
A Training Algorithm forOptimal Margin Classi�ersBernhard E. Boser�EECS DepartmentUniversity of CaliforniaBerkeley, CA 94720boser@eecs.berkeley.edu Isabelle M. GuyonAT&T Bell Laboratories50 Fremont Street, 6th FloorSan Francisco, CA 94105isabelle@neural.att.com Vladimir N. VapnikAT&T Bell LaboratoriesCrawford Corner RoadHolmdel, NJ 07733vlad@neural.att.comAbstractA training algorithm that maximizes the mar-gin between the training patterns and the de-cision boundary is presented. The techniqueis applicable to a wide variety of classi�ac-tion functions, including Perceptrons, polyno-mials, and Radial Basis Functions. The ef-fective number of parameters is adjusted auto-matically to match the complexity of the prob-lem. The solution is expressed as a linear com-bination of supporting patterns. These are thesubset of training patterns that are closest tothe decision boundary. Bounds on the general-ization performance based on the leave-one-outmethod and the VC-dimension are given. Ex-perimental results on optical character recog-nition problems demonstrate the good gener-alization obtained when compared with otherlearning algorithms.1 INTRODUCTIONGood generalization performance of pattern classi�ers isachieved when the capacity of the classi�cation functionis matched to the size of the training set. Classi�ers witha large number of adjustable parameters and thereforelarge capacity likely learn the training set without error,but exhibit poor generalization. Conversely, a classi�erwith insu�cient capacity might not be able to learn thetask at all. In between, there is an optimal capacity ofthe classi�er which minimizes the expected generaliza-tion error for a given amount of training data. Bothexperimental evidence and theoretical studies [GBD92,�Part of this work was performed while B. Boser waswith AT&T Bell Laboratories. He is now at the Universityof California, Berkeley.

Moo92, GVB+92, Vap82, BH89, TLS89, Mac92] link thegeneralization of a classi�er to the error on the trainingexamples and the complexity of the classi�er. Meth-ods such as structural risk minimization [Vap82] varythe complexity of the classi�cation function in order tooptimize the generalization.In this paper we describe a training algorithm that au-tomatically tunes the capacity of the classi�cation func-tion by maximizing the margin between training exam-ples and class boundary [KM87], optionally after re-moving some atypical or meaningless examples from thetraining data. The resulting classi�cation function de-pends only on so-called supporting patterns [Vap82].These are those training examples that are closest tothe decision boundary and are usually a small subset ofthe training data.It will be demonstrated that maximizing the marginamounts to minimizing the maximum loss, as opposedto some average quantity such as the mean squared er-ror. This has several desirable consequences. The re-sulting classi�cation rule achieves an errorless separa-tion of the training data if possible. Outliers or mean-ingless patterns are identi�ed by the algorithm and cantherefore be eliminated easily with or without super-vision. This contrasts classi�ers based on minimizingthe mean squared error, which quietly ignore atypi-cal patterns. Another advantage of maximum marginclassi�ers is that the sensitivity of the classi�er to lim-ited computational accuracy is minimal compared toother separations with smaller margin. In analogy to[Vap82, HLW88] a bound on the generalization perfor-mance is obtained with the \leave-one-out" method. Forthe maximummargin classi�er it is the ratio of the num-ber of linearly independent supporting patterns to thenumber of training examples. This bound is tighter thana bound based on the capacity of the classi�er family.The proposed algorithm operates with a large class ofdecision functions that are linear in their parametersbut not restricted to linear dependences in the inputcomponents. Perceptrons [Ros62], polynomial classi-�ers, neural networks with one hidden layer, and RadialBasis Function (RBF) or potential function classi�ers[ABR64, BL88, MD89] fall into this class. As pointedout by several authors [ABR64, DH73, PG90], Percep-



trons have a dual kernel representation implementingthe same decision function. The optimal margin algo-rithm exploits this duality both for improved e�ciencyand 
exibility. In the dual space the decision functionis expressed as a linear combination of basis functionsparametrized by the supporting patterns. The support-ing patterns correspond to the class centers of RBFclassi�ers and are chosen automatically by the maxi-mum margin training procedure. In the case of polyno-mial classi�ers, the Perceptron representation involvesan untractable number of parameters. This problem isovercome in the dual space representation, where theclassi�cation rule is a weighted sum of a kernel func-tion [Pog75] for each supporting pattern. High orderpolynomial classi�ers with very large training sets cantherefore be handled e�ciently with the proposed algo-rithm.The training algorithm is described in Section 2. Section3 summarizes important properties of optimal marginclassi�ers. Experimental results are reported in Section4.2 MAXIMUM MARGIN TRAININGALGORITHMThe maximum margin training algorithm �nds a deci-sion function for pattern vectors x of dimension n be-longing to either of two classes A and B. The input tothe training algorithm is a set of p examples xi withlabels yi:(x1; y1); (x2; y2); (x3; y3); : : : ; (xp; yp) (1)where � yk = 1 if xk 2 class Ayk = �1 if xk 2 class B:From these training examples the algorithm �nds theparameters of the decision functionD(x) during a learn-ing phase. After training, the classi�cation of unknownpatterns is predicted according to the following rule:x 2 A if D(x) > 0x 2 B otherwise. (2)The decision functions must be linear in their parame-ters but are not restricted to linear dependences of x.These functions can be expressed either in direct, or indual space. The direct space notation is identical to thePerceptron decision function [Ros62]:D(x) = NXi=1 wi'i(x) + b: (3)In this equation the 'i are prede�ned functions of x, andthe wi and b are the adjustable parameters of the deci-sion function. Polynomial classi�ers are a special case ofPerceptrons for which 'i(x) are products of componentsof x.In the dual space, the decision functions are of the formD(x) = pXk=1�kK(xk;x) + b; (4)

The coe�cients �k are the parameters to be adjustedand the xk are the training patterns. The function Kis a prede�ned kernel, for example a potential function[ABR64] or any Radial Basis Function [BL88, MD89].Under certain conditions [CH53], symmetric kernelspossess �nite or in�nite series expansions of the formK(x;x0) =Xi 'i(x)'i(x0): (5)In particular, the kernel K(x;x0) = (x � x0 + 1)q cor-responds to a polynomial expansion '(x) of order q[Pog75].Provided that the expansion stated in equation 5 exists,equations 3 and 4 are dual representations of the samedecision function andwi = pXk=1�k'i(xk): (6)The parameters wi are called direct parameters, and the�k are referred to as dual parameters.The proposed training algorithm is based on the \gener-alized portrait" method described in [Vap82] that con-structs separating hyperplanes with maximum margin.Here this algorithm is extended to train classi�ers lin-ear in their parameters. First, the margin between theclass boundary and the training patterns is formulatedin the direct space. This problem description is thentransformed into the dual space by means of the La-grangian. The resulting problem is that of maximizinga quadratic form with constraints and is amenable toe�cient numeric optimization algorithms [Lue84].2.1 MAXIMIZING THE MARGIN IN THEDIRECT SPACEIn the direct space the decision function isD(x) = w �'(x) + b; (7)where w and '(x) are N dimensional vectors and b isa bias. It de�nes a separating hyperplane in '-space.The distance between this hyperplane and pattern xis D(x)=kwk (Figure 1). Assuming that a separationof the training set with margin M between the classboundary and the training patterns exists, all trainingpatterns ful�ll the following inequality:ykD(xk)kwk �M: (8)The objective of the training algorithm is to �nd theparameter vector w that maximizesM :M� = maxw;kwk=1M (9)subject to ykD(xk) �M; k = 1; 2; : : : ; p:The bound M� is attained for those patterns satisfyingmink ykD(xk) =M�: (10)
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1Figure 1: Maximum margin linear decision function D(x) = w � x+ b (' = x). The gray levels encode the absolutevalue of the decision function (solid black corresponds to D(x) = 0). The numbers indicate the supporting patterns.These patterns are called the supporting patterns of thedecision boundary.A decision function with maximummargin is illustratedin �gure 1. The problem of �nding a hyperplane in'-space with maximum margin is therefore a minimaxproblem: maxw;kwk=1mink ykD(xk): (11)The norm of the parameter vector in equations 9 and11 is �xed to pick one of an in�nite number of possiblesolutions that di�er only in scaling. Instead of �xingthe norm of w to take care of the scaling problem, theproduct of the margin M and the norm of a weightvector w can be �xed.Mkwk = 1: (12)Thus, maximizing the margin M is equivalent to mini-mizing the norm kwk.1 Then the problem of �nding amaximummargin separating hyperplane w� stated in 9reduces to solving the following quadratic problem:minw kwk2 (13)under conditions ykD(xk) � 1; k = 1; 2; : : :; p:The maximummargin is M� = 1=kw�k.In principle the problem stated in 13 can be solved di-rectly with numerical techniques. However, this ap-proach is impractical when the dimensionality of the'-space is large or in�nite. Moreover, no information isgained about the supporting patterns.1If the training data is not linearly separable the maxi-mum margin may be negative. In this case, Mkwk = �1is imposed. Maximizing the margin is then equivalent tomaximizing kwk.

2.2 MAXIMIZING THE MARGIN IN THEDUAL SPACEProblem 13 can be transformed into the dual space bymeans of the Lagrangian [Lue84]L(w; b;�) = 12kwk2 � pXk=1�k [ykD(xk)� 1](14)subject to �k � 0; k = 1; 2; : : :; p:The factors �k are called Lagrange multipliers or K�uhn-Tucker coe�cients and satisfy the conditions�k (ykD(xk)� 1) = 0; k = 1; 2; : : : ; p: (15)The factor one half has been included for cosmetic rea-sons; it does not change the solution.The optimization problem 13 is equivalent to searchinga saddle point of the function L(w; b;�). This saddlepoint is a the minimum of L(w; b;�) with respect to w,and a maximum with respect to � (�k � 0). At thesolution, the following necessary condition is met:@L@w = w� � pXk=1��kyk'k = 0;hence w� = PXk=1��kyk'k: (16)The patterns which satisfy ykD(xk) = 1 are the sup-porting patterns. According to equation 16, the vectorw� that speci�es the hyperplane with maximummarginis a linear combination of only the supporting patterns,which are those patterns for which ��k 6= 0. Usually thenumber of supporting patterns is much smaller than thenumber p of patterns in the training set.



The dependence of the Lagrangian L(w; b;�) on theweight vector w is removed by substituting the expan-sion of w� given by equation 16 for w. Further trans-formations using 3 and 5 result in a Lagrangian whichis a function of the parameters � and the bias b only:J(�; b) = pXk=1�k (1� byk)� 12� �H ��; (17)subject to �k � 0; k = 1; 2; : : : ; p:Here H is a square matrix of size p� p with elementsHkl = ykylK(xk;xl):In order for a unique solution to exist,H must be posi-tive de�nite. For �xed bias b, the solution�� is obtainedby maximizing J(�; b) under the conditions �k � 0.Based on equations 7 and 16, the resulting decision func-tion is of the formD(x) = w� �'(x) + b (18)= Xk yk��kK(xk;x) + b; ��k � 0;where only the supporting patterns appear in the sumwith nonzero weight.The choice of the bias b gives rise to several variants ofthe algorithm. The two considered here are1. The bias can be �xed a priori and not subjectedto training. This corresponds to the \GeneralizedPortrait Technique" described in [Vap82].2. The cost function 17 can be optimized with respecttow and b. This approach gives the largest possiblemarginM� in '-space [VC74].In both cases the solution is found with standard non-linear optimization algorithms for quadratic forms withlinear constraints [Lue84, Loo72]. The second approachgives the largest possible margin. There is no guaran-tee, however, that this solution exhibits also the bestgeneralization performance.A strategy to optimize the margin with respect to bothw and b is described in [Vap82]. It solves problem 17 fordi�erences of pattern vectors to obtain �� independentof the bias, which is computed subsequently. The mar-gin in'-space is maximized when the decision boundaryis halfway between the two classes. Hence the bias b�is obtained by applying 18 to two arbitrary supportingpatterns xA 2 class A and xB 2 class B and taking intoaccount that D(xA) = 1 and D(xB) = �1.b� = �12 (w� �'(xA) +w� �'(xB)) (19)= �12 pXk=1 yk��k [K(xA;xk) +K(xB ;xk)] :The dimension of problem 17 equals the size of the train-ing set, p. To avoid the need to solve a dual problem of

exceedingly large dimensionality, the training data is di-vided into chunks that are processed iteratively [Vap82].The maximum margin hypersurface is constructed forthe �rst chunk and a new training set is formed con-sisting of the supporting patterns from the solution andthose patterns xk in the second chunk of the trainingset for which ykD(xk) < 1 � �. A new classi�er istrained and used to construct a training set consistingof supporting patterns and examples from the �rst threechunks which satisfy ykD(xk) < 1 � �. This process isrepeated until the entire training set is separated.3 PROPERTIES OF THEALGORITHMIn this Section, we highlight some important aspects ofthe optimal margin training algorithm. The descriptionis split into a discussion of the qualities of the resultingclassi�er, and computational considerations. Classi�ca-tion performance advantages over other techniques willbe illustrated in the Section on experimental results.3.1 PROPERTIES OF THE SOLUTIONSince maximizing the margin between the decisionboundary and the training patterns is equivalent tomaximizing a quadratic form in the positive quadrant,there are no local minima and the solution is alwaysunique if H has full rank. At the optimumJ(��) = 12kw�k2 = 12 (M�)2 = 12 pXk=1��k: (20)The uniqueness of the solution is a consequence of themaximum margin cost function and represents an im-portant advantage over other algorithms for which thesolution depends on the initial conditions or other pa-rameters that are di�cult to control.Another bene�t of the maximummargin objective is itsinsensitivity to small changes of the parameters w or�. Since the decision function D(x) is a linear func-tion of w in the direct, and of � in the dual space, theprobability of misclassi�cations due to parameter vari-ations of the components of these vectors is minimizedfor maximummargin. The robustness of the solution|and potentially its generalization performance|can beincreased further by omitting some supporting patternsfrom the solution. Equation 20 indicates that the largestincrease in the maximum margin M� occurs when thesupporting patterns with largest �k are eliminated. Theelimination can be performed automatically or with as-sistance from a supervisor. This feature gives rise toother important uses of the optimum margin algorithmin database cleaning applications [MGB+92].Figure 2 compares the decision boundary for a maxi-mum margin and mean squared error (MSE) cost func-tions. Unlike the MSE based decision function whichsimply ignores the outlier, optimalmargin classi�ers arevery sensitive to atypical patterns that are close to the
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1Figure 2: Linear decision boundary for MSE (left) and maximummargin cost functions (middle, right) in the presenceof an outlier. In the rightmost picture the outlier has been removed. The numbers re
ect the ranking of supportingpatterns according to the magnitude of their Lagrange coe�cient �k for each class individually.decision boundary. These examples are readily iden-ti�ed as those with the largest �k and can be elimi-nated either automatically or with supervision. Hence,optimal margin classi�ers give complete control overthe handling of outliers, as opposed to quietly ignoringthem.The optimummargin algorithm performs automatic ca-pacity tuning of the decision function to achieve goodgeneralization. An estimate for an upper bound of thegeneralization error is obtained with the \leave-one-out"method: A pattern xk is removed from the training set.A classi�er is then trained on the remaining patternsand tested on xk. This process is repeated for all ptraining patterns. The generalization error is estimatedby the ratio of misclassi�ed patterns over p. For a max-imum margin classi�er, two cases arise: If xk is not asupporting pattern, the decision boundary is unchangedand xk will be classi�ed correctly. If xk is a supportingpattern, two cases are possible:1. The pattern xk is linearly dependent on the othersupporting patterns. In this case it will be classi�edcorrectly.2. xk is linearly independent from the other support-ing patterns. In this case the outcome is uncertain.In the worst case m0 linearly independent support-ing patterns are misclassi�ed when they are omit-ted from the training data.Hence the frequency of errors obtained by this methodis at most m0=p, and has no direct relationship withthe number of adjustable parameters. The number oflinearly independent supporting patterns m0 itself isbounded by min(N; p). This suggests that the numberof supporting patterns is related to an e�ective capac-ity of the classi�er that is usually much smaller than theVC-dimension, N + 1 [Vap82, HLW88].In polynomial classi�ers, for example, N � nq , wheren is the dimension of x-space and q is the order of the

polynomial. In practice, m � p � N , i. e. the numberof supporting patterns is much smaller than the dimen-sion of the '-space. The capacity tuning realized by themaximum margin algorithm is essential to get general-ization with high-order polynomial classi�ers.3.2 COMPUTATIONAL CONSIDERATIONSSpeed and convergence are important practical consid-erations of classi�cation algorithms. The bene�t of thedual space representation to reduce the number of com-putations required for example for polynomial classi�ershas been pointed out already. In the dual space, eachevaluation of the decision functionD(x) requires m eval-uations of the kernel function K(xk;x) and forming theweighted sum of the results. This number can be fur-ther reduced through the use of appropriate search tech-niques which omit evaluations of K that yield negligiblecontributions to D(x) [Omo91].Typically, the training time for a separating surfacefrom a database with several thousand examples is a fewminutes on a workstation, when an e�cient optimiza-tion algorithm is used. All experiments reported in thenext section on a database with 7300 training examplestook less than �ve minutes of CPU time per separatingsurface. The optimization was performed with an al-gorithm due to Powell that is described in [Lue84] andavailable from public numerical libraries.Quadratic optimization problems of the form stated in17 can be solved in polynomial time with the Ellipsoidmethod [NY83]. This technique �nds �rst a hyperspacethat is guaranteed to contain the optimum; then thevolume of this space is reduced iteratively by a constantfraction. The algorithm is polynomial in the number offree parameters p and the encoding size (i. e. the accu-racy of the problem and solution). In practice, however,algorithms without guaranteed polynomial convergenceare more e�cient.
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alpha=0.512 alpha=0.445 alpha=0.444 alpha=0.429Figure 3: Supporting patterns from database DB2 for class 2 before cleaning. The patterns are ranked according to�k.4 EXPERIMENTAL RESULTSThe maximum margin training algorithm has beentested on two databases with images of handwrittendigits. The �rst database (DB1) consists of 1200 cleanimages recorded from ten subjects. Half of this data isused for training, and the other half is used to evaluatethe generalization performance. A comparative analy-sis of the performance of various classi�cation methodson DB1 can be found in [GVB+92, GPP+89, GBD92].The other database (DB2) used in the experiment con-sists of 7300 images for training and 2000 for testingand has been recorded from actual mail pieces. Resultsfor this data have been reported in several publications,see e.g. [CBD+90]. The resolution of the images in bothdatabases is 16 by 16 pixels.In all experiments, the margin is maximized with re-spect to w and b. Ten hypersurfaces, one per class, areused to separate the digits. Regardless of the di�cultyof the problem|measured for example by the number ofsupporting patterns found by the algorithm|the samesimilarity function K(x;x0) and preprocessing is usedfor all hypersurfaces of one experiment. The results ob-tained with di�erent choices of K corresponding to lin-ear hyperplanes, polynomial classi�ers, and basis func-tions are summarized below. The e�ect of smoothing isinvestigated as a simple form of preprocessing.For linear hyperplane classi�ers, corresponding to thesimilarity function K(x;x0) = x �x0, the algorithm �ndsan errorless separation for database DB1. The percent-age of errors on the test set is 3.2%. This result com-pares favorably to hyperplane classi�ers which minimizethe mean squared error (backpropagation or pseudo-inverse), for which the error on the test set is 12.7%.Database DB2 is also linearly separable but containsseveral meaningless patterns. Figure 3 shows the sup-porting patterns with large Lagrange multipliers �k forthe hyperplane for class 2. The percentage of misclassi-�cations on the test set of DB2 drops from 15:2% with-out cleaning to 10:5% after removing meaningless andambiguous patterns.Better performance has been achieved with bothdatabases using multilayer neural networks or other

classi�cation functions with higher capacity than linearsubdividing planes. Tests with polynomial classi�ers oforder q, for which K(x;x0) = (x � x0 + 1)q, give thefollowing error rates and average number of support-ing patterns per hypersurface, <m>. This average iscomputed as the total number of supporting patternsdivided by the number of decision functions. Patternsthat support more than one hypersurface are countedonly once in the total. For comparison, the dimensionN of '-space is also listed.DB1 DB2q error <m> error <m> N1 (linear) 3.2% 36 10.5% 97 2562 1.5% 44 5.8% 89 3 � 1043 1.7% 50 5.2% 79 8 � 1074 4.9% 72 4 � 1095 5.2% 69 1 � 1012The results obtained for DB2 show a strong decreaseof the number of supporting patterns from a linear toa third order polynomial classi�cation function and anequivalently signi�cant decrease of the error rate. Fur-ther increase of the order of the polynomial has little ef-fect on either the number of supporting patterns or theperformance, unlike the dimension of '-space, N , whichincreases exponentially. The lowest error rate, 4.9% isobtained with a forth order polynomial and is slightlybetter than the 5.1% reported for a �ve layer neural net-work with a sophisticated architecture [CBD+90], whichhas been trained and tested on the same data.In the above experiment, the performance changes dras-tically between �rst and second order polynomials. Thismay be a consequence of the fact that maximum VC-dimension of an q-th order polynomial classi�er is equalto the dimension n of the patterns to the q-th powerand thus much larger than n. A more gradual changeof the VC-dimension is possible when the function K ischosen to be a power series, for exampleK(x;x0) = exp (
 x � x0) � 1: (21)In this equation the parameter 
 is used to vary the VC-dimension gradually. For small values of 
, equation21 approaches a linear classi�er with VC-dimension at
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3Figure 4: Decision boundaries for maximummargin classi�ers with second order polynomial decision rule K(x;x0) =(x � x0 + 1)2 (left) and an exponential RBF K(x;x0) = exp(�kx� x0k=2) (middle). The rightmost picture shows thedecision boundary of a two layer neural network with two hidden units trained with backpropagation.most equal to the dimension n of the patterns plus one.Experiments with database DB1 lead to a slightly bet-ter performance than the 1.5% obtained with a secondorder polynomial classi�er:
 DB10.25 2.3%0.50 2.2%0.75 1.3%1.00 1.5%When K(x;x0) is chosen to be the hyperbolic tangent,the resulting classi�er can be interpreted as a neuralnetwork with one hidden layer withm hidden units. Thesupporting patterns are the weights in the �rst layer,and the coe�cients �k the weights of the second, linearlayer. The number of hidden units is chosen by thetraining algorithm to maximize the margin between theclasses A and B. Substituting the hyperbolic tangent forthe exponential function did not lead to better resultsin our experiments.The importance of a suitable preprocessing to incorpo-rate knowledge about the task at hand has been pointedout by many researchers. In optical character recogni-tion, preprocessings that introduce some invariance toscaling, rotation, and other distortions are particularlyimportant [SLD92]. As in [GVB+92], smoothing is usedto achieve insensitivity to small distortions. The tablebelow lists the error on the test set for di�erent amountsof smoothing. A second order polynomial classi�er wasused for database DB1, and a forth order polynomial forDB2. The smoothing kernel is Gaussian with standarddeviation �. DB1 DB2� error <m> error <m>no smoothing 1.5% 44 4.9% 720.5 1.3% 41 4.6% 730.8 0.8% 36 5.0% 791.0 0.3% 31 6.0% 831.2 0.8% 31

The performance improved considerably for DB1. ForDB2 the improvement is less signi�cant and the opti-mum was obtained for less smoothing than for DB1.This is expected since the number of training patternsin DB2 is much larger than in DB1 (7000 versus 600). Ahigher performance gain can be expected for more selec-tive hints than smoothing, such as invariance to smallrotations or scaling of the digits [SLD92].Better performance might be achieved with other sim-ilarity functions K(x;x0). Figure 4 shows the decisionboundary obtained with a second order polynomial anda radial basis function (RBF) maximum margin classi-�er with K(x;x0) = exp (�kx� x0k=2). The decisionboundary of the polynomial classi�er is much closer toone of the two classes. This is a consequence of the non-linear transform from'-space to x-space of polynomialswhich realizes a position dependent scaling of distance.Radial Basis Functions do not exhibit this problem. Thedecision boundary of a two layer neural network trainedwith backpropagation is shown for comparison.5 CONCLUSIONSMaximizing the margin between the class boundaryand training patterns is an alternative to other train-ing methods optimizing cost functions such as the meansquared error. This principle is equivalent to minimiz-ing the maximum loss and has a number of importantfeatures. These include automatic capacity tuning ofthe classi�cation function, extraction of a small num-ber of supporting patterns from the training data thatare relevant for the classi�cation, and uniqueness of thesolution. They are exploited in an e�cient learning al-gorithm for classi�ers linear in their parameters withvery large capacity, such as high order polynomial orRBF classi�ers. Key is the representation of the deci-sion function in a dual space which is of much lowerdimensionality than the feature space.The e�ciency and performance of the algorithm havebeen demonstrated on handwritten digit recognition
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