# model.py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import MultiheadAttention, TransformerEncoder, TransformerEncoderLayer from utils import torch_corr_x_y, cross_entropy_loss, prototypical_loss from sklearn.metrics import roc_auc_score, average_precision_score class ConstructAdjMatrix(nn.Module): """Module to construct normalized adjacency matrices for graph-based operations.""" def __init__(self, original_adj_mat, device="cpu"): """ Initialize the adjacency matrix constructor. Args: original_adj_mat (np.ndarray or torch.Tensor): Original adjacency matrix. device (str): Device to perform computations on (e.g., 'cpu' or 'cuda:0'). """ super().__init__() # Convert NumPy array to PyTorch tensor if necessary if isinstance(original_adj_mat, np.ndarray): original_adj_mat = torch.from_numpy(original_adj_mat).float() self.adj = original_adj_mat.to(device) self.device = device def forward(self): """ Compute normalized adjacency matrices for cells and drugs. Returns: tuple: (agg_cell_lp, agg_drug_lp, self_cell_lp, self_drug_lp) normalized matrices. """ with torch.no_grad(): # Compute degree-normalized matrices d_x = torch.diag(torch.pow(torch.sum(self.adj, dim=1) + 1, -0.5)) d_y = torch.diag(torch.pow(torch.sum(self.adj, dim=0) + 1, -0.5)) agg_cell_lp = torch.mm(torch.mm(d_x, self.adj), d_y) agg_drug_lp = torch.mm(torch.mm(d_y, self.adj.T), d_x) self_cell_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=1) + 1, -1), 1)) self_drug_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=0) + 1, -1), 1)) return ( agg_cell_lp.to(self.device), agg_drug_lp.to(self.device), self_cell_lp.to(self.device), self_drug_lp.to(self.device) ) class LoadFeature(nn.Module): """Module to load and preprocess cell and drug features.""" def __init__(self, cell_exprs, drug_fingerprints, device="cpu"): """ Initialize feature loading and preprocessing layers. Args: cell_exprs (np.ndarray): Cell expression data. drug_fingerprints (list): List of drug fingerprint arrays. device (str): Device to perform computations on. """ super().__init__() self.device = device self.cell_exprs = torch.from_numpy(cell_exprs).float().to(device) self.drug_fingerprints = [torch.from_numpy(fp).float().to(device) for fp in drug_fingerprints] # Projection layers for drug fingerprints self.drug_proj = nn.ModuleList([ nn.Sequential( nn.Linear(fp.shape[1], 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.3) ).to(device) for fp in drug_fingerprints ]) # Transformer encoder for drug features self.transformer = TransformerEncoder( TransformerEncoderLayer( d_model=512, nhead=8, dim_feedforward=2048, batch_first=True ), num_layers=3 ).to(device) # Normalization layers self.cell_norm = nn.LayerNorm(cell_exprs.shape[1]).to(device) self.drug_norm = nn.LayerNorm(512).to(device) # Encoder for cell features self.cell_encoder = nn.Sequential( nn.Linear(cell_exprs.shape[1], 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.3), nn.Linear(1024, 512) ).to(device) def forward(self): """ Process cell and drug features through encoding and transformation. Returns: tuple: (cell_encoded, drug_feat) encoded cell and drug features. """ # Normalize and encode cell features cell_feat = self.cell_norm(self.cell_exprs) cell_encoded = self.cell_encoder(cell_feat) # Project and transform drug fingerprints projected = [proj(fp) for proj, fp in zip(self.drug_proj, self.drug_fingerprints)] stacked = torch.stack(projected, dim=1) drug_feat = self.transformer(stacked) drug_feat = self.drug_norm(drug_feat.mean(dim=1)) return cell_encoded, drug_feat class GEncoder(nn.Module): """Graph encoder module for processing cell and drug embeddings.""" def __init__(self, agg_c_lp, agg_d_lp, self_c_lp, self_d_lp, device="cpu"): """ Initialize the graph encoder. Args: agg_c_lp (torch.Tensor): Aggregated cell Laplacian matrix. agg_d_lp (torch.Tensor): Aggregated drug Laplacian matrix. self_c_lp (torch.Tensor): Self-loop cell Laplacian matrix. self_d_lp (torch.Tensor): Self-loop drug Laplacian matrix. device (str): Device to perform computations on. """ super().__init__() self.agg_c_lp = agg_c_lp self.agg_d_lp = agg_d_lp self.self_c_lp = self_c_lp self.self_d_lp = self_d_lp self.device = device # Cell feature encoder self.cell_encoder = nn.Sequential( nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.3), nn.Linear(1024, 512) ).to(device) # Drug feature encoder self.drug_encoder = nn.Sequential( nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.3), nn.Linear(1024, 512) ).to(device) # Attention mechanism self.attention = MultiheadAttention(embed_dim=512, num_heads=8, batch_first=True).to(device) self.residual = nn.Linear(512, 512).to(device) self.fc = nn.Sequential( nn.Linear(1024, 512), nn.BatchNorm1d(512), nn.GELU(), nn.Dropout(0.2) ).to(device) def forward(self, cell_f, drug_f): """ Encode cell and drug features using graph-based aggregation and attention. Args: cell_f (torch.Tensor): Cell features. drug_f (torch.Tensor): Drug features. Returns: tuple: (cell_emb, drug_emb) encoded embeddings. """ # Aggregate features using Laplacian matrices cell_agg = torch.mm(self.agg_c_lp, drug_f) + torch.mm(self.self_c_lp, cell_f) drug_agg = torch.mm(self.agg_d_lp, cell_f) + torch.mm(self.self_d_lp, drug_f) # Encode aggregated features cell_fc = self.cell_encoder(cell_agg) drug_fc = self.drug_encoder(drug_agg) # Apply attention mechanism attn_output, _ = self.attention( query=cell_fc.unsqueeze(0), key=drug_fc.unsqueeze(0), value=drug_fc.unsqueeze(0) ) attn_output = attn_output.squeeze(0) cell_emb = cell_fc + self.residual(attn_output) # Apply final activation cell_emb = F.gelu(cell_emb) drug_emb = F.gelu(drug_fc) return cell_emb, drug_emb class GDecoder(nn.Module): """Decoder module to predict interaction scores from embeddings.""" def __init__(self, emb_dim, gamma): """ Initialize the decoder. Args: emb_dim (int): Embedding dimension. gamma (float): Scaling factor for output scores. """ super().__init__() self.gamma = gamma self.decoder = nn.Sequential( nn.Linear(2 * emb_dim, 1024), nn.BatchNorm1d(1024), nn.GELU(), nn.Dropout(0.2), nn.Linear(1024, 1) ) self.corr_weight = nn.Parameter(torch.tensor(0.5)) def forward(self, cell_emb, drug_emb): """ Decode embeddings to predict interaction scores. Args: cell_emb (torch.Tensor): Cell embeddings. drug_emb (torch.Tensor): Drug embeddings. Returns: torch.Tensor: Predicted interaction scores. """ # Expand embeddings for pairwise combinations cell_exp = cell_emb.unsqueeze(1).repeat(1, drug_emb.size(0), 1) drug_exp = drug_emb.unsqueeze(0).repeat(cell_emb.size(0), 1, 1) combined = torch.cat([cell_exp, drug_exp], dim=-1) # Decode combined embeddings scores = self.decoder(combined.view(-1, 2 * cell_emb.size(1))).view(cell_emb.size(0), drug_emb.size(0)) corr = torch_corr_x_y(cell_emb, drug_emb) # Combine scores with correlation and apply sigmoid return torch.sigmoid(self.gamma * (self.corr_weight * scores + (1 - self.corr_weight) * corr)) class DeepTraCDR(nn.Module): """DeepTraCDR model for cell-drug interaction prediction.""" def __init__(self, adj_mat, cell_exprs, drug_finger, layer_size, gamma, device="cpu"): """ Initialize the DeepTraCDR model. Args: adj_mat (np.ndarray or torch.Tensor): Adjacency matrix. cell_exprs (np.ndarray): Cell expression data. drug_finger (list): Drug fingerprints. layer_size (list): Layer sizes for the model. gamma (float): Scaling factor for decoder. device (str): Device to perform computations on. """ super().__init__() self.device = device if isinstance(adj_mat, np.ndarray): adj_mat = torch.from_numpy(adj_mat).float() self.adj_mat = adj_mat.to(device) # Initialize submodules self.construct_adj = ConstructAdjMatrix(self.adj_mat, device=device) self.load_feat = LoadFeature(cell_exprs, drug_finger, device=device) # Compute fixed adjacency matrices agg_c, agg_d, self_c, self_d = self.construct_adj() self.encoder = GEncoder(agg_c, agg_d, self_c, self_d, device=device).to(device) self.decoder = GDecoder(512, gamma).to(device) # Fixed emb_dim to 512 def forward(self): """ Forward pass through the DeepTraCDR model. Returns: tuple: (predicted_scores, cell_emb, drug_emb) predicted scores and embeddings. """ cell_f, drug_f = self.load_feat() cell_emb, drug_emb = self.encoder(cell_f, drug_f) return self.decoder(cell_emb, drug_emb), cell_emb, drug_emb def get_cell_embeddings(self): """ Retrieve cell embeddings from the model. Returns: torch.Tensor: Cell embeddings. """ cell_f, drug_f = self.load_feat() cell_emb, _ = self.encoder(cell_f, drug_f) return cell_emb class Optimizer: """Optimizer class for training the DeepTraCDR model with early stopping.""" def __init__(self, model, train_data, test_data, test_mask, train_mask, adj_matrix, evaluate_fun, lr=0.001, wd=1e-05, epochs=200, test_freq=20, patience=50, device="cpu"): """ Initialize the optimizer. Args: model (nn.Module): DeepTraCDR model to optimize. train_data (torch.Tensor): Training data. test_data (torch.Tensor): Test data. test_mask (torch.Tensor): Test mask. train_mask (torch.Tensor): Training mask. adj_matrix (torch.Tensor): Adjacency matrix. evaluate_fun (callable): Evaluation function. lr (float): Learning rate. wd (float): Weight decay. epochs (int): Number of training epochs. test_freq (int): Frequency of evaluation. patience (int): Patience for early stopping. device (str): Device to perform computations on. """ self.model = model.to(device) self.train_data = train_data.float().to(device) self.test_data = test_data.float().to(device) self.train_mask = train_mask.to(device) self.test_mask_bool = test_mask.to(device).bool() self.adj_matrix = adj_matrix.to(device) self.evaluate_fun = evaluate_fun self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=wd) self.epochs = epochs self.test_freq = test_freq self.patience = patience self.best_auc = 0.0 self.best_auprc = 0.0 self.best_weights = None self.counter = 0 self.device = device self.best_epoch_auc = None self.best_epoch_auprc = None def train(self): """ Train the model with early stopping and evaluate performance. Returns: tuple: (true_data, final_pred_masked, best_auc, best_auprc) evaluation results. """ true_data = torch.masked_select(self.test_data, self.test_mask_bool).cpu().numpy() for epoch in range(self.epochs): self.model.train() # Forward pass and compute loss pred_train, cell_emb, drug_emb = self.model() ce_loss = cross_entropy_loss(self.train_data, pred_train, self.train_mask) proto_loss = prototypical_loss(cell_emb, drug_emb, self.adj_matrix) total_loss = 0.7 * ce_loss + 0.3 * proto_loss # Backpropagation self.optimizer.zero_grad() total_loss.backward() self.optimizer.step() self.model.eval() with torch.no_grad(): # Evaluate training performance train_pred, _, _ = self.model() train_pred_masked = torch.masked_select(train_pred, self.train_mask).cpu().numpy() train_true_data = torch.masked_select(self.train_data, self.train_mask).cpu().numpy() try: train_auc = roc_auc_score(train_true_data, train_pred_masked) train_auprc = average_precision_score(train_true_data, train_pred_masked) except ValueError: train_auc, train_auprc = 0.0, 0.0 # Evaluate test performance pred_eval, _, _ = self.model() pred_masked = torch.masked_select(pred_eval, self.test_mask_bool).cpu().numpy() try: auc = roc_auc_score(true_data, pred_masked) auprc = average_precision_score(true_data, pred_masked) except ValueError: auc, auprc = 0.0, 0.0 # Update best metrics and weights if auc > self.best_auc: self.best_auc = auc self.best_auprc = auprc self.best_weights = self.model.state_dict().copy() self.counter = 0 self.best_epoch_auc = auc self.best_epoch_auprc = auprc else: self.counter += 1 # Log progress if epoch % self.test_freq == 0 or epoch == self.epochs - 1: print(f"Epoch {epoch}: Loss={total_loss.item():.4f}, Train AUC={train_auc:.4f}, " f"Train AUPRC={train_auprc:.4f}, Test AUC={auc:.4f}, Test AUPRC={auprc:.4f}") # Check early stopping if self.counter >= self.patience: print(f"\nEarly stopping triggered at epoch {epoch}!") print(f"No improvement in AUC for {self.patience} consecutive epochs.") break # Restore best weights if self.best_weights is not None: self.model.load_state_dict(self.best_weights) # Final evaluation self.model.eval() with torch.no_grad(): final_pred, _, _ = self.model() final_pred_masked = torch.masked_select(final_pred, self.test_mask_bool).cpu().numpy() best_auc = roc_auc_score(true_data, final_pred_masked) best_auprc = average_precision_score(true_data, final_pred_masked) # Log final results print("\nBest Metrics After Training (on Test Data):") print(f"AUC: {self.best_auc:.4f}") print(f"AUPRC: {self.best_auprc:.4f}") return true_data, final_pred_masked, self.best_auc, self.best_auprc