123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- # main.py
- import argparse
- import numpy as np
- import torch
- from sklearn.metrics import roc_auc_score, average_precision_score
- from typing import Dict, List, Tuple
- from model import DeepTraCDR, Optimizer
- from utils import evaluate_auc
- from data_sampler import ExterSampler
- from data_loader import load_data
- from torch.optim.lr_scheduler import OneCycleLR
-
- def parse_arguments() -> argparse.Namespace:
- """
- Parse command-line arguments for the DeepTraCDR model training pipeline.
-
- Returns:
- argparse.Namespace: Parsed arguments.
- """
- parser = argparse.ArgumentParser(description="DeepTraCDR Advanced: Graph-based Neural Network for Drug Response Prediction")
- parser.add_argument('--device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
- help="Device to run the model on (cuda:0 or cpu)")
- parser.add_argument('--data', type=str, default='tcga', help="Dataset to use (e.g., tcga)")
- parser.add_argument('--wd', type=float, default=1e-7, help="Weight decay for optimizer")
- parser.add_argument('--layer_size', nargs='+', type=int, default=[512],
- help="List of layer sizes for the GCN model")
- parser.add_argument('--gamma', type=float, default=20.0, help="Gamma parameter for model")
- parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs")
- parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training")
- parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer")
- return parser.parse_args()
-
- def initialize_data(args: argparse.Namespace) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int, argparse.Namespace]:
- """
- Load and preprocess the dataset for training.
-
- Args:
- args (argparse.Namespace): Command-line arguments.
-
- Returns:
- Tuple containing adjacency matrix, drug fingerprints, expression data, null mask, positive sample count, and args.
- """
- try:
- full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args)
- print(f"Data loaded successfully:")
- print(f" - Adjacency matrix shape: {full_adj.shape}")
- print(f" - Expression data shape: {exprs.shape}")
- print(f" - Null mask shape: {null_mask.shape}")
- print(f" - Drug fingerprints shape: {drug_fingerprints.shape}")
- return full_adj, drug_fingerprints, exprs, null_mask, pos_num, args
- except Exception as e:
- raise RuntimeError(f"Failed to load data: {str(e)}")
-
- def convert_to_tensor(data: np.ndarray, device: str) -> torch.Tensor:
- """
- Convert a NumPy array to a PyTorch tensor and move it to the specified device.
-
- Args:
- data (np.ndarray): Input NumPy array.
- device (str): Target device (e.g., 'cuda:0' or 'cpu').
-
- Returns:
- torch.Tensor: Tensor on the specified device.
- """
- if isinstance(data, np.ndarray):
- return torch.from_numpy(data).float().to(device)
- return data.float().to(device)
-
- def train_single_fold(
- fold_idx: int,
- full_adj: torch.Tensor,
- exprs: torch.Tensor,
- drug_fingerprints: torch.Tensor,
- null_mask: torch.Tensor,
- pos_num: int,
- args: argparse.Namespace
- ) -> Tuple[float, float]:
- """
- Train the DeepTraCDR model for a single fold and return evaluation metrics.
-
- Args:
- fold_idx (int): Current fold index.
- full_adj (torch.Tensor): Adjacency matrix.
- exprs (torch.Tensor): Gene expression data.
- drug_fingerprints (torch.Tensor): Drug fingerprint data.
- null_mask (torch.Tensor): Null mask for sampling.
- pos_num (int): Number of positive samples.
- args (argparse.Namespace): Command-line arguments.
-
- Returns:
- Tuple[float, float]: Best AUC and AUPRC for the fold.
- """
- # Define train/test split
- train_index = np.arange(pos_num)
- test_index = np.arange(full_adj.shape[0] - pos_num) + pos_num
-
- # Initialize sampler
- sampler = ExterSampler(full_adj, null_mask, train_index, test_index)
-
- # Initialize model
- model = DeepTraCDR(
- adj_mat=full_adj,
- cell_exprs=exprs,
- drug_finger=drug_fingerprints,
- layer_size=args.layer_size,
- gamma=args.gamma,
- device=args.device
- )
-
- # Initialize optimizer
- optimizer = Optimizer(
- model=model,
- train_data=sampler.train_data,
- test_data=sampler.test_data,
- test_mask=sampler.test_mask,
- train_mask=sampler.train_mask,
- adj_matrix=full_adj,
- evaluate_fun=evaluate_auc,
- lr=args.lr,
- wd=args.wd,
- epochs=args.epochs,
- test_freq=args.test_freq,
- device=args.device
- )
-
- # Train model and collect metrics
- _, _, best_auc, best_auprc = optimizer.train()
- print(f"Fold {fold_idx + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}")
- return best_auc, best_auprc
-
- def summarize_metrics(metrics: Dict[str, List[float]]) -> None:
- """
- Summarize metrics across all folds by computing mean and standard deviation.
-
- Args:
- metrics (Dict[str, List[float]]): Dictionary of metrics (e.g., {'auc': [...], 'auprc': [...]})
- """
- print("\nFinal Average Metrics:")
- for metric, values in metrics.items():
- mean_val = np.mean(values)
- std_val = np.std(values)
- print(f"{metric.upper()}: {mean_val:.4f} ± {std_val:.4f}")
-
- def main():
- """
- Main function to orchestrate the DeepTraCDR training and evaluation pipeline.
- """
- # Set precision for matrix multiplications
- torch.set_float32_matmul_precision('high')
-
- # Parse arguments
- args = parse_arguments()
-
- # Load and preprocess data
- full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = initialize_data(args)
-
- # Convert adjacency matrix to tensor
- full_adj = convert_to_tensor(full_adj, args.device)
-
- # Initialize metrics storage
- metrics = {'auc': [], 'auprc': []}
- n_folds = 25
-
- # Perform k-fold cross-validation
- for fold_idx in range(n_folds):
- best_auc, best_auprc = train_single_fold(
- fold_idx, full_adj, exprs, drug_fingerprints, null_mask, pos_num, args
- )
- metrics['auc'].append(best_auc)
- metrics['auprc'].append(best_auprc)
-
- # Summarize results
- summarize_metrics(metrics)
-
- if __name__ == "__main__":
- try:
- main()
- except Exception as e:
- print(f"Error occurred: {str(e)}")
- raise
|