|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import unicode_literals
- from __future__ import print_function
-
- import numpy as np
- import torch
-
- def compute_metrics(x):
- sx = np.sort(-x, axis=1)
- d = np.diag(-x)
- d = d[:, np.newaxis]
- ind = sx - d
- ind = np.where(ind == 0)
- ind = ind[1]
- metrics = {}
- metrics['R@1'] = float(np.sum(ind == 0)) * 100 / len(ind)
- metrics['R@5'] = float(np.sum(ind < 5)) * 100 / len(ind)
- metrics['R@10'] = float(np.sum(ind < 10)) * 100 / len(ind)
- metrics["MedianR"] = np.median(ind) + 1
- metrics["MeanR"] = np.mean(ind) + 1
- # metrics["cols"] = [int(i) for i in list(ind)]
- return metrics
-
- def print_computed_metrics(metrics):
- r1 = metrics['R@1']
- r5 = metrics['R@5']
- r10 = metrics['R@10']
- mr = metrics['MR']
- print('R@1: {:.4f} - R@5: {:.4f} - R@10: {:.4f} - Median R: {}'.format(r1, r5, r10, mr))
-
- # below two functions directly come from: https://github.com/Deferf/Experiments
- def tensor_text_to_video_metrics(sim_tensor, top_k = [1,5,10]):
- if not torch.is_tensor(sim_tensor):
- sim_tensor = torch.tensor(sim_tensor)
-
- # Permute sim_tensor so it represents a sequence of text-video similarity matrices.
- # Then obtain the double argsort to position the rank on the diagonal
- stacked_sim_matrices = sim_tensor.permute(1, 0, 2)
- first_argsort = torch.argsort(stacked_sim_matrices, dim = -1, descending= True)
- second_argsort = torch.argsort(first_argsort, dim = -1, descending= False)
-
- # Extracts ranks i.e diagonals
- ranks = torch.flatten(torch.diagonal(second_argsort, dim1 = 1, dim2 = 2))
-
- # Now we need to extract valid ranks, as some belong to inf padding values
- permuted_original_data = torch.flatten(torch.diagonal(sim_tensor, dim1 = 0, dim2 = 2))
- mask = ~ torch.logical_or(torch.isinf(permuted_original_data), torch.isnan(permuted_original_data))
- valid_ranks = ranks[mask]
- # A quick dimension check validates our results, there may be other correctness tests pending
- # Such as dot product localization, but that is for other time.
- #assert int(valid_ranks.shape[0]) == sum([len(text_dict[k]) for k in text_dict])
- if not torch.is_tensor(valid_ranks):
- valid_ranks = torch.tensor(valid_ranks)
- results = {f"R{k}": float(torch.sum(valid_ranks < k) * 100 / len(valid_ranks)) for k in top_k}
- results["MedianR"] = float(torch.median(valid_ranks + 1))
- results["MeanR"] = float(np.mean(valid_ranks.numpy() + 1))
- results["Std_Rank"] = float(np.std(valid_ranks.numpy() + 1))
- results['MR'] = results["MedianR"]
- return results
-
- def tensor_video_to_text_sim(sim_tensor):
- if not torch.is_tensor(sim_tensor):
- sim_tensor = torch.tensor(sim_tensor)
- # Code to avoid nans
- sim_tensor[sim_tensor != sim_tensor] = float('-inf')
- # Forms a similarity matrix for use with rank at k
- values, _ = torch.max(sim_tensor, dim=1, keepdim=True)
- return torch.squeeze(values).T
|