You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

vis.py 833B

12345678910111213141516171819202122232425262728293031
  1. import pickle
  2. from sklearn.decomposition import PCA
  3. from sklearn.manifold import TSNE
  4. import numpy as np
  5. import pandas as pd
  6. import matplotlib.pyplot as plt
  7. data = pickle.load(open('users_vectors_clustering.p', 'rb'))
  8. all_data = []
  9. clusters = []
  10. for c in data:
  11. for user in data[c]:
  12. all_data.append(user)
  13. clusters.append(c)
  14. # pca = PCA(n_components=2)
  15. # principalComponents = pca.fit_transform(users_dataset)
  16. # principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component 1', 'principal component 2'])
  17. algorithm = TSNE(n_components=2)
  18. components = algorithm.fit_transform(all_data)
  19. # components = pca.fit_transform(users_dataset)
  20. # print(components)
  21. plt.scatter(components[:, 0], components[:, 1], alpha=0.8, s=0.15, c=clusters)
  22. plt.savefig('results77.png')
  23. print('saved picture')