123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- import argparse
- import numpy as np
- import pandas as pd
- import torch
- from sklearn.model_selection import KFold
- from DeepTraCDR_model import DeepTraCDR, Optimizer
- from utils import evaluate_auc
- from data_sampler import RandomSampler
- from data_loader import load_data
-
-
- def parse_arguments():
- """
- Parses command-line arguments for the DeepTraCDR model.
-
- Returns:
- Parsed arguments containing model and training configurations.
- """
- parser = argparse.ArgumentParser(description="DeepTraCDR: Graph-based Cell-Drug Interaction Prediction")
- parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
- help="Device to run the model on (cuda:0 or cpu)")
- parser.add_argument('-data', type=str, default='ccle', help="Dataset to use (default: ccle)")
- parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer")
- parser.add_argument('--layer_size', nargs='+', type=int, default=[512], help="Layer sizes for the model")
- parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for decoder")
- parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs")
- parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training")
- parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer")
- return parser.parse_args()
-
-
- def main():
- """Main function to execute the DeepTraCDR training and evaluation pipeline."""
- args = parse_arguments()
-
- # Load dataset
- full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args)
-
- # Log data shapes for debugging
- print(f"Original adj_mat shape: {full_adj.shape}")
- print("\n--- Data Shapes ---")
- print(f"Expression data shape: {exprs.shape}")
- print(f"Null mask shape: {null_mask.shape}")
-
- # Convert adjacency matrix to torch tensor if necessary
- if isinstance(full_adj, np.ndarray):
- full_adj = torch.from_numpy(full_adj).float()
- print(f"Converted adj_mat shape: {full_adj.shape}")
-
- # Initialize k-fold cross-validation
- k = 5
- n_kfolds = 5
- all_metrics = {
- 'auc': [], 'auprc': [], 'precision': [], 'recall': [], 'f1_score': []
- }
-
- # Perform k-fold cross-validation
- for n_kfold in range(n_kfolds):
- kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold)
- for fold, (train_idx, test_idx) in enumerate(kfold.split(np.arange(pos_num))):
- # Initialize data sampler
- sampler = RandomSampler(full_adj, train_idx, test_idx, null_mask)
-
- # Initialize model
- model = DeepTraCDR(
- adj_mat=full_adj,
- cell_exprs=exprs,
- drug_finger=drug_fingerprints,
- layer_size=args.layer_size,
- gamma=args.gamma,
- device=args.device
- )
-
- # Initialize optimizer
- opt = Optimizer(
- model=model,
- train_data=sampler.train_data,
- test_data=sampler.test_data,
- test_mask=sampler.test_mask,
- train_mask=sampler.train_mask,
- adj_matrix=full_adj,
- evaluate_fun=evaluate_auc,
- lr=args.lr,
- wd=args.wd,
- epochs=args.epochs,
- test_freq=args.test_freq,
- device=args.device
- )
-
- # Train model and collect metrics
- true, pred, best_auc, best_auprc, best_precision, best_recall, best_f1 = opt.train()
-
- # Store metrics
- all_metrics['auc'].append(best_auc)
- all_metrics['auprc'].append(best_auprc)
- all_metrics['precision'].append(best_precision)
- all_metrics['recall'].append(best_recall)
- all_metrics['f1_score'].append(best_f1)
-
- print(f"Fold {n_kfold * k + fold + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}, "
- f"Precision={best_precision:.4f}, Recall={best_recall:.4f}, F1-Score={best_f1:.4f}")
-
- # Compute and display final metrics
- print("\nFinal Average Metrics:")
- for metric, values in all_metrics.items():
- mean = np.mean(values)
- std = np.std(values)
- print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}")
-
-
- if __name__ == "__main__":
- torch.set_float32_matmul_precision('high')
- main()
|