|
|
@@ -1,328 +0,0 @@ |
|
|
|
from collections import deque |
|
|
|
from keras import backend as K |
|
|
|
from keras.callbacks import ModelCheckpoint |
|
|
|
import warnings |
|
|
|
import pandas as pd |
|
|
|
from xml.etree import ElementTree as ET |
|
|
|
|
|
|
|
BIOLOGICAL_PROCESS = 'GO:0008150' |
|
|
|
MOLECULAR_FUNCTION = 'GO:0003674' |
|
|
|
CELLULAR_COMPONENT = 'GO:0005575' |
|
|
|
FUNC_DICT = { |
|
|
|
'cc': CELLULAR_COMPONENT, |
|
|
|
'mf': MOLECULAR_FUNCTION, |
|
|
|
'bp': BIOLOGICAL_PROCESS} |
|
|
|
EXP_CODES = set(['EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC']) |
|
|
|
|
|
|
|
|
|
|
|
def get_ipro(): |
|
|
|
ipro = dict() |
|
|
|
tree = ET.parse('data/interpro.xml') |
|
|
|
root = tree.getroot() |
|
|
|
for child in root: |
|
|
|
if child.tag != 'interpro': |
|
|
|
continue |
|
|
|
ipro_id = child.attrib['id'] |
|
|
|
name = child.find('name').text |
|
|
|
ipro[ipro_id] = { |
|
|
|
'id': ipro_id, |
|
|
|
'name': name, |
|
|
|
'children': list(), 'parents': list()} |
|
|
|
parents = child.find('parent_list') |
|
|
|
if parents: |
|
|
|
for parent in parents: |
|
|
|
ipro[ipro_id]['parents'].append(parent.attrib['ipr_ref']) |
|
|
|
children = child.find('child_list') |
|
|
|
if children: |
|
|
|
for ch in children: |
|
|
|
ipro[ipro_id]['children'].append(ch.attrib['ipr_ref']) |
|
|
|
return ipro |
|
|
|
|
|
|
|
|
|
|
|
def get_ipro_anchestors(ipro, ipro_id): |
|
|
|
ipro_set = set() |
|
|
|
q = deque() |
|
|
|
q.append(ipro_id) |
|
|
|
while(len(q) > 0): |
|
|
|
i_id = q.popleft() |
|
|
|
ipro_set.add(i_id) |
|
|
|
if ipro[i_id]['parents']: |
|
|
|
for parent_id in ipro[i_id]['parents']: |
|
|
|
if parent_id in ipro: |
|
|
|
q.append(parent_id) |
|
|
|
return ipro_set |
|
|
|
|
|
|
|
|
|
|
|
def get_gene_ontology(filename='go.obo'): |
|
|
|
# Reading Gene Ontology from OBO Formatted file |
|
|
|
go = dict() |
|
|
|
obj = None |
|
|
|
with open('data/' + filename, 'r') as f: |
|
|
|
for line in f: |
|
|
|
line = line.strip() |
|
|
|
if not line: |
|
|
|
continue |
|
|
|
if line == '[Term]': |
|
|
|
if obj is not None: |
|
|
|
go[obj['id']] = obj |
|
|
|
obj = dict() |
|
|
|
obj['is_a'] = list() |
|
|
|
obj['part_of'] = list() |
|
|
|
obj['regulates'] = list() |
|
|
|
obj['is_obsolete'] = False |
|
|
|
continue |
|
|
|
elif line == '[Typedef]': |
|
|
|
obj = None |
|
|
|
else: |
|
|
|
if obj is None: |
|
|
|
continue |
|
|
|
l = line.split(": ") |
|
|
|
if l[0] == 'id': |
|
|
|
obj['id'] = l[1] |
|
|
|
elif l[0] == 'is_a': |
|
|
|
obj['is_a'].append(l[1].split(' ! ')[0]) |
|
|
|
elif l[0] == 'name': |
|
|
|
obj['name'] = l[1] |
|
|
|
elif l[0] == 'is_obsolete' and l[1] == 'true': |
|
|
|
obj['is_obsolete'] = True |
|
|
|
if obj is not None: |
|
|
|
go[obj['id']] = obj |
|
|
|
for go_id in go.keys(): |
|
|
|
if go[go_id]['is_obsolete']: |
|
|
|
del go[go_id] |
|
|
|
for go_id, val in go.iteritems(): |
|
|
|
if 'children' not in val: |
|
|
|
val['children'] = set() |
|
|
|
for p_id in val['is_a']: |
|
|
|
if p_id in go: |
|
|
|
if 'children' not in go[p_id]: |
|
|
|
go[p_id]['children'] = set() |
|
|
|
go[p_id]['children'].add(go_id) |
|
|
|
return go |
|
|
|
|
|
|
|
|
|
|
|
def get_anchestors(go, go_id): |
|
|
|
go_set = set() |
|
|
|
q = deque() |
|
|
|
q.append(go_id) |
|
|
|
while(len(q) > 0): |
|
|
|
g_id = q.popleft() |
|
|
|
go_set.add(g_id) |
|
|
|
for parent_id in go[g_id]['is_a']: |
|
|
|
if parent_id in go: |
|
|
|
q.append(parent_id) |
|
|
|
return go_set |
|
|
|
|
|
|
|
|
|
|
|
def get_parents(go, go_id): |
|
|
|
go_set = set() |
|
|
|
for parent_id in go[go_id]['is_a']: |
|
|
|
if parent_id in go: |
|
|
|
go_set.add(parent_id) |
|
|
|
return go_set |
|
|
|
|
|
|
|
|
|
|
|
def get_height(go, go_id): |
|
|
|
height_min = 100000 |
|
|
|
|
|
|
|
if len(go[go_id]['is_a'])==0: |
|
|
|
height_min = 0 |
|
|
|
else: |
|
|
|
for parent_id in go[go_id]['is_a']: |
|
|
|
if parent_id in go: |
|
|
|
height = get_height(go, parent_id) + 1 |
|
|
|
if height < height_min: |
|
|
|
height_min = height |
|
|
|
return height_min |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_go_set(go, go_id): |
|
|
|
go_set = set() |
|
|
|
q = deque() |
|
|
|
q.append(go_id) |
|
|
|
while len(q) > 0: |
|
|
|
g_id = q.popleft() |
|
|
|
go_set.add(g_id) |
|
|
|
for ch_id in go[g_id]['children']: |
|
|
|
q.append(ch_id) |
|
|
|
return go_set |
|
|
|
|
|
|
|
|
|
|
|
def save_model_weights(model, filepath): |
|
|
|
if hasattr(model, 'flattened_layers'): |
|
|
|
# Support for legacy Sequential/Merge behavior. |
|
|
|
flattened_layers = model.flattened_layers |
|
|
|
else: |
|
|
|
flattened_layers = model.layers |
|
|
|
|
|
|
|
l_names = [] |
|
|
|
w_values = [] |
|
|
|
for layer in flattened_layers: |
|
|
|
layer_name = layer.name |
|
|
|
symbolic_weights = layer.weights |
|
|
|
weight_values = K.batch_get_value(symbolic_weights) |
|
|
|
if weight_values: |
|
|
|
l_names.append(layer_name) |
|
|
|
w_values.append(weight_values) |
|
|
|
df = pd.DataFrame({ |
|
|
|
'layer_names': l_names, |
|
|
|
'weight_values': w_values}) |
|
|
|
df.to_pickle(filepath) |
|
|
|
|
|
|
|
|
|
|
|
def load_model_weights(model, filepath): |
|
|
|
''' Name-based weight loading |
|
|
|
Layers that have no matching name are skipped. |
|
|
|
''' |
|
|
|
if hasattr(model, 'flattened_layers'): |
|
|
|
# Support for legacy Sequential/Merge behavior. |
|
|
|
flattened_layers = model.flattened_layers |
|
|
|
else: |
|
|
|
flattened_layers = model.layers |
|
|
|
|
|
|
|
df = pd.read_pickle(filepath) |
|
|
|
|
|
|
|
# Reverse index of layer name to list of layers with name. |
|
|
|
index = {} |
|
|
|
for layer in flattened_layers: |
|
|
|
if layer.name: |
|
|
|
index[layer.name] = layer |
|
|
|
|
|
|
|
# We batch weight value assignments in a single backend call |
|
|
|
# which provides a speedup in TensorFlow. |
|
|
|
weight_value_tuples = [] |
|
|
|
for row in df.iterrows(): |
|
|
|
row = row[1] |
|
|
|
name = row['layer_names'] |
|
|
|
weight_values = row['weight_values'] |
|
|
|
if name in index: |
|
|
|
symbolic_weights = index[name].weights |
|
|
|
if len(weight_values) != len(symbolic_weights): |
|
|
|
raise Exception('Layer named "' + layer.name + |
|
|
|
'") expects ' + str(len(symbolic_weights)) + |
|
|
|
' weight(s), but the saved weights' + |
|
|
|
' have ' + str(len(weight_values)) + |
|
|
|
' element(s).') |
|
|
|
# Set values. |
|
|
|
for i in range(len(weight_values)): |
|
|
|
weight_value_tuples.append( |
|
|
|
(symbolic_weights[i], weight_values[i])) |
|
|
|
K.batch_set_value(weight_value_tuples) |
|
|
|
|
|
|
|
|
|
|
|
def f_score(labels, preds): |
|
|
|
preds = K.round(preds) |
|
|
|
tp = K.sum(labels * preds) |
|
|
|
fp = K.sum(preds) - tp |
|
|
|
fn = K.sum(labels) - tp |
|
|
|
p = tp / (tp + fp) |
|
|
|
r = tp / (tp + fn) |
|
|
|
return 2 * p * r / (p + r) |
|
|
|
|
|
|
|
|
|
|
|
def filter_specific(go, gos): |
|
|
|
go_set = set() |
|
|
|
for go_id in gos: |
|
|
|
go_set.add(go_id) |
|
|
|
for go_id in gos: |
|
|
|
anchestors = get_anchestors(go, go_id) |
|
|
|
anchestors.discard(go_id) |
|
|
|
go_set -= anchestors |
|
|
|
return list(go_set) |
|
|
|
|
|
|
|
|
|
|
|
def read_fasta(lines): |
|
|
|
seqs = list() |
|
|
|
info = list() |
|
|
|
seq = '' |
|
|
|
inf = '' |
|
|
|
for line in lines: |
|
|
|
line = line.strip() |
|
|
|
if line.startswith('>'): |
|
|
|
if seq != '': |
|
|
|
seqs.append(seq) |
|
|
|
info.append(inf) |
|
|
|
seq = '' |
|
|
|
inf = line[1:] |
|
|
|
else: |
|
|
|
seq += line |
|
|
|
seqs.append(seq) |
|
|
|
info.append(inf) |
|
|
|
return info, seqs |
|
|
|
|
|
|
|
|
|
|
|
class MyCheckpoint(ModelCheckpoint): |
|
|
|
def on_epoch_end(self, epoch, logs={}): |
|
|
|
filepath = self.filepath.format(epoch=epoch, **logs) |
|
|
|
current = logs.get(self.monitor) |
|
|
|
if current is None: |
|
|
|
warnings.warn('Can save best model only with %s available, ' |
|
|
|
'skipping.' % (self.monitor), RuntimeWarning) |
|
|
|
else: |
|
|
|
if self.monitor_op(current, self.best): |
|
|
|
if self.verbose > 0: |
|
|
|
print('Epoch %05d: %s improved from %0.5f to %0.5f,' |
|
|
|
' saving model to %s' |
|
|
|
% (epoch, self.monitor, self.best, |
|
|
|
current, filepath)) |
|
|
|
self.best = current |
|
|
|
save_model_weights(self.model, filepath) |
|
|
|
else: |
|
|
|
if self.verbose > 0: |
|
|
|
print('Epoch %05d: %s did not improve' % |
|
|
|
(epoch, self.monitor)) |
|
|
|
|
|
|
|
|
|
|
|
class DataGenerator(object): |
|
|
|
|
|
|
|
def __init__(self, batch_size, num_outputs): |
|
|
|
self.batch_size = batch_size |
|
|
|
self.num_outputs = num_outputs |
|
|
|
|
|
|
|
def fit(self, inputs, targets): |
|
|
|
self.start = 0 |
|
|
|
self.inputs = inputs |
|
|
|
self.targets = targets |
|
|
|
self.size = len(self.inputs) |
|
|
|
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list): |
|
|
|
self.size = len(self.inputs[0]) |
|
|
|
self.has_targets = targets is not None |
|
|
|
|
|
|
|
def __next__(self): |
|
|
|
return self.next() |
|
|
|
|
|
|
|
def reset(self): |
|
|
|
self.start = 0 |
|
|
|
|
|
|
|
def next(self): |
|
|
|
if self.start < self.size: |
|
|
|
# output = [] |
|
|
|
# if self.has_targets: |
|
|
|
# labels = self.targets |
|
|
|
# for i in range(self.num_outputs): |
|
|
|
# output.append( |
|
|
|
# labels[self.start:(self.start + self.batch_size), i]) |
|
|
|
if self.has_targets: |
|
|
|
labels = self.targets[self.start:(self.start + self.batch_size), :] |
|
|
|
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list): |
|
|
|
res_inputs = [] |
|
|
|
for inp in self.inputs: |
|
|
|
res_inputs.append( |
|
|
|
inp[self.start:(self.start + self.batch_size)]) |
|
|
|
else: |
|
|
|
res_inputs = self.inputs[self.start:( |
|
|
|
self.start + self.batch_size)] |
|
|
|
self.start += self.batch_size |
|
|
|
if self.has_targets: |
|
|
|
return (res_inputs, labels) |
|
|
|
return res_inputs |
|
|
|
else: |
|
|
|
self.reset() |
|
|
|
return self.next() |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
pass |
|
|
|
get_ipro_xml() |