Browse Source

Delete 'utils.py'

master
parent
commit
e515a1d134
1 changed files with 0 additions and 328 deletions
  1. 0
    328
      utils.py

+ 0
- 328
utils.py View File

@@ -1,328 +0,0 @@
from collections import deque
from keras import backend as K
from keras.callbacks import ModelCheckpoint
import warnings
import pandas as pd
from xml.etree import ElementTree as ET

BIOLOGICAL_PROCESS = 'GO:0008150'
MOLECULAR_FUNCTION = 'GO:0003674'
CELLULAR_COMPONENT = 'GO:0005575'
FUNC_DICT = {
'cc': CELLULAR_COMPONENT,
'mf': MOLECULAR_FUNCTION,
'bp': BIOLOGICAL_PROCESS}
EXP_CODES = set(['EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC'])


def get_ipro():
ipro = dict()
tree = ET.parse('data/interpro.xml')
root = tree.getroot()
for child in root:
if child.tag != 'interpro':
continue
ipro_id = child.attrib['id']
name = child.find('name').text
ipro[ipro_id] = {
'id': ipro_id,
'name': name,
'children': list(), 'parents': list()}
parents = child.find('parent_list')
if parents:
for parent in parents:
ipro[ipro_id]['parents'].append(parent.attrib['ipr_ref'])
children = child.find('child_list')
if children:
for ch in children:
ipro[ipro_id]['children'].append(ch.attrib['ipr_ref'])
return ipro


def get_ipro_anchestors(ipro, ipro_id):
ipro_set = set()
q = deque()
q.append(ipro_id)
while(len(q) > 0):
i_id = q.popleft()
ipro_set.add(i_id)
if ipro[i_id]['parents']:
for parent_id in ipro[i_id]['parents']:
if parent_id in ipro:
q.append(parent_id)
return ipro_set


def get_gene_ontology(filename='go.obo'):
# Reading Gene Ontology from OBO Formatted file
go = dict()
obj = None
with open('data/' + filename, 'r') as f:
for line in f:
line = line.strip()
if not line:
continue
if line == '[Term]':
if obj is not None:
go[obj['id']] = obj
obj = dict()
obj['is_a'] = list()
obj['part_of'] = list()
obj['regulates'] = list()
obj['is_obsolete'] = False
continue
elif line == '[Typedef]':
obj = None
else:
if obj is None:
continue
l = line.split(": ")
if l[0] == 'id':
obj['id'] = l[1]
elif l[0] == 'is_a':
obj['is_a'].append(l[1].split(' ! ')[0])
elif l[0] == 'name':
obj['name'] = l[1]
elif l[0] == 'is_obsolete' and l[1] == 'true':
obj['is_obsolete'] = True
if obj is not None:
go[obj['id']] = obj
for go_id in go.keys():
if go[go_id]['is_obsolete']:
del go[go_id]
for go_id, val in go.iteritems():
if 'children' not in val:
val['children'] = set()
for p_id in val['is_a']:
if p_id in go:
if 'children' not in go[p_id]:
go[p_id]['children'] = set()
go[p_id]['children'].add(go_id)
return go


def get_anchestors(go, go_id):
go_set = set()
q = deque()
q.append(go_id)
while(len(q) > 0):
g_id = q.popleft()
go_set.add(g_id)
for parent_id in go[g_id]['is_a']:
if parent_id in go:
q.append(parent_id)
return go_set


def get_parents(go, go_id):
go_set = set()
for parent_id in go[go_id]['is_a']:
if parent_id in go:
go_set.add(parent_id)
return go_set


def get_height(go, go_id):
height_min = 100000
if len(go[go_id]['is_a'])==0:
height_min = 0
else:
for parent_id in go[go_id]['is_a']:
if parent_id in go:
height = get_height(go, parent_id) + 1
if height < height_min:
height_min = height
return height_min




def get_go_set(go, go_id):
go_set = set()
q = deque()
q.append(go_id)
while len(q) > 0:
g_id = q.popleft()
go_set.add(g_id)
for ch_id in go[g_id]['children']:
q.append(ch_id)
return go_set


def save_model_weights(model, filepath):
if hasattr(model, 'flattened_layers'):
# Support for legacy Sequential/Merge behavior.
flattened_layers = model.flattened_layers
else:
flattened_layers = model.layers

l_names = []
w_values = []
for layer in flattened_layers:
layer_name = layer.name
symbolic_weights = layer.weights
weight_values = K.batch_get_value(symbolic_weights)
if weight_values:
l_names.append(layer_name)
w_values.append(weight_values)
df = pd.DataFrame({
'layer_names': l_names,
'weight_values': w_values})
df.to_pickle(filepath)


def load_model_weights(model, filepath):
''' Name-based weight loading
Layers that have no matching name are skipped.
'''
if hasattr(model, 'flattened_layers'):
# Support for legacy Sequential/Merge behavior.
flattened_layers = model.flattened_layers
else:
flattened_layers = model.layers

df = pd.read_pickle(filepath)

# Reverse index of layer name to list of layers with name.
index = {}
for layer in flattened_layers:
if layer.name:
index[layer.name] = layer

# We batch weight value assignments in a single backend call
# which provides a speedup in TensorFlow.
weight_value_tuples = []
for row in df.iterrows():
row = row[1]
name = row['layer_names']
weight_values = row['weight_values']
if name in index:
symbolic_weights = index[name].weights
if len(weight_values) != len(symbolic_weights):
raise Exception('Layer named "' + layer.name +
'") expects ' + str(len(symbolic_weights)) +
' weight(s), but the saved weights' +
' have ' + str(len(weight_values)) +
' element(s).')
# Set values.
for i in range(len(weight_values)):
weight_value_tuples.append(
(symbolic_weights[i], weight_values[i]))
K.batch_set_value(weight_value_tuples)


def f_score(labels, preds):
preds = K.round(preds)
tp = K.sum(labels * preds)
fp = K.sum(preds) - tp
fn = K.sum(labels) - tp
p = tp / (tp + fp)
r = tp / (tp + fn)
return 2 * p * r / (p + r)


def filter_specific(go, gos):
go_set = set()
for go_id in gos:
go_set.add(go_id)
for go_id in gos:
anchestors = get_anchestors(go, go_id)
anchestors.discard(go_id)
go_set -= anchestors
return list(go_set)


def read_fasta(lines):
seqs = list()
info = list()
seq = ''
inf = ''
for line in lines:
line = line.strip()
if line.startswith('>'):
if seq != '':
seqs.append(seq)
info.append(inf)
seq = ''
inf = line[1:]
else:
seq += line
seqs.append(seq)
info.append(inf)
return info, seqs


class MyCheckpoint(ModelCheckpoint):
def on_epoch_end(self, epoch, logs={}):
filepath = self.filepath.format(epoch=epoch, **logs)
current = logs.get(self.monitor)
if current is None:
warnings.warn('Can save best model only with %s available, '
'skipping.' % (self.monitor), RuntimeWarning)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('Epoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s'
% (epoch, self.monitor, self.best,
current, filepath))
self.best = current
save_model_weights(self.model, filepath)
else:
if self.verbose > 0:
print('Epoch %05d: %s did not improve' %
(epoch, self.monitor))


class DataGenerator(object):

def __init__(self, batch_size, num_outputs):
self.batch_size = batch_size
self.num_outputs = num_outputs

def fit(self, inputs, targets):
self.start = 0
self.inputs = inputs
self.targets = targets
self.size = len(self.inputs)
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
self.size = len(self.inputs[0])
self.has_targets = targets is not None

def __next__(self):
return self.next()

def reset(self):
self.start = 0

def next(self):
if self.start < self.size:
# output = []
# if self.has_targets:
# labels = self.targets
# for i in range(self.num_outputs):
# output.append(
# labels[self.start:(self.start + self.batch_size), i])
if self.has_targets:
labels = self.targets[self.start:(self.start + self.batch_size), :]
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
res_inputs = []
for inp in self.inputs:
res_inputs.append(
inp[self.start:(self.start + self.batch_size)])
else:
res_inputs = self.inputs[self.start:(
self.start + self.batch_size)]
self.start += self.batch_size
if self.has_targets:
return (res_inputs, labels)
return res_inputs
else:
self.reset()
return self.next()


if __name__ == '__main__':
pass
get_ipro_xml()

Loading…
Cancel
Save