# main.py import argparse import numpy as np import torch from sklearn.metrics import roc_auc_score, average_precision_score from typing import Dict, List, Tuple from model import DeepTraCDR, Optimizer from utils import evaluate_auc from data_sampler import ExterSampler from data_loader import load_data from torch.optim.lr_scheduler import OneCycleLR def parse_arguments() -> argparse.Namespace: """ Parse command-line arguments for the DeepTraCDR model training pipeline. Returns: argparse.Namespace: Parsed arguments. """ parser = argparse.ArgumentParser(description="DeepTraCDR Advanced: Graph-based Neural Network for Drug Response Prediction") parser.add_argument('--device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to run the model on (cuda:0 or cpu)") parser.add_argument('--data', type=str, default='tcga', help="Dataset to use (e.g., tcga)") parser.add_argument('--wd', type=float, default=1e-7, help="Weight decay for optimizer") parser.add_argument('--layer_size', nargs='+', type=int, default=[512], help="List of layer sizes for the GCN model") parser.add_argument('--gamma', type=float, default=20.0, help="Gamma parameter for model") parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs") parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training") parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer") return parser.parse_args() def initialize_data(args: argparse.Namespace) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int, argparse.Namespace]: """ Load and preprocess the dataset for training. Args: args (argparse.Namespace): Command-line arguments. Returns: Tuple containing adjacency matrix, drug fingerprints, expression data, null mask, positive sample count, and args. """ try: full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args) print(f"Data loaded successfully:") print(f" - Adjacency matrix shape: {full_adj.shape}") print(f" - Expression data shape: {exprs.shape}") print(f" - Null mask shape: {null_mask.shape}") print(f" - Drug fingerprints shape: {drug_fingerprints.shape}") return full_adj, drug_fingerprints, exprs, null_mask, pos_num, args except Exception as e: raise RuntimeError(f"Failed to load data: {str(e)}") def convert_to_tensor(data: np.ndarray, device: str) -> torch.Tensor: """ Convert a NumPy array to a PyTorch tensor and move it to the specified device. Args: data (np.ndarray): Input NumPy array. device (str): Target device (e.g., 'cuda:0' or 'cpu'). Returns: torch.Tensor: Tensor on the specified device. """ if isinstance(data, np.ndarray): return torch.from_numpy(data).float().to(device) return data.float().to(device) def train_single_fold( fold_idx: int, full_adj: torch.Tensor, exprs: torch.Tensor, drug_fingerprints: torch.Tensor, null_mask: torch.Tensor, pos_num: int, args: argparse.Namespace ) -> Tuple[float, float]: """ Train the DeepTraCDR model for a single fold and return evaluation metrics. Args: fold_idx (int): Current fold index. full_adj (torch.Tensor): Adjacency matrix. exprs (torch.Tensor): Gene expression data. drug_fingerprints (torch.Tensor): Drug fingerprint data. null_mask (torch.Tensor): Null mask for sampling. pos_num (int): Number of positive samples. args (argparse.Namespace): Command-line arguments. Returns: Tuple[float, float]: Best AUC and AUPRC for the fold. """ # Define train/test split train_index = np.arange(pos_num) test_index = np.arange(full_adj.shape[0] - pos_num) + pos_num # Initialize sampler sampler = ExterSampler(full_adj, null_mask, train_index, test_index) # Initialize model model = DeepTraCDR( adj_mat=full_adj, cell_exprs=exprs, drug_finger=drug_fingerprints, layer_size=args.layer_size, gamma=args.gamma, device=args.device ) # Initialize optimizer optimizer = Optimizer( model=model, train_data=sampler.train_data, test_data=sampler.test_data, test_mask=sampler.test_mask, train_mask=sampler.train_mask, adj_matrix=full_adj, evaluate_fun=evaluate_auc, lr=args.lr, wd=args.wd, epochs=args.epochs, test_freq=args.test_freq, device=args.device ) # Train model and collect metrics _, _, best_auc, best_auprc = optimizer.train() print(f"Fold {fold_idx + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}") return best_auc, best_auprc def summarize_metrics(metrics: Dict[str, List[float]]) -> None: """ Summarize metrics across all folds by computing mean and standard deviation. Args: metrics (Dict[str, List[float]]): Dictionary of metrics (e.g., {'auc': [...], 'auprc': [...]}) """ print("\nFinal Average Metrics:") for metric, values in metrics.items(): mean_val = np.mean(values) std_val = np.std(values) print(f"{metric.upper()}: {mean_val:.4f} ± {std_val:.4f}") def main(): """ Main function to orchestrate the DeepTraCDR training and evaluation pipeline. """ # Set precision for matrix multiplications torch.set_float32_matmul_precision('high') # Parse arguments args = parse_arguments() # Load and preprocess data full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = initialize_data(args) # Convert adjacency matrix to tensor full_adj = convert_to_tensor(full_adj, args.device) # Initialize metrics storage metrics = {'auc': [], 'auprc': []} n_folds = 25 # Perform k-fold cross-validation for fold_idx in range(n_folds): best_auc, best_auprc = train_single_fold( fold_idx, full_adj, exprs, drug_fingerprints, null_mask, pos_num, args ) metrics['auc'].append(best_auc) metrics['auprc'].append(best_auprc) # Summarize results summarize_metrics(metrics) if __name__ == "__main__": try: main() except Exception as e: print(f"Error occurred: {str(e)}") raise