from pytorch_adapt.datasets import DataloaderCreator, get_office31 from pytorch_adapt.frameworks.ignite import CheckpointFnCreator, Ignite from pytorch_adapt.validators import AccuracyValidator, IMValidator, ScoreHistory, DiversityValidator, EntropyValidator, MultipleValidators from time import time import multiprocessing as mp data_root = "../datasets/pytorch-adapt/" batch_size = 32 for num_workers in range(2, mp.cpu_count(), 2): datasets = get_office31(["amazon"], ["webcam"], folder=data_root, return_target_with_labels=True, download=False) dc = DataloaderCreator(batch_size=batch_size, num_workers=num_workers, train_names=["train"], val_names=["src_train", "target_train", "src_val", "target_val", "target_train_with_labels", "target_val_with_labels"]) dataloaders = dc(**datasets) train_loader = dataloaders["train"] start = time() for epoch in range(1, 3): for i, data in enumerate(train_loader, 0): pass end = time() print("Finish with:{} second, num_workers={}".format(end - start, num_workers))