import argparse import numpy as np import torch from sklearn.model_selection import KFold from DeepTraCDR_model import DeepTraCDR, Optimizer from data_sampler import RegressionSampler from data_loader import load_data def parse_arguments() -> argparse.Namespace: """ Parses command-line arguments for the DeepTraCDR regression task. Returns: Parsed arguments as a Namespace object. """ parser = argparse.ArgumentParser(description="DeepTraCDR Regression Task") parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to run the model on (e.g., 'cuda:0' or 'cpu')") parser.add_argument('-data', type=str, default='gdsc', help="Dataset to use (default: gdsc)") parser.add_argument('--wd', type=float, default=1e-5, help="Weight decay for optimizer") parser.add_argument('--layer_size', nargs='+', type=int, default=[512], help="Layer sizes for the model") parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for decoder") parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs") parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training") parser.add_argument('--lr', type=float, default=0.0001, help="Learning rate for optimizer") parser.add_argument('--patience', type=int, default=20, help="Patience for early stopping") return parser.parse_args() def normalize_adj_matrix(adj_matrix: np.ndarray) -> torch.Tensor: """ Normalizes the adjacency matrix using min-shift normalization and converts it to a torch tensor. Args: adj_matrix: Input adjacency matrix as a NumPy array. Returns: Normalized adjacency matrix as a torch tensor. """ adj_matrix = adj_matrix - np.min(adj_matrix) if isinstance(adj_matrix, np.ndarray): adj_matrix = torch.from_numpy(adj_matrix).float() return adj_matrix def main(): """ Main function to run the DeepTraCDR regression task with k-fold cross-validation. """ # Set precision for matrix multiplication torch.set_float32_matmul_precision('high') # Parse command-line arguments args = parse_arguments() # Load dataset full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args) print(f"Original full_adj shape: {full_adj.shape}") print(f"Normalized full_adj shape: {full_adj.shape}") print("\n--- Data Shapes ---") print(f"Expression data shape: {exprs.shape}") print(f"Null mask shape: {null_mask.shape}") # Normalize adjacency matrix full_adj = normalize_adj_matrix(full_adj) # Initialize k-fold cross-validation parameters k = 5 n_kfolds = 5 all_metrics = {'rmse': [], 'pcc': [], 'scc': []} # Perform k-fold cross-validation for n_kfold in range(n_kfolds): kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold) for fold, (train_idx, test_idx) in enumerate(kfold.split(np.arange(pos_num))): # Initialize data sampler sampler = RegressionSampler(full_adj, train_idx, test_idx, null_mask) # Initialize model model = DeepTraCDR( adj_mat=full_adj, cell_exprs=exprs, drug_finger=drug_fingerprints, layer_size=args.layer_size, gamma=args.gamma, device=args.device ) # Initialize optimizer opt = Optimizer( model=model, train_data=sampler.train_data, test_data=sampler.test_data, test_mask=sampler.test_mask, train_mask=sampler.train_mask, adj_matrix=full_adj, lr=args.lr, wd=args.wd, epochs=args.epochs, test_freq=args.test_freq, device=args.device, patience=args.patience ) # Train model and collect metrics true, pred, best_rmse, best_pcc, best_scc = opt.train() all_metrics['rmse'].append(best_rmse) all_metrics['pcc'].append(best_pcc) all_metrics['scc'].append(best_scc) print(f"Fold {n_kfold * k + fold + 1}: RMSE={best_rmse:.4f}, PCC={best_pcc:.4f}, SCC={best_scc:.4f}") # Compute and display final average metrics print("\nFinal Average Metrics:") for metric, values in all_metrics.items(): mean = np.mean(values) std = np.std(values) print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}") if __name__ == "__main__": main()