import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import MultiheadAttention, TransformerEncoder, TransformerEncoderLayer from sklearn.metrics import roc_auc_score, average_precision_score from utils import torch_corr_x_y, cross_entropy_loss, prototypical_loss class AdjacencyMatrixConstructor(nn.Module): """ Constructs normalized adjacency matrices for graph-based computations. These matrices are used for aggregating cell and drug features in the GCN model. """ def __init__(self, original_adj_mat, device="cpu"): super().__init__() # Convert numpy array to torch tensor if necessary and move to specified device if isinstance(original_adj_mat, np.ndarray): original_adj_mat = torch.from_numpy(original_adj_mat).float() self.adj = original_adj_mat.to(device) self.device = device def forward(self): """ Computes normalized adjacency matrices for cell and drug aggregations. Returns four matrices: aggregated cell, aggregated drug, self-cell, and self-drug. """ with torch.no_grad(): # Compute degree normalization matrices degree_x = torch.pow(torch.sum(self.adj, dim=1) + 1, -0.5) degree_y = torch.pow(torch.sum(self.adj, dim=0) + 1, -0.5) d_x = torch.diag(degree_x) d_y = torch.diag(degree_y) # Compute aggregated Laplacian matrices agg_cell_lp = torch.mm(torch.mm(d_x, self.adj), d_y) # [num_cells x num_drugs] agg_drug_lp = torch.mm(torch.mm(d_y, self.adj.T), d_x) # [num_drugs x num_cells] # Compute self-loop Laplacian matrices self_cell_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=1) + 1, -1), 1)) self_drug_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=0) + 1, -1), 1)) return ( agg_cell_lp.to(self.device), agg_drug_lp.to(self.device), self_cell_lp.to(self.device), self_drug_lp.to(self.device) ) class FeatureLoader(nn.Module): """ Loads and preprocesses cell expression and drug fingerprint features. Applies transformations to project features into a common embedding space. """ def __init__(self, cell_exprs, drug_fingerprints, device="cpu"): super().__init__() self.device = device # Convert input features to torch tensors and move to device self.cell_exprs = torch.from_numpy(cell_exprs).float().to(device) self.drug_fingerprints = [torch.from_numpy(fp).float().to(device) for fp in drug_fingerprints] # Projection layers for drug fingerprints self.drug_proj = nn.ModuleList([ nn.Sequential( nn.Linear(fp.shape[1], 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.5) ).to(device) for fp in drug_fingerprints ]) # Transformer encoder for drug features self.transformer = TransformerEncoder( TransformerEncoderLayer( d_model=512, nhead=8, dim_feedforward=2048, batch_first=True ), num_layers=1 ).to(device) # Normalization layers self.cell_norm = nn.LayerNorm(cell_exprs.shape[1]).to(device) self.drug_norm = nn.LayerNorm(512).to(device) # Encoder for cell features self.cell_encoder = nn.Sequential( nn.Linear(cell_exprs.shape[1], 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.5), nn.Linear(1024, 512) ).to(device) def forward(self): """ Processes cell and drug features to produce encoded representations. Returns encoded cell and drug features in a common 512-dimensional space. """ # Normalize and encode cell features cell_feat = self.cell_norm(self.cell_exprs) # [num_cells x num_cell_features] cell_encoded = self.cell_encoder(cell_feat) # [num_cells x 512] # Project and transform drug fingerprints projected = [proj(fp) for proj, fp in zip(self.drug_proj, self.drug_fingerprints)] # List of [num_samples x 512] stacked = torch.stack(projected, dim=1) # [num_samples x num_drugs x 512] drug_feat = self.transformer(stacked) # [num_samples x num_drugs x 512] drug_feat = self.drug_norm(drug_feat.mean(dim=1)) # [num_samples x 512] return cell_encoded, drug_feat class GraphEncoder(nn.Module): """ Encodes cell and drug features using graph-based aggregation and attention mechanisms. Produces final embeddings for cells and drugs. """ def __init__(self, agg_cell_lp, agg_drug_lp, self_cell_lp, self_drug_lp, device="cpu"): super().__init__() self.agg_cell_lp = agg_cell_lp self.agg_drug_lp = agg_drug_lp self.self_cell_lp = self_cell_lp self.self_drug_lp = self_drug_lp self.device = device # Encoder for aggregated cell features self.cell_encoder = nn.Sequential( nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.5), nn.Linear(1024, 512) ).to(device) # Encoder for aggregated drug features self.drug_encoder = nn.Sequential( nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.5), nn.Linear(1024, 512) ).to(device) # Attention mechanism for cell-drug interactions self.attention = MultiheadAttention(embed_dim=512, num_heads=8, batch_first=True).to(device) self.residual = nn.Linear(512, 512).to(device) # Final fully connected layer self.fc = nn.Sequential( nn.Linear(1024, 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.5) ).to(device) def forward(self, cell_features, drug_features): """ Encodes cell and drug features using graph aggregation and attention. Returns final cell and drug embeddings. """ # Aggregate features using Laplacian matrices cell_agg = torch.mm(self.agg_cell_lp, drug_features) + torch.mm(self.self_cell_lp, cell_features) # [num_cells x 512] drug_agg = torch.mm(self.agg_drug_lp, cell_features) + torch.mm(self.self_drug_lp, drug_features) # [num_drugs x 512] # Encode aggregated features cell_fc = self.cell_encoder(cell_agg) # [num_cells x 512] drug_fc = self.drug_encoder(drug_agg) # [num_drugs x 512] # Apply attention mechanism attn_output, _ = self.attention( query=cell_fc.unsqueeze(0), # [1 x num_cells x 512] key=drug_fc.unsqueeze(0), # [1 x num_drugs x 512] value=drug_fc.unsqueeze(0) # [1 x num_drugs x 512] ) attn_output = attn_output.squeeze(0) # [num_cells x 512] # Combine attention output with residual connection cell_emb = cell_fc + self.residual(attn_output) # [num_cells x 512] # Apply final activation cell_emb = F.gelu(cell_emb) # [num_cells x 512] drug_emb = F.gelu(drug_fc) # [num_drugs x 512] return cell_emb, drug_emb class GraphDecoder(nn.Module): """ Decodes cell and drug embeddings to predict interaction scores. Combines embeddings and applies a correlation-based adjustment. """ def __init__(self, emb_dim, gamma): super().__init__() self.gamma = gamma # Decoder network for combined embeddings self.decoder = nn.Sequential( nn.Linear(2 * emb_dim, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.2), nn.Linear(1024, 1) ) # Learnable weight for balancing scores and correlation self.corr_weight = nn.Parameter(torch.tensor(0.5)) def forward(self, cell_emb, drug_emb): """ Decodes cell and drug embeddings to produce interaction scores. Returns a matrix of interaction probabilities. """ # Expand embeddings for pairwise combinations cell_exp = cell_emb.unsqueeze(1).repeat(1, drug_emb.size(0), 1) # [num_cells x num_drugs x emb_dim] drug_exp = drug_emb.unsqueeze(0).repeat(cell_emb.size(0), 1, 1) # [num_cells x num_drugs x emb_dim] # Combine cell and drug embeddings combined = torch.cat([cell_exp, drug_exp], dim=-1) # [num_cells x num_drugs x 2*emb_dim] # Compute interaction scores scores = self.decoder(combined.view(-1, 2 * cell_emb.size(1))).view(cell_emb.size(0), drug_emb.size(0)) # [num_cells x num_drugs] # Compute correlation between embeddings corr = torch_corr_x_y(cell_emb, drug_emb) # [num_cells x num_drugs] # Combine scores and correlation with learnable weight return torch.sigmoid(self.gamma * (self.corr_weight * scores + (1 - self.corr_weight) * corr)) class DeepTraCDR(nn.Module): """ Main Graph Convolutional Network model for predicting cell-drug interactions. Combines feature loading, graph encoding, and decoding. """ def __init__(self, adj_mat, cell_exprs, drug_fingerprints, layer_size, gamma, device="cpu"): super().__init__() self.device = device # Convert adjacency matrix to tensor if necessary if isinstance(adj_mat, np.ndarray): adj_mat = torch.from_numpy(adj_mat).float() self.adj_mat = adj_mat.to(device) # Initialize components self.construct_adj = AdjacencyMatrixConstructor(self.adj_mat, device=device) self.load_feat = FeatureLoader(cell_exprs, drug_fingerprints, device=device) # Compute fixed adjacency matrices agg_cell, agg_drug, self_cell, self_drug = self.construct_adj() # Initialize encoder and decoder self.encoder = GraphEncoder(agg_cell, agg_drug, self_cell, self_drug, device=device).to(device) self.decoder = GraphDecoder(512, gamma).to(device) # emb_dim fixed to 512 def forward(self): """ Performs a full forward pass through the DeepTraCDR model. Returns predicted interaction scores and final embeddings. """ # Load and encode features cell_features, drug_features = self.load_feat() # Encode features using graph structure cell_emb, drug_emb = self.encoder(cell_features, drug_features) # Decode to predict interaction scores return self.decoder(cell_emb, drug_emb), cell_emb, drug_emb class ModelOptimizer: """ Handles training and evaluation of the DeepTraCDR model. Implements early stopping and tracks best performance metrics. """ def __init__(self, model, train_data, test_data, test_mask, train_mask, adj_matrix, evaluate_fun, lr=0.001, wd=1e-05, epochs=200, test_freq=20, patience=100, device="gpu"): self.model = model.to(device) self.train_data = train_data.float().to(device) self.test_data = test_data.float().to(device) self.train_mask = train_mask.to(device) self.test_mask_bool = test_mask.to(device).bool() self.device = device # Convert adjacency matrix to tensor if necessary if isinstance(adj_matrix, np.ndarray): adj_matrix = torch.from_numpy(adj_matrix).float() self.adj_matrix = adj_matrix.to(device) self.evaluate_fun = evaluate_fun self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=wd) self.epochs = epochs self.test_freq = test_freq self.patience = patience self.best_auc = 0.0 self.best_auprc = 0.0 self.best_weights = None self.counter = 0 # Early stopping counter self.best_epoch_auc = None self.best_epoch_auprc = None def train(self): """ Trains the model with early stopping and evaluates performance. Returns the best AUC and AUPRC achieved during training. """ true_data = torch.masked_select(self.test_data, self.test_mask_bool).cpu().numpy() for epoch in range(self.epochs): self.model.train() # Forward pass and compute loss pred_train, cell_emb, drug_emb = self.model() ce_loss = cross_entropy_loss(self.train_data, pred_train, self.train_mask) proto_loss = prototypical_loss(cell_emb, drug_emb, self.adj_matrix) total_loss = 0.7 * ce_loss + 0.3 * proto_loss # Backward pass and optimization self.optimizer.zero_grad() total_loss.backward() self.optimizer.step() # Evaluate model self.model.eval() with torch.no_grad(): # Compute metrics for training data train_pred, _, _ = self.model() train_pred_masked = torch.masked_select(train_pred, self.train_mask).cpu().numpy() train_true_data = torch.masked_select(self.train_data, self.train_mask).cpu().numpy() try: train_auc = roc_auc_score(train_true_data, train_pred_masked) train_auprc = average_precision_score(train_true_data, train_pred_masked) except ValueError: train_auc, train_auprc = 0.0, 0.0 # Compute metrics for test data pred_eval, _, _ = self.model() pred_masked = torch.masked_select(pred_eval, self.test_mask_bool).cpu().numpy() try: auc = roc_auc_score(true_data, pred_masked) auprc = average_precision_score(true_data, pred_masked) except ValueError: auc, auprc = 0.0, 0.0 # Update best metrics and weights if auc > self.best_auc: self.best_auc = auc self.best_auprc = auprc self.best_weights = self.model.state_dict().copy() self.counter = 0 self.best_epoch_auc = auc self.best_epoch_auprc = auprc else: self.counter += 1 # Log progress if epoch % self.test_freq == 0 or epoch == self.epochs - 1: print(f"Epoch {epoch}: Loss={total_loss.item():.4f}, Train AUC={train_auc:.4f}, Train AUPRC={train_auprc:.4f}, Test AUC={auc:.4f}, Test AUPRC={auprc:.4f}") # Check early stopping if self.counter >= self.patience: print(f"\nEarly stopping triggered at epoch {epoch}!") print(f"No improvement in AUC for {self.patience} consecutive epochs.") break # Load best weights if self.best_weights is not None: self.model.load_state_dict(self.best_weights) # Final evaluation self.model.eval() with torch.no_grad(): final_pred, _, _ = self.model() final_pred_masked = torch.masked_select(final_pred, self.test_mask_bool).cpu().numpy() best_auc = roc_auc_score(true_data, final_pred_masked) best_auprc = average_precision_score(true_data, final_pred_masked) # Print final results print("\nBest Metrics After Training (on Test Data):") print(f"AUC: {self.best_auc:.4f}") print(f"AUPRC: {self.best_auprc:.4f}") return self.best_auc, self.best_auprc