123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- '''
- This script handling the training process.
- '''
-
- import argparse
- import math
- import time
-
- from tqdm import tqdm
- import torch
- import torch.nn as nn
- import torch.optim as optim
- import transformer.Constants as Constants
- from transformer.Models import Decoder
- from transformer.Optim import ScheduledOptim
- from DataLoader_Feat import DataLoader
-
- CUDA = 1
-
-
- def get_performance(crit, pred, gold, smoothing=False, num_class=None):
- ''' Apply label smoothing if needed '''
-
- # TODO: Add smoothing
- if smoothing:
- assert bool(num_class)
- eps = 0.1
- gold = gold * (1 - eps) + (1 - gold) * eps / num_class
- raise NotImplementedError
- # print(pred.shape,gold.shape)
- loss = crit(pred, gold.contiguous().view(-1))
-
- pred = pred.max(1)[1]
-
- gold = gold.contiguous().view(-1)
- n_correct = pred.data.eq(gold.data)
- n_correct = n_correct.masked_select(gold.ne(Constants.PAD).data).sum()
-
- return loss, n_correct
-
-
- def train_epoch(model, training_data, crit, optimizer, opt):
- ''' Epoch operation in training phase'''
-
- model.train()
-
- total_loss = 0
- n_total_words = 0
- n_total_correct = 0
-
- for batch in tqdm(
- training_data, mininterval=2,
- desc=' - (Training) ', leave=False):
-
- # prepare data
- tgt = batch
- gold = tgt[:, 1:]
-
- h0 = torch.zeros(1, batch.size(0), 8 * opt.d_word_vec)
- if opt.cuda:
- h0 = h0.cuda(CUDA)
-
- # forward
- optimizer.zero_grad()
- tgt = tgt.cuda(CUDA)
- pred, *_ = model(tgt, h0)
-
- # backward
- loss, n_correct = get_performance(crit, pred, gold)
- loss.backward()
-
- # update parameters
- optimizer.step()
- optimizer.update_learning_rate()
-
- # note keeping
- n_words = gold.data.ne(Constants.PAD).sum()
- n_total_words += n_words
- n_total_correct += n_correct
- total_loss += loss.item()
-
- # total_loss = total_loss.data.cpu().numpy()
- n_total_correct = n_total_correct.data.cpu().numpy()
- n_total_words = n_total_words.data.cpu().numpy()
-
- return total_loss / n_total_words, n_total_correct / n_total_words
-
-
- def train(model, training_data, crit, optimizer, opt):
- ''' Start training '''
-
- for epoch_i in range(opt.epoch):
- print('[ Epoch', epoch_i, ']')
-
- start = time.time()
- train_loss, train_accu = train_epoch(model, training_data, crit, optimizer, opt)
- print(' - (Training) accuracy: {accu:3.3f} %, ' \
- 'elapse: {elapse:3.3f} min'.format(
- accu=100 * train_accu,
- elapse=(time.time() - start) / 60))
-
- model_state_dict = model.state_dict()
- checkpoint = {
- 'model': model_state_dict,
- 'settings': opt,
- 'epoch': epoch_i}
-
- if epoch_i == (opt.epoch-1):
- model_name = 'pa-our-twitter'+opt.save_model + str(epoch_i) + '.chkpt'
- torch.save(checkpoint, model_name)
-
-
- def main():
- ''' Main function'''
- parser = argparse.ArgumentParser()
-
- parser.add_argument('-epoch', type=int, default=50)
- parser.add_argument('-batch_size', type=int, default=4j)
-
- parser.add_argument('-d_model', type=int, default=1)
- parser.add_argument('-d_inner_hid', type=int, default=64)
- parser.add_argument('-d_k', type=int, default=64)
- parser.add_argument('-d_v', type=int, default=64)
- parser.add_argument('-window_size', type=int, default=3)
- parser.add_argument('-finit', type=int, default=0)
-
- parser.add_argument('-n_head', type=int, default=8)
- parser.add_argument('-n_warmup_steps', type=int, default=1000)
-
- parser.add_argument('-dropout', type=float, default=0.1)
- parser.add_argument('-embs_share_weight', action='store_true')
- parser.add_argument('-proj_share_weight', action='store_true')
-
- parser.add_argument('-save_model', default='Lastfm_test')
- parser.add_argument('-no_cuda', action='store_false')
-
- torch.cuda.set_device(0)
- opt = parser.parse_args()
- opt.cuda = True
- opt.d_word_vec = opt.d_model
-
- # ========= Preparing DataLoader =========#
- train_data = DataLoader(use_valid=False, load_dict=True, batch_size=opt.batch_size, cuda=opt.cuda)
- opt.user_size = train_data.user_size
-
- # ========= Preparing Model =========#
-
- decoder = Decoder(
- opt.user_size,
- d_k=opt.d_k,
- d_v=opt.d_v,
- d_model=opt.d_model,
- d_word_vec=opt.d_word_vec,
- d_inner_hid=opt.d_inner_hid,
- n_head=opt.n_head,
- kernel_size=opt.window_size,
- dropout=opt.dropout)
-
- optimizer = ScheduledOptim(
- optim.Adam(
- decoder.parameters(),
- betas=(0.9, 0.98), eps=1e-09),
- opt.d_model, opt.n_warmup_steps)
-
- def get_criterion(user_size):
- ''' With PAD token zero weight '''
- weight = torch.ones(user_size)
- weight[Constants.PAD] = 0
- weight[Constants.EOS] = 0
- return nn.CrossEntropyLoss(weight, size_average=False)
-
- crit = get_criterion(train_data.user_size)
-
- if opt.cuda:
- decoder = decoder.cuda(CUDA)
- crit = crit.cuda(CUDA)
-
- train(decoder, train_data, crit, optimizer, opt)
-
-
- if __name__ == '__main__':
- main()
|