123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import argparse
- import math
- import time
- import numpy
- from tqdm import tqdm
- import torch
- import torch.nn as nn
- import torch.optim as optim
- import transformer.Constants as Constants
- from transformer.Models import Decoder
- from transformer.Optim import ScheduledOptim
- from DataLoader_Feat import DataLoader
- import pickle
-
- CUDA = 1
- parser = argparse.ArgumentParser()
-
-
-
- def get_performance(crit, pred, gold):
- loss = crit(pred, gold.contiguous().view(-1))
- pred = pred.max(1)[1]
-
-
- gold = gold.contiguous().view(-1)
- n_correct = pred.data.eq(gold.data)
- n_correct = n_correct.masked_select(gold.ne(Constants.PAD).data).sum()
- return loss, n_correct
-
- def closest_cluster(input_vector):
- min_result = float('-inf')
- min_index = -1
- for cluster_ind, cluster_vec in clusters_vecs.items():
- result = numpy.dot(cluster_vec, input_vector)
- # print("result:{0}".format(result))
- if min_result < result:
- min_result = result
- min_index = cluster_ind
- return min_index
-
-
- def get_criterion(user_size):
- ''' With PAD token zero weight '''
- weight = torch.ones(user_size)
- weight[Constants.PAD] = 0
- weight[Constants.EOS] = 0
- return nn.CrossEntropyLoss(weight, size_average=False)
-
-
- parser.add_argument('-epoch', type=int, default=75)
-
- parser.add_argument('-batch_size', type=int, default=4) # CHANGE 8->32
- parser.add_argument('-d_model', type=int, default=1)
- parser.add_argument('-d_inner_hid', type=int, default=64)
- parser.add_argument('-d_k', type=int, default=64)
- parser.add_argument('-d_v', type=int, default=64)
- parser.add_argument('-window_size', type=int, default=3)
-
- parser.add_argument('-finit', type=int, default=0)
- parser.add_argument('-n_head', type=int, default=8)
-
- parser.add_argument('-n_warmup_steps', type=int, default=1000)
- parser.add_argument('-dropout', type=float, default=0.1)
- parser.add_argument('-embs_share_weight', action='store_true')
-
- parser.add_argument('-proj_share_weight', action='store_true')
- parser.add_argument('-save_model', default='Lastfm_test')
-
- parser.add_argument('-no_cuda', action='store_true')
- # torch.cuda.set_device(1)
- opt = parser.parse_args()
- opt.cuda = not opt.no_cuda
-
- opt.d_word_vec = opt.d_model
- # ========= Preparing DataLoader =========#
- train_data = DataLoader(use_valid=False, batch_size=opt.batch_size, cuda=opt.cuda)
-
- # ========= Preparing Model =========#
-
- opt.user_size = train_data.user_size
-
- model = Decoder(
- opt.user_size,
- d_k=opt.d_k,
- d_v=opt.d_v,
- d_model=opt.d_model,
- d_word_vec=opt.d_word_vec,
- d_inner_hid=opt.d_inner_hid,
- n_head=opt.n_head,
- kernel_size=opt.window_size,
- dropout=opt.dropout)
-
- optimizer = ScheduledOptim(
- optim.Adam(
- model.parameters(),
- betas=(0.9, 0.98), eps=1e-09),
- opt.d_model, opt.n_warmup_steps)
-
- model.load_state_dict(torch.load(f"pa-our-twitterLastfm_test49.chkpt")["model"])
- model.cuda(CUDA)
- crit = get_criterion(train_data.user_size)
- crit.cuda(CUDA)
- model.eval()
- total_loss = 0
- n_total_words = 0
- n_total_correct = 0
-
- idx2vec = open('/media/external_3TB/3TB/ramezani/pmoini/Trial/data3/idx2vec.pickle', 'rb')
- idx2vec = pickle.load(idx2vec)
-
- #clusters_vecs = pickle.load(open('../DeepDiffuseCode/user_embedding/dim_160/clusters_vectors.p', 'rb'))
- #user_to_cluster = pickle.load(open('../DeepDiffuseCode/user_embedding/dim_160/users_to_cluster.p', 'rb'))
- #id_to_user = pickle.load(open('./data/idx2u.pickle', 'rb'))
-
-
- for batch in tqdm(train_data, mininterval=2, desc=' - (Test) - ', leave=False):
-
- tgt = batch
- gold = tgt[:, 1:]
-
- h0 = torch.zeros(1, batch.size(0), 8 * opt.d_word_vec)
- if opt.cuda:
- h0 = h0.cuda(CUDA)
-
-
-
- pred, *_ = model(tgt, h0)
- loss, n_correct = get_performance(crit, pred, gold)
- # note keeping
- n_words = gold.data.ne(Constants.PAD).sum()
- n_total_words += n_words
- n_total_correct += n_correct
- # total_loss += loss.item()
-
-
- print(n_total_correct / n_total_words)
-
- # total_loss = total_loss.data.cpu().numpy()
- # n_total_correct = n_total_correct.data.cpu().numpy()
- # n_total_words = n_total_words.data.cpu().numpy()
|