|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- from collections import deque
- from keras import backend as K
- from keras.callbacks import ModelCheckpoint
- import warnings
- import pandas as pd
- from xml.etree import ElementTree as ET
-
- BIOLOGICAL_PROCESS = 'GO:0008150'
- MOLECULAR_FUNCTION = 'GO:0003674'
- CELLULAR_COMPONENT = 'GO:0005575'
- FUNC_DICT = {
- 'cc': CELLULAR_COMPONENT,
- 'mf': MOLECULAR_FUNCTION,
- 'bp': BIOLOGICAL_PROCESS}
- EXP_CODES = set(['EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC'])
-
-
- def get_ipro():
- ipro = dict()
- tree = ET.parse('data/interpro.xml')
- root = tree.getroot()
- for child in root:
- if child.tag != 'interpro':
- continue
- ipro_id = child.attrib['id']
- name = child.find('name').text
- ipro[ipro_id] = {
- 'id': ipro_id,
- 'name': name,
- 'children': list(), 'parents': list()}
- parents = child.find('parent_list')
- if parents:
- for parent in parents:
- ipro[ipro_id]['parents'].append(parent.attrib['ipr_ref'])
- children = child.find('child_list')
- if children:
- for ch in children:
- ipro[ipro_id]['children'].append(ch.attrib['ipr_ref'])
- return ipro
-
-
- def get_ipro_anchestors(ipro, ipro_id):
- ipro_set = set()
- q = deque()
- q.append(ipro_id)
- while(len(q) > 0):
- i_id = q.popleft()
- ipro_set.add(i_id)
- if ipro[i_id]['parents']:
- for parent_id in ipro[i_id]['parents']:
- if parent_id in ipro:
- q.append(parent_id)
- return ipro_set
-
-
- def get_gene_ontology(filename='go.obo'):
- # Reading Gene Ontology from OBO Formatted file
- go = dict()
- obj = None
- with open('data/' + filename, 'r') as f:
- for line in f:
- line = line.strip()
- if not line:
- continue
- if line == '[Term]':
- if obj is not None:
- go[obj['id']] = obj
- obj = dict()
- obj['is_a'] = list()
- obj['part_of'] = list()
- obj['regulates'] = list()
- obj['is_obsolete'] = False
- continue
- elif line == '[Typedef]':
- obj = None
- else:
- if obj is None:
- continue
- l = line.split(": ")
- if l[0] == 'id':
- obj['id'] = l[1]
- elif l[0] == 'is_a':
- obj['is_a'].append(l[1].split(' ! ')[0])
- elif l[0] == 'name':
- obj['name'] = l[1]
- elif l[0] == 'is_obsolete' and l[1] == 'true':
- obj['is_obsolete'] = True
- if obj is not None:
- go[obj['id']] = obj
- for go_id in go.keys():
- if go[go_id]['is_obsolete']:
- del go[go_id]
- for go_id, val in go.iteritems():
- if 'children' not in val:
- val['children'] = set()
- for p_id in val['is_a']:
- if p_id in go:
- if 'children' not in go[p_id]:
- go[p_id]['children'] = set()
- go[p_id]['children'].add(go_id)
- return go
-
-
- def get_anchestors(go, go_id):
- go_set = set()
- q = deque()
- q.append(go_id)
- while(len(q) > 0):
- g_id = q.popleft()
- go_set.add(g_id)
- for parent_id in go[g_id]['is_a']:
- if parent_id in go:
- q.append(parent_id)
- return go_set
-
-
- def get_parents(go, go_id):
- go_set = set()
- for parent_id in go[go_id]['is_a']:
- if parent_id in go:
- go_set.add(parent_id)
- return go_set
-
-
- def get_height(go, go_id):
- height_min = 100000
-
- if len(go[go_id]['is_a'])==0:
- height_min = 0
- else:
- for parent_id in go[go_id]['is_a']:
- if parent_id in go:
- height = get_height(go, parent_id) + 1
- if height < height_min:
- height_min = height
- return height_min
-
-
-
-
- def get_go_set(go, go_id):
- go_set = set()
- q = deque()
- q.append(go_id)
- while len(q) > 0:
- g_id = q.popleft()
- go_set.add(g_id)
- for ch_id in go[g_id]['children']:
- q.append(ch_id)
- return go_set
-
-
- def save_model_weights(model, filepath):
- if hasattr(model, 'flattened_layers'):
- # Support for legacy Sequential/Merge behavior.
- flattened_layers = model.flattened_layers
- else:
- flattened_layers = model.layers
-
- l_names = []
- w_values = []
- for layer in flattened_layers:
- layer_name = layer.name
- symbolic_weights = layer.weights
- weight_values = K.batch_get_value(symbolic_weights)
- if weight_values:
- l_names.append(layer_name)
- w_values.append(weight_values)
- df = pd.DataFrame({
- 'layer_names': l_names,
- 'weight_values': w_values})
- df.to_pickle(filepath)
-
-
- def load_model_weights(model, filepath):
- ''' Name-based weight loading
- Layers that have no matching name are skipped.
- '''
- if hasattr(model, 'flattened_layers'):
- # Support for legacy Sequential/Merge behavior.
- flattened_layers = model.flattened_layers
- else:
- flattened_layers = model.layers
-
- df = pd.read_pickle(filepath)
-
- # Reverse index of layer name to list of layers with name.
- index = {}
- for layer in flattened_layers:
- if layer.name:
- index[layer.name] = layer
-
- # We batch weight value assignments in a single backend call
- # which provides a speedup in TensorFlow.
- weight_value_tuples = []
- for row in df.iterrows():
- row = row[1]
- name = row['layer_names']
- weight_values = row['weight_values']
- if name in index:
- symbolic_weights = index[name].weights
- if len(weight_values) != len(symbolic_weights):
- raise Exception('Layer named "' + layer.name +
- '") expects ' + str(len(symbolic_weights)) +
- ' weight(s), but the saved weights' +
- ' have ' + str(len(weight_values)) +
- ' element(s).')
- # Set values.
- for i in range(len(weight_values)):
- weight_value_tuples.append(
- (symbolic_weights[i], weight_values[i]))
- K.batch_set_value(weight_value_tuples)
-
-
- def f_score(labels, preds):
- preds = K.round(preds)
- tp = K.sum(labels * preds)
- fp = K.sum(preds) - tp
- fn = K.sum(labels) - tp
- p = tp / (tp + fp)
- r = tp / (tp + fn)
- return 2 * p * r / (p + r)
-
-
- def filter_specific(go, gos):
- go_set = set()
- for go_id in gos:
- go_set.add(go_id)
- for go_id in gos:
- anchestors = get_anchestors(go, go_id)
- anchestors.discard(go_id)
- go_set -= anchestors
- return list(go_set)
-
-
- def read_fasta(lines):
- seqs = list()
- info = list()
- seq = ''
- inf = ''
- for line in lines:
- line = line.strip()
- if line.startswith('>'):
- if seq != '':
- seqs.append(seq)
- info.append(inf)
- seq = ''
- inf = line[1:]
- else:
- seq += line
- seqs.append(seq)
- info.append(inf)
- return info, seqs
-
-
- class MyCheckpoint(ModelCheckpoint):
- def on_epoch_end(self, epoch, logs={}):
- filepath = self.filepath.format(epoch=epoch, **logs)
- current = logs.get(self.monitor)
- if current is None:
- warnings.warn('Can save best model only with %s available, '
- 'skipping.' % (self.monitor), RuntimeWarning)
- else:
- if self.monitor_op(current, self.best):
- if self.verbose > 0:
- print('Epoch %05d: %s improved from %0.5f to %0.5f,'
- ' saving model to %s'
- % (epoch, self.monitor, self.best,
- current, filepath))
- self.best = current
- save_model_weights(self.model, filepath)
- else:
- if self.verbose > 0:
- print('Epoch %05d: %s did not improve' %
- (epoch, self.monitor))
-
-
- class DataGenerator(object):
-
- def __init__(self, batch_size, num_outputs):
- self.batch_size = batch_size
- self.num_outputs = num_outputs
-
- def fit(self, inputs, targets):
- self.start = 0
- self.inputs = inputs
- self.targets = targets
- self.size = len(self.inputs)
- if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
- self.size = len(self.inputs[0])
- self.has_targets = targets is not None
-
- def __next__(self):
- return self.next()
-
- def reset(self):
- self.start = 0
-
- def next(self):
- if self.start < self.size:
- # output = []
- # if self.has_targets:
- # labels = self.targets
- # for i in range(self.num_outputs):
- # output.append(
- # labels[self.start:(self.start + self.batch_size), i])
- if self.has_targets:
- labels = self.targets[self.start:(self.start + self.batch_size), :]
- if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
- res_inputs = []
- for inp in self.inputs:
- res_inputs.append(
- inp[self.start:(self.start + self.batch_size)])
- else:
- res_inputs = self.inputs[self.start:(
- self.start + self.batch_size)]
- self.start += self.batch_size
- if self.has_targets:
- return (res_inputs, labels)
- return res_inputs
- else:
- self.reset()
- return self.next()
-
-
- if __name__ == '__main__':
- pass
- get_ipro_xml()
|