123456789101112131415161718192021222324252627282930 |
- '''A wrapper class for optimizer '''
- import numpy as np
-
- class ScheduledOptim(object):
- '''A simple wrapper class for learning rate scheduling'''
-
- def __init__(self, optimizer, d_model, n_warmup_steps):
- self.optimizer = optimizer
- self.d_model = d_model
- self.n_warmup_steps = n_warmup_steps
- self.n_current_steps = 0
-
- def step(self):
- "Step by the inner optimizer"
- self.optimizer.step()
-
- def zero_grad(self):
- "Zero out the gradients by the inner optimizer"
- self.optimizer.zero_grad()
-
- def update_learning_rate(self):
- ''' Learning rate scheduling per step '''
-
- self.n_current_steps += 1
- new_lr = np.power(self.d_model, -0.5) * np.min([
- np.power(self.n_current_steps, -0.5),
- np.power(self.n_warmup_steps, -1.5) * self.n_current_steps])
-
- for param_group in self.optimizer.param_groups:
- param_group['lr'] = new_lr
|