import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import MultiheadAttention, TransformerEncoder, TransformerEncoderLayer from utils import torch_corr_x_y, cross_entropy_loss, prototypical_loss from sklearn.metrics import roc_auc_score, average_precision_score, precision_score, recall_score, f1_score class ConstructAdjMatrix(nn.Module): """Constructs normalized adjacency matrices for graph-based computations.""" def __init__(self, original_adj_mat, device="cpu"): super().__init__() self.adj = torch.from_numpy(original_adj_mat).float().to(device) if isinstance(original_adj_mat, np.ndarray) else original_adj_mat.to(device) self.device = device def forward(self): """Computes normalized Laplacian matrices for cells and drugs.""" with torch.no_grad(): # Compute degree matrices for normalization d_x = torch.diag(torch.pow(torch.sum(self.adj, dim=1) + 1, -0.5)) d_y = torch.diag(torch.pow(torch.sum(self.adj, dim=0) + 1, -0.5)) # Aggregate cell and drug Laplacian matrices agg_cell_lp = torch.mm(torch.mm(d_x, self.adj), d_y) agg_drug_lp = torch.mm(torch.mm(d_y, self.adj.T), d_x) # Self-loop matrices for cells and drugs self_cell_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=1) + 1, -1), 1)) self_drug_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=0) + 1, -1), 1)) return agg_cell_lp.to(self.device), agg_drug_lp.to(self.device), self_cell_lp.to(self.device), self_drug_lp.to(self.device) class LoadFeature(nn.Module): """Loads and processes cell expression and drug fingerprint features.""" def __init__(self, cell_exprs, drug_fingerprints, device="cpu"): super().__init__() self.device = device self.cell_exprs = torch.from_numpy(cell_exprs).float().to(device) self.drug_fingerprints = [torch.from_numpy(fp).float().to(device) for fp in drug_fingerprints] # Drug feature projection layers self.drug_proj = nn.ModuleList([ nn.Sequential( nn.Linear(fp.shape[1], 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.3) ).to(device) for fp in drug_fingerprints ]) # Transformer for drug feature encoding self.transformer = TransformerEncoder( TransformerEncoderLayer(d_model=512, nhead=8, dim_feedforward=2048, batch_first=True), num_layers=3 ).to(device) # Normalization layers self.cell_norm = nn.LayerNorm(cell_exprs.shape[1]).to(device) self.drug_norm = nn.LayerNorm(512).to(device) # Cell feature encoder self.cell_encoder = nn.Sequential( nn.Linear(cell_exprs.shape[1], 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.3), nn.Linear(1024, 512) ).to(device) def forward(self): """Encodes cell and drug features into a unified embedding space.""" cell_feat = self.cell_norm(self.cell_exprs) cell_encoded = self.cell_encoder(cell_feat) # Project and transform drug features projected = [proj(fp) for proj, fp in zip(self.drug_proj, self.drug_fingerprints)] stacked = torch.stack(projected, dim=1) drug_feat = self.transformer(stacked) drug_feat = self.drug_norm(drug_feat.mean(dim=1)) return cell_encoded, drug_feat class GEncoder(nn.Module): """Graph encoder for cell and drug feature aggregation with attention.""" def __init__(self, agg_c_lp, agg_d_lp, self_c_lp, self_d_lp, device="cpu"): super().__init__() self.agg_c_lp = agg_c_lp self.agg_d_lp = agg_d_lp self.self_c_lp = self_c_lp self.self_d_lp = self_d_lp self.device = device # Cell feature encoder self.cell_encoder = nn.Sequential( nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.3), nn.Linear(1024, 512) ).to(device) # Drug feature encoder self.drug_encoder = nn.Sequential( nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.3), nn.Linear(1024, 512) ).to(device) # Attention mechanism for cross-modal interaction self.attention = MultiheadAttention(embed_dim=512, num_heads=8, batch_first=True).to(device) self.residual = nn.Linear(512, 512).to(device) # Final feature fusion self.fc = nn.Sequential( nn.Linear(1024, 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.2) ).to(device) def forward(self, cell_f, drug_f): """Aggregates and encodes cell and drug features using graph convolution and attention.""" # Aggregate features via graph convolution cell_agg = torch.mm(self.agg_c_lp, drug_f) drug_agg = torch.mm(self.agg_d_lp, cell_f) # Encode aggregated features cell_fc = self.cell_encoder(cell_agg) drug_fc = self.drug_encoder(drug_agg) # Apply attention mechanism attn_output, _ = self.attention( query=cell_fc.unsqueeze(0), key=drug_fc.unsqueeze(0), value=drug_fc.unsqueeze(0) ) attn_output = attn_output.squeeze(0) cell_emb = cell_fc + self.residual(attn_output) # Apply final activation return F.gelu(cell_emb), F.gelu(drug_fc) class GDecoder(nn.Module): """Decodes cell and drug embeddings into interaction scores.""" def __init__(self, emb_dim, gamma): super().__init__() self.gamma = gamma self.decoder = nn.Sequential( nn.Linear(2 * emb_dim, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.2), nn.Linear(1024, 1) ) self.corr_weight = nn.Parameter(torch.tensor(0.5)) def forward(self, cell_emb, drug_emb): """Predicts interaction scores using combined embeddings and correlation.""" cell_exp = cell_emb.unsqueeze(1).repeat(1, drug_emb.size(0), 1) drug_exp = drug_emb.unsqueeze(0).repeat(cell_emb.size(0), 1, 1) combined = torch.cat([cell_exp, drug_exp], dim=-1) scores = self.decoder(combined.view(-1, 2 * cell_emb.size(1))).view(cell_emb.size(0), drug_emb.size(0)) corr = torch_corr_x_y(cell_emb, drug_emb) return torch.sigmoid(self.gamma * (self.corr_weight * scores + (1 - self.corr_weight) * corr)) class DeepTraCDR(nn.Module): """Main model integrating adjacency matrix construction, feature loading, encoding, and decoding.""" def __init__(self, adj_mat, cell_exprs, drug_finger, layer_size, gamma, device="cpu"): super().__init__() self.device = device self.adj_mat = torch.from_numpy(adj_mat).float().to(device) if isinstance(adj_mat, np.ndarray) else adj_mat.to(device) self.construct_adj = ConstructAdjMatrix(self.adj_mat, device=device) self.load_feat = LoadFeature(cell_exprs, drug_finger, device=device) # Precompute adjacency matrices agg_c, agg_d, self_c, self_d = self.construct_adj() self.encoder = GEncoder(agg_c, agg_d, self_c, self_d, device=device).to(device) self.decoder = GDecoder(layer_size[-1], gamma).to(device) def forward(self): """Executes the full forward pass of the model.""" cell_f, drug_f = self.load_feat() cell_emb, drug_emb = self.encoder(cell_f, drug_f) return self.decoder(cell_emb, drug_emb), cell_emb, drug_emb class Optimizer: """Handles model training and evaluation with performance metrics.""" def __init__(self, model, train_data, test_data, test_mask, train_mask, adj_matrix, evaluate_fun, lr=0.001, wd=1e-05, epochs=200, test_freq=20, device="cpu"): self.model = model.to(device) self.train_data = train_data.float().to(device) self.test_data = test_data.float().to(device) self.train_mask = train_mask.to(device) self.test_mask_bool = test_mask.to(device).bool() self.adj_matrix = adj_matrix.to(device) self.evaluate_fun = evaluate_fun self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=wd) self.epochs = epochs self.test_freq = test_freq def train(self): """Trains the model and evaluates performance on test data.""" true_data = torch.masked_select(self.test_data, self.test_mask_bool).cpu().numpy() best_metrics = {'auc': 0.0, 'auprc': 0.0, 'precision': 0.0, 'recall': 0.0, 'f1': 0.0} best_pred = None for epoch in range(self.epochs): self.model.train() pred, cell_emb, drug_emb = self.model() # Compute losses ce_loss = cross_entropy_loss(self.train_data, pred, self.train_mask) proto_loss = prototypical_loss(cell_emb, drug_emb, self.adj_matrix) total_loss = 0.7 * ce_loss + 0.3 * proto_loss # Backpropagation self.optimizer.zero_grad() total_loss.backward() self.optimizer.step() # Evaluate periodically if epoch % self.test_freq == 0: self.model.eval() with torch.no_grad(): pred_masked = torch.masked_select(pred, self.test_mask_bool).cpu().numpy() metrics = self._compute_metrics(true_data, pred_masked) # Update best metrics if metrics['auc'] > best_metrics['auc']: best_metrics.update(metrics) best_pred = pred_masked.copy() print(f"Epoch {epoch}: Loss={total_loss.item():.4f}, AUC={metrics['auc']:.4f}, " f"AUPRC={metrics['auprc']:.4f}, Precision={metrics['precision']:.4f}, " f"Recall={metrics['recall']:.4f}, F1-Score={metrics['f1']:.4f}") # Print final best metrics print("\nBest Metrics:") for metric, value in best_metrics.items(): print(f"{metric.upper()}: {value:.4f}") return true_data, best_pred, *best_metrics.values() def _compute_metrics(self, true_data, pred_masked): """Computes evaluation metrics for model predictions.""" try: auc = roc_auc_score(true_data, pred_masked) auprc = average_precision_score(true_data, pred_masked) except ValueError: auc = auprc = 0.0 pred_labels = (pred_masked >= 0.5).astype(int) return { 'auc': auc, 'auprc': auprc, 'precision': precision_score(true_data, pred_labels, zero_division=0), 'recall': recall_score(true_data, pred_labels, zero_division=0), 'f1': f1_score(true_data, pred_labels, zero_division=0) }