Browse Source

Delete 'main_case_study.py'

master
Zahra Asgari 6 days ago
parent
commit
47ff03946c
1 changed files with 0 additions and 172 deletions
  1. 0
    172
      main_case_study.py

+ 0
- 172
main_case_study.py View File

@@ -1,172 +0,0 @@
import argparse
import numpy as np
import pandas as pd
import torch
import scipy.sparse as sp
from sklearn.model_selection import KFold
from sklearn.metrics import roc_auc_score, average_precision_score
from model import DeepTraCDR, Optimizer
from utils import evaluate_auc, common_data_index
from data_sampler import TargetSampler
from data_loader import load_data
# Clear CUDA cache to optimize memory usage
torch.cuda.empty_cache()
def main():
# Parse command-line arguments for model configuration
parser = argparse.ArgumentParser(description="DeepTraCDR Case Study for Drug Response Prediction")
parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
help="Device to run the model (cuda:0 or cpu)")
parser.add_argument('-data', type=str, default='gdsc',
help="Dataset to use (e.g., gdsc or ccle)")
parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer")
parser.add_argument('--layer_size', nargs='+', type=int, default=[512],
help="List of layer sizes for the GCN model")
parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for loss function")
parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs")
parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training")
parser.add_argument('--patience', type=int, default=100, help="Patience for early stopping")
parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer")
parser.add_argument('--k_fold', type=int, default=5, help="Number of folds for cross-validation")
args = parser.parse_args()
# Load dataset-specific drug response data
if args.data == "gdsc":
# Define target drug CIDs (e.g., Dasatinib=5330286, GSK690693=11338033)
target_drug_cids = np.array([5330286, 11338033, 24825971])
# Load cell-drug binary response matrix
cell_drug = pd.read_csv(
"/media/external_16TB_1/ali_kianfar/Data/GDSC/cell_drug_binary.csv",
index_col=0, header=0
)
cell_drug.columns = cell_drug.columns.astype(np.int32)
drug_cids = cell_drug.columns.values
# Extract target drug responses and compute positive sample count
cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32)
target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0]
target_indexes = common_data_index(drug_cids, target_drug_cids)
elif args.data == "ccle":
# Define target drug CIDs for CCLE dataset
target_drug_cids = np.array([5330286])
# Load cell-drug binary response matrix
cell_drug = pd.read_csv(
"/media/external_16TB_1/ali_kianfar/Data/CCLE/cell_drug_binary.csv",
index_col=0, header=0
)
cell_drug.columns = cell_drug.columns.astype(np.int32)
drug_cids = cell_drug.columns.values
# Extract target drug responses and compute positive sample count
cell_target_drug = np.array(cell_drug.loc[:, target_drug_cids], dtype=np.float32)
target_pos_num = sp.coo_matrix(cell_target_drug).data.shape[0]
target_indexes = common_data_index(drug_cids, target_drug_cids)
# Load additional data (adjacency matrix, fingerprints, expression, etc.)
full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args)
full_adj_np = full_adj.copy() # Copy for sampler usage
# Print data shapes for verification
print(f"Adjacency matrix shape: {full_adj.shape}")
print(f"Expression data shape: {exprs.shape}")
print(f"Null mask shape: {null_mask.shape}")
# Convert adjacency matrix to PyTorch tensor
if isinstance(full_adj, np.ndarray):
full_adj = torch.from_numpy(full_adj).float().to(args.device)
# Initialize k-fold cross-validation
k = args.k_fold
n_kfolds = 5 # Number of k-fold iterations
all_metrics = {'auc': [], 'auprc': []}
# Perform k-fold cross-validation
for n_kfold in range(n_kfolds):
kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold)
idx_all = np.arange(target_pos_num)
for fold, (train_idx, test_idx) in enumerate(kfold.split(idx_all)):
print(f"\n--- Fold {fold+1}/{k} (Iteration {n_kfold+1}/{n_kfolds}) ---")
# Initialize data sampler for training and testing
sampler = TargetSampler(
response_mat=full_adj_np,
null_mask=null_mask,
target_indexes=target_indexes,
pos_train_index=train_idx,
pos_test_index=test_idx
)
# Initialize DeepTraCDR model
model = DeepTraCDR(
adj_mat=full_adj,
cell_exprs=exprs,
drug_finger=drug_fingerprints,
layer_size=args.layer_size,
gamma=args.gamma,
device=args.device
)
# Initialize optimizer for training
opt = Optimizer(
model=model,
train_data=sampler.train_data,
test_data=sampler.test_data,
test_mask=sampler.test_mask,
train_mask=sampler.train_mask,
adj_matrix=full_adj,
evaluate_fun=evaluate_auc,
lr=args.lr,
wd=args.wd,
epochs=args.epochs,
test_freq=args.test_freq,
patience=args.patience,
device=args.device
)
# Train the model and retrieve best metrics
true, pred, best_auc, best_auprc = opt.train()
all_metrics['auc'].append(best_auc)
all_metrics['auprc'].append(best_auprc)
print(f"Fold {fold+1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}")
# Compute and display average metrics across all folds
print(f"\nFinal Average Metrics (Across {n_kfolds*k} Folds):")
for metric, values in all_metrics.items():
mean = np.mean(values)
std = np.std(values)
print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}")
# Perform case study: Predict missing responses for target drugs
print("\n--- Case Study: Predicting Missing Responses for Target Drugs ---")
model.eval()
with torch.no_grad():
final_pred, cell_emb, drug_emb = model() # Shape: [num_cells, num_drugs]
# Create a DataFrame to sort cell lines by predicted sensitivity
num_cells, num_drugs = final_pred.size()
cell_names = cell_drug.index.values # Cell line names
cid_list = cell_drug.columns.values # Drug CIDs
# Identify top 10 sensitive cell lines for each target drug
for d in range(num_drugs):
cid = cid_list[d]
if cid in [5330286, 11338033]: # Focus on Dasatinib or GSK690693
drug_preds = final_pred[:, d].cpu().numpy()
sorted_idx = np.argsort(-drug_preds) # Sort in descending order
top_10_cells = [(cell_names[i], drug_preds[i]) for i in sorted_idx[:10]]
drug_name = "Dasatinib" if cid == 5330286 else "GSK690693"
print(f"\nTop 10 Sensitive Cell Lines for {drug_name} (CID={cid}):")
for rank, (cell, score) in enumerate(top_10_cells, start=1):
print(f"{rank}. Cell: {cell}, Score: {score:.4f}")
if __name__ == "__main__":
# Set high precision for matrix multiplication
torch.set_float32_matmul_precision('high')
main()

Loading…
Cancel
Save