- self.adj_mat = adj_mat.to(device)
-
- # Initialize components
- self.construct_adj = AdjacencyMatrixConstructor(self.adj_mat, device=device)
- self.load_feat = FeatureLoader(cell_exprs, drug_fingerprints, device=device)
-
- # Compute fixed adjacency matrices
- agg_cell, agg_drug, self_cell, self_drug = self.construct_adj()
-
- # Initialize encoder and decoder
- self.encoder = GraphEncoder(agg_cell, agg_drug, self_cell, self_drug, device=device).to(device)
- self.decoder = GraphDecoder(512, gamma).to(device) # emb_dim fixed to 512
-
- def forward(self):
- """
- Performs a full forward pass through the DeepTraCDR model.
- Returns predicted interaction scores and final embeddings.
- """
- # Load and encode features
- cell_features, drug_features = self.load_feat()
-
- # Encode features using graph structure
- cell_emb, drug_emb = self.encoder(cell_features, drug_features)
-
- # Decode to predict interaction scores
- return self.decoder(cell_emb, drug_emb), cell_emb, drug_emb
-
-
- class ModelOptimizer:
- """
- Handles training and evaluation of the DeepTraCDR model.
- Implements early stopping and tracks best performance metrics.
- """
- def __init__(self, model, train_data, test_data, test_mask, train_mask, adj_matrix, evaluate_fun, lr=0.001, wd=1e-05, epochs=200, test_freq=20, patience=100, device="gpu"):
- self.model = model.to(device)
- self.train_data = train_data.float().to(device)
- self.test_data = test_data.float().to(device)
- self.train_mask = train_mask.to(device)
- self.test_mask_bool = test_mask.to(device).bool()
- self.device = device
-
- # Convert adjacency matrix to tensor if necessary
- if isinstance(adj_matrix, np.ndarray):
- adj_matrix = torch.from_numpy(adj_matrix).float()
- self.adj_matrix = adj_matrix.to(device)
-
- self.evaluate_fun = evaluate_fun
- self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=wd)
- self.epochs = epochs
- self.test_freq = test_freq
- self.patience = patience
- self.best_auc = 0.0
- self.best_auprc = 0.0
- self.best_weights = None
- self.counter = 0 # Early stopping counter
- self.best_epoch_auc = None
- self.best_epoch_auprc = None
-
- def train(self):
- """
- Trains the model with early stopping and evaluates performance.
- Returns the best AUC and AUPRC achieved during training.
- """
- true_data = torch.masked_select(self.test_data, self.test_mask_bool).cpu().numpy()
-
- for epoch in range(self.epochs):
- self.model.train()
- # Forward pass and compute loss
- pred_train, cell_emb, drug_emb = self.model()
- ce_loss = cross_entropy_loss(self.train_data, pred_train, self.train_mask)
- proto_loss = prototypical_loss(cell_emb, drug_emb, self.adj_matrix)
- total_loss = 0.7 * ce_loss + 0.3 * proto_loss
-
- # Backward pass and optimization
- self.optimizer.zero_grad()
- total_loss.backward()
- self.optimizer.step()
-
- # Evaluate model
- self.model.eval()
- with torch.no_grad():
- # Compute metrics for training data
- train_pred, _, _ = self.model()
- train_pred_masked = torch.masked_select(train_pred, self.train_mask).cpu().numpy()
- train_true_data = torch.masked_select(self.train_data, self.train_mask).cpu().numpy()
- try:
- train_auc = roc_auc_score(train_true_data, train_pred_masked)
- train_auprc = average_precision_score(train_true_data, train_pred_masked)
- except ValueError:
- train_auc, train_auprc = 0.0, 0.0
-
- # Compute metrics for test data
- pred_eval, _, _ = self.model()
- pred_masked = torch.masked_select(pred_eval, self.test_mask_bool).cpu().numpy()
- try:
- auc = roc_auc_score(true_data, pred_masked)
- auprc = average_precision_score(true_data, pred_masked)
- except ValueError:
- auc, auprc = 0.0, 0.0
-
- # Update best metrics and weights
- if auc > self.best_auc:
- self.best_auc = auc
- self.best_auprc = auprc
- self.best_weights = self.model.state_dict().copy()
- self.counter = 0
- self.best_epoch_auc = auc
- self.best_epoch_auprc = auprc
- else:
- self.counter += 1
-
- # Log progress
- if epoch % self.test_freq == 0 or epoch == self.epochs - 1:
- print(f"Epoch {epoch}: Loss={total_loss.item():.4f}, Train AUC={train_auc:.4f}, Train AUPRC={train_auprc:.4f}, Test AUC={auc:.4f}, Test AUPRC={auprc:.4f}")
-
- # Check early stopping
- if self.counter >= self.patience:
- print(f"\nEarly stopping triggered at epoch {epoch}!")
- print(f"No improvement in AUC for {self.patience} consecutive epochs.")
- break
-
- # Load best weights
- if self.best_weights is not None:
- self.model.load_state_dict(self.best_weights)
-
- # Final evaluation
- self.model.eval()
- with torch.no_grad():
- final_pred, _, _ = self.model()
- final_pred_masked = torch.masked_select(final_pred, self.test_mask_bool).cpu().numpy()
- best_auc = roc_auc_score(true_data, final_pred_masked)
- best_auprc = average_precision_score(true_data, final_pred_masked)
-
- # Print final results
- print("\nBest Metrics After Training (on Test Data):")
- print(f"AUC: {self.best_auc:.4f}")
- print(f"AUPRC: {self.best_auprc:.4f}")
-
- return self.best_auc, self.best_auprc
|