Browse Source

Upload files to 'Scenario1/Random'

master
Zahra Asgari 6 days ago
parent
commit
21f439a447
2 changed files with 381 additions and 0 deletions
  1. 268
    0
      Scenario1/Random/DeepTraCDR_model.py
  2. 113
    0
      Scenario1/Random/train_random.py

+ 268
- 0
Scenario1/Random/DeepTraCDR_model.py View File

@@ -0,0 +1,268 @@
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import MultiheadAttention, TransformerEncoder, TransformerEncoderLayer
from utils import torch_corr_x_y, cross_entropy_loss, prototypical_loss
from sklearn.metrics import roc_auc_score, average_precision_score, precision_score, recall_score, f1_score
class ConstructAdjMatrix(nn.Module):
"""Constructs normalized adjacency matrices for graph-based computations."""
def __init__(self, original_adj_mat, device="cpu"):
super().__init__()
self.adj = torch.from_numpy(original_adj_mat).float().to(device) if isinstance(original_adj_mat, np.ndarray) else original_adj_mat.to(device)
self.device = device
def forward(self):
"""Computes normalized Laplacian matrices for cells and drugs."""
with torch.no_grad():
# Compute degree matrices for normalization
d_x = torch.diag(torch.pow(torch.sum(self.adj, dim=1) + 1, -0.5))
d_y = torch.diag(torch.pow(torch.sum(self.adj, dim=0) + 1, -0.5))
# Aggregate cell and drug Laplacian matrices
agg_cell_lp = torch.mm(torch.mm(d_x, self.adj), d_y)
agg_drug_lp = torch.mm(torch.mm(d_y, self.adj.T), d_x)
# Self-loop matrices for cells and drugs
self_cell_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=1) + 1, -1), 1))
self_drug_lp = torch.diag(torch.add(torch.pow(torch.sum(self.adj, dim=0) + 1, -1), 1))
return agg_cell_lp.to(self.device), agg_drug_lp.to(self.device), self_cell_lp.to(self.device), self_drug_lp.to(self.device)
class LoadFeature(nn.Module):
"""Loads and processes cell expression and drug fingerprint features."""
def __init__(self, cell_exprs, drug_fingerprints, device="cpu"):
super().__init__()
self.device = device
self.cell_exprs = torch.from_numpy(cell_exprs).float().to(device)
self.drug_fingerprints = [torch.from_numpy(fp).float().to(device) for fp in drug_fingerprints]
# Drug feature projection layers
self.drug_proj = nn.ModuleList([
nn.Sequential(
nn.Linear(fp.shape[1], 512),
nn.BatchNorm1d(512),
nn.GELU(),
nn.Dropout(0.3)
).to(device) for fp in drug_fingerprints
])
# Transformer for drug feature encoding
self.transformer = TransformerEncoder(
TransformerEncoderLayer(d_model=512, nhead=8, dim_feedforward=2048, batch_first=True),
num_layers=3
).to(device)
# Normalization layers
self.cell_norm = nn.LayerNorm(cell_exprs.shape[1]).to(device)
self.drug_norm = nn.LayerNorm(512).to(device)
# Cell feature encoder
self.cell_encoder = nn.Sequential(
nn.Linear(cell_exprs.shape[1], 1024),
nn.BatchNorm1d(1024),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(1024, 512)
).to(device)
def forward(self):
"""Encodes cell and drug features into a unified embedding space."""
cell_feat = self.cell_norm(self.cell_exprs)
cell_encoded = self.cell_encoder(cell_feat)
# Project and transform drug features
projected = [proj(fp) for proj, fp in zip(self.drug_proj, self.drug_fingerprints)]
stacked = torch.stack(projected, dim=1)
drug_feat = self.transformer(stacked)
drug_feat = self.drug_norm(drug_feat.mean(dim=1))
return cell_encoded, drug_feat
class GEncoder(nn.Module):
"""Graph encoder for cell and drug feature aggregation with attention."""
def __init__(self, agg_c_lp, agg_d_lp, self_c_lp, self_d_lp, device="cpu"):
super().__init__()
self.agg_c_lp = agg_c_lp
self.agg_d_lp = agg_d_lp
self.self_c_lp = self_c_lp
self.self_d_lp = self_d_lp
self.device = device
# Cell feature encoder
self.cell_encoder = nn.Sequential(
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(1024, 512)
).to(device)
# Drug feature encoder
self.drug_encoder = nn.Sequential(
nn.Linear(512, 1024),
nn.BatchNorm1d(1024),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(1024, 512)
).to(device)
# Attention mechanism for cross-modal interaction
self.attention = MultiheadAttention(embed_dim=512, num_heads=8, batch_first=True).to(device)
self.residual = nn.Linear(512, 512).to(device)
# Final feature fusion
self.fc = nn.Sequential(
nn.Linear(1024, 512),
nn.BatchNorm1d(512),
nn.GELU(),
nn.Dropout(0.2)
).to(device)
def forward(self, cell_f, drug_f):
"""Aggregates and encodes cell and drug features using graph convolution and attention."""
# Aggregate features via graph convolution
cell_agg = torch.mm(self.agg_c_lp, drug_f)
drug_agg = torch.mm(self.agg_d_lp, cell_f)
# Encode aggregated features
cell_fc = self.cell_encoder(cell_agg)
drug_fc = self.drug_encoder(drug_agg)
# Apply attention mechanism
attn_output, _ = self.attention(
query=cell_fc.unsqueeze(0),
key=drug_fc.unsqueeze(0),
value=drug_fc.unsqueeze(0)
)
attn_output = attn_output.squeeze(0)
cell_emb = cell_fc + self.residual(attn_output)
# Apply final activation
return F.gelu(cell_emb), F.gelu(drug_fc)
class GDecoder(nn.Module):
"""Decodes cell and drug embeddings into interaction scores."""
def __init__(self, emb_dim, gamma):
super().__init__()
self.gamma = gamma
self.decoder = nn.Sequential(
nn.Linear(2 * emb_dim, 1024),
nn.BatchNorm1d(1024),
nn.GELU(),
nn.Dropout(0.2),
nn.Linear(1024, 1)
)
self.corr_weight = nn.Parameter(torch.tensor(0.5))
def forward(self, cell_emb, drug_emb):
"""Predicts interaction scores using combined embeddings and correlation."""
cell_exp = cell_emb.unsqueeze(1).repeat(1, drug_emb.size(0), 1)
drug_exp = drug_emb.unsqueeze(0).repeat(cell_emb.size(0), 1, 1)
combined = torch.cat([cell_exp, drug_exp], dim=-1)
scores = self.decoder(combined.view(-1, 2 * cell_emb.size(1))).view(cell_emb.size(0), drug_emb.size(0))
corr = torch_corr_x_y(cell_emb, drug_emb)
return torch.sigmoid(self.gamma * (self.corr_weight * scores + (1 - self.corr_weight) * corr))
class DeepTraCDR(nn.Module):
"""Main model integrating adjacency matrix construction, feature loading, encoding, and decoding."""
def __init__(self, adj_mat, cell_exprs, drug_finger, layer_size, gamma, device="cpu"):
super().__init__()
self.device = device
self.adj_mat = torch.from_numpy(adj_mat).float().to(device) if isinstance(adj_mat, np.ndarray) else adj_mat.to(device)
self.construct_adj = ConstructAdjMatrix(self.adj_mat, device=device)
self.load_feat = LoadFeature(cell_exprs, drug_finger, device=device)
# Precompute adjacency matrices
agg_c, agg_d, self_c, self_d = self.construct_adj()
self.encoder = GEncoder(agg_c, agg_d, self_c, self_d, device=device).to(device)
self.decoder = GDecoder(layer_size[-1], gamma).to(device)
def forward(self):
"""Executes the full forward pass of the model."""
cell_f, drug_f = self.load_feat()
cell_emb, drug_emb = self.encoder(cell_f, drug_f)
return self.decoder(cell_emb, drug_emb), cell_emb, drug_emb
class Optimizer:
"""Handles model training and evaluation with performance metrics."""
def __init__(self, model, train_data, test_data, test_mask, train_mask, adj_matrix, evaluate_fun, lr=0.001, wd=1e-05, epochs=200, test_freq=20, device="cpu"):
self.model = model.to(device)
self.train_data = train_data.float().to(device)
self.test_data = test_data.float().to(device)
self.train_mask = train_mask.to(device)
self.test_mask_bool = test_mask.to(device).bool()
self.adj_matrix = adj_matrix.to(device)
self.evaluate_fun = evaluate_fun
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=wd)
self.epochs = epochs
self.test_freq = test_freq
def train(self):
"""Trains the model and evaluates performance on test data."""
true_data = torch.masked_select(self.test_data, self.test_mask_bool).cpu().numpy()
best_metrics = {'auc': 0.0, 'auprc': 0.0, 'precision': 0.0, 'recall': 0.0, 'f1': 0.0}
best_pred = None
for epoch in range(self.epochs):
self.model.train()
pred, cell_emb, drug_emb = self.model()
# Compute losses
ce_loss = cross_entropy_loss(self.train_data, pred, self.train_mask)
proto_loss = prototypical_loss(cell_emb, drug_emb, self.adj_matrix)
total_loss = 0.7 * ce_loss + 0.3 * proto_loss
# Backpropagation
self.optimizer.zero_grad()
total_loss.backward()
self.optimizer.step()
# Evaluate periodically
if epoch % self.test_freq == 0:
self.model.eval()
with torch.no_grad():
pred_masked = torch.masked_select(pred, self.test_mask_bool).cpu().numpy()
metrics = self._compute_metrics(true_data, pred_masked)
# Update best metrics
if metrics['auc'] > best_metrics['auc']:
best_metrics.update(metrics)
best_pred = pred_masked.copy()
print(f"Epoch {epoch}: Loss={total_loss.item():.4f}, AUC={metrics['auc']:.4f}, "
f"AUPRC={metrics['auprc']:.4f}, Precision={metrics['precision']:.4f}, "
f"Recall={metrics['recall']:.4f}, F1-Score={metrics['f1']:.4f}")
# Print final best metrics
print("\nBest Metrics:")
for metric, value in best_metrics.items():
print(f"{metric.upper()}: {value:.4f}")
return true_data, best_pred, *best_metrics.values()
def _compute_metrics(self, true_data, pred_masked):
"""Computes evaluation metrics for model predictions."""
try:
auc = roc_auc_score(true_data, pred_masked)
auprc = average_precision_score(true_data, pred_masked)
except ValueError:
auc = auprc = 0.0
pred_labels = (pred_masked >= 0.5).astype(int)
return {
'auc': auc,
'auprc': auprc,
'precision': precision_score(true_data, pred_labels, zero_division=0),
'recall': recall_score(true_data, pred_labels, zero_division=0),
'f1': f1_score(true_data, pred_labels, zero_division=0)
}

+ 113
- 0
Scenario1/Random/train_random.py View File

@@ -0,0 +1,113 @@
import argparse
import numpy as np
import pandas as pd
import torch
from sklearn.model_selection import KFold
from DeepTraCDR_model import DeepTraCDR, Optimizer
from utils import evaluate_auc
from data_sampler import RandomSampler
from data_loader import load_data
def parse_arguments():
"""
Parses command-line arguments for the DeepTraCDR model.
Returns:
Parsed arguments containing model and training configurations.
"""
parser = argparse.ArgumentParser(description="DeepTraCDR: Graph-based Cell-Drug Interaction Prediction")
parser.add_argument('-device', type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
help="Device to run the model on (cuda:0 or cpu)")
parser.add_argument('-data', type=str, default='ccle', help="Dataset to use (default: ccle)")
parser.add_argument('--wd', type=float, default=1e-4, help="Weight decay for optimizer")
parser.add_argument('--layer_size', nargs='+', type=int, default=[512], help="Layer sizes for the model")
parser.add_argument('--gamma', type=float, default=15, help="Gamma parameter for decoder")
parser.add_argument('--epochs', type=int, default=1000, help="Number of training epochs")
parser.add_argument('--test_freq', type=int, default=50, help="Frequency of evaluation during training")
parser.add_argument('--lr', type=float, default=0.0005, help="Learning rate for optimizer")
return parser.parse_args()
def main():
"""Main function to execute the DeepTraCDR training and evaluation pipeline."""
args = parse_arguments()
# Load dataset
full_adj, drug_fingerprints, exprs, null_mask, pos_num, args = load_data(args)
# Log data shapes for debugging
print(f"Original adj_mat shape: {full_adj.shape}")
print("\n--- Data Shapes ---")
print(f"Expression data shape: {exprs.shape}")
print(f"Null mask shape: {null_mask.shape}")
# Convert adjacency matrix to torch tensor if necessary
if isinstance(full_adj, np.ndarray):
full_adj = torch.from_numpy(full_adj).float()
print(f"Converted adj_mat shape: {full_adj.shape}")
# Initialize k-fold cross-validation
k = 5
n_kfolds = 5
all_metrics = {
'auc': [], 'auprc': [], 'precision': [], 'recall': [], 'f1_score': []
}
# Perform k-fold cross-validation
for n_kfold in range(n_kfolds):
kfold = KFold(n_splits=k, shuffle=True, random_state=n_kfold)
for fold, (train_idx, test_idx) in enumerate(kfold.split(np.arange(pos_num))):
# Initialize data sampler
sampler = RandomSampler(full_adj, train_idx, test_idx, null_mask)
# Initialize model
model = DeepTraCDR(
adj_mat=full_adj,
cell_exprs=exprs,
drug_finger=drug_fingerprints,
layer_size=args.layer_size,
gamma=args.gamma,
device=args.device
)
# Initialize optimizer
opt = Optimizer(
model=model,
train_data=sampler.train_data,
test_data=sampler.test_data,
test_mask=sampler.test_mask,
train_mask=sampler.train_mask,
adj_matrix=full_adj,
evaluate_fun=evaluate_auc,
lr=args.lr,
wd=args.wd,
epochs=args.epochs,
test_freq=args.test_freq,
device=args.device
)
# Train model and collect metrics
true, pred, best_auc, best_auprc, best_precision, best_recall, best_f1 = opt.train()
# Store metrics
all_metrics['auc'].append(best_auc)
all_metrics['auprc'].append(best_auprc)
all_metrics['precision'].append(best_precision)
all_metrics['recall'].append(best_recall)
all_metrics['f1_score'].append(best_f1)
print(f"Fold {n_kfold * k + fold + 1}: AUC={best_auc:.4f}, AUPRC={best_auprc:.4f}, "
f"Precision={best_precision:.4f}, Recall={best_recall:.4f}, F1-Score={best_f1:.4f}")
# Compute and display final metrics
print("\nFinal Average Metrics:")
for metric, values in all_metrics.items():
mean = np.mean(values)
std = np.std(values)
print(f"{metric.upper()}: {mean:.4f} ± {std:.4f}")
if __name__ == "__main__":
torch.set_float32_matmul_precision('high')
main()

Loading…
Cancel
Save