|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Step 2: Load training data |
|
|
# Step 2: Load training data |
|
|
train_data, train_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES, |
|
|
train_data, train_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES, |
|
|
raw_file_directory=RAW_BOTH_DATA_FOLDER, |
|
|
|
|
|
screen_file_directory=BOTH_SCREENING_DATA_FOLDER, |
|
|
|
|
|
|
|
|
raw_file_directory=GDSC_RAW_DATA_FOLDER, |
|
|
|
|
|
screen_file_directory=GDSC_SCREENING_DATA_FOLDER, |
|
|
sep="\t") |
|
|
sep="\t") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_test: |
|
|
if is_test: |
|
|
test_data, test_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES, |
|
|
test_data, test_drug_screen = RawDataLoader.load_data(data_modalities=DATA_MODALITIES, |
|
|
raw_file_directory=CCLE_RAW_DATA_FOLDER, |
|
|
raw_file_directory=CCLE_RAW_DATA_FOLDER, |
|
|
screen_file_directory=CCLE_SCREENING_DATA_FOLDER, |
|
|
|
|
|
|
|
|
screen_file_directory=CTRP_SCREENING_DATA_FOLDER, |
|
|
sep="\t") |
|
|
sep="\t") |
|
|
train_data, test_data = RawDataLoader.data_features_intersect(train_data, test_data) |
|
|
train_data, test_data = RawDataLoader.data_features_intersect(train_data, test_data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.manual_seed(RANDOM_SEED) |
|
|
torch.manual_seed(RANDOM_SEED) |
|
|
random.seed(RANDOM_SEED) |
|
|
random.seed(RANDOM_SEED) |
|
|
np.random.seed(RANDOM_SEED) |
|
|
np.random.seed(RANDOM_SEED) |
|
|
run(10, is_test=True) |
|
|
|
|
|
|
|
|
run(30, is_test=False) |