123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.nn import MultiheadAttention, TransformerEncoder, TransformerEncoderLayer
- from utils import torch_corr_x_y, cross_entropy_loss, prototypical_loss
- from sklearn.metrics import roc_auc_score, average_precision_score, precision_score, recall_score, f1_score
-
-
- class ConstructAdjMatrix(nn.Module):
- """Constructs normalized adjacency matrices for graph-based computations."""
- def __init__(self, original_adj_mat, device="cpu"):
- super().__init__()
- self.adj = torch.from_numpy(original_adj_mat).float().to(device) if isinstance(original_adj_mat, np.ndarray) else original_adj_mat.to(device)
- self.device = device
-
- def forward(self):
- """Computes normalized Laplacian matrices for cells and drugs."""
- with torch.no_grad():
- # Compute degree matrices for normalization
- d_x = torch.diag(torch.pow(torch.sum(self.adj, dim=1) + 1, -0.5))
- d_y = torch.diag(torch.pow(torch.sum(self.adj, dim=0) + 1, -0.5))
-
- # Aggregate cell and drug Laplacian matrices
- agg_cell_lp = torch.mm(torch.mm(d_x, self.adj), d_y)
- agg_drug_lp = torch.mm(torch.mm(d_y, self.adj.T), d_x)
-
- # Self-loop matrices for cells and drugs
- self_cell_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=1) + 1, -1), 1))
- self_drug_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=0) + 1, -1), 1))
-
- return agg_cell_lp.to(self.device), agg_drug_lp.to(self.device), self_cell_lp.to(self.device), self_drug_lp.to(self.device)
-
-
- class LoadFeature(nn.Module):
- """Loads and processes cell expression and drug fingerprint features."""
- def __init__(self, cell_exprs, drug_fingerprints, device="cpu"):
- super().__init__()
- self.device = device
- self.cell_exprs = torch.from_numpy(cell_exprs).float().to(device)
- self.drug_fingerprints = [torch.from_numpy(fp).float().to(device) for fp in drug_fingerprints]
-
- # Drug feature projection layers
- self.drug_proj = nn.ModuleList([
- nn.Sequential(
- nn.Linear(fp.shape[1], 512),
- nn.BatchNorm1d(512),
- nn.GELU(),
- nn.Dropout(0.3)
- ).to(device) for fp in drug_fingerprints
- ])
-
- # Transformer for drug feature encoding
- self.transformer = TransformerEncoder(
- TransformerEncoderLayer(d_model=512, nhead=8, dim_feedforward=2048, batch_first=True),
- num_layers=3
- ).to(device)
-
- # Normalization layers
- self.cell_norm = nn.LayerNorm(cell_exprs.shape[1]).to(device)
- self.drug_norm = nn.LayerNorm(512).to(device)
-
- # Cell feature encoder
- self.cell_encoder = nn.Sequential(
- nn.Linear(cell_exprs.shape[1], 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.3),
- nn.Linear(1024, 512)
- ).to(device)
-
- def forward(self):
- """Encodes cell and drug features into a unified embedding space."""
- cell_feat = self.cell_norm(self.cell_exprs)
- cell_encoded = self.cell_encoder(cell_feat)
-
- # Project and transform drug features
- projected = [proj(fp) for proj, fp in zip(self.drug_proj, self.drug_fingerprints)]
- stacked = torch.stack(projected, dim=1)
- drug_feat = self.transformer(stacked)
- drug_feat = self.drug_norm(drug_feat.mean(dim=1))
-
- return cell_encoded, drug_feat
-
-
- class GEncoder(nn.Module):
- """Graph encoder for cell and drug feature aggregation with attention."""
- def __init__(self, agg_c_lp, agg_d_lp, self_c_lp, self_d_lp, device="cpu"):
- super().__init__()
- self.agg_c_lp = agg_c_lp
- self.agg_d_lp = agg_d_lp
- self.self_c_lp = self_c_lp
- self.self_d_lp = self_d_lp
- self.device = device
-
- # Cell feature encoder
- self.cell_encoder = nn.Sequential(
- nn.Linear(512, 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.3),
- nn.Linear(1024, 512)
- ).to(device)
-
- # Drug feature encoder
- self.drug_encoder = nn.Sequential(
- nn.Linear(512, 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.3),
- nn.Linear(1024, 512)
- ).to(device)
-
- # Attention mechanism for cross-modal interaction
- self.attention = MultiheadAttention(embed_dim=512, num_heads=8, batch_first=True).to(device)
- self.residual = nn.Linear(512, 512).to(device)
-
- # Final feature fusion
- self.fc = nn.Sequential(
- nn.Linear(1024, 512),
- nn.BatchNorm1d(512),
- nn.GELU(),
- nn.Dropout(0.2)
- ).to(device)
-
- def forward(self, cell_f, drug_f):
- """Aggregates and encodes cell and drug features using graph convolution and attention."""
- # Aggregate features via graph convolution
- cell_agg = torch.mm(self.agg_c_lp, drug_f)
- drug_agg = torch.mm(self.agg_d_lp, cell_f)
-
- # Encode aggregated features
- cell_fc = self.cell_encoder(cell_agg)
- drug_fc = self.drug_encoder(drug_agg)
-
- # Apply attention mechanism
- attn_output, _ = self.attention(
- query=cell_fc.unsqueeze(0),
- key=drug_fc.unsqueeze(0),
- value=drug_fc.unsqueeze(0)
- )
- attn_output = attn_output.squeeze(0)
- cell_emb = cell_fc + self.residual(attn_output)
-
- # Apply final activation
- return F.gelu(cell_emb), F.gelu(drug_fc)
-
-
- class GDecoder(nn.Module):
- """Decodes cell and drug embeddings into interaction scores."""
- def __init__(self, emb_dim, gamma):
- super().__init__()
- self.gamma = gamma
- self.decoder = nn.Sequential(
- nn.Linear(2 * emb_dim, 1024),
- nn.BatchNorm1d(1024),
- nn.GELU(),
- nn.Dropout(0.2),
- nn.Linear(1024, 1)
- )
- self.corr_weight = nn.Parameter(torch.tensor(0.5))
-
- def forward(self, cell_emb, drug_emb):
- """Predicts interaction scores using combined embeddings and correlation."""
- cell_exp = cell_emb.unsqueeze(1).repeat(1, drug_emb.size(0), 1)
- drug_exp = drug_emb.unsqueeze(0).repeat(cell_emb.size(0), 1, 1)
- combined = torch.cat([cell_exp, drug_exp], dim=-1)
- scores = self.decoder(combined.view(-1, 2 * cell_emb.size(1))).view(cell_emb.size(0), drug_emb.size(0))
- corr = torch_corr_x_y(cell_emb, drug_emb)
- return torch.sigmoid(self.gamma * (self.corr_weight * scores + (1 - self.corr_weight) * corr))
-
-
- class DeepTraCDR(nn.Module):
- """Main model integrating adjacency matrix construction, feature loading, encoding, and decoding."""
- def __init__(self, adj_mat, cell_exprs, drug_finger, layer_size, gamma, device="cpu"):
- super().__init__()
- self.device = device
- self.adj_mat = torch.from_numpy(adj_mat).float().to(device) if isinstance(adj_mat, np.ndarray) else adj_mat.to(device)
-
- self.construct_adj = ConstructAdjMatrix(self.adj_mat, device=device)
- self.load_feat = LoadFeature(cell_exprs, drug_finger, device=device)
-
- # Precompute adjacency matrices
- agg_c, agg_d, self_c, self_d = self.construct_adj()
-
- self.encoder = GEncoder(agg_c, agg_d, self_c, self_d, device=device).to(device)
- self.decoder = GDecoder(layer_size[-1], gamma).to(device)
-
- def forward(self):
- """Executes the full forward pass of the model."""
- cell_f, drug_f = self.load_feat()
- cell_emb, drug_emb = self.encoder(cell_f, drug_f)
- return self.decoder(cell_emb, drug_emb), cell_emb, drug_emb
-
-
- class Optimizer:
- """Handles model training and evaluation with performance metrics."""
- def __init__(self, model, train_data, test_data, test_mask, train_mask, adj_matrix, evaluate_fun, lr=0.001, wd=1e-05, epochs=200, test_freq=20, device="cpu"):
- self.model = model.to(device)
- self.train_data = train_data.float().to(device)
- self.test_data = test_data.float().to(device)
- self.train_mask = train_mask.to(device)
- self.test_mask_bool = test_mask.to(device).bool()
- self.adj_matrix = adj_matrix.to(device)
- self.evaluate_fun = evaluate_fun
- self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=wd)
- self.epochs = epochs
- self.test_freq = test_freq
-
- def train(self):
- """Trains the model and evaluates performance on test data."""
- true_data = torch.masked_select(self.test_data, self.test_mask_bool).cpu().numpy()
- best_metrics = {'auc': 0.0, 'auprc': 0.0, 'precision': 0.0, 'recall': 0.0, 'f1': 0.0}
- best_pred = None
-
- for epoch in range(self.epochs):
- self.model.train()
- pred, cell_emb, drug_emb = self.model()
-
- # Compute losses
- ce_loss = cross_entropy_loss(self.train_data, pred, self.train_mask)
- proto_loss = prototypical_loss(cell_emb, drug_emb, self.adj_matrix)
- total_loss = 0.7 * ce_loss + 0.3 * proto_loss
-
- # Backpropagation
- self.optimizer.zero_grad()
- total_loss.backward()
- self.optimizer.step()
-
- # Evaluate periodically
- if epoch % self.test_freq == 0:
- self.model.eval()
- with torch.no_grad():
- pred_masked = torch.masked_select(pred, self.test_mask_bool).cpu().numpy()
- metrics = self._compute_metrics(true_data, pred_masked)
-
- # Update best metrics
- if metrics['auc'] > best_metrics['auc']:
- best_metrics.update(metrics)
- best_pred = pred_masked.copy()
-
- print(f"Epoch {epoch}: Loss={total_loss.item():.4f}, AUC={metrics['auc']:.4f}, "
- f"AUPRC={metrics['auprc']:.4f}, Precision={metrics['precision']:.4f}, "
- f"Recall={metrics['recall']:.4f}, F1-Score={metrics['f1']:.4f}")
-
- # Print final best metrics
- print("\nBest Metrics:")
- for metric, value in best_metrics.items():
- print(f"{metric.upper()}: {value:.4f}")
-
- return true_data, best_pred, *best_metrics.values()
-
- def _compute_metrics(self, true_data, pred_masked):
- """Computes evaluation metrics for model predictions."""
- try:
- auc = roc_auc_score(true_data, pred_masked)
- auprc = average_precision_score(true_data, pred_masked)
- except ValueError:
- auc = auprc = 0.0
-
- pred_labels = (pred_masked >= 0.5).astype(int)
- return {
- 'auc': auc,
- 'auprc': auprc,
- 'precision': precision_score(true_data, pred_labels, zero_division=0),
- 'recall': recall_score(true_data, pred_labels, zero_division=0),
- 'f1': f1_score(true_data, pred_labels, zero_division=0)
- }
|