
Encyclopedia of
Machine
Learning and
Data Mining
Second Edition

Claude Sammut
Geoffrey I. Webb
Editors

Encyclopedia of Machine Learning
and Data Mining

Claude Sammut • Geoffrey I. Webb
Editors

Encyclopedia
of Machine Learning
and Data Mining

Second Edition

With 263 Figures and 34 Tables

123

Editors
Claude Sammut
The University of New South Wales
Sydney, NSW
Australia

Geoffrey I. Webb
Faculty of Information Technology
Monash University
Melbourne, VIC, Australia

ISBN 978-1-4899-7685-7 ISBN 978-1-4899-7687-1 (eBook)
ISBN 978-1-4899-7686-4 (print and electronic bundle)
DOI 10.1007/978-1-4899-7687-1

Library of Congress Control Number: 2016958560

© Springer Science+Business Media New York 2011, 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

Preface

Machine learning and data mining are rapidly developing fields. Following
the success of the first edition of the Encyclopedia of Machine Learning,
we are delighted to bring you this updated and expanded edition. We have
expanded the scope, as reflected in the revised title Encyclopedia of Machine
Learning and Data Mining, to encompass more of the broader activity that
surrounds the machine learning process. This includes new articles in such
diverse areas as anomaly detection, online controlled experiments, and record
linkage as well as substantial expansion of existing entries such as data
preparation. We have also included new entries on key recent developments
in core machine learning, such as deep learning. A thorough review has also
led to updating of much of the existing content.

This substantial tome is the product of an intense effort by many individ-
uals. We thank the Editorial Board and the numerous contributors who have
provided the content. We are grateful to the Springer team of Andrew Spencer,
Michael Hermann, and Melissa Fearon who have shepherded us through the
long process of bringing this second edition to print. We are also grateful to
the production staff who have turned the content into its final form.

We are confident that this revised encyclopedia will consolidate the first
edition’s place as a key reference source for the machine learning and data
mining communities.

v

Contributors

Pieter Abbeel EECS Department, UC Berkeley, Stanford, CA, USA

Zahraa S. Abdallah Faculty of Information Technology, Monash Univer-
sity, Clayton, VIC, Australia

Charu C. Aggarwal IBM T. J. Watson Research Center, Hawthorne, NY,
USA

Biliana Alexandrova-Kabadjova Banco de México, Mexico City, Mexico

Periklis Andritsos Faculty of Information, University of Toronto, Toronto,
ON, Canada

Peter Auer Department of Information Technology, University of Leoben,
Leoben, Austria

J. Andrew Bagnell Carnegie Mellon University, Pittsburgh, PA, USA

Michael Bain University of New South Wales, Sydney, NSW, Australia

Arindam Banerjee University of Minnesota, Minneapolis, MN, USA

Andrew G. Barto University of Massachusetts, Amherst, MA, USA

Rohan A. Baxter Australian Taxation Office, Sydney, NSW, Australia

Bettina Berendt KU Leuven, Leuven, Belgium

Indrajit Bhattacharya IBM India Research Laboratory, New Delhi, India

Mustafa Bilgic University of Maryland, College Park, MD, USA

Mauro Birattari Université Libre de Bruxelles, Brussels, Belgium

Hendrik Blockeel Katholieke Universiteit Leuven, Heverlee, Leuven,
Belgium

Leiden Institute of Advanced Computer Science, Heverlee, Belgium

Shawn Bohn Pacific Northwest National Laboratory, Richland, WA, USA

Antal van den Bosch Centre for Language Studies, Radboud University,
Nijmegen, The Netherlands

Luka Bradesko Jožef Stefan Institute, Ljubljana, Slovenia

Janez Brank Jožef Stefan Insitute, Ljubljana, Slovenia

vii

viii Contributors

Jürgen Branke University of Warwick, Coventry, UK

Pavel Brazdil LIAAD-INESC Tec/Faculdade de Economia, University of
Porto, Porto, Portugal

Gavin Brown The University of Manchester, Manchester, UK

Ivan Bruha McMaster University, Hamilton, ON, Canada

Dariusz Brzezinski Institute of Computing Sciences, Poznan University of
Technology, Poznan, Poland

Martin D. Buhmann Justus-Liebig University, Gießen, Germany

Wray L. Buntine Statistical Machine Learning Program, NICTA, Canberra,
ACT, Australia

Faculty of Information Technology, Monash University, Clayton, VIC,
Australia

Tibério Caetano Statistical Machine Learning Program, NICTA, Canberra,
ACT, Australia

Nicola Cancedda Xerox Research Centre Europe, Meylan, France

Gail A. Carpenter Department of Mathematics & Center for Adaptive
Systems, Boston University, Boston, MA, USA

John Case University of Delaware, Newark, DE, USA

Tonatiuh Peña Centeno German Center for Neurodegenerative Diseases,
Banco de México, Mexico City, Mexico

Deepayan Chakrabarti Yahoo! Research, Sunnyvale, CA, USA

Philip K. Chan Florida Institute of Technology, Melbourne, FL, USA

Varun Chandola State University of New York at Buffalo, Buffalo, NY,
USA

Zhiyuan Chen University of Illinois at Chicago, Chicago, IL, USA

Peter Christen Research School of Computer Science, The Australian
National University, Canberra, ACT, Australia

Massimiliano Ciaramita Yahoo! Research Barcelona, Barcelona, Spain

Adam Coates Stanford University, Stanford, CA, USA

David Cohn Mountain View, CA, USA

Edinburgh, UK

David Corne Herriot-Watt University, Edinburgh, UK

Susan Craw Robert Gordon University, Aberdeen, UK

James Cussens University of York, Heslington, UK

Artur Czumaj University of Warwick, Coventry, UK

Contributors ix

Walter Daelemans CLIPS University of Antwerp, Antwerpen, Belgium

Sanjoy Dasgupta University of California, San Diego, La Jolla, CA, USA

Gerald DeJong University of Illinois at Urbana, Urbana, IL, USA

Marco Dorigo Université Libre de Bruxelles, Brussels, Belgium

Kurt Driessens Maastricht University, Maastricht, The Netherlands

Chris Drummond National Research Council of Canada, Ottawa, ON,
Canada

Lan Du Faculty of Information Technology, Monash University, Clayton,
VIC, Australia

Yaakov Engel University of Alberta, Edmonton, AB, Canada

Scott E. Fahlman Carnegie Mellon University, Pittsburgh, PA, USA

Alan Fern Science, Oregon State University, Corvallis, OR, USA

Peter A. Flach Department of Computer Science, University of Bristol,
Bristol, UK

Pierre Flener Department of Information Technology, Uppsala University,
Uppsala, Sweden

Blaž Fortuna Jozef Stefan Institute, Ljubljana, Slovenia

Johannes Fürnkranz Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland

Department of Information Technology, University of Leoben, Leoben,
Austria

Thomas Gärtner Fraunhofer IAIS, Schloss Birlinghoven, University of
Bonn, Sankt Augustin, Germany

João Gama University of Porto, Porto, Portugal

Alma Lilia Garcı́a-Almanza Directorate of Regulation and Supervision,
Banco de México, Mexico City, Mexico

Gemma C. Garriga Universite Pierre et Marie Curie, Paris, France

Wulfram Gerstner Brain Mind Institute, Lausanne EPFL, Lausanne,
Switzerland

Lise Getoor University of Maryland, College Park, MD, USA

Christophe Giraud-Carrier Department of Computer Science, Brigham
Young University, Provo, UT, USA

Marko Grobelnik Artificial Intelligence Laboratory, Jožef Stefan Insitute,
Ljubljana, Slovenia

Stephen Grossberg Center for Adaptive Systems, Graduate Program
in Cognitive and Neural Systems, Department of Mathematics, Boston
University, Boston, MA, USA

x Contributors

Eyke Hüllermeier Department of Computer Science, Paderborn University,
Paderborn, Germany

Jiawei Han University of Illinois at Urbana-Champaign, Urbana, IL, USA

Julia Handl University of Manchester, Manchester, UK

Michael Harries Citrix Labs, Advanced Products Group, North Ryde,
NSW, Australia

Jun He Aberystwyth University, Aberystwyth, UK

Bernhard Hengst University of New South Wales, Sydney, NSW, Australia

Tom Heskes Institute for Computing and Information Sciences, Radboud
University Nijmegen, Nijmegen, The Netherlands

Geoffrey Hinton University of Toronto, Toronto, ON, Canada

James Hodson AI for Good Foundation, New York, NY, USA

Lawrence Holder Washington State University, Pullman, WA, USA

Tamás Horváth Fraunhofer IAIS, Schloss Birlinghoven, University of
Bonn, Sankt Augustin, Germany

Phil Husbands Department of Informatics, Centre for Computational
Neuroscience and Robotics, University of Sussex, Brighton, UK

Marcus Hutter Research School of Computer Science, Australian National
University, Canberra, ACT, Australia

Christian Igel Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

Sanjay Jain School of Computing, National University of Singapore,
Singapore, Singapore

Szymon Jaroszewicz Institute of Computer Science, Polish Academy of
Sciences, Warsaw, Poland

Tommy R. Jensen Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria

Xin Jin PayPal Inc., San Jose, CA, USA

Antonis C. Kakas University of Cyprus, Nicosia, Cyprus

Subbarao Kambhampati Arizona State University, Tempe, AZ, USA

Anne Kao Boeing Phantom Works, Seattle, WA, USA

Samuel Kaski Helsinki University of Technology, Helsinki, Finland

Carlos Kavka University of Trieste, Trieste, Italy

James Kennedy U.S. Bureau of Labor Statistics, Washington, DC, USA

Eamonn Keogh University of California-Riverside, Riverside, CA, USA

Contributors xi

Kristian Kersting Technische Universität Dortmund, Dortmund, Germany

Knowledge Discovery, Fraunhofer IAIS, Sankt Augustin, Germany

Joshua Knowles University of Manchester, Manchester, UK

Aleksander KoŁcz Microsoft One Microsoft Way, Redmond, WA, USA

Ron Kohavi Application Services Group, Microsoft, Bellevue, WA, USA

Kevin B. Korb Clayton School of Information Technology, Monash
University, Clayton, VIC, Australia

Petra Kralj Novak Department of Knowledge Technologies, Jožef Stefan
Institute, Ljubljana, Slovenia

Stefan Kramer Technische Universität München, Garching b. München,
Germany

Krzysztof Krawiec Poznan University of Technology, Poznan, Poland

Vipin Kumar University of Minnesota, Minneapolis, MN, USA

Nicolas Lachiche University of Strasbourg, Strasbourg, France

Michail G. Lagoudakis Technical University of Crete, Chania, Greece

John Langford Microsoft Research, New York, NY, USA

Pier Luca Lanzi Politecnico di Milano, Milano, Italy

Nada Lavrač Department of Knowledge Technologies, Jožef Stefan
Institute, Ljubljana, Slovenia

University of Nova Gorica, Nova Gorica, Slovenia

Gregor Leban Jozef Stefan Institute, Ljubljana, Slovenia

Christina Leslie Memorial Sloan Kettering Cancer Research Center,
New York, NY, USA

Hang Li Huawei Technologies, Hong Kong, China

Shiau Hong Lim University of Illinois, Champaign, IL, USA

Charles X. Ling The University of Western Ontario, London, ON, Canada

Bin Liu Monash University, Clayton, VIC, Australia

Bing Liu University of Illinois at Chicago, Chicago, IL, USA

Huan Liu Arizona State University, Tempe, AZ, USA

John Lloyd The Australian National University, Canberra, ACT, Australia

Roger Longbotham Data and Decision Sciences Group, Microsoft,
Redmond, WA, USA

Shie Mannor Israel Institute of Technology, Haifa, Israel

Serafı́n Martı́nez-Jaramillo Directorate of Financial System Risk
Analysis, Banco de México, Mexico City, Mexico

xii Contributors

Eric Martin University of New South Wales, Sydney, NSW, Australia

Stan Matwin University of Ottawa, Ottawa, ON, Canada

Polish Academy of Sciences, Warsaw, Poland

Julian McAuley Computer Science Department, University of California,
San Diego, CA, USA

Statistical Machine Learning Program, NICTA, Canberra, ACT, Australia

Franziska Meier University of Southern California, Los Angeles, CA, USA

Prem Melville IBM T. J. Watson Research Center, Yorktown Heights, NY,
USA

Pietro Michelucci Strategic Analysis, Inc., Arlington, VA, USA

Rada Mihalcea University of North Texas, Denton, TX, USA

Risto Miikkulainen Department of Computer Science, The University of
Texas at Austin, Austin, TX, USA

Dunja Mladenić Artificial Intelligence Laboratory, Jožef Stefan Insitute,
Ljubljana, Slovenia

Katharina Morik Technische Universität Dortmund, Dortmund, Germany

Jun Morimoto Advanced Telecommunication Research Institute Interna-
tional (ATR), Kyoto, Japan

Abdullah Mueen University California-Riverside, Riverside, CA, USA

Paul Munro University of Pittsburgh, Pittsburgh, PA, USA

Ion Muslea Language Weaver, Inc., Marina del Rey, CA, USA

Galileo Namata University of Maryland, College Park, MD, USA

Sriraam Natarajan Department of Computer Science, University of
Wisconsin Medical School, Madison, WI, USA

School of Informatics and Computing, Indiana University, Bloomington, IN,
USA

Andrew Y. Ng Computer Science Department, Stanford University,
Stanford, CA, USA

Stanford University, Stanford, CA, USA

Siegfried Nijssen Katholieke Universiteit Leuven, Leuven, Belgium

William Stafford Noble Department of Genome Science/Department of
Computer Science and Engineering, University of Washington, Seattle, WA,
USA

Eirini Ntoutsi Leibniz Universität Hannover, Hannover, Germany

Ludwig Maximilians Universität München, Munich, Germany

Daniel Oblinger DARPA/IPTO, Arlington, VA, USA

Contributors xiii

Peter Orbanz Cambridge University, Cambridge, UK

Miles Osborne University of Edinburgh, Edinburgh, UK

Stefano Pacifico Jožef Stefan Institute, Ljubljana, Slovenia

C. David Page Department of Biostatistics and Medical Informatics,
University of Wisconsin Medical School, Madison, WI, USA

Jonathan Patrick University of Ottawa, Ottawa, ON, Canada

Claudia Perlich IBM T.J. Watson Research Center, Yorktown Heights, NY,
USA

Jan Peters Department of Empirical Inference, Max-Planck Institute for
Intelligent Systems, Tübingen, Germany

Intelligent Autonomous Systems, Computer Science Department, Technische
Universität Darmstadt, Darmstadt, Hessen, Germany

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Francesco Petruccione National Institute of Theoretical Physics (NITheP),
KwaZulu-Natal, South Africa

Bernhard Pfahringer University of Waikato, Hamilton, New Zealand

Steve Poteet Boeing Phantom Works, Seattle, WA, USA

Pascal Poupart University of Waterloo, Waterloo, ON, Canada

Rob Powers Stanford University, Stanford, CA, USA

Cecilia M. Procopiuc AT&T Labs, NJ, USA

Martin L. Puterman University of British Columbia, Vancouver, BC,
Canada

Lesley Quach Boeing Phantom Works, Seattle, WA, USA

Novi Quadrianto Department of Informatics, SMiLe CLiNiC, University of
Sussex, Brighton, UK

Luc De Raedt Department of Computer Science, Katholieke Universiteit
Leuven, Heverlee, Leuven, Belgium

Dev Rajnarayan NASA Ames Research Center, Moffett Field, CA, USA

Adwait Ratnaparkhi Yahoo!, Sunnyvale, CA, USA

Soumya Ray Case Western Reserve University, Cleveland, OH, USA

Mark Reid The Australian National University, Canberra, ACT, Australia

Jean-Michel Renders Xerox Research Centre Europe, Meylan, France

John Risch Pacific Northwest National Laboratory, Richland, WA, USA

Teemu Roos Department of Computer Science, Helsinki Institute for Infor-
mation Technology, University of Helsinki, Helsinki, Finland

xiv Contributors

Nick Roy Massachusetts Institute of Technology, Cambridge, MA, USA

Lorenza Saitta Università del Piemonte Orientale, Alessandria, Italy

Yasubumi Sakakibara Keio University, Hiyoshi, Kohoku-ku, Japan

Claude Sammut The University of New South Wales, Sydney, NSW,
Australia

Joerg Sander University of Alberta, Edmonton, AB, Canada

Statistical Machine Learning Group, NICTA, Canberra, ACT, Australia

Scott Sanner Statistical Machine Learning Group, NICTA, Canberra, ACT,
Australia

Stefan Schaal Max Planck Institute for Intelligent Systems, Stuttgart,
Germany

Computer Science, University of Southern California, Los Angeles, CA,
USA

Ute Schmid Faculty of Information Systems and Applied Computer
Science, University of Bamberg, Bamberg, Germany

Jürgen Schmidhuber The Swiss AI Lab, IDSIA, USI & SUPSI, Manno &
Lugano, Switzerland

Maria Schuld Quantum Research Group, School of Chemistry & Physics,
University of KwaZulu-Natal, Durban, South Africa

Stephen Scott University of Nebraska, Lincoln, NE, USA

Michele Sebag CNRS – INRIA – Université Paris-Sud, Orsay, France

Prithviraj Sen University of Maryland, College Park, MD, USA

Hanhuai Shan University of Minnesota, Minneapolis, MN, USA

Hossam Sharara University of Maryland, College Park, MD, USA

Viktoriia Sharmanska Department of Informatics, University of Sussex,
SMiLe CLiNiC, Falmer, UK

Victor S. Sheng The University of Western Ontario, London, ON, Canada

Jelber Sayyad Shirabad University of Ottawa, Ottawa, ON, Canada

Yoav Shoham Stanford University, Stanford, CA, USA

Thomas R. Shultz McGill University, Montréal, QC, Canada

Ricardo Silva Centre for Computational Statistics and Machine Learning,
University College London, London, UK

Vikas Sindhwani IBM T. J. Watson Research Center, Yorktown Heights,
NY, USA

Moshe Sipper Ben-Gurion University, Beer-Sheva, Israel

William D. Smart Washington University in St. Louis, St. Louis, MO, USA

Contributors xv

Carlos Soares LIAAD-INESC Porto L.A./Faculdade de Economia, Univer-
sity of Porto, Porto, Portugal

LIAAD-INESC Tec/Faculdade de Economia, University of Porto, Porto,
Portugal

Christian Sohler University of Paderborn, Paderborn, Germany

Myra Spiliopoulou Otto-von-Guericke University-Magdeburg, Magdeburg,
Germany

Thomas Stützle Université libre de Bruxelles (ULB), Brussels, Belgium

Janez Starc Jožef Stefan Institute, Ljubljana, Slovenia

Jerzy Stefanowski Institute of Computing Sciences, Poznan University of
Technology, Poznan, Poland

Frank Stephan Department of Mathematics, National University of
Singapore, Singapore, Singapore

Peter Stone Department of Computer Science, The University of Texas at
Austin, Austin, TX, USA

Alexander L. Strehl Rütgers University, New Brunswick, NJ, USA

Jan Struyf Katholieke Universiteit Leuven, Heverlee, Leuven, Belgium

Prasad Tadepalli School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA

Jiliang Tang Michigan State University, East Lansing, MI, USA

Russ Tedrake Massachusetts Institute of Technology, Cambridge, MA,
USA

Yee Whye Teh University College London, London, UK

Jon Timmis University of York, Heslington, North Yorkshire, UK

Jo-Anne Ting University of Edinburgh, Edinburgh, UK

Kai Ming Ting Federation University, Mount Helen, VIC, Australia

LjupLco Todorovski University of Ljubljana, Ljubljana, Slovenia

Hannu Toivonen University of Helsinki, Helsinki, Finland

Luı́s Torgo University of Porto, Porto, Portugal

Panayiotis Tsaparas Department of Computer Science & Engineering,
University of Ioannina, Ioannina, Greece

Paul E. Utgoff University of Massachusetts, Amherst, MA, USA

William Uther NICTA and The University of New South Wales, Sydney,
NSW, Australia

Sethu Vijayakumar University of Edinburgh, Edinburgh, UK

University of Southern California, Los Angeles, CA, USA

xvi Contributors

Ricardo Vilalta Department of Computer Science, University of Houston,
Houston, TX, USA

Michail Vlachos IBM Research, Zurich, Switzerland

Kiri L. Wagstaff Pasadena, CA, USA

Suhang Wang Arizona State University, Tempe, AZ, USA

Geoffrey I. Webb Faculty of Information Technology, Monash University,
Victoria, Australia

R. Paul Wiegand University of Central Florida, Orlando, FL, USA

Eric Wiewiora University of California, Sydney, NSW, Australia

William E. Winkler US Census Bureau, Suitland, MD, USA

Anthony Wirth The University of Melbourne, Melbourne, VLC, Australia

Michael Witbrock Cycorp Inc, Austin, TX, USA

David Wolpert NASA Ames Research Center, Moffett Field, CA, USA

Santa Fe Institute, Santa Fe, NM, USA

Stefan Wrobel Fraunhofer IAIS, Schloss Birlinghoven, University of Bonn,
Sankt Augustin, Germany

Jason Wu Boeing Phantom Works, Seattle, WA, USA

Zhao Xu Fraunhofer IAIS, Sankt Augustin, Germany

Ying Yang Australian Taxation Office, Box Hill, VIC, Australia

Sungwook Yoon MapR, San Jose, CA, USA

Thomas Zeugmann Hokkaido University, Sapporo, Japan

Xinhua Zhang NICTA, Australian National University, Canberra, ACT,
Australia

School of Computer Science, Australian National University, Canberra, ACT,
Australia

NICTA London Circuit, Canberra, ACT, Australia

Lei Zhang LinkedIn, San Francisco, CA, USA

Min-Ling Zhang School of Computer Science and Engineering, Southeast
University, Nanjing, China

Fei Zheng Monash University, Sydney, NSW, Australia

Monash University, Clayton, Melbourne, VIC, Australia

Contributors xvii

Zhi-Hua Zhou National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

Xiaojin Zhu University of Wisconsin-Madison, Madison, WI, USA

Max Zimmermann Swedish Institute of Computer Science (SICS Swedish
ICT), Kista, Sweden

A

A/B Testing

�Online Controlled Experiments and A/B Test-
ing

Abduction

Antonis C. Kakas
University of Cyprus, Nicosia, Cyprus

Definition

Abduction is a form of reasoning, sometimes de-
scribed as “deduction in reverse,” whereby given
a rule that “A fol lows f rom B” and the ob-
served result of “A” we infer the condition “B”
of the rule. More generally, given a theory, T ,
modeling a domain of interest and an obser-
vation, “A;” we infer a hypothesis “B” such
that the observation follows deductively from T

augmented with “B:” We think of “B” as a pos-
sible explanation for the observation according
to the given theory that contains our rule. This
new information and its consequences (or ram-
ifications) according to the given theory can be
considered as the result of a (or part of a) learning
process based on the given theory and driven by
the observations that are explained by abduction.
Abduction can be combined with � induction in
different ways to enhance this learning process.

Motivation and Background

Abduction is, along with induction, a synthetic
form of reasoning whereby it generates, in its
explanations, new information not hitherto con-
tained in the current theory with which the rea-
soning is performed. As such, it has a natural re-
lation to learning, and in particular to knowledge
intensive learning, where the new information
generated aims to complete, at least partially, the
current knowledge (or model) of the problem
domain as described in the given theory.

Early uses of abduction in the context of
machine learning concentrated on how abduction
can be used as a theory revision operator for
identifying where the current theory could be
revised in order to accommodate the new learn-
ing data. This includes the work of Michalski
(1993), Ourston and Mooney (1994), and Ade
et al. (1994). Another early link of abduction to
learning was given by the � explanation based
learning method (DeJong and Mooney 1986),
where the abductive explanations of the learning
data (training examples) are generalized to all
cases. An extensive survey of the role of abduc-
tion in Machine Learning during this early period
can be found in Bergadano et al. (2000).

Following this, it was realized (Flach and
Kakas 2000) that the role of abduction in learn-
ing could be strengthened by linking it to in-
duction, culminating in a hybrid integrated ap-
proach to learning where abduction and induction
are tightly integrated to provide powerful learn-
ing frameworks such as the ones of Progol 5.0

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_891
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

2 Abduction

(Muggleton and Bryant 2000) and HAIL (Ray
et al. 2003). On the other hand, from the point
of view of abduction as “inference to the best
explanation” (Josephson and Josephson 1994) the
link with induction provides a way to distinguish
between different explanations and to select those
explanations that give a better inductive general-
ization result.

A recent application of abduction, on its own
or in combination with induction, is in Systems
Biology where we try to model biological
processes and pathways at different levels.
This challenging domain provides an important
development test-bed for these methods of
knowledge intensive learning (see e.g., King
et al. 2004; Papatheodorou et al. 2005; Ray et al.
2006; Tamaddoni-Nezhad et al. 2004; Zupan
et al. 2003).

Structure of the Learning Task

Abduction contributes to the learning task by first
explaining, and thus rationalizing, the training
data according to a given and current model
of the domain to be learned. These abductive
explanations either form on their own the result
of learning or they feed into a subsequent phase
to generate the final result of learning.

Abduction in Artificial Intelligence
Abduction as studied in the area of Artificial
Intelligence and the perspective of learning
is mainly defined in a logic-based approach.
Other approaches to abduction include set
covering (See, e.g., Reggia 1983) or case-based
explanation, (e.g., Leake 1995). The following
explanation uses a logic-based approach.

Given a set of sentences T (a theory or model),
and a sentence O (observation), the abductive
task is the problem of finding a set of sentences
H (abductive explanation for O) such that:

1. T [H ˆ O;

2. T [H is consistent,

where ˆ denotes the deductive entailment rela-
tion of the formal logic used in the representation

of our theory and consistency refers also to the
corresponding notion in this logic. The particular
choice of this underlying formal framework of
logic is in general a matter that depends on the
problem or phenomena that we are trying to
model. In many cases, this is based on �first
order predicate calculus, as, for example, in the
approach of theory completion in Muggleton and
Bryant (2000). But other logics can be used, e.g.,
the nonmonotonic logics of default logic or logic
programming with negation as failure when the
modeling of our problem requires this level of
expressivity.

This basic formalization as it stands, does not
fully capture the explanatory nature of the abduc-
tive explanation H in the sense that it necessarily
conveys some reason why the observations hold.
It would, for example, allow an observation O

to be explained by itself or in terms of some
other observations rather than in terms of some
“deeper” reason for which the observation must
hold according to the theory T . Also, as the
above specification stands, the observation can
be abductively explained by generating in H

some new (general) theory completely unrelated
to the given theory T . In this case, H does not
account for the observations O according to the
given theory T and in this sense it may not be
considered as an explanation for O relative to T .
For these reasons, in order to specify a “level”
at which the explanations are required and to un-
derstand these relative to the given general theory
about the domain of interest, the members of an
explanation are normally restricted to belong to
a special preassigned, domain-specific class of
sentences called abducible.

Hence abduction, is typically applied on a
model, T , in which we can separate two disjoint
sets of predicates: the observable predicates and
the abducible (or open) predicates. The basic
assumption then is that our model T has reached
a sufficient level of comprehension of the domain
such that all the incompleteness of the model
can be isolated (under some working hypothe-
ses) in its abducible predicates. The observable
predicates are assumed to be completely defined
(in T) in terms of the abducible predicates and

http://dx.doi.org/10.1007/978-1-4899-7687-1_100174

Abduction 3

A

other background auxiliary predicates; any in-
completeness in their representation comes from
the incompleteness in the abducible predicates. In
practice, the empirical observations that drive the
learning task are described using the observable
predicates. Observations are represented by for-
mulae that refer only to the observable predicates
(and possibly some background auxiliary predi-
cates) typically by ground atomic facts on these
observable predicates. The abducible predicates
describe underlying (theoretical) relations in our
model that are not observable directly but can,
through the model T , bring about observable
information.

The assumptions on the abducible predicates
used for building up the explanations may be
subject to restrictions that are expressed through
integrity constraints. These represent additional
knowledge that we have on our domain express-
ing general properties of the domain that remain
valid no matter how the theory is to be extended
in the process of abduction and associated learn-
ing. Therefore, in general, an abductive theory
is a triple, denoted by hT; A; ICi, where T is
the background theory, A is a set of abducible
predicates, and IC is a set of integrity constraints.
Then, in the definition of an abductive expla-
nation given above, one more requirement is
added:

3. T [H satisfies IC.

The satisfaction of integrity constraints can be
formally understood in several ways (see Kakas
et al. 1992 and references therein). Note that the
integrity constraints reduce the number of expla-
nations for a set of observations filtering out those
explanations that do not satisfy them. Based on
this notion of abductive explanation a credulous
form of abductive entailment is defined. Given
an abductive theory, T D hT; A; ICi, and an
observation O then, O is abductively entailed
by T , denoted by T ˆA O , if there exists an
abductive explanation of O in T .

This notion of abductive entailment can then
form the basis of a coverage relation for learning
in the face of incomplete information.

Abductive Concept Learning
Abduction allows us to reason in the face of
incomplete information. As such when we have
learning problems where the background data on
the training examples is incomplete the use of
abduction can enhance the learning capabilities.

Abductive concept learning (ACL) (Kakas and
Riguzzi 2000) is a learning framework that allows
us to learn from incomplete information and to
later be able to classify new cases that again
could be incompletely specified. Under ACL, we
learn abductive theories, hT; A; ICi with abduc-
tion playing a central role in the covering relation
of the learning problem. The abductive theories
learned in ACL contain both rules, in T , for the
concept(s) to be learned as well as general clauses
acting as integrity constraints in IC.

Practical problems that can be addressed with
ACL: (1) concept learning from incomplete back-
ground data where some of the background pred-
icates are incompletely specified and (2) concept
learning from incomplete background data to-
gether with given integrity constraints that pro-
vide some information on the incompleteness
of the data. The treatment of incompleteness
through abduction is integrated within the learn-
ing process. This allows the possibility of learn-
ing more compact theories that can alleviate the
problem of over fitting due to the incompleteness
in the data. A specific subcase of these two prob-
lems and important third application problem of
ACL is that of (3) multiple predicate learning,
where each predicate is required to be learned
from the incomplete data for the other predicates.
Here the abductive reasoning can be used to
suitably connect and integrate the learning of the
different predicates. This can help to overcome
some of the nonlocality difficulties of multiple
predicate learning, such as order-dependence and
global consistency of the learned theory.

ACL is defined as an extension of � Inductive
Logic Programming (ILP) where both the back-
ground knowledge and the learned theory are
abductive theories. The central formal definition
of ACL is given as follows where examples are
atomic ground facts on the target predicate(s) to
be learned.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135

4 Abduction

Definition 1 (Abductive Concept Learning)
Given

• A set of positive examples EC

• A set of negative examples E�

• An abductive theory T DhP; A; I i as back-
ground theory

• An hypothesis space T D hP; Ii consisting
of a space of possible programs P and a space
of possible constraints I

Find
A set of rules P 0 2 P and a set of constraints

I 0 2 I such that the new abductive theory
T 0 D hP [P 0; A; I [I 0i satisfies the following
conditions

• T 0 ˆA EC

• 8e� 2 E�, T 0 ²A e�

where EC stands for the conjunction of all posi-
tive examples.

An individual example e is said to be covered
by a theory T 0 if T 0 ˆA e. In effect, this
definition replaces the deductive entailment as the
example coverage relation in the ILP problem
with abductive entailment to define the ACL
learning problem.

The fact that the conjunction of positive ex-
amples must be covered means that, for every
positive example, there must exist an abduc-
tive explanation and the explanations for all the
positive examples must be consistent with each
other. For negative examples, it is required that
no abductive explanation exists for any of them.
ACL can be illustrated as follows.

Example 1 Suppose we want to learn the concept
father . Let the background theory be T D

hP; A;;i where:

P D fparent.john; mary/; male.john/;

parent.david; steve/;

parent.kathy; el len/; female.kathy/g;

A D fmale; femaleg.

Let the training examples be:

EC D ffather.john; mary/; father

.david; steve/g;

E� D ffather.kathy; el len/; father

.john; steve/g:

In this case, a possible hypotheses T 0DhP [

P 0; A; I 0i learned by ACL would consist of

P 0 D ffather.X; Y / parent.X; Y /;

male.X/g;

I 0 D f male.X/; female.X/g:

This hypothesis satisfies the definition of ACL
because:

1. T 0 ˆA father.john; mary/; father

.david; steve/ with � D fmale.david/g.
2. T 0 ²A father.kathy; el len/, as the only

possible explanation for this goal, namely
fmale.kathy/g is made inconsistent by the
learned integrity constraint in I 0.

3. T 0 ²A father.john; steve/, as this has no
possible abductive explanations.

Hence, despite the fact that the background
theory is incomplete (in its abducible predicates),
ACL can find an appropriate solution to the
learning problem by suitably extending the
background theory with abducible assumptions.
Note that the learned theory without the
integrity constraint would not satisfy the
definition of ACL, because there would exist
an abductive explanation for the negative
example father.kathy; el len/, namely �� D

fmale.kathy/g. This explanation is prohibited
in the complete theory by the learned constraint
together with the fact female.kathy/.

The algorithm and learning system for ACL
is based on a decomposition of this problem into
two subproblems: (1) learning the rules in P 0

together with appropriate explanations for the
training examples and (2) learning integrity con-
straints driven by the explanations generated in
the first part. This decomposition allows ACL to
be developed by combining the two IPL settings
of explanatory (predictive) learning and confir-
matory (descriptive) learning. In fact, the first
subproblem can be seen as a problem of learning

Abduction 5

A

from entailment, while the second subproblem as
a problem of learning from interpretations.

Abduction and Induction
The utility of abduction in learning can be en-
hanced significantly when this is integrated with
induction. Several approaches for synthesizing
abduction and induction in learning have been
developed, e.g., Ade and Denecker (1995),
Muggleton and Bryant (2000), Yamamoto
(1997), and Flach and Kakas (2000). These
approaches aim to develop techniques for
knowledge intensive learning with complex
background theories. One problem to be faced by
purely inductive techniques, is that the training
data on which the inductive process operates,
often contain gaps and inconsistencies. The
general idea is that abductive reasoning can
feed information into the inductive process
by using the background theory for inserting
new hypotheses and removing inconsistent data.
Stated differently, abductive inference is used to
complete the training data with hypotheses about
missing or inconsistent data that explain the
example or training data, using the background
theory. This process gives alternative possibilities
for assimilating and generalizing this data.

Induction is a form of synthetic reasoning that
typically generates knowledge in the form of new
general rules that can provide, either directly,
or indirectly through the current theory T that
they extend, new interrelationships between the
predicates of our theory that can include, unlike
abduction, the observable predicates and even in
some cases new predicates. The inductive hy-
pothesis thus introduces new, hitherto unknown,
links between the relations that we are studying
thus allowing new predictions on the observable
predicates that would not have been possible be-
fore from the original theory under any abductive
explanation.

An inductive hypothesis, H , extends, like in
abduction, the existing theory T to a new theory
T 0DT [H , but now H provides new links be-
tween observables and nonobservables that was
missing or incomplete in the original theory T .
This is particularly evident from the fact that
induction can be performed even with an empty

given theory T , using just the set of observa-
tions. The observations specify incomplete (usu-
ally extensional) knowledge about the observable
predicates, which we try to generalize into new
knowledge. In contrast, the generalizing effect of
abduction, if at all present, is much more limited.
With the given current theory T , that abduction
always needs to refer to, we implicitly restrict the
generalizing power of abduction as we require
that the basic model of our domain remains that
of T . Induction has a stronger and genuinely new
generalizing effect on the observable predicates
than abduction. While the purpose of abduction
is to extend the theory with an explanation and
then reason with it, thus enabling the generalizing
potential of the given theory T , in induction the
purpose is to extend the given theory to a new the-
ory, which can provide new possible observable
consequences.

This complementarity of abduction and in-
duction – abduction providing explanations from
the theory while induction generalizes to form
new parts of the theory – suggests a basis for
their integration within the context of theory
formation and theory development. A cycle of
integration of abduction and induction (Flach and
Kakas 2000) emerges that is suitable for the task
of incremental modeling (Fig. 1). Abduction is
used to transform (and in some sense normalize)
the observations to information on the abducible
predicates. Then, induction takes this as input
and tries to generalize this information to general

T

T ′

O ′

O

T∪H O AbductionInduction

Abduction, Fig. 1 The cycle of abductive and inductive
knowledge development. The cycle is governed by the
“equation” T [H ˆ O , where T is the current theory,
O the observations triggering theory development, and H
the new knowledge generated. On the left-hand side we
have induction, its output feeding into the theory T for
later use by abduction on the right; the abductive output in
turn feeds into the observational data O 0 for later use by
induction, and so on

6 Abduction

rules for the abducible predicates now treating
these as observable predicates for its own pur-
poses. The cycle can then be repeated by adding
the learned information on the abducibles back
in the model as new partial information on the
incomplete abducible predicates. This will affect
the abductive explanations of new observations
to be used again in a subsequent phase of in-
duction. Hence, through this cycle of integration
the abductive explanations of the observations
are added to the theory, not in the (simple) form
in which they have been generated, but in a
generalized form given by a process of induction
on these.

A simple example, adapted from Ray et al.
(2003), that illustrates this cycle of integration of
abduction and induction is as follows. Suppose
that our current model, T , contains the following
rule and background facts:

sad(X) tired(X), poor(X),

tired(oli), tired(ale), tired(kr),

academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr),

where the only observable predicate is sad=1.
Given the observations ODfsad.ale/;

sad.kr/; not sad.oli/g can we improve our
model? The incompleteness of our model resides
in the predicate poor . This is the only abducible
predicate in our model. Using abduction we can
explain the observations O via the explanation:

E = fpoor(ale), poor(kr), not poor(oli)g.

Subsequently, treating this explanation as training
data for inductive generalization we can general-
ize this to get the rule:

poor(X) lecturer(X)

thus (partially) defining the abducible predicate
poor when we extend our theory with this rule.

This combination of abduction and induction
has recently been studied and deployed in several
ways within the context of ILP. In particular,
inverse entailment (Muggleton and Bryant 2000)
can be seen as a particular case of integration of
abductive inference for constructing a “bottom”
clause and inductive inference to generalize it.

This is realized in Progol 5.0 and applied to sev-
eral problems including the discovery of the func-
tion of genes in a network of metabolic pathways
(King et al. 2004), and more recently to the study
of inhibition in metabolic networks (Tamaddoni-
Nezhad et al. 2006, 2004). In Moyle (2000), an
ILP system called ALECTO, integrates a phase of
extraction-case abduction to transform each case
of a training example to an abductive hypothesis
with a phase of induction that generalizes these
abductive hypotheses. It has been used to learn
robot navigation control programs by completing
the specific domain knowledge required, within a
general theory of planning that the robot uses for
its navigation (Moyle 2002).

The development of these initial frameworks
that realize the cycle of integration of abduction
and induction prompted the study of the prob-
lem of completeness for finding any hypothe-
ses H that satisfies the basic task of finding a
consistent hypothesis H such that T [H ˆ

O for a given theory T , and observations O .
Progol was found to be incomplete (Yamamoto
1997) and several new frameworks of integration
of abduction and induction have been proposed
such as SOLDR (Ito and Yamamoto 1998), CF-
induction (Inoue 2001), and HAIL (Ray et al.
2003). In particular, HAIL has demonstrated that
one of the main reasons for the incompleteness
of Progol is that in its cycle of integration of
abduction and induction, it uses a very restricted
form of abduction. Lifting some of these re-
strictions, through the employment of methods
from abductive logic programming (Kakas et al.
1992), has allowed HAIL to solve a wider class of
problems. HAIL has been extended to a frame-
work, called XHAIL (Ray 2009), for learning
nonmonotonic ILP, allowing it to be applied to
learn Event Calculus theories for action descrip-
tion (Alrajeh et al. 2009) and complex scientific
theories for systems biology (Ray and Bryant
2008).

Applications of this integration of abduction
and induction and the cycle of knowledge devel-
opment can be found in the recent proceedings of
the Abduction and Induction in Artificial Intelli-
gence workshops in 2007 (Flach and Kakas 2009)
and 2009 (Ray et al. 2009).

Abduction 7

A

Abduction in Systems Biology
Abduction has found a rich field of application in
the domain of systems biology and the declarative
modeling of computational biology. In a project
called, Robot scientist (King et al. 2004), Progol
5.0 was used to generate abductive hypotheses
about the function of genes. Similarly, learn-
ing the function of genes using abduction has
been studied in GenePath (Zupan et al. 2003)
where experimental genetic data is explained in
order to facilitate the analysis of genetic net-
works. Also in Papatheodorou et al. (2005) ab-
duction is used to learn gene interactions and
genetic pathways from microarray experimental
data. Abduction and its integration with induction
has been used in the study of inhibitory effect
of toxins in metabolic networks (Tamaddoni-
Nezhad et al. 2004, 2006) taking into account
also the temporal variation that the inhibitory
effect can have. Another bioinformatics appli-
cation of abduction (Ray et al. 2006) concerns
the modeling of human immunodeficiency virus
(HIV) drug resistance and using this in order
to assist medical practitioners in the selection
of antiretroviral drugs for patients infected with
HIV. Also, the recently developed frameworks of
XHAIL and CF-induction have been applied to
several problems in systems biology, see e.g., Ray
(2009), Ray and Bryant (2008), and Doncescu
et al. (2007), respectively. Finally, the recent book
edited by Cerro and Inoue (2014) on the logical
modeling of biological systems contains several
articles on the application of abduction in systems
biology.

Cross-References

�Explanation-Based Learning
� Inductive Logic Programming

Recommended Reading

Ade H, Denecker M (1995) AILP: abductive inductive
logic programming. In: Mellish CS (ed) IJCAI.
Morgan Kaufmann, San Francisco, pp 1201–1209

Ade H, Malfait B, Raedt LD (1994) Ruth: an ILP
theory revision system. In: ISMIS94. Springer,
Berlin

Alrajeh D, Ray O, Russo A, Uchitel S (2009) Using ab-
duction and induction for operational requirements
elaboration. J Appl Logic 7(3):275–288

Bergadano F, Cutello V, Gunetti D (2000) Abduc-
tion in machine learning. In: Gabbay D, Kruse R
(eds) Handbook of defeasible reasoning and un-
certainty management systems, vol 4. Kluver Aca-
demic Press, Dordrecht, pp 197–229

del Cerro LF, Inoue K (eds) (2014) Logical
modeling of biological systems. Wiley/ISTE, Hobo-
ken/London

DeJong G, Mooney R (1986) Explanation-based learn-
ing: an alternate view. Mach Learn 1:145–176

Doncescu A, Inoue K, Yamamoto Y (2007) Knowl-
edge based discovery in systems biology using cf-
induction. In: Okuno HG, Ali M (eds) IEA/AIE.
Springer, Heidelberg, pp 395–404

Flach P, Kakas A (2000) Abductive and inductive
reasoning: background and issues. In: Flach PA,
Kakas AC (eds) Abductive and inductive reasoning.
Pure and applied logic. Kluwer, Dordrecht

Flach PA, Kakas AC (eds) (2009) Abduction and
induction in artificial intelligence [special issue]. J
Appl Logic 7(3):251

Inoue K (2001) Inverse entailment for full clausal theo-
ries. In: LICS-2001 workshop on logic and learning

Ito K, Yamamoto A (1998) Finding hypotheses from
examples by computing the least generlisation of
bottom clauses. In: Proceedings of discovery sci-
ence’98. Springer, Berlin, pp 303–314

Josephson J, Josephson S (eds) (1994) Abductive infer-
ence: computation, philosophy, technology. Cam-
bridge University Press, New York

Kakas A, Kowalski R, Toni F (1992) Abductive logic
programming. J Logic Comput 2(6):719–770

Kakas A, Riguzzi F (2000) Abductive concept learn-
ing. New Gener Comput 18:243–294

King R, Whelan K, Jones F, Reiser P, Bryant C, Mug-
gleton S et al (2004) Functional genomic hypothesis
generation and experimentation by a robot scientist.
Nature 427:247–252

Leake D (1995) Abduction, experience and goals: a
model for everyday abductive explanation. J Exp
Theor Artif Intell 7:407–428

Michalski RS (1993) Inferential theory of learning as
a conceptual basis for multistrategy learning. Mach
Learn 11:111–151

Moyle S (2002) Using theory completion to learn a
robot navigation control program. In: Proceedings
of the 12th international conference on inductive
logic programming. Springer, Berlin, pp 182–197

Moyle SA (2000) An investigation into theory com-
pletion techniques in inductive logic programming.
PhD thesis, Oxford University Computing Labora-
tory, University of Oxford

Muggleton S (1995) Inverse entailment and Progol.
New Gener Comput 13:245–286

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

8 Absolute Error Loss

Muggleton S, Bryant C (2000) Theory completion
using inverse entailment. In: Proceedings of the
tenth international workshop on inductive logic pro-
gramming (ILP-00). Springer, Berlin, pp 130–146

Ourston D, Mooney RJ (1994) Theory refinement
combining analytical and empirical methods. Artif
Intell 66:311–344

Papatheodorou I, Kakas A, Sergot M (2005) Inference
of gene relations from microarray data by abduction.
In: Proceedings of the eighth international con-
ference on logic programming and non-monotonic
reasoning (LPNMR’05), vol 3662. Springer, Berlin,
pp389–393

Ray O (2009) Nonmonotonic abductive inductive
learning. J Appl Logic 7(3):329–340

Ray O, Antoniades A, Kakas A, Demetriades I (2006)
Abductive logic programming in the clinical man-
agement of HIV/AIDS. In: Brewka G, Coradeschi
S, Perini A, Traverso P (eds) Proceedings of the
17th European conference on artificial intelligence.
Frontiers in artificial intelligence and applications,
vol 141. IOS Press, Amsterdam, pp 437–441

Ray O, Broda K, Russo A (2003) Hybrid abductive
inductive learning: a generalisation of Progol. In:
Proceedings of the 13th international conference
on inductive logic programming. Lecture notes in
artificial intelligence, vol 2835. Springer, Berlin,
pp 311–328

Ray O, Bryant C (2008) Inferring the function of genes
from synthetic lethal mutations. In: Proceedings of
the second international conference on complex,
intelligent and software intensive systems. IEEE
Computer Society, Washington, DC, pp 667–671

Ray O, Flach PA, Kakas AC (eds) (2009) Abduction
and induction in artificial intelligence. In: Proceed-
ings of IJCAI 2009 workshop

Reggia J (1983) Diagnostic experts systems based
on a set-covering model. Int J Man-Mach Stud
19(5):437–460

Tamaddoni-Nezhad A, Chaleil R, Kakas A, Muggleton
S (2006) Application of abductive ILP to learning
metabolic network inhibition from temporal data.
Mach Learn 64(1–3):209–230

Tamaddoni-Nezhad A, Kakas A, Muggleton S, Pazos F
(2004) Modelling inhibition in metabolic pathways
through abduction and induction. In: Proceedings of
the 14th international conference on inductive logic
programming. Springer, Berlin, pp 305–322

Yamamoto A (1997) Which hypotheses can be found
with inverse entailment? In: Proceedings of the sev-
enth international workshop on inductive logic pro-
gramming. Lecture notes in artificial intelligence,
vol 1297. Springer, Berlin, pp 296–308

Zupan B, Bratko I, Demsar J, Juvan P, Halter J, Kuspa
A et al (2003) Genepath: a system for automated
construction of genetic networks from mutant data.
Bioinformatics 19(3):383–389

Absolute Error Loss

�Mean Absolute Error

Accuracy

Definition

Accuracy refers to a measure of the degree to
which the predictions of a model matches the
reality being modeled. The term accuracy is often
applied in the context of � classification models.
In this context, accuracy = P(�.X/ D Y), where
XY is a joint distribution and the classification
model � is a function X ! Y . Sometimes, this
quantity is expressed as a percentage rather than
a value between 0.0 and 1.0.

The accuracy of a model is often assessed or
estimated by applying it to test data for which the
� labels (Y values) are known. The accuracy of a
classifier on test data may be calculated as num-
ber of correctly classified objects/total number of
objects. Alternatively, a smoothing function may
be applied, such as a �Laplace estimate or an m-
estimate.

Accuracy is directly related to � error rate,
such that accuracy D 1:0 – error rate (or when
expressed as a percentage, accuracy D 100 –
error rate).

Cross-References

�Confusion Matrix
�Mean Absolute Error
�Model Evaluation
�Resubstitution Estimate

ACO

�Ant Colony Optimization

http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_438
http://dx.doi.org/10.1007/978-1-4899-7687-1_100240
http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_728
http://dx.doi.org/10.1007/978-1-4899-7687-1_22

Active Learning 9

A

Actions

In a �Markov decision process, actions are the
available choices for the decision-maker at any
given decision epoch, in any given state.

Active Learning

David Cohn
Mountain View, CA, USA
Edinburgh, UK

Definition

The term Active Learning is generally used to
refer to a learning problem or system where the
learner has some role in determining on what
data it will be trained. This is in contrast to
Passive Learning, where the learner is simply
presented with a � training set over which it has
no control. Active learning is often used in set-
tings where obtaining � labeled data is expensive
or time-consuming; by sequentially identifying
which examples are most likely to be useful,
an active learner can sometimes achieve good
performance, using far less � training data than
would otherwise be required.

Structure of Learning System

In many machine learning problems, the train-
ing data are treated as a fixed and given part
of the problem definition. In practice, however,
the training data are often not fixed beforehand.
Rather, the learner has an opportunity to play a
role in deciding what data will be acquired for
training. This process is usually referred to as
“active learning,” recognizing that the learner is
an active participant in the training process.

The typical goal in active learning is to select
training examples that best enable the learner

to minimize its loss on future test cases. There
are many theoretical and practical results demon-
strating that, when applied properly, active learn-
ing can greatly reduce the number of training
examples, and even the computational effort re-
quired for a learner to achieve good generaliza-
tion.

A toy example that is often used to illustrate
the utility of active learning is that of learning
a threshold function over a one-dimensional
interval. Given C=� labels for N points drawn
uniformly over the interval, the expected error
between the true value of the threshold and any
learner’s best guess is bounded by O.1=N /.
Given the opportunity to sequentially select
the position of points to be labeled, however,
a learner can pursue a binary search strategy,
obtaining a best guess that is within O.1=2N / of
the true threshold value.

This toy example illustrates the sequential
nature of example selection that is a component
of most (but not all) active learning strategies: the
learner makes use of initial information to discard
parts of the solution space, and to focus future
data acquisition on distinguishing parts that are
still viable.

Related Problems

The term “active learning” is usually applied
in supervised learning settings, though there
are many related problems in other branches of
machine learning and beyond. The “exploration”
component of the “exploration/exploitation”
strategy in reinforcement learning is one such
example. The learner must take actions to gain
information, and must decide what actions
will give him/her the information that will
best minimize future loss. A number of fields
of Operations Research predate and parallel
machine learning work on active learning,
including Decision Theory (North 1968), Value
of Information Computation, Bandit problems
(Robbins 1952), and Optimal Experiment Design
(Fedorov 1972; Box and Draper 1987).

http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_439
http://dx.doi.org/10.1007/978-1-4899-7687-1_840

10 Active Learning

Active Learning Scenarios

When active learning is used for classification
or regression, there are three common settings:
constructive active learning, pool-based active
learning, and stream-based active learning (also
called selective sampling).

Constructive Active Learning
In constructive active learning, the learner is
allowed to propose arbitrary points in the input
space as examples to be labeled. While this in
theory gives the learner the most power to ex-
plore, it is often not practical. One obstacle is
the observation that most learning systems train
on only a reduced representation of the instances
they are presented with: text classifiers on bags
of words (rather than fully-structured text) and
speech recognizers on formants (rather than raw
audio). While a learning system may be able
to identify what pattern of formants would be
most informative to label, there is no reliable
way to generate audio that a human could rec-
ognize (and label) from the desired formants
alone.

Pool-Based Active Learning
Pool-based active learning (McCallum and
Nigam 1998) is popular in domains such as
text classification and speech recognition where
unlabeled data are plentiful and cheap, but labels
are expensive and slow to acquire. In pool-based
active learning, the learner may not propose
arbitrary points to label, but instead has access
to a set of unlabeled examples, and is allowed to
select which of them to request labels for.

A special case of pool-based learning is trans-
ductive active learning, where the test distribution
is exactly the set of unlabeled examples. The
goal then is to sequentially select and label a
small number of examples that will best allow
predicting the labels of those points that remain
unlabeled.

A theme that is common to both constructive
and pool-based active learning is the principle of
sequential experimentation. Information gained
from early queries allows the learner to focus
its search on portions of the domain that are

most likely to give it additional information on
subsequent queries.

Stream-Based Active Learning
Stream-based active learning resembles pool-
based learning in many ways, except that the
learner only has access to the unlabeled instances
as a stream; when an instance arrives, the learner
must decide whether to ask for its label or let
it go.

Other Forms of Active Learning
By virtue of the broad definition of active learn-
ing, there is no real limit on the possible set-
tings for framing it. Angluin’s early work on
learning regular sets (Angluin 1987) employed
a “counterexample” oracle: the learner would
propose a solution, and the oracle would either
declare it correct, or divulge a counterexample
– an instance on which the proposed and true
solutions disagreed. Jin and Si (2003) describe a
Bayesian method for selecting informative items
to recommend when learning a collaborative fil-
tering model, and Steck and Jaakkola (2002)
describe a method best described as unsupervised
active learning to build Bayesian networks in
large domains.

While most active learning work assumes that
the cost of obtaining a label is independent of the
instance to be labeled, there are many scenarios
where this is not the case. A mobile robot taking
surface measurements must first travel to the
point it wishes to sample, making distant points
more expensive than nearby ones. In some cases,
the cost of a query (e.g., the difficulty of traveling
to a remote point to sample it) may not even be
known until it is made, requiring the learner to
learn a model of that as well. In these situations,
the sequential nature of active learning is greatly
accentuated, and a learner faces the additional
challenges of planning under uncertainty (see
“Greedy vs. Batch Active Learning,” below).

Common Active Learning Strategies

1. Version space partitioning. The earliest prac-
tical active learning work (Ruff and Dietterich

Active Learning 11

A

1989; Mitchell 1982) explicitly relied
on � version space partitioning. These
approaches tried to select examples on which
there was maximal disagreement between
hypotheses in the current version space.
When such examples were labeled, they
would invalidate as large a portion of the
version space as possible. A limitation of
explicit version space approaches is that, in
underconstrained domains, a learner may
waste its effort differentiating portions of
the version space that have little effect on the
classifier’s predictions, and thus on its error.

2. Query by Committee (Seung et al. 1992). In
query by committee, the experimenter trains
an ensemble of models, either by selecting
randomized starting points (e.g., in the case
of a neural network) or by bootstrapping the
training set. Candidate examples are scored
based on disagreement among the ensemble
models – examples with high disagreement in-
dicate areas in the sample space that are under-
determined by the training data, and therefore
potentially valuable to label. Models in the
ensemble may be looked at as samples from
the version space; picking examples where
these models disagree is a way of splitting the
version space.

3. Uncertainty sampling (Lewis and Gail 1994).
Uncertainty sampling is a heuristic form of
statistical active learning. Rather than sam-
pling different points in the version space by
training multiple learners, the learner itself
maintains an explicit model of uncertainty
over its input space. It then selects for labeling
those examples on which it is least confident.
In classification and regression problems, un-
certainty contributes directly to expected loss
(as the variance component of the “error = bias
+ variance” decomposition), so that gathering
examples where the learner has greatest uncer-
tainty is often an effective loss-minimization
heuristic. This approach has also been found
effective for non-probabilistic models, by sim-
ply selecting examples that lie near the current
decision boundary. For some learners, such as
support vector machines, this heuristic can be
shown to be an approximate partitioning of

the learner’s version space (Tong and Koller
2001).

4. Loss minimization (Cohn 1996). Uncertainty
sampling can stumble when parts of the
learner’s domain are inherently noisy. It
may be that, regardless of the number of
samples labeled in some neighborhood, it
will remain impossible to accurately predict
these. In these cases, it would be desirable to
not only model the learner’s uncertainty over
arbitrary parts of its domain, but also to model
what effect labeling any future example is
expected to have on that uncertainty. For some
learning algorithms it is feasible to explicitly
compute such estimates (e.g., for locally-
weighted regression and mixture models,
these estimates may be computed in closed
form). It is, therefore, practical to select
examples that directly minimize the expected
loss to the learner, as discussed below under
“Statistical Active Learning.”

Statistical Active Learning

Uncertainty sampling and direct loss minimiza-
tion are two examples of statistical active learn-
ing. Both rely on the learner’s ability to statisti-
cally model its own uncertainty. When learning
with a statistical model, such as a linear regressor
or a mixture of Gaussians (Dasgupta 1999), the
objective is usually to find model parameters
that minimize some form of expected loss. When
active learning is applied to such models, it is
natural to also select training data so as to min-
imize that same objective. As statistical models
usually give us estimates on the probability of (as
yet) unknown values, it is often straightforward
to turn this machinery upon itself to assist in the
active learning process (Cohn 1996). The process
is usually as follows:

1. Begin by requesting labels for a small random
subsample of the examples x1, x2, K, xnx and
fit our model to the labeled data.

2. For any x in our domain, a statistical model
lets us estimate both the conditional expec-

http://dx.doi.org/10.1007/978-1-4899-7687-1_877

12 Active Learning

tation Oy.x/ and �2
Oy.x/

, the variance of that
expectation. We estimate our current loss by
drawing a new random sample of unlabeled
data, and computing the averaged �2

Oy.x/
.

3. We now consider a candidate point Qx, and
ask what reduction in loss we would obtain
if we had labeled it Qy. If we knew its label
with certainty, we could simply add the point
to the training set, retrain, and compute the
new expected loss. While we do not know the
true Qy, we could, in theory, compute the new
expected loss for every possible Qy and average
those losses, weighting them by our model’s
estimate of p. Qyj Qy/. In practice, this is nor-
mally unfeasible; however, for some statistical
models, such as locally-weighted regression
and mixtures of Gaussians, we can compute
the distribution of p. Qyj Qy/ and its effect on
�2

Oy.x/
in closed form (Cohn 1996).

4. Given the ability to estimate the expected
effect of obtaining label Qy for candidate Qx,
we repeat this computation for a sample of
M candidates, and then request a label for the
candidate with the largest expected decrease
in loss. We add the newly-labeled example
to our training set, retrain, and begin look-
ing at candidate points to add on the next
iteration.

The Need for Reference Distributions

Step (2) above illustrates a complication that
is unique to active learning approaches. Tradi-
tional “passive” learning usually relies on the
assumption that the distribution over which the
learner will be tested is the same as the one
from which the training data were drawn. When
the learner is allowed to select its own training
data, it still needs some form of access to the
distribution of data on which it will be tested. A
pool-based or stream-based learner can use the
pool or stream as a proxy for that distribution, but
if the learner is allowed (or required) to construct
its own examples, it risks wasting all its effort on
resolving portions of the solution space that are
of no interest to the problem at hand.

A Detailed Example: Statistical Active
Learning with LOESS

LOESS (Cleveland et al. 1988) is a simple form
of locally-weighted regression using a kernel
function. When asked to predict the unknown
output y corresponding to a given input x,
LOESS computes a � linear regression over
known (x, y) pairs, in which it gives pair (xi ,
yi) weight according to the proximity of xi to x.
We will write this weighting as a kernel function,
K.xi ; x/, or simplify it to ki when there is no
chance of confusion.

In the active learning setting, we will assume
that we have a large supply of unlabeled examples
drawn from the test distribution, along with labels
for a small number of them. We wish to label a
small number more so as to minimize the mean
squared error (MSE) of our model. MSE can be
decomposed into two terms: squared � bias and
variance. If we make the (inaccurate but simpli-
fying) assumption that LOESS is approximately
unbiased for the problem at hand, minimizing
MSE reduces to minimizing the variance of our
estimates.

Given n labeled pairs, and a prediction to
make for input x, LOESS computes the following
covariance statistics around x:

�x D
˙i ki xi

n
; �2

x D
˙i ki .xi � �x/2

n
;

�xy D
˙i ki .xi � �x/.yi � �y/

n

�y D
˙i ki yi

n
; �2

y D
˙i ki .yi � �y/2

n
;

�2
yjx D �2

y �
�xy

�2
x

We can combine these to express the conditional
expectation of y (our estimate) and its variance
as:

Oy D �y C
�xy

�2
x

.x � �x/; �2
Oy D

�2
yjx

n2

�

 X
i

k2
i C

.x � �x/2

�2
x

X
i

k2
i

.xi � �x/2

�2
x

!
:

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_74

Active Learning 13

A

Our proxy for model error is the variance of our
prediction, integrated over the test distributionD
�2

Oy

E
. As we have assumed a pool-based setting

in which we have a large number of unlabeled
examples from that distribution, we can simply
compute the above variance over a sample from
the pool, and use the resulting average as our
estimate.

To perform statistical active learning, we want
to compute how our estimated variance will
change if we add an (as yet unknown) label
Qy for an arbitrary Qx. We will write this new

expected variance as
D
Q�2

Oy

E
. While we do not know

what value Qy will take, our model gives us an
estimated mean Oy. Qx/ and variance �2

Oy.x/
for the

value, as above. We can add this “distributed” y

value to LOESS just as though it were a discrete

one, and compute the resulting expectation
D
Q�2

Oy

E
in closed form. Defining Qk as K. Qx; x/, we write:

D
Q�2

Oy

E
D

D
Q�2

yjx

E
.nC Qk/2

 X
i

k2
i C
Qk2 C

.x � Q�x/2

Q�2
x

�

 X
i

k2
i

.xi � Q�x/2

Q�2
x

C Qk2 . Qx � Q�x/2

Q�2
x

!!
;

where the component expectations are computed
as follows:

D
Q�2

yjx

E
D
˝
Q�2

y

˛
�

˝
Q�2

xy

˛
Q�2

x

;

˝
Q�2

y

˛
D

n�2
y

nC Qk
C

n Qk.�2
y1x C . Oy. Qx/ � �y/2/

.nC Qk/2
;

Q�x D
n�x C Qk Qx

nC Qk
;

˝
Q�xy

˛
D

n�xy

nC Qk
C

n Qk. Qx � �x/. Oy. Qx/ � �y/

.nC Qk/2
;

Q�2
x D

n�2
x

nC Qk
C

n Qk. Qx � �x/2

.nC Qk/2
;

˝
Q�2

xy

˛
D
˝
Q�xy

˛2
C

n2 Qk2�2
yjx

. Qx � �x/2

.nC Qk/4
:

Greedy Versus Batch Active Learning

It is also worth pointing out that virtually all
active learning work relies on greedy strategies
– the learner estimates what single example best
achieves its objective, requests that one, retrains,
and repeats. In theory, it is possible to plan some
number of queries ahead, asking what point is
best to label now, given that N-1 more label-
ing opportunities remain. While such strategies
have been explored in Operations Research for
very small problem domains, their computational
requirements make this approach unfeasible for
problems of the size typically encountered in
machine learning.

There are cases where retraining the learner
after every new label would be prohibitively ex-
pensive, or where access to labels is limited by
the number of iterations as well as by the total
number of labels (e.g., for a finite number of
clinical trials). In this case, the learner may select
a set of examples to be labeled on each iteration.
This batch approach, however, is only useful if
the learner is able to identify a set of examples
whose expected contributions are non-redundant,
which substantially complicates the process.

Cross-References

�Active Learning Theory

Recommended Reading

Angluin D (1987) Learning regular sets from queries
and counterexamples. Inf Comput 75(2):87–106

Angluin D (1988) Queries and concept learning. Mach
Learn 2:319–342

Box GEP, Draper N (1987) Empirical model-building
and response surfaces. Wiley, New York

Cleveland W, Devlin S, Gross E (1988) Regression by
local fitting. J Econom 37:87–114

Cohn D, Atlas L, Ladner R (1990) Training connec-
tionist networks with queries and selective sam-
pling. In: Touretzky D (ed) Advances in neural in-
formation processing systems. Morgan Kaufmann,
San Mateo

Cohn D, Ghahramani Z, Jordan MI (1996) Active
learning with statistical models. J Artif Intell Res
4:129–145. http://citeseer.ist.psu.edu/321503.html

http://dx.doi.org/10.1007/978-1-4899-7687-1_7
http://citeseer.ist.psu.edu/321503.html

14 Active Learning Theory

Dasgupta S (1999) Learning mixtures of Gaussians.
Found Comput Sci 634–644

Fedorov V (1972) Theory of optimal experiments.
Academic Press, New York

Kearns M, Li M, Pitt L, Valiant L (1987) On the
learnability of Boolean formulae. In: Proceedings
of the 19th annual ACM conference on theory of
computing. ACM Press, New York, pp 285–295

Lewis DD, Gail WA (1994) A sequential algorithm
for training text classifiers. In: Proceedings of the
17th annual international ACM SIGIR conference,
Dublin, pp 3–12

McCallum A, Nigam K (1998) Employing EM and
pool-based active learning for text classification. In:
Machine learning: proceedings of the fifteenth inter-
national conference (ICML’98), Madison, pp 359–
367

North DW (1968) A tutorial introduction to decision
theory. IEEE Trans Syst Sci Cybern 4(3)

Pitt L, Valiant LG (1988) Computational limitations on
learning from examples. J ACM (JACM) 35(4):965–
984

Robbins H (1952) Some aspects of the sequential
design of experiments. Bull Am Math Soc 55:527–
535

Ruff R, Dietterich T (1989) What good are experi-
ments? In: Proceedings of the sixth international
workshop on machine learning, Ithaca

Seung HS, Opper M, Sompolinsky H (1992) Query by
committee. In: Proceedings of the fifth workshop on
computational learning theory. Morgan Kaufmann,
San Mateo, pp 287–294

Steck H, Jaakkola T (2002) Unsupervised active learn-
ing in large domains. In: Proceeding of the confer-
ence on uncertainty in AI. http://citeseer.ist.psu.edu/
steck02unsupervised.html

Active Learning Theory

Sanjoy Dasgupta
University of California, San Diego, La Jolla,
CA, USA

Definition

The term active learning applies to a wide range
of situations in which a learner is able to exert
some control over its source of data. For instance,
when fitting a regression function, the learner
may itself supply a set of data points at which to
measure response values, in the hope of reducing
the variance of its estimate. Such problems have

been studied for many decades under the rubric
of experimental design (Chernoff 1972; Fedorov
1972). More recently, there has been substantial
interest within the machine learning community
in the specific task of actively learning binary
classifiers. This task presents several fundamen-
tal statistical and algorithmic challenges, and an
understanding of its mathematical underpinnings
is only gradually emerging. This brief survey will
describe some of the progress that has been made
so far.

Learning from Labeled and
Unlabeled Data

In the machine learning literature, the task of
learning a classifier has traditionally been studied
in the framework of supervised learning. This
paradigm assumes that there is a training set
consisting of data points x (from some set X)
and their labels y (from some set Y), and the
goal is to learn a function f W X ! Y , that will
accurately predict the labels of data points arising
in the future. Over the past 50 years, tremendous
progress has been made in resolving many of the
basic questions surrounding this model, such as
“how many training points are needed to learn an
accurate classifier?”

Although this framework is now fairly well
understood, it is a poor fit for many modern
learning tasks because of its assumption that all
training points automatically come labeled. In
practice, it is frequently the case that the raw,
abundant, easily obtained form of data is unla-
beled, whereas labels must be explicitly procured
and are expensive. In such situations, the reality
is that the learner starts with a large pool of un-
labeled points and must then strategically decide
which ones it wants labeled: how best to spend its
limited budget.

Example: Speech recognition. When building
a speech recognizer, the unlabeled training data
consists of raw speech samples, which are very
easy to collect: just walk around with a micro-
phone. For all practical purposes, an unlimited
quantity of such samples can be obtained. On the

http://citeseer.ist.psu.edu/steck02unsupervised.html
http://citeseer.ist.psu.edu/steck02unsupervised.html

Active Learning Theory 15

A

other hand, the “label” for each speech sample
is a segmentation into its constituent phonemes,
and producing even one such label requires sub-
stantial human time and attention. Over the past
decades, research labs and the government have
expended an enormous amount of money, time,
and effort on creating labeled datasets of English
speech. This investment has paid off, but our
ambitions are inevitably moving past what these
datasets can provide: we would now like, for in-
stance, to create recognizers for other languages,
or for English in specific contexts. Is there some
way to avoid more painstaking years of data la-
beling, to somehow leverage the easy availability
of raw speech so as to significantly reduce the
number of labels needed? This is the hope of
active learning.

Some early results on active learning were in
the membership query model, where the data is
assumed to be separable (that is, some hypothesis
h perfectly classifies all points) and the learner
is allowed to query the label of any point in the
input space X (rather than being constrained to
a prespecified unlabeled set), with the goal of
eventually returning the perfect hypothesis h�.
There is a significant body of beautiful theoretical
work in this model (Angluin 2001), but early
experiments ran into some telling difficulties.
One study (Baum and Lang 1992) found that
when training a neural network for handwritten
digit recognition, the queries synthesized by the
learner were such bizarre and unnatural images
that they were impossible for a human to classify.
In such contexts, the membership query model is
of limited practical value; nonetheless, many of
the insights obtained from this model carry over
to other settings (Hanneke 2007a).

We will fix as our standard model one in which
the learner is given a source of unlabeled data,
rather than being able to generate these points
himself. Each point has an associated label, but
the label is initially hidden, and there is a cost
for revealing it. The hope is that an accurate
classifier can be found by querying just a few
labels, much fewer than would be required by
regular supervised learning.

How can the learner decide which labels to
probe? One option is to select the query points

at random, but it is not hard to show that this
yields the same label complexity as supervised
learning. A better idea is to choose the query
points adaptively: for instance, start by querying
some random data points to get a rough sense
of where the decision boundary lies, and then
gradually refine the estimate of the boundary
by specifically querying points in its immediate
vicinity. In other words, ask for the labels of
data points whose particular positioning makes
them especially informative. Such strategies cer-
tainly sound good, but can they be fleshed out
into practical algorithms? And if so, do these
algorithms work well in the sense of producing
good classifiers with fewer labels than would be
required by supervised learning?

On account of the enormous practical impor-
tance of active learning, there are a wide range
of algorithms and techniques already available,
most of which resemble the aggressive, adap-
tive sampling strategy just outlined, and many
of which show promise in experimental stud-
ies. However, a big problem with this kind of
sampling is that very quickly the set of labeled
points no longer reflects the underlying data dis-
tribution. This makes it hard to show that the
classifiers learned have good statistical proper-
ties (for instance, that they converge to an op-
timal classifier in the limit of infinitely many
labels). This survey will only discuss methods
that have proofs of statistical well-foundedness,
and whose label complexity can be explicitly
analyzed.

Motivating Examples

We will start by looking at a few examples that il-
lustrate the enormous potential of active learning
and that also make it clear why analyses of this
new model require concepts and intuitions that
are fundamentally different from those that have
already been developed for supervised learning.

Example: Thresholds on the Line
Suppose the data lie on the real line, and the avail-
able classifiers are simple thresholding functions,
H D fhw W w 2 Rg:

16 Active Learning Theory

hw.x/ D

(
C1 if x � w

�1 if x < w

w

To make things precise, let us denote the
(unknown) underlying distribution on the data
.X; Y / 2 R � fC1;�1g by P, and let us suppose
that we want a hypothesis h 2 H whose error
with respect to P, namely errP D P.h.X/ ¤ Y /,
is at most some �. How many labels do we need?

In supervised learning, such issues are well
understood. The standard machinery of sample
complexity (using VC theory) tells us that if
the data are separable – that is, if they can be
perfectly classified by some hypothesis in H –
then we need approximately 1=� random labeled
examples from P , and it is enough to return any
classifier consistent with them.

Now suppose we instead draw 1=� unlabeled
samples from P. If we lay these points down
on the line, their hidden labels are a sequence
of �s followed by a sequence of Cs, and the
goal is to discover the point w at which the
transition occurs. This can be accomplished with
a simple binary search which asks for just log
1=� labels: first ask for the label of the median
point; if it isC, move to the 25th percentile point,
otherwise move to the 75th percentile point; and
so on. Thus, for this hypothesis class, active
learning gives an exponential improvement in
the number of labels needed, from 1=� to just
log 1=�. For instance, if supervised learning re-
quires a million labels, active learning requires
just log 1;000;000 � 20, literally!

It is a tantalizing possibility that even for
more complicated hypothesis classes H, a sort of
generalized binary search is possible. A natural
next step is to consider linear separators in two
dimensions.

Example: Linear Separators in R
2

Let H be the hypothesis class of linear separators
in R

2, and suppose the data is distributed accord-
ing to some density supported on the perimeter of
the unit circle. It turns out that the positive results

h2

h3

B1

B2

h1
h0

Active Learning Theory, Fig. 1 P is supported on the
circumference of a circle. Each Bi is an arc of probability
mass �

of the one-dimensional case do not generalize:
there are some target hypotheses in H for which
�.1=�/ labels are needed to find a classifier with
error rate less than �, no matter what active
learning scheme is used.

To see this, consider the following possible
target hypotheses (Fig. 1):

• h0: all points are positive.
• hi .1 � i � 1=�/: all points are positive except

for a small slice Bi of probability mass �.

The slices Bi are explicitly chosen to be disjoint,
with the result that �.1=�/ labels are needed
to distinguish between these hypotheses. For in-
stance, suppose nature chooses a target hypothe-
sis at random from among the hi ; 1 � i � 1=�.
Then, to identify this target with probability at
least 1=2, it is necessary to query points in at least
(about) half the Bi s.

Thus for these particular target hypotheses,
active learning offers little improvement in sam-
ple complexity over regular supervised learning.
What about other target hypotheses in H, for
instance those in which the positive and negative
regions are more evenly balanced? It is quite
easy (Dasgupta 2005) to devise an active learning
scheme which asks for O.minf1=i.h/; 1=�g/ C

O.log 1=�/ labels, where i.h/ D min fpositive

Active Learning Theory 17

A

Active Learning Theory, Fig. 2 Models of pool-and
stream-based active learning. The data are draws from
an underlying distribution PX , and hypotheses h are

evaluated by errP.h/. If we want to get this error below
�, how many labels are needed, as a function of �?

mass of h, negative mass of hg. Thus even within
this simple hypothesis class, the label complexity
can run anywhere from O.log 1=�/ to �.1=�/,
depending on the specific target hypothesis!

Example: An Overabundance of
Unlabeled Data
In our two previous examples, the amount of
unlabeled data needed was O.log 1=�/, exactly
the usual sample complexity of supervised learn-
ing. But it is sometimes helpful to have signifi-
cantly more unlabeled data than this. In Dasgupta
(2005), a distribution P is described for which
if the amount of unlabeled data is small (below
any prespecified threshold), then the number of
labels needed to learn the target linear separator
is �.1=�/; whereas if the amount of unlabeled
data is much larger, then only O.log 1=�/ labels
are needed. This is a situation where most of the
data distribution is fairly uninformative while a
miniscule fraction is highly informative. A lot of
unlabeled data is needed in order to get even a
few of the informative points.

The Sample Complexity of Active
Learning

We will think of the unlabeled points x1; : : : ; xn

as being drawn i.i.d. from an underlying distri-
bution PX on X (namely, the marginal of the
distribution P on X � Y), either all at once (a
pool) or one at a time (a stream). The learner
is only allowed to query the labels of points
in the pool/stream; that is, it is restricted to
“naturally occurring” data points rather than syn-
thetic ones (Fig. 2). It returns a hypothesis h 2

H whose quality is measured by its error rate,
errP.h/

In regular supervised learning, it is well known
that if the VC dimension of H is d , then the num-
ber of labels that will with high probability ensure
errP.h/ � � is roughly O.d=�/ if the data is sep-
arable and O.d=�2/ otherwise (Haussler 1992);
various logarithmic terms are omitted here. For
active learning, it is clear from the examples
above that the VC dimension alone does not
adequately characterize label complexity. Is there
a different combinatorial parameter that does?

Generic Results for Separable Data
For separable data, it is possible to give upper
and lower bounds on label complexity in terms
of a special parameter known as the splitting
index (Dasgupta et al. 2005). This is merely an
existence result: the algorithm needed to realize
the upper bound is intractable because it involves
explicitly maintaining an �-cover (a coarse ap-
proximation) of the hypothesis class, and the size
of this cover is in general exponential in the VC
dimension. Nevertheless, it does give us an idea
of the kinds of label complexity we can hope to
achieve.

Example Suppose the hypothesis class consists
of intervals on the real line: X D R and
H D fha;b W a; b 2 Rg, where ha;b.x/ D

1.a � x � b/. Using the splitting index, the
label complexity of active learning is seen to be
Q�.minf1=PX .Œa; b	/; 1=�g C log 1=�/ when the

target hypothesis is ha;b (Dasgupta 2005). Here
the Q� notation is used to suppress logarithmic
terms.

18 Active Learning Theory

Example Suppose X D R
d and H consists of

linear separators through the origin. If PX is the
uniform distribution on the unit sphere, the num-
ber of labels needed to learn a hypothesis of error
� � is just Q�.d log 1=�/, exponentially smaller
than the QO.d=�/ label complexity of supervised
learning. If PX is not the uniform distribution
but is everywhere within a multiplicative factor
� > 1 of it, then the label complexity becomes
QO..d log 1=�/ log2 �/, provided the amount of

unlabeled data is increased by a factor of �2

(Dasgupta 2005).

These results are very encouraging, but the
question of an efficient active learning algorithm
remains open. We now consider two approaches.

Mildly Selective Sampling

The label complexity results mentioned above are
based on querying maximally informative points.
A less aggressive strategy is to be mildly selec-
tive, to query all points except those that are quite
clearly uninformative. This is the idea behind one
of the earliest generic active learning schemes
(Cohn et al. 1994). Data points x1, x2, . . . arrive
in a stream, and for each one the learner makes
a spot decision about whether or not to request
a label. When xt arrives, the learner behaves as
follows.

• Determine whether both possible labelings,
(xt ;C/ and (xt ;�), are consistent with the
labeled examples seen so far.

• If so, ask for the label yt . Otherwise set yt to
be the unique consistent label.

Fortunately, the check required for the first step
can be performed efficiently by making two calls
to a supervised learner. Thus this is a very simple
and elegant active learning scheme, although as
one might expect, it is suboptimal in its label
complexity (Balcan et al. 2007). Interestingly,
there is a parameter called the disagreement coef-
ficient that characterizes the label complexity of
this scheme and also of some other mildly selec-
tive learners (Friedman 2009; Hanneke 2007b).

In practice, the biggest limitation of the algo-
rithm above is that it assumes the data are sepa-
rable. Recent results have shown how to remove
this assumption (Balcan et al. 2006; Dasgupta
et al. 2007) and to accommodate classification
loss functions other than 0� 1 loss (Beygelzimer
et al. 2009). Variants of the disagreement coef-
ficient continue to characterize label complexity
in the agnostic setting (Beygelzimer et al. 2009;
Dasgupta et al. 2007).

A Bayesian Model
The query by committee algorithm (Seung et al.
1992) is based on a Bayesian view of active learn-
ing. The learner starts with a prior distribution
on the hypothesis space, and is then exposed to a
stream of unlabeled data. Upon receiving xt , the
learner performs the following steps.

• Draw two hypotheses h; h0 at random from the
posterior over H.

• If h.xt / ¤ h0.xt / then ask for the label of xt

and update the posterior accordingly.

This algorithm queries points that substantially
shrink the posterior, while at the same time taking
account of the data distribution. Various theoret-
ical guarantees have been shown for it (Freund
et al. 1997); in particular, in the case of linear
separators with a uniform data distribution, it
achieves a label complexity of O.d log 1=�/, the
best possible.

Sampling from the posterior over the hypoth-
esis class is, in general, computationally pro-
hibitive. However, for linear separators with a
uniform prior, it can be implemented efficiently
using random walks on convex bodies (Gilad-
Bachrach et al. 2005).

Other Work
In this survey, I have touched mostly on active
learning results of the greatest generality, those
that apply to arbitrary hypothesis classes. There
is also a significant body of more specialized
results.

• Efficient active learning algorithms for spe-
cific hypothesis classes.

Adaboost 19

A

This includes an online learning algorithm for
linear separators that only queries some of the
points and yet achieves similar regret bounds
to algorithms that query all the points (Cesa-
Bianchi et al. 2004). The label complexity of
this method is yet to be characterized.

• Algorithms and label bounds for linear sepa-
rators under the uniform data distribution.
This particular setting has been amenable to
mathematical analysis. For separable data,it
turns out that a variant of the perceptron al-
gorithm achieves the optimal O.d log 1=�/

label complexity (Dasgupta 2005). A simple
algorithm is also available for the agnostic
setting (Balcan et al. 2007).

Conclusion

The theoretical frontier of active learning is
mostly an unexplored wilderness. Except for a
few specific cases, we do not have a clear sense
of how much active learning can reduce label
complexity: whether by just a constant factor, or
polynomially, or exponentially. The fundamental
statistical and algorithmic challenges involved,
together with the huge practical importance of
the field, make active learning a particularly
rewarding terrain for investigation.

Cross-References

�Active Learning

Recommended Reading

Angluin D (2001) Queries revisited. In: Proceedings
of the 12th international conference on algorithmic
learning theory, Washington, DC, pp 12–31

Balcan M-F, Beygelzimer A, Langford J (2006) Ag-
nostic active learning. In: International conference
on machine learning. ACM Press, New York, pp 65–
72

Balcan M-F, Broder A, Zhang T (2007) Margin based
active learning. In: Conference on learning theory,
San Diego, pp 35–50

Baum EB, Lang K (1992) Query learning can work
poorly when a human oracle is used. In: Interna-
tional joint conference on neural networks, Balti-
more

Beygelzimer A, Dasgupta S, Langford J (2009) Im-
portance weighted active learning. In: International
conference on machine learning. ACM Press, New
York, pp 49–56

Cesa-Bianchi N, Gentile C, Zaniboni L (2004) Worst-
case analysis of selective sampling for linear-
threshold algorithms. In: Advances in neural infor-
mation processing systems

Chernoff H (1972) Sequential analysis and optimal
design. CBMS-NSF regional conference series in
applied mathematics, vol 8. SIAM, Philadelphia

Cohn D, Atlas L, Ladner R (1994) Improving
generalization with active learning. Mach Learn
15(2):201–221

Dasgupta S (2005) Coarse sample complexity bounds
for active learning. Advances in neural information
processing systems. Morgan Kaufmann, San Mateo

Dasgupta S, Kalai A, Monteleoni C (2005) Analy-
sis of perceptron-based active learning. In: 18th
annual conference on learning theory, Bertinoro,
pp 249–263

Dasgupta S, Hsu DJ, Monteleoni C (2007) A gen-
eral agnostic active learning algorithm. Advances in
neural information processing systems

Fedorov VV (1972) Theory of optimal experiments
(trans: Studden WJ, Klimko EM). Academic Press,
New York

Freund Y, Seung S, Shamir E, Tishby N (1997) Selec-
tive sampling using the query by committee algo-
rithm. Mach Learn J 28:133–168

Friedman E (2009) Active learning for smooth prob-
lems. In: Conference on learning theory, Montreal,
pp 343–352

Gilad-Bachrach R, Navot A, Tishby N (2005) Query
by committeee made real. Advances in neural infor-
mation processing systems

Hanneke S (2007a) Teaching dimension and the com-
plexity of active learning. In: Conference on learn-
ing theory, San Diego, pp 66–81

Hanneke S (2007b) A bound on the label complexity
of agnostic active learning. In: International confer-
ence on machine learning, Corvallis, pp 353–360

Haussler D (1992) Decision-theoretic generalizations
of the PAC model for neural net and other learning
applications. Inf Comput 100(1):78–150

Seung HS, Opper M, Sompolinsky H (1992) Query
by committee. In: Conference on computational
learning theory, Victoria, pp 287–294

Adaboost

Adaboost is an � ensemble learning technique,
and the most well-known of the �Boosting fam-
ily of algorithms. The algorithm trains models
sequentially, with a new model trained at each

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_84

20 Adaptive Control Processes

round. At the end of each round, mis-classified
examples are identified and have their emphasis
increased in a new training set which is then
fed back into the start of the next round, and a
new model is trained. The idea is that subsequent
models should be able to compensate for errors
made by earlier models. See � ensemble learning
for full details.

Adaptive Control Processes

�Bayesian Reinforcement Learning

Adaptive Learning

�Metalearning

Adaptive Real-Time Dynamic
Programming

Andrew G. Barto
University of Massachusetts, Amherst, MA,
USA

Synonyms

ARTDP

Definition

Adaptive Real-Time Dynamic Programming
(ARTDP) is an algorithm that allows an agent
to improve its behavior while interacting over
time with an incompletely known dynamic
environment. It can also be viewed as a heuristic
search algorithm for finding shortest paths in
incompletely known stochastic domains. ARTDP
is based on �Dynamic Programming (DP), but
unlike conventional DP, which consists of off-

line algorithms, ARTDP is an on-line algorithm
because it uses agent behavior to guide its
computation. ARTDP is adaptive because it
does not need a complete and accurate model
of the environment but learns a model from data
collected during agent-environment interaction.
When a good model is available, �Real-Time
Dynamic Programming (RTDP) is applicable,
which is ARTDP without the model-learning
component.

Motivation and Background

RTDP combines strengths of heuristic search and
DP. Like heuristic search – and unlike conven-
tional DP – it does not have to evaluate the
entire state space in order to produce an optimal
solution. Like DP – and unlike most heuristic
search algorithms – it is applicable to nondeter-
ministic problems. Additionally, RTDP’s perfor-
mance as an � anytime algorithm is better than
conventional DP and heuristic search algorithms.
ARTDP extends these strengths to problems for
which a good model is not initially available.

In artificial intelligence, control engineering,
and operations research, many problems require
finding a policy (or control rule) that determines
how an agent (or controller) should generate ac-
tions in response to the states of its environment
(the controlled system). When a “cost” or a “re-
ward” is associated with each step of the agent’s
behavior, policies can be compared according to
how much cost or reward they are expected to
accumulate over time.

The usual formulation for problems like this in
the discrete-time case is the �Markov Decision
Process (MDP). The objective is to find a policy
that minimizes (maximizes) a measure of the
total cost (reward) over time, assuming that the
agent–environment interaction can begin in any
of the possible states. In other cases, there is
a designated set of “start states” that is much
smaller than the entire state set (e.g., the initial
board configuration in a board game). In these
cases, any given policy only has to be defined
for the set of states that can be reached from the
starting states when the agent is using that policy.

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_100021
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_701
http://dx.doi.org/10.1007/978-1-4899-7687-1_23
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Adaptive Real-Time Dynamic Programming 21

A

The rest of the states will never arise when that
policy is being followed, so the policy does not
need to specify what the agent should do in those
states.

ARTDP and RTDP exploit situations where
the set of states reachable from the start states is
a small subset of the entire state space. They can
dramatically reduce the amount of computation
needed to determine an optimal policy for the
relevant states as compared with the amount of
computation that a conventional DP algorithm
would require to determine an optimal policy for
all the states. These algorithms do this by fo-
cussing computation around simulated behavioral
experiences (if there is a model available capable
of simulating these experiences), or around real
behavioral experiences (if no model is available).

RTDP and ARTDP were introduced by Barto
et al. (1995). The starting point was the novel
observation by Bradtke that Korf’s Learning
Real-Time A* heuristic search algorithm (Korf
1990) is closely related to DP. RTDP generalizes
Learning Real-Time A� to stochastic problems.
ARTDP is also closely related to Sutton’s Dyna
system (Sutton 1990) and Jalali and Ferguson’s
(1989) Transient DP. Theoretical analysis relies
on the theory of Asnychronous DP as described
by Bertsekas and Tsitsiklis (1989).

ARTDP and RTDP are �model-based rein-
forcement learning algorithms, so called because
they take advantage of an environment model,
unlike �model-free reinforcement learning algo-
rithms such as �Q-Learning and Sarsa.

Structure of Learning System

Backup Operations
A basic step of many DP and RL algorithms is
a backup operation. This is an operation that up-
dates a current estimate of the cost of an MDP’s
state. (We use the cost formulation instead of
reward to be consistent with the original presenta-
tion of the algorithms. In the case of rewards, this
would be called the value of a state and we would
maximize instead of minimize.) Suppose X is the
set of MDP states. For each state x 2 X , f .x/,
the cost of state x, gives a measure (which varies

with different MDP formulations) of the total cost
the agent is expected to incur over the future if it
starts in x. If fk.x/ and fkC1.x/, respectively,
denote the estimate of f .x/ before and after a
backup, a typical backup operation applied to x

looks like this:

fkC1.x/ D mina2AŒcx.a/C
X
y2X

pxy.a/fk.f v/	;

where A is the set of possible agent actions,
cx.a/ is the immediate cost the agent incurs for
performing action a in state x, and pxy.a/ prob-
ability that the environment makes a transition
from state x to state y as a result of the agent’s
action a. This backup operation is associated with
the DP algorithm known as � value iteration. It
is also the backup operation used by RTDP and
ARTDP.

Conventional DP algorithms consist of suc-
cessive “sweeps” of the state set. Each sweep
consists of applying a backup operation to each
state. Sweeps continue until the algorithm con-
verges to a solution. Asynchronous DP, which
underlies RTDP and ARTDP, does not use sys-
tematic sweeps. States can be chosen in any way
whatsoever, and as long as backups continue to
be applied to all states (and some other conditions
are satisfied), the algorithm will converge. RTDP
is an instance of asynchronous DP in which the
states chosen for backups are determined by the
agent’s behavior.

The backup operation above is model-based
because it uses known rewards and transition
probabilities, and the values of all the states
appear on the right-hand-side of the equation. In
contrast, a sample backup uses the value of just
one sample successor state. RTDP and ARTDP
are like RL algorithms in that they rely on real or
simulated behavioral experience, but unlike many
(but not all) RL algorithms, they use full backups
like DP.

Off-Line Versus On-Line
A conventional DP algorithm typically executes
off-line. When applied to finding an optimal pol-
icy for an MDP, this means that the DP algo-
rithm executes to completion before its result

http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410

22 Adaptive Real-Time Dynamic Programming

(an optimal policy) is used to control the agent’s
behavior. The sweeps of DP sequentially “visit”
the states of the MDP, performing a backup
operation on each state. But it is important not
to confuse these visits with the behaving agent’s
visits to states: the agent is not yet behaving
while the off-line DP computation is being done.
Hence, the agent’s behavior has no influence on
the DP computation. The same is true for off-line
asynchronous DP.

RTDP is an on-line, or “real-time,” algorithm.
It is an asynchronous DP computation that exe-

cutes concurrently with the agent’s behavior so
that the agent’s behavior can influence the DP
computation. Further, the concurrently executing
DP computation can influence the agent’s behav-
ior. The agent’s visits to states directs the “visits”
to states made by the concurrent asynchronous
DP computation. At the same time, the action
performed by the agent is the action specified
by the policy corresponding to the latest results
of the DP computation: it is the “greedy” action
with respect to the current estimate of the cost
function.

Asynchronous
Dynamic Programming

Computation
Behaving Agent

Specify
actions

Specify states
to backup

In the simplest version of RTDP, when a state
is visited by the agent, the DP computation per-
forms the model-based backup operation given
above on that same state. In general, for each
step of the agent’s behavior, RTDP can apply the
backup operation to each of an arbitrary set of
states, provided that the agent’s current state is
included. For example, at each step of behavior,
a limited-horizon look-ahead search can be con-
ducted from the agent’s current state, with the
backup operation applied to each of the states
generated in the search. Essentially, RTDP is an
asynchronous DP computation with the compu-
tational effort focused along simulated or actual
behavioral trajectories.

Learning A Model
ARTDP is the same as RTDP except that (1) an
environment model is updated using any on-line
model-learning, or system identification, method,
(2) the current environment model is used in
performing the RTDP backup operations, and
(3) the agent has to perform exploratory actions
occasionally instead of always greedy actions as
in RTDP. This last step is essential to ensure that

the environment model eventually converges to
the correct model. If the state and action sets are
finite, the simplest way to learn a model is to keep
counts of the number of times each transition
occurs for each action and convert these frequen-
cies to probabilities, thus forming the maximum-
likelihood model.

Summary of Theoretical Results
When RTDP and ARTDP are applied to stochas-
tic optimal path problems, one can prove that
under certain conditions they converge to optimal
policies without the need to apply backup opera-
tions to all the states. Indeed, is some problems,
only a small fraction of the states need to be
visited. A stochastic optimal path problem is an
MDP with a nonempty set of start states and
a nonempty set of goal states. Each transition
until a goal state is reached has a nonnegative
immediate cost, and once the agent reaches a
goal state, it stays there and thereafter incurs zero
cost. Each episode of agent experience begins
with a start state. An optimal policy is one that
minimizes the cost of every state, i.e., minimizes
f .x/ for all states x. Under some relatively mild

Adaptive Real-Time Dynamic Programming 23

A

conditions, every optimal policy is guaranteed to
eventually reach a goal state.

A state x is relevant if a start state s and an
optimal policy exist such that x can be reached
from s when the agent uses that policy. If we
could somehow know which states are relevant,
we could restrict DP to just these states and
obtain an optimal policy. But this is not possi-
ble because knowing which states are relevant
requires knowledge of optimal policies, which
is what one is seeking. However, under certain
conditions, without requiring repeated visits to
all the irrelevant states, RTDP produces a policy
that is optimal for all the relevant states. The
conditions are that (1) the initial cost of every
goal state is zero, (2) there exists at least one
policy that guarantees that a goal state will be
reached with probability one from any start state,
(3) all immediate costs for transitions from non-
goal states are strictly positive, and (4) none of
the initial costs are larger than the actual costs.
This result is proved in Barto et al. (1995) by
combining aspects of Korf’s (1990) proof for
LRTA� with results for asynchronous DP.

Special Cases and Extensions
A number of special cases and extensions of
RTDP have been developed that improve per-
formance over the basic version. Some exam-
ples are as follows. Bonet and Geffner’s (2003a)
Labeled RTDP labels states that have already
been “solved,” allowing faster convergence than
RTDP. Feng et al. (2003) proposed Symbolic
RTDP, which selects a set of states to update at
each step using symbolic model-checking tech-
niques. The RTDP convergence theorem still ap-
plies because this is a special case of RTDP.
Smith and Simmons (2006) developed Focused
RTDP that maintains a priority value for each
state to better direct search and produce faster
convergence. Hansen and Zilberstein’s (2001)
LAO� uses some of the same ideas as RTDP
to produce a heuristic search algorithm that can
find solutions with loops to non-deterministic
heuristic search problems. Many other variants
are possible. Extending ARTDP instead of RTDP

in all of these ways would produce analogous
algorithms that could be used when a good model
is not available.

Cross-References

�Anytime Algorithm
�Approximate Dynamic Programming
�Reinforcement Learning

Recommended Reading

Barto A, Bradtke S, Singh S (1995) Learning to act
using real-time dynamic programming. Artif Intell
72(1–2):81–138

Bertsekas D, Tsitsiklis J (1989) Parallel and distributed
computation: numerical methods. Prentice-Hall, En-
glewood Cliffs

Bonet B, Geffner H (2003a) Labeled RTDP: improv-
ing the convergence of real-time dynamic program-
ming. In: Proceedings of the 13th international
conference on automated planning and scheduling
(ICAPS-2003), Trento

Bonet B, Geffner H (2003b) Faster heuristic search
algorithms for planning with uncertainty and full
feedback. In: Proceedings of the international joint
conference on artificial intelligence (IJCAI-2003),
Acapulco

Feng Z, Hansen E, Zilberstein S (2003) Symbolic
generalization for on-line planning. In: Proceedings
of the 19th conference on uncertainty in artificial
intelligence, Acapulco

Hansen E, Zilberstein S (2001) LAO*: a heuristic
search algorithm that finds solutions with loops.
Artif Intell 129:35–62

Jalali A, Ferguson M (1989) Computationally efficient
control algorithms for Markov chains. In: Proceed-
ings of the 28th conference on decision and control,
Tampa, pp 1283–1288

Korf R (1990) Real-time heuristic search. Artif Intell
42(2–3):189–211

Smith T, Simmons R (2006) Focused real-time dy-
namic programming for MDPs: squeezing more
out of a heuristic. In: Proceedings of the national
conference on artificial intelligence (AAAI). AAAI
Press, Boston

Sutton R (1990) Integrated architectures for learning,
planning, and reacting based on approximating dy-
namic programming. In: Proceedings of the 7th in-
ternational conference on machine learning. Morgan
Kaufmann, San Mateo, pp 216–224

http://dx.doi.org/10.1007/978-1-4899-7687-1_23
http://dx.doi.org/10.1007/978-1-4899-7687-1_100018
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

24 Adaptive Resonance Theory

Adaptive Resonance Theory

Gail A. Carpenter1 and Stephen Grossberg2

1Department of Mathematics & Center for
Adaptive Systems, Boston University, Boston,
MA, USA
2Center for Adaptive Systems, Graduate
Program in Cognitive and Neural Systems,
Department of Mathematics, Boston University,
Boston, MA, USA

Abstract

Computational models based on cognitive and
neural systems are now deeply embedded in
the standard repertoire of machine learning
and data mining methods, with intelligent
learning systems enhancing performance in
nearly every existing application area. Beyond
data mining, this article shows how models
based on adaptive resonance theory (ART)
may provide entirely new questions and
practical solutions for technological appli-
cations. ART models carry out hypothesis
testing, search, and incremental fast or slow,
self-stabilizing learning, recognition, and
prediction in response to large nonstationary
databases (big data). Three computational
examples, each based on the distributed ART
neural network, frame questions and illustrate
how a learning system (each with no free
parameters) may enhance the analysis of
large-scale data. Performance of each task
is simulated on a common mapping platform,
a remote sensing dataset called the Boston
Testbed, available online along with open-
source system code. Key design elements
of ART models and links to software for
each system are included. The article further
points to future applications for integrative
ART-based systems that have already been
computationally specified and simulated. New
application directions include autonomous
robotics, general-purpose machine vision,
audition, speech recognition, language
acquisition, eye movement control, visual
search, figure-ground separation, invariant

object recognition, social cognition, object
and spatial attention, scene understanding,
space-time integration, episodic memory,
navigation, object tracking, system-level
analysis of mental disorders, and machine
consciousness.

Adaptive Resonance Theory

Adaptive resonance theory (ART) neural net-
works model real-time hypothesis testing, search,
learning, recognition, and prediction. Since the
1980s, these models of human cognitive infor-
mation processing have served as computational
engines for a variety of neuromorphic technolo-
gies (http://techlab.bu.edu/resources/articles/C5).
This article points to a broader range of tech-
nology transfers that bring new methods to new
problem domains. It describes applications of
three specific systems, ART knowledge discov-
ery, self-supervised ART, and biased ART, and
summarizes future application areas for large-
scale, brain-based model systems.

ART Design Elements
In this article, ART refers generally to a theory
of cognitive information processing and to an
inclusive family of neural models. Design prin-
ciples derived from scientific analyses and design
constraints imposed by targeted applications have
jointly guided the development of variants of the
basic systems.

Stable Fast Learning with Distributed and
Winner-Take-All Coding
ART systems permit fast online learning,
whereby long-term memories reach their
asymptotes on each input trial. With slow
learning, memories change only slightly on each
trial. One characteristic that distinguishes classes
of ART systems from one another is the nature of
their patterns of persistent activation at the coding
field F2 (Fig. 1). The coding field is functionally
analogous to the hidden layer of multilayer
perceptrons (Encyclopedia cross reference).
At the perceptron hidden layer, activation is
distributed across many nodes, learning needs

http://techlab.bu.edu/resources/articles/C5

Adaptive Resonance Theory 25

A

Adaptive Resonance Theory, Fig. 1 Distributed ART
(dART) (Carpenter 1997). (a) At the field F0, complement
coding transforms the feature pattern a to the system input
A, which represents both scaled feature values ai 2 Œ0; 1�
and their complements .1 � ai / .i D 1 . . . M /. (b) F2 is
a competitive field that transforms its input pattern into
the working memory code y. The F2 nodes that remain
active following competition send the pattern � of learned
top-down expectations to the match field F1. The pattern
active at F1 becomes x D A ^ � , where ^ denotes the
component-wise minimum, or fuzzy intersection. (c) A
parameter � 2 Œ0; 1�, called vigilance, sets the matching
criterion. The system registers a mismatch if the size of x

is less than � times the size of A. A top-down/bottom-up
mismatch triggers a signal that resets the active F2 code.
(d) Medium-term memories in the F0-to-F2 dynamic
weights allow the system to activate a new code y. When
only one F2 node remains active following competition,
the code is maximally compressed, or winner-take-all.
When jxj � � jAj, the activation pattern y persists until
the next reset, even if input A changes or F0-to-F2 signals
habituate. During learning, thresholds �ij in paths from
F0 to F2 increase according to the dInstar law; and
thresholds �ji in paths from F2 to F1 increase according
to the dOutstar law

to be slow, and activation does not persist once
inputs are removed. The ART coding field is a
competitive network where, typically, one or a
few nodes in the normalized F2 pattern y sustain
persistent activation, even as their generating
inputs shift, habituate, or vanish. The pattern

y persists until an active reset signal (Fig. 1c)
prepares the coding field to register a new
F0-to-F2 input. Early ART networks (Carpenter
and Grossberg 1987; Carpenter et al. 1991a,
1992) employed localist, or winner-take-all,
coding, whereby strongly competitive feedback

26 Adaptive Resonance Theory

results in only one F2 node staying active until
the next reset. With fast as well as slow learning,
memory stability in these early networks relied
on their winner-take-all architectures.

Achieving stable fast learning with distributed
code representations presents a computational
challenge to any learning network. In order to
meet this challenge, distributed ART (Carpenter
1997) introduced a new network configuration
(Fig. 1) in which system fields are identified with
cortical layers (Carpenter 2001). New learning
laws (dInstar and dOutstar) that realize stable
fast learning with distributed coding predict adap-
tive dynamics between cortical layers.

Distributed ART (dART) systems employ a
new unit of long-term memory, which replaces
the traditional multiplicative weight (Encyclo-
pedia cross reference) with a dynamic weight
(Carpenter 1994). In a path from the F2 coding
node j to the F1 matching node i , the dynamic
weight equals the amount by which coding node
activation yj exceeds an adaptive threshold
j i .
The total signal �i from F2 to the i th F1 node
is the sum of these dynamic weights, and F1

node activation xi equals the minimum of the top-
down expectation �i and the bottom-up input Ai .
During dOutstar learning, the top-down pattern �

converges toward the matched pattern x.
When coding node activation yj is below
j i ,

the dynamic weight is zero and no learning occurs
in that path, even if yj is positive. This property
is critical for stable fast learning with distributed
codes. Although the dInstar and dOutstar laws are
compatible with F2 patterns y that are arbitrarily
distributed, in practice, following an initial learn-
ing phase, most changes in paths to and from a
coding node j occur only when its activation yj

is large. This type of learning is therefore called
quasi-localist. In the special case where coding is
winner-take-all, the dynamic weight is equivalent
to a multiplicative weight that formally equals the
complement of the adaptive threshold.

Complement Coding: Learning Both Absent
Features and Present Features
ART networks employ a preprocessing step
called complement coding (Carpenter et al.
1991b), which models the nervous system’s

ubiquitous computational design known as op-
ponent processing (Hurvich and Jameson 1957).
Balancing an entity against its opponent, as in
opponent colors such as red vs. green or agonist-
antagonist muscle pairs, allows a system to
act upon relative quantities, even as absolute
magnitudes fluctuate unpredictably. In ART
systems, complement coding is analogous to
retinal on-cells and off-cells (Schiller 1982).
When the learning system is presented with
a set of input features a � .a1. . . ai . . . aM /,
complement coding doubles the number of input
components, presenting to the network an input
A that concatenates the original feature vector
and its complement (Fig. 1a).

Complement coding produces normalized in-
puts A that allow a model to encode features that
are consistently absent on an equal basis with
features that are consistently present. Features
that are sometimes absent and sometimes present
when a given F2 node is highly active are re-
garded as uninformative with respect to that node,
and the corresponding present and absent top-
down feature expectations shrink to zero. When
a new input activates this node, these features
are suppressed at the match field F1 (Fig. 1b).
If the active code then produces an error signal,
attentional biasing can enhance the salience of
input features that it had previously ignored, as
described below.

Matching, Attention, and Search
A neural computation central to both scientific
and technological analyses is the ART matching
rule (Carpenter and Grossberg 1987), which con-
trols how attention is focused on critical feature
patterns via dynamic matching of a bottom-up
sensory input with a top-down learned expecta-
tion. Bottom-up/top-down pattern matching and
attentional focusing are, perhaps, the primary
features common to all ART models across their
many variations. Active input features that are not
confirmed by top-down expectations are inhib-
ited (Fig. 1b). The remaining activation pattern
defines a focus of attention, which, in turn, deter-
mines what feature patterns are learned. Basing
memories on attended features rather than whole
patterns supports the design goal of encoding sta-

Adaptive Resonance Theory 27

A

ble memories with fast as well as slow learning.
Encoding attended feature subsets also enables
one-to-many learning, where the system may
attach many context-dependent labels (Spot, dog,
animal) to one input. This capability promotes
knowledge discovery (Spot) dog and dog)

animal/ in a learning system that experiences
one input at a time, with no explicit connection
between inputs.

When the match is good enough, F2 activa-
tion persists and learning proceeds. Where they
exceed the corresponding bottom-up input com-
ponents, top-down signals decay as expectations
converge toward the attended pattern at F1. The
coding field F2 contains a reserve of uncommitted
coding nodes, which compete with the previously
active committed nodes. When a previously un-
committed node is first activated during super-
vised learning, it is associated with its desig-
nated output class. During testing, the selection
of an uncommitted node means I don’t know.
ART networks for supervised learning are called
ARTMAP (Carpenter et al. 1991a, 1992).

A mismatch between an active top-down
expectation and the bottom-up input leads
to a parallel memory search (Fig. 1c). The
ART matching criterion is set by a vigilance
parameter �. Low vigilance permits the learning
of broad classes, across diverse exemplars, while
high vigilance limits learning to narrow classes.
When a new input arrives, vigilance equals a
baseline level. Baseline vigilance is set equal
to zero to maximize generalization. ARTMAP
vigilance increases following a predictive
error or negative reinforcement (Encyclopedia
cross reference). The internal computation that
determines how far � rises to correct the error is
called match tracking (Carpenter et al. 1991a).
As vigilance rises, the network pays more
attention to how well top-down expectations
match the bottom-up input. The match tracking
modification MT– (Carpenter and Markuzon
1998) also allows the system to learn inconsistent
cases. For example, three similar, even identical,
map regions may have been correctly labeled by
different observers as ocean or water or natural.
The ability to learn one-to-many maps, which can
label a single test input as ocean and water and

natural, is a key feature of the ART knowledge
discovery system described below.

Applications

Three computational examples illustrate how
cognitive and neural systems can introduce new
approaches to the analysis of large datasets.
Application 1 (self-supervised ART) addresses
the question: how can a neural system learning
from one example at a time absorb information
that is inconsistent but correct, as when a
family pet is called Spot and dog and animal,
while rejecting similar incorrect information, as
when the same pet is called wolf? How does
this system transform scattered information
into knowledge that dogs are animals, but not
conversely? Application 2 (ART knowledge
discovery) asks: how can a real-time system,
initially trained with a few labeled examples
and a limited feature set, continue to learn
from experience, without supervision, when
confronted with oceans of additional information,
without eroding reliable early memories? How
can such individual systems adapt to their unique
application contexts? Application 3 (biased ART)
asks: how can a neural system that has made an
error refocus attention on features that it initially
ignored?

The Boston Testbed
The Boston Testbed was developed to compare
performance of learning systems applied to chal-
lenging problems of spatial analysis. Each mul-
tispectral Boston image pixel produces 41 fea-
ture values: 6 Landsat 7 Thematic Mapper (TM)
bands at 30 m resolution, 2 thermal bands at 60 m
resolution, 1 panchromatic band at 15 m reso-
lution, and 32 derived bands representing local
contrast, color, and texture. In the Boston dataset,
each of 28,735 ground truth pixels is labeled
as belonging to one of seven classes (beach,
ocean, ice, river, park, residential, industrial).
For knowledge discovery system training, some
ocean, ice, and river pixels are instead labeled
as belonging to broader classes such as water or
natural. No pixel has more than one label, and

28 Adaptive Resonance Theory

the learning system is given no information about
relationships between target classes. The labeled
dataset is available from the CNS Technology
Lab Website [http://techlab.bu.edu/classer/data
sets/].

A cross-validation procedure divides an image
into four vertical strips: two for training, one
for validation (if needed for parameter selec-
tion), and one for testing. Class mixtures differ
markedly across strips. For example, one strip
contains many ocean pixels, while another strip
contains neither ocean nor beach pixels. Geo-
graphically dissimilar training and testing areas
robustly assess regional generalization. In this
article, spatial analysis simulations on the Boston
Testbed follow this protocol to illustrate ART
systems for self-supervised learning, knowledge
discovery, and attentional control. Since each
system in Applications 1–3 requires no parameter
selection, training uses randomly chosen pixels
from three strips, with testing on the fourth strip.

Application 1: Learning from Experience
with Self-Supervised ART
Computational models of supervised pattern
recognition typically utilize two learning phases.
During an initial training phase, input patterns,
described as specified values of a set of features,
are presented along with output class labels or
patterns. During a subsequent testing phase, the
model generates output predictions for unlabeled
inputs, and no further learning takes place.

Although supervised learning has been suc-
cessfully applied in diverse settings, it does not
reflect many natural learning situations. Humans
do learn from explicit training, as from a textbook
or a teacher, and they do take tests. However,
students do not stop learning when they leave
the classroom. Rather, they continue to learn
from experience, incorporating not only more
information but new types of information, all the
while building on the foundation of their earlier
knowledge. Self-supervised ART models such
life-long learning.

An unsupervised learning system clusters un-
labeled input patterns. Semi-supervised learning
incorporates both labeled and unlabeled inputs in
its training set, but all inputs typically have the

same number of specified feature values. Without
any novel features from which to learn, semi-
supervised learning systems use unlabeled data
to refine the model parameters defined using la-
beled data. Reviews of semi-supervised learning
(Chapelle et al. 2006) have found that many of
the successful models are carefully selected and
tuned, using a priori knowledge of the problem.
Chapelle et al. (2006) conclude that none of the
semi-supervised models they review is robust
enough to be general purpose. The main difficulty
seems to be that, whenever unlabeled instances
are different enough from labeled instances to
merit learning, these differences could contain
misinformation that may damage system perfor-
mance.

The self-supervised paradigm models two
learning stages. During Stage 1 learning, the
system receives all output labels, but only
a subset of possible feature values for each
input. During Stage 2 learning, the system may
receive more feature values for each input, but
no output labels. In Stage 1, when the system
can confidently incorporate externally specified
output labels, self-supervised ART (Amis and
Carpenter 2010) employs winner-take-all coding
and fast learning. In Stage 2, when the system
internally generates its own output labels, codes
are distributed so that incorrect hypotheses do not
abruptly override reliable “classroom learning”
of Stage 1. The distributed ART learning laws,
dInstar (Carpenter 1997) and dOutstar (Carpenter
1994), scale memory changes to internally
generated measures of prediction confidence
and prevent memory changes altogether for
most inputs. Memory stability derives from
the dynamic weight representation of long-term
memories, which permits learning only in paths
to and from highly active coding nodes. Dynamic
weights solve a problem inherent in learning laws
based on multiplicative weights, which are prone
to catastrophic forgetting when implemented
with distributed codes and huge datasets, even
when learning is very slow.

In addition to emulating the human learning
experience, self-supervised learning maps to
technological applications that need to cope
with huge, ever-changing datasets. A supervised

http://techlab.bu.edu/classer/data_sets/
http://techlab.bu.edu/classer/data{_}sets/

Adaptive Resonance Theory 29

A

learning system that completes all training before
making test predictions does not adapt to new
information and individual contexts. A semi-
supervised system risks degrading its supervised
knowledge. Self-supervised ART continues
to learn from new experiences, with built-in
safeguards that conserve useful memories. Self-
supervised ART code is available from the CNS
Technology Lab Website (http://techlab.bu.edu/
SSART/).

A simulation study based on the Boston
Testbed (Amis and Carpenter 2010) illustrates
ways in which high-dimensional problems may
challenge any system learning without labels.
As in most ground truth datasets, labeled
pixels consist primarily of clear exemplars of
single classes. Because sensors have a 15–60 m
resolution, many unlabeled pixels cover multiple
classes, such as ice and industrial. Stage 2 inputs
thus mix and distort features from multiple
classes, placing many of the unlabeled feature
vectors far from the distinct class clusters of the
Stage 1 training set. Although the distributed
ART learning laws are open to unrestricted
adaptation on any pixel, the distributed codes of
Stage 2 minimize the influence of mixed pixels.
Most memory changes occur on unambiguous
cases, despite the fact that the unlabeled pixels
provide no external indices of class ambiguity.
Self-supervised Stage 2 learning dramatically
improves performance compared to learning
that ends after Stage 1. On every one of 500
individual simulations, Stage 2 learning improves
test accuracy, as unlabeled fully featured inputs
consistently expand knowledge from Stage 1
training.

Application 2: Transforming Information
into Knowledge Using ART Knowledge
Discovery
Classifying terrain or objects may require the res-
olution of conflicting information from sensors
working at different times, locations, and scales
and from users with different goals and situations.
Image fusion has been defined as “the acquisi-
tion, processing and synergistic combination of
information provided by various sensors or by
the same sensor in many measuring contexts”

(Simone et al. 2002, p. 3). When multiple sources
provide inconsistent data, fusion methods are
called upon to appraise information components
to decide among various options and to resolve
inconsistencies, as when evidence suggests that
an object is a car or a truck or a bus. Fusion meth-
ods weigh the confidence and reliability of each
source, merging complementary information or
gathering more data. In any case, at most one of
these answers is correct.

The method described here defines a com-
plementary approach to the information fusion
problem, considering the case where sensors and
sources are both nominally inconsistent and reli-
able, as when evidence suggests that an object is
a car and a vehicle and man-made or when a car
is alternatively labeled automobile. Underlying
relationships among classes are assumed to be
unknown to the automated system or the human
user, as if the labels were encrypted.

The ART knowledge discovery model acts as a
self-organizing expert system to derive consistent
knowledge structures from such nominally incon-
sistent data (Carpenter et al. 2005). Once derived,
a rule set can be used to assign classes to levels.
For each rule x) y, class x is located at a lower
level than classy. Classes connected by arrows
that codify a list of rules and confidence val-
ues form a graphical representation of a knowl-
edge hierarchy. For spatial data, the resulting
diagram of the relationships among classes can
guide the construction of orderly layered maps.
ART knowledge discovery code is available from
the CNS Technology Lab Website (http://techlab.
bu.edu/classer/classer toolkit overview). On the
Boston Testbed, the ART knowledge discovery
system places each class at its correct level and
finds all the correct rules for this example.

Application 3: Correcting Errors by Biasing
Attention Using Biased ART
Memories in ART networks are based on
matched patterns that focus attention on
critical features, where bottom-up inputs
match active top-down expectations. While this
learning strategy has proved successful for both
brain models and applications, computational
examples demonstrate that paying too much

http://techlab.bu.edu/SSART/
http://techlab.bu.edu/SSART/
http://techlab.bu.edu/classer/classer_toolkit_overview
http://techlab.bu.edu/classer/classer_toolkit_overview

30 Adaptive Resonance Theory

attention to critical features that have been
selected to represent a given category early
on may distort memory representations during
subsequent learning. If training inputs are
repeatedly presented, an ART system will correct
these initial errors. However, real-time learning
may not afford such repeat opportunities. Biased
ART (bART) (Carpenter and Gaddam 2010)
solves the problem of overemphasis on early
critical features by directing attention away from
initially attended features after the system makes
a predictive error.

Activity x at the ART field F1 computes the
match between the field’s bottom-up and top-
down input patterns (Fig. 1). A reset signal shuts
off the active F2 code when x fails to meet the
matching criterion determined by vigilance �.
Reset alone does not, however, induce a different
code: unless the prior code has left an enduring
trace within the F0–F2 subsystem, the network
will simply reactivate the same pattern at F2.

Following reset, all ART systems shift atten-
tion away from previously active coding nodes at
the field F2. As modeled in ART 3 (Carpenter and
Grossberg 1990), biasing the bottom-up input to
the coding field to favor previously inactive F2

nodes implements search by enabling the network
to activate a new code in response to a reset
signal. The ART 3 search mechanism defines a
medium-term memory in the F0-to-F2 adaptive
filter so that the system does not perseverate
indefinitely on an output class that had just pro-
duced a reset. A presynaptic interpretation of
this bias mechanism is transmitter depletion or
habituation.

The biased ART network (Carpenter and
Gaddam 2010) introduces a second, top-down,
medium-term memory which, following reset,
shifts attention away from previously active
feature nodes at the match field F1. In Fig. 1, the
first feature is strongly represented in the input A
and in the matched patterns x at F1 both before
reset (Fig. 1b) and after reset (Fig. 1d). Following
the same sequence as in Fig. 1a–c, biased ART
would diminish the size of the first feature in the
matched pattern. The addition of featural biasing
helps the system to pay more attention to input
features that it had previously ignored.

The biasing mechanism is a small modular
element that can be added to any ART net-
work. While computational examples and Boston
Testbed simulations demonstrate how featural
biasing in response to predictive errors improves
performance on supervised learning tasks, the
error signal that gates biasing could have orig-
inated from other sources, as in reinforcement
learning. Biased ART code is available from the
CNS Technology Lab Website (http://techlab.bu.
edu/bART).

Future Directions
Applications for tested software based on compu-
tational intelligence abound. This section outlines
areas where ART systems may open qualitatively
new frontiers for novel technologies. Future ap-
plications summarized here would adapt and spe-
cialize brain models that have already been math-
ematically specified and computationally simu-
lated to explain and predict large psychological
and neurobiological databases. By linking the
brain to mind, these models characterize both
mechanism (how the model works) and func-
tion (what the model is for). Both mechanism
and function are needed to design new applica-
tions. These systems embody new designs for
autonomous adaptive agents, including new com-
putational paradigms that are called Complemen-
tary Computing and Laminar Computing. These
paradigms enable the autonomous adaptation in
real time of individual persons or machines to
nonstationary situations filled with unexpected
events. See Grossberg (2013) for a review.

New Paradigms for Autonomous
Intelligent Systems: Complementary
Computing and Laminar Computing
Functional integration is essential to the design
of a complex autonomous system such as a robot
moving and learning freely in an unpredictable
environment. Linking independent modules for,
say, vision and motor control will not necessarily
produce a coordinated system that can adapt to
unexpected events in changeable contexts. How,
then, should such an autonomous adaptive system
be designed?

http://techlab.bu.edu/bART
http://techlab.bu.edu/bART

Adaptive Resonance Theory 31

A

A clue can be found in the nature of brain
specialization. How have brains evolved while
interacting with the physical world and embody-
ing its invariants? Many scientists have proposed
that our brains possess independent modules.
The brain’s organization into distinct anatom-
ical areas and processing streams shows that
brain regions are indeed specialized. Whereas
independent modules compute their particular
processes on their own, behavioral data argue
against this possibility. Complementary Comput-
ing (Grossberg 2000a,b, 2013) concerns the dis-
covery that pairs of parallel cortical process-
ing streams compute computationally comple-
mentary properties. Each stream has comple-
mentary strengths and weaknesses, much as in
physical principles like the Heisenberg uncer-
tainty principle. Each cortical stream can also
possess multiple processing stages. These stages
realize a hierarchical resolution of uncertainty.
“Uncertainty” here means that computing one
set of properties at a given stage prevents com-
putation of a complementary set of properties
at that stage. Complementary Computing pro-
poses that the computational unit of brain pro-
cessing that has behavioral significance consists
of parallel and hierarchical interactions between
complementary cortical processing streams with
multiple processing stages. These interactions
overcome complementary weaknesses to com-
pute necessary information about a particular
type of biological intelligence.

Five decades of neural modeling have shown
how Complementary Computing is embedded as
a fundamental design principle in neural systems
for vision, speech and language, cognition, emo-
tion, and sensory-motor control. Complementary
Computing hereby provides a blueprint for de-
signing large-scale autonomous adaptive systems
that are poised for technological implementation.

A unifying anatomical theme that enables
communication among cortical systems is
Laminar Computing. The cerebral cortex, the
seat of higher intelligence in all modalities,
is organized into layered circuits (often six
main layers) that undergo characteristic bottom-
up, top-down, and horizontal interactions. As
information travels up and down connected

regions, distributed decisions are made in real
time based on a preponderance of evidence.
Multiple levels suppress weaker groupings while
communicating locally coherent choices. The
distributed ART model (Fig. 1), for example,
features three cortical layers, with its distributed
code (e.g., at a cortical layer 6) producing a
distributed output. Stacks of match fields (inflow)
and coding fields (outflow) lay the substrate for
cortical hierarchies.

How do specializations of this shared lami-
nar design embody different types of biological
intelligence, including vision, speech, language,
and cognition? How does this shared design en-
able seamless intercortical interactions? Models
of Laminar Computing clarify how these differ-
ent types of intelligence all use variations of the
same laminar circuitry (Grossberg 2013; Gross-
berg and Pearson 2008). This circuitry represents
a revolutionary synthesis of desirable computa-
tional properties of feedforward and feedback
processing, digital and analog processing, and
bottom-up data-driven processing and top-down
attentive hypothesis-driven processing. Realizing
such designs in hardware that embodies biolog-
ical intelligence promises to facilitate the devel-
opment of increasingly general-purpose adaptive
autonomous systems for multiple applications.

Complementary Computing in the Design
of Perceptual/Cognitive and Spatial/Motor
Systems
Many neural models that embody subsystems
of an autonomous adaptive agent have been
developed and computationally character-
ized. It remains to unify and adapt them
to particular machine learning applications.
Complementary Computing implies that not
all of these subsystems could be based on
variants of ART. In particular, accumulating
experimental and theoretical evidence shows that
perceptual/cognitive and spatial/motor processes
use different learning, matching, and predictive
laws for their complementary functions (Fig. 2).
ART-like processing is ubiquitous in perceptual
and cognitive processes, including excitatory
matching and match-based learning that enables
self-stabilizing memories to form. Vector

32 Adaptive Resonance Theory

WHAT WHERE

EXCITATORY INHIBITORY

MATCH MISMATCH

Spatially-invariant object
learning and recognition

Fast learning without
catastrophic forgetting

Spatially-variant reaching and
movement

Continually update sensory-
motor maps and gains

PPC

MATCHING

LEARNING

WHAT WHERE

IT

Adaptive Resonance Theory, Fig. 2 Complementary
What and Where cortical processing streams for spatially
invariant object recognition and spatially variant spatial
representation and action, respectively. Perception and
recognition use top-down excitatory matching and match-

based fast or slow learning without catastrophic forget-
ting. Spatial and motor tasks use inhibitory matching
and mismatch-based learning to achieve adaptation to
changing bodily parameters. IT inferotemporal cortex,
PPC posterior parietal cortex

Associative Map (VAM) processing is often
found in spatial and motor processes, which
rely on inhibitory matching and mismatch-
based learning. In these modalities, spatial
maps and motor plants are adaptively updated
without needing to remember past maps and
parameters. Complementary mechanisms create
a self-stabilizing perceptual/cognitive front
end for intelligently manipulating the more
labile spatial/motor processes that enable our
changeable bodies to act effectively upon a
changing world.

Some of the existing large-scale ART systems
are briefly reviewed here, using visually based
systems for definiteness. Citations refer to articles
that specify system equations and simulations
and that can be downloaded from http://cns.bu.
edu/�steve.

Where’s Waldo? Unifying Spatial and
Object Attention, Learning, Recognition,
and Search of Valued Objects and Scenes
ART models have been incorporated into
larger system architectures that clarify how
individuals autonomously carry out intelligent
behaviors as they explore novel environments.
One such development is the ARTSCAN family
of architectures, which model how individuals
rapidly learn to search a scene to detect,

attend, invariantly recognize, and look at a
valued target object (Fig. 3; Cao, Grossberg,
and Markowitz 2011; Chang, Grossberg, and
Cao 2014; Fazl, Grossberg, and Mingolla 2009;
Foley, Grossberg, and Mingolla 2012; Grossberg,
Srinivasan, and Yazdanbakhsh 2014). Such a
competence represents a proposed solution of the
Where’s Waldo problem.

The ventral What stream is associated with
object learning, recognition, and prediction,
whereas the dorsal Where stream carries out
processes such as object localization, spatial
attention, and eye movement control. To achieve
efficient object recognition, the What stream
learns object category representations that
become increasingly invariant under view, size,
and position changes at higher processing
stages. Such invariance enables objects to
be learned and recognized without causing a
combinatorial explosion. However, by stripping
away the positional coordinates of each object
exemplar, the What stream loses the ability
to command actions to the positions of valued
objects. The Where stream computes positional
representations of the world and controls actions
to acquire objects in it, but does not represent
detailed properties of the objects themselves.

ARTSCAN architectures model how an au-
tonomous agent can determine when the views

http://cns.bu.edu/~steve
http://cns.bu.edu/~steve

Adaptive Resonance Theory 33

A

that are foveated by successive scanning move-
ments belong to the same object and thus de-
termine which view-selective categories should
be associatively linked to an emerging view- ,
size-, and positionally-invariant object category.
This competence, which avoids the problem of
erroneously merging pieces of different objects,
works even under the unsupervised learning con-
ditions that are the norm during many object
learning experiences in vivo. The model identifies
a new role for spatial attention in the Where
stream, namely, control of invariant object cat-
egory learning by the What stream. Interactions
across the What and Where streams overcome the
deficiencies of computationally complementary
properties of these streams.

In the ARTSCAN Search model, both Where-
to-What and What-to-Where stream interactions
are needed to overcome complementary
weaknesses: Where stream processes of spatial
attention and predictive eye movement control
regulate What stream processes whereby multiple
view- and positionally-specific object categories
are learned and associatively linked to view-
and positionally-invariant object categories
through bottom-up and object-attentive top-down
interactions. What stream cognitive-emotional
learning processes enable the focusing of
motivated attention upon the invariant object cat-
egories of desired objects (Brown, Bullock, and
Grossberg 1999, 2004; Dranias, Grossberg, and
Bullock 2008; Grossberg and Seidman 2006).
What stream cognitive names or motivational
drives can, together with volitional signals,
drive a search for Waldo. Mediated by object
attention, search proceeds from What stream
positionally-invariant representations to Where
stream positionally-specific representations that
focus spatial attention on Waldo’s position.
ARTSCAN architectures hereby model how
the dynamics of multiple brain regions are
coordinated to achieve clear functional goals.

The focus of spatial attention on Waldo’s po-
sition in the Where stream can be used to control
eye and hand movements toward Waldo, after
navigational circuits (see below) bring the ob-
server close enough to contact him. VAM-type
learning circuits have been developed for the

control of goal-oriented eye and hand movements
that can be used for this purpose (e.g., Bul-
lock and Grossberg 1988, 1991; Bullock, Cisek,
and Grossberg 1998; Contreras-Vidal, Grossberg,
and Bullock 1997; Gancarz and Grossberg 1999;
Grossberg, Srihasam, and Bullock 2012; Pack,
Grossberg, and Mingolla 2001; Srihasam, Bul-
lock, and Grossberg 2009).

The ARTSCENE system (Grossberg and
Huang 2009) models how humans can incremen-
tally learn and rapidly predict scene identity by
gist and then accumulates learned evidence from
scenic textures to refine its initial hypothesis,
using the same kind of spatial attentional
shrouds that help to learn invariant object
categories in ARTSCAN. The ARTSCENE
Search system (Huang and Grossberg 2010)
models how humans use target-predictive
contextual information to guide search for desired
targets in familiar scenes. For example, humans
can learn that a certain combination of objects
may define a context for a kitchen and trigger a
more efficient search for a typical object, such as
a sink, in that context.

General-Purpose Vision and How It
Supports Object Learning, Recognition,
and Tracking
Visual preprocessing constrains the quality of
visually based learning and recognition. On an
assembly line, automated vision systems suc-
cessfully scan for target objects in this carefully
controlled environment. In contrast, a human or
robot navigating a natural scene faces overlaid
textures, edges, shading, and depth information,
with multiple scales and shifting perspectives.
In the human brain, evolution has produced a
huge preprocessor, involving multiple brain re-
gions, for object and scene representation and
for target tracking and navigation. One reason
for this is that visual boundaries and surfaces,
visual form and motion, and target tracking and
visually based navigation are computationally
complementary, thus requiring several distinct
but interacting cortical processing streams.

Prior to the development of systems such
as ARTSCAN and ARTSCENE, the FACADE
(Form-And-Color-And-DEpth) model provided

34 Adaptive Resonance Theory

Adaptive Resonance Theory, Fig. 3 (continued)

Adaptive Resonance Theory 35

A

a neural theory of form perception, including
3D vision and figure-ground separation (e.g.,
Cao and Grossberg 2005, 2012; Fang and
Grossberg 2009; Grossberg, Kuhlmann, and Min-
golla 2007; Grossberg and Swaminathan 2004;
Kelly and Grossberg 2000). The 3D FORMO-
TION model provides a neural theory of motion
processing and form-motion interactions (e.g.,
Baloch and Grossberg 1997; Baloch, Grossberg,
Mingolla, and Nogueira 1999; Berzhanskaya,
Grossberg, and Mingolla 2007; Grossberg,
Leveille, and Versace 2011; Grossberg, Min-
golla, and Viswanathan 2001; Grossberg and
Rudd 1992). The FACADE model has just the
properties that are needed for solving the Where’s
Waldo problem, and the 3D FORMOTION
model has just the properties that are needed
for tracking unpredictably moving targets.
Their complementary properties enabled these
extensions.

Visual and Spatial Navigation, Cognitive
Working Memory, and Planning
In addition to being able to see, learn, recognize,
and track valued goal objects, an animal or au-
tonomous robot must also be able to navigate
to or away from them and to interact with them
through goal-oriented hand and arm movements.
Navigation is controlled by two distinct and in-

teracting systems: a visually guided system and a
spatial path integration system.

Visually guided navigation through a cluttered
natural scene is modeled using the 3D FORMO-
TION model as a front end. The STARS and
ViSTARS neural systems (Browning, Grossberg,
and Mingolla 2009a,b; Elder, Grossberg, and
Mingolla 2009) model how primates use object
motion information to segment objects and
optic flow information to determine heading
(self-motion direction), for purposes of goal
approach and obstacle avoidance in response to
realistic environments. The models predict how
computationally complementary processes in
parallel streams within the visual cortex compute
object motion for tracking and self-motion
for navigation. The models’ steering decisions
compute goals as attractors and obstacles as
repellers, as do humans.

Spatial navigation based upon path integration
signals has been a topic of great interest recently.
Indeed, the 2014 Nobel Prize in Physiology or
Medicine was awarded to John O’Keefe for his
discovery of place cells in the hippocampal cortex
and to Edvard and May-Britt Moser for their
discovery of grid cells in the entorhinal cor-
tex. The GridPlaceMap neural system (Gross-
berg and Pilly 2012, 2014; Pilly and Grossberg
2012, 2014; Mhatre, Grossberg, and Gorchetch-

J
Adaptive Resonance Theory, Fig. 3 ARTSCAN
Search macrocircuit and corresponding brain regions.
Dashed boxes indicate boundary and surface pre-
processing. (a) Category learning system. Arrows
represent excitatory cortical processes. Spatial attention
in the Where stream regulates view-specific and view-
invariant category learning and recognition, and attendant
reinforcement learning, in the What stream. Connections
ending in circular disks indicate inhibitory connections.
(b) Where’s Waldo search system. Search begins when
a name category or value category is activated and
subliminally primes an object-value category via the
ART matching rule. A volition control signal enables
the primed object-value category to fire output signals.
Bolstered by volitional control signals, these output
signals can, in turn, propagate through a positionally-
invariant object category to all the positionally-variant

view category integrators whose various views and
positions are represented by the object category. The
view category integrators can subliminally prime,
but not fully activate, these view categories. All this
occurs in the What stream. When the bottom-up input
from an object’s boundary/surface representation also
activates one of these view categories, its activity
becomes suprathreshold, wins the competition across
view categories for persistent activation, and activates
a spatial attentional representation of Waldo’s position
in the Where stream. ITa anterior part of inferotemporal
cortex, ITp posterior part of inferotemporal cortex, PPC
posterior parietal cortex, LIP lateral intraparietal cortex,
LGN lateral geniculate nucleus, ORB orbitofrontal cortex,
Amyg amygdala, BG basal ganglia, PFC prefrontal cortex,
SC superior colliculus, V1 striate visual cortex, V2, V3,
and V4 prestriate visual cortices

36 Adaptive Resonance Theory

nikov 2012; Pilly and Grossberg 2014) proposes
how entorhinal grid cells and hippocampal place
cells may be learned as spatial categories in a
hierarchy of self-organizing maps. The model
responds to realistic rat navigational trajectories
by learning both grid cells with hexagonal grid
firing fields of multiple spatial scales, and place
cells with one or more firing fields. Model dy-
namics match neurophysiological data about their
development in juvenile rats. The GridPlaceMap
model enjoys several parsimonious design fea-
tures that will facilitate their embodiment in tech-
nological applications, including hardware: (1)
similar ring attractor mechanisms process both
linear and angular path integration inputs that
drive map learning; (2) the same self-organizing
map mechanisms can learn grid cell and place cell
receptive fields in a hierarchy of maps, and both
grid and place cells can develop by detecting,
learning, and remembering the most frequent and
energetic co-occurrences of their inputs; and (3)
the learning of the dorsoventral organization of
grid cell modules with multiple spatial scales
that occur in the pathway from the medial en-
torhinal cortex to hippocampus seems to use
mechanisms that are homologous to those for
adaptively timed temporal learning that occur in
the pathway from the lateral entorhinal cortex to
hippocampus (Grossberg and Merrill 1989, 1992;
Grossberg and Schmajuk 1989). The homologous
mechanisms for representing space and time in
this entorhinal-hippocampal system has led to the
phrase “neural relativity” for this parsimonious
design.

Finally, the GridPlaceMap model is an ART
system. It proposes how top-down hippocampus-
to-entorhinal attentional mechanisms may sta-
bilize map learning and thereby simulates how
hippocampal inactivation may disrupt grid cell
properties and explains challenging data about
theta, beta, and gamma oscillations.

Visual and path integration information coop-
erate during navigation. Cognitive planning also
influences navigational decisions. More research
is needed to show how learning fuses visual, path
integration, and planning circuits into a unified
navigational system. The design of a general
planning system will be facilitated by the fact that

similar circuits for short-term storage of event
sequences (working memory) and for learning
of sequential plans are used by the brain to
control linguistic, spatial, and motor behaviors
(Grossberg and Pearson 2008; Silver, Grossberg,
Bullock, Histed, and Miller 2011).

Social Cognition
How can multiple autonomous systems interact
intelligently? Individuals experience the world
from self-centered perspectives. What we learn
from each other is thus computed in different
coordinates within our minds. How do we bridge
these diverse coordinates? A model of social
cognition that explains how a teacher can in-
struct a learner who experiences the world from
a different perspective can be used to enable a
single human or robotic teacher to instruct a large
“class” of embodied robots that all experience the
teacher from different perspectives.

Piaget’s circular reaction notes the feedback
loop between the eye and hand in the learning
infant, laying the foundation for visually guided
reaching. Similarly, feedback between babbled
sounds and hearing forms the learned substrate
of language production. These intrapersonal cir-
cular reactions were extended to interpersonal
circular reactions within the Circular Reactions
for Imitative Behavior (CRIB) model (Grossberg
and Vladusich 2010). This model shows how
social cognition builds upon ARTSCAN mecha-
nisms. These mechanisms clarify how an infant
learns how to share joint attention with adult
teachers and to follow their gaze toward valued
goal objects. The infant also needs to be capable
of view-invariant object learning and recognition
whereby it can carry out goal-directed behaviors,
such as the use of tools, using different object
views than the ones that its teachers use. Such
capabilities are often attributed to mirror neu-
rons. This attribution does not, however, explain
the brain processes whereby these competences
arise. CRIB proposes how intrapersonal circular
reactions create a foundation for interpersonal
circular reactions when infants and other learners
interact with external teachers in space. Both
types of circular reactions involve learned co-
ordinate transformations between body-centered

Adaptive Resonance Theory 37

A

arm movement commands and retinotopic visual
feedback, and coordination of processes within
and between the What and Where cortical pro-
cessing streams. Specific breakdowns of model
processes generate formal symptoms similar to
clinical symptoms of autism.

Mental Disorders and Homeostatic
Plasticity
Optimally functioning autonomous intelligent
systems require properly balanced complemen-
tary systems. What happens when they become
imbalanced? In humans, they can experience
mental disorders.

Scientific literature on human mental disor-
ders such as autism and schizophrenia is, of
necessity, more anecdotal than parametric and is,
therefore, an insufficient foundation for model
construction. Real-time models of normal mental
behavior that are based on the huge databases
from decades of psychological and neurobiologi-
cal experiments have, however, provided insights
into the mechanisms of abnormal behaviors (e.g.,
Carpenter and Grossberg 1993; Grossberg 1984,
2000a,b; Grossberg and Seidman 2006).

Imbalanced processes across the complemen-
tary systems that control normal behaviors can
produce constellations of model symptoms that
strikingly resemble mental disorders. For exam-
ple, fixing the ART vigilance parameter � at
too high a level leads to symptoms familiar in
autistic individuals, notably learning of hyper-
concrete categories and difficulty paying atten-
tion to the meaning of a task. Underarousal of
the model amygdala can lead to insensitivity to
social meanings and also to intense emotional
outbursts and coping strategies to reduce event
complexity and unexpectedness. Damage to the
model cerebellum can lead to defects of adap-
tively timed learning and thus a host of problems
in socialization.

In both humans and robots, it remains an
open problem to model how biologically based
autonomous systems can discover and maintain
their own optimal operating parameters in
response to the challenges of an unpredictable
world. An initial step toward solving this

homeostatic plasticity problem was made in
Chandler and Grossberg (2012).

Machine Consciousness?
An early ART prediction is that all conscious
states are resonant states, though not all
resonant states are conscious: Since that time,
ART has predicted how specific resonances
support different kinds of consciousness. These
observations suggest the question: can machines
that embody ART resonant dynamics experience
a type of consciousness? For example, ART
models predict that surface-shroud resonances
subserve conscious percepts of visual qualia,
feature-category resonances subserve recogni-
tion of familiar objects and scenes, spectral-
shroud resonances subserve conscious percepts
of auditory streams, spectral-pitch-and-timbe
resonances subserve conscious recognition of
auditory streams, item-list resonances subserve
conscious percepts of speech and language,
and cognitive-emotional resonances subserve
conscious feelings and knowing the objects or
events that cause them. ART models also identify
the brain regions and interactions that would
support these resonances.

These results about model correlates of
consciousness emerge from ART analyses of
the mechanistic relationships among processes
of Consciousness, Learning, Expectation,
Attention, Resonance, and Synchrony (the
CLEARS processes). Recall, however, that not
all resonant states are conscious states. For
example, entorhinal-hippocampal resonances are
predicted to dynamically stabilize the learning
of entorhinal grid cells and hippocampal place
cells, and parietal-prefrontal resonances are
predicted to trigger the selective opening of
basal ganglia gates to enable the read-out of
context-appropriate actions. Grossberg (2013;
2016) reviews these and other aspects of ART as
a cognitive and neural theory.

Recommended Reading

Amis GP, Carpenter GA (2010) Self-supervised
ARTMAP. Neural Netw 23:265–282

38 Adaptive Resonance Theory

Baloch AA, Grossberg S (1997) A neural model of
high-level motion processing: line motion and for-
motion dynamics. Vis Res 37:3037–3059

Baloch AA, Grossberg S, Mingolla E, Nogueira CAM
(1999) A neural model of first-order and second-
order motion perception and magnocellular dynam-
ics. J Opt Soc Am A 16:953–978

Berzhanskaya J, Grossberg S, Mingolla E (2007) Lam-
inar cortical dynamics of visual form and motion in-
teractions during coherent object motion perception.
Spat Vis 20:337–395

Brown J, Bullock D, Grossberg S (1999) How the basal
ganglia use parallel excitatory and inhibitory learn-
ing pathways to selectively respond to unexpected
rewarding cues. J Neurosci 19:10502–10511

Brown JW, Bullock D, Grossberg S (2004) How lami-
nar frontal cortex and basal ganglia circuits interact
to control planned and reactive saccades. Neural
Netw 17:471–510

Browning A, Grossberg S, Mingolla M (2009a) A
neural model of how the brain computes heading
from optic flow in realistic scenes. Cogn Psychol
59:320–356

Browning A, Grossberg S, Mingolla M (2009b) Corti-
cal dynamics of navigation and steering in natural
scenes: motion-based object segmentation, head-
ing, and obstacle avoidance. Neural Netw 22:1383–
1398

Bullock D, Grossberg S (1988) Neural dynamics of
planned arm movements: emergent invariants and
speed-accuracy properties during trajectory forma-
tion. Psychol Rev 95:49–90

Bullock D, Grossberg S (1991) Adaptive neural net-
works for control of movement trajectories invariant
under speed and force rescaling. Hum Mov Sci
10:3–53

Bullock D, Cisek P, Grossberg S (1998) Cortical net-
works for control of voluntary arm movements un-
der variable force conditions. Cereb Cortex 8:48–62

Cao Y, Grossberg S (2005) A laminar cortical model
of stereopsis and 3D surface perception: closure and
da Vinci stereopsis. Spat Vis 18:515–578

Cao Y, Grossberg S (2012) Stereopsis and 3D surface
perception by spiking neurons in laminar cortical
circuits: a method of converting neural rate models
into spiking models. Neural Netw 26:75–98

Cao Y, Grossberg S, Markowitz J (2011) How does
the brain rapidly learn and reorganize view- and
positionally-invariant object representations in infe-
rior temporal cortex? Neural Netw 24:1050–1061

Carpenter GA (1994) A distributed outstar network for
spatial pattern learning. Neural Netw 7:159–168

Carpenter GA (1997) Distributed learning, recogni-
tion, and prediction by ART and ARTMAP neural
networks. Neural Netw 10:1473–1494

Carpenter GA (2001) Neural network models of learn-
ing and memory: leading questions and an emerging
framework. Trends Cogn Sci 5:114–118

Carpenter GA, Gaddam SC (2010) Biased ART: a
neural architecture that shifts attention toward pre-

viously disregarded features following an incorrect
prediction. Neural Netw 23:435–451

Carpenter GA, Grossberg S (1987) A massively par-
allel architecture for a self-organizing neural pattern
recognition machine. Comput Vis Graph Image Pro-
cess 37:54–115

Carpenter GA, Grossberg S (1990) ART 3: hierar-
chical search using chemical transmitters in self-
organizing pattern recognition architectures. Neural
Netw 4: 129–152

Carpenter G, Grossberg S (1993) Normal and am-
nesic learning, recognition, and memory by a neural
model of cortico-hippocampal interactions. Trends
Neurosci 16:131–137

Carpenter GA, Markuzon N (1998) ARTMAP-IC and
medical diagnosis: instance counting and inconsis-
tent cases. Neural Netw 11:323–336

Carpenter GA, Grossberg S, Reynolds JH (1991a)
ARTMAP: supervised real-time learning and clas-
sification of nonstationary data by a self-organizing
neural network. Neural Netw 4:565–588

Carpenter GA, Grossberg S, Rosen DB (1991b) Fuzzy
ART: fast stable learning and categorization of
analog patterns by an adaptive resonance system.
Neural Netw 4:759–771

Carpenter GA, Grossberg S, Markuzon N, Reynolds
JH, Rosen DB (1992) Fuzzy ARTMAP: a neu-
ral network architecture for incremental supervised
learning of analog multidimensional maps. IEEE
Trans Neural Netw 3:698–713

Carpenter GA, Martens S, Ogas OJ (2005) Self-
organizing information fusion and hierarchical
knowledge discovery: a new framework using
ARTMAP neural networks. Neural Netw 18:287–
295

Chandler B, Grossberg S (2012) Joining distributed
pattern processing and homeostatic plasticity
in recurrent on-center off-surround shunting
networks: noise, saturation, short-term memory,
synaptic scaling, and BDNF. Neural Netw 25:
21–29

Chang H-C, Grossberg S, Cao Y (2014) Where’s
Waldo? How perceptual cognitive, and emotional
brain processes cooperate during learning to cate-
gorize and find desired objects in a cluttered scene.
Front Integr Neurosci doi:10.3389/fnint.2014.0043

Chapelle O, Schölkopf B, Zien A (eds) (2006) Semi-
supervised learning. MIT, Cambridge

Contreras-Vidal JL, Grossberg S, Bullock D (1997)
A neural model of cerebellar learning for arm
movement control: cortico-spino-cerebellar dynam-
ics. Learn Mem 3:475–502

Dranias M, Grossberg S, Bullock D (2008) Dopamin-
ergic and non-dopaminergic value systems in condi-
tioning and outcome-specific revaluation. Brain Res
1238:239–287

Elder D, Grossberg S, Mingolla M (2009) A neural
model of visually guided steering, obstacle avoid-
ance, and route selection. J Exp Psychol Hum Per-
cept Perform 35:1501–1531

10.3389/fnint.2014.0043

Adaptive Resonance Theory 39

A

Fang L, Grossberg S (2009) From stereogram to sur-
face: how the brain sees the world in depth. Spat Vis
22:45–82

Fazl A, Grossberg S, Mingolla E (2009) View-invariant
object category learning, recognition, and search:
how spatial and object attention are coordinated us-
ing surface-based attentional shrouds. Cogn Psychol
58:1–48

Foley NC, Grossberg S, Mingolla E (2012) Neural
dynamics of object-based multifocal visual spatial
attention and priming: object cueing, useful-field-
of-view, and crowding. Cognitive Psychology 65:
77–117

Gancarz G, Grossberg G (1999) A neural model of
the saccadic eye movement control explains task-
specific adaptation. Vis Res 39:3123–3143

Grossberg S (1984) Some psychophysiological and
pharmacological correlates of a developmental, cog-
nitive, and motivational theory. In: Karrer R, Cohen
J, Tueting P (eds) Brain and information: event
related potential. New York Academy of Sciences,
New York, pp 58–142.

Grossberg S (2000a) The complementary brain: uni-
fying brain dynamics and modularity. Trends Cogn
Sci 4:233–246

Grossberg S (2000b) The imbalanced brain: from
normal behavior to schizophrenia. Biol Psychiatry
48:81–98

Grossberg S (2013) Adaptive resonance theory: how
a brain learns to consciously attend, learn, and
recognize a changing World. Neural Netw 37:1–47

Grossberg, S. (2016). Towards solving the hard prob-
lem of consciousness: the varieties of brain res-
onances and the conscious experiences that they
support. Submitted for publication

Grossberg S, Huang T-R (2009) ARTSCENE: a neu-
ral system for natural scene classification. J Vis
9(6):1–19

Grossberg S, Merrill JWL (1992) A neural network
model of adaptively timed reinforcement learning
and hippocampal dynamics. Cogn Brain Res 1:3–38

Grossberg S, Merrill JWL (1996) The hippocampus
and cerebellum in adaptively timed learning, recog-
nition, and movement. J Cogn Neurosci 8:257–277

Grossberg S, Pearson L (2008) Laminar cortical dy-
namics of cognitive and motor working memory, se-
quence learning and performance: toward a unified
theory of how the cerebral cortex works. Psychol
Rev 115:677–732

Grossberg S, Pilly PK (2012) How entorhinal grid
cells may learn multiple spatial scales from
a dorsoventral gradient of cell response rates
in a self-organizing map. PLoS Comput Biol
8(10):31002648. doi:10.1371/journal.pcbi.1002648

Grossberg S, Pilly PK (2014) Coordinated learning of
grid cell and place cell spatial and temporal prop-
erties: multiple scales, attention, and oscillations.
Philos Trans R Soc B 369:20120524

Grossberg S, Rudd ME (1992) Cortical dynamics of
visual motion perception: short-range and long-

range apparent motion (with Rudd ME). Psychol
Rev 99:78–121

Grossberg S, Schmajuk NA (1989) Neural dynamics of
adaptive timing and temporal discrimination during
associative learning. Neural Netw 2:79–102

Grossberg S, Seidman D (2006) Neural dynamics of
autistic behaviors: cognitive, emotional, and timing
substrates. Psychol Rev 113:483–525

Grossberg S, Swaminathan G (2004) A laminar corti-
cal model for 3D perception of slanted and curved
surfaces and of 2D images: development, attention
and bistability. Vis Res 44:1147–1187

Grossberg S, Vladusich T (2010) How do children
learn to follow gaze, share joint attention, imitate
their teachers, and use tools during social interac-
tions? Neural Netw 23:940–965

Grossberg S, Leveille J, Versace M (2011) How do
object reference frames and motion vector decom-
position emerge in laminar cortical circuits? Atten
Percept Psychophys 73:1147–1170

Grossberg S, Kuhlmann L, Mingolla E (2007) A neu-
ral model of 3D shape-from-texture: multiple-scale
filtering, boundary grouping, and surface filling-in.
Vis Res 47:634–672

Grossberg S, Mingolla E, Viswanathan L (2001) Neu-
ral dynamics of motion integration and segmenta-
tion within and across apertures. Vis Res 41:2521–
2553

Grossberg S, Srihasam K, Bullock D (2012) Neu-
ral dynamics of saccadic and smooth pursuit eye
movement coordination during visual tracking of
unpredictably moving targets. Neural Netw 27:1–20

Huang T-R, Grossberg S (2010) Cortical dynamics
of contextually cued attentive visual learning and
search: spatial and object evidence accumulation.
Psychol Rev 117:1080–1112

Hurvich LM, Jameson D (1957) An opponent-
process theory of color vision. Psychol Rev 64:
384–390

Kelly FJ, Grossberg S (2000) Neural dynamics of 3-
D surface perception: figure-ground separation and
lightness perception. Percept Psychophys 62:1596–
1619

Mhatre H, Gorchetchnikov A, Grossberg S (2012)
Grid cell hexagonal patterns formed by fast self-
organized learning within entorhinal cortex. Hip-
pocampus 22:320–334

Pack C, Grossberg S, Mingolla E (2001) A neural
model of smooth pursuit control and motion per-
ception by cortical area MST. J Cogn Neurosci
13:102–120

Pilly PK, Grossberg S (2012) How do spatial learning
and memory occur in the brain? Coordinated learn-
ing of entorhinal grid cells and hippocampal place
cells. J Cogn Neurosci 24:1031–1054

Pilly PK, Grossberg S (2014) How does the modular
organization of entorhinal grid cells develop? Front
Hum Neurosci. doi:10.3389/fnhum.2014.0037

Schiller PH (1982) Central connections of the retinal
ON and OFF pathways. Nature 297:580–583

10.1371/journal.pcbi.1002648
10.3389/fnhum.2014.0037

40 Adaptive System

Simone G, Farina A, Morabito FC, Serpico SB, Bruz-
zone L (2002) Image fusion techniques for remote
sensing applications. Inf Fusion 3:3–15

Srihasam K, Bullock D, Grossberg S (2009) Target
selection by frontal cortex during coordinated sac-
cadic and smooth pursuit eye movements. J Cogn
Neurosci 21:1611–1627

Adaptive System

�Complexity in Adaptive Systems

Agent

In computer science, the term “agent” usually
denotes a software abstraction of a real entity
which is capable of acting with a certain degree
of autonomy. For example, in artificial societies,
agents are software abstractions of real people,
interacting in an artificial, simulated environ-
ment. Various authors have proposed different
definitions of agents. Most of them would agree
on the following set of agent properties:

• Persistence: Code is not executed on
demand but runs continuously and decides
autonomously when it should perform some
activity.

• Social ability: Agents are able to interact with
other agents.

• Reactivity: Agents perceive the environment
and are able to react.

• Proactivity: Agents exhibit goal-directed be-
havior and can take the initiative.

Agent-Based Computational Models

�Artificial Societies

Agent-Based Modeling and
Simulation

�Artificial Societies

Agent-Based Simulation Models

�Artificial Societies

AIS

�Artificial Immune Systems

Algorithm Evaluation

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

Algorithm evaluation is the process of assessing
a property or properties of an algorithm.

Motivation and Background

It is often valuable to assess the efficacy of
an algorithm. In many cases, such assessment
is relative, that is, evaluating which of several
alternative algorithms is best suited to a specific
application.

Processes and Techniques

Many machine learning and data mining algo-
rithms have been proposed. In order to under-
stand the relative merits of these alternatives, it

http://dx.doi.org/10.1007/978-1-4899-7687-1_45
http://dx.doi.org/10.1007/978-1-4899-7687-1_922
http://dx.doi.org/10.1007/978-1-4899-7687-1_922
http://dx.doi.org/10.1007/978-1-4899-7687-1_922
http://dx.doi.org/10.1007/978-1-4899-7687-1_919

Analytical Learning 41

A

is necessary to evaluate them. The primary ap-
proaches to evaluation can be characterized as ei-
ther theoretical or experimental. Theoretical eval-
uation uses formal methods to infer properties
of the algorithm, such as its computational com-
plexity (Papadimitriou 1994), and also employs
the tools of computational learning theory to
assess learning theoretic properties. Experimental
evaluation applies the algorithm to learning tasks
to study its performance in practice.

There are many different types of property
that may be relevant to assess depending upon
the intended application. These include algorith-
mic properties, such as time and space com-
plexity. These algorithmic properties are often
assessed separately with respect to performance
when learning a �model, that is, at � training
time, and performance when applying a learned
model, that is, at � test time.

Other types of property that are often studied
are the properties of the models that are learned
(see �Model Evaluation). Strictly speaking, such
properties should be assessed with respect to
a specific application or class of applications.
However, much machine learning research in-
cludes experimental studies in which algorithms
are compared using a set of data sets with little
or no consideration given to what class of appli-
cations those data sets might represent. It is dan-
gerous to draw general conclusions about relative
performance in general across any application
from relative performance on this sample of some
unknown class of applications. Such experimen-
tal evaluation has become known disparagingly
as a bake-off.

An approach to experimental evaluation that
may be less subject to the limitations of bake-offs
is the use of experimental evaluation to assess
a learning algorithm’s � bias and variance pro-
file. Bias and variance measure properties of
an algorithm’s propensities in learning models
rather than directly being properties of the models
that are learned. Hence, they may provide more
general insights into the relative characteristics of
alternative algorithms than do assessments of the

performance of learned models on a finite number
of applications. One example of such use of bias–
variance analysis is found in Webb (2000).

Techniques for experimental algorithm
evaluation include � bootstrap sampling, � cross-
validation, � holdout evaluation, � out-of-sample
evaluation and � prospective evaluation.

Cross-References

�Evaluation of Learning Algorithms
�Model Evaluation

References

Hastie T, Tibshirani R, Friedman JH (2001) The ele-
ments of statistical learning. Springer, New York

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Papadimitriou CH (1994) Computational complexity.
Addison-Wesley, Reading

Webb GI (2000) MultiBoosting: a technique for
combining boosting and wagging. Mach Learn
40(2):159–196

Witten IH, Frank E (2005) Data mining: practical
machine learning tools and techniques, 2nd edn.
Morgan Kaufmann, San Francisco

Analogical Reasoning

� Instance-Based Learning

Analysis of Text

�Text Mining

Analytical Learning

�Deductive Learning
�Explanation-Based Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_100145
http://dx.doi.org/10.1007/978-1-4899-7687-1_975
http://dx.doi.org/10.1007/978-1-4899-7687-1_821
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_621
http://dx.doi.org/10.1007/978-1-4899-7687-1_978
http://dx.doi.org/10.1007/978-1-4899-7687-1_8
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_206
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

42 Anomaly Detection

Anomaly Detection

Varun Chandola1, Arindam Banerjee2, and
Vipin Kumar2

1State University of New York at Buffalo,
Buffalo, NY, USA
2University of Minnesota, Minneapolis, MN,
USA

Abstract

Anomalies correspond to the behavior of a
system which does not conform to its expected
or normal behavior. Identifying such anoma-
lies from observed data, or the task of anomaly
detection, is an important and often critical
analysis task. This includes finding abnormal-
ities in a medical image, fraudulent transac-
tions in a credit card history, or structural
defects in an aircraft’s engine. The importance
of this problem has resulted in a large body of
literature on this topic. However, given that the
definition of an anomaly is strongly tied to the
underlying application, the existing research
is often embedded in the application domains,
and it is unclear how methods developed for
one domain would perform in another. The
goal of this article is to provide a general intro-
duction of the anomaly detection problem. We
start with the basic formulation of the problem
and then discuss the various extensions. In par-
ticular, we discuss the challenges associated
with identifying anomalies in structured data
and provide an overview of existing research
in this area. We hope that this article will
provide a better understanding of the different
directions in which research has been done on
this topic, and how techniques developed in
one area can be applied in domains for which
they were not intended to begin with.

Introduction

Anomalies are the unusual, unexpected, surpris-
ing patterns in the observed world. Identifying,

understanding, and predicting anomalies from
data form one of the key pillars of modern data
mining. Effective detection of anomalies allows
extracting critical information from data which
can then be used for a variety of applications,
such as to stop malicious intruders, detect and
repair faults in complex systems, and better un-
derstand the behavior of natural, social, and engi-
neered systems.

Anomaly detection refers to the problem of
finding anomalies in data. While “anomaly” is
a generally accepted term, other synonyms, such
as outliers, discordant observations, exceptions,
aberrations, surprises, peculiarities, or contam-
inants, are often used in different application
domains. In particular, anomalies and outliers
are often used interchangeably. Anomaly detec-
tion finds extensive use in a wide variety of
applications such as fraud detection for credit
cards, insurance or healthcare, intrusion detec-
tion for cybersecurity, fault detection in safety
critical systems, and military surveillance for
enemy activities. The importance of anomaly
detection stems from the fact that for a variety
of application domains, anomalies in data often
translate to significant (and often critical) action-
able insights. For example, an anomalous traffic
pattern in a computer network could mean that
a hacked computer is sending out sensitive data
to an unauthorized destination (Kumar 2005).
An anomalous remotely sensed weather variable
such as temperature could imply a heat wave or
cold snap or even faulty remote sensing equip-
ment. An anomalous MRI image may indicate
early signs of Alzheimer’s or the presence of ma-
lignant tumors (Spence et al. 2001). Anomalies in
credit card transaction data could indicate credit
card or identity theft (Aleskerov et al. 1997),
or anomalous readings from a spacecraft sensor
could signify a fault in some component of the
spacecraft (Fujimaki et al. 2005).

Anomaly detection is generally considered as
a core machine learning or data mining problem,
in the same vein as classification and cluster-
ing. Given the practical significance of anoma-
lies, there has been a tremendous interest in
studying this problem, starting from statistical
methods proposed as early as the nineteenth cen-

Anomaly Detection 43

A

tury (Edgeworth 1887). Over time, a variety of
anomaly detection techniques have been devel-
oped in several research communities. Many of
these techniques have been specifically devel-
oped for certain application domains, while oth-
ers are more generic. Several books and surveys
have been published in recent years that pro-
vide an overview of the vast literature on this
topic (Chandola et al. 2009; Aggarwal 2013;
Hodge and Austin 2004; Chandola et al. 2012;
Akoglu et al. 2015).

However, one key characteristic of anomaly
detection sets it apart from other machine learn-
ing problems. Anomaly detection is a highly
application-oriented problem which means that
there is a lack of a consistent definition of an
anomaly across tasks and application domains.
Researchers typically define an anomaly in a way
that best suits the target application. Thus, several
different formulations of the anomaly detection
problem exist. Existing solutions for these prob-
lem formulations have borrowed concepts from
a variety of disciplines in mathematics, statistics,
and computer science. This has resulted in a rich
and complex landscape for anomaly detection
research (See Fig. 1).

The goal of this article is to provide the readers
a general understanding of the complex prob-
lem space of anomaly detection. Starting with
the most basic problem setting, i.e., identifying
anomalous data instances from a data set, we

then discuss other formulations and the corre-
sponding methods. To highlight the practical im-
portance of anomaly detection, we provide an
application-oriented overview of existing meth-
ods. Finally, we discuss open challenges and re-
search questions that exist in this area to motivate
future research.

Point Anomaly Detection

In the most widely accepted setting for anomaly
detection, also referred to as point anomaly de-
tection, the goal is to identify points (objects,
instances, etc.) in a data set that do not conform
to the accepted normal behavior. Typically, no
other knowledge about the normal or anomalous
behavior is available. The lack of any ground
truth for training makes this an unsupervised
anomaly detection problem. In the sequel, we
briefly talk about other formulations in which
partial knowledge of normal and/or anomalous
behavior is available.

Even in the basic setting of point anomaly
detection, a uniform definition of anomaly does
not exist. Figure 2 shows several hypothetical
examples of anomalies in a two-dimensional data
set. In each of the example, anomalies have a
different interpretation. For instance, the point o1

in Fig. 2a is anomalous because it is far away
from the rest of the data points which belong to
a dense region. In Fig. 2b, however, the point o1

Research Disciplines

– Machine Learning
– Data Mining
– Statistics
– Information Theory
– ...

Anomaly Detec-
tion Methods

Problem For-
mulations

Application Domains

– Cybersecurity
– Fraud detection
– System health monitor-

ing
– Medicine and Health-

care
– ...

Problem Characteris-
tics

– Nature of input data
– Availability of labels
– Type of anomalies
– Expected output
– ...

Anomaly Detection, Fig. 1 Anatomy of an anomaly detection problem

44 Anomaly Detection

o1

o1
o1

o1

o1
o2

o1

o3

o4

a b c

d e f

Anomaly Detection, Fig. 2 Examples of anomalies in
2-D data. (a) Anomaly with respect to rest of the data
points. (b) Anomaly with respect to local neighbor-
hood. (c) Anomaly with respect to the data distribution.

(d) Anomaly with respect to local dense regions. (e)
Anomalous tight cluster in a sparse region. (f) Anomalous
sparse cluster in a dense region

is anomalous because it lies relatively far away
from a dense region, even though there are points
in the second sparse region which are equally
distant from their nearest points. In the third ex-
ample (see Fig. 2c), the point o1 is anomalous be-
cause it lies away from the statistical distribution
(bivariate normal) of the data. On the other hand,
there are several points located at the ends of the
elliptical distribution that are farther away from
the points that o1. The anomalies o2, o3, and o4 in
Fig. 2d are points that are away from their closest
dense regions. The points in the anomalous set
o1 in Fig. 2d, e, and f are all groups of points
whose density is anomalous with respect to the
rest of the data set. As shown in the above simple
2-D example, even for point anomaly detection,
one can define anomalies in multiple ways. Most
existing anomaly detection methods, on the other
hand, have been developed, by starting from a
different notion of anomaly often motivated by
a specific application domain. Thus, one method
might be successful in one scenario and not in the
other. We now discuss some prominent classes of
point anomaly detection methods and the defini-
tions of anomalies that they are best suited for.
The various classes of point anomaly detection
methods are briefly discussed below:

Nearest neighbor-based methods analyze the
nearest neighborhood of a test instance to assign
it an anomaly score (Ramaswamy et al. 2000;
Knorr and Ng 1999; Knorr et al. 2000; Otey
et al. 2006; Tang et al. 2002; Breunig et al.
2000, 1999). The key assumption underlying
nearest neighbor-based anomaly detection meth-
ods is that normal points lie in dense neighbor-
hoods and anomalous points lie in sparse neigh-
borhoods. Nearest neighbor methods consider
suitable measures of density, e.g., distance to the
k-th nearest neighbor (Ramaswamy et al. 2000),
radius needed to enclose a certain number of
points (Knorr and Ng 1999; Knorr et al. 2000),
etc. Such methods are capable of identifying
global anomalies (See Fig. 2a) but are shown to
perform poorly when the data has regions with
varying densities (See Fig. 2b). For such scenar-
ios, methods such as local outlier factor (Bre-
unig et al. 1999) and commute distance-based
outlier factor (Khoa and Chawla 2010) have been
proposed. When data is high dimensional, such
methods typically suffer from the “curse of di-
mensionality.” Methods such as angle-based out-
lier detection (Kriegel et al. 2008) and subspace-
based approaches (Zhang and Wang 2006) have
been proposed to address this issue.

Anomaly Detection 45

A

Clustering-based methods learn clusters from
a given data set and assign an anomaly score to
a test instance based on its relationship with its
nearest cluster (Eskin et al. 2002; He et al. 2003;
Marchette 1999; Eskin et al. 2002; Portnoy et al.
2001; Mahoney et al. 2003). Clustering-based
methods assume that while normal points exhibit
cluster structure, anomalous points do not belong
to a cluster or are far away from the nearest
normal cluster representative. In certain settings,
if the anomalies themselves may form a cluster,
one assumes that normal points form large and
dense clusters, whereas anomalous points form
small clusters or clusters with low density (see
Fig. 2d, e and f). While such methods identify
anomalies as a post-clustering phase, recently,
there have been methods that focus on identifying
anomalies simultaneously with the clusters (Ott
et al. 2014; Chawla and Gionis 2013).

Statistical methods estimate a parametric or
nonparametric model from the data and apply a
statistical test on the probability of the instance
to be generated by the estimated model to assign
an anomaly score to the test instance (Barnett
and Lewis 1994; Fox 1972; Abraham and Chuang
1989; Laurikkala et al. 2000; Chow and Yeung
2002). Such statistical models assume that nor-
mal points appear in the high probability regions
of the distribution, thereby having high likelihood
of occurring and hence low anomaly scores. On
the other hand, anomalous points appear in the
low probability regions of the distribution and
have high anomaly score. Such methods are ef-
fective if the normal instances can be modeled
by a statistical distribution. For instance, if the
data in Fig. 2c is modeled as a bivariate nor-
mal distribution, the anomalous point o1 can be
easily identified using a standard Mahalanobis
statistic, while rest of the points will appear
normal.

Classification-based methods learn a classifier
from a labeled (or unlabeled) training data
and assign an anomaly score or label to a
test data instance (Tax 2001; Tax and Duin
1999a, b; Barbara et al. 2001; Roth 2004;
Hawkins et al. 2002; Mahoney and Chan

2002, 2003). The key assumption underlying
classification-based anomaly detection methods
is that based on the available training data, one
can learn a classifier in the given feature space
to distinguish between normal and anomalous
points. Classification-based anomaly detection
methods can be categorized into one-class
methods, which have one model for the normal
class and any point which does not fit that model
is deemed anomalous, and multi-class methods,
which have multiple normal classes and points
which do not fit any of the normal classes are
deemed anomalous. A variety of models such
as support vector machines, neural networks,
Bayesian models, and rule-based systems have
been used for classification-based anomaly
detection. However, such methods are limited
by their dependence on availability of labels
for normal and/or anomalous behavior. There
are, however, methods that can operate in a
purely unsupervised setting, such as the one-
class support vector machines (Schölkopf et al.
2001; Tax 2001).

Spectral decomposition-based methods find
an approximation of the data using a combination
of attributes that capture the bulk of variability
in the data. Instances that are significantly differ-
ent from others in the lower approximation are
detected as anomalies (Agovic et al. 2007; Parra
et al. 1996; Shyu et al. 2003; Fujimaki et al.
2005). Such methods are particularly effective
in scenarios where the data is being generated
from a lower dimensional manifold, e.g., See
Fig. 2c.

Information theoretic methods are based on
the assumption that anomalies in data induce
irregularities in the information content of the
data set. Such methods analyze the information
content of a data set using different information
theoretic measures such as Kolmogorov com-
plexity, entropy, relative entropy, etc. and detect
instance that induces irregularities in the informa-
tion content of the data set as anomalies (Arning
et al. 1996; Keogh et al. 2004; Lee and Xiang
2001; He et al. 2005, 2006).

46 Anomaly Detection

Extensions to Point Anomaly
Detection

In certain settings, the unsupervised point
anomaly detection problem discussed in
section “Point Anomaly Detection” is not
rich enough to capture all requirements of an
application domain. Here we discuss some of the
different ways in which the basic problem setting
is typically extended.

Nature of Input Data
The modality of the data determines the
applicability of anomaly detection techniques.
For example, for statistical techniques, different
statistical models have to be used for continuous
and categorical data. Similarly, for nearest
neighbor-based techniques, the nature of
attributes would determine the distance measure
to be used. Often, instead of the actual data,
the pairwise distance between instances might
be provided in the form of a distance (or
similarity) matrix. In such cases, techniques
that require original data instances are not
applicable, e.g., many statistical methods and
certain classification-based techniques. However,

many of the nearest neighbor-based or clustering-
based methods discussed in section “Point
Anomaly Detection” are still applicable.

Input data can also be categorized based on the
relationship present among data instances (Tan
et al. 2005). Most of the existing anomaly de-
tection techniques deal with data represented as
a vector of attributes (record or point data, if the
data can be mapped onto a coordinate space), as
discussed in section “Point Anomaly Detection.”
Typically, no relationship is assumed among the
data instances.

In general, data instances can be related
to each other. Some examples are sequence
data, spatial data, and graph data (See Fig. 3
for an overview). In sequence data, the data
instances are linearly ordered, e.g., time-series
data, genome sequences, protein sequences. In
spatial data, each data instance is related to
its neighboring instances, e.g., vehicular traffic
data, ecological data. When the spatial data has
a temporal (sequential) component, it is referred
to as spatiotemporal data, e.g., climate data. In
graph data, data instances are represented as
vertices in a graph and are connected to other
vertices with edges. Later in this section, we will

Anomaly Detection, Fig. 3 Complex data types encountered by anomaly detection and some sample application
domains

Anomaly Detection 47

A

discuss situations where such relationship among
data instances becomes relevant for anomaly
detection.

Type of Anomaly
Anomaly detection techniques vary depending on
the nature of the desired anomaly. We have al-
ready discussed point anomalies in section “Point
Anomaly Detection,” which is the most common
form of anomaly. While point anomalies are iso-
lated by nature, several applications need to con-
sider anomalies in a context or small collection
of observations which appear anomalous. One
can define two additional types of anomalies to
capture such structures: contextual anomalies and
collective anomalies.

Contextual Anomalies
Data instances which are anomalous in a specific
context, but not otherwise, are called contextual
anomaly (also referred to as conditional anomaly
Song et al. 2007). For example, a temperature
of 70 ıF may be normal over summer, but is
anomalous in the context of winter; a heart rate
of 130 may be normal for an individual exercising
or running, but is anomalous when the individual
is resting. In the setting of contextual anomaly
detection, the context, such as summer/winter and
exercising/resting, has to be specified as a part of
the problem formulation. In particular, the data
instances are defined using following two sets
of attributes:

1. Contextual attributes. The contextual
attributes are used to determine the context (or
neighborhood) for that instance. For example,
in spatial data sets, the longitude and latitude
of a location are the contextual attributes. In
time-series data, time is a contextual attribute
which determines the position of an instance
on the entire sequence.

2. Behavioral attributes. The behavioral
attributes define the non-contextual charac-
teristics of an instance. For example, in a
spatial data set describing the average rainfall
of the entire world, the amount of rainfall at
any location is a behavioral attribute.

The context determines the normal behavioral
attributes, and the normal can be different in
different contexts. Anomalous behavior is deter-
mined using the values for the behavioral at-
tributes within a specific context, in particular
when such values deviate from what is normal in
that context. A data instance might be a contex-
tual anomaly in a given context, but an identical
data instance (in terms of behavioral attributes)
could be considered normal in a different context.
This property is key in identifying contextual and
behavioral attributes for a contextual anomaly
detection technique.

Contextual anomalies have been most
commonly explored in time-series data (Weigend
et al. 1995; Salvador and Chan 2003) and
spatial data (Kou et al. 2006; Shekhar et al.
2001). In spatial data domain, an observation
has a neighborhood specified by its location
component (refer to our earlier discussion on
spatial data). Consider an example in which each
data instance is a county location which is defined
over several attributes. If these attributes show
high pollution levels for a particular county, but
the neighborhood of this county is also highly
polluted, then this county is not an anomaly. But
if the neighborhood has very low pollution, then
this county becomes an anomaly.

A similar example can be found in the credit
card fraud detection domain. A contextual at-
tribute in credit card domain can be the time
of purchase. Suppose an individual usually has
a weekly shopping bill of $100 except during
the Christmas week, when it reaches $1000. A
new purchase of $1000 in a week in July will be
considered a contextual anomaly, since it does not
conform to the normal behavior of the individual
in the context of time (even though the same
amount spent during Christmas week will be
considered normal).

The choice of applying a contextual anomaly
detection technique is determined by the mean-
ingfulness of the contextual anomalies in the
target application domain. Another key factor is
the availability of contextual attributes. In several
cases, defining a context is straightforward, and
hence applying a contextual anomaly detection
technique makes sense. In other cases, defining

48 Anomaly Detection

Anomaly Detection,
Fig. 4 Example of a
collective
anomaly—MODIS NDVI
Time Series for 2001–2009
for a Southern California
location with a known
forest fire (Canyon fire) in
2007 [src: http://cdfdata.
fire.ca.gov/incidents/
incidents archived?
archive year=2007]

2001 2002 2003 2004 2005 2006 2007 2008 2009
2000

3000

4000

5000

6000

7000

8000

9000

N
D

V
I

Time

a context is not easy, making it difficult to apply
such techniques.

Collective Anomalies
If a collection of related data instances is anoma-
lous with respect to the entire data set, it is
termed as a collective anomaly. The individual
data instances in a collective anomaly may not
be anomalies by themselves, but their occurrence
together as a collection is anomalous. Figure 4
illustrates an example which shows a greenness
measurement called normalized difference vege-
tation index (NDVI) for a geographic location ob-
tained from a satellite instrument (MODIS). The
highlighted region denotes an anomaly where
the greenness values are abnormally low for the
entire year of 2007 due to a wildfire during
that time. Note that the individual measurements
during the year are not anomalous by themselves.

As an another illustrative example, consider a
sequence of actions occurring in a computer as
shown below:
: : : http-web, buffer-overflow, http-web, http-web, smtp-

mail, ftp, http-web, ssh, smtp-mail, http-web, ssh, buffer-

overflow, ftp, http-web, ftp, smtp-mail,http-web : : :

The highlighted sequence of events (buffer-
overflow, ssh, ftp) corresponds to a typical web-
based attack by a remote machine followed by
copying of data from the host computer to remote
destination via ftp. It should be noted that this col-
lection of events is an anomaly, but the individual

events are not anomalies when they occur in other
locations in the sequence.

Collective anomalies have been explored for
sequence (discrete and time series) data (Forrest
et al. 1999; Sun et al. 2006), graph data (Noble
and Cook 2003; Li et al. 2014; Akoglu et al.
2015), and spatial data (Shekhar et al. 2001). It
should be noted that while point anomalies can
occur in any data set, collective anomalies can
occur only in data sets in which data instances
are related. In contrast, occurrence of contextual
anomalies depends on the availability of context
attributes in the data. A point anomaly or a col-
lective anomaly can also be a contextual anomaly
if analyzed with respect to a context. Thus a
point anomaly detection problem or collective
anomaly detection problem can be transformed
to a contextual anomaly detection problem by
incorporating the context information.

Data Labels
In some scenarios, labels associated with data
instances denote if that instance is normal or
anomalous. (Also referred to as normal and
anomalous classes.) Obtaining labeled data
which is accurate as well as representative of
all types of normal and anomalous behaviors
is often prohibitively expensive. Labels are
often provided by human domain experts and
hence usually require substantial effort and time.
Even in settings where a human expert is able

http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007
http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007
http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007
http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007

Anomaly Detection 49

A

to provide labels, it is usually easier to give
examples of normal instances, since the number
of different ways an anomaly can occur is quite
large and finding examples of the different types
of anomalies is difficult. Further, anomalous
behavior is often dynamic in nature, e.g., new
types of anomalies might arise, for which there
is no labeled training data. In certain cases, such
as aviation safety, anomalous instances would
translate to catastrophic events, and hence will be
very rare.

Based on the extent to which the labels are
available, anomaly detection techniques can
operate in one of the following three modes:
supervised, semi-supervised, and unsupervised
anomaly detection. Several of the anomaly
detection methods discussed in section “Point
Anomaly Detection” are unsupervised methods.
Semi-supervised methods typically assume
availability of a training data that represents the
normal behavior. The general approach for such
methods is to construct a statistical or machine
learning model of normal behavior and then
apply a statistical or proximity test to detect new
instances which are not consistent with the learnt
model. Supervised methods assume availability
training data that represents both normal and
anomalous behavior. Typically, anomalous events
have a much smaller prior probability, and one
can leverage methods for rare-class classification,
cost-sensitive classification, and other ways
of handling class imbalance. However, such
methods find limited applicability since obtaining
representative training data for anomalous
behavior is typically infeasible.

Output of Algorithm
An important aspect for any anomaly detection
technique is the manner in which the anomalies
are reported. Typically, the outputs produced by
anomaly detection techniques are one of the fol-
lowing two types: scores or binary predictions.
Scores allow analysts to rank the anomalies in
terms of the severity. Typically a threshold is then
applied to the scores to identify the anomalies
on which to act upon. The threshold is often
set by either identifying a natural cutoff point
in the sorted scores or based on the number of

desired anomalies for further analysis. Methods
that assign a binary label to data objects (anomaly
or normal) are often easier to understand, though
they lack the capability of ranking the anomalies.
There are some research in calibrating the scores
as probabilities (Gao and Tan 2006) for better in-
terpretability (Kriegel et al. 2011; Schubert et al.
2012).

Anomaly Detection for Complex Data

In section “Point Anomaly Detection” we dis-
cussed anomaly detection in the context of data
without any explicit relationship defined among
them. However, in many applications, data ob-
jects are related, and often the anomalous behav-
ior can only be identified by analyzing the rela-
tionships between the objects. In this section, we
discuss the anomaly detection methods developed
to handle the different types of relationships.

Symbolic Sequences
In this section, we provide an overview of the
existing research on anomaly detection for sym-
bolic sequences. Methods in this area can be
grouped into following categories:

– Kernel-Based Techniques: These techniques
treat the entire test sequence as a unit ele-
ment in the analysis (Budalakoti et al. 2006,
2007; Yang and Wang 2003) and hence are
analogous to point-based anomaly detection
techniques. They typically apply a proximity-
based point anomaly detection technique by
defining an appropriate similarity kernel for
the sequences.

– Window-Based Techniques: These tech-
niques analyze a short window of symbols—a
short subsequence—within the test sequence
at a time (Forrest et al. 1996; Hofmeyr
et al. 1998; Endler 1998; Debar et al. 1998;
Ghosh et al. 1999a, b; Lane and Brodley
1997, 1999; Cabrera et al. 2001). Thus such
techniques treat a subsequence within the
test sequence as a unit element for analysis.
These techniques require an additional step

50 Anomaly Detection

in which the anomalous nature of the entire
test sequence is determined, based on the
analysis on the subsequences within the entire
sequence.

– Markovian Techniques: These techniques
predict the probability of observing each
symbol of the test sequence, using a
probabilistic model, and use the per-symbol
probabilities to obtain an anomaly score for
the test sequence (Sun et al. 2006; Ye 2004;
Michael and Ghosh 2000; Eskin et al. 2001;
Lee et al. 1997). These techniques analyze
each symbol with respect to previous few
symbols.

– Hidden Markov Model-Based Techniques:
These techniques transform the input
sequences into sequences of hidden states
and then detect anomalies in the transformed
sequences (Forrest et al. 1999; Qiao et al.
2002; Zhang et al. 2003; Florez-Larrahondo
et al. 2005).

Though several techniques have been proposed
for symbolic sequences in various application
domains, there has not been any cross domain
evaluation and understanding of the existing tech-
niques. Forrest et al. (1999) compared four differ-
ent anomaly detection techniques, but evaluated
them in the context of system call intrusion de-
tection. Sun et al. (2006) proposed a technique
for protein sequences, but no evaluation with
techniques proposed for system call data was
done. Similarly, while Budalakoti et al. (2006)
proposed a clustering-based techniques to detect
anomalies in flight sequences, it has not been
shown how the same technique would perform
on system call intrusion detection data or protein
data.

Most of the above methods identify an anoma-
lous sequence from a set of sequences, assuming
that majority of the sequences are normal. Other
methods focus on a different problem formu-
lation, also referred to as discord detection, in
which the goal is to identify a subsequence within
a long sequence which is anomalous with respect
to the rest of the sequence. Most of the existing
techniques that handle this problem formulation
slide a fixed length window across the given

long sequence and compare each window with
the remaining sequence to detect anomalous win-
dows (Keogh et al. 2005a, 2006; Lin et al. 2005;
Wei et al. 2005).

Time Series
Most methods that handle time-series data
deal primarily with univariate signals, i.e.,
a single measurement captured over time.
Several statistical techniques detect anomalous
observations (also referred to as outliers) within
a single time series using various time series
modeling techniques such as regression (Fox
1972; Abraham and Chuang 1989; Rousseeuw
and Leroy 1987), autoregression (AR) (Fujimaki
et al. 2005; Wu and Shao 2005), ARMA
(Pincombe 2005), ARIMA (Zare Moayedi
and Masnadi-Shirazi 2008), support vector
regression (SVR) (Ma and Perkins 2003),
Kalman filters Knorn and Leith (2008), etc. The
general approach behind such techniques is to
forecast the next observation in the time series,
using the statistical model and the time series
observed so far, and compare the forecasted
observation with the actual observation to
determine if an anomaly has occurred.

Two broad categories of techniques have been
proposed to identify anomalous time series in a
time-series database (Chandola et al. 2009), viz.,
segmentation-based and kernel-based anomaly
detection techniques. The general approach be-
hind segmentation-based techniques is to seg-
ment the normal time series and treat each seg-
ment as a state in a finite-state automaton (FSA)
and then use the FSA to determine if a test
time series is anomalous or not. Several vari-
ants of the segmentation-based technique have
been proposed (Chan and Mahoney 2005; Ma-
honey and Chan 2005; Salvador and Chan 2005).
Kernel-based anomaly detection techniques com-
pute similarity/distance between time series and
apply a nearest neighbor-based anomaly detec-
tion technique on the similarity “kernel” (Pro-
topapas et al. 2006; Wei et al. 2006; Yankov et al.
2007). Protopapas et al. (2006) use cross corre-
lation as the similarity measure and compute the
anomaly score of a test time series as the inverse
of its average similarity to all other time series in

Anomaly Detection 51

A

the given data set. Wei et al. (2006) use a rotation
invariant version of Euclidean distance to com-
pute distance between time series and then assign
an anomaly score to each time series as equal
to its distance to its nearest neighbor. Yankov
et al. (2007) proposed pruning-based heuristics
to improve the efficiency of the nearest neighbor
technique (Wei et al. 2006).

Several anomaly detection techniques for time
series data identify anomalous subsequences
within a long time series (also referred to as
discords) (Keogh et al. 2004, 2005a, 2006;
Lin et al. 2005; Fu et al. 2006; Bu et al. 2007;
Yankov et al. 2007). Such techniques analyze
fixed length windows obtained from the time
series by comparing each window with the rest of
the time series or against all other windows from
that time series. A window which is significantly
different from other windows is declared as a
discord.

Limited research has been done to identify
anomalies in multivariate time series data. Most
existing methods for multivariate time series fo-
cus on detecting a single anomalous multivari-
ate observation (Baragona and Battaglia 2007;
Galeano et al. 2004; Tsay et al. 2000). Baragona
and Battaglia (2007) propose an ICA-based tech-
nique to detect outliers in multivariate time series.
The underlying idea is to isolate the multivariate
time series into a set of independent univariate
components and an outlier signal and analyze the
univariate outlier signal to determine the outliers.
The ICA-based technique assumes that the ob-
served signals are linear combination of indepen-
dent components as well as independent noise
signal, and the added noise has a high kurtosis.

Cheng et al. (2009) proposed a distance-based
approach to detect anomalous subsequences
within a given multivariate sequence. For a given
multivariate sequence S , all w length windows
are extracted. The distance between each pair
of windows is computed to obtain a symmetric
.T �wC 1/� .T �wC 1/ kernel matrix. A fully
connected graph is constructed using the kernel
matrix in which each node represents a w length
window and the weight on the edges between
the pair of windows is equal to the similarity
(inverse of distance) between the pair. The nodes

(or components) of the graph that have least
connectivity are declared as anomalies.

Graphs and Networks
There has been considerable work done in the
area of anomaly detection in graphs (Akoglu et al.
2015). Two broad categories of methods exist
for detecting anomalies in graphs. The first type
of methods looks for anomalous substructures or
patterns within a graph (collective anomalies),
while the second type of methods focuses on
identifying anomalous nodes (contextual anoma-
lies).

The first type of methods typically operates
on graphs in which the nodes and/or edges are
described using a set of attributes. Such graphs
are often referred to as attributed graphs. The
general approach here is to identify subgraphs
within a large graph that have similar distribu-
tion of attributes (Noble and Cook 2003; Eberle
and Holder 2007). In particular, the work by
Noble and Cook (2003) identifies the frequent
subgraphs in a graph with categorical attributes.
Any subgraph that does not match the frequent
subgraphs is considered to be anomaly. Subse-
quently, several variants of the original method
have been proposed (Gao et al. 2010; Li et al.
2014; Sánchez et al. 2014).

The second type of methods analyzes each
node in a graph with respect to its neighborhood.
For instance, the OddBall method (Akoglu et al.
2010), analyzes each node with respect to its ego-
net which is the subgraph induced by the node
and the other nodes connected to it in the graph.
Other similar methods identify nodes that do not
belong to densely connected communities (Sun
et al. 2005; Ding et al. 2012; Tong and Lin 2011).
Similar methods have been proposed to identify
anomalies in attributed graphs (Gao et al. 2010;
Müller et al. 2013).

Conclusions and Future Directions

The notion of anomaly is important in most real
world settings. Data-driven methods for timely
and effective identification of anomalies are es-
sential, and this has triggered tremendous interest

52 Anomaly Detection

in the research community. However, the key
difference between anomaly detection and other
machine learning problems such as classification
and clustering is the lack of a consistent defi-
nition of anomalies. Instead, several definitions
of anomalies exist, each tailored to the need
of an underlying application. In this article, we
have provided an overview of this rich area by
discussing the key aspects of this problem.

We have discussed different classifications of
anomaly detection methods and provided under-
standing of the strengths and weaknesses of these
classes of methods. One of the important subareas
in this context is the class of methods that han-
dle complex structured data. We have discussed
methods that have been specifically developed to
handle sequences, time series, and network data.

Given the unstructured nature of current
research, a theoretical understanding of the
anomaly detection is challenging to obtain.
A possible future work would be to unify
the assumptions made by different techniques
regarding the normal and anomalous behavior
into a statistical or machine learning framework.
A limited attempt in this direction is provided by
Knorr et al. (1997), where the authors show the
relation between distance based and statistical
anomalies for two-dimensional data sets.

There are several promising directions for fur-
ther research in anomaly detection. Contextual
and collective anomaly detection techniques are
beginning to find increasing applicability in sev-
eral domains, and there is much scope for devel-
opment of new techniques in this area. The pres-
ence of data across different distributed locations
has motivated the need for distributed anomaly
detection techniques (Zimmermann and Mohay
2006). While such techniques process informa-
tion available at multiple sites, they often have
to simultaneously protect the information present
in each site, thereby requiring privacy preserv-
ing anomaly detection techniques (Vaidya and
Clifton 2004). With the emergence of sensor net-
works, processing data as it arrives has become
a necessity. Many techniques discussed in this
article require the entire test data before detect-
ing anomalies. Recently, techniques have been
proposed that can operate in an online fashion

(Pokrajac et al. 2007); such techniques not only
assign an anomaly score to a test instance as it
arrives, but also incrementally update the model.

References

Abraham B, Chuang A (1989) Outlier detection and
time series modeling. Technometrics 31(2):241

Aggarwal CC (2013) Outlier analysis, Springer, New
York

Agovic A, Banerjee A, Ganguly AR, Protopopescu V
(2007) Anomaly detection in transportation cor-
ridors using manifold embedding. In: First inter-
national workshop on knowledge discovery from
sensor data, ACM Press, New York

Akoglu L, McGlohon M, Faloutsos C (2010) Odd-
Ball: spotting anomalies in weighted graphs. In:
In Pacific-Asia conference on knowledge discovery
and data mining (PAKDD), Hyderabad

Akoglu L, Tong H, Koutra D (2015) Graph based
anomaly detection and description: a survey. Data
Min Knowl Discov 29(3):626

Aleskerov E, Freisleben B, Rao B (1997) Cardwatch:
a neural network based database mining system for
credit card fraud detection. In: Proceedings of IEEE
computational intelligence for financial engineer-
ing, New York, pp 220–226

Arning A, Agrawal R, Raghavan P (1996) A linear
method for deviation detection in large databases.
In: Proceedings of 2nd international conference of
knowledge discovery and data mining, pp 164–169.
citeseer.ist.psu.edu/arning96linear.html

Baragona R, Battaglia F (2007) Outliers detection in
multivariate time series by independent component
analysis. Neural Comput 19(7):1962. doi:http://dx.
doi.org/10.1162/neco.2007.19.7.1962

Barbara D, Couto J, Jajodia S, Wu N (2001) Detecting
novel network intrusions using bayes estimators. In:
Proceedings of the first SIAM international confer-
ence on data mining, Chicago

Barnett V, Lewis T (1994) Outliers in statistical data,
Wiley, Chichester

Breunig MM, Kriegel HP, Ng RT, Sander J (1999)
Optics-of: identifying local outliers. In: Proceedings
of the third European conference on principles of
data mining and knowledge discovery, Springer,
Berlin/New York, pp 262–270

Breunig MM, Kriegel HP, Ng RT, Sander J (2000)
LOF: identifying density-based local outliers. In:
Proceedings of 2000 ACM SIGMOD international
conference on management of data. ACM Press,
pp 93–104. doi:http://doi.acm.org/10.1145/342009.
335388

Bu Y, Leung TW, Fu A, Keogh E, Pei J, Meshkin S
(2007) WAT: finding top-k discords in time series
database. In: Proceedings of 7th siam international
conference on data mining

citeseer.ist.psu.edu/arning96linear.html
http://dx.doi.org/10.1162/neco.2007.19.7.1962
http://dx.doi.org/10.1162/neco.2007.19.7.1962
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388

Anomaly Detection 53

A

Budalakoti S, Srivastava A, Akella R, Turkov E (2006)
Anomaly detection in large sets of high-dimensional
symbol sequences. Technical report NASA TM-
2006-214553, NASA Ames Research Center

Budalakoti S, Srivastava A, Otey M (2007) Anomaly
detection and diagnosis algorithms for discrete sym-
bol sequences with applications to airline safety. In:
Proceedings of the IEEE international conference on
systems, man, and cybernetics, Montreal, vol. 37

Cabrera JBD, Lewis L, Mehra RK (2001) Detection
and classification of intrusions and faults using
sequences of system calls. SIGMOD Records
30(4):25. doi:http://doi.acm.org/10.1145/604264.
604269

Chan PK, Mahoney MV (2005) Modeling multiple
time series for anomaly detection. In: Proceedings
of the fifth IEEE international conference on data
mining. IEEE Computer Society, Washington, DC,
pp 90–97

Chandola V, Banerjee A, Kumar V (2009) Anomaly
detection a survey. ACM Comput Surv 41(3):15:1–
15:58

Chandola V, Banerjee A, Kumar V (2012) Anomaly
detection for discrete sequences: a survey. IEEE
Trans Knowl Data Eng 24:823. doi:http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.235

Chandola V, Cheboli D, Kumar V (2009) Detecting
anomalies in a timeseries database. Technical report
09-004, Computer Science Department, University
of Minnesota

Chawla S, Gionis A (2013) k-means-: a unified ap-
proach to clustering and outlier detection. In: Pro-
ceedings of the 13th SIAM international conference
on data mining, Austin, 2–4 May 2013, pp 189–197

Cheng H, Tan PN, Potter C, Klooster S (2009) Detec-
tion and characterization of anomalies in multivari-
ate time series. In: Proceedings of the ninth SIAM
international conference on data mining (SDM)

Chow C, Yeung DY (2002) Parzen-window network
intrusion detectors. In: Proceedings of the 16th
International conference on pattern recognition,
vol 4. IEEE Computer Society, Washington, DC,
p 40385

Debar H, Dacier M, Nassehi M, Wespi A (1998) Fixed
vs. variable-length patterns for detecting suspicious
process behavior. In: Proceedings of the 5th Euro-
pean symposium on research in computer security,
Springer, London, pp 1–15

Ding Q, Katenka N, Barford P, Kolaczyk E, Crovella M
(2012) Intrusion as (anti)social communication:
characterization and detection. In: Proceedings of
the 18th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD’12),
pp 886–894

Eberle W, Holder L (2007) Anomaly detection
in data represented as graphs. Intell Data Anal
11(6):663. http://dl.acm.org/citation.cfm?id=13680
18.1368024

Edgeworth FY (1887) On discordant observations.
Philos Mag 23(5):364

Endler D (1998) Intrusion detection: applying machine
learning to solaris audit data. In: Proceedings of the
14th annual computer security applications confer-
ence. IEEE Computer Society, Los Alamitos, p 268

Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S
(2002) A geometric framework for unsupervised
anomaly detection. In: Proceedings of applications
of data mining in computer security. Kluwer Aca-
demics, Dordrecht, pp 78–100

Eskin E, Lee W, Stolfo S (2001) Modeling system
call for intrusion detection using dynamic window
sizes. In: Proceedings of DISCEX. citeseer.ist.psu.
edu/portnoy01intrusion.html

Florez-Larrahondo G, Bridges SM, Vaughn R (2005)
Efficient modeling of discrete events for anomaly
detection using hidden Markov models. Inf Secur
3650:506

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA
(1996) A sense of self for unix processes. In: Pro-
ceedings of the ISRSP’96, pp 120–128. citeseer.ist.
psu.edu/forrest96sense.html

Forrest S, Warrender C, Pearlmutter B (1999) De-
tecting intrusions using system calls: alternate data
models. In: Proceedings of the 1999 IEEE ISRSP.
IEEE Computer Society, Washington, DC, pp 133–
145

Fox AJ (1972) Outliers in time series. J R Stat Soc Ser.
B(Methodolog) 34(3):350

Fu AWC, Leung OTW, Keogh EJ, Lin J (2006) Finding
time series discords based on haar transform. In:
Proceeding of the 2nd International conference on
advanced data mining and applications. Springer,
Berlin/New York, pp 31–41

Fujimaki R, Yairi T, Machida K (2005) An anomaly
detection method for spacecraft using relevance
vector learning. In: Proceeding of the eleventh
ACM SIGKDD international conference on knowl-
edge discovery in data mining. ACM Press, New
York, pp 401–410. doi:http://doi.acm.org/10.1145/
1081870.1081917

Fujimaki R, Yairi T, Machida K (2005) An approach
to spacecraft anomaly detection problem using ker-
nel feature space. Adv Knowl Discov Data Min
3518:785

Galeano P, Pena D, Tsay RS (2004) Outlier detec-
tion in multivariate time series via projection pur-
suit. Statistics and Econometrics Working Papers
ws044211, Universidad Carlos III, Departamento de
Estadı̈stica y Econometrı̈ca

Gao J, Tan PN (2006) Converting output scores from
outlier detection algorithms into probability esti-
mates. In: Proceedings of the sixth international
conference on data mining (ICDM ’06), Hong
Kong, pp 212–221

Gao J, Liang F, Fan W, Wang C, Sun Y, Han J (2010)
On community outliers and their efficient detection
in information networks. In: Proceedings of the
16th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD ’10),
Washington, DC, pp 813–822

http://doi.acm.org/10.1145/604264.604269
http://doi.acm.org/10.1145/604264.604269
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.235
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.235
http://dl.acm.org/citation.cfm?id=1368018.1368024
citeseer.ist.psu.edu/portnoy01intrusion.html
citeseer.ist.psu.edu/portnoy01intrusion.html
citeseer.ist.psu.edu/forrest96sense.html
citeseer.ist.psu.edu/forrest96sense.html
http://doi.acm.org/10.1145/1081870.1081917
http://doi.acm.org/10.1145/1081870.1081917

54 Anomaly Detection

Ghosh AK, Schwartzbard A, Schatz M (1999) Learn-
ing program behavior profiles for intrusion detec-
tion. In: Proceedings of SANS third conference
and workshop on intrusion detection and response.
citeseer.ist.psu.edu/ghosh99learning.html

Ghosh AK, Schwartzbard A, Schatz M (1999) Using
program behavior profiles for intrusion detection.
In: Proceedings of 1st USENIX workshop on intru-
sion detection and network monitoring, Santa Clara,
pp 51–62

Hawkins S, He H, Williams GJ, Baxter RA (2002)
Outlier detection using replicator neural networks.
In: Proceedings of the 4th international confer-
ence on data warehousing and knowledge discovery.
Springer, Berlin, pp 170–180

He Z, Deng S, Xu X, Huang JZ (2006) A fast greedy
algorithm for outlier mining. In: Proceedings of
10th Pacific-Asia conference on knowledge and data
discovery, pp 567–576

He Z, Xu X, Deng S (2003) Discovering cluster-
based local outliers. Pattern Recognit Lett 24(9–
10):1641. doi:http://dx.doi.org/10.1016/S0167-
8655(03)00003-5

He Z, Xu X, Deng S (2005) An optimization model for
outlier detection in categorical data. In: Proceedings
of international conference on intelligent comput-
ing, vol 3644. Springer, Berlin/Heidelberg

Hodge V, Austin J (2004) A survey of outlier detection
methodologies. Artif Intell Rev 22(2):85. doi:http://
dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

Hofmeyr SA, Forrest S, Somayaji A (1998) Intru-
sion detection using sequences of system calls.
J Comput Secur 6(3):151. citeseer.ist.psu.edu/
hofmeyr98intrusion.html

Keogh E, Lin J, Fu A (2005) Hot sax: Efficiently
finding the most unusual time series subsequence.
In: Proceedings of the fifth IEEE international con-
ference on data mining, IEEE Computer Society,
Washington, DC, pp 226–233. doi:http://dx.doi.org/
10.1109/ICDM.2005.79

Keogh E, Lin J, Lee SH, Herle HV (2006) Finding the
most unusual time series subsequence: algorithms
and applications. Knowl Inf Syst 11(1):1. doi:http://
dx.doi.org/10.1007/s10115-006-0034-6

Keogh E, Lonardi S, Ratanamahatana CA (2004) To-
wards parameter-free data mining. In: Proceedings
of the 10th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM
Press, New York, pp 206–215. doi:http://doi.acm.
org/10.1145/1014052.1014077

Khoa NLD, Chawla S (2010) Robust outlier detection
using commute time and eigenspace embedding. In:
Advances in knowledge discovery and data min-
ing, 14th Pacific-Asia conference, PAKDD 2010.
Proceedings, Part II. Hyderabad, 21–24 June 2010,
pp 422–434

Knorn F, Leith D (2008) Adaptive Kalman filtering
for anomaly detection in software appliances. In:
IEEE INFOCOM workshops 2008, Phoenix, AZ,
pp 1–6

Knorr EM, Ng RT (1997) A unified approach for min-
ing outliers. In: Proceedings of the 1997 conference
of the centre for advanced studies on collaborative
research. IBM Press, Toronto, p 11

Knorr EM, Ng RT (1999) Finding intensional
knowledge of distance-based outliers. In: The
VLDB journal, pp 211–222. citeseer.ist.psu.edu/
knorr99finding.html

Knorr EM, Ng RT, Tucakov V (2000) Distance-
based outliers: algorithms and applications.
VLDB J 8(3–4):237. doi:http://dx.doi.org/10.1007/
s007780050006

Kou Y, Lu CT, Chen D (2006) Spatial weighted outlier
detection. In: Proceedings of SIAM conference on
data mining, Bethesda

Kriegel HP, Hubert MS, Zimek A (2008) Angle-based
outlier detection in highdimensional data. In: Pro-
ceedings of the 14th ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD ’08), Las Legas, pp 444–452

Kriegel HP, Krger P, Schubert E, Zimek A (2011)
Interpreting and unifying outlier scores. In: SDM.
SIAM/Omnipress, Mesa, AZ, USA, pp 13–24

Kumar V (2005) Parallel and distributed computing
for cybersecurity. Distributed systems online. IEEE
6(10). doi:10.1109/MDSO.2005.53

Lane T, Brodley CE (1997) Sequence matching and
learning in anomaly detection for computer security.
In: Fawcett T, Haimowitz I, Provost F, Stolfo S (eds)
Proceedings of AI approaches to fraud detection and
risk management. AAAI Press, Menlo Park, pp 43–
49

Lane T, Brodley CE (1999) Temporal sequence learn-
ing and data reduction for anomaly detection. ACM
Trans Inf Syst Secur 2(3):295. doi:http://doi.acm.
org/10.1145/322510.322526

Laurikkala J, Juhola1 M, Kentala E (2000) Infor-
mal identification of outliers in medical data. In:
Fifth international workshop on intelligent data
analysis in medicine and pharmacology, Berlin,
pp 20–24

Lee W, Xiang D (2001) Information-theoretic mea-
sures for anomaly detection. In: Proceedings of the
IEEE symposium on security and privacy. IEEE
Computer Society, Washington, DC, p 130

Lee W, Stolfo S, Chan P (1997) Learning patterns from
unix process execution traces for intrusion detec-
tion. In: Proceedings of the AAAI 97 workshop on
AI methods in fraud and risk management

Li N, Sun H, Chipman KC, George J, Yan
X (2014) A probabilistic approach to uncover-
ing attributed graph anomalies. In: Proceedings
of the 2014 SIAM international conference on
data mining, Philadelphia, pp 82–90, 24–26 Apr
2014. doi:10.1137/1.9781611973440.10, http://dx.
doi.org/10.1137/1.9781611973440.10

Lin J, Keogh E, Fu A, Herle HV (2005) Approxima-
tions to magic: finding unusual medical time series.
In: Proceedings of the 18th IEEE symposium on
computer-based medical systems. IEEE Computer

citeseer.ist.psu.edu/ghosh99learning.html
http://dx.doi.org/10.1016/S0167-8655(03)00003-5
http://dx.doi.org/10.1016/S0167-8655(03)00003-5
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
citeseer.ist.psu.edu/hofmeyr98intrusion.html
citeseer.ist.psu.edu/hofmeyr98intrusion.html
http://dx.doi.org/10.1109/ICDM.2005.79
http://dx.doi.org/10.1109/ICDM.2005.79
http://dx.doi.org/10.1007/s10115-006-0034-6
http://dx.doi.org/10.1007/s10115-006-0034-6
http://doi.acm.org/10.1145/1014052.1014077
http://doi.acm.org/10.1145/1014052.1014077
citeseer.ist.psu.edu/knorr99finding.html
citeseer.ist.psu.edu/knorr99finding.html
http://dx.doi.org/10.1007/s007780050006
http://dx.doi.org/10.1007/s007780050006
http://doi.acm.org/10.1145/322510.322526
http://doi.acm.org/10.1145/322510.322526
http://dx.doi.org/10.1137/1.9781611973440.10
http://dx.doi.org/10.1137/1.9781611973440.10

Anomaly Detection 55

A

Society, Washington, DC, pp 329–334. doi:http://
dx.doi.org/10.1109/CBMS.2005.34

Ma J, Perkins S (2003) Online novelty detection on
temporal sequences. In: Proceedings of the 9th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM Press, New
York, pp 613–618. doi:http://doi.acm.org/10.1145/
956750.956828

Mahoney MV, Chan PK (2002) Learning nonstation-
ary models of normal network tra c for detecting
novel attacks. In: Proceedings of the 8th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM Press, pp 376–
385. doi:http://doi.acm.org/10.1145/775047.775102

Mahoney MV, Chan PK (2003) Learning rules for
anomaly detection of hostile network traffic. In:
Proceedings of the 3rd IEEE international confer-
ence on data mining. IEEE Computer Society, Los
Alamitos, p 601

Mahoney MV, Chan PK (2005) Trajectory boundary
modeling of time series for anomaly detection. In:
Proceedings of the KDD workshop on data mining
methods for anomaly detection, Las Vegas, NV,
USA

Mahoney MV, Chan PK, Arshad MH (2003) A ma-
chine learning approach to anomaly detection. Tech-
nical report CS–2003–06, Department of Computer
Science, Florida Institute of Technology Melbourne,
FL, 32901

Marchette D (1999) A statistical method for profiling
network traffic. In: Proceedings of 1st USENIX
workshop on intrusion detection and network moni-
toring, Santa Clara, pp 119–128

Michael CC, Ghosh A (2000) Two state-based ap-
proaches to program-based anomaly detection. In:
Proceedings of the 16th annual computer security
applications conference, IEEE Computer Society,
Los Alamitos, p 21

Müller E, Sanchez PI, Mülle Y, Böhm K (2013)
Ranking outlier nodes in subspaces of attributed
graphs. In: Workshops proceedings of the 29th IEEE
international conference on data engineering. ICDE,
pp 216–222

Noble CC, Cook DJ (2003) Graph-based anomaly
detection. In: Proceedings of the 9th ACM SIGKDD
international conference on Knowledge discov-
ery and data mining. ACM Press, pp 631–636.
doi:http://doi.acm.org/10.1145/956750.956831

Otey ME, Ghoting A, Parthasarathy S (2006) Fast
distributed outlier detection in mixed-attribute
data sets. Data Min Knowl Discov 12(2–3):203.
doi:http://dx.doi.org/10.1007/s10618-005-0014-6

Ott L, Pang LX, Ramos FT, Chawla S (2014) On inte-
grated clustering and outlier detection. In: Advances
in neural information processing systems, pp 1359–
1367

Parra L, Deco G, Miesbach S (1996) Statistical in-
dependence and novelty detection with informa-
tion preserving nonlinear maps. Neural Comput 8
(2):260

Pincombe B (2005) Anomaly detection in time se-
ries of graphs using ARMA processes. ASOR Bull
24(4):2

Pokrajac D, Lazarevic A, Latecki LJ (2007) Incre-
mental local outlier detection for data streams. In:
Proceedings of IEEE symposium on computational
intelligence and data mining

Portnoy L, Eskin E, Stolfo S (2001) Intrusion detection
with unlabeled data using clustering. In: Proceed-
ings of ACM workshop on data mining applied
to security. citeseer.ist.psu.edu/portnoy01intrusion.
html

Protopapas P, Giammarco JM, Faccioli L, Struble MF,
Dave R, Alcock C (2006) Finding outlier light
curves in catalogues of periodic variable stars. Mon
Notices R Astron Soc 369(2):677

Qiao Y, Xin XW, Bin Y, Ge S (2002) Anomaly intru-
sion detection method based on HMM. Electron Lett
38(13):663

Ramaswamy S, Rastogi R, Shim K (2000) Efficient
algorithms for mining outliers from large data sets.
In: Proceedings of the 2000 ACM SIGMOD inter-
national conference on Management of data. ACM
Press, New York, pp 427–438. doi:http://doi.acm.
org/10.1145/342009.335437

Roth V (2004) In: NIPS
Rousseeuw PJ, Leroy AM (1987) Robust regression

and outlier detection. Wiley, New York
Salvador S, Chan P (2003) Learning states and rules for

time-series anomaly detection. Technical report CS–
2003–05, Department of Computer Science, Florida
Institute of Technology Melbourne FL 32901

Salvador S, Chan P (2005) Learning states and rules
for detecting anomalies in time series. Appl Intell
23(3):241. doi:http://dx.doi.org/10.1007/s10489-
005-4610-3

Sánchez PI, Müller E, Irmler O, Böhm K (2014)
Local context selection for outlier ranking in
graphs with multiple numeric node attributes. In:
Proceedings of the 26th International conference
on scientific and statistical database management
(SSDBM ’14). ACM, New York, pp 16:1–16:12.
doi:10.1145/2618243.2618266. http://doi.acm.org/
10.1145/2618243.2618266

Schölkopf B, Platt JC, Shawe-Taylor JC, Smola AJ,
Williamson RC (2001) Estimating the support of
a high-dimensional distribution. Neural Comput
13(7):1443

Schubert E, Wojdanowski R, Zimek A, Kriegel HP
(2012) In: SDM. SIAM/Omnipress, Anaheim, CA,
USA, pp 1047–1058

Shekhar S, Lu CT, Zhang P (2001) A novel anomaly
detection scheme based on principal component
classifier. In: Proceedings of the 7th ACM SIGKDD
international conference on knowledge discovery
and data mining. ACM Press, New York, pp 371–
376. doi:http://doi.acm.org/10.1145/502512.502567

Shyu ML, Chen SC, Sarinnapakorn K, Chang L (2003)
A novel anomaly detection scheme based on prin-
cipal component classifier. In: Proceedings of 3rd

http://dx.doi.org/10.1109/CBMS.2005.34
http://dx.doi.org/10.1109/CBMS.2005.34
http://doi.acm.org/10.1145/956750.956828
http://doi.acm.org/10.1145/956750.956828
http://doi.acm.org/10.1145/775047.775102
http://doi.acm.org/10.1145/956750.956831
http://dx.doi.org/10.1007/s10618-005-0014-6
citeseer.ist.psu.edu/portnoy01intrusion.html
citeseer.ist.psu.edu/portnoy01intrusion.html
http://doi.acm.org/10.1145/342009.335437
http://doi.acm.org/10.1145/342009.335437
http://dx.doi.org/10.1007/s10489-005-4610-3
http://dx.doi.org/10.1007/s10489-005-4610-3
http://doi.acm.org/10.1145/2618243.2618266
http://doi.acm.org/10.1145/2618243.2618266
http://doi.acm.org/10.1145/502512.502567

56 Ant Colony Optimization

IEEE international conference on data mining, Mel-
bourne, pp 353–365

Song X, Wu M, Jermaine C, Ranka S (2007) Condi-
tional anomaly detection. IEEE Trans Knowl Data
Eng 19(5):631 doi:http://doi.ieeecomputersociety.
org/10.1109/TKDE.2007.1009

Spence C, Parra L, Sajda P (2001) Detection, synthesis
and compression in mammographic image analysis
with a hierarchical image probability model. In:
Proceedings of the IEEE workshop on mathematical
methods in biomedical image analysis. IEEE Com-
puter Society, Washington, DC, p 3

Sun J, Qu H, Chakrabarti D, Faloutsos C (2005)
Relevance search and anomaly detection in bipartite
graphs. SIGKDD Explor Newslett 7(2):48

Sun P, Chawla S, Arunasalam B (2006) Mining for out-
liers in sequential databases. In: SIAM international
conference on data mining, Philadelphia

Tan PN, Steinbach M, Kumar V (2005) Introduction to
data mining. Addison-Wesley, Boston

Tang J, Chen Z, chee Fu AW, Cheung DW (2002)
Enhancing effectiveness of outlier detections for
low density patterns. In: Proceedings of the Pacific-
Asia conference on knowledge discovery and data
mining, Taipei, pp 535–548

Tax DMJ (2001) One-class classification; concept-
learning in the absence of counter-examples. PhD
thesis, Delft University of Technology

Tax D, Duin R (1999) Data domain description using
support vectors. In: Verleysen M (ed) Proceedings
of the European symposium on artificial neural
networks, Brussels, pp 251–256

Tax D, Duin R (1999) Support vector data description.
Pattern Recognit Lett 20(11–13):1191

Tong H, Lin C-Y (2011) Non-negative residual matrix
factorization with application to graph anomaly de-
tection. In: Proceedings of the 2011 SIAM interna-
tional conference on data mining, Philadelphia, pp
143–153

Tsay RS, Peja D, Pankratz AE (2000) Outliers in
multivariate time series. Biometrika 87(4):789

Vaidya J, Clifton C (2004) Privacy-preserving outlier
detection. In: Proceedings of the 4th IEEE interna-
tional conference on data mining, Brighton, pp 233–
240

Wei L, Keogh E, Xi X (2006) Saxually explicit im-
ages: Finding unusual shapes. In: Proceedings of the
sixth international conference on data mining, IEEE
Computer Society, Washington, DC, pp 711–720.
doi:http://dx.doi.org/10.1109/ICDM.2006.138

Wei L, Kumar N, Lolla V, Keogh EJ, Lonardi
S, Ratanamahatana C (2005) Assumption-free
anomaly detection in time series. In: Proceedings of
the 17th international conference on Scientific and
statistical database management, Lawrence Berke-
ley Laboratory, Berkeley, pp 237–240

Weigend AS, Mangeas M, Srivastava AN (1995) Non-
linear gated experts for timeseries – discovering
regimes and avoiding overfitting. Int J Neural Syst
6(4):373

Wu Q, Shao Z (2005) Network anomaly detection
using time series analysis. In: Proceedings of the
joint international conference on autonomic and au-
tonomous systems and international conference on
networking and services. IEEE Computer Society,
Washington, DC, p 42

Yang J, Wang W (2003) CLUSEQ: Efficient and ef-
fective sequence clustering. In: Proceedings of inter-
national conference on data engineering, Bangalore,
pp 101–112

Yankov D, Keogh EJ, Rebbapragada U (2007) Disk
aware discord discovery: Finding unusual time se-
ries in terabyte sized datasets. In: Proceedings of
international conference on data mining, pp 381–
390

Ye N (2004) A Markov Chain model of temporal be-
havior for anomaly detection. In: Proceedings of the
5th annual IEEE information assurance workshop.
IEEE, Piscataway

Zare Moayedi H, Masnadi-Shirazi M (2008)
ARIMA model for network traffic prediction
and anomaly detection. Int Symp Inf Technol 4:1.
doi:10.1109/ITSIM.2008.4631947

Zhang J, Wang H (2006) Detecting outlying subspaces
for high-dimensional data: the new task, algo-
rithms, and performance. Knowl Inf Syst 10(3):333.
doi:http://dx.doi.org/10.1007/s10115-006-0020-z

Zhang X, Fan P, Zhu Z (2003) A new anomaly de-
tection method based on hierarchical HMM. In:
Proceedings of the 4th international conference on
parallel and distributed computing, applications and
technologies, Chengdu, pp 249–252

Zimmermann J, Mohay G (2006) Distributed intru-
sion detection in clusters based on non-interference.
In: ACSW Frontiers ’06: Proceedings of the
2006 Australasian workshops on grid computing
and e-research. Australian Computer Society, Dar-
linghurst, pp 89–95

Ant Colony Optimization

Marco Dorigo and Mauro Birattari
Université Libre de Bruxelles, Brussels, Belgium

Synonyms

ACO

Definition

Ant colony optimization (ACO) is a population-
based metaheuristic for the solution of difficult

http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.1009
http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.1009
http://dx.doi.org/10.1109/ICDM.2006.138
http://dx.doi.org/10.1007/s10115-006-0020-z
http://dx.doi.org/10.1007/978-1-4899-7687-1_100003

Ant Colony Optimization 57

A

combinatorial optimization problems. In ACO,
each individual of the population is an artificial
agent that builds incrementally and stochastically
a solution to the considered problem. Agents
build solutions by moving on a graph-based
representation of the problem. At each step
their moves define which solution components
are added to the solution under construction. A
probabilistic model is associated with the graph
and is used to bias the agents’ choices. The
probabilistic model is updated on-line by the
agents so as to increase the probability that future
agents will build good solutions.

Motivation and Background

Ant colony optimization is so called because
of its original inspiration: the foraging behavior
of some ant species. In particular, in Beckers
et al. (1992) it was demonstrated experimen-
tally that ants are able to find the shortest path
between their nest and a food source by col-
lectively exploiting the pheromone they deposit
on the ground while walking. Similar to real
ants, ACO’s artificial agents, also called artificial
ants, deposit artificial pheromone on the graph
of the problem they are solving. The amount of
pheromone each artificial ant deposits is propor-
tional to the quality of the solution the artificial
ant has built. These artificial pheromones are
used to implement a probabilistic model that is
exploited by the artificial ants to make decisions
during their solution construction activity.

Structure of the Optimization System

Let us consider a minimization problem (S; f),
where S is the set of feasible solutions, and f

is the objective function, which assigns to each
solution s 2 S a cost value f .s/. The goal is
to find an optimal solution s�, that is, a feasible
solution of minimum cost. The set of all optimal
solutions is denoted by S�.

Ant colony optimization attempts to solve this
minimization problem by repeating the following
two steps:

• Candidate solutions are constructed using a
parameterized probabilistic model, that is, a
parameterized probability distribution over the
solution space.

• The candidate solutions are used to modify the
model in a way that is intended to bias future
sampling toward low cost solutions.

The Ant Colony Optimization Probabilistic
Model
We assume that the combinatorial optimization
problem .S; f / is mapped on a problem that can
be characterized by the following list of items:

• A finite set C D fc1; c2; : : : ; cNc
g of com-

ponents, where NC is the number of compo-
nents.

• A finite set X of states of the problem, where
a state is a sequence x D hci ; cj ; : : : ; ck ; : : :i

over the elements of C. The length of a se-
quence x, that is, the number of components
in the sequence, is expressed by jxj. The
maximum length of a sequence is bounded by
a positive constant n < C1.

• A set of (candidate) solutions S , which is a
subset of X (i.e., S � X /.

• A set of feasible states QX , with QX � X ,
defined via a set of constraints �.

• A nonempty set S� of optimal solutions, with
S� � QX and S� � S .

Given the above formulation (Note that, be-
cause this formulation is always possible, ACO
can in principle be applied to any combinato-
rial optimization problem.) artificial ants build
candidate solutions by performing randomized
walks on the completely connected, weighted
graph G D .C;L; T /, where the vertices are
the components C, the set L fully connects the
components C, and T is a vector of so-called
pheromone trails
 . Pheromone trails can be as-
sociated with components, connections, or both.
Here we assume that the pheromone trails are
associated with connections, so that
.i; j / is the
pheromone associated with the connection be-
tween components i and j . It is straightforward
to extend the algorithm to the other cases. The
graph G is called the construction graph.

58 Ant Colony Optimization

To construct candidate solutions, each artifi-
cial ant is first put on a randomly chosen vertex
of the graph. It then performs a randomized walk
by moving at each step from vertex to vertex on
the graph in such a way that the next vertex is
chosen stochastically according to the strength
of the pheromone currently on the arcs. While
moving from one node to another of the graph
G, constraints � may be used to prevent ants
from building infeasible solutions. Formally, the
solution construction behavior of a generic ant
can be described as follows:

ANT SOLUTION CONSTRUCTION

• For each ant:
– Select a start node c1 according to some

problem dependent criterion.
– Set k D 1 and xk D hc1i.

• While xk D hc1; c2; : : : ; cki 2 X ; xk 6 2S ,
and the set Jxk

of components that can
be appended to xk is not empty, select
the next node (component) ckC1 randomly
according to:

PT .ckC1 D cjxk/

D

8̂̂
<̂
ˆ̂̂:

F.ck ;c/.
.ck ; c//P
.ck ;y/2Jxk

F.ck ;y/.�.ck ;y//

if .ck ; c/ 2 Jxk
;

0 otherwise;

(1)

where a connection .ck ; y/ belongs to
Jxk

if and only if the sequence xkC1 D

hc1; c2; : : : ; ck ; yi satisfies the constraints �

(that is, xkC1 2 QX) and F.i;j /.´/ is some
monotonic function – a common choice being
´˛�.i; j /ˇ , where ˛, ˇ > 0, and �.i; j /’s
are heuristic values measuring the desirability
of adding component j after i . If at some
stage xk 6 2S and Jxk

D Ø, that is, the
construction process has reached a dead-end,
the current state xk is discarded. However,
this situation may be prevented by allowing
artificial ants to build infeasible solutions as
well. In such a case, an infeasibility penalty
term is usually added to the cost function.
Nevertheless, in most of the settings in which
ACO has been applied, the dead-end situation
does not occur.

For certain problems, one may find it useful to
use a more general scheme, where F depends
on the pheromone values of several “related”
connections rather than just a single one.
Moreover, instead of the random-proportional
rule above, different selection schemes, such as
the pseudo-random-proportional rule (Dorigo
and Gambardella 1997), may be used.

The Ant Colony Optimization Pheromone
Update
Many different schemes for pheromone update
have been proposed within the ACO framework.
For an extensive overview, see Dorigo and
Stützle (2004). Most pheromone updates can
be described using the following generic scheme:
GENERIC ACO UPDATE

• 8s 2 Ŝt ;8.i; j / 2 s W
.i; j /
.i; j / C

QF .sjS1; : : : ; St /

• 8.i; j / W
.i; j / .1 � �/ 	
.i; j /;

where Si is the sample in the i th iteration,
�; 0 � � < 1, is the evaporation rate, and
Qf .sjS1; : : : ; St / is some “quality function,”
which is typically required to be non-increasing
with respect to f and is defined over the
“reference set” Ŝt .

Different ACO algorithms may use different
quality functions and reference sets. For example,
in the very first ACO algorithm – Ant System
(Dorigo et al. 1991, 1996) – the quality function
is simply 1=f .s/ and the reference set Ŝt D St . In
a subsequently proposed scheme, called iteration
best update (Dorigo and Gambardella 1997), the

Anytime Algorithm 59

A

reference set is a singleton containing the best
solution within St (if there are several iteration-
best solutions, one of them is chosen randomly).
For the global-best update (Dorigo et al. 1996;
Stützle and Hoos 1997), the reference set contains
the best among all the iteration-best solutions
(and if there are more than one global-best so-

lution, the earliest one is chosen). In Dorigo
et al. (1996) an elitist strategy was introduced, in
which the update is a combination of the previous
two.

In case a good lower bound on the optimal so-
lution cost is available, one may use the following
quality function (Maniezzo 1999):

Qf .sjS1; : : : ; St / D
0

�
1 �

f .s/ � LB
Nf � LB

�
D
0

Nf � f .s/

Nf � LB
; (2)

where Nf is the average of the costs of the last k

solutions and LB is the lower bound on the opti-
mal solution cost. With this quality function, the
solutions are evaluated by comparing their cost
to the average cost of the other recent solutions,
rather than by using the absolute cost values.
In addition, the quality function is automatically
scaled based on the proximity of the average cost
to the lower bound.

A pheromone update that slightly differs from
the generic update described above was used
in ant colony system (ACS) (Dorigo and Gam-
bardella 1997). There the pheromone is evap-
orated by the ants online during the solution
construction, hence only the pheromone involved
in the construction evaporates.

Another modification of the generic update
was introduced in MAX �MIN Ant System
(Stützle and Hoos 1997, 2000), which uses max-
imum and minimum pheromone trail limits. With
this modification, the probability of generating
any particular solution is kept above some posi-
tive threshold. This helps to prevent search stag-
nation and premature convergence to suboptimal
solutions.

Cross-References

� Swarm Intelligence

Recommended Reading

Beckers R, Deneubourg JL, Goss S (1992) Trails and
U-turns in the selection of the shortest path by the
ant Lasius Niger. J Theor Biol 159:397–415

Dorigo M, Gambardella LM (1997) Ant colony sys-
tem: a cooperative learning approach to the trav-
eling salesman problem. IEEE Trans Evol Comput
1(1):53–66

Dorigo M, Stützle T (2004) Ant colony optimization.
MIT Press, Cambridge

Dorigo M, Maniezzo V, Colorni A (1991) Positive
feedback as a search strategy. Technical report 91-
016, Dipartimento di Elettronica, Politecnico di Mi-
lano, Milan

Dorigo M, Maniezzo V, Colorni A (1996) Ant system:
optimization by a colony of cooperating agents.
IEEE Trans Syst Man Cybern – Part B 26(1):
29–41

Maniezzo V (1999) Exact and approximate nondeter-
ministic tree-search procedures for the quadratic as-
signment problem. INFORMS J Comput 11(4):358–
369

Stützle T, Hoos HH (1997) The MAX �MIN ant
system and local search for the traveling salesman
problem. In: Proceedings of the 1997 congress on
evolutionary computation – CEC’97. IEEE Press,
Piscataway, pp 309–314

Stützle T, Hoos HH (2000) MAX�MIN ant system.
Future Gener Comput Syst 16(8):889–914

Anytime Algorithm

An anytime algorithm is an algorithm whose out-
put increases in quality gradually with increased
running time. This is in contrast to algorithms that
produce no output at all until they produce full-
quality output after a sufficiently long execution
time. An example of an algorithm with good
anytime performance is �Adaptive Real-Time
Dynamic Programming (ARTDP).

http://dx.doi.org/10.1007/978-1-4899-7687-1_805
http://dx.doi.org/10.1007/978-1-4899-7687-1_10

60 AODE

AODE

�Averaged One-Dependence Estimators

Apprenticeship Learning

�Behavioral Cloning

Approximate Dynamic
Programming

�Value Function Approximation

Apriori Algorithm

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Definition

Apriori algorithm (Agrawal et al. 1996) is a
data mining method which outputs all � frequent
itemsets and � association rules from given data.
Input: set I of items, multiset D of subsets of
I, frequency threshold min fr, and confidence
threshold min conf.
Output: all frequent itemsets and all valid associ-
ation rules in D
Method:

1: level := 1; frequent sets : = Ø;
2: candidate sets : = ffigji 2 Ig;
3: while candidate sets¤ Ø

3.1: scan data D to compute frequencies of all
sets in candidate sets;

3.2: frequent sets : = frequent sets [fC 2

candidate sets jfrequency.C / � min frg;
3.3: level := level C 1;

3.4: candidate sets := fA
 I jj A jD

level and B 2 frequent sets for all B
 A; j

B jD level � 1g;
4: output frequent sets;
5: for each F 2 frequent sets

5.1: for each E
 F , E ¤Ø, E ¤ F

5.1.1: if frequency(F)/frequency(E)
� min conf then output association rule E !

.F nE/

The algorithm finds frequent itemsets (lines
1–4) by a breadth-first, general-to-specific search.
It generates and tests candidate itemsets in
batches, to reduce the overhead of database
access. The search starts with the most general
itemset patterns, the singletons, as candidate
patterns (line 2). The algorithm then iteratively
computes the frequencies of candidates (line
3.1) and saves those that are frequent (line 3.2).
The crux of the algorithm is in the candidate
generation (line 3.4): on the next level, those
itemsets are pruned that have an infrequent
subset. Obviously, such itemsets cannot be
frequent. This allows Apriori to find all frequent
itemset without spending too much time on
infrequent itemsets. See � frequent pattern and
� constraint-based mining for more details and
extensions.

Finally, the algorithm tests all frequent as-
sociation rules and outputs those that are also
confident (lines 5–5.1.1).

Cross-References

�Association Rule
�Basket Analysis
�Constraint-Based Mining
� Frequent Itemset
� Frequent Pattern

Recommended Reading

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge dis-
covery and data mining. AAAI Press, Menlo Park,
pp 307–328

http://dx.doi.org/10.1007/978-1-4899-7687-1_48
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318

Artificial Immune Systems 61

A

AQ

�Rule Learning

Architecture

�Topology of a Neural Network

Area Under Curve

Synonyms

AUC

Definition

The area under curve (AUC) statistic is an
empirical measure of classification performance
based on the area under an ROC curve.
It evaluates the performance of a scoring
classifier on a test set, but ignores the
magnitude of the scores and only takes their
rank order into account. AUC is expressed
on a scale of 0 to 1, where 0 means that
all negatives are ranked before all positives,
and 1 means that all positives are ranked
before all negatives. See �ROC Analy-
sis.

ARL

�Average-Reward Reinforcement Learning

ART

�Adaptive Resonance Theory

ARTDP

�Adaptive Real-Time Dynamic Programming

Artificial Immune Systems

Jon Timmis
University of York, Heslington, North Yorkshire,
UK

Synonyms

AIS; Immune computing; Immune-inspired com-
puting; Immunocomputing; Immunological com-
putation

Definition

Artificial immune systems (AIS) have emerged
as a computational intelligence approach that
shows great promise. Inspired by the complex-
ity of the immune system, computer scientists
and engineers have created systems that in some
way mimic or capture certain computationally
appealing properties of the immune system, with
the aim of building more robust and adaptable
solutions. AIS have been defined by de Castro
and Timmis (2002) as:

I adaptive systems, inspired by theoretical im-
munology and observed immune functions,
principle and models, which are applied to
problem solving

AIS are not limited to machine learning sys-
tems, there are a wide variety of other areas in
which AIS are developed such as optimization,
scheduling, fault tolerance, and robotics (Hart
and Timmis 2008). Within the context of machine
learning, both supervised and unsupervised ap-
proaches have been developed. Immune-inspired
learning approaches typically develop a memory

http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_100025
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_10
http://dx.doi.org/10.1007/978-1-4899-7687-1_100010
http://dx.doi.org/10.1007/978-1-4899-7687-1_100205
http://dx.doi.org/10.1007/978-1-4899-7687-1_100206
http://dx.doi.org/10.1007/978-1-4899-7687-1_100207
http://dx.doi.org/10.1007/978-1-4899-7687-1_100208

62 Artificial Immune Systems

set of detectors that are capable of classifying
unseen data items (in the case of supervised
learning) or a memory set of detectors that rep-
resent clusters within the data (in the case of
unsupervised learning). Both static and dynamic
learning systems have been developed.

Motivation and Background

The immune system is a complex system that
undertakes a myriad of tasks. The abilities of the
immune system have helped to inspire computer
scientists to build systems that mimic, in some
way, various properties of the immune system.
This field of research, AIS, has seen the appli-
cation of immune-inspired algorithms to a wide
variety of areas.

The origin of AIS has its roots in the early
theoretical immunology work of Farmer, Perel-
son, and Varela (Farmer et al. 1986; Varela et al.
1988). These works investigated a number of
theoretical � immune network models proposed
to describe the maintenance of immune memory
in the absence of antigen. While controversial
from an immunological perspective, these models
began to give rise to an interest from the com-
puting community. The most influential people
at crossing the divide between computing and
immunology in the early days were Bersini and
Forrest. It is fair to say that some of the early
work by Bersini (1991) was very well rooted in
immunology, and this is also true of the early
work by Forrest (1994). It was these works that
formed the basis of a solid foundation for the area
of AIS. In the case of Bersini, he concentrated
on the immune network theory, examining how
the immune system maintained its memory and
how one might build models and algorithms mim-
icking that property. With regard to Forrest, her
work was focused on computer security (in par-
ticular, network intrusion detection) and formed
the basis of a great deal of further research by
the community on the application of immune-
inspired techniques to computer security.

At about the same time as Forrest was un-
dertaking her work, other researchers began to
investigate the nature of learning in the immune

system and how that might by used to create
machine learning algorithms (Cooke and Hunt
1995). They had the idea that it might be possible
to exploit the mechanisms of the immune system
(in particular, the immune network) in learning
systems, so they set about doing a proof of
concept (Cooke and Hunt 1995). Initial results
were very encouraging, and they built on their
success by applying the immune ideas to the clas-
sification of DNA sequences as either promoter or
nonpromoter classes: this work was generalized
in Timmis and Neal (2001).

Similar work was carried out by de Castro and
Von Zuben (2001), who developed algorithms for
use in function optimization and data clustering.
Work in dynamic unsupervised machine learning
algorithms was also undertaken, meeting with
success in works such as Neal (2002). In the
supervised learning domain, very little happened
until the work by Watkins (2005) (later expanded
in Watkins 2005) developed an immune-based
classifier known as AIRS, and in the dynamic
supervised domain, with the work in Secker et al.
(2003) being one of a number of successes.

Structure of the Learning System

In an attempt to create a common basis for
AIS, the work in de Castro and Timmis (2002)
proposed the idea of a framework for engineer-
ing AIS. They argued that the case for such a
framework as the existence of similar frameworks
in other biologically inspired approaches, such
as � artificial neural networks (ANNs) and evo-
lutionary algorithms (EAs), has helped consid-
erably with the understanding and construction
of such systems. For example, de Castro and
Timmis (2002) consider a set of artificial neu-
rons,which can be arranged together to form an
ANN. In order to acquire knowledge, these neural
networks undergo an adaptive process, known as
learning or training, which alters (some of) the
parameters within the network. Therefore, they
argued that in a simplified form, a framework to
design an ANN is composed of a set of artificial
neurons, a pattern of interconnection for these
neurons, and a learning algorithm. Similarly, they

http://dx.doi.org/10.1007/978-1-4899-7687-1_380
http://dx.doi.org/10.1007/978-1-4899-7687-1_921

Artificial Immune Systems 63

A

argued that in evolutionary algorithms, there is
a set of artificial chromosomes representing a
population of individuals that iteratively suffer
a process of reproduction, genetic variation, and
selection. As a result of this process, a popu-
lation of evolved artificial individuals arises. A
framework, in this case, would correspond to the
genetic representation of the individuals of the
population, plus the procedures for reproduction,
genetic variation, and selection. Therefore, they
proposed that a framework to design a biolog-
ically inspired algorithm requires, at least, the
following basic elements:

• A representation for the components of the
system

• A set of mechanisms to evaluate the inter-
action of individuals with the environment
and each other. The environment is usually
stimulated by a set of input stimuli, one or
more fitness function(s), or other means

• Procedures of adaptation that govern the dy-
namics of the system, i.e., how its behavior
varies over time

This framework can be thought of as a lay-
ered approach such as the specific framework
for engineering AIS of de Castro and Timmis
(2002) shown in Fig. 1. This framework follows
the three basic elements for designing a biologi-
cally inspired algorithm just described, where the
set of mechanisms for evaluation are the affin-
ity measures and the procedures of adaptation
are the immune algorithms. In order to build a

system such as an AIS, one typically requires
an application domain or target function. From
this basis, the way in which the components of
the system will be represented is considered. For
example, the representation of network traffic
may well be different from the representation of
a real-time embedded system. In AIS, the way
in which something is represented is known as
shape space. There are many kinds of shape
space, such as Hamming, real valued, and so on,
each of which carries it own bias and should be
selected with care (Freitas and Timmis 2003).
Once the representation has been chosen, one
or more affinity measures are used to quantify
the interactions of the elements of the system.
There are many possible affinity measures (which
are partially dependent upon the representation
adopted), such as Hamming and Euclidean dis-
tance metrics. Again, each of these has its own
bias, and the affinity function must be selected
with great care, as it can affect the overall perfor-
mance (and ultimately the result) of the system
(Freitas and Timmis 2003).

Supervised Immune-Inspired Learning
The artificial immune recognition system (AIRS)
algorithm was introduced as one of the first
immune-inspired supervised learning algorithms
and has subsequently gone through a period
of study and refinement (Watkins 2005). To
use classifications from de Castro and Timmis
(2002), for the procedures of adaptation, AIRS
is a, � clonal selection type of immune-inspired
algorithm. The representation and affinity layers

l

l

l
l l

l

lll
l

l

Artificial Immune Systems, Fig. 1 AIS layered framework (Adapted from de Castro and Timmis 2002)

http://dx.doi.org/10.1007/978-1-4899-7687-1_942

64 Artificial Immune Systems

of the system are standard in that any number of
representations such as binary, real values, etc.,
can be used with the appropriate affinity function.
AIRS has its origin in two other immune-inspired
algorithms: CLONALG (CLONAL Selection
alGorithm) and Artificial Immune NEtwork
(AINE) (de Castro and Timmis 2002). AIRS
resembles CLONALG in the sense that both the
algorithms are concerned with developing a set
of memory cells that give a representation of the
learned environment.

AIRS is concerned with the development
of a set of memory cells that can encapsulate
the training data. This is done in a two-stage
process of first evolving a candidate memory
cell and then determining if this candidate cell
should be added to the overall pool of memory
cells. The learning process can be outlined as
follows:

1. For each pattern to be recognized, do
(a) Compare a training instance with all mem-

ory cells of the same class and find the
memory cell with the best affinity for the
training instance. This is referred to as a
memory cell mcmatch.

(b) Clone and mutate mcmatch in proportion to
its affinity to create a pool of abstract B-
cells.

(c) Calculate the affinity of each B-cell with
the training instance.

(d) Allocate resources to each B-cell based on
its affinity.

(e) Remove the weakest B-cells until the
number of resources returns to a preset
limit.

(f) If the average affinity of the surviving B-
cells is above a certain level, continue to
step 1(g). Else, clone and mutate these
surviving B-cells based on their affinity
and return to step 1(c).

(g) Choose the best B-cell as a candidate
memory cell (mccand/.

(h) If the affinity of mccand for the training in-
stance is better than the affinity of mcmatch,
then add mccand to the memory cell pool.
If, in addition to this, the affinity between
mccand and mcmatch is within a certain

threshold, then remove mcmatch from the
memory cell pool.

2. Repeat from step 1(a) until all training in-
stances have been presented.

Once this training routine is complete, AIRS
classifies the instances using k-nearest neighbor
with the developed set of memory cells.

Unsupervised Immune-Inspired Learning
The artificial immune network (aiNET) algo-
rithm was introduced as one of the first immune-
inspired unsupervised learning algorithms and
has subsequently gone through a period of study
and refinement (de Castro and Von Zuben 2001).
To use classifications from de Castro and Timmis
(2002), for the procedures of adaptation, aiNET
is an immune network type of immune-inspired
algorithm. The representation and affinity layers
of the system are standard (the same as in AIRS).
aiNET has its origin in another immune-inspired
algorithms: CLONALG (the same forerunner to
AIRS), and resembles CLONALG in the sense
that both algorithms (again) are concerned with
developing a set of memory cells that give a rep-
resentation of the learnt environment. However,
within aiNET there is no error feedback into the
learning process. The learning process can be
outlined as follows:

1. Randomly initialize a population P

2. For each pattern to be recognized, do
(a) Calculate the affinity of each B-cell (b) in

the network for an instance of the pattern
being learnt

(b) Select a number of elements from P into
a clonal pool C

(c) Mutate each element of C proportional
to affinity to the pattern being learnt (the
higher the affinity, the less mutation ap-
plied)

(d) Select the highest affinity members of C

to remain in the set C and remove the
remaining elements

(e) Calculate the affinity between all members
of C and remove elements in C that have
an affinity below a certain threshold (user
defined)

Artificial Neural Networks 65

A

(d) Combine the elements of C with the set P

(e) Introduce a random number of randomly
created elements into P to maintain diver-
sity

3. Repeat from 2(a) until stopping criteria is met

Once this training routine is complete, the
minimum-spanning tree algorithm is applied to
the network to extract the clusters from within the
network.

Recommended Reading

Bersini H (1991) Immune network and adaptive con-
trol. In: Proceedings of the 1st European conference
on artificial life (ECAL). MIT Press, Cambridge,
pp 217–226

Cooke D, Hunt J (1995) Recognising promoter se-
quences using an artificial immune system. In: Pro-
ceedings of intelligent systems in molecular biol-
ogy. AAAI Press, California, pp 89–97

de Castro LN, Timmis J (2002) Artificial immune sys-
tems: a new computational intelligence approach.
Springer, New York

de Castro LN, Von Zuben FJ (2001) aiNet: an artifi-
cial immune network for data analysis. Idea Group
Publishing, Hershey, pp 231–259

Farmer JD, Packard NH, Perelson AS (1986) The
immune system, adaptation, and machine learning.
Physica D 22:187–204

Forrest S, Perelson AS, Allen L, Cherukuri R (1994)
Self–nonself discrimination in a computer. In: Pro-
ceedings of the IEEE symposium on research secu-
rity and privacy, Los Alamitos, pp 202–212

Freitas A, Timmis J (2003) Revisiting the foundations
of artificial immune systems: a problem oriented
perspective. LNCS, vol 2787. Springer, New York,
pp 229–241

Hart E, Timmis J (2008) Application areas of AIS: the
past, present and the future. J Appl Soft Comput
8(1):191–201

Neal M (2002) An artificial immune system for con-
tinuous analysis of time-varying data. In: Timmis J,
Bentley P (eds) Proceedings of the 1st international
conference on artificial immune system (ICARIS).
University of Kent Printing Unit, Canterbury, pp 76–
85

Secker A, Freitas A, Timmis J (2003) AISEC: an
artificial immune system for email classification. In:
Proceedings of congress on evolutionary computa-
tion (CEC), Canberra, pp 131–139

Timmis J, Bentley (eds) (2002) Proceedings of the
1st international conference on artificial immune
system (ICARIS). University of Kent Printing Unit,
Canterbury

Timmis J, Neal M (2001) A resource limited artificial
immune system for data analysis. Knowl Based Syst
14(3–4):121–130

Varela F, Coutinho A, Dupire B, Vaz N (1988) Cog-
nitive networks: immune, neural and otherwise. J
Theor Immunol 2:359–375

Watkins A (2001) AIRS: a resource limited artificial
immune classifier. Master’s thesis, Mississippi State
University

Watkins A (2005) Exploiting immunological
metaphors in the development of serial, parallel
and distributed learning algorithms. Ph.D. thesis,
University of Kent

Artificial Life

Artificial Life is an interdisciplinary research area
trying to reveal and understand the principles and
organization of living systems. Its main goal is
to artificially synthesize life-like behavior from
scratch in computers or other artificial media.
Important topics in artificial life include the ori-
gin of life, growth and development, evolutionary
and ecological dynamics, adaptive autonomous
robots, emergence and self-organization, social
organization, and cultural evolution.

Artificial Neural Networks

(ANNs) is a computational model based on bio-
logical neural networks. It consists of an intercon-
nected group of artificial neurons and processes
information using a connectionist approach to
computation. In most cases an ANN is an adap-
tive system that changes its structure based on ex-
ternal or internal information that flows through
the network during the learning phase.

Cross-References

�Adaptive Resonance Theory
�Backpropagation
�Biological Learning: Synaptic Plasticity, Hebb

Rule and Spike Timing Dependent Plasticity
�Boltzmann Machines

http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_31

66 Artificial Societies

�Cascade Correlation
�Competitive Learning
�Deep Belief Networks
�Evolving Neural Networks
�Hypothesis Language
�Topology of a Neural Network
�Neuroevolution
�Radial Basis Function Networks
�Reservoir Computing
� Self-Organizing Maps
� Simple Recurrent Network
�Weight

Artificial Societies

Jürgen Branke
University of Warwick, Coventry, UK

Synonyms

Agent-based computational models; Agent-based
modeling and simulation; Agent-based simula-
tion models

Definition

An artificial society is an agent-based, computer-
implemented simulation model of a society or
group of people, usually restricted to their inter-
action in a particular situation. Artificial societies
are used in economics and social sciences to
explain, understand, and analyze socioeconomic
phenomena. They provide scientists with a fully
controllable virtual laboratory to test hypotheses
and observe complex system behavior emerging
as result of the � agents’ interaction. They allow
formalizing and testing social theories by using
computer code, and make it possible to use ex-
perimental methods with social phenomena, or
at least with their computer representations, on
a large scale. Because the designer is free to
choose any desired � agent behavior as long as it
can be implemented, research based on artificial

societies is not restricted by assumptions typical
in classical economics, such as homogeneity and
full rationality of agents. Overall, artificial soci-
eties have added an all new dimension to research
in economics and social sciences and have re-
sulted in a new research field called “agent-based
computational economics.”

Artificial societies should be distinguished
from virtual worlds and � artificial life. The
term virtual world is usually used for virtual
environments to interact with, as, e.g., in
computer games. In artificial life, the goal is more
to learn about biological principles, understand
how life could emerge, and create life within a
computer.

Motivation and Background

Classical economics can be roughly divided into
analytical and empirical approaches. The former
uses deduction to derive theorems from assump-
tions. Thereby, analytical models usually include
a number of simplifying assumptions in order
to keep the model tractable, the most typical
being full rationality and homogeneity of agents.
Also, analytical economics is often limited to
equilibrium calculations. Classical empirical eco-
nomics collects data from the real world, and
derives patterns and regularities inductively. In
recent years, the tremendous increase in available
computational power gave rise to a new branch of
economics and sociology which uses simulation
of artificial societies as a tool to generate new
insights.

Artificial societies are agent-based, computer-
implemented simulation models of real societies
or a group of people in a specific situation. They
are built from the bottom up, by specifying the
behavior of the agents in different situations.
The simulation then reveals the emerging global
behavior of the system, and thus provides a link
between micro-level behavior of the agents and
macro-level characteristics of the system. Using
simulation, researchers can now carry out social
experiments under fully controlled and repro-
ducible laboratory conditions, trying out different
configurations and observing the consequences.

http://dx.doi.org/10.1007/978-1-4899-7687-1_33
http://dx.doi.org/10.1007/978-1-4899-7687-1_146
http://dx.doi.org/10.1007/978-1-4899-7687-1_100107
http://dx.doi.org/10.1007/978-1-4899-7687-1_100155
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_594
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_731
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_768
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_100007
http://dx.doi.org/10.1007/978-1-4899-7687-1_100008
http://dx.doi.org/10.1007/978-1-4899-7687-1_100009
http://dx.doi.org/10.1007/978-1-4899-7687-1_13
http://dx.doi.org/10.1007/978-1-4899-7687-1_13
http://dx.doi.org/10.1007/978-1-4899-7687-1_920

Artificial Societies 67

A

Like deduction, simulation models are based
on a set of clearly specified assumptions as writ-
ten down in a computer program. This is then
used to generate data, from which regularities
and patterns are derived inductively. As such,
research based on artificial societies stands some-
where between the classical analytical and empir-
ical social sciences.

One of the main advantages of artificial so-
cieties is that they allow to consider very com-
plex scenarios where agents are heterogeneous,
boundedly rational, or have the ability to learn.
Also, they allow to observe evolution over time,
instead of just the equilibrium.

Artificial societies can be used for many pur-
poses, e.g.:

1. Verification: Test a hypothesis or theory by ex-
amining its validity in relevant, clearly defined
scenarios.

2. Explanation: Construct an artificial society
which shows the same behavior as the real
society. Then analyze the model to explain the
emergent behavior.

3. Prediction: Run a model of an existing society
into the future. Also, feed the model with
different input parameters and use the result as
a prediction on how the society would react.

4. Optimization: Test different strategies in the
simulation environment, trying to find a best
possible strategy.

5. Existence proof: Demonstrate that a specific
simulation model is able to generate a certain
global behavior.

6. Discovery: Play around with parameter set-
tings, discovering new interdependencies and
gaining new insights.

7. Training and education: Use simulation as
demonstrator.

Structure of the Learning System

Using artificial societies requires the usual steps
in model building and experimental science, in-
cluding

1. Developing a conceptual model
2. Building the simulation model

3. Verification (making sure the model is correct)
4. Validation (making sure the model is suitable

to answer the posed questions)
5. Simulation and analysis using an appropriate

experimental design.

Artificial society is an interdisciplinary re-
search area involving, among others, computer
science, psychology, economics, sociology, and
biology.

Important Aspects
The modeling, simulation, and analysis process
described in the previous section is rather com-
plex and only remotely connected to machine
learning. Thus, instead of a detailed description
of all steps, the following focuses on aspects
particularly interesting from a machine learning
point of view.

Modeling Learning
One of the main advantages of artificial societies
is that they can account for boundedly rational
and learning agents. For that, one has to specify
(in form of a program) exactly how agents decide
and learn.

In principle, all the learning algorithms
developed in machine learning could be
used, and many have been used successfully,
including � reinforcement learning, � artificial
neural networks, and � evolutionary algorithms.
However, note that the choice of a learning
algorithm is not determined by its learning speed
and efficiency (as usual in machine learning),
but by how well it reflects human learning in
the considered scenario, at least if the goal is
to construct an artificial society which allows
conclusions to be transferred to the real world.
As a consequence, many learning models used in
artificial societies are motivated by psychology.
The idea of the most suitable model depends
on the simulation context, e.g., on whether
the simulated learning process is conscious
or nonconscious, or on the time and effort
an individual may be expected to spend on a
particular decision.

Besides individual learning (i.e., learning from
own past experience), artificial societies usually

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_270

68 Artificial Societies

feature social learning (where one agent learns
by observing others), and cultural learning (e.g.,
the evolution of norms). While the latter simply
emerges from the interaction of the agents, the
former has to be modeled explicitly. Several dif-
ferent models for learning in artificial societies
are discussed in Brenner (2006).

One popular learning paradigm which can
be used as a model for individual as well as
social learning are � evolutionary algorithms
(EAs). Several studies suggest that EAs are
indeed an appropriate model for learning in
artificial societies, either based on comparisons
of simulations with human subject experiments
or based on comparisons with other learning
mechanisms such as reinforcement learning
(Duffy 2006). As EAs are successful search
strategies, they seem particularly suitable if
the space of possible actions or strategies is
very large.

If used to model individual learning, each
agent uses a separate EA to search for a
better personal solution. In this case, the EA
population represents the different alternative
actions or strategies that an agent considers.
The genetic operators crossover and mutation
are clearly related to two major ingredients of
human innovation: combination and variation.
Crossover can be seen as deriving a new
concept by combining two known concepts,
and mutation corresponds to a small variation
of an existing concept. So, the agent, in some
sense, creatively tries out new possibilities.
Selection, which favors the best solutions found
so far, models the learning part. A solution’s
quality is usually assessed by evaluating it in a
simulation assuming all other agents keep their
behavior.

For modeling social learning, EAs can be
used in two different ways. In both cases, the
population represents the actions or strategies of
the different agents in the population. From this
it follows that the population size corresponds to
the number of agents in the simulation. Fitness
values are calculated by running the simulation
and observing how the different agents perform.
Crossover is now seen as a model for information
exchange, or imitation, among agents. Mutation,

as in the individual learning case, is seen as a
small variation of an existing concept.

The first social learning model simply uses
a standard EA, i.e., selection chooses agents to
“reproduce,” and the resulting new agent strat-
egy replaces an old strategy in the population.
While allowing to use standard EA libraries, this
approach does not provide a direct link between
agents in the simulation and individuals in the EA
population. In the second social learning model,
each agent directly corresponds to an individual
in the EA. In every iteration, each agent creates
and tests a new strategy as follows. First, it selects
a “donor” individual, with preference to success-
ful individuals. Then it performs a crossover of
its own strategy and the donor’s strategy, and mu-
tates the result. This can be regarded as an agent
observing other agents, and partially adopting the
strategies of successful other agents. Then, the
resulting new strategy is tested in a “thought ex-
periment,” by testing whether the agent would be
better off with the new strategy compared with its
current strategy, assuming all other agents keep
their behavior. If the new strategy performs better,
it replaces the current strategy in the next itera-
tion. Otherwise, the new strategy is discarded and
the agent again uses its old strategy in the next
iteration. The testing of new strategies against
their parents has been termed election operator in
Arifovic (1994), and makes sure that some very
bad and obviously implausible agent strategies
never enter the artificial society.

Examples
One of the first forerunners of artificial societies
was Schelling’s segregation model, 1969. In this
study, Schelling placed some artificial agents of
two different colors on a simple grid. Each agent
follows a simple rule: if less than a given percent-
age of agents in the neighborhood had the same
color, the agent moves to a random free spot.
Otherwise, it stays. As the simulation shows,
in this model, segregation of agent colors could
be observed even if every individual agent was
satisfied to live in a neighborhood with only 50 %
of its neighbors being of the same color. Thus,
with this simple model, Schelling demonstrated
that segregation of races in suburbs can occur

http://dx.doi.org/10.1007/978-1-4899-7687-1_270

Artificial Societies 69

A

even if each individual would be happy to live in
a diverse neighborhood. Note that the simulations
were actually not implemented on a computer but
carried out by moving coins on a grid by hand.

Other milestones in artificial societies are cer-
tainly the work by Epstein and Axtell on their
“sugarscape” model (Epstein and Axtell 1996),
and the Santa Fe artificial stock market (Arthur
et al. 1997). In the former, agents populate a
simple grid world, with sugar growing as the only
resource. The agents need the sugar for survival,
and can move around to collect it. Axtell and Ep-
stein have shown that even with agents following
some very simple rules, the emerging behavior
of the overall system can be quite complex and
similar in many aspects to observations in the real
world, e.g., showing a similar wealth distribution
or population trajectories.

The latter is a simple model of a stock market
with only a single stock and a risk-free fixed-
interest alternative. This model has subsequently
been refined and studied by many researchers.
One remarkable result of the first model was to
demonstrate that technical trading can actually be
a viable strategy, something widely accepted in
practice, but which classical analytical economics
struggled to explain.

One of the most sophisticated artificial soci-
eties is perhaps the model of the Anasazi tribe,
who left their dwellings in the Long House Val-
ley in northeastern Arizona for so far unknown
reasons around 1300 BC (Axtell et al. 2002).
By building an artificial society of this tribe and
the natural surroundings (climate etc.), it was
possible to replicate macro behavior which is
known to have occurred and provide a possible
explanation for the sudden move.

The NewTies project (Gilbert et al. 2006) has a
different and quite ambitious focus: it constructs
artificial societies with the hope of an emerging
artificial language and culture, which then might
be studied to help explain how language and
culture formed in human societies.

Software Systems
Agent-based simulations can be facilitated by us-
ing specialized software libraries such as Ascape,
Netlogo, Repast, StarLogo, Mason, and Swarm.

A comparison of different libraries can be found
in Railsback (2006).

Applications

Artificial societies have many practical applica-
tions, from rather simple simulation models to
very complex economic decision problems, ex-
amples include traffic simulation, market design,
evaluation of vaccination programs, evacuation
plans, or supermarket layout optimization. See,
e.g., Bonabeau (2002) for a discussion of several
such applications.

Future Directions, Challenges

The science on artificial societies is still at its
infancy, but the field is burgeoning and has al-
ready produced some remarkable results. Major
challenges lie in the model building, calibration,
and validation of the artificial society simula-
tion model. Despite several agent-based model-
ing toolkits available, there is a lot to be gained
by making them more flexible, intuitive, and user-
friendly, allowing to construct complex mod-
els simply by selecting and combining provided
building blocks of agent behavior. �Behavioral
Cloning may be a suitable machine learning ap-
proach to generate representative agent models.

Cross-References

�Artificial Life
�Behavioral Cloning
�Coevolutionary Learning
�Multi-agent Learning

Recommended Reading

Agent-based computational economics, website main-
tained by Tesfatsion (2009)

Arifovic J (1994) Genetic algorithm learning and the
cobweb-model. J Econ Dyn Control 18:3–28

Arthur B, Holland J, LeBaron B, Palmer R, Taylor P
(1997) Asset pricing under endogenous expecta-

http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_920
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_944
http://dx.doi.org/10.1007/978-1-4899-7687-1_568

70 Assertion

tions in an artificial stock market. In: Arthur B et al.
(eds) The economy as an evolving complex system
II. Addison-Wesley, Boston, pp 5–44

Axelrod: The Complexity of Cooperation: Agent-
Based Models of Competition and Collaboration
(Axelrod 1997)

Axelrod R (1997) The complexity of cooperation:
agent-based models of competition and collabora-
tion. Princeton University Press, Princeton

Axtell RL, Epstein JM, Dean JS, Gumerman GJ, Swed-
lund AC, Harburger J et al (2002) Population growth
and collapse in a multiagent model of the kayenta
anasazi in long house valley. Proc Natl Acad Sci
99:7275–7279

Bonabeau: Agent-based modeling (Bonabeau 2002)
Brenner: Agent learning representation: Advice on

modeling economic learning (Brenner 2006)
Bonabeau E (2002) Agent-based modeling: methods

and techniques for simulating human systems. Proc
Natl Acad Sci 99:7280–7287

Brenner T (2006) Agent learning representation: ad-
vice on modelling economic learning. In: Tesfatsion
L, Judd KL (eds) Handbook of computational eco-
nomics, vol 2. North-Holland, Amsterdam, pp 895–
947

Duffy J (2006) Agent-based models and human subject
experiments. In: Tesfatsion L, Judd KL (eds) Hand-
book of computational economics, vol 2. North-
Holland, Amsterdam, pp 949–1011

Epstein: Generative social science (Epstein 2006)
Epstein JM (2006) Generative social science: studies

in agent-based computational modeling. Princeton
University Press, Princeton

Epstein JM, Axtell R (1996) Growing artificial soci-
eties. Brookings Institution Press, Washington, DC

Gilbert N, den Besten M, Bontovics A, Craenen BGW,
Divina F, Eiben AE et al (2006) Emerging artificial
societies through learning. J Artif Soc Soc Simul
9(2). http://jasss.soc.surrey.ac.uk/9/2/9.html

Journal of Artificial Societies and Social Simulation
(2009)

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-
based simulation platforms: review and develop-
ment recommendations. Simulation, 82(9):609–623

Schelling TC (1969) Dynamic models of segregation.
J Math Soc 2:143–186

Tesfatsion and Judd (eds.): Handbook of computational
economics (Tesfatsion and Judd 2006)

Tesfatsion L (2009) Website on agent-based com-
putational economics. http://www.econ.iastate.edu/
tesfatsi/ace.htm

Tesfatsion L, Judd KL (eds) (2006a) Handbook
of computational economics. Elsevier, Amster-
dam/Oxford

Tesfatsion L, Judd KL (eds) (2006b) Handbook of
computational economics – vol 2: agent-based com-
putational economics. Elsevier, Amsterdam

The Journal of Artificial Societies and Social Simula-
tion. http://jasss.soc.surrey.ac.uk/JASSS.html

Assertion

In �Minimum Message Length, the code or lan-
guage shared between sender and receiver that is
used to describe the model.

Assessment of Model Performance

�Model Evaluation

Association Rule

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Definition

Association rules (Agrawal et al. 1993) can be
extracted from data sets where each example
consists of a set of items. An association rule has
the form X ! Y , where X and Y are � itemsets,
and the interpretation is that if set X occurs in an
example, then set Y is also likely to occur in the
example.

Each association rule is usually associated
with two statistics measured from the given data
set. The frequency or support of a rule X ! Y ,
denoted fr(X ! Y), is the number (or alter-
natively the relative frequency) of examples in
which X [Y occurs. Its confidence, in turn, is
the observed conditional probability P.Y jX/ D

fr.X [Y /=fr.X/.
The �Apriori algorithm (Agrawal et al. 1996)

finds all association rules, between any sets X

and Y, which exceed user-specified support and
confidence thresholds. In association rule mining,
unlike in most other learning tasks, the result thus
is a set of rules concerning different subsets of the
feature space.

Association rules were originally motivated by
supermarket � basket analysis, but as a domain
independent technique they have found applica-

http://jasss.soc.surrey.ac.uk/9/2/9.html
http://www.econ.iastate.edu/tesfatsi/ace.htm
http://www.econ.iastate.edu/tesfatsi/ace.htm
http://jasss.soc.surrey.ac.uk/JASSS.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_926

Associative Reinforcement Learning 71

A

tions in numerous fields. Association rule mining
is part of the larger field of � frequent itemset or
� frequent pattern mining.

Cross-References

�Apriori Algorithm
�Basket Analysis
� Frequent Itemset
� Frequent Pattern

Recommended Reading

Agrawal R, Imieliñski T, Swami A (1993) Mining
association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIG-
MOD international conference on management of
data, Washington, DC. ACM, New York, pp 207–
216

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge dis-
covery and data mining. AAAI Press, Menlo Park,
pp 307–328

Associative Bandit Problem

�Associative Reinforcement Learning

Associative Reinforcement Learning

Alexander L. Strehl
Rütgers University, New Brunswick, NJ, USA

Synonyms

Associative bandit problem; Bandit problem with
side information; Bandit problem with side ob-
servations; One-step reinforcement learning

Definition

The associative reinforcement-learning problem
is a specific instance of the � reinforcement
learning problem whose solution requires
generalization and exploration but not temporal
credit assignment. In associative reinforcement
learning, an action (also called an arm) must
be chosen from a fixed set of actions during
successive timesteps and from this choice
a real-valued reward or payoff results. On
each timestep, an input vector is provided
that along with the action determines, often
probabilistically, the reward. The goal is to
maximize the expected long-term reward over
a finite or infinite horizon. It is typically assumed
that the action choices do not affect the sequence
of input vectors. However, even if this assumption
is not asserted, learning algorithms are not
required to infer or model the relationship
between input vectors from one timestep to the
next. Requiring a learning algorithm to discover
and reason about this underlying process results
in the full reinforcement learning problem.

Motivation and Background

The problem of associative reinforcement learn-
ing may be viewed as connecting the problems of
� supervised learning or � classification, which is
more specific, and reinforcement learning, which
is more general. Its study is motivated by real-
world applications such as choosing which in-
ternet advertisements to display based on infor-
mation about the user or choosing which stock
to buy based on current information related to
the market. Both problems are distinguished from
supervised learning by the absence of labeled
training examples to learn from. For instance, in
the advertisement problem, the learner is never
told which ads would have resulted in the great-
est expected reward (in this problem, reward is
determined by whether an ad is clicked on or
not). In the stock problem, the best choice is never
revealed since the choice itself affects the future
price of the stocks and therefore the payoff.

http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_100023
http://dx.doi.org/10.1007/978-1-4899-7687-1_100031
http://dx.doi.org/10.1007/978-1-4899-7687-1_100032
http://dx.doi.org/10.1007/978-1-4899-7687-1_100350
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_111

72 Associative Reinforcement Learning

The Learning Setting

The learning problem consists of the following
core objects:

• An input space X , which is a set of objects
(often a subset of the n-dimension Euclidean
space R

n).
• A set of actions or arms A, which is often a

finite set of size k.
• A distribution D over X . In some cases, D

is allowed to be time-dependent and may be
denoted Dt on timestep t for t D 1; 2; : : :.

A learning sequence proceeds as follows. Dur-
ing each timestep t D 1; 2; : : :, an input vector
xt 2 X is drawn according to the distribution D

and is provided to the algorithm. The algorithm
selects an aarm at at 2 A. This choice may be
stochastic and depend on all previous inputs and
rewards observed by the algorithm as well as all
previous action choices made by the algorithm
for timesteps t D 1; 2; : : :. Then, the learner
receives a payoff rt generated according to some
unknown stochastic process that depends only on
the xt and at . The informal goal is to maximize
the expected long-term payoff. Let W X ! A
be any policy that maps input vectors to actions.
Let

V �.T / WD E

"
TX

iD1

ri jai

D .xi / for i D 1; 2; : : : ; T

#
(1)

denotes the expected total reward over T steps
obtained by choosing arms according to policy
 . The expectation is taken over any randomness
in the generation of input vectors xi and rewards
ri . The expected regret of a learning algorithm
with respect to policy is defined as V �.T / �

EŒ
PT

iD1 ri 	 the expected difference between the
return from following policy and the actual
obtained return.

Power of Side Information
Wang et al. (2005) studied the associative re-
inforcement learning problem from a statisti-
cal viewpoint. They considered the setting with
two action and analyzed the expected inferior
sampling time, which is the number of times
that the lesser action, in terms of expected re-
ward, is selected. The function mapping input
vectors to conditional reward distributions be-
longs to a known parameterized class of func-
tions, with the true parameters being unknown.
They show that, under some mild conditions,
an algorithm can achieve finite expected infe-
rior sampling time. This demonstrates the power
provided by the input vectors (also called side
observations or side information), because such a
result is not possible in the standard multi-armed
bandit problem, which corresponds to the asso-
ciative reinforcement-learning problem without
input vectors xi . Intuitively, this type of result is
possible when the side information can be used to
infer the payoff function of the optimal action.

Linear Payoff Functions
In its most general setting, the associative rein-
forcement learning problem is intractable. One
way to rectify this problem is to assume that the
payoff function is described by a linear system.
For instance, Abe (1999) and Auer (2002) con-
sider a model where during each timestep t , there
is a vector ´t;i associated with each arm i . The
expected payoff of pulling arm i on this timestep
is given by �T ´t;i where � is an unknown param-
eter vector and �T denotes the transpose of f .
This framework maps to the framework described
above by taking xt D .´t;1; ´t;2; : : : ; ´t;k/. They
assume a time-dependent distribution D and fo-
cus on obtaining bounds on the regret against the
optimal policy. Assuming that all rewards lie in
the interval [0, 1], the worst possible regret of any
learning algorithm is linear. When considering
only the number of timesteps T , Auer (2002)
shows that a regret (with respect to the optimal
policy) of O.

p
T ln.T // can be obtained.

PAC Associative Reinforcement Learning
The previously mentioned works analyze the
growth rate of the regret of a learning algorithm

Attribute 73

A

with respect to the optimal policy. Another way
to approach the problem is to allow the learner
some number of timesteps of exploration. After
the exploration trials, the algorithm is required to
output a policy. More specifically, given inputs
0 < � < 1 and 0 < ı < 1, the algorithm
is required to output an �-optimal policy with
probability at least 1 � ı. This type of analysis is
based on the work by Valiant (1984), and learning
algorithms satisfying the above condition are
termed probably approximately correct (PAC).

Motivated by the work of Kaelbling (1994)
and Fiechter (PAC associative reinforcement
learning, unpublished manuscript, 1995),
developed a PAC algorithm when the true payoff
function can be described by a decision list over
the action and input vector. Building on both
works, Strehl et al. (2006) showed that a class
of associative reinforcement learning problems
can be solved efficiently, in a PAC sense, when
given a learning algorithm for efficiently solving
classification problems.

Recommended Reading

Section 6.1 of the survey by Kaelbling, Littman, and
Moore (1996) presents a nice overview of sev-
eral techniques for the associative reinforcement-
learning problem, such as CRBP (Ackley, 1990),
ARC (Sutton, 1984), and REINFORCE (Williams,
1992)

Abe N, Long PM (1999) Associative reinforcement
learning using linear probabilistic concepts. In: Pro-
ceedings of the 16th international conference on
machine learning, Bled, pp 3–11

Ackley DH, Littman ML (1990) Generalization and
scaling in reinforcement learning. In: Advances in
neural information processing systems 2. Morgan
Kaufmann, San Mateo, pp 550–557

Auer P (2002) Using confidence bounds for
exploitation–exploration trade-offs. J Mach Learn
Res 3:397–422

Kaelbling LP (1994) Associative reinforcement learn-
ing: functions in k-DNF. Mach Learn 15:279–298

Kaelbling LP, Littman ML, Moore AW (1996) Re-
inforcement learning: a survey. J Artif Intell Res
4:237–285

Strehl AL, Mesterharm C, Littman ML, Hirsh H (2006)
Experience-efficient learning in associative bandit
problems. In: Proceedings of the 23rd international
conference on machine learning (ICML-06), Pitts-
burgh, pp 889–896

Sutton RS (1984) Temporal credit assignment in re-
inforcement learning. Doctoral dissertation, Univer-
sity of Massachusetts, Amherst

Valiant LG (1984) A theory of the learnable. Commun
ACM 27:1134–1142

Wang C-C, Kulkarni SR, Poor HV (2005) Bandit prob-
lems with side observations. IEEE Trans Autom
Control 50:3988–3993

Williams RJ (1992) Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach Learn 8:229–256

Attribute

Chris Drummond
National Research Council of Canada, Ottawa,
ON, Canada

Synonyms

Characteristic; Feature; Property; Trait

Definition

Attributes are properties of things, ways that we,
as humans, might describe them. If we were
talking about the appearance of our friends, we
might describe one of them as “sex female,” “hair
brown,” “height 5 ft 7 in.” Linguistically, this
is rather terse, but this very terseness has the
advantage of limiting ambiguity. The attributes
are sex, hair color, and height. For each friend,
we could give the appropriate values to go along
with each attribute, some examples are shown in
Table 1. Attribute-value pairs are a standard way
of describing things within the machine learning
community. Traditionally, values have come in
one of three types: binary, sex has two values;
nominal, hair color has many values; real, height
has an ordered set of values. Ideally, the attribute-
value pairs are sufficient to describe some things
accurately and to tell them apart from others.
What might be described is very varied, so the
attributes themselves will vary widely.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100052
http://dx.doi.org/10.1007/978-1-4899-7687-1_100164
http://dx.doi.org/10.1007/978-1-4899-7687-1_100383
http://dx.doi.org/10.1007/978-1-4899-7687-1_100483

74 Attribute

Motivation and Background

For machine learning to be successful, we need
a language to describe everyday things that is
sufficiently powerful to capture the similarities
and differences between them and yet is compu-
tationally easy to manage. The idea that a suffi-
cient number of attribute-value pairs would meet
this requirement is an intuitive one. It has also
been studied extensively in philosophy and psy-
chology, as a way that humans represent things
mentally. In the early days of artificial intelli-
gence research, the frame (Minsky 1974) became
a common way of representing knowledge. We
have, in many ways, inherited this representation,
attribute-value pairs sharing much in common
with the labeled slots for values used in frames.
In addition, the data for many practical prob-
lems comes in this form. Popular methods of
storing and manipulating data such as relational
databases, and less formal structures such as
spread sheets, have columns as attributes and
cells as values. So, attribute-value pairs are a
ubiquitous way of representing data.

Future Directions

The notion of an attribute-value pair is so well
entrenched in machine learning that it is diffi-
cult to perceive what might replace it. As, in
many practical applications, the data comes in
this form, this representation will undoubtedly
be around for some time. One change that is
occurring is the growing complexity of attribute-
values. Traditionally, we have used the simple
value types, binary, nominal, and real, discussed
earlier. But to effectively describe many things,
we need to extend this simple language and use

Attribute, Table 1 Some friends

Sex Hair color Height

Male Black 6 ft 2 in.

Female Brown 5 ft 7 in.

Female Blond 5 ft 9 in.

Male Brown 5 ft 10 in.

more complex values. For example, in � data
mining applied to multimedia, more new com-
plex representations abound. Sound and video
streams, images, and various properties of them,
are just a few examples (Cord et al. 2005; Simoff
and Djeraba 2000).

Perhaps, the most significant change is away
from attributes, albeit with complex values, to
structural forms where the relationship between
things is included. As Quinlan (1996) states
“Data may concern objects or observations
with arbitrarily complex structure that cannot
be captured by the values of a predetermined
set of attributes.” There is a large and growing
community of researchers in � relational
learning. This is evidenced by the number, and
growing frequency, of recent workshops at the
International Conference for Machine Learning
(Cord et al. 2005; De Raedt and Kramer 2000;
Dietterich et al. 2004; Fern et al. 2006).

Limitations

In philosophy there is the idea of essence, the
properties an object must have to be what it is. In
machine learning, particularly in practical appli-
cations, we get what we are given and have little
control in the choice of attributes and their range
of values. If domain experts have chosen the
attributes, we might hope that they are properties
that can be readily ascertained and are relevant to
the task at the hand. For example, when describ-
ing one of our friends, we would not say Fred is
the one with the spleen. It is not only difficult to
observe, it is also poor at discriminating between
people. Data are collected for many reasons.
In medical applications, all sorts of attribute-
values would be collected on patients. Most are
unlikely to be important to the current task. An
important part of learning is � feature extraction,
determining which attributes are necessary for
learning.

Whether or not attribute-value pairs are an
essential representation for the type of learning
required in the development, and functioning, of

http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_90

Autonomous Helicopter Flight Using Reinforcement Learning 75

A

intelligent agents, remains to be seen. Attribute-
values readily capture symbolic information,
typically at the level of words that humans
naturally use. But if our agents need to move
around in their environment, recognizing what
they encounter, we might need a different
nonlinguistic representation. Certainly, other
representations based on a much finer granularity
of features, and more holistic in nature, have been
central to areas such as � neural networks for
some time. In research into � dynamic systems,
attractors in a sensor space might be more
realistic that attribute-values (See chapter on
�Classification).

Recommended Reading

Cord M, Dahyot R, Cunningham P, Sziranyi T (eds)
(2005) Workshop on machine learning techniques
for processing multimedia content. In: Proceedings
of the twenty-second international conference on
machine learning, Bonn

De Raedt L, Kramer S (eds) (2000) Workshop on
attribute-value and relational learning: crossing the
boundaries. In: Proceedings of the seventeenth inter-
national conference on machine learning, Stanford
University, Palo Alto

Dietterich T, Getoor L, Murphy K (eds) (2004) Work-
shop on statistical relational learning and its connec-
tions to other fields. In: Proceedings of the twenty-
first international conference on machine learning,
Banff

Fern A, Getoor L, Milch B (eds) (2006) Work-
shop on open problems in statistical relational
learning. In: Proceedings of the twenty-fourth
international conference on machine learning,
Corvalis

Minsky M (1974) A framework for representing
knowledge. Technical report, Massachusetts Insti-
tute of Technology, Cambridge

Quinlan JR (1996) Learning first-order definitions of
functions. J Artif Intell Res 5:139–161

Simoff SJ, Djeraba C (eds) (2000) Workshop on mul-
timedia data mining. In: Proceedings of the sixth
international conference on knowledge discovery
and data mining, Boston

Attribute Selection

� Feature Selection

Attribute-Value Learning

Attribute-value learning refers to any learning
task in which the each � Instance is described
by the values of some finite set of attributes
(see �Attribute). Each of these instances is often
represented as a vector of attribute values, each
position in the vector corresponding to a unique
attribute.

AUC

�Area Under Curve

Authority Control

�Record Linkage

Autonomous Helicopter Flight Using
Reinforcement Learning

Adam Coates1, Pieter Abbeel2, and
Andrew Y. Ng1;3

1Stanford University, Stanford, CA, USA
2EECS Department, UC Berkeley, Stanford, CA,
USA
3Computer Science Department, Stanford
University, Stanford, CA, USA

Definition

Helicopter flight is a highly challenging control
problem. While it is possible to obtain controllers
for simple maneuvers (like hovering) by tradi-
tional manual design procedures, this approach
is tedious and typically requires many hours of
adjustments and flight testing, even for an ex-
perienced control engineer. For complex maneu-
vers, such as aerobatic routines, this approach

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_239
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_918
http://dx.doi.org/10.1007/978-1-4899-7687-1_712

76 Autonomous Helicopter Flight Using Reinforcement Learning

is likely infeasible. In contrast, � reinforcement
learning (RL) algorithms enable faster and more
automated design of controllers. Model-based RL
algorithms have been used successfully for au-
tonomous helicopter flight for hovering, forward
flight, and using apprenticeship learning methods
for expert-level aerobatics. In model-based RL,
the first one builds a model of the helicopter
dynamics and specifies the task using a reward
function. Then, given the model and the reward
function, the RL algorithm finds a controller that
maximizes the expected sum of rewards accumu-
lated over time.

Motivation and Background

Autonomous helicopter flight represents a chal-
lenging control problem and is widely regarded
as being significantly harder than control of fixed-
wing aircraft (see, e.g., Leishman 2000; Seddon
1990). At the same time, helicopters provide
unique capabilities such as in-place hover, verti-
cal takeoff and landing, and low-speed maneuver-
ing. These capabilities make helicopter control
an important research problem for many practical
applications.

Building autonomous flight controllers for he-
licopters, however, is far from trivial. When done
by hand, it can require many hours of tuning
by experts with extensive prior knowledge about
helicopter dynamics. Meanwhile, the automated
development of helicopter controllers has been
a major success story for RL methods. Con-
trollers built using RL algorithms have estab-
lished state-of-the-art performance for both basic
flight maneuvers, such as hovering and forward
flight (Bagnell and Schneider 2001; Ng et al.
2004b), as well as being among the only suc-
cessful methods for advanced aerobatic stunts.
Autonomous helicopter aerobatics has been suc-
cessfully tackled using the innovation of “appren-
ticeship learning,” where the algorithm learns by
watching a human demonstrator (Abbeel and Ng
2004). These methods have enabled autonomous
helicopters to fly aerobatics as well as an expert
human pilot and often even better (Coates et al.
2008).

Developing autonomous flight controllers for
helicopters is challenging for a number of rea-
sons:

1. Helicopters have unstable, high-dimensional,
asymmetric, noisy, nonlinear, non-minimum
phase dynamics. As a consequence, all suc-
cessful helicopter flight controllers (to date)
have many parameters. Controllers with 10–
100 gains are not atypical. Hand engineering
the right setting for each of the parameters is
difficult and time consuming, especially since
their effects on performance are often highly
coupled through the helicopter’s complicated
dynamics. Moreover, the unstable dynamics,
especially in the low-speed flight regime, com-
plicates flight testing.

2. Helicopters are underactuated: their position
and orientation are representable using six
parameters, but they have only four control
inputs. Thus helicopter control requires signif-
icant planning and making trade-offs between
errors in orientation and errors in desired po-
sition.

3. Helicopters have highly complex dynamics:
even though we describe the helicopter as
having a 12-dimensional state (position, ve-
locity, orientation, and angular velocity), the
true dynamics are significantly more compli-
cated. To determine the precise effects of the
inputs, one would have to consider the airflow
in a large volume around the helicopter, as
well as the parasitic coupling between the
different inputs, the engine performance, and
the non-rigidity of the rotor blades. Highly
accurate simulators are thus difficult to create,
and controllers developed in simulation must
be sufficiently robust that they generalize to
the real helicopter in spite of the simulator’s
imperfections.

4. Sensing capabilities are often poor: for small
remotely controlled (RC) helicopters, sens-
ing is limited because the onboard sensors
must deal with a large amount of vibration
caused by the helicopter blades rotating at
about 30 Hz, as well as higher frequency noise
from the engine. Although noise at these fre-
quencies (which are well above the roughly

http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Autonomous Helicopter Flight Using Reinforcement Learning 77

A

10 Hz at which the helicopter dynamics can be
modeled reasonably) might be easily removed
by low pass filtering, this introduces latency
and damping effects that are detrimental to
control performance. As a consequence, heli-
copter flight controllers have to be robust to
noise and/or latency in the state estimates to
work well in practice.

Typical Hardware Setup

A typical autonomous helicopter has several ba-
sic sensors on board. An inertial measurement
unit (IMU) measures angular rates and linear ac-
celerations for each of the helicopter’s three axes.
A 3-axis magnetometer senses the direction of
the Earth’s magnetic field, similar to a magnetic
compass (Fig. 1).

Attitude-only sensing, as provided by the in-
ertial and magnetic sensors, is insufficient for
precise, stable hovering, and slow-speed maneu-
vers. These maneuvers require that the helicopter
maintains relatively tight control over its position
error, and hence high-quality position sensing is
needed. GPS is often used to determine helicopter
position (with carrier-phase GPS units achieving
sub-decimeter accuracy), but vision-based solu-
tions have also been employed (Abbeel et al.
2007; Coates et al. 2008; Saripalliz et al. 2003).

Vibration adds errors to the sensor measure-
ments and may damage the sensors themselves;
hence, significant effort may be required to mount

the sensors on the airframe (Dunbabin et al.
2004). Provided there is no aliasing, sensor errors
added by vibration can be removed by using a
digital filter on the measurements (though, again,
one must be careful to avoid adding too much
latency).

Sensor data from the aircraft sensors is used
to estimate the state of the helicopter for use by
the control algorithm. This is usually done with
an extended Kalman filter (EKF). A unimodal
distribution (as computed by the EKF) suffices to
represent the uncertainty in the state estimates,
and it is common practice to use the mode of
the distribution as the state estimate for feedback
control. In general the accuracy obtained with this
method is sufficiently high that one can treat the
state as fully observed.

Most autonomous helicopters have an onboard
computer that runs the EKF and the control al-
gorithm (Gavrilets et al. 2002a; La Civita et al.
2006; Ng et al. 2004a). However, it is also pos-
sible to use ground-based computers by sending
sensor data by wireless to the ground and then
transmitting control signals back to the helicopter
through the pilot’s RC transmitter (Abbeel et al.
2007; Coates et al. 2008).

Helicopter State and Controls

The helicopter state s is defined by its posi-
tion (px ; py ; p´), orientation (which could be

Autonomous Helicopter Flight Using Reinforcement
Learning, Fig. 1 (a) Stanford University’s instrumented
XCell Tempest autonomous helicopter. (b) A Bergen

Industrial Twin autonomous helicopter with sensors and
onboard computer

78 Autonomous Helicopter Flight Using Reinforcement Learning

expressed using a unit quaternion q), velocity
(vx ; vy ; v´), and angular velocity (!x ; !y ; !´).

The helicopter is controlled via a 4-
dimensional action space:

1. u1 and u2: The lateral (left-right) and longi-
tudinal (front-back) cyclic pitch controls (to-
gether referred to as the “cyclic” controls)
cause the helicopter to roll left or right and
pitch forward or backward, respectively.

2. u3: The tail rotor pitch control affects tail
rotor thrust and can be used to yaw (turn) the
helicopter about its vertical axis. In analogy
to airplane control, the tail rotor control is
commonly referred to as “rudder.”

3. u4: The collective pitch control (often referred
to simply as “collective”) increases and de-
creases the pitch of the main rotor blades, thus
increasing or decreasing the vertical thrust
produced as the blades sweep through the air.

By using the cyclic and rudder controls, the pilot
can rotate the helicopter into any orientation.
This allows the pilot to direct the thrust of the
main rotor in any particular direction, and thus
fly in any direction, by rotating the helicopter
appropriately.

Helicopter Flight as an RL Problem

Formulation
An RL problem can be described by a tuple
.S;A; T; H; s.0/; R/, which is referred to as a
�Markov decision process (MDP). Here S is the
set of states; A is the set of actions or inputs; T is
the dynamics model, which is a set of probability
distributions; fP t

sug (P t
su.s0js; u/ is the probability

of being in state s0 at time t C 1, given the state
and action at time t are s and u); H is the horizon
or number of time steps of interest; s.0/ 2 S is
the initial state; R W S � A ! R is the reward
function.

A policy D .�0; �1; : : : ; �H / is a tuple
of mappings from states S to actions A,
one mapping for each time t D 0; : : : ; H .
The expected sum of rewards when acting
according to a policy is given by U./ D

EŒ
PH

t D 0 R.s.t/; u.t//j	. The optimal policy �

for an MDP .S;A; T; H; s.0/; R/ is the policy
that maximizes the expected sum of rewards.
In particular, the optimal policy is given by:
� D arg max� U./.

The common approach to finding a good pol-
icy for autonomous helicopter flight proceeds in
two steps: First one collects data from manual
helicopter flights to build a model. (One could
also build a helicopter model by directly mea-
suring physical parameters such as mass, rotor
span, etc. However, even when this approach
is pursued, one often resorts to collecting flight
data to complete the model.) Then one solves
the MDP comprised of the model and some
chosen reward function. Although the controller
obtained, in principle, is only optimal for the
learned simulator model, it has been shown in
various settings that optimal controllers perform
well even when the model has some inaccuracies
(see, e.g., Anderson and Moore 1989).

Modeling
One way to create a helicopter model is to use
direct knowledge of aerodynamics to derive an
explicit mathematical model. This model will
depends on a number of parameters that are
particular to the helicopter being flown. Many of
the parameters may be measured directly (e.g.,
mass, rotational inertia), while others must be
estimated from flight experiments. This approach
has been used successfully on several systems
(see, e.g., Gavrilets et al. 2001, 2002b; La Civita
2003). However, substantial expert aerodynam-
ics knowledge is required for this modeling ap-
proach. Moreover, these models tend to cover
only a limited fraction of the flight envelope.

Alternatively, one can learn a model of the
dynamics directly from flight data, with only
limited a priori knowledge of the helicopter’s dy-
namics. Data is usually collected from a series of
manually controlled flights. These flights involve
the human sweeping the control sticks back and
forth at varying frequencies to cover as much of
the flight envelope as possible, while recording
the helicopter’s state and the pilot inputs at each
instant.

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Autonomous Helicopter Flight Using Reinforcement Learning 79

A

Given a corpus of flight data, various different
learning algorithms can be used to learn the
underlying model of the helicopter dynamics.

If one is only interested in a single flight
regime, one could learn a linear model that maps
from the current state and action to the next
state. Such a model can be easily estimated us-
ing � linear regression. (While the methods pre-
sented here emphasize time domain estimation,
frequency domain estimation is also possible for
the special case of estimating linear models Tis-
chler and Cauffman 1992.) Linear models are
restricted to small flight regimes (e.g., hover or
inverted hover) and do not immediately gener-
alize to full-envelope flight. To cover a broader
flight regime, nonparametric algorithms such as
locally weighted linear regression have been used
(Bagnell and Schneider 2001; Ng et al. 2004b).
Nonparametric models that map from current
state and action to next state can, in principle,
cover the entire flight regime. Unfortunately, one
must collect large amounts of data to obtain an
accurate model, and the models are often quite
slow to evaluate.

An alternative way to increase the expressive-
ness of the model, without resorting to nonpara-
metric methods, is to consider a time-varying
model where the dynamics are explicitly allowed
to depend on time. One can then proceed to com-
pute simpler (say, linear) parametric models for
each choice of the time parameter. This method
is effective when learning a model specific to
a trajectory whose dynamics are repeatable but
vary as the aircraft travels along the trajectory.
Since this method can also require a great deal
of data (similar to nonparametric methods) in
practice, it is helpful to begin with a non-time-
varying parametric model fit from a large amount
of data and then augment it with a time-varying
component that has fewer parameters (Abbeel
et al. 2006; Coates et al. 2008).

One can also take advantage of symmetry in
the helicopter dynamics to reduce the amount of
data needed to fit a parametric model. Abbeel
et al. (2006) observe that – in a coordinate frame
attached to the helicopter – the helicopter dy-
namics are essentially the same for any orien-
tation (or position) once the effect of gravity

is removed. They learn a model that predicts
(angular and linear) accelerations – except for
the effects of gravity – in the helicopter frame
as a function of the inputs and the (angular
and linear) velocity in the helicopter frame. This
leads to a lower-dimensional learning problem,
which requires significantly less data. To simulate
the helicopter dynamics over time, the predicted
accelerations augmented with the effects of grav-
ity are integrated over time to obtain velocity,
angular rates, position, and orientation.

Abbeel et al. (2007) used this approach to
learn a helicopter model that was later used for
autonomous aerobatic helicopter flight maneu-
vers covering a large part of the flight envelope.
Significantly less data is required to learn a model
using the gravity-free parameterization compared
to a parameterization that directly predicts the
next state as a function of current state and
actions (as was used in Bagnell and Schneider
(2001) and Ng et al. (2004b)). Abbeel et al.
evaluate their model by checking its simulation
accuracy over longer time scales than just a one-
step acceleration prediction. Such an evaluation
criterion maps more directly to the reinforcement
learning objective of maximizing the expected
sum of rewards accumulated over time (see also
Abbeel and Ng 2005b).

The models considered above are determinis-
tic. This normally would allow us to drop the ex-
pectation when evaluating a policy according to

E
hPH

t D 0 R.s.t/; u.t//j
i
. However, it is com-

mon to add stochasticity to account for unmod-
eled effects. Abbeel et al. (2007) and Ng et al.
(2004a) include additive process noise in their
models. Bagnell and Schneider (2001) go further,
learning a distribution over models. Their policy
must then perform well, on expectation, for a
(deterministic) model selected randomly from the
distribution.

Control Problem Solution Methods
Given a model of the helicopter, we now seek
a policy that maximizes the expected sum

of rewards U./ D E
hPH

tD0 R.s.t/; u.t//j
i

achieved when acting according to the policy .

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

80 Autonomous Helicopter Flight Using Reinforcement Learning

Policy Search
General policy search algorithms can be em-
ployed to search for optimal policies for the MDP
based on the learned model. Given a policy , we
can directly try to optimize the objective U./.
Unfortunately, U./ is an expectation over a
complicated distribution making it impractical to
evaluate the expectation exactly in general.

One solution is to approximate the expectation
U./ by Monte Carlo sampling: under certain
boundedness assumptions, the empirical average
of the sum of rewards accumulated over time will
give a good estimate OU ./ of the expectation
U./. Naively applying Monte Carlo sampling to
accurately compute, e.g., the local gradient from
the difference in function value at nearby points
requires very large amounts of samples due to the
stochasticity in the function evaluation.

To get around this hurdle, the PEGASUS al-
gorithm (Ng and Jordan 2000) can be used to
convert the stochastic optimization problem into
a deterministic one. When evaluating by averag-
ing over n simulations, PEGASUS initially fixes
n random seeds. For each policy evaluation, the
same n random seeds are used so that the simu-
lator is now deterministic. In particular, multiple
evaluations of the same policy will result in the
same computed reward. A search algorithm can
then be applied to the deterministic problem to
find an optimum.

The PEGASUS algorithm coupled with a
simple local policy search was used by Ng
et al. (2004a) to develop a policy for their
autonomous helicopter that successfully sustains
inverted hover. Bagnell and Schneider (2001)
proceed similarly, but use the “amoeba” search
algorithm (Nelder and Mead 1964) for policy
search.

Because of the searching involved, the pol-
icy class must generally have low dimension.
Nonetheless, it is often possible to find good poli-
cies within these policy classes. The policy class
of Ng et al. (2004a), for instance, is a decoupled,
linear PD controller with a sparse dependence
on the state variables. (For instance, the linear
controller for the pitch axis is parametrized as
u2 D c0.px � p�

x/ C c1.vx � v�
x/ C c2� , which

has just three parameters, while the entire state

is nine dimensional. Here, p 	 , v 	 , and p�
	 , v�
	 ,

respectively, are the actual and desired position
and velocity. � denotes the pitch angle.) The
sparsity reduces the policy class to just nine pa-
rameters. In Bagnell and Schneider (2001), two-
layer neural network structures are used with a
similar sparse dependence on the state variables.
Two neural networks with five parameters each
are learned for the cyclic controls.

Differential Dynamic Programming
Abbeel et al. (2007) use differential dynamic pro-
gramming (DDP) for the task of aerobatic trajec-
tory following. DDP (Jacobson and Mayne 1970)
works by iteratively approximating the MDP as
linear quadratic regulator (LQR) problems. The
LQR control problem is a special class of MDPs,
for which the optimal policy can be computed
efficiently. In LQR the set of states is given by
S D R

n, the set of actions/inputs is given by
A D R

p , and the dynamics model is given by

s.t C 1/ D A.t/s.t/C B.t/u.t/C w.t/;

where for all t D 0; : : : ; H we have that A.t/ 2

R
n�n; B.t/ 2 R

n�p , and w.t/ is a mean zero ran-
dom variable (with finite variance). The reward
for being in state s.t/ and taking action u.t/ is
given by

�s.t/>Q.t/s.t/ � u.t/>R.t/u.t/:

Here Q.t/; R.t/ are positive semi-definite matri-
ces which parameterize the reward function. It is
well known that the optimal policy for the LQR
control problem is a linear feedback controller
which can be efficiently computed using dynamic
programming (see, e.g., Anderson and Moore
(1989), for details on linear quadratic methods).

DDP approximately solves general continuous
state-space MDPs by iterating the following two
steps until convergence:

1. Compute a linear approximation to the nonlin-
ear dynamics and a quadratic approximation
to the reward function around the trajectory
obtained when executing the current policy in
simulation.

Autonomous Helicopter Flight Using Reinforcement Learning 81

A

2. Compute the optimal policy for the LQR prob-
lem obtained in Step 1, and set the current
policy equal to the optimal policy for the LQR
problem.

During the first iteration, the linearizations are
performed around the target trajectory for the
maneuver, since an initial policy is not available.

This method is used to perform autonomous
flips, rolls, and “funnels” (high-speed sideways
flight in a circle) in Abbeel et al. (2007) and au-
tonomous autorotation (autorotation is an emer-
gency maneuver that allows a skilled pilot to glide
a helicopter to a safe landing in the event of an
engine failure or tail-rotor failure) in Abbeel et al.
(2008), Fig. 2.

While DDP computes a solution to the non-
linear optimization problem, it relies on the accu-
racy of the nonlinear model to correctly predict
the trajectory that will be flown by the helicopter.
This prediction is used in Step 1 above to lin-
earize the dynamics. In practice, the helicopter
will often not follow the predicted trajectory
closely (due to stochasticity and modeling er-
rors), and thus the linearization will become a
highly inaccurate approximation of the nonlinear
model. A common solution to this, applied by
Coates et al. (2008), is to compute the DDP
solution online, linearizing around a trajectory
that begins at the current helicopter state. This en-
sures that the model is always linearized around a
trajectory near the helicopter’s actual flight path.

Apprenticeship Learning and Inverse RL
In computing a policy for an MDP, simply finding
a solution (using any method) that performs well
in simulation may not be enough. One may need
to adjust both the model and reward function
based on the results of flight testing. Modeling
error may result in controllers that fly perfectly in
simulation but perform poorly or fail entirely in
reality. Because helicopter dynamics are difficult
to model exactly, this problem is fairly common.
Meanwhile, a poor reward function can result in
a controller that is not robust to modeling errors
or unpredicted perturbations (e.g., it may use
large control inputs that are unsafe in practice).
If a human “expert” is available to demonstrate
the maneuver, this demonstration flight can be
leveraged to obtain a better model and reward
function.

The reward function encodes both the trajec-
tory that the helicopter should follow and the
trade-offs between different types of errors. If
the desired trajectory is infeasible (either in the
nonlinear simulation or in reality), this results
in a significantly more difficult control problem.
Also, if the trade-offs are not specified correctly,
the helicopter may be unable to compensate for
significant deviations from the desired trajec-
tory. For instance, a typical reward function for
hovering implicitly specifies a trade-off between
position error and orientation error (it is possible
to reduce one error, but usually at the cost of in-
creasing the other). If this trade-off is incorrectly

Autonomous Helicopter Flight Using Reinforcement Learning, Fig. 2 Snapshots of an autonomous helicopter
performing in-place flips and rolls

82 Autonomous Helicopter Flight Using Reinforcement Learning

chosen, the controller may be pushed off course
by wind (if it tries too hard to keep the helicopter
level) or, conversely, may tilt the helicopter to an
unsafe attitude while trying to correct for a large
position error.

We can use demonstrations from an expert
pilot to recover both a good choice for the desired
trajectory and good choices of reward weights
for errors relative to this trajectory. In apprentice-
ship learning, we are given a set of N recorded
state and control sequences, fsk.t/; uk.t/gHt D 0 for
k D 1; : : : ; N , from demonstration flights by
an expert pilot. Coates et al. (2008) note that
these demonstrations may be suboptimal but are
often suboptimal in different ways. They suggest
that a large number of expert demonstrations
may implicitly encode the optimal trajectory and
propose a generative model that explains the
expert demonstrations as stochastic instantiations
of an “ideal” trajectory. This is the desired tra-
jectory that the expert has in mind but is unable
to demonstrate exactly. Using an Expectation-
Maximization (Dempster et al. 1977) algorithm,
they infer the desired trajectory and use this as
the target trajectory in their reward function.

A good choice of reward weights (for errors
relative to the desired trajectory) can be recov-
ered using inverse reinforcement learning (Ng
and Russell 2000; Abbeel and Ng 2004). Sup-
pose the reward function is written as a linear
combination of features as follows: R.s; u/ D

c0�0.s; u/Cc1�1.s; u/C	 	 	 . For a single recorded
demonstration, fs.t/; u.t/gHtD0, the pilot’s accu-
mulated reward corresponding to each feature can
be computed as ci �

�
i D ci

PH
tD0 �i .s.t/; u.t//.

If the pilot outperforms the autonomous flight
controller with respect to a particular feature
�i , this indicates that the pilot’s own “reward
function” places a higher value on that feature,
and hence its weight ci should be increased.
Using this procedure, a good choice of reward
function that makes trade-offs similar to that of
a human pilot can be recovered. This method has
been used to guide the choice of reward for many
maneuvers during flight testing (Abbeel et al.
2007, 2008; Coates et al. 2008).

In addition to learning a better reward function
from pilot demonstration, one can also use the

pilot demonstration to improve the model directly
and attempt to reduce modeling error. Coates
et al. (2008), for instance, use errors observed
in expert demonstrations to jointly infer an im-
proved dynamics model along with the desired
trajectory. Abbeel et al. (2007), however, have
proposed the following alternating procedure that
is broadly applicable (see also Abbeel and Ng
(2005a) for details):

1. Collect data from a human pilot flying the
desired maneuvers with the helicopter. Learn
a model from the data.

2. Find a controller that works in simulation
based on the current model.

3. Test the controller on the helicopter. If it
works, we are done. Otherwise, use the data
from the test flight to learn a new (improved)
model and go back to Step 2.

This procedure has similarities with model-based
RL and with the common approach in control to
first perform system identification and then find
a controller using the resulting model. However,
the key insight from Abbeel and Ng (2005a) is
that this procedure is guaranteed to converge to
expert performance in a polynomial number of
iterations. The authors report needing at most
three iterations in practice. Importantly, unlike
the E3 family of algorithms (Kearns and Singh
2002), this procedure does not require explicit
exploration policies. One only needs to test con-
trollers that try to fly as much as possible (ac-
cording to the current choice of dynamics model).
(Indeed, the E3-family of algorithms (Kearns
and Singh 2002) and its extensions (Kearns and
Koller 1999; Brafman and Tennenholtz 2002;
Kakade et al. 2003) proceed by generating “ex-
ploration” policies, which try to visit inaccurately
modeled parts of the state space. Unfortunately,
such exploration policies do not even try to fly the
helicopter well and thus would almost invariably
lead to crashes.)

The apprenticeship learning algorithms de-
scribed above have been used to fly the most
advanced autonomous maneuvers to date. The
apprenticeship learning algorithm of Coates et al.
(2008), for example, has been used to attain ex-

Autonomous Helicopter Flight Using Reinforcement Learning 83

A

Autonomous Helicopter Flight Using Reinforcement
Learning, Fig. 3 Snapshot sequence of an autonomous
helicopter flying a “chaos” maneuver using apprenticeship
learning methods. Beginning from the top to left and
proceeding left to right and top to bottom, the helicopter

performs a flip while pirouetting counterclockwise about
its vertical axis (this maneuver has been demonstrated
continuously for as long as 15 cycles like the one shown
here)

pert level performance on challenging aerobatic
maneuvers as well as entire air shows composed
of many maneuvers in rapid sequence. These
maneuvers include in-place flips and rolls, tic-
tocs (“tic-toc” is a maneuver where the heli-
copter pitches forward and backward with its
nose pointed toward the sky (resembling an in-
verted clock pendulum)), and chaos. (“Chaos” is
a maneuver where the helicopter flips in place
but does so while continuously pirouetting at a
high rate. Visually, the helicopter body appears
to tumble chaotically while nevertheless remain-
ing in roughly the same position.) (See Fig. 3.)
These maneuvers are considered among the most
challenging possible and can only be performed
by advanced human pilots. In fact, Coates et al.
(2008) show that their learned controller perfor-
mance can even exceed the performance of the
expert pilot providing the demonstrations, putting
many of the maneuvers on par with professional
pilots (Fig. 4).

A similar approach has been used in Abbeel
et al. (2008) to perform the first successful au-
tonomous autorotations. Their aircraft has per-
formed more than 30 autonomous landings suc-
cessfully without engine power.

Not only do apprenticeship methods achieve
state-of-the-art performance, but they are among
the fastest learning methods available, as they
obviate the need for arduous hand tuning by en-
gineers. Coates et al. (2008), for instance, report
that entire air shows can be created from scratch
with just 1 h of work. This is in stark contrast
to previous approaches that may have required

hours or even days of tuning for relatively simple
maneuvers.

Conclusion

Helicopter control is a challenging control prob-
lem and has recently seen major successes with
the application of learning algorithms. This entry
has shown how each step of the control de-
sign process can be automated using machine
learning algorithms for system identification and
reinforcement learning algorithms for control. It
has also shown how apprenticeship learning algo-
rithms can be employed to achieve expert-level
performance on challenging aerobatic maneu-
vers when an expert pilot can provide demon-
strations. Autonomous helicopters with control
systems developed using these methods are now
capable of flying advanced aerobatic maneuvers
(including flips, rolls, tic-tocs, chaos, and autoro-
tation) at the level of expert human pilots.

Cross-References

�Apprenticeship Learning
�Reinforcement Learning
�Reward Shaping

Recommended Reading

Abbeel P, Coates A, Hunter T, Ng AY (2008) Au-
tonomous autorotation of an rc helicopter. In: ISER
11, Athens

http://dx.doi.org/10.1007/978-1-4899-7687-1_100017
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_966

84 Autonomous Helicopter Flight Using Reinforcement Learning

Autonomous Helicopter Flight Using Reinforcement Learning, Fig. 4 Superimposed sequence of images of auto-
nomous autorotation landings (from Abbeel et al. 2008)

Abbeel P, Coates A, Quigley M, Ng AY (2007) An
application of reinforcement learning to aerobatic
helicopter flight. In: NIPS 19, Vancouver, pp 1–8

Abbeel P, Ganapathi V, Ng AY (2006) Learning ve-
hicular dynamics with application to modeling heli-
copters. In: NIPS 18, Vancouver

Abbeel P, Ng AY (2004) Apprenticeship learning via
inverse reinforcement learning. In: Proceedings of
the international conference on machine learning,
Banff. ACM, New York

Abbeel P, Ng AY (2005a) Exploration and appren-
ticeship learning in reinforcement learning. In: Pro-
ceedings of the international conference on machine
learning, Bonn. ACM, New York

Abbeel P, Ng AY (2005b) Learning first order Markov
models for control. In: NIPS 18, Vancouver

Abbeel P, Quigley M, Ng AY (2006) Using inaccurate
models in reinforcement learning. In: ICML ’06:
proceedings of the 23rd international conference
on machine learning, Pittsburgh. ACM, New York,
pp 1–8

Anderson B, Moore J (1989) Optimal control: linear
quadratic methods. Prentice-Hall, Princeton

Bagnell J, Schneider J (2001) Autonomous helicopter
control using reinforcement learning policy search
methods. In: International conference on robotics
and automation, Seoul. IEEE, Canada

Brafman RI, Tennenholtz M (2002) R-max, a gen-
eral polynomial time algorithm for near-optimal

reinforcement learning. J Mach Learn Res 3:
213–231

Coates A, Abbeel P, Ng AY (2008) Learning for con-
trol from multiple demonstrations. In: Proceedings
of the 25th international conference on machine
learning (ICML ’08), Helsinki

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc 39(1):1–38

Dunbabin M, Brosnan S, Roberts J, Corke P (2004)
Vibration isolation for autonomous helicopter flight.
In: Proceedings of the IEEE international confer-
ence on robotics and automation, New Orleans,
vol 4, pp 3609–3615

Gavrilets V, Martinos I, Mettler B, Feron E (2002a)
Control logic for automated aerobatic flight of
miniature helicopter. In: AIAA guidance, navigation
and control conference, Monterey. Massachusetts
Institute of Technology, Cambridge

Gavrilets V, Martinos I, Mettler B, Feron E (2002b)
Flight test and simulation results for an autonomous
aerobatic helicopter. In: AIAA/IEEE digital avion-
ics systems conference, Irvine

Gavrilets V, Mettler B, Feron E (2001) Nonlinear
model for a small-size acrobatic helicopter. In:
AIAA guidance, navigation and control conference,
Montreal, pp 1593–1600

Jacobson DH, Mayne DQ (1970) Differential dynamic
programming. Elsevier, New York

Averaged One-Dependence Estimators 85

A

Kakade S, Kearns M, Langford J (2003) Exploration in
metric state spaces. In: Proceedings of the interna-
tional conference on machine learning, Washington,
DC

Kearns M, Koller D (1999) Efficient reinforcement
learning in factored MDPs. In: Proceedings of the
16th international joint conference on artificial intel-
ligence, Stockholm. Morgan Kaufmann, San Fran-
cisco

Kearns M, Singh S (2002) Near-optimal reinforcement
learning in polynomial time. Mach Learn J 49(2–
3):209–232

La Civita M (2003) Integrated modeling and robust
control for full-envelope flight of robotic heli-
copters. PhD thesis, Carnegie Mellon University,
Pittsburgh

La Civita M, Papageorgiou G, Messner WC, Kanade T
(2006) Design and flight testing of a high-bandwidth
H1 loop shaping controller for a robotic helicopter.
J Guid Control Dyn 29(2):485–494

Leishman J (2000) Principles of helicopter aerodynam-
ics. Cambridge University Press, Cambridge

Nelder JA, Mead R (1964) A simplex method for
function minimization. Comput J 7:308–313

Ng AY, Coates A, Diel M, Ganapathi V, Schulte J,
Tse B et al (2004) Autonomous inverted helicopter
flight via reinforcement learning. In: International
symposium on experimental robotics, Singapore.
Springer, Berlin

Ng AY, Jordan M (2000) PEGASUS: a policy search
method for large MDPs and POMDPs. In: Pro-
ceedings of the uncertainty in artificial intelligence
16th conference, Stanford. Morgan Kaufmann, San
Francisco

Ng AY, Kim HJ, Jordan M, Sastry S (2004) Au-
tonomous helicopter flight via reinforcement learn-
ing. In: NIPS 16, Vancouver

Ng AY, Russell S (2000) Algorithms for inverse
reinforcement learning. In: Proceedings of the
17th international conference on machine learning,
San Francisco. Morgan Kaufmann, San Francisco,
pp 663–670

Saripalli S, Montgomery JF, Sukhatme GS (2003)
Visually-guided landing of an unmanned aerial ve-
hicle. IEEE Trans Robot Auton Syst 19(3):371–380

Seddon J (1990) Basic helicopter aerodynamics. AIAA
education series. America Institute of Aeronautics
and Astronautics, El Segundo

Tischler MB, Cauffman MG (1992) Frequency re-
sponse method for rotorcraft system identification:
flight application to BO-105 couple rotor/fuselage
dynamics. J Am Helicopter Soc 37:3–17

Average-Cost Neuro-Dynamic
Programming

�Average-Reward Reinforcement Learning

Average-Cost Optimization

�Average-Reward Reinforcement Learning

Averaged One-Dependence
Estimators

Fei Zheng1;2 and Geoffrey I. Webb3

1Monash University, Syndey, NSW, Australia
2Monash University, Victoria, Australia
3Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

AODE

Definition

Averaged one-dependence estimators is a
� semi-naive Bayesian Learning method. It
performs classification by aggregating the pre-
dictions of multiple one-dependence classifiers
in which all attributes depend on the same single
parent attribute as well as the class.

Classification with AODE

An effective approach to accommodating
violations of naive Bayes’ attribute independence
assumption is to allow an attribute to depend on
other non-class attributes. To maintain efficiency
it can be desirable to utilize one-dependence
classifiers, such as �Tree Augmented Naive
Bayes (TAN), in which each attribute depends
upon the class and at most one other attribute.
However, most approaches to learning with one-
dependence classifiers perform model selection,
a process that usually imposes substantial
computational overheads and substantially
increases variance relative to naive Bayes.

http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_100016
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_850

86 Averaged One-Dependence Estimators

... ...

y

x x x ... x . . .

y

x x x x x x x

y

x

Averaged One-Dependence Estimators, Fig. 1 A Markov network representation of the SPODEs that comprise an
example AODE

AODE avoids model selection by averaging
the predictions of multiple one-dependence clas-
sifiers. In each one-dependence classifier, an at-
tribute is selected as the parent of all the other
attributes. This attribute is called the SuperPar-
ent and this type of one-dependence classifier is
called a SuperParent one-dependence estimator
(SPODE). Only those SPODEs with SuperParent
xi where the value of xi occurs at least m times
are used for predicting a class label y for the test
instance x D hx1; : : : ; xni. For any attribute value
xi ,

P.y; x/ D P.y; xi /P.xjy; xi /:

This equality holds for every xi . Therefore,

P.y; x/ D

P
1�i�n^F .xi /�m P.y; xi /P.xjy; xi /

jf1 � i � n ^ F.xi / � mgj
;

(1)
where F.xi / is the frequency of attribute value
xi in the training sample. Utilizing (1) and the
assumption that attributes are independent given
the class and the SuperParent xi , AODE predicts
the class for x by selecting

argmax
y

X
1�i�n^F .xi /�m

OP .y; xi /

Y
1�j �n;j ¤i

OP .xj jy; xi /: (2)

It averages over estimates of the terms in (1),
rather than the true values, which has the effect
of reducing the variance of these estimates.

Figure 1 shows a Markov network representa-
tion of an example AODE.

As AODE makes a weaker attribute condi-
tional independence assumption than naive Bayes
while still avoiding model selection, it has sub-
stantially lower � bias with a very small increase

in variance. A number of studies (Webb et al.
2005; Zheng and Webb 2005) have demonstrated
that it often has considerably lower zero-one
loss than naive Bayes with moderate time com-
plexity. For comparisons with other semi-naive
techniques, see � semi-naive Bayesian learning.
One study (Webb et al. 2005) found AODE to
provide classification accuracy competitive to a
state-of-the-art discriminative algorithm, boosted
decision trees.

When a new instance is available, like naive
Bayes, AODE only needs to update the prob-
ability estimates. Therefore, it is also suited to
incremental learning.

In more recent work (Webb et al. 2012),
AODE has been generalized to Averaged N-
Dependence Estimators (ANDE) and it has been
demonstrated that bias can be further decreased
by introducing multiple SuperParents to each
submodel.

Cross-References

�Bayesian Network
�Naı̈ve Bayes
� Semi-Naive Bayesian Learning
�Tree Augmented Naive Bayes

Recommended Reading

Webb GI, Boughton J, Wang Z (2005) Not so
naive Bayes: aggregating one-dependence estima-
tors. Mach Learn 58(1):5–24

Webb GI, Boughton J, Zheng F, Ting KM, & Salem H
(2012) Learning by extrapolation from marginal to
full-multivariate probability distributions: Decreas-
ingly naive Bayesian classification. Mach Learn
86(2): 233–272.

http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_850

Average-Reward Reinforcement Learning 87

A

Zheng F, Webb GI (2005) A comparative study of
semi-naive Bayes methods in classification learning.
In: Proceedings of the fourth Australasian data min-
ing conference, Sydney, pp 141–156

Average-Payoff Reinforcement
Learning

�Average-Reward Reinforcement Learning

Average-Reward Reinforcement
Learning

Prasad Tadepalli
School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR,
USA

Synonyms

ARL; Average-cost neuro-dynamic program-
ming; Average-cost optimization; Average-pay-
off reinforcement learning

Definition

Average-reward reinforcement learning (ARL)
refers to learning policies that optimize the av-
erage reward per time step by continually taking
actions and observing the outcomes including the
next state and the immediate reward.

Motivation and Background

�Reinforcement learning (RL) is the study of
programs that improve their performance at some
task by receiving rewards and punishments from
the environment (Sutton and Barto 1998). RL
has been quite successful in the automatic learn-
ing of good procedures for complex tasks such
as playing Backgammon and scheduling eleva-

tors (Tesauro 1992; Crites and Barto 1998). In
episodic domains in which there is a natural
termination condition such as the end of the
game in Backgammon, the obvious performance
measure to optimize is the expected total reward
per episode. But some domains such as elevator
scheduling are recurrent, i.e., do not have a nat-
ural termination condition. In such cases, total
expected reward can be infinite, and we need a
different optimization criterion.

In the discounted optimization framework, in
each time step, the value of the reward is mul-
tiplied by a discount factor � < 1, so that the
total discounted reward is always finite. However,
in many domains, there is no natural interpre-
tation for the discount factor � . A natural per-
formance measure to optimize in such domains
is the average reward received per time step.
Although one could use a discount factor which
is close to 1 to approximate average-reward op-
timization, an approach that directly optimizes
the average reward avoids this additional param-
eter and often leads to faster convergence in
practice.

There is a significant theory behind average-
reward optimization based on �Markov decision
processes (MDPs) (Puterman 1994). An MDP is
described by a 4-tuple hS; A; P; ri, where S is
a discrete set of states and A is a discrete set of
actions. P is a conditional probability distribu-
tion over the next states, given the current state
and action, and r gives the immediate reward
for a given state and action. A policy is a
mapping from states to actions. Each policy

induces a Markov process over some set of states.
In ergodic MDPs, every policy forms a single
closed set of states, and the average reward per
time step of in the limit of infinite horizon is
independent of the starting state. We call it the
“gain” of the policy , denoted by �./, and
consider the problem of finding a “gain-optimal
policy,” �, that maximizes �./.

Even though the gain �./ of a policy

is independent of the starting state s, the total
expected reward in time t is not. It can be denoted
by �./t C h.s/, where h.s/ is a state-dependent
bias term. It is the bias values of states that deter-
mine which states and actions are preferred and

http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_100020
http://dx.doi.org/10.1007/978-1-4899-7687-1_100027
http://dx.doi.org/10.1007/978-1-4899-7687-1_100028
http://dx.doi.org/10.1007/978-1-4899-7687-1_100029
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

88 Average-Reward Reinforcement Learning

Average-Reward
Reinforcement Learning,
Fig. 1 A simple Markov
decision process (MDP)
that illustrates the Bellman
equation

0

1

2

3

h(3)=2

h(0)=0

h(1)=0

h(2)=1

3 bad-move

good-move

0

0

0

0

need to be learned for optimal performance. The
following theorem gives the Bellman equation for
the bias values of states.

Theorem 1 For ergodic MDPs, there exist a
scalar � and a real-valued bias function h over
S that satisfy the recurrence relation

8s 2 S; h.s/

D max
a2A

�
r.s; a/C

X
s02S

P.s0js; a/h.s0/

�
��:

(1)

Further, the gain-optimal policy �� attains the
above maximum for each state s, and � is its gain.

Note that any one solution to (1) yields an
infinite number of solutions by adding the same
constant to all h-values. However, all these sets
of h-values will result in the same set of optimal
policies ��, since the optimal action in a state
is determined only by the relative differences
between the values of h.

For example, in Fig. 1, the agent has to select
between the actions good-move and bad-move
in state 0. If it stays in state 1, it gets an average
reward of 1. If it stays in state 2, it gets an
average reward of �1. For this domain, � D 1
for the optimal policy of choosing good-move
in state 0. If we arbitrarily set h.0/ to 0, then
h.1/ D 0; h.2/ D 1, and h.3/ D 2 satisfy the

recurrence relations in (1). For example, the dif-
ference between h.3/ and h.1/ is 2, which equals
the difference between the immediate reward for
the optimal action in state 3 and the optimal
average reward 1.

Given the probability model P and the im-
mediate rewards r , the above equations can be
solved by White’s relative value iteration method
by setting the h-value of an arbitrarily chosen
reference state to 0 and using synchronous suc-
cessive approximation (Bertsekas 1995). There
is also a policy iteration approach to determine
the optimal policy starting with some arbitrary
policy, solving for its values using the value itera-
tion, and updating the policy using one step look-
ahead search. The above iteration is repeated until
the policy converges (Puterman 1994).

Model-Based Learning

If the probabilities and the immediate rewards
are not known, the system needs to learn them
before applying the above methods. A model-
based approach called H-learning interleaves
model learning with Bellman backups of the
value function (Tadepalli and Ok 1998). This
is an average-reward version of �Adaptive
real-time dynamic programming (Barto et al.
1995). The models are learned by collecting
samples of state-action-next-state triples hs; a; s0i

http://dx.doi.org/10.1007/978-1-4899-7687-1_10

Average-Reward Reinforcement Learning 89

A

and computing P.s0js; a/ using the maximum
likelihood estimation. It then employs the
“certainty equivalence principle” by using the
current estimates as the true value while updating
the h-value of the current state s according to
the following update equation derived from the
Bellman equation.

h.s/ max
a2A

�
r.s; a/C

X
s02S

P.s0js; a/h.s0/

�
��:

(2)
One complication in ARL is the estimation of

the average reward � in the update equations
during learning. One could use the current
estimate of the long-term average reward, but
it is distorted by the exploratory actions that the
agent needs to take to learn about the unexplored
parts of the state space. Without the exploratory
actions, ARL methods converge to a suboptimal
policy. To take this into account, we have
from (1), in any state s and a non-exploratory
action a that maximizes the right-hand side,
� D r.s; a/ � h.s/ C

P
s02S P.s0jS; a/h.s0/.

Hence, � is estimated by cumulatively averaging
r � h.s/ C h.s0/, whenever a greedy action a

is executed in state s resulting in state s0 and
immediate reward r . � is updated using the
following equation where ˛ is the learning rate.

� �C ˛.r � h.s/C h.s0//: (3)

One issue with model-based learning is that
the models require too much space and time to
learn as tables. In many cases, actions can be
represented much more compactly. For example,
Tadepalli and Ok (1998) uses dynamic Bayesian
networks to represent and learn action models,
resulting in significant savings in space and time
for learning the models.

Model-Free Learning

One of the disadvantages of the model-based
methods is the need to explicitly represent and
learn action models. This is completely avoided
in model-free methods such as �Q-learning by

learning value functions over state–action pairs.
Schwartz’s R-learning is an adaptation of Q-
learning, which is a discounted reinforcement
learning method, to optimize average reward
(Schwartz 1993).

The state–action value R.s; a/ can be defined
as the expected long-term advantage of executing
action a in state s and from then on following the
optimal average-reward policy. It can be defined
using the bias values h and the optimal average
reward � as follows.

R.s; a/ D r.s; a/C
X
s02S

P.s0js; a/h.s0/��: (4)

The main difference with Q-values is that
instead of discounting the expected total reward
from the next state, we subtract the average re-
ward � in each time step, which is the constant
penalty for using up a time step. The h value
of any state s can now be defined using the
following equation:

h.s0/ D max
u

R.s0; u/: (5)

Initially all the R-values are set to 0. When
action a is executed in state s, the value of R.s; a/

is updated using the update equation

R.s; a/ .1�ˇ/R.s; a/Cˇ.rCh.s0/��/; (6)

where ˇ is the learning rate, r is the immediate
reward received, s0 is the next state, and � is
the estimate of the average reward of the current
greedy policy. In any state s, the greedy action a

maximizes the value R.s; a/, so R-learning does
not need to explicitly learn the immediate reward
function r.s; a/ or the action models P.s0js; a/,
since it does not use them either for the action
selection or for updating the R-values.

Both model-free and model-based ARL meth-
ods have been evaluated in several experimental
domains (Mahadevan 1996; Tadepalli and Ok
1998). When there is a compact representation for
models and can be learned quickly, the model-
based method seems to perform better. It also
has the advantage of fewer number of tunable
parameters. However, model-free methods are

http://dx.doi.org/10.1007/978-1-4899-7687-1_689

90 Average-Reward Reinforcement Learning

more convenient to implement especially if the
models are hard to learn or represent.

Scaling Average-Reward
Reinforcement Learning

Just as for discounted reinforcement learning,
scaling issues are paramount for ARL. Since the
number of states is exponential to the number of
relevant state variables, a table-based approach
does not scale well. The problem is compounded
in multi-agent domains where the number of joint
actions is exponential in the number of agents.
Several function approximation approaches,
such as linear functions, multi-layer perceptrons
(Marbach et al. 2000), local � linear regression
(Tadepalli and Ok 1998), and tile coding (Proper
and Tadepalli 2006) were tried with varying
degrees of success.

�Hierarchical reinforcement learning based
on the MAXQ framework was also explored in
the average-reward setting and was shown to
lead to significantly faster convergence. In the
MAXQ framework, we have a directed acyclic
graph, where each node represents a task and
stores the value function for that task. Usually,
the value function for subtasks depends on fewer
state variables than the overall value function and
hence can be more compactly represented. The
relevant variables for each subtask are fixed by
the designer of the hierarchy, which makes it
much easier to learn the value functions. One
potential problem with the hierarchical approach
is the loss due to the hierarchical constraint on the
policy. Despite this limitation, both model-based
(Seri and Tadepalli 2002) and model-free ap-
proaches (Ghavamzadeh and Mahadevan 2006)
were shown to yield optimal policies in some
domains that satisfy the assumptions of these
methods.

Applications

A temporal difference method for average reward
based on TD(0) was used to solve a call ad-
mission control and routing problem (Marbach

et al. 2000). On a modestly sized network of
16 nodes, it was shown that the average-reward
TD(0) outperforms the discounted version be-
cause it required more careful tuning of its pa-
rameters. Similar results were obtained in other
domains such as automatic guided vehicle rout-
ing (Ghavamzadeh and Mahadevan 2006) and
transfer line optimization (Wang and Mahadevan
1999).

Convergence Analysis

Unlike their discounted counterparts, both R-
learning and H-learning lack convergence guar-
antees. This is because due to the lack of dis-
counting, the updates can no longer be thought of
as contraction mappings, and hence the standard
theory of stochastic approximation does not ap-
ply. Simultaneous update of the average reward
� and the value functions makes the analysis of
these algorithms much more complicated. How-
ever, some ARL algorithms have been proved
convergent in the limit using analysis based on
ordinary differential equations (ODE) (Abounadi
et al. 2002). The main idea is to turn to ordinary
differential equations that are closely tracked by
the update equations and use two-time-scale anal-
ysis to show convergence. In addition to the
standard assumptions of stochastic approxima-
tion theory, the two-time-scale analysis requires
that � is updated at a much slower time scale than
the value function.

The previous convergence results are based on
the limit of infinite exploration. One of the many
challenges in reinforcement learning is that of
efficient exploration of the MDP to learn the dy-
namics and the rewards. There are model-based
algorithms that guarantee learning an approx-
imately optimal average-reward policy in time
polynomial in the numbers of states and actions
of the MDP and its mixing time. These algo-
rithms work by alternating between learning the
action models of the MDP by taking actions in the
environment and solving the learned MDP using
offline value iteration.

In the “Explicit Explore and Exploit” or E3

algorithm, the agent explicitly decides between

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_363

Average-Reward Reinforcement Learning 91

A

exploiting the known part of the MDP and op-
timally trying to reach the unknown part of the
MDP (exploration) (Kearns and Singh 2002).
During exploration, it uses the idea of “balanced
wandering,” where the least executed action in the
current state is preferred until all actions are ex-
ecuted a certain number of times. In contrast, the
R-MAX algorithm implicitly chooses between
exploration and exploitation by using the prin-
ciple of “optimism under uncertainty” (Brafman
and Tennenholtz 2002). The idea here is to ini-
tialize the model parameters optimistically so that
all unexplored actions in all states are assumed
to reach a fictitious state that yields maximum
possible reward from then on regardless of which
action is taken. The optimistic initialization of the
model parameters automatically encourages the
agent to execute unexplored actions, until the true
models and values of more states and actions are
gradually revealed to the agent. It has been shown
that with a probability at least 1 � ı, both E3

and R-MAX learn approximately correct models
whose optimal policies have an average reward �-
close to the true optimal in time polynomial in the
numbers of states and actions, the mixing time of
the MDP, 1

�
, and 1

ı
.

Unfortunately the convergence results do not
apply when there is function approximation in-
volved. In the presence of linear function approx-
imation, the average-reward version of temporal
difference learning, which learns a state-based
value function for a fixed policy, is shown to con-
verge in the limit (Tsitsiklis and Van Roy 1999).
The transient behavior of this algorithm is simi-
lar to that of the corresponding discounted TD-
learning with an appropriately scaled constant
basis function (Van Roy and Tsitsiklis 2002).
As in the discounted case, development of prov-
ably convergent optimal policy learning algo-
rithms with function approximation is a challeng-
ing open problem.

Cross-References

�Efficient Exploration in Reinforcement Learn-
ing

�Hierarchical Reinforcement Learning
�Model-Based Reinforcement Learning

Recommended Reading

Abounadi J, Bertsekas DP, Borkar V (2002) Stochastic
approximation for non-expansive maps: application
to Q-learning algorithms. SIAM J Control Optim
41(1):1–22

Barto AG, Bradtke SJ, Singh SP (1995) Learning to act
using real-time dynamic programming. Artif Intell
72(1):81–138

Bertsekas DP (1995) Dynamic programming and opti-
mal control. Athena Scientific, Belmont

Brafman RI, Tennenholtz M (2002) R-MAX – a gen-
eral polynomial time algorithm for near-optimal
reinforcement learning. J Mach Learn Res 2:213–
231

Crites RH, Barto AG (1998) Elevator group control
using multiple reinforcement agents. Mach Learn
33(2/3):235–262

Ghavamzadeh M, Mahadevan S (2006) Hierarchical
average reward reinforcement learning. J Mach
Learn Res 13(2):197–229

Kearns M, Singh S (2002) Near-optimal reinforce-
ment learning in polynomial time. Mach Learn
49(2/3):209–232

Mahadevan S (1996) Average reward reinforcement
learning: foundations, algorithms, and empirical re-
sults. Mach Learn 22(1/2/3):159–195

Marbach P, Mihatsch O, Tsitsiklis JN (2000) Call
admission control and routing in integrated service
networks using neuro-dynamic programming. IEEE
J Sel Areas Commun 18(2): 197–208

Proper S, Tadepalli P (2006) Scaling model-based
average-reward reinforcement learning for product
delivery. In: European conference on machine learn-
ing, Berlin. Springer, pp 725–742

Puterman ML (1994) Markov decision processes: dis-
crete dynamic stochastic programming. Wiley, New
York

Schwartz A (1993) A reinforcement learning method
for maximizing undiscounted rewards. In: Proceed-
ings of the tenth international conference on ma-
chine learning, Amherst. Morgan Kaufmann, San
Mateo, pp 298–305

Seri S, Tadepalli P (2002) Model-based hierarchi-
cal average-reward reinforcement learning. In: Pro-
ceedings of international machine learning confer-
ence, Sydney. Morgan Kaufmann, pp 562–569

Sutton R, Barto A (1998) Reinforcement learning: an
introduction. MIT, Cambridge

Tadepalli P, Ok D (1998) Model-based average-reward
reinforcement learning. Artif Intell 100:177–224

Tesauro G (1992) Practical issues in temporal differ-
ence learning. Mach Learn 8(3–4):257–277

http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_561

92 Average-Reward Reinforcement Learning

Tsitsiklis J, Van Roy B (1999) Average cost temporal-
difference learning. Automatica 35(11):1799–1808

Van Roy B, Tsitsiklis J (2002) On average versus dis-
counted temporal-difference learning. Mach Learn
49(2/3):179–191

Wang G, Mahadevan S (1999) Hierarchical op-
timization of policy-coupled semi-Markov deci-
sion processes. In: Proceedings of the 16th in-
ternational conference on machine learning, Bled,
pp 464–473

B

Backprop

�Backpropagation

Backpropagation

Paul Munro
University of Pittsburgh, Pittsburgh, PA, USA

Synonyms

Backprop; BP; Generalized delta rule

Definition

Backpropagation of error (henceforth BP) is a
method for training feed-forward neural networks
see �Artificial Neural Networks. A specific im-
plementation of BP is an iterative procedure that
adjusts network weight parameters according to
the gradient of an error measure. The procedure
is implemented by computing an error value for
each output unit, and by backpropagating the
error values through the network.

Characteristics

Feed-Forward Networks
A feed-forward neural network is a mathematical
function that is composed of constituent “semi-

linear” functions constrained by a feed-forward
network architecture, wherein the constituent
functions correspond to nodes (often called
units or artificial neurons) in a graph, as in
Fig. 1. A feed-forward network architecture has
a connectivity structure that is an acyclic graph;
that is, there are no closed loops.

In most cases, the unit functions have a finite
range such as [0, 1]. Thus, the network maps
R

N to [0, 1]M , where N is the number of input
values and M is the number of output units. Let
FanIn(k) refer to the set of units that provide
input to unit k, and let FanOut(k) denote the set
of units that receive input from unit k.

In an acyclic graph, at least one unit has a
FanIn that is the null set. These are the input
units; the activity of an input unit is not com-
puted; rather it is set to a value external to the
network (i.e., from the training data). Similarly,
at least one unit has a null FanOut set. Such units
typically represent the output of the network; i.e.,
this set of values is the result of the network com-
putation. Intermediate units (often called hidden
units) receive input from other units and project
outputs to other computational units.

For the BP procedure, the activity of each unit
is computed in two steps:

Linear step: the activities of the FanIn are each
multiplied by an independent “weight” parame-
ter, to which a “bias” parameter is added; each
computational unit has a single bias parameter,
independent of the other units. Let this sum be
denoted xk for unit k.

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_100030
http://dx.doi.org/10.1007/978-1-4899-7687-1_100042
http://dx.doi.org/10.1007/978-1-4899-7687-1_100181
http://dx.doi.org/10.1007/978-1-4899-7687-1_921

94 Backpropagation

Unit k

FanOut (k)

FanIn (k)

Output units

Hidden units

Input units

Standard 3 layer
classification net

General feedforward
net structure

Backpropagation, Fig. 1 Two networks are shown. In-
put units are shown as simple squares at the bottom of each
figure. Other units are computational (designated by a hor-
izontal line). Left: A standard 3-layer network. Four input
units project to five hidden units, which in turn project to a

single output unit. Not all connections are shown. Such a
network is commonly used for classification tasks. Right:
An example of a feed-forward network with four inputs,
three hidden units, and two outputs

Nonlinear step: The activity ak of unit k is a
differentiable nonlinear function of xk . A favorite
function is the logistic a D 1=.1 C exp.�x//,
because it maps the range Œ�1;C1� to Œ0; 1�

and its derivative has properties conducive to the
implementation of BP.

ak D fk.xk/I where xk D bkC
X

j"FanIn.k/

wkj sj

Gradient Descent
Derivation of BP is a direct application of the
gradient descent approach to optimization and
is dependent on a definition of network error,
a function of the actual network response to a
stimulus, r(s) and the target T(s). The two most
common error functions are the summed squared
error (SSE) and the cross entropy error (CE) (CE
error as defined here is based on the presumption
that the output values are in the range [0, 1].
Likewise for the target values; this is often used
for classification tasks, wherein target values are
set to the endpoints of the range, 0 and 1).

ESSE �
X

i"Outut
s"Train

.Ti .s/ � ri .s//2

ECE �
X

i"Outut
s"Train

ŒTi .s/ln.ri .s// � 1

� .Ti .s//ln.1 � ri .s//�

Each weight parameter, wij (the weight of the
connection from j to i), is updated by an amount
proportional to the negative gradient of the error
measure with respect to that parameter:

Δwij D ��
@W

@wij

;

where the step size, �, modulates the intrin-
sic tradeoff between smooth convergence of the
weights and the speed of convergence; in the
regime where � is small, the system is well-
behaved and converges smoothly, but slowly, and
for larger �, the system may learn some subsets
of the training set faster at the expense of smooth
convergence on all patterns in the set. Thus, � is
also called the learning rate.

Backpropagation 95

Bak

i

Dbi = hdi

d

Activity propagates
forward

Error propagates
backward

Weights are
updated

Errors from FanOut (k)

ak = fk(xk)

xk = bk + Σwkj aj

j ÎFanIn(k)

ek = Σwikdi

i ÎFanOut(k)

Inputs to unit k

¢dk = fk (ak) × ek

aj

Dwij = hdi aj

a b c

Backpropagation, Fig. 2 With each iteration of the
backprop algorithm, (a) An activity value is computed for
every unit in the network from the input to the output. (b)
The network output is compared with the target. The error
ek for output unit k is defined as .Tk � rk/. A value ık

is computed for each output unit by multiplying ek by the
derivative of the activity function. For hidden units, the
error is propagated backward using the weights. (c) The
weight parameters wij are updated in proportion to the
product of ıi and aj

Implementation
Several aspects of the feed-forward network must
be defined prior to running a BP program, such as
the configuration of the hidden units, the initial
values of the weights, the functions they will
compute, and the numerical representation of the
input and target data. There are also parameters
of the learning algorithm that must be chosen,
such as the value of � and the form of the error
function.

The weight and bias parameters are set to their
initial values (these are usually random within
specified limits). BP is implemented as an iter-
ative process as follows:

1. A stimulus-target pair is drawn from the train-
ing set.

2. The activity values for the units in the network
are computed for all the units in the network
in a forward fashion from input to output
(Fig. 2a).

3. The network output values are compared to the
target and a delta (ı) value is computed for
each output unit based on the difference be-
tween the target and the actual output response
value.

4. The deltas are propagated backward through
the network using the same weights that were
used to compute the activity values (Fig. 2b).

5. Each weight is updated by an amount propor-
tional to the product of the downstream delta
value and the upstream activity (Fig. 2c).

The procedure can be run either in an online
mode or batch mode. In the online mode, the net-
work parameters are updated for each stimulus-
target pair. In the batch mode, the weight changes
are computed and accumulated over several it-
erations without updating the weights until a
large number .B/ of stimulus-target pairs have
been processed (often, the entire training set), at
which the weights are updated by the accumu-
lated amounts.

online: Δwij .t/D �ıi .t/aj .t/ Δbi .t/D �ıi .t/

batch: Δwij .t C B/D

tCBX

sDt�1

�ıi .s/aj .s/

Δbi .t C T / D

t�BX

sDtC1

�ıi .s/

96 Backpropagation

Classification Tasks with BP
The simplest and most common classification
function returns a binary value, indicating mem-
bership in a particular class. The most common
network architecture for a task of this kind is the
three-layer network of Fig. 1 (left), with train-
ing values of 0 and 1. For classification tasks,
the cross entropy error function generally gives
significantly faster convergence. After training,
the network is in test mode or production mode,
and the responses are in the continuous range
[0, 1]; the response must thus be interpreted.
The value of the response could be interpreted
as a probability or fuzzy Boolean value. Often,
however, a single threshold is applied to give a
binary answer. A double threshold is sometimes
used, with the midrange defined as “uncertain.”

Curve Fitting with BP
A feed-forward network can be trained to approx-
imate any function, given the sufficient hidden
units. The range of the output unit(s) must be
capable of generating activity values in the re-
quired range. In order to accommodate an arbi-
trary range uniformly, a linear function is advis-
able for the output units, and the SSE function is
the basis for gradient descent.

The Autoencoder Architecture
The autoencoder is a network design in which
the target pattern is identical to the input pattern.
The hidden units are configured such that there
is a “bottleneck layer” of units that is smaller
than the input layer, through which information
flows; i.e., there are no connections bypassing
the bottleneck. Thus, any information necessary
to reconstruct the input pattern at the output
layer must be represented at the bottleneck. This
approach has been successfully applied as an
approach to nonlinear dimensionality reduction
(e.g., Demers and Cottrell 1993). It bears notable
similarities and differences to linear techniques,
such as � principal components analysis (PCA).

Prediction with BP
The plain “vanilla” BP propagates input to output
with no explicit representation of time. Several
approaches to processing of temporal patterns

have been put forward. Most prominent among
these are:

Time delay neural network. In this approach,
the input stimulus is simply a sample of a time
varying signal. The input patterns are typically
generated by a sliding window of samples over
time or over a sequence.

� Simple recurrent network (Elman 1990). A
sequence of stimulus patterns is presented as
input for the network, which has a single hidden
layer design. With each iteration, the input is aug-
mented by a secondary set of input units whose
activity is a copy of the hidden layer activity from
the previous iteration. Thus, the network is able to
maintain a representation of the recent history of
network stimuli.

Backpropagation through time (Rumelhart et
al. 1986). A recurrent network (i.e., a cyclic
network) is “unfolded in time” by forming a large
multilayer network, in which each layer is a copy
of the entire network shifted in time. Thus, the
number of layers limits the temporal window
available to the network.

Recurrent backpropagation (Pineda 1989). An
acyclic network is run with activity propagation
and error propagation, until variables converge.
Then the weights are updated.

Cognitive Modeling with BP
Interest in BP as a training technique for clas-
sifiers has waned somewhat since the introduc-
tion of � Support vector machines (SVMs) in
the mid 1990s. However, the influence of BP
as an approach to modeling cognitive processes,
including perception, concept learning, spatial
cognition, and language learning, remains strong.
Analysis of hidden unit representations (e.g., us-
ing clustering techniques) has given insight into
plausible intermediate processes that may un-
derlie cognitive phenomena. Also, many cogni-
tive models trained with BP have exhibited time
courses consistent with stages of human learning.

Biological Inspiration and Plausibility
The “connectionist” approach to modeling cogni-
tion is based on “neural network” models, which
have been touted as “biologically inspired” since
their inception. The similarities and differences

http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_768
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

Bagging 97

B

between connectionist architectures and living
brains have been exhaustively debated. Like the
brain, the models consist of elements that are ex-
tremely limited, computationally. Computational
power is derived by several units in network
architecture. However, there are compelling dif-
ferences as well. For example, the temporal dy-
namics in biological neurons is far more complex
than the simple functions used in connectionist
networks. It remains unclear what level of neu-
robiological detail is relevant to understand the
cognitive functions.

Shortcomings of BP
The BP method is notorious for convergence
problems. An inherent problem of gradient de-
scent approaches to optimization is the issue
of locally optimal values. Seeking a minimum
value be heading downhill is like water running
downhill. Not all water reaches the lowest point
(sea level). Water that flows into a mountain lake
has landed in a local minimum, a region that is
bounded by higher ground.

Even when BP converges to a global minimum
(or a local minimum that is “good enough”), it is
sometimes very slow. The convergence properties
of BP depend on the learning rate and random
factors, such as the initial weight and bias values.

Another difficulty with BP is the selection
of a network structure. The number of hidden
units and the interconnectivity among them has
a strong influence on both the generalization
performance and the convergence time. Since the
nature of this influence is poorly understood, the
design of the network is left to guesswork. The
standard approach is to use a single hidden layer
(as in Fig. 1, left), which has the advantage of
relatively fast convergence.

History
The idea of training a multilayered network using
error propagation was originated by Frank Rosen-
blatt (1958, 1962). However, he was unable to ap-
ply gradient descent because he was using linear
threshold functions that were not differentiable;
therefore, the technique of gradient descent was
unavailable. He developed a technique known as
the perceptron learning rule that is only appli-

cable to two layer networks (no hidden units).
Without hidden units, the computational power
of the network is severely reduced. Work in
the field virtually stopped with the publication
of Perceptrons (Minsky and Papert 1969). The
backpropagation procedure was first published by
Werbos (1974), but did not receive significant
recognition until it was put forward by Rumelhart
et al. (1986).

Cross-References

�Artificial Neural Networks

Recommended Reading

Demers D, Cottrell G (1993) Non-linear dimension-
ality reduction. In: Hanson SJ, Cowan JD, Giles
CL (eds) Advances in neural information processing
systems, vol 5. Morgan Kaufmann, San Mateo

Elman J (1990) Finding structure in time. Cogn Sci
14:179–211

Minsky ML, Papert SA (1969) Perceptrons. MIT Press,
Cambridge

Pineda FJ (1989) Recurrent backpropagation and the
dynamical approach to adaptive neural computation.
Neural Comput 1:161–172

Rosenblatt F (1958) The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychol Rev 65:386–408

Rosenblatt F (1962) Principles of statistical neurody-
namics. Spartan, Washington, DC

Werbos P (1974) Beyond regression: new tools for
prediction and analysis in the behavioral sciences.
Ph.D. thesis, Harvard University, Cambridge

Bagging

Bagging is an � ensemble learning technique.
The name “Bagging” is an acronym derived from
Bootstrap AGGregatING. Each member of the
ensemble is constructed from a different training
dataset. Each dataset is a � bootstrap sample
from the original. The models are combined by a
uniform average or vote. Bagging works best with
� unstable learners, that is those that produce dif-
fering generalization patterns with small changes
to the training data. Bagging therefore tends not

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_866

98 Bake-Off

to work well with linear models. See � ensemble
learning for more details.

Bake-Off

Definition

Bake-off is a disparaging term for experimental
evaluation of multiple learning algorithms by a
process of applying each algorithm to a limited
set of benchmark problems.

Cross-References

�Algorithm Evaluation

Bandit Problem with Side
Information

�Associative Reinforcement Learning

Bandit Problem with Side
Observations

�Associative Reinforcement Learning

Basic Lemma

� Symmetrization Lemma

Basket Analysis

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Synonyms

Market basket analysis

Definition

The goal of basket analysis is to utilize large vol-
umes of electronic receipts, stored at the checkout
terminals of supermarkets, for better understand-
ing of customer behavior.

While many forms of learning and mining
can be applied to market baskets, the term usu-
ally refers to some variant of � association rule
mining. In the basic setting, each market basket
constitutes an example essentially defined by the
set of purchased products. Association rules then
identify sets of items that tend to be bought
together. A classical, anecdotal discovery from
supermarket data is that “if a basket contains dia-
pers then it often also contains beer.” This exam-
ple illustrates several potential benefits of market
basket analysis by association rules: simplicity
and understandability of the results, actionability
of the results, and a form of nonsupervised ap-
proach where the consequent of the rule has not
been fixed by the user.

Association rules are often found with the
�Apriori algorithm, and are based on � frequent
itemsets.

Cross-References

�Apriori Algorithm
�Association Rule
� Frequent Itemset
� Frequent Pattern

Batch Learning

Synonyms

Offline Learning

Definition

A batch learning algorithm accepts a single input
that is a set or sequence of observations. The

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_970
http://dx.doi.org/10.1007/978-1-4899-7687-1_100284
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_100347

Bayes’ Rule 99

B

algorithm produces its model, and does no further
learning. Batch learning stands in contrast to
� online learning.

Baum-Welch Algorithm

The Baum–Welch algorithm is used for comput-
ing maximum likelihood estimates and posterior
mode estimates for the parameters (transition and
emission probabilities) of a HMM, when given
only output sequences (emissions) as training
data.

The Baum–Welch algorithm is a particular
instantiation of the expectation-maximization al-
gorithm, suited for HMMs.

Bayes Adaptive Markov Decision
Processes

�Bayesian Reinforcement Learning

Bayes Net

�Bayesian Network

Bayes’ Rule

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Bayes’ Theorem

Definition

Bayes’ rule provides a decomposition of a con-
ditional probability that is frequently used in a

family of learning techniques collectively called
Bayesian learning. Bayes’ rule is the equality

P.´jw/ D
P.´/P.wj´/

P.w/
(1)

P(w/ is called the prior probability, P(wj´/ is
called the posterior probability, and P(´jw/ is
called the likelihood.

Discussion

Bayes’ rule is used for two purposes. The first
is Bayesian update. In this context ´ represents
some new information that has become available
since an estimate P(w/ was formed of some
hypothesis w. The application of Bayes’ rule
enables a new estimate of the probability of w
(the posterior probability) to be calculated from
estimates of the prior probability, the likelihood,
and P(´/.

The second common application of Bayes’
rule is for estimating posterior probabilities in
probabilistic learning, where it is the core of
Bayesian networks, naı̈ve Bayes, and semi-naı̈ve
Bayesian techniques.

While Bayes’ rule may initially appear myste-
rious, it is readily derived from the basic principle
of conditional probability that

P.wj´/ D
P.w; ´/

P.´/
(2)

As

P.w; ´/ D
P.w/P.w; ´/

P.w/
(3)

and
P.w; ´/

P.w/
D P.´jw/; (4)

Bayes’ rule (Eq. 1) follows by simple substitution
of Eq. 4 into Eq. 3 and then of the result into Eq. 2.

Cross-References

�Bayesian Network
�Naı̈ve Bayes
� Semi-naive Bayesian Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_100036
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_748

100 Bayes’ Theorem

Bayes’ Theorem

�Bayes’ Rule

Bayesian Methods

Wray L. Buntine
Statistical Machine Learning Program, NICTA,
Canberra, ACT, Australia
Faculty of Information Technology, Monash
University, Clayton, VIC, Australia

Definition

The two most important concepts used in
Bayesian modeling are probability and utility.
Probabilities are used to model our belief about
the state of the world and utilities are used to
model the value to us of different outcomes,
thus to model costs and benefits. Probabilities
are represented in the form of p.xjC /, where
C is the current known context and x is some
event(s) of interest from a space �. The left and
right arguments of the probability function are
in general propositions (in the logical sense).
Probabilities are updated based on new evidence
or outcomes y using Bayes rule, which takes
the form

p.xjC; y/ D
p.xjC /p.Y jx; C /

p.yjC /
;

where � is the discrete domain of x. More gen-
erally, any measurable set can be used for the
domain �. An integral or mixed sum and integral
can replace the sum. For a utility function u.x/

of some event x, for instance the benefit of a
particular outcome, the expected value of u() is

ExjC Œu.x/� D
X

x2�

p.xjC /u.x/:

One then estimates the expected utility
Exjc;y Œu.x/� based on different evidence, actions
or outcomes y. An action is taken to maximize

this expected utility, appealing to the principle
of maximum expected utility (MEU). A common
application of this principle is recursive: one
should take the action now that will maximize
utility in the future, assuming all future actions
are also taken to maximize utility.

Motivation and Background

In modeling a problem, primarily, one considers
an interrelated space of events or states, actions,
and outcomes. Events describe the state of the
world, outcomes are also sometimes considered
events but they are special in that one directly
obtains from them costs or benefits. Actions al-
low one to influence the world. Some actions
may instigate tests and thus also help measure
the state of the world to reduce uncertainty. Some
problems may be dynamic in that a sequence
of actions and outcomes are considered and the
resulting changes in states modeled.

The Bayesian approach is a modeling method-
ology that provides a principled approach of how
to reason and act in the context of uncertainty and
a dynamic environment. In the approach, proba-
bilities are used to model all forms of belief or
proportions about events and states, and then util-
ities are used to model the costs and benefits of
any actions taken. An explicit assumption is that
these probabilities and utilities can be adequately
elicited and precisely modeled for the problem.
An implicit assumption is that the computation
required – recursive evaluation of possibly nested
integrals and sums (over domain variables) – can
be done quickly enough so that the computation
itself does not become a significant factor in the
costs considered.

The Bayesian approach is named after Rev.
Thomas Bayes, whose work was contributed to
the Royal Society in 1763 after his death, al-
though it was independently more generally pre-
sented as a theory by Laplace in 1812. The field
was subsequently developed into a field of statis-
tics, inference and decision theory by a stream of
authors in the 1900s including Jeffreys (Bernardo
and Smith 1994). The field of statistics was dom-
inated by the frequentist school during the 1990s,

http://dx.doi.org/10.1007/978-1-4899-7687-1_21

Bayesian Methods 101

B

and for a time Bayesian methods were considered
controversial. Like the different schools of theory
in machine learning, these statistical approaches
now coexist.

The Bayesian approach can be justified by
axiomatic prescriptions of how a rational agent
should reason and act, and by appeal to principles
of consistency. In the context of learning, proba-
bilities are used to infer models of the problem of
interest, and then utilities are used to recommend
predictions or analysis based on the models.

Theory

Basic Theory
First, consider definitions, the different kinds of
probability, the process of reasoning (about prob-
abilities), and making decisions.

Basic definitions: Probabilities are represented
in the form of p.xjC /, where C is the current
known context and x is some event(s) of interest.
It is sufficient to place in C only terms rele-
vant to x and ignore terms assumed by default.
Moreover, both x and C must have well-defined
events. For instance, x D “John is tall” is not
considered a well-defined event since the word
“tall” is not precise. One would instead replace
it with something like x D “John is greater than
6 foot tall” or x D “Julie said John is tall.”

An important functional used with probabili-
ties is the expected value. For a function f .x/ of
some event x from a space �, the expected value
of f () is Ex2�Œf .x/�.

Utility is used to measure value or relative
satisfaction, and is usually represented as a func-
tion on outcomes. Costs are negative utility and
benefits are positive. Utilities should be additive
in worth, and are often practically interpreted in
monetary units. Strictly speaking, the value of
money is nonlinear (for most people, 2 billion
dollars is not significantly better than 1 billion
dollars), so it is not a correct utility measure.
However, it is adequate when the range of finan-
cial transactions expected is reasonable.

Expected utility, which is the expected value
of the utility function, is the fundamental quantity

assessed with Bayesian methods. Some scenarios
are the following:

Prediction: For prediction problems, the out-
come is the “true” value, and the utility is
sometimes the mean square error or the ab-
solute error. In data mining, the choices are
much richer, see �Model Evaluation.

Diagnosis: The outcome is the “true” diagnosis,
and utility is made up of the differing costs
of treatment, mistreatment, and delay or non-
treatment, as well as any benefit from correct
diagnosis.

Game playing: The utility comes from the even-
tual outcome of the game, each player has
their own utility and the state of the game
constantly changes as plays are made.

In Bayesian machine learning, we usually take
utilities as a given, and the majority of the work
revolves around evaluating and estimating prob-
abilities and maximizing of expected utility. In
some ranking tasks and generalized agent learn-
ing, the utilities themselves may be poorly under-
stood.

Belief and proportions: Some probabilities
correspond to proportions that exist in the
real world, such as the proportion of school
children in the general population of a given
state. These real proportions can be measured by
counting or sampling, and they are governed
by Kolmogorov’s Axioms for probability,
including the probability of certainty is 1 and
the probability of a disjunction of mutually
exclusive events is the sum of the probabilities of
the individual events. This kind of probability is
used in the Frequentist School that only considers
long term average proportions obtained from a
series of independent and identical experiments.
These proportions can be model parameters one
wishes to reason about.

Probabilities can also represent beliefs. For
instance, in 2000, one could have had a belief
about the event that George Bush would win
the 2001 Presidential Election in the USA. This
event is unique and has only one outcome, so the
frequentist notion cannot be justified, i.e., there
is no long-term sequence of different 2001 pres-

http://dx.doi.org/10.1007/978-1-4899-7687-1_555

102 Bayesian Methods

idential elections with George Bush. Beliefs are
usually considered to be subjective, in that they
are specific to each agent, reflecting their sum
of unique experiences, and the unique context in
which the event in question occurs.

To better understand the role beliefs play in
Bayesian methods, also see � Prior Probability.

Reasoning: A stylized version of probabilistic
reasoning considers an event of interest one is
reasoning about, x, and evidence, y, one may
obtain. Typical scenarios are

Learning: x D .‚; M/ are parameters ‚ of a
model from family M , and y D fDg is a set
of data fDg D fd1; : : : ; dN g. So one considers
p.‚; M jD; C / versus p.‚; M jC /.

Diagnosis: x a disease or condition, and y is
a set of observable symptoms or diagnostic
tests. One might choose a test y that maxi-
mizes the expected utility.

Hypothesis testing: x is a hypothesis H and y

is some sequence of evidence E1, E2; : : : ; En,
so we consider p.H jE1; E2; : : : ; En/ and
hope it is sufficiently high.

Different probabilities are then considered:

p.xjC /: The prior probability for event x,
called the base-rate in some contexts.

p.yjC /: The prior probability for evidence y.
Once the evidence has been seen, this is also
used as a proxy for the quality of the model.

p.xjy; C /: The posterior probability for event
x given evidence y.

p.yjx; C /: The likelihood for the event x based
on evidence y.

In the case of diagnostic reasoning, the prior
p.xjC / is usually the base rate for the disease
or condition, and can be got from the population
base rate.

In the case of learning, however, the prior
p.‚; M jC / represents a prior distribution on
parameters about which we may well be largely
ignorant, or at least may not be able to readily
elicit from experts. For instance, the proportion
�D might be the probability of a new drug slow-

ing the onset of AIDS related diseases. At the
moment of initial testing, �D is unknown so one
places a probability distribution over �D , which
represents one’s belief about the proportion.

These priors are second-order probabilities,
beliefs about proportions, and they are the most
challenging quantity modeled with the Bayesian
approach. They can be a function on thousands
of parameters, and can be critical in the success
of applications. They are also challenging from
the philosophical perspective.

Decision theory: The term Bayesian infer-
ence is usually reserved for the process of
manipulating priors and posteriors, computing
probabilities, and computing expected values.
Bayesian decision theory describes the process
of formulating utilities and then evaluating the
(sometimes) recursive maximum expected utility
formula, such as in game playing, or interactive
advertising.

In Bayesian theory one takes the action that
maximizes expected utility (MEU) in the current
context, sometimes referred to as the expected
utility hypothesis. Decision theory places this in
a dynamic context and says each action should
be taken to maximize expected future utility. This
is defined recursively, so taken to the limit this
implies the optimal future actions need to be
determined before the optimal current action can
be got via MEU.

Justifications
This section covers basic mathematical justifica-
tions of the theory. The best general reference
for this is Bernardo and Smith (1994). Addi-
tional discussion of prior probabilities appears in
� Prior Probability.

Note that Bayesian theory, with its acceptance
as a branch of mainstream statistics, is widely
accepted for the following reasons:

Application: It has extensive support through
practical success, often times by clever com-
bination of prior knowledge and statistical and
computational finesse.

Explanation: It provides a convenient common
language in which a variety of other the-

http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_962

Bayesian Methods 103

B

oretical approaches can be represented. For
instance PAC, MDL methods, penalized like-
lihood methods, and the maximum margin
approach all find good interpretations within
the Bayesian framework.

Composition: It allows different reasoning tasks
to be composed in a coherent way. With a
probabilistic framework, the components can
interoperate in a coherent manner, so that
information may flow bidirectionally between
components via probabilities.

Composition of processing steps in intelligent
systems is a key application for Bayesian meth-
ods. For instance, natural language and vision
recognition tasks can sometimes be broken down
into a processing chain (for instance, doing a
named entity recognition step before a depen-
dency parsing step), but these components rarely
work conclusively and unambiguously. By at-
taching probabilities to the output of components,
and allowing probabilistic inputs, the uncertainty
inherent in individual steps can be propagated and
managed.

Theoretical justifications also exist to support
each of the different components, probabilities,
and utilities. These justifications are based on the
concept of normative axioms, axioms that do not
describe reasoning but rather prescribe basic prin-
ciples it should follow. The axioms try to capture
principles such as coherence and consistency in a
quantitative manner. These various justifications
have their reported shortcomings and a rich litera-
ture exists arguing about the details and postulat-
ing new variants. These axiomatic justifications
are supportive of the Bayesian approach, but they
are not irrefutable.

Justifying probabilities: In the Bayesian ap-
proach, beliefs and proportions are given the
same mathematical treatment.

One set of arguably controversial justifications
for this revolve around betting (Bernardo and
Smith 1994, Sect. 2.8.3). Someone’s subjective
beliefs about specific events, such as significant
economic and political events (or horse races),
are claimed to be measurable by offering them
a series of options or bets. Moreover, if their
beliefs do not behave like proportions, then a

clever bookmaker can use a so-called Dutch book
to consistently profit from them.

An alternative scheme for justifying probabil-
ity by Cox is based on normative axioms that
beliefs should follow. For instance, one contro-
versial axiom by Cox is that belief about a single
event should be represented by a single real
number. These axioms are presented by Jaynes as
rules for a robot (Jaynes 2003), and as rules for
intelligent systems by Horvitz et al. (1986).

Justifying decision theory: Another scheme
again using normative axioms, by von Neumann
and Morgenstern, is used to justify the use of util-
ities. This scheme assumes probabilities are the
basis of inference about uncertainty. A different
set of normative axiomatic schemes have been
developed that justify the use of probabilities and
utilities together under MEU, the best known is
by Savage but others exist (Bernardo and Smith
1994).

Bayesian Computation
The first part of this article has been devoted to a
brief overview of the Bayesian approach. Com-
putation for Bayesian inference is an extensive
field itself. Here we review the basic aspects as
a pointer to the literature. This is an active area
of research in machine learning, statistics, and a
many applied artificial intelligence communities
such as natural language processing, image anal-
ysis, and others.

In general, in Bayesian reasoning one wants
to estimate posterior average parameter values,
or their average variance, or some other averaged
quantity, then general formulas are given by (in
the case of continuous parameters)

N‚ D E‚jD;M;C Œ‚� D

Z

‚

‚p.‚jD; M; C /d‚

var.‚/ D E‚jD;M;C Œ.‚ � N‚/2�

Marginal likelihood: A useful quantity to as-
sist in evaluating results, and a worthy score
in its own right is the marginal likelihood, in
the continuous parameter case found from the
likelihood p .Dj‚, M , C) by taking an average

104 Bayesian Methods

p.DjM; C /D

Z

‚

p.‚jM; C /p.Dj‚; M; C /d‚

This is also called the normalizing constant due
to its occurrence in the posterior formula

p.‚jD; M; C / D
p.‚jM; C /p.Dj‚; M; C /

p.DjM; C /
Š:

It is generally difficult to estimate because of the
multidimensional integrals and sums.

Exponential family distributions: Standard
probability distributions covered in mathematical
statistics, such as the �Gaussian Distribution,
the Poisson, Dirichlet, Gamma, and Wishart,
have very convenient mathematical properties
that make Bayesian estimation easier. With these
distributions, one computes statistics, called
sufficient statistics, such as a mean and sum
of squares (for the Gaussian), and then parameter
estimation follows with a function inverse on a
concave function. This is the basis of � linear
regression, � principal components analysis,
and some � decision tree learning methods,
for instance. All good texts on mathematical
statistics cover these in detail. Note the marginal
likelihood is often computable in closed form for
exponential family distributions.

Graphical models: �Graphical Models are a
general family of probabilistic models formed
by composing graphs over variables. They
work particularly well with exponential family
distributions, and allow a rich variety of popular
machine learning and data mining methods to be
represented and manipulated. Graphical models
allow complex models to be composed from
simpler components and provide a family of
algorithm schemes for developing inference and
learning methods that operate on them. They
have become the de facto standard for presenting
(suitable decomposed) models and algorithms in
the machine learning community.

Maximum a posterior estimation: known as
MAP, is usually the simplest form of parameter
estimation that could be called Bayesian. It also
corresponds to a penalized or regularized maxi-
mum likelihood method. Given the posterior for a
stylized learning problem of the previous section,

one finds the parameters ‚ that maximizes the
posterior p.‚; M jD; C /, which can be conve-
niently done without computing the marginal
likelihood above, so

d‚MP D armugmax
‚

log p.‚; DjM; C /

where the log probability can be broken down as
a prior and a likelihood term

log p.‚; DjM; C / D log p.‚jM; C /

C log p.Dj‚; M; C /:

The Laplace approximation: When the poste-
rior is well behaved, and there is a large amount
of data, the posterior is focused around a van-
ishing small region in parameter space of diam-
eter O.1=

p
.N //. If this occurs away from the

boundary of the parameter space, then one can
make a second-order Taylor expansion of the log.
posterior at the MAP point and the result is a
Gaussian approximation to the posterior.

log p.D; ‚jM; C /

� log p.D; d‚MP jM; C /C
1

2
. d‚MP �‚/T

d2 log p.D; ‚jM; C /

d‚d‚T

ˇ̌
ˇ̌
‚D d‚MP

. d‚MP �‚/:

From this, one can approximate integrals such
as the marginal likelihood p.DjM; C /. This is
known as the Laplace approximation, the name
of the corresponding general method used for the
asymptotic expansion of integrals. In general, this
is a poor approximation, but it serves to aid our
understanding of parameter estimation (MacKay
2003, Chaps. 27 and 28), and is the approximate
basis for some model selection criteria.

Latent variable models: Latent variables are
data that are hidden and thus never observed in
the evidence. However, their existence is postu-
lated as a significant component of the model.
For instance, in �Clustering (an unsupervised
method) and finite mixture models generally, one
assumes each data point has a hidden class label,

http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_943

Bayesian Methods 105

B

thus the Bayesian model of clustering is a simple
kind of latent variable model.

�Markov chain Monte Carlo methods: The
most general form of reasoning and estimation
available are the Markov chain Monte Carlo
(MCMC) methods. The MCMC methods couple
two processes: first, they use Monte Carlo or
simulation methods to estimate the integral, and
second they use a Markov Chain to sample, so
sampling is sequentially (Markovian) based, and
samples are not independent.

Simulation methods generally use the func-
tional form of p.‚; DjM; C / so we do not need
to compute the marginal likelihood. Hence, given
a set of I samples f‚1; : : : ; ‚I g the expected
value is approximated with a weighted average

N‚ �
1

I

IX

iD1

wi ‚i :

The simplest case is where the samples are made
independently according to the posterior itself
and then the weights wi D 1, This is called
the ordinary Monte Carlo (OMC) method, but
it is not often usable in practice because effi-
cient multidimensional posterior samplers rarely
exist. Alternatively, one can sample according
to a Markov Chain, ‚iC1 � q.‚iC1j‚i /, so
each ‚iC1 is conditionally dependent on ‚i . So
while samples are not independent, as long as the
long run distribution of the Markov chain is the
same as the posterior, the same approximation
formula holds. There are a rich variety of MCMC
methods, and this forms one of the key areas of
current research.

Gibbs sampling: The simplest kind of MCMC
method samples each dimension (or sub-vector)
in turn. Suppose the parameter vector has K

real components, ‚ D .�1; : : : ; �K/. Sampling a
complete ‚ in one go is not generally possible
given just a functional form of the posterior
p.‚jD; M; C / but given no computable form for
the normalizing constant. Gibbs sampling works
in the one-dimensional case where normalizing
bounds can be obtained and sampling tricks used.
The conditional posterior of �k is given by

p.�kj.�1; : : : ; �k�1; �kC1; : : : ; �k/; D; M; C /;

and this is usually easier to sample from.
The Gibbs (and MCMC) sample ‚iC1 can be

drawn given the previous sample ‚i by progres-
sively resampling each dimension in turn and so
slowly updating the full vector:

1. Sample �iC1;1 according to p.�1j�i;2; : : : ;

�i;K ; D; M; C /: . . .
k. Sample �iC1;k according to p.�2j�iC1;1, . . . ,

�iC1;k�1, �i;kC1, . . . , �i;K , D, M , C).
. . .

k. Sample �iC1;k according to p.�K j�iC1;1, . . . ,
�iC1;K�1, D, M , C).

In samping terms, this method is no more suc-
cessful than coordinate-wise ascent is as a primi-
tive greedy search method: it is supported by the-
oretical results but can be very slow to converge.

Variational approximations: When the func-
tion you seek to optimize or average over presents
difficulty, perhaps it is highly multimodal, then
one option is to change the function itself, and
replace it with a more readily approximated func-
tion. Variational methods provide a general prin-
ciple for doing this safely. The general principle
uses variational calculus, which is the calcu-
lus over functions, not just variables. Variational
methods are a very general approach that can
be used to develop a broad range of algorithms
(Wainwright and Jordan 2008).

Nonparametric models: The above discussion
implicitly assumed the model has a fixed finite
parameter vector ‚. If one is attempting to model
a regression function, or a language grammar,
or image model of unknown a priori structural
complexity, then one cannot know the dimen-
sion ahead of time. Moreover, as in the case of
functions, the dimension cannot always be finite.
The �Bayesian Nonparametric Models address
this situation, and are perhaps the most impor-
tant family of techniques for general machine
learning.

Cross-References

�Bayes’ Rule
�Bayesian Nonparametric Models

http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_928
http://dx.doi.org/10.1007/978-1-4899-7687-1_21
http://dx.doi.org/10.1007/978-1-4899-7687-1_928

106 Bayesian Model Averaging

�Markov Chain Monte Carlo
� Prior Probability

Recommended Reading

A good introduction to the problems of
uncertainty and philosophical issues behind
the Bayesian treatment of probability is in
Lindley (2006). From the statistical machine
learning perspective, a good introductory text
is by MacKay (2003) who carefully covers
information theory, probability, and inference
but not so much statistical machine learning.
Another alternative introduction to probabilities
is the posthumously completed and published
work of Jaynes (2003).

Discussions from the frequentist versus
Bayesian battlefront can be found in works such
as Rosenkrantz (1983), and in the approximate
artificial intelligence versus probabilistic battle-
front in discussion articles such as Cheeseman’s
(1988) and the many responses and rebuttals.
It should be noted that it is the continued
success in applications that have really led these
methods into the mainstream, not the entertaining
polemics.

Good mathematical statistics text books, such
as Casella and Berger (2001) cover the breadth
of statistical methods and therefore handle
basic Bayesian theory. A more comprehensive
treatment is given in Bayesian texts such as
Gelman et al. (2003).

Most advanced statistical machine learning
text books cover Bayesian methods, but to
fully understand the subtleties of prior beliefs
and Bayesian methodology one needs to view
more advanced Bayesian literature. A detailed
theoretical reference for Bayesian methods is
Bernardo and Smith (1994).

Bernardo J, Smith A (1994) Bayesian theory. Wiley,
Chichester

Casella G, Berger R (2001) Statistical inference, 2nd
edn. Duxbury, Pacific Grove

Cheeseman P (1988) An inquiry into computer under-
standing. Comput Intell 4(1):58–66

Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian
data analysis, 2nd edn. Chapman & Hall/CRC Press,
Boca Raton

Horvitz E, Heckerman D, Langlotz C (1986) A frame-
work for comparing alternative formalisms for plau-
sible reasoning. In: Fifth national conference on
artificial intelligence, Philadelphia, pp 210–214

Jaynes E (2003) Probability theory: the logic of sci-
ence. Cambridge University Press, New York

Lindley D (2006) Understanding uncertainty. Wiley,
Hoboken

MacKay D (2003) Information theory, inference, and
learning algorithms. Cambridge University Press,
Cambridge

Rosenkrantz R (ed) (1983) E.T. Jaynes: papers on
probability, statistics and statistical physics. D. Rei-
del, Dordrecht

Wainwright MJ, Jordan MI (2008) Graphical models,
exponential families, and variational inference. Now
Publishers, Hanover

Bayesian Model Averaging

�Learning Graphical Models

Bayesian Network

Synonyms

Bayes net

Definition

A Bayesian network is a form of directed
� graphical model for representing multivariate
probability distributions.

The nodes of the network represent a set of
random variables, and the directed arcs repre-
sent causal relationships between variables. The
Markov property is usually required: every di-
rect dependency between a possible cause and
a possible effect has to be shown with an arc.
Bayesian networks with the Markov property are
called I-maps (independence maps). If all arcs in
the network correspond to a direct dependence
on the system being modeled, then the network
is said to be a D-map (dependence-map). Each
node is associated with a conditional probability
distribution, that quantifies the effects the parents
of the node, if any, have on it. Bayesian support

http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_100035
http://dx.doi.org/10.1007/978-1-4899-7687-1_119

Bayesian Nonparametric Models 107

B

various forms of reasoning: diagnosis, to derive
causes from symptoms, prediction, to derive ef-
fects from causes, and intercausal reasoning, to
discover the mutual causes of a common effect.

Cross-References

�Graphical Models

Bayesian Nonparametric Models

Peter Orbanz1 and Yee Whye Teh2

1Cambridge University, Cambridge, UK
2University College London, London, UK

Synonyms

Bayesian methods; Dirichlet process; Gaussian
processes; Prior probabilities

Definition

A Bayesian nonparametric model is a Bayesian
model on an infinite-dimensional parameter
space. The parameter space is typically chosen
as the set of all possible solutions for a given
learning problem. For example, in a regression
problem, the parameter space can be the set of
continuous functions, and in a density estimation
problem, the space can consist of all densities.
A Bayesian nonparametric model uses only a fi-
nite subset of the available parameter dimensions
to explain a finite sample of observations, with
the set of dimensions chosen depending on the
sample such that the effective complexity of the
model (as measured by the number of dimensions
used) adapts to the data. Classical adaptive
problems, such as nonparametric estimation
and model selection, can thus be formulated as
Bayesian inference problems. Popular examples
of Bayesian nonparametric models include
Gaussian process regression, in which the
correlation structure is refined with growing

sample size, and Dirichlet process mixture
models for clustering, which adapt the number of
clusters to the complexity of the data. Bayesian
nonparametric models have recently been applied
to a variety of machine learning problems,
including regression, classification, clustering,
latent variable modeling, sequential modeling,
image segmentation, source separation, and
grammar induction.

Motivation and Background

Most of machine learning is concerned with
learning an appropriate set of parameters within
a model class from � training data. The meta-
level problems of determining appropriate model
classes are referred to as model selection or
model adaptation. These constitute important
concerns for machine learning practitioners, not
only for avoidance of over-fitting and under-
fitting, but also for discovery of the causes and
structures underlying data. Examples of model
selection and adaptation include selecting the
number of clusters in a clustering problem, the
number of hidden states in a hidden Markov
model, the number of latent variables in a latent
variable model, or the complexity of features
used in nonlinear regression.

Nonparametric models constitute an approach
to model selection and adaptation where the sizes
of models are allowed to grow with data size.
This is as opposed to parametric models, which
use a fixed number of parameters. For example, a
parametric approach to density estimation would
be to fit a Gaussian or a mixture of a fixed
number of Gaussians by maximum likelihood.
A nonparametric approach would be a Parzen
window estimator, which centers a Gaussian at
each observation (and hence uses one mean pa-
rameter per observation). Another example is the
support vector machine with a Gaussian kernel.
The representer theorem shows that the decision
function is a linear combination of Gaussian
radial basis functions centered at every input
vector, and thus has a complexity that grows with
more observations. Nonparametric methods have
long been popular in classical (non-Bayesian)

http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_219
http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_840

108 Bayesian Nonparametric Models

statistics (Wasserman 2006). They often perform
impressively in applications and, though theoret-
ical results for such models are typically harder
to prove than for parametric models, appealing
theoretical properties have been established for a
wide range of models.

Bayesian nonparametric methods provide
a Bayesian framework for model selection
and adaptation using nonparametric models. A
Bayesian formulation of nonparametric problems
is nontrivial, since a Bayesian model defines
prior and posterior distributions on a single
fixed parameter space, but the dimension of the
parameter space in a nonparametric approach
should change with sample size. The Bayesian
nonparametric solution to this problem is to use
an infinite-dimensional parameter space, and to
invoke only a finite subset of the available pa-
rameters on any given finite data set. This subset
generally grows with the data set. In the context
of Bayesian nonparametric models, “infinite-
dimensional” can therefore be interpreted as “of
finite but unbounded dimension.” More precisely,
a Bayesian nonparametric model is a model that
(1) constitutes a Bayesian model on an infinite-
dimensional parameter space and (2) can be
evaluated on a finite sample in a manner that uses
only a finite subset of the available parameters to
explain the sample.

We make the above description more concrete
in the next section when we describe a number of
standard machine learning problems and the cor-
responding Bayesian nonparametric solutions. As
we will see, the parameter space in (1) typically
consists of functions or of measures, while (2) is
usually achieved by marginalizing out surplus
dimensions over the prior. Random functions and
measures and, more generally, probability distri-
butions on infinite-dimensional random objects
are called stochastic processes; examples that
we will encounter include Gaussian processes,
Dirichlet processes, and beta processes. Bayesian
nonparametric models are often named after the
stochastic processes they contain. The examples
are then followed by theoretical considerations,
including formal constructions and representa-
tions of the stochastic processes used in Bayesian
nonparametric models, exchangeability, and is-

sues of consistency and convergence rate. We
conclude this chapter with future directions and
a list of literature available for reading.

Examples

Clustering with mixture models. Bayesian non-
parametric generalizations of finite mixture mod-
els provide an approach for estimating both the
number of components in a mixture model and
the parameters of the individual mixture com-
ponents simultaneously from data. Finite mix-
ture models define a density function over data
items x of the form p.x/ D

PK
kD1 �kp.xj�k/,

where �k is the mixing proportion and �k are
parameters associated with component k. The
density can be written in a non-standard man-
ner as an integral: p.x/ D s p.xj�/G.�/d� ,
where G D

PK
kD1 �kı�k

is a discrete mixing
distribution encapsulating all the parameters of
the mixture model and ı� is a dirac distribution
(atom) centered at � . Bayesian nonparametric
mixtures use mixing distributions consisting of a
countably infinite number of atoms instead:

G D

1X

kD1

�kı�k
: (1)

This gives rise to mixture models with an infinite
number of components. When applied to a finite
training set, only a finite (but varying) number
of components will be used to model the data,
since each data item is associated with exactly
one component but each component can be as-
sociated with multiple data items. Inference in
the model then automatically recovers both the
number of components to use and the parameters
of the components. Being Bayesian, we need a
prior over the mixing distribution G, and the
most common prior to use is a Dirichlet process
(DP). The resulting mixture model is called a DP
mixture.

Formally, a Dirichlet process DP(˛, H)
parametrized by a concentration paramter ˛ > 0
and a base distribution H is a prior over
distributions (probability measures) G such

Bayesian Nonparametric Models 109

B

that, for any finite partition A1; : : : ; Am of the
parameter space, the induced random vector
(G.A1/; : : : ; G.Am/) is Dirichlet distributed
with parameters (˛H.A1/; : : : ; ˛H.Am/) (see
entitled Section “Theory” for a discussion of
subtleties involved in this definition). It can be
shown that draws from a DP will be discrete
distributions as given in (1). The DP also induces
a distribution over partitions of integers called
the Chinese restaurant process (CRP), which
directly describes the prior over how data items
are clustered under the DP mixture. For more
details on the DP and the CRP, see �Dirichlet
Process.
Nonlinear regression. The aim of regression is
to infer a continuous function from a training
set consisting of input–output pairs f.ti ; xi /gi

n
D1.

Parametric approaches parametrize the function
using a finite number of parameters and attempt
to infer these parameters from data. The proto-
typical Bayesian nonparametric approach to this
problem is to define a prior distribution over con-
tinuous functions directly by means of a Gaus-
sian process (GP). As explained in the Chapter
�Gaussian Process, a GP is a distribution on an
infinite collection of random variables Xt , such
that the joint distribution of each finite subset
Xt1 ; : : : ; Xtm is a multivariate Gaussian. A value
xt taken by the variable Xt can be regarded as
the value of a continuous function f at t , that
is, f .t/ D xt . Given the training set, the Gaus-
sian process posterior is again a distribution on
functions, conditional on these functions taking
values f .t1/ D x1; : : : ; f .tn/ D xn.
Latent feature models. These models represent a
set of objects in terms of a set of latent features,
each of which represents an independent degree
of variation exhibited by the data. Such a rep-
resentation of data is sometimes referred to as a
distributed representation. In analogy to nonpara-
metric mixture models with an unknown number
of clusters, a Bayesian nonparametric approach
to latent feature modeling allows for an unknown
number of latent features. The stochastic pro-
cesses involved here are known as the Indian
buffet process (IBP) and the beta process (BP).
Draws from BPs are random discrete measures,
where each of an infinite number of atoms has a

mass in (0, 1) but the masses of atoms need not
sum to 1. Each atom corresponds to a feature,
with the mass corresponding to the probability
that the feature is present for an object. We
can visualize the occurrences of features among
objects using a binary matrix, where the (i , k)
entry is 1 if object i has feature k and 0 otherwise.
The distribution over binary matrices induced by
the BP is called the IBP.
�Hidden Markov Models (HMMs). HMMs are
popular models for sequential or temporal data,
where each time step is associated with a state,
with state transitions dependent on the previous
state. An infinite HMM is a Bayesian nonpara-
metric approach to HMMs, where the number of
states is unbounded and allowed to grow with
the sequence length. It is defined using one DP
prior for the transition probabilities going out
from each state. To ensure that the set of states
reachable from each outgoing state is the same,
the base distributions of the DPs are shared and
given a DP prior recursively. The construction
is called a hierarchical Dirichlet process (HDP);
see below.
�Density Estimation. A nonparametric Bayesian
approach to density estimation requires a prior
on densities or distributions. However, the DP
is not useful in this context, since it generates
discrete distributions. A useful density estimator
should smooth the empirical density (such as a
Parzen window estimator), which requires a prior
that can generate smooth distributions. Priors
applicable in density estimation problems include
DP mixture models and Pólya trees.

If p.xj�/ is a smooth density function, the
density

P1
kD1 �kp.xj�k/ induced by a DP mix-

ture model is a smooth random density, such
that DP mixtures can be used as prior in density
estimation problems.

Pólya trees are priors on probability distribu-
tions that can generate both discrete and piece-
wise continuous distributions, depending on the
choice of parameters. Pólya trees are defined by a
recursive infinitely deep binary subdivision of the
domain of the generated random measure. Each
subdivision is associated with a beta random
variable which describes the relative amount of
mass on each side of the subdivision. The DP is

http://dx.doi.org/10.1007/978-1-4899-7687-1_219
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1007/978-1-4899-7687-1_210

110 Bayesian Nonparametric Models

a special case of a Pólya tree corresponding to a
particular parametrization. For other parametriza-
tions the resulting random distribution can be
smooth, so it is suitable for density estimation.
Power-law Phenomena. Many naturally occur-
ring phenomena exhibit power-law behavior. Ex-
amples include natural languages, images, and
social and genetic networks. An interesting gen-
eralization of the DP, called the Pitman-Yor pro-
cess, PYP(˛, d , H), has recently been success-
fully used to model power-law data. The Pitman-
Yor process augments the DP by a third parameter
d 2 [0, 1). When d D 0 the PYP is a DP(˛, H),
while when ˛ D 0 it is a so called normalized
stable process.
Sequential modeling. HMMs model sequential
data using latent variables representing the under-
lying state of the system, and assuming that each
state only depends on the previous state (the so
called Markov property). In some applications,
for example language modeling and text com-
pression, we are interested in directly modeling
sequences without using latent variables, and
without making any Markov assumptions, i.e.,
modeling each observation conditional on all pre-
vious observations in the sequence. Since the set
of potential sequences of previous observations is
unbounded, this calls for nonparametric models.
A hierarchical Pitman-Yor process can be used
to construct a Bayesian nonparametric solution
whereby the conditional probabilities are coupled
hierarchically.
Dependent and hierarchical models. Most of
the Bayesian nonparametric models described so
far are applied in settings where observations
are homogeneous or exchangeable. In many
real world settings observations are not
homogeneous, and in fact are often structured
in interesting ways. For example, the data
generating process might change over time
thus observations at different times are not
exchangeable, or observations might come in
distinct groups with those in the same group
being more similar than across groups.

Significant recent efforts in Bayesian
nonparametrics research have been placed in
developing extensions that can handle these
non-homogeneous settings. Dependent Dirichlet

processes are stochastic processes, typically over
a spatial or temporal domain, which define a
Dirichlet process (or a related random measure)
at each point with neighboring DPs being
more dependent. These are used for spatial
modeling, nonparametric regression, as well as
for modeling temporal changes. Alternatively,
hierarchical Bayesian nonparametric models
like the hierarchical DP aim to couple multiple
Bayesian nonparametric models within a
hierarchical Bayesian framework. The idea is
to allow sharing of statistical strength across
multiple groups of observations. Among other
applications, these have been used in the infinite
HMM, topic modeling, language modeling,
word segmentation, image segmentation, and
grammar induction. For an overview of various
dependent Bayesian nonparametric models and
their applications in biostatistics please refer to
Dunson (2010). Teh and Jordan (2010) is an
overview of hierarchical Bayesian nonparametric
models as well as a variety of applications in
machine learning.

Theory

As we saw in the preceding examples, Bayesian
nonparametric models often make use of pri-
ors over functions and measures. Because these
spaces typically have uncountable number of di-
mensions, extra care has to be taken to define
the priors properly and to study the asymptotic
properties of estimation in the resulting models.
In this section we give an overview of the ba-
sic concepts involved in the theory of Bayesian
nonparametric models. We start with a discussion
of the importance of exchangeability in Bayesian
parametric and nonparametric statistics. This is
followed by representations of the priors and
issues of convergence.

Exchangeability
The underlying assumption of all Bayesian meth-
ods is that the parameter specifying the observa-
tion model is a random variable. This assumption
is subject to much criticism, and at the heart of
the Bayesian versus non-Bayesian debate that has

Bayesian Nonparametric Models 111

B

long divided the statistics community. However,
there is a very general type of observation for
which the existence of such a random variable
can be derived mathematically: For so-called ex-
changeable observations, the Bayesian assump-
tion that a randomly distributed parameter exists
is not a modeling assumption, but a mathematical
consequence of the data’s properties.

Formally, a sequence of variables X1,
X2; : : : ; Xn over the same probability space
(�;Ω) is exchangeable if their joint distribution
is invariant to permuting the variables. That is, if
P is the joint distribution and � any permutation
of f1; : : : ; ng, then

P.X1 D x1; X2 D x2 : : : Xn D xn/

DP.X1Dx�.1/; X2Dx�.2/ : : : XnD x�.n//:

(2)

An infinite sequence X1, X2, . . . is infinitely ex-
changeable if X1, . . . , Xn is exchangeable for
everyn > 1. In this chapter, we mean infinite
exchangeability whenever we write exchange-
ability. Exchangeability reflects the assumption
that the variables do not depend on their indices
although they may be dependent among them-
selves. This is typically a reasonable assumption
in machine learning and statistical applications,
even if the variables are not themselves indepen-
dently and identically distributed (iid).

Exchangeability is a much weaker assumption
than iid since iid variables are automatically ex-
changeable.

If � parametrizes the underlying distribution,
and one assumes a prior distribution over � ,
then the resulting marginal distribution over
X1, X2,. . . with � marginalized out will still be
exchangeable. A fundamental result credited
to de Finetti (1931) states that the converse is
also true. That is, if X1, X2, . . . is (infinitely)
exchangeable, then there is a random � such that:

P.X1; : : : ; Xn/ D

Z
P.�/

nY

iD1

P.Xi j�/d� (3)

for every n > 1. In other words, the seemingly
innocuous assumption of exchangeability

automatically implies the existence of a
hierarchical Bayesian model with � being the
random latent parameter. This the crux of the
fundamental importance of exchangeability to
Bayesian statistics.

In de Finetti’s Theorem it is important to stress
that � can be infinite dimensional (it is typically a
random measure), thus the hierarchical Bayesian
model (3) is typically a nonparametric one. For an
example, the Blackwell–MacQueen urn scheme
(related to the CRP) is exchangeable and thus
implicitly defines a random measure, namely the
DP (see �Dirichlet Processes for more details).
In this sense, we will see below that de Finetti’s
theorem is an alternative route to Kolmogorov’s
extension theorem, which implicitly defines the
stochastic processes underlying Bayesian non-
parametric models.

Model Representations
In finite dimensions, a probability model is usu-
ally defined by a density function or probability
mass function. In infinite dimensional spaces,
this approach is not generally feasible, for rea-
sons explained below. To define or work with
a Bayesian nonparametric model, we have to
choose alternative mathematical representations.
Weak distributions. A weak distribution is a rep-
resentation for the distribution of a stochastic pro-
cess, that is, for a probability distribution on an
infinite-dimensional sample space. If we assume
that the dimensions of the space are indexed by
t 2 T , the stochastic process can be regarded
as the joint distribution P of an infinite set of
random variables fXtgt2T . For any finite subset
S � T of dimensions, the joint distribution PS

of the corresponding subset fXtgt2S of random
variables is a finite-dimensional marginal of P .
The weak distribution of a stochastic process is
the set of all its finite-dimensional marginals,
that is, the set fPS W S � T; jS j < 1g.
For example, the customary definition of the
Gaussian process as an infinite collection of ran-
dom variables, each finite subset of which has
a joint Gaussian distribution, is an example of
a weak distribution representation. In contrast to
the explicit representations to be described below,
this representation is generally not generative,

http://dx.doi.org/10.1007/978-1-4899-7687-1_219

112 Bayesian Nonparametric Models

because it represents the distribution rather than
a random draw, but is more widely applicable.

Apparently, just defining a weak distribution
in this manner need not imply that it is a valid
representation of a stochastic process. A given
collection of finite-dimensional distributions rep-
resents a stochastic process only (1) if a process
with these distributions as its marginals actually
exists, and (2) if it is uniquely defined by the
marginals. The mathematical result which guar-
antees that weak distribution representations are
valid is the Kolmogorov extension theorem (also
known as the Daniell–Kolmogorov theorem or
the Kolmogorov consistency theorem). Suppose
that a collection fPS W S � T; jS j < 1g of
distributions is given. If all distributions in the
collection are marginals of each other, that is, if
Ps1 is a marginal of Ps2 whenever S1 � S2, the
set of distributions is called a projective family.
The Kolmogorov extension theorem states that,
if the set T is countable, and if the distributions
PS form a projective family, then there exists
a uniquely defined stochastic process with the
collection fPSg as its marginal distributions. In
other words, any projective family for a count-
able set T of dimensions is the weak distri-
bution of a stochastic process. Conversely, any
stochastic process can be represented in this man-
ner, by computing its set of finite-dimensional
marginals.

The weak distribution representation assumes
that all individual random variable Xt of the
stochastic process take values in the same sample
space Ω. The stochastic process P defined by
the weak distribution is then a probability dis-
tribution on the sample space ΩT , which can
be interpreted as the set of all functions f W

T ! Ω. For example, to construct a GP we
might choose T D Q and Ω D R to obtain
real-valued functions on the countable space of
rational numbers. Since Q is dense in R, the
function f can then be extended to all of R

by continuity. To define the DP as a distribution
over probability measures on R, we note that a
probability measure is a set function that maps
“random events,” i.e., elements of the Borel � -
algebra B.R/ of R, into probabilities in [0, 1].
We could therefore choose a weak distribution

consisting of Dirichlet distributions, and set T D

B.R/ and Ω D Œ0; 1�. However, this approach
raises a new problem because the set B.R/ is not
countable. As in the GP, we can first define the DP
on a countable “base” for B.R/ then extend to all
random events by continuity of measures. More
precise descriptions are unfortunately beyond the
scope of this chapter.
Explicit representations. Explicit representations
directly describe a random draw from a stochastic
process, rather than its distribution. A prominent
example of an explicit representation is the
so-called stick-breaking representation of the
Dirichlet process. The discrete random measure
G in (1) is completely determined by the two
infinite sequences f�kgk2N and f�kgk2N. The
stick-breaking representation of the DP generates
these two sequences by drawing �k � H iid
and vk � Beta.1; ˛/ for k D 1; 2;
The coefficients �k are then computed as
�k D vk

Qk�1
j D1.1 � vk/. The measure G so

obtained can be shown to be distributed according
to a DP(˛; G0). Similar representations can be
derived for the Pitman–Yor process and the
beta process as well. Explicit representations,
if they exist for a given model, are typically of
great practical importance for the derivation of
algorithms.
Implicit Representations. A third representation
of infinite dimensional models is based on de
Finetti’s Theorem. Any exchangeable sequence
X1; : : : ; Xn uniquely defines a stochastic process
� , called the de Finetti measure, making the Xi ’s
iid. If the Xi ’s are sufficient to define the rest
of the model and their conditional distributions
are easily specified, then it is sufficient to work
directly with the Xi ’s and have the underlying
stochastic process implicitly defined. Examples
include the Chinese restaurant process (an ex-
changeable distribution over partitions) with the
DP as the de Finetti measure, and the Indian
buffet process (an exchangeable distribution over
binary matrices) with the BP being the corre-
sponding de Finetti measure. These implicit rep-
resentations are useful in practice as they can lead
to simple and efficient inference algorithms.
Finite representations. A fourth representation of
Bayesian nonparametric models is as the infinite

Bayesian Nonparametric Models 113

B

limit of finite (parametric) Bayesian models. For
example, DP mixtures can be derived as the
infinite limit of finite mixture models with partic-
ular Dirichlet priors on mixing proportions, GPs
can be derived as the infinite limit of particular
Bayesian regression models with Gaussian priors,
while BPs can be derived as from the limit of
an infinite number of independent beta variables.
These representations are sometimes more intu-
itive for practitioners familiar with parametric
models. However, not all Bayesian nonparametric
models can be expressed in this fashion, and they
do not necessarily make clear the mathematical
subtleties involved.

Consistency and Convergence Rates
A recent series of works in mathematical
statistics examines the convergence properties of
Bayesian nonparametric models, and in particular
the questions of consistency and convergence
rates. In this context, a Bayesian model is called
consistent if, given that an infinite amount of data
is available, the model posterior will concentrate
in a neighborhood of the true solution (e.g.,
true function or density). A rate of convergence
specifies, for a finite sample, how rapidly the
posterior concentrates depending on the sample
size. In their pioneering article Diaconis and
Freedman (1986) showed, to the great surprise
of much of the Bayesian community, that models
such as the Dirichlet process can be inconsistent,
and may converge to arbitrary solutions even for
an infinite amount of data.

More recent results, notably by van der Vaart
and Ghosal, apply modern methods of mathemat-
ical statistics to study the convergence properties
of Bayesian nonparametric models (see e.g., Gho
(2010) and references therein). Consistency has
been shown for a number of models, including
Gaussian processes and Dirichlet process mix-
tures. However, a particularly interesting aspect
of this line of work are results on convergence
rates, which specify the rate of concentration
of the posterior depending on sample size, on
the complexity of the model, and on how much
probability mass the prior places around the true
solution. To make such results quantitative re-
quires a measure for the complexity of a Bayesian

nonparametric model. This is done by means
of complexity measures developed in empirical
process theory and statistical learning theory,
such as metric entropies, covering numbers and
bracketing, some of which are well-known in
theoretical machine learning.

Inference

There are two aspects to inference from Bayesian
nonparametric models: the analytic tractability of
posteriors for the stochastic processes embedded
in Bayesian nonparametric models, and practi-
cal inference algorithms for the overall models.
Bayesian nonparametric models typically include
stochastic processes such as the Gaussian process
and the Dirichlet process. These processes have
an infinite number of dimensions, hence naı̈ve
algorithmic approaches to computing posteriors
are generally infeasible. Fortunately, these pro-
cesses typically have analytically tractable pos-
teriors, so all but finitely many of the dimensions
can be analytically integrated out efficiently. The
remaining dimensions, along with the parametric
parts of the models, can then be handled by the
usual inference techniques employed in paramet-
ric Bayesian modeling, including Markov chain
Monte Carlo, sequential Monte Carlo, variational
inference, and message-passing algorithms like
expectation propagation. The precise choice of
approximations to use will depend on the specific
models under consideration, with speed/accuracy
trade-offs between different techniques generally
following those for parametric models. In the
following, we will give two examples to illustrate
the above points, and discuss a few theoretical
issues associated with the analytic tractability of
stochastic processes.

Examples
In Gaussian process regression, we model the
relationship between an input x and an output y

using a function f , so that y � f .x/C ", where
" is iid Gaussian noise. Given a GP prior over
f and a finite training data set f.xi ; yi /g

n
iD1 we

wish to compute the posterior over f . Here we
can use the weak representation of f and note

114 Bayesian Nonparametric Models

that ff .xi/gniD1 is simply a finite-dimensional
Gaussian with mean and covariance given by
the mean and covariance functions of the GP.
Inference for ff .xi /g

n
iD1 is then straightforward.

The approach can be thought of equivalently as
marginalizing out the whole function except its
values on the training inputs. Note that although
we only have the posterior over ff .xi /g

n
iD1,

this is sufficient to reconstruct the function
evaluated at any other point x0 (say the test input),
since f .x0/ is Gaussian and independent of the
training data f.xi ; yi /g

n
iD1 given ff .xi /g

n
iD1. In

GP regression the posterior over ff .xi /g
n
iD1 can

be computed exactly. In GP classification or other
regression settings with nonlinear likelihood
functions, the typical approach is to use sparse
methods based on variational approximations or
expectation propagation; see Chapter �Gaussian
Process for details.

Our second example involves Dirichlet pro-
cess mixture models. Recall that the DP induces
a clustering structure on the data items. If our
training set consists of n data items, since each
item can only belong to one cluster, there are at
most n clusters represented in the training set.
Even though the DP mixture itself has an infi-
nite number of potential clusters, all but finitely
many of these are not associated with data, thus
the associated variables need not be explicitly
represented at all. This can be understood either
as marginalizing out these variables, or as an
implicit representation which can be made ex-
plicit whenever required by sampling from the
prior. This idea is applicable for DP mixtures
using both the Chinese restaurant process and
the stick-breaking representations. In the CRP
representation, each data item xi is associated
with a cluster index ´i , and each cluster k with a
parameter ��

k
(these parameters can be marginal-

ized out if H is conjugate to F), and these are
the only latent variables that need be represented
in memory. In the stick-breaking representation,
clusters are ordered by decreasing prior expected
size, with cluster k associated with a parameter
��

k
and a size �k . Each data item is again as-

sociated with a cluster index ´i , and only the
clusters up to K D max.´1; : : : ; ´n/ need to be
represented. All clusters with index >K need not

be represented since their posterior conditioning
on f.xi ; ´i /g

n
iD1 is just the prior.

On Bayes Equations and Conjugacy
It is worth noting that the posterior of a Bayesian
model is, in abstract terms, defined as the condi-
tional distribution of the parameter given the data
and the hyperparameters, and this definition does
not require the existence of a Bayes equation.
If a Bayes equation exists for the model, the
posterior can equivalently be defined as the left-
hand side of the Bayes equation. However, for
some stochastic processes, notably the DP on an
uncountable space such as R, it is not possible to
define a Bayes equation even though the posterior
is still a well-defined mathematical object. Tech-
nically speaking, existence of a Bayes equation
requires the family of all possible posteriors to be
dominated by the prior, but this is not the case
for the DP. That posteriors of these stochastic
processes can be evaluated at all is solely due to
the fact that they admit an analytic representation.

The particular form of tractability exhibited
by many stochastic processes in the literature is
that of a conjugate posterior, that is, the posterior
belongs to the same model family as the prior,
and the posterior parameters can be computed
as a function of the prior hyperparameters and
the observed data. For example, the posterior
of a DP(˛; G0/ under observations �1; : : : ; �n is
again a Dirichlet process, DP.˛Cn; 1

˛Cn
.˛G0CP

ı�i
//. Similarly the posterior of a GP under

observations of f .x1/; : : : ; f .xn/ is still a GP. It
is this conjugacy that allows practical inference in
the examples above. A Bayesian nonparametric
model is conjugate if and only if the elements of
its weak distribution, i.e., its finite-dimensional
marginals, have a conjugate structure as well
(Orbanz 2010). In particular, this characterizes a
class of conjugate Bayesian nonparametric mod-
els whose weak distributions consist of exponen-
tial family models. Note however, that lack of
conjugacy does not imply intractable posteriors.
An example is given by the Pitman–Yor process
in which the posterior is given by a sum of a
finite number of atoms and a Pitman-Yor process
independent from the atoms.

http://dx.doi.org/10.1007/978-1-4899-7687-1_108

Bayesian Nonparametric Models 115

B

Future Directions

Since MCMC (see �Markov Chain Monte
Carlo) sampling algorithms for Dirichlet process
mixtures became available in the 1990s and
made latent variable models with nonparametric
Bayesian components applicable to practical
problems, the development of Bayesian non-
parametrics has experienced explosive growth
(Escobar and West 1995; Neal 2000). Arguably,
though, the results available so far have only
scratched the surface. The repertoire of available
models is still mostly limited to using the
Gaussian process, the Dirichlet process, the beta
process, and generalizations derived from those.
In principle, Bayesian nonparametric models
may be defined on any infinite-dimensional
mathematical object of possible interest to
machine learning and statistics. Possible
examples are kernels, infinite graphs, special
classes of functions (e.g., piece-wise continuous
or Sobolev functions), and permutations.

Aside from the obvious modeling questions,
two major future directions are to make Bayesian
nonparametric methods available to a larger au-
dience of researchers and practitioners through
the development of software packages, and to
understand and quantify the theoretical properties
of available methods.

General-Purpose Software Package
There is currently significant growth in the
application of Bayesian nonparametric models
across a variety of application domains both
in machine learning and in statistics. However
significant hurdles still exist, especially the
expense and expertise needed to develop
computer programs for inference in these
complex models. One future direction is thus
the development of software packages that
can compile efficient inference algorithms
automatically given model specifications, thus
allowing a much wider range of modeler to
make use of these models. Current developments
include the R DPpackage (http://cran.r-project.
org/web/packages/DPpackage), the hierarchical
Bayesian compiler (http://www.cs.utah.edu/
hal/HBC), adaptor grammars (http://www.cog.

brown.edu/mj/Software.htm), the MIT-Church
project (http://projects.csail.mit.edu/church/wiki/
Church), as well as efforts to add Bayesian
nonparametric models to the repertoire of
current Bayesian modeling environments like
OpenBugs (http://mathstat.helsinki.fi/openbugs)
and infer.NET (http://research.microsoft.com/en-
us/um/cambridge/projects/infernet).

Statistical Properties of Models
Recent work in mathematical statistics provides
some insight into the quantitative behavior of
Bayesian nonparametric models (cf theory sec-
tion). The elegant, methodical approach under-
lying these results, which quantifies model com-
plexity by means of empirical process theory and
then derives convergence rates as a function of
the complexity, should be applicable to a wide
range of models. So far, however, only results for
Gaussian processes and Dirichlet process mix-
tures have been proven, and it will be of great
interest to establish properties for other priors.
Some models developed in machine learning,
such as the infinite HMM, may pose new chal-
lenges to theoretical methodology, since their
study will probably have to draw on both the
theory of algorithms and mathematical statistics.
Once a wider range of results is available, they
may in turn serve to guide the development of
new models, if it is possible to establish how
different methods of model construction affect
the statistical properties of the constructed model.

In addition to the references embedded in the
text above, we recommend the books Hjort et al.
(2010) and Ghosh and Ramamoorthi (2002),
and the review articles Walker et al. (1999)
and Müller and Quintana (2004) on Bayesian
nonparametrics. Further references can be found
in the chapter by they Teh and Jordan (2010) of
the book Hjort et al. (2010).

Cross-References

�Bayesian Methods
�Dirichlet Process
�Gaussian Processes
�Mixture Modeling
� Prior Probability

http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://cran.r-project.org/web/packages/DPpackage
http://cran.r-project.org/web/packages/DPpackage
http://www.cs.utah.edu/hal/HBC
http://www.cs.utah.edu/hal/HBC
http://www.cog.brown.edu/mj/Software.htm
http://www.cog.brown.edu/mj/Software.htm
http://projects.csail.mit.edu/church/wiki/Church
http://projects.csail.mit.edu/church/wiki/Church
http://mathstat.helsinki.fi/openbugs
http://research.microsoft.com/en-us/um/cambridge/projects/infernet
http://research.microsoft.com/en-us/um/cambridge/projects/infernet
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_219
http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_100306
http://dx.doi.org/10.1007/978-1-4899-7687-1_962

116 Bayesian Reinforcement Learning

Recommended Reading

de Finetti B (1931) Funzione caratteristica di
un fenomeno aleatorio. Atti della R. Academia
Nazionale dei Lincei, Serie 6. Memorie, Classe di
Scienze Fisiche, Mathematice e Naturale 4:251–299

Diaconis P, Freedman D (1986) On the consistency
of Bayes estimates (with discussion). Ann Stat
14(1):1–67

Dunson DB (2010) Nonparametric Bayes applications
to biostatistics. In: Hjort N, Holmes C, Müller
P, Walker S (eds) Bayesian nonparametrics. Cam-
bridge University Press, Cambridge

Escobar MD, West M (1995) Bayesian density estima-
tion and inference using mixtures. J Am Stat Assoc
90:577–588

Ghosh JK, Ramamoorthi RV (2002) Bayesian nonpara-
metrics. Springer, New York

Hjort N, Holmes C, Müller P, Walker S (eds) (2010)
Bayesian nonparametrics. Cambridge series in sta-
tistical and probabilistic mathematics, vol 28. Cam-
bridge University Press, Cambridge

Müller P, Quintana FA (2004) Nonparametric Bayesian
data analysis. Stat Sci 19(1):95–110

Neal RM (2000) Markov chain sampling methods for
Dirichlet process mixture models. J Comput Graph
Stat 9:249–265

Orbanz P (2010) Construction of nonparametric
Bayesian models from parametric Bayes equations.
In: Bengio Y, Schuurmans D, Lafferty J, Williams
CKI, Culotta A (eds) Advances in neural infor-
mation processing systems, Vancouver, vol 22,
pp 1392–1400

Teh YW, Jordan MI (2010) Hierarchical Bayesian
nonparametric models with applications. In: Hjort
N, Holmes C, Müller P, Walker S (eds) Bayesian
nonparametrics. Cambridge University Press, Cam-
bridge

Walker SG, Damien P, Laud PW, Smith AFM (1999)
Bayesian nonparametric inference for random dis-
tributions and related functions. J R Stat Soc
61(3):485–527

Wasserman L (2006) All of nonparametric statistics.
Springer, New York

Bayesian Reinforcement Learning

Pascal Poupart
University of Waterloo, Waterloo, ON, Canada

Synonyms

Adaptive control processes; Bayes adaptive
Markov decision processes; Dual control;
Optimal learning

Definition

Bayesian reinforcement learning refers to
� reinforcement learning modeled as a Bayesian
learning problem (see �Bayesian Methods).
More specifically, following Bayesian learning
theory, reinforcement learning is performed
by computing a posterior distribution on
the unknowns (e.g., any combination of the
transition probabilities, reward probabilities,
value function, value gradient, or policy) based
on the evidence received (e.g., history of past
state–action pairs).

Motivation and Background

Bayesian reinforcement learning can be traced
back to the 1950s and 1960s in the work of
Bellman (1961), Fel’Dbaum (1965), and several
of Howard’s students (Martin 1967). Shortly after
�Markov decision processes were formalized,
the above researchers (and several others) in
Operations Research considered the problem of
controlling a Markov process with uncertain
transition and reward probabilities, which is
equivalent to reinforcement learning. They
considered Bayesian techniques since Bayesian
learning is performed by probabilistic inference,
which naturally combines with decision theory.
In general, Bayesian reinforcement learning
distinguishes itself from other reinforcement
learning approaches by the use of probability
distributions (instead of point estimates) to
fully capture the uncertainty. This enables
the learner to make more informed decisions,
with the potential of learning faster with less
data. In particular, the exploration/exploitation
tradeoff can be naturally optimized. The use of
a prior distribution also facilitates the encoding
of domain knowledge, which is exploited in
a natural and principled way by the learning
process.

Structure of Learning Approach

A Markov decision process (MDP) (Puterman
1994) can be formalized by a tuple hS , A, T i

http://dx.doi.org/10.1007/978-1-4899-7687-1_100004
http://dx.doi.org/10.1007/978-1-4899-7687-1_100034
http://dx.doi.org/10.1007/978-1-4899-7687-1_100123
http://dx.doi.org/10.1007/978-1-4899-7687-1_100351
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Bayesian Reinforcement Learning 117

B

where S is the set of states s, A is the set
of actions a, T .s, a, s0/ D Pr.s0js; a) is the
transition distribution indicating the probability
of reaching s0 when executing a in s. Let sr

denote the reward feature of a state and Pr(s0
r js; a)

be the probability of earning r when executing a

in s. A policy � W S ! A consists of a mapping
from states to actions. For a given discount factor
0 � � � 1 and horizon h, the value V � of a
policy � is the expected discounted total reward
earned while executing this policy: V �.s/ DPh

tDo � tEsj� Œst
r �. The value function V � can be

written in a recursive form as the expected sum
of the immediate reward s0

r with the discounted
future rewards: V �.s/ D

P
s0 Pr.s0js, �.s//Œs0

r C

�V�.s0/�. The goal is to find an optimal policy
��, that is, a policy with the highest value V �

in all states (i.e., V �.s/ � V �.s/8�; s/. Many
algorithms exploit the fact that the optimal value
function V � satisfies Bellman’s equation:

V �.s/ D max
a

X

s0

Pr.s0js; a/Œs0
r C �V �.s/� (1)

Reinforcement learning (Sutton and Barto
1998) is concerned with the problem of finding
an optimal policy when the transition (and
reward) probabilities T are unknown (or
uncertain). Bayesian learning is a learning
approach in which unknowns are modeled as
random variables X over which distributions
encode the uncertainty. The process of learning
consists of updating the prior distribution
Pr(X) based on some evidence e to obtain
a posterior distribution Pr(X je) according to
Bayes theorem: Pr.X je/ D kPr.X/Pr.ejX/.
(Here k D 1=Pr.e/ is a normalization constant.)
Hence, Bayesian reinforcement learning consists
of using Bayesian learning for reinforcement
learning. The unknowns are the transition
(and reward) probabilities T , the optimal
value function V �, and the optimal policy ��.
Techniques that maintain a distribution on T are
known as model-based Bayesian reinforcement
learning since they explicitly learn the underlying
model T . In contrast, techniques that maintain a
distribution on V � or �� are known as model-
free Bayesian reinforcement learning since they
directly learn the optimal value function or policy
without learning a model.

Model-Based Bayesian Learning
In model-based Bayesian reinforcement learning,
the learner starts with a prior distribution over the
parameters of T , which we denote by � . For in-
stance, let �sas0 D Pr.s0js, a; �) be the unknown
probability of reaching s0 when executing a in s.
In general, we denote by � the set of all �sas0 .
Then, the prior b.�/ represents the initial belief of
the learner regarding the underlying model. The
learner updates its belief after every s, a; s0 triple
observed by computing a posterior bsas0.�/ D

b.� js; a; s0/ according to Bayes theorem:

bsas0.�/ D kb.�/ Pr.s0js; a; �/ D kb.�/�sas0 :

(2)

In order to facilitate belief updates, it is conve-
nient to pick the prior from a family of distri-
butions that is closed under Bayes updates. This
ensures that beliefs are always parameterized in
the same way. Such families are called conjugate
priors. In the case of a discrete model (i.e.,
Pr.s0js; a; �/ is a discrete distribution), Dirichlets
are conjugate priors and form a family of dis-
tributions corresponding to monomials over the
simplex of discrete distributions (DeGroot 1970).
They are parameterized as follows: Dir.� In/ D

k
Q

i �
ni �1
i . Here � is an unknown discrete dis-

tribution such that
P

i �i D 1 and n is a vector
of strictly positive real numbers ni (known as
the hyperparameters) such that ni � 1 can be
interpreted as the number of times that the �i -
probability event has been observed. Since the
unknown transition model � is made up of one
unknown distribution � s

a per s, a pair, let the prior
be b.�/ D

Q
s;a Dir (� s

a; ns
a) such that ns

a is

a vector of hyperparameters n
s;s0

a . The posterior
obtained after transition Os; Oa; Os0 is

bs;s0

a .�/ D k� s;s0

a

Y

s;a

Dir.� s
aIn

s
a/

D
Y

s;a

Dir.� s
aIn

s
a C ıOs; Oa;Os0.s; a; s0//

(3)

where ıOs; Oa;Os0.s; a; s0/ is a Kronecker delta that
returns 1 when s D Os; a D Oa; s0 D Os0 and 0 other-
wise. In practice, belief monitoring is as simple as

118 Bayesian Reinforcement Learning

incrementing the hyperparameter corresponding
to the observed transition.

Belief MDP Equivalence

At any point in time, the belief b provides an
explicit representation of the uncertainty of
the learner about the underlying model. This
information is very useful to decide whether
future actions should focus on exploring or
exploiting. Hence, in Bayesian reinforcement
learning, policies � are mappings from state-
belief pairs hs; bi to actions. Equivalently, the
problem of Bayesian reinforcement learning can
be thought as one of planning with a belief MDP
(or a partially observable MDP). More precisely,
every Bayesian reinforcement learning problem
has an equivalent belief MDP formulation
hSbel ; Abel ; Tbeli where Sbel D S 	 B (B
is the space of beliefs b), Abel D A, and
Tbel .sbel ; abel ; b0

bel
/ D Pr.b0

bel
jbbel ; abel / D

Pr.s0; b0js; b; a/ D Pr.b0js; b; a; s0/Pr.s0js; b; a/.
The decomposition of the transition dynamics
is particularly interesting since Pr.b0js, b, a,
s0) equals 1 when b0 D b

s;s0

a (as defined in
Eq. 3) and 0 otherwise. Furthermore, Pr.s0js,
b, a/ D s� b.�/Pr.s0js; �; a/d� , which can be
computed in closed form when b is a Dirichlet.
As a result, the transition dynamics of the belief
MDP are fully known. This is a remarkable
fact since it means that Bayesian reinforcement
learning problems, which by definition have
unknown/uncertain transition dynamics, can be
recast as belief MDPs with known transition
dynamics. While this doesn’t make the problem
any easier since the belief MDP has a hybrid state
space (discrete s with continuous b), it allows
us to treat policy optimization as a problem of
planning and in particular to adapt algorithms
originally designed for belief MDPs (also known
as partially observable MDPs).

Optimal Value Function Parameterization
Many planning techniques compute the optimal
value function V �, from which an optimal policy
�� can easily be extracted. Despite the hybrid
nature of the state space, the optimal value func-

tion (for a finite horizon) has a simple parame-
terization corresponding to the upper envelope of
a set of polynomials (Poupart et al. 2006). Recall
that the optimal value function satisfies Bellman’s
equation, which can be adapted as follows for a
belief MDP:

V �.s; b/ Dmax
a

X

s0

Pr.s0; b0js; b; a/

Œs0
r C �V �.s0; b0/�: (4)

Using the fact that b0 must be b
s;s0

a (otherwise
Pr.s0, b0js; b; a/ D 0) allows us to rewrite Bell-
man’s equation as follows:

V �.s; b/ Dmax
a

X

s0

Pr.s0js; b; a/

Œs0
r C �V �.s0; bs;s0

a /� (5)

Let 	n be a set of polynomials in � such that
the optimal value function V n with n steps to
go is V n.s; b/ D s� b.�/polys;b.�/d� where
polys;b D argmaxpoly2�n

s
s� b.�/poly.�/d� . It

suffices to replace Pr.s0js, b; a/; b
s;s0

a and V n by
their definitions in Bellman’s equation

V nC1.s; b/ Dmax
a

X

s0

Z

�

b.�/Pr.s0js; �; a/

Œr 0
s C �poly

s0;b
s;s0

a
.�/�d� (6)

Dmax
a

Z

�

b.�/
X

s0

� s;s0

a

Œr 0
s C �poly

s0;b
s;s0

a
.�/�d� (7)

to obtain a similar set of polynomials 	nC1
s DnP

s0 �
s;s0

a Œr 0
sC� poly0

s�ja2A; polys0 2 	n
s0

o
that

represents V nC1.
The fact that the optimal value function has

a closed form with a simple parameterization is
quite useful for planning algorithms based on
value iteration. Instead of using an arbitrary func-
tion approximator to fit the value function, one
can take advantage of the fact that the value func-
tion can be represented by a set of polynomials
to choose a good representation. For instance, the
Beetle algorithm (Poupart et al. 2006) performs

Bayesian Reinforcement Learning 119

B

point-based value iteration and approximates the
value function with a bounded set of polynomials
that each consists of a linear combination of
monomial basis functions.

Exploration/Exploitation Tradeoff
Since the underlying model is unknown
in reinforcement learning, it is not clear
whether actions should be chosen to explore
(gain more information about the model) or
exploit (maximize immediate rewards based
on information gathered so far). Bayesian
reinforcement learning provides a principled
solution to the exploration/exploitation tradeoff.
Despite the appearance of multiple objectives
induced by exploration and exploitation, there
is a single objective in reinforcement learning:
maximize total discounted rewards. Hence,
an optimal policy (which maximizes total
discounted rewards) must naturally optimize
the exploration/exploitation tradeoff. In order
for a policy to be optimal, it must use all the
information available. The information available
to the learner consists of the history of past
states and actions. One can show that state–
belief pairs hs, bi are sufficient statistics of the
history. Hence, by searching for the mapping
from state–belief pairs to actions that maximizes
total discounted rewards, Bayesian reinforcement
learning implicitly seeks an optimal tradeoff
between exploration and exploitation. In contrast,
traditional reinforcement learning approaches
search in the space of mappings from states
to actions. As a result, such techniques
typically focus on asymptotic convergence (i.e.,
convergence to a policy that is optimal in the
limit), but do not effectively balance exploration
and exploitation since they do not use histories
or beliefs to quantify the uncertainty about the
underlying model.

Related Work
Michael Duff’s PhD thesis (Duff 2002) provides
an excellent survey of Bayesian reinforcement
learning up until 2002. The above text pertains
mostly to model-based Bayesian reinforcement
learning applied to discrete, fully observable,
single agent domains. Bayesian learning has

also been explored in model-free reinforcement
learning (Dearden et al. 1998; Engel et al. 2005;
Ghavamzadeh and Engel 2006) continuous-
valued state spaces (Ross et al. 2008), partially
observable domains (Poupart and Vlassis
2008; Ross et al. 2007), and multi-agent
systems (Chalkiadakis and Boutilier 2003, 2004;
Gmytrasiewicz and Doshi 2005).

Cross-References

�Active Learning
�Markov Decision Processes
�Reinforcement Learning

Recommended Reading

Bellman R (1961) Adaptive control processes: a guided
tour. Princeton University Press, Princeton

Chalkiadakis G, Boutilier C (2003) Coordination
in multi-agent reinforcement learning: a Bayesian
approach. In: International joint conference on au-
tonomous agents and multiagent systems (AA-
MAS), Melbourne, pp 709–716

Chalkiadakis G, Boutilier C (2004) Bayesian rein-
forcement learning for coalition formation under
uncertainty. In: International joint conference on
autonomous agents and multiagent systems (AA-
MAS), New York, pp 1090–1097

Dearden R, Friedman N, Russell SJ (1998) Bayesian
Q-learning. In: National conference on artificial
intelligence (AAAI), Madison, pp 761–768

DeGroot MH (1970) Optimal statistical decisions.
McGraw-Hill, New York

Duff M (2002) Optimal learning: computational pro-
cedures for Bayes-adaptive Markov decision pro-
cesses. PhD thesis, University of Massachusetts,
Amherst

Engel Y, Mannor S, Meir R (2005) Reinforcement
learning with Gaussian processes. In: International
conference on machine learning (ICML), Bonn

Fel’Dbaum A (1965) Optimal control systems. Aca-
demic, New York

Ghavamzadeh M, Engel Y (2006) Bayesian policy gra-
dient algorithms. In: Advances in neural information
processing systems (NIPS), Vancouver, pp 457–464

Gmytrasiewicz P, Doshi P (2005) A framework for
sequential planning in multi-agent settings. J Artif
Intell Res (JAIR) 24:49–79

Martin JJ(1967) Bayesian decision problems and
Markov chains. Wiley, New York

Poupart P, Vlassis N (2008) Model-based Bayesian
reinforcement learning in partially observable do-
mains. In: International symposium on artificial in-
telligence and mathematics (ISAIM), Beijing

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

120 Beam Search

Poupart P, Vlassis N, Hoey J, Regan K (2006) An
analytic solution to discrete Bayesian reinforcement
learning. In: International conference on machine
learning (ICML), Pittsburgh, pp 697–704

Puterman ML (1994) Markov decision processes. Wi-
ley, New York

Ross S, Chaib-Draa B, Pineau J (2007) Bayes-adaptive
POMDPs. In: Advances in neural information pro-
cessing systems (NIPS), Vancouver

Ross S, Chaib-Draa B, Pineau J (2008) Bayesian rein-
forcement learning in continuous POMDPs with ap-
plication to robot navigation. In: IEEE international
conference on robotics and automation (ICRA),
Pasadena, pp 2845–2851

Sutton RS, Barto AG (1998) Reinforcement learning.
MIT Press, Cambridge, MA

Beam Search

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

A beam search is a heuristic search technique that
combines elements of breadth-first and best-first
searches. Like a breadth-first search, the beam
search maintains a list of nodes that represent a
frontier in the search space. Whereas the breadth-
first adds all neighbors to the list, the beam search
orders the neighboring nodes according to some
heuristic and only keeps the n best, where n

is the beam size. This can significantly reduce
the processing and storage requirements for the
search.

In machine learning, the beam search has
been used in algorithms, such as Dietterich and
Michalski (1977).

Cross-References

�Learning as Search

Recommended Reading

Dietterich TG, Michalski RS (1977) Learning and gen-
eralization of characteristic descriptions: evaluation
criteria and comparative review of selected methods.
In: Fifth international joint conference on artificial
intelligence, pp 223–231. William Kaufmann, Cam-
bridge

Behavioral Cloning

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

Apprenticeship learning; Learning by demonstra-
tion; Learning by imitation; Learning control
rules

Definition

Behavioral cloning is a method by which human
subcognitive skills can be captured and repro-
duced in a computer program. As the human
subject performs the skill, his or her actions are
recorded along with the situation that gave rise to
the action. A log of these records is used as input
to a learning program. The learning program
outputs a set of rules that reproduce the skilled
behavior. This method can be used to construct
automatic control systems for complex tasks for
which classical control theory is inadequate. It
can also be used for training.

Motivation and Background

Behavioral cloning (Michie et al. 1990) is a form
of learning by imitation whose main motivation
is to build a model of the behavior of a human
when performing a complex skill. Preferably, the
model should be in a readable form. It is related
to other forms of learning by imitation, such
as � inverse reinforcement learning (Abbeel and
Ng 2004; Amit and Matariæ 2002; Hayes and
Demiris 1994; Kuniyoshi et al. 1994; Pomerleau
1989) and methods that use data from human
performances to model the system being con-
trolled (Atkeson and Schaal 1997; Bagnell and
Schneider 2001).

Experts might be defined as people who
know what they are doing not what they are

http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_100017
http://dx.doi.org/10.1007/978-1-4899-7687-1_100247
http://dx.doi.org/10.1007/978-1-4899-7687-1_100248
http://dx.doi.org/10.1007/978-1-4899-7687-1_100250
http://dx.doi.org/10.1007/978-1-4899-7687-1_142

Behavioral Cloning 121

B

talking about. That is, once a person becomes
highly skilled in some task, the skill becomes
sub-cognitive and is no longer available to
introspection. So when the person is asked to
explain why certain decisions were made, the
explanation is a post hoc justification rather than
a true explanation.

Michie et al. (1990) used an induction pro-
gram to learn rules for balancing a pole (in sim-
ulation) and earlier work by Donaldson (1960),
Widrow and Smith (1964), and Chambers and
Michie (1969) demonstrated the feasibility of
learning by imitation, also for pole-balancing.

Structure of the Learning System

Behavioral cloning assumes that there is a plant
of some kind that is under the control of a human
operator. The plant may be a physical system
or a simulation. In either case, the plant must
be instrumented so that it is possible to capture
the state of the system, including all the control
settings. Thus, whenever the operator performs
an action, that is, changes a control setting, we
can associate that action with a particular state.

Let us use a simple example of a system that
has only one control action. A pole balancer has
four state variables: the angle of the pole, � , and
its angular velocity, P� and the position, x, and
velocity Px, of the cart on the track. The only
action available to the controller is to apply a
fixed positive of negative force, F , to accelerate
the cart left or right (Fig. 1).

We can create an experimental setup where a
human can control a pole and cart system (either
real or in simulation) by applying a left push or
a right push at the appropriate time. Whenever a
control action is performed, we record the action
as well as values of the four state variables at the
time of the action. Each of these records can be
viewed as an example of a mapping from state to
action.

Michie et al. (1990) demonstrated that it is
possible to construct a controller by learning from
these examples. The learning task is to predict
the appropriate action, given the state. They used
a � decision tree learning program to produce a

Human
trainer

Plant

Controller

Log
file

Learning
program

As the trainer
executes the task

all actions are recorded

An learning program
uses the logged data
to build a controller

Behavioral Cloning, Fig. 1 Structure of learning system

classifier that, given the values of the four state
variables, would output an action. A decision tree
is easily convertible into an executable code as a
nested if statement. The quality of the controller
can be tested by inserting the decision tree into
the simulator, replacing the human operator.

If the goal of learning is simply to produce an
operational controller then any program capable
of building a classifier could be used. The reason
that Michie et al. (1990) chose a symbolic learner
was their desire to produce a controller whose
decision making was transparent as well as op-
erational. That is, it should be possible to extract
an explanation of the behavior that is meaningful
to an expert in the task.

Learning Direct (Situation–Action)
Controllers
A controller such as the one described above is
referred to as a direct controller because it maps
situations to actions. Other examples of learning
a direct controller are building an autopilot from
behavioral traces of human pilots flying aircraft
in a flight simulator (Sammut et al. 1992) and
building a control system for a container crane

http://dx.doi.org/10.1007/978-1-4899-7687-1_66

122 Behavioral Cloning

(Urbani and Bratko 1994). These systems ex-
tended the earlier work by operating in domains
in which there is more than one control variable
and the task is sufficiently complex that it must
be decomposed into several subtasks.

An operator of a container crane can control
the speed of the cart and the length of the rope.
A pilot of a fixed-wing aircraft can control the
ailerons, elevators, rudder, throttle, and flaps. To
build an autopilot, the learner must build a system
that can set each of the control variables. Sammut
et al. (1992), viewed this as a multitask learning
problem.

Each training example is a feature vector that
includes the position, orientation, and velocities
of the aircraft as well as the values of each of
the control settings: ailerons, elevator, throttle,
and flaps. The rudder is ignored. A separate
decision tree is built for each control variable.
For example, the aileron setting is treated as the
dependent variable and all the other variables,
including the other controls, are treated as the
attributes of the training example. A decision tree
is built for ailerons, then the process is repeated
for the elevators, etc. The result is a decision tree
for each control variable.

The autopilot code executes each decision tree
in each cycle of the control loop. This method
treats the setting of each control as a separate
task. It may be surprising that this method works
since it is often necessary to adjust more than
one control simultaneously to achieve the desired
result. For example, to turn, it is normal to use
the ailerons to roll the aircraft while adjusting
the elevators to pull it around. This kind of
multivariable control does result from multiple
decision trees. When, say, the aileron decision
tree initiates a roll, the elevator’s decision tree
detects the roll and causes the aircraft to pitch up
and execute a turn.

Limitations
Direct controllers work quite well for systems
that have a relatively small state space. However,
for complex systems, behavioral cloning of
direct situation–action rules tends to produce
very brittle controllers. That is, they cannot
tolerate large disturbances. For example, when air

turbulence is introduced into the flight simulator,
the performance of the clone degrades very
rapidly. This is because the examples provided
by logging the performance of a human only
cover a very small part of the state space of a
complex system such as an aircraft in flight. Thus,
the“expertise” of the controller is very limited. If
the system strays outside the controller’s region
of expertise, it has no method for recovering and
failure is usually catastrophic.

More robust control is possible but only with
a significant change in approach. The more suc-
cessful methods decompose the learning task
into two stages: learning goals and learning the
actions to achieve those goals.

Learning Indirect (Goal-Directed)
Controllers

The problem of learning in a large search space
can partially be addressed by decomposing the
learning into subtasks. A controller built in this
way is said to be an indirect controller. A control
is “indirect” if it does not compute the next action
directly from the system’s current state but uses,
in addition, some intermediate information. An
example of such intermediate information is a
subgoal to be attained before achieving the final
goal.

Subgoals often feature in an operator’s control
strategies and can be automatically detected from
a trace of the operator’s behavior (Šuc and Bratko
1997). The problem of subgoal identification can
be treated as the inverse of the usual problem
of controller design, that is, given the actions
in an operator’s trace, find the goal that these
actions achieve. The limitation of this approach
is that it only works well for cases in which there
are just a few subgoals, not when the operator’s
trajectory contains many subgoals. In these cases,
a better approach is to generalize the opera-
tor’s trajectory. The generalized trajectory can
be viewed as defining a continuously changing
subgoal (Bratko and Šuc 2002; Šuc and Bratko
1999a) (see also the use of flow tubes in dynamic
plan execution Hofmann and Williams 2006).

Subgoals and generalized trajectories are not
sufficient to define a controller. A model of the

Behavioral Cloning 123

B

systems dynamics is also required. Therefore, in
addition to inducing subgoals or a generalized
trajectory, this approach also requires learning
approximate system dynamics, that is a model of
the controlled system. Bratko and Šuc (2003) and
use a combination of the Goldhorn (Križman and
Džeroski 1995) discovery program and locally
weighted regression to build the model of the sys-
tem’s dynamics. The next action is then computed
“indirectly” by (1) computing the desired next
state (e.g., next subgoal) and (2) determining an
action that brings the system to the desired next
state. Bratko and Šuc also investigated building
qualitative control strategies from operator traces
(Bratko and Šuc 2002).

An analog to this approach is � inverse
reinforcement learning (Abbeel and Ng 2004;
Atkeson and Schaal 1997; Ng and Russell 2000)
where the reward function is learned. Here,
the learning the reward function corresponds
to learning the human operator’s goals.

Isaac and Sammut (2003) uses an approach
that is similar in spirit to Šuc and Bratko but in-
corporates classical control theory. Learned skills
are represented by a two-level hierarchical de-
composition with an anticipatory goal level and
a reactive control level. The goal level models
how the operator chooses goal settings for the
control strategy and the control level models the
operator’s reaction to any error between the goal
setting and actual state of the system. For exam-
ple, in flying, the pilot can achieve goal values
for the desired heading, altitude, and airspeed by
choosing appropriate values of turn rate, climb
rate, and acceleration. The controls can be set to
correct errors between the current state and the
desired state of these goal-directing quantities.
Goal models map system states to a goal setting.
Control actions are based on the error between the
output of each of the goal models and the current
system state.

The control level is modeled as a set of pro-
portional integral derivative (PID) controllers,
one for each control variable. A PID controller
determines a control value as a linear function
proportional to the error on a goal variable, the
integral of the error, and the derivative of the
error.

Goal setting and control models are learned
separately. The process begins be deciding which
variables are to be used for the goal settings.
For example, trainee pilots will learn to exe-
cute a “constant-rate turn,” that is, their goal is
to maintain a given turn rate. A separate goal
rule is constructed for each goal variable us-
ing a �model tree learner (Potts and Sammut
2005).

A goal rule gives the setting for a goal variable
and therefore, we can find the difference (error)
between the current state value and the goal
setting. The integral and derivative of the error
can also be calculated. For example, if the set
turn rate is 180ı min, then the error on the turn
rate is calculated as the actual turn rate minus
180. The integral is then the running sum of
the error multiplied by the time interval between
time samples, starting from the first time sam-
ple of the behavioral trace, and the derivative
is calculated as the difference between the er-
ror and previous error all divided by the time
interval.

For each control available to the operator, a
model tree learner is used to predict the ap-
propriate control setting. �Linear regression is
used in the leaf nodes of the model tree to
produce linear equations whose coefficients are
the P , I , and D of values of the PID con-
troller. Thus the learner produces a collection of
PID controllers that are selected according to the
conditions in the internal nodes of the tree. In
control theory, this is known as piecewise linear
control.

Another indirect method is to learn a model
of the dynamics of the system and use this to
learn, in simulation, a controller for the system
(Bagnell and Schneider 2001; Ng et al. 2003).
This approach does not seek to directly model the
behavior of a human operator. A behavioral trace
may be used to generate data for modeling the
system but then a reinforcement learning algo-
rithm is used to generate a policy for controlling
the simulated system. The learned policy can then
be transferred to the physical system. �Locally
weighted regression is typically used for system
modeling, although �model trees can also be
used.

http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_558

124 Behavioral Cloning

Cross-References

�Apprenticeship Learning
� Inverse Reinforcement Learning
�Learning by Imitation
�Locally Weighted Regression for Control
�Model Trees
�Reinforcement Learning

Recommended Reading

Abbeel P, Ng AY (2004) Apprenticeship learning
via inverse reinforcement learning. In: International
conference on machine learning, Banff. ACM,
New York

Amit R, Matariæ M (2002) Learning movement se-
quences from demonstration. In: Proceedings of
the second international conference on development
and learning, Cambridge, MA. IEEE, Washington,
DC, pp 203–208

Atkeson CG, Schaal S (1997) Robot learning from
demonstration. In: Fisher DH (ed) Proceedings of
the fourteenth international conference on machine
learning, Nashville. Morgan Kaufmann, San Fran-
cisco, pp 12–20

Bagnell JA, Schneider JG (2001) Autonomous heli-
copter control using reinforcement learning policy
search methods. In: International conference on
robotics and automation, Seoul. IEEE Press, New
York

Bratko I, Šuc D (2002) Using machine learning to
understand operator’s skill. In: Proceedings of the
15th international conference on industrial and engi-
neering applications of artificial intelligence and ex-
pert systems. Springer/AAAI Press, London/Menlo
Park, pp 812–823

Bratko I, Šuc D (2003) Learning qualitative models. AI
Mag 24(4):107–119

Chambers RA, Michie D (1969) Man-machine co-
operation on a learning task. In: Parslow R, Prowse
R, Elliott-Green R (eds) Computer graphics: tech-
niques and applications. Plenum, London

Donaldson PEK (1960) Error decorrelation: a tech-
nique for matching a class of functions. In: Proceed-
ings of the third international conference on medical
electronics, London, pp 173–178

Hayes G, Demiris J (1994) A robot controller using
learning by imitation. In: Proceedings of the inter-
national symposium on intelligent robotic systems,
Grenoble. LIFTA-IMAG, Grenoble, pp 198–204

Hofmann AG, Williams BC (2006) Exploiting spatial
and temporal flexiblity for plan execution of hybrid,
under-actuated systems. In: Proceedings of the 21st
national conference on artficial intelligence, Boston,
pp 948–955

Isaac A, Sammut C (2003) Goal-directed learning to
fly. In: Fawcett T, Mishra N (eds) Proceedings of
the twentieth international conference on machine
learning, Washington, DC. AAAI, Menlo Park,
pp 258–265

Križman V, Džeroski S (1995) Discovering dynamics
from measured data. Electrotech Rev 62(3–4):191–
198

Kuniyoshi Y, Inaba M, Inoue H (1994) Learning by
watching: extracting reusable task knowledge from
visual observation of human performance. IEEE
Trans Robot Autom 10:799–822

Michie D, Bain M, Hayes-Michie JE (1990) Cognitive
models from subcognitive skills. In: Grimble M,
McGhee S, Mowforth P (eds) Knowledge-based
systems in industrial control. Peter Peregrinus,
Stevenage

Ng AY, Jin Kim H, Jordan MI, Sastry S (2003)
Autonomous helicopter flight via reinforcement
learning. In: Thrun S, Saul L, Schölkopf B (eds)
Advances in neural information processing systems,
vol 16. MIT Press, Cambridge

Ng AY, Russell S (2000) Algorithms for in-
verse reinforcement learning. In: Proceedings of
17th international conference on machine learn-
ing, Stanford. Morgan Kaufmann, San Francisco,
pp 663–670

Pomerleau DA (1989) ALVINN: an autonomous land
vehicle in a neural network. In: Touretzky DS (ed)
Advances in neural information processing systems.
Morgan Kaufmann, San Mateo

Potts D, Sammut C (2005) Incremental learning of
linear model trees. Mach Learn 6(1–3):5–48

Sammut C, Hurst S, Kedzier D, Michie D (1992)
Learning to fly. In: Sleeman D, Edwards P (eds)
Proceedings of the ninth international conference
on machine learning, Aberdeen. Morgan Kaufmann,
San Francisco, pp 385–393

Šuc D, Bratko I (1997) Skill reconstruction as induc-
tion of LQ controllers with subgoals. In: IJCAI-
97: proceedings of the fifteenth international joint
conference on artificial intelligence, Nagoya, vol 2.
Morgan Kaufmann, San Francisco, pp 914–920

Šuc D, Bratko I (1999a) Modelling of control skill
by qualitative constraints. In: Thirteenth interna-
tional workshop on qualitative reasoning, Lock
Awe. University of Aberystwyth, Aberystwyth,
pp 212–220

Šuc D, Bratko I (1999b) Symbolic and qualitative
reconstruction of control skill. Electron Trans Artif
Intell 3(B):1–22

Urbančič T, Bratko I (1994) Reconstructing human
skill with machine learning. In: Cohn A (ed) Pro-
ceedings of the 11th European conference on artifi-
cial intelligence. Wiley, Amsterdam/New York

Widrow B, Smith FW (1964) Pattern recognising con-
trol systems. In: Tou JT, Wilcox RH (eds) Computer
and information sciences. Clever Hume, London

http://dx.doi.org/10.1007/978-1-4899-7687-1_100017
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100248
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Bias Specification Language 125

B

Belief State Markov Decision
Processes

� Partially Observable Markov Decision
Processes

Bellman Equation

The Bellman Equation is a recursive formula that
forms the basis for � dynamic programming. It
computes the expected total reward of taking an
action from a state in a �Markov decision pro-
cess by breaking it into the immediate reward and
the total future expected reward. See � dynamic
programming.

Bias

Bias has two meanings, � inductive bias, and sta-
tistical bias see � bias variance decomposition.

Bias Specification Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
Leiden Institute of Advanced Computer Science,
Heverlee, Belgium

Definition

A bias specification language is a language in
which a user can specify a �Language Bias. The
language bias of a learner is the set of hypotheses
(or hypothesis descriptions) that this learner may
return.

In contrast to the � hypothesis language, the
bias specification language allows us to describe
not single hypotheses but sets (languages) of
hypotheses.

Examples

In learning approaches based on � graphical
models or � artificial neural networks, whenever
the user provides the graph structure of the
model, he or she is specifying a bias. The
“language” used to specify this bias, in this
case, consists of graphs. Figure 1 shows
examples of such graphs. Not every kind of
bias can necessarily be expressed by some bias
specification language; for instance, the bias
defined by the �Bayesian network structure in
Fig. 1 cannot be expressed using a �Markov
network. Bayesian networks and Markov
networks have a different expressiveness, when
viewed as bias specification languages.

Also certain parameters of decision tree learn-
ers or rule set learners effectively restrict the hy-
pothesis language (for instance, an upper bound
on the rule length or the size of the decision tree).

A combination of parameter values can hardly
be called a language, and even the “language”
of graphs is a relatively simple kind of lan-
guage. More elaborate types of bias specification
languages are typically found in the field of
� inductive logic programming (ILP).

C

A B A B

C

p(A,B,C) = p(A)p(B)p(C|A,B) p(A,B,C) = f1(A,C)f2(B,C)

Bias Specification Language, Fig. 1 Graphs defining a
bias for learning joint distributions. The Bayesian network
structure to the left constrains the form of the joint distri-
bution in a particular way (shown as the equation below
the graph). Notably, it guarantees that only distributions
can be learned in which the variables A and B are (uncon-
ditionally) independent. The Markov network structure to
the right constrains the form of the joint distribution in a
different way: it states that it must be possible to write the
distribution as a product of a function of A and C and a
function of B and C . These two biases are different. In
fact, no Markov network structure over the variables A,
B , and C exists that expresses the bias specified by the
Bayesian network structure

http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_515
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

126 Bias Specification Language

Bias Specification Languages in
Inductive Logic Programming

In ILP, the hypotheses returned by the learning
algorithm are typically written as first-order logic
clauses. As the set of all possible clauses is
too large to handle, a subset of these clauses is
typically defined; this subset is called the lan-
guage bias. Several formalisms (“bias specifica-
tion languages”) have been proposed for spec-
ifying such subsets. We here focus on a few
representative ones.

DLAB
In the DLAB bias specification language (De-
haspe and De Raedt 1996), the language bias is
defined in a declarative way, by defining a syntax
that clauses must fulfill. In its simplest form, a
DLAB specification simply gives a set of possible
head and body literals out of which the system
can build a clause.

Example 1 The actual syntax of the DLAB spec-
ification language is relatively complicated (see
Dehaspe and De Raedt 1996), but in essence, one
can write down a specification such as:

f parent(fX,Y,Zg,fX,Y,Zg),
grandparent(fX,Y,Zg,
fX,Y,Zg)g

:-
f parent(fX,Y,Zg,fX,Y,Zg),

parent(fX,Y,Zg,fX,Y,Zg),
grandparent(fX,Y,Zg,fX,Y,Zg),
grandparent(fX,Y,Zg, fX,Y,Zg) g

which states that the hypothesis language consists
of all clauses that have at most one parent and
at most one grandparent literal in the head,
and at most two of these literals in the body;
the arguments of these literals may be variables
X,Y,Z. Thus, the following clauses are in the
hypothesis language:

grandparent(X, Y)
:- parent(X, Z), parent(Z,Y)
:- parent(X,Y), parent(Y,X)
:- parent(X,X)

These express the usual definition of grandparent
as well as the fact that there can be no cycles in
the parent relation.

Note that for each argument of each literal,
all the variables and constants that may occur
have to be enumerated explicitly. This can make
a DLAB specification quite complex. While
DLAB contains advanced constructs to alleviate
this problem, it remains the case that often
very elaborate bias specifications are needed
in practical situations.

Type-and Mode-Based Biases
A more flexible bias specification language is
used by Progol (Muggleton 1995) and many
other ILP systems. It is based on the notions
of types and modes. In Progol, arguments of
a predicate can be typed, and a variable can
never occur in two locations with different types.
Similarly, arguments of a predicate have an input
(C) or output (�) mode; each variable that occurs
as an input argument of some literal must occur
elsewhere as an output argument, or must occur
as input argument in the head literal of a clause.

Example 2 In Progol, the specifications

type(parent(human,human)).
type(grandparent(human,human)).
modeh(grandparent(+,+)).

% modeh: specifies a head
literal modeb(grandparent(+,-)).

% modeb: specifies a body
literal modeb(parent(+,-)).

allow the system to construct a clause such as

grandparent(X,Y) :- parent(X,Z),
parent(Z,Y)

but not the following clause:

grandparent(X,Y) :- parent(Z,Y)

because Z occurs as an input parameter for par-
ent without occurring elsewhere as an output
parameter (i.e., it is being used without having
been given a value first).

Bias Specification Language 127

B

FLIPPER’s Bias Specification Language
The FLIPPER system (Cohen 1996) employs a
powerful, but somewhat more procedural, bias
specification formalism. The user does not spec-
ify a set of valid hypotheses directly, but rather,
specifies a Refinement Operator. The language
bias is the set of all clauses that can be ob-
tained from one or more starting clauses through
repeated application of this refinement operator.
The operator itself is defined by specifying under
which conditions certain literals can be added to
a clause.

Rules defining the operator have one of the
following forms:

• A B where Pre asserting Post
• L where Pre asserting Post

The first form defines a set of “starting clauses,”
and the second form defines when a literal L

can be added to a clause. Each rule can only be
applied when its preconditions Pre are fulfilled,
and upon application will assert a set of literals
Post. As an example (Cohen 1996), the rules

illegal(A, B , C , D, E, F)

where true
asserting flinked(A), linked(B),...,

linked(F)g

R.X , Y) where rel(R), linked(X), linked(Y)
asserting Ø

state that any clause of the form

illegal (A, B,C,D, E, F)

can be used as a starting point for the refinement
operator, and the variables in this clause are all
linked. Further, any literal of the form R.X , Y)
with R a relation symbol (as defined by the Rel
predicate) and X and Y linked variables can be
added.

Other Approaches
Grammars or term rewriting systems have been
proposed several times as a means of defining
the hypothesis language. A relatively recent ap-
proach along these lines was given by Lloyd, who

uses a rewriting system to define the tests that can
occur in the nodes of a decision tree built by the
Alkemy system (Lloyd 2003).

Boström and Idestam-Almquist (1999) present
an approach where the language bias is implic-
itly defined through the Background Knowledge
given to the learner.

Knobbe et al. (2000) propose the use of UML
as a “common” bias specification language, spec-
ifications in which could be translated automati-
cally to languages specific to a particular learner.

Further Reading

An overview of bias specification formalisms
in ILP is given by Nédellec et al. (1996). The
bias specification languages discussed above are
discussed in more detail in Dehaspe and De Raedt
(1996), Muggleton (1995), and Cohen (1996).
De Raedt (1992) discusses language bias and the
concept of bias shift (learners weakening their
bias, i.e., extending the set of hypotheses that
can be represented, when a given language bias
turns out to be too restrictive). A more recent
approach to learning declarative bias is presented
by Bridewell and Todorovski (2008).

Cross-References

�Hypothesis Language
� Inductive Logic Programming

Recommended Reading

Boström H, Idestam-Almquist P (1999) Induction of
logic programs by example-guided unfolding. J Log
Program 40(2–3):159–183

Bridewell W, Todorovski L (2008) Learning declara-
tive bias. In: Proceedings of the 17th international
conference on inductive logic programming. Lec-
ture notes in computer science, vol 4894. Springer,
Berlin, pp 63–77

Cohen W (1996) Learning to classify English text with
ILP methods. In: De Raedt L (ed) Advances in in-
ductive logic programming. IOS Press, Amsterdam,
pp 124–143

http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

128 Bias Variance Decomposition

De Raedt L (1992) Interactive theory revision: an
inductive logic programming approach. Academic
Press, New York

Dehaspe L, De Raedt L (1996) DLAB: a declarative
language bias formalism. In: Proceedings of the in-
ternational symposium on methodologies for intelli-
gent systems. Lecture notes in artificial intelligence,
vol 1079. Springer, Berlin, pp 613–622

Knobbe AJ, Siebes A, Blockeel H, van der Wallen D
(2000) Multi-relational data mining, using UML for
ILP. In: Proceedings of PKDD-2000 – the fourth
European conference on principles and practice of
knowledge discovery in databases. Lecture notes
in artificial intelligence, Lyon, vol 1910. Springer,
Berlin, pp 1–12

Lloyd JW (2003) Logic for learning. Springer, Berlin
Muggleton S (1995) Inverse entailment and Progol.

New Gener Comput Spec Issue Inductive Log Pro-
gram 13(3–4):245–286

Nédellec C, Adé H, Bergadano F, Tausend B (1996)
Declarative bias in ILP. In: De Raedt L (ed) Ad-
vances in inductive logic programming. Frontiers in
artificial intelligence and applications, vol 32. IOS
Press, Amsterdam, pp 82–103

Bias Variance Decomposition

Definition

The bias-variance decomposition is a useful the-
oretical tool to understand the performance char-
acteristics of a learning algorithm. The following
discussion is restricted to the use of squared loss
as the performance measure, although similar
analyses have been undertaken for other loss

High bias
High variance

High bias
Low variance

Low bias
High variance

Low bias
Low variance

Bias Variance Decomposition, Fig. 1 The bias-
variance decomposition is like trying to hit the bullseye on
a dartboard. Each dart is thrown after training our “dart-
throwing” model in a slightly different manner. If the darts
vary wildly, the learner is high variance. If they are far

from the bullseye, the learner is high bias. The ideal is
clearly to have both low bias and low variance; however
this is often difficult, giving an alternative terminology as
the bias-variance “dilemma” (Dartboard analogy, Moore
and McCabe 2002)

functions. The case receiving most attention is
the zero-one loss (i.e., classification problems), in
which case the decomposition is nonunique and a
topic of active research. See Domingos (1992) for
details.

The decomposition allows us to see that the
mean squared error of a model (generated by a
particular learning algorithm) is in fact made up
of two components. The bias component tells us
how accurate the model is, on average across dif-
ferent possible training sets. The variance com-
ponent tells us how sensitive the learning al-
gorithm is to small changes in the training set
(Fig. 1).

Mathematically, this can be quantified as a de-
composition of the mean squared error function.
For a testing example fx; dg, the decomposition
is:

EDf.f .x/ � d/2g D .EDff .x/g � d/2

C EDf.f .x/ � EDff .x/g/2g;

MSE D bias2 C variance;

where the expectations are with respect to all
possible training sets. In practice, this can be
estimated by cross-validation over a single finite
training set, enabling a deeper understanding of
the algorithm characteristics. For example, efforts
to reduce variance often cause increases in bias,
and vice versa. A large bias and low variance is
an indicator that a learning algorithm is prone to
� overfitting the model.

http://dx.doi.org/10.1007/978-1-4899-7687-1_960

Bias-Variance Trade-Offs: Novel Applications 129

B

Cross-References

�Bias-Variance Trade-Offs: Novel Applications

Recommended Reading

Domingos P (1992) A unified bias-variance decompo-
sition for zero-one and squared loss. In: Proceed-
ings of national conference on artificial intelligence.
AAAI Press, Austin

Geman S (1992) Neural networks and the bias/variance
dilemma. Neural Comput 4(1):1–58

Moore DS, McCabe GP (2002) Introduction to the
practice of statistics. Michelle Julet

Bias-Variance Trade-Offs: Novel
Applications

Dev Rajnarayan1 and David Wolpert1;2

1NASA Ames Research Center, Moffett Field,
CA, USA
2Santa Fe Institute, Santa Fe, NM, USA

Definition

Consider a given random variable F and a ran-
dom variable that we can modify, OF . We wish to
use a sample of OF as an estimate of a sample
of F . The mean squared error (MSE) between
such a pair of samples is a sum of four terms.
The first term reflects the statistical coupling be-
tween F and OF and is conventionally ignored in
bias-variance analysis. The second term reflects
the inherent noise in F and is independent of
the estimator OF . Accordingly, we cannot affect
this term. In contrast, the third and fourth terms
depend on OF . The third term, called the bias, is
independent of the precise samples of both F

and OF and reflects the difference between the
means of F and OF . The fourth term, called the
variance, is independent of the precise sample of
F and reflects the inherent noise in the estimator
as one samples it. These last two terms can be
modified by changing the choice of the estimator.
In particular, on small sample sets, we can often

decrease our mean squared error by, for instance,
introducing a small bias that causes a large re-
duction the variance. While most commonly used
in machine learning, this article shows that such
bias-variance trade-offs are applicable in a much
broader context and in a variety of situations.
We also show, using experiments, how existing
bias-variance trade-offs can be applied in novel
circumstances to improve the performance of a
class of optimization algorithms.

Motivation and Background

In its simplest form, the bias-variance decom-
position is based on the following idea. Say
we have a random variable F taking on values
F distributed according to a density function
p.F /. We want to estimate the value of a sample
from p.F /. To form our estimate, we sample
a different random variable OF taking on values
OF distributed according to p. OF /. Assuming a

quadratic loss function, the quality of our esti-
mate is measured by its MSE:

MSE. OF / �

Z
p. OF ; F / . OF � F /2d OF dF:

In many situations, F and OF are dependent
variables. For example, in supervised machine
learning, F is a “target” conditional distribu-
tion, stochastically mapping elements of an input
space X into a space Y of output variables. The
associated distribution p.F / is the “prior” of F .
A random sample D of F , called “the training
set,” is generated, and D is used in a “learning
algorithm” to produce OF , which is our estimate
of F . Clearly, this F and OF are statistically de-
pendent, via D. Indeed, intuitively speaking, the
goal in designing a learning algorithm is that the
OF ’s it produces are positively correlated with F ’s.

In practice this coupling is simply ignored
in analyses of bias plus variance, without any
justification (one such justification could be that
the coupling has little effect on the value of
the MSE). We shall follow that practice here.
Accordingly, our equation for MSE reduces to

http://dx.doi.org/10.1007/978-1-4899-7687-1_28

130 Bias-Variance Trade-Offs: Novel Applications

MSE. OF / D

Z
p. OF /p.F / . OF � F /2d OF dF:

(1)

If we were to account for the coupling of OF and
OF ; an additive correction term would need to be
added to the right-hand side. For instance, see
Wolpert (1997).

Using simple algebra, the right-hand side
of (1) can be written as the sum of three terms.
The first is the variance of F . Since this is
beyond our control in designing the estimator
OF , we ignore it for the rest of this article. The
second term involves a mean that describes the
deterministic component of the error. This term
depends on both the distribution of F and that of
OF and quantifies how close the means of those
distributions are. The third term is a variance
that describes stochastic variations from one
sample to the next. This term is independent of
the random variable being estimated. Formally,
up to an overall additive constant, we can
write

MSE. OF / D

Z
p. OF /. OF 2 � 2F OF C F 2/ d OF

D

Z
p. OF / OF 2 d OF

�2F

Z
p. OF / OF d OF C F 2

D

‚ …„ ƒ
V. OF /C ŒE. OF /�2�2F E. OF /C F 2

D V. OF /C ŒF � E. OF /�2„ ƒ‚ …

D varianceC bias2: (2)

In light of (2), one way to try to reduce
expected quadratic error is to modify an estima-
tor to trade-off bias and variance. Some of the
most famous applications of such bias-variance
trade-offs occur in parametric machine learning,
where many techniques have been developed to
exploit the trade-off. Nonetheless, the trade-off
also arises in many other fields, including integral
estimation and optimization. In the rest of this
paper, we present a few novel applications of
bias-variance trade-off and describe some inter-

esting features in each case. A recurring theme
is the following: whenever a bias-variance trade-
off arises in a particular field, we can use many
techniques from parametric machine learning that
have been developed for exploiting this trade-off.
See Wolpert and Rajnarayan (2007) for further
details of many of these applications.

Applications

In this section, we describe some applications
of the bias-variance trade-off. First, we describe
Monte Carlo (MC) techniques for the estimation
of integrals and provide a brief analysis of bias-
variance trade-offs in this context. Next, we in-
troduce the field of Monte Carlo optimization
(MCO) and illustrate that there are more sub-
tleties involved than in simple MC. Then, we
describe the field of parametric machine learn-
ing, which, as will show, is formally identical
to MCO. Finally, we describe the application of
parametric learning (PL) techniques to improve
the performance of MCO algorithms. We do this
in the context of an MCO problem that addresses
black-box optimization.

Monte Carlo Estimation of Integrals Using
Importance Sampling
Monte Carlo methods are often the method of
choice for estimating difficult high-dimensional
integrals. Consider a function f WX ! R, which
we want to integrate over some region X
 X ,
yielding the value F , as given by

F D

Z

X
dx f .x/:

We can view this as a random variable F , with
density function given by a Dirac delta function
centered on F . Therefore, the variance of F is 0,
and (2) is exact.

A popular MC method to estimate this integral
is importance sampling (see Robert and Casella
2004). This exploits the law of large numbers as
follows: i.i.d. samples x.i/; i D 1; : : : ; m are gen-
erated from a so-called importance distribution
h.x/ that we control, and the associated values of

Bias-Variance Trade-Offs: Novel Applications 131

B

the integrand f .x.i// are computed. Denote these
“data” by

D D
n
.x.i/; f .x.i//; i D 1; : : : ; m

o
: (3)

Now,

F D

Z

X
dx h.x/

f .x/

h.x/

D lim
m!1

1

m

mX

iD1

f
�
x.i/

�

h
�
x.i/

� with probability 1.

Denote by OF the random variable with value
given by the sample average for D:

OF D
1

m

mX

iD1

f
�
x.i/

�

h
�
x.i/

� :

We use OF as our statistical estimator for F , as
we broadly described in the introductory section.
Assuming a quadratic loss function, L. OF ; F / D

.F � OF /2, the bias-variance decomposition de-
scribed in (2) applies exactly. It can be shown
that the estimator OF is unbiased, that is, E. OF / D

F , where the mean is over samples of h. Con-
sequently, the MSE of this estimator is just its
variance. The choice of sampling distribution h

that minimizes this variance is given by (see
Robert and Casella 2004)

h?.x/ D
jf .x/jR

X jf .x0/j dx0
:

By itself, this result is not very helpful, since
the equation for the optimal importance distri-
bution contains a similar integral to the one we
are trying to estimate. For nonnegative integrands
f .x/, the VEGAS algorithm (Lepage 1978) de-
scribes an adaptive method to find successively
better importance distributions, by iteratively es-
timating F and then using that estimate to gener-
ate the next importance distribution h. In the case
of these unbiased estimators, there is no trade-off
between bias and variance, and minimizing MSE
is achieved by minimizing variance.

Monte Carlo Optimization
Instead of a fixed integral to evaluate, consider a
parametrized integral

F.�/ D

Z

X
dx f� .x/:

Further, suppose we are interested in finding the
value of the parameter � 2
 that minimizes
F.�/:

�? D arg min
�2�

F.�/:

In the case where the functional form of f�

is not explicitly known, one approach to solve
this problem is a technique called MCO (see
Ermoliev and Norkin 1998), involving repeated
MC estimation of the integral in question with
adaptive modification of the parameter � .

We proceed by analogy to the case with MC.
First, we introduce the � -indexed random vari-
able F .�/, all of whose components have delta-
function distributions about the associated values
F.�/. Next, we introduce a � -indexed vector
random variable OF with values

OF �
n
OF .�/ 8 � 2

o
: (4)

Each real-valued component OF .�/ can be sam-
pled and viewed as an estimate of F .�/.

For example, let D be a data set as described
in (3). Then for every � , any sample of D pro-
vides an associated estimate

OF .�/ D
1

m

mX

iD1

f�

�
x.i/

�

h
�
x.i/

� :

That average serves as an estimate of F .�/.
Formally, OF is a function of the random vari-
able D and is given by such averaging over the
elements of D. So, a sample of D provides a
sample of OF . A priori, we make no restrictions
on OF , and so, in general, its components may
be statistically coupled with one another. Note
that this coupling arises even though we are, for
simplicity, treating each function F .�/ as having
a delta-function distribution rather than as having

132 Bias-Variance Trade-Offs: Novel Applications

a nonzero variance that would reflect our lack of
knowledge of the f .�/ functions.

However OF is defined, given a sample of OF ,
one way to estimate �? is

O�? D arg min
�2�

OF .�/:

We call this approach “natural” MCO. As an
example, say that D is a set of m samples of h,
and let

OF .�/ , 1

m

mX

iD1

f�

�
x.i/

�

h
�
x.i/

� ;

as above. Under this choice for OF ,

O�? D arg min
�2�

1

m

mX

iD1

f�

�
x.i/

�

h
�
x.i/

� : (5)

We call this approach “naive” MCO.
Consider any algorithm that estimates �? as

a single-valued function of OF . The estimate of
�? produced by that algorithm is itself a random
variable, since it is a function of the random
variable OF . Call this random variable O�

?
, taking

on values O�?. Any MCO algorithm is defined by
O�

?
; that random variable encapsulates the output

estimate made by the algorithm.
To analyze the error of such an algorithm, con-

sider the associated random variable given by the

true parametrized integral F. O�
?
/. The difference

between a sample of F. O�
?
/ and the true minimal

value of the integral, F.�?/ D min� F.�/, is the
error introduced by our estimating that optimal

� as a sample of O�
?
. Since our aim in MCO is

to minimize F.�/, we adopt the loss function

L. O�
?
; �?/ , F. O�

?
/ � F.�?/. This is in contrast

to our discussion on MC integration, which in-
volved quadratic loss. The current loss function

just equals F. O�
?
/ up to an additive constant

F.�?/ that is fixed by the MCO problem at hand
and is beyond our control. Up to that additive
constant, the associated expected loss is

E.L/ D

Z
d O�?p. O�?/F. O�?/: (6)

Now change coordinates in this integral from the

values of the scalar random variable O�
?

to the
values of the underlying vector random variable
OF . The expected loss now becomes

E.L/ D

Z
d OF p. OF /F. O�?. OF //:

The natural MCO algorithm provides some
insight into these results. For that algorithm,

E.L/ D

Z
d OF p. OF /F

�
arg min

�

OF .�/

�

D

Z
d OF .�1/ d OF .�2/ : : : p. OF .�1/; OF .�2/; : : :/

F

�
arg min

�

OF .�/

�
: (7)

For any fixed � , there is an error between samples
of OF .�/ and the true value F.�/. Bias-variance
considerations apply to this error, exactly as in
the discussion of MC above. We are not, however,
concerned with OF for a single component � but
rather for a set
 of �s.

The simplest such case is where the
components of OF .
/ are independent. Even
so, arg min�

OF .�/ is distributed according to the
laws for extrema of multiple independent random
variables, and this distribution depends on
higher-order moments of each random variable
OF .�/. This means that EŒL� also depends on

such higher-order moments. Only the first two
moments, however, arise in the bias and variance
for any single � . Thus, even in the simplest
possible case, the bias-variance considerations
for the individual � do not provide a complete
analysis.

In most cases, the components of OF are not

independent. Therefore, in order to analyze EŒL�,
in addition to higher moments of the distribution
for each � , we must now also consider higher-
order moments coupling the estimates OF .�/ for
different � .

Due to these effects, it may be quite acceptable
for all the components OF .�/ to have both a
large bias and a large variance, as long as they
still order the � ’s correctly with respect to the

Bias-Variance Trade-Offs: Novel Applications 133

B

true F.�/. In such a situation, large covariances
could ensure that if some OF .�/ were incorrectly
large, then OF .� 0/; � 0¤� would also be incorrectly
large. This coupling between the components of
OF would preserve the ordering of � ’s under F .

So, even with large bias and variance for each � ,
the estimator as a whole would still work well.

Nevertheless, it is sufficient to design estima-
tors OF .�/ with sufficiently small bias plus vari-
ance for each single � . More precisely, suppose
that those terms are very small on the scale of
differences F.�/ � F.� 0/ for any � and � 0. Then
by Chebychev’s inequality, we know that the
density functions of the random variables OF .�/

and OF .� 0/ have almost no overlap. Accordingly,
the probability that a sample of OF .�/� OF .� 0/ has
the opposite sign of F.�/�F.� 0/ is almost zero.

Evidently, EŒL� is generally determined by
a complicated relationship involving bias, vari-
ance, covariance, and higher moments. Natural
MCO in general, and naive MCO in particular,
ignore all of these effects and, consequently, often
perform quite poorly in practice. In the next
section, we discuss some ways of addressing this
problem.

Parametric Machine Learning
There are many versions of the basic MCO
problem described in the previous section. Some
of the best-explored arise in parametric density
estimation and parametric supervised learning,
which together comprise the field of parametric
machine learning (PL).

In particular, parametric supervised learning
attempts to solve

arg min
�2�

Z
dx p.x/

Z
dy p.y j x/f� .x/:

Here, the values x represent inputs, and the
values y represent corresponding outputs,
generated according to some stochastic process
defined by a set of conditional distributions
fp.y j x/; x 2 X g. Typically, one tries to solve
this problem by casting it as an MCO problem.
For instance, say we adopt a quadratic loss
between a predictor ´� .x/ and the true value
of y. Using MCO notation, we can express the

associated supervised learning problem as finding
arg min� F.�/, where

l� .x/ D

Z
dy p.y j x/ .´� .x/ � y/2;

f� .x/ D p.x/ l� .x/;

F.�/ D

Z
dx f� .x/: (8)

Next, the argmin is estimated by minimizing
a sample-based estimate of the F.�/s. More pre-
cisely, we are given a “training set” of samples
of p.y j x/ p.x/,

˚�
x.i/; yi

�
i D 1; : : : ; m

�
. This

training set provides a set of associated estimates
of F.�/:

OF .�/ D
1

m

mX

iD1

l�

�
x.i/

�
:

These are used to estimate arg min� F.�/, exactly
as in MCO. In particular, one could estimate the
minimizer of F.�/ by finding the minimum of
OF .�/, just as in natural MCO. As mentioned

above, this MCO algorithm can perform very
poorly in practice. In PL, this poor performance
is called “overfitting the data.”

There are several formal approaches that have
been explored in PL to try to address this “over-
fitting the data.” Interestingly, none are based
on direct consideration of the random variable
F. O�?. OF // and the ramifications of its distribu-
tion for expected loss (cf. (7)). In particular,
no work has applied the mathematics of ex-
trema of multiple random variables to analyze the
bias-variance-covariance trade-offs encapsulated
in (7).

The PL approach that perhaps comes closest
to such direct consideration of the distribution of
F. O�

?
/ is uniform convergence theory, which is

a central part of computational learning theory
(see Angluin 1992). Uniform convergence theory
starts by crudely encapsulating the quadratic loss
formula for expected loss under natural MCO (7).
It does this by considering the worst-case bound,
over possible p.x/ and p.y j x/, of the probabil-
ity that F.�?/ exceeds min� F.�/ by more than
�. It then examines how that bound varies with �.

134 Bias-Variance Trade-Offs: Novel Applications

In particular, it relates such variation to charac-
teristics of the set of functions ff� W � 2
g, e.g.,
the “VC dimension” of that set (see Vapnik 1982,
1995).

Another, historically earlier approach, is to
apply bias-plus-variance considerations to the

entire PL algorithm O�
?

rather than to each
OF .�/ separately. This approach is applicable for
algorithms that do not use natural MCO and even
for nonparametric supervised learning. As for-
mulated for parametric supervised learning, this
approach combines the formulas in (8) to write

F.�/ D

Z
dx dy p.x/p.y j x/.´� .x/ � y/2:

This is then substituted into (6), giving

EŒL� D

Z
d O�?dx dy p.x/ p.y j x/ p. O�?/

.´ O�?.x/ � y/2

D

Z
dx p.x/

	Z
d O�?dy p.x/p.y jx/p. O�?/

.´ O�?.x/ � y/2

: (9)

The term in square brackets is an x-parameterized
expected quadratic loss, which can be decom-
posed into a bias, variance, etc., in the usual way.
This formulation eliminates any direct concern
for issues like the distribution of extrema of
multiple random variables, covariances between
OF .�/ and OF .� 0/ for different values of � , and
so on.

There are numerous other approaches for
addressing the problems of natural MCO that
have been explored in PL. Particularly important
among these are Bayesian approaches, e.g.,
Buntine and Weigend (1991), Berger (1985),
and Mackay (2003). Based on these approaches,
as well as on intuition, many powerful techniques
for addressing data-overfitting have been
explored in PL, including regularization, cross-
validation, stacking, bagging, etc. Essentially all
of these techniques can be applied to any MCO
problem, not just PL problems. Since many of
these techniques can be justified using (9), they

provide a way to exploit the bias-variance trade-
off in other domains besides PL.

PLMCO
In this section, we illustrate how PL techniques
that exploit the bias-variance decomposition
of (9) can be used to improve an MCO algorithm
used in a domain outside of PL. This MCO
algorithm is a version of adaptive importance
sampling, somewhat similar to the CE method
(Rubinstein and Kroese 2004), and is related to
function smoothing on continuous spaces. The
PL techniques described are applicable to any
other MCO problem, and this particular one is
chosen just as an example.

MCO Problem Description
The problem is to find the � -parameterized distri-
bution q� that minimizes the associated expected
value of a function GWRn!R, i.e., find

arg min
�

Eq�
ŒG�:

We are interested in versions of this problem
where we do not know the functional form of
G, but can obtain its value G.x/ at any x 2 X .
Similarly we cannot assume that G is smooth, nor
can we evaluate its derivatives directly. This sce-
nario arises in many fields, including black-box
optimization (see Wolpert et al. 2006) and risk
minimization (see Ermoliev and Norkin 1998).

We begin by expressing this minimization
problem as an MCO problem. We know that

Eq�
ŒG� D

Z

X
dx q� .x/G.x/

Using MCO terminology, f� .x/Dq� .x/G.x/

and F.�/DEq�
ŒG�. To apply MCO, we must

define a vector-valued random variable OF with
components indexed by � and then use a sample
of OF to estimate arg min� Eq�

ŒG�. In particular, to
apply naive MCO to estimate arg min� Eq�

.G/,
we first i.i.d. sample a density function h.x/. By
evaluating the associated values of G.x/, we get
a data set

D � .DX ;DG/

D
�
fx.i/ W i D 1; : : : ; mg;

fG.x.i// W i D 1; : : : ; mg
�
:

Bias-Variance Trade-Offs: Novel Applications 135

B

The associated estimates of F.�/ for each � are

OF .�/ , 1

m

mX

iD1

q�

�
x.i/

�
G
�
x.i/

�

h
�
x.i/

� : (10)

The associated naive MCO estimate of
arg min� Eq�

ŒG� is

O�? � arg min
�

OF .�/:

Suppose
 includes all possible density func-
tions over x’s. Then the q� minimizing our esti-
mate is a delta function about the x.i/ 2 DX with
the lowest associated value of G.x.i//=h.x.i//.
This is clearly a poor estimate in general; it
suffers from “data-overfitting.” Proceeding as in
PL, one way to address this data-overfitting is
to use regularization. In particular, we can use
the entropic regularizer, given by the negative of
the Shannon entropy S.q� /. So we now want to
find the minimizer of Eq�

ŒG.x/��TS.q� /, where
T is the regularization parameter. Equivalently,
we can minimize ˇEq�

ŒG.x/� � S.q� /, where
ˇ D 1=T: This changes the definition of OF from
the function given in (10) to

OF .�/ , 1

m

mX

iD1

ˇ q�

�
x.i/

�
G
�
x.i/

�

h
�
x.i/

� � S.q� /:

Solution Methodology
Unfortunately, it can be difficult to find the �

globally minimizing this new OF for an arbitrary
D. An alternative is to find a close approximation
to that optimal � . One way to do this is as follows.
First, we find minimizer of

1

m

mX

iD1

ˇ p
�
x.i/

�
G
�
x.i/

�

h
�
x.i/

� � S.p/ (11)

over the set of al l possible distributions p.x/

with domain X . We then find the q� that has
minimal Kullback–Leibler (KL) divergence from
this p, evaluated over DX . That serves as our
approximation to arg min�

OF .�/ and therefore as
our estimate of the � that minimizes Eq�

.G/.

The minimizer p of (11) can be found in
closed form; over DX , it is the Boltzmann distri-
bution pˇ

�
x.i/

�
/ exp

�
�ˇ G

�
x.i/

��
: The KL

divergence in DX from this Boltzmann distribu-
tion to q� is

F.�/ D KL
�
pˇkq�

�

D

Z

X
dx pˇ .x/ log

pˇ .x/

q� .x/

!
:

The minimizer of this KL divergence is given by

�� D arg min
�

�

mX

iD1

exp
�
�ˇG

�
x.i/

��

h
�
x.i/

� log
�
q�

�
x.i/

��
:

(12)

This approach is an approximation to a regular-
ized version of the naive MCO estimate of the
� that minimizes Eq�

.G/. The application of the
technique of regularization in this context has the
same motivation as it does in PL: to reduce bias
plus variance.

Log-Concave Densities
If q� is log-concave in its parameters � , then the
minimization problem in (12) is a convex op-
timization problem, and the optimal parameters
can be found closed-form. Denote the likelihood
ratios by s.i/ D exp.�ˇG.x.i///=h.x.i//. Dif-
ferentiating (12) with respect to the parameters

and ˙�1 and setting them to zero yields

? D

P
D s.i/x.i/

P
D s.i/

˙? D

P
D s.i/

�
x.i/ � ?

� �
x.i/ � ?

�T
P

D s.i/

Mixture Models
The single Gaussian is a fairly restrictive class of
models. Mixture models (see �Mixture Model-
ing) can significantly improve flexibility, but at
the cost of convexity of the KL distance mini-
mization problem. However, a plethora of tech-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100306

136 Bias-Variance Trade-Offs: Novel Applications

niques from supervised learning, in particular the
expectation maximization (EM) algorithm, can
be applied with minor modifications.

Suppose q� is a mixture of M Gaussians, that
is, � D .; ˙; �/ where � is the mixing p.m.f,
we can view the problem as one where a hid-
den variable ´ decides which mixture component
each sample is drawn from. We then have the
optimization problem

minimize �
X

D

p
�
x.i/

�

h
�
x.i/

� log
�
q�

�
x.i/; ´.i/

��
:

Following the standard EM procedure, we get the
algorithm described in (13). Since this is a non-
convex problem, one typically runs the algorithm
multiple times with random initializations of the
parameters.

E-step: For each i, set Qi

�
´.i/

�
D p

�
´.i/jx.i/

�
;

that is, w.i/
j D q	;˙;

�
´.i/ D j jx.i/

�
; j D 1; : : : ; M:

M-step: Set j D

P
D w.i/

j s.i/ x.i/

P
D w.i/

j s.i/
;

˙j D

P
D w.i/

j s.i/
�
x.i/ � j

� �
x.i/ � j

�T

P
D w.i/

j s.i/
;

�j D

P
D w.i/

j s.i/

P
D s.i/

:

Test Problems
To compare the performance of this algorithm
with and without the use of PL techniques, we
use a couple of very simple academic problems
in two and four dimensions – the Rosenbrock
function in two dimensions, given by

GR.x/ D 100.x2 � x2
1/2 C .1 � x1/2;

and the Woods function in four dimensions, given
by given by

GWoods.x/ D 100.x2 � x1/2 C .1 � x1/2

C90.x4 � x2
3/2 C .1 � x3/2

C10:1
�
.1 � x2/2 C .1 � x4/2

�

C19:8.1 � x2/.1 � x4/:

For the Rosenbrock, the optimum value of 0
is achieved at x D .1; 1/, and for the Woods
problem, the optimum value of 0 is achieved at
x D .1; 1; 1; 1/.

Application of PL Techniques
As mentioned above, there are many PL tech-
niques beyond regularization that are designed to
optimize the trade-off between bias and variance.
So having cast the solution of arg minq�

E.G/

as an MCO problem, we can apply those other
PL techniques instead of (or in addition to) en-
tropic regularization. This should improve the
performance of our MCO algorithm, for the exact
same reason that using those techniques to trade
off bias and variance improves performance in
PL. We briefly mention some of those alternative
techniques here.

The overall MCO algorithm is broadly de-
scribed in Algorithm 1. For the Woods problem,
20 samples of x are drawn from the updated
q� at each iteration, and for the Rosenbrock,
10 samples. For comparing various methods and
plotting purposes, 1,000 samples of G.x/ are
drawn to evaluate Eq�

ŒG.x/�. Note: in an actual
optimization, we will not be drawing these test

Bias-Variance Trade-Offs: Novel Applications 137

B

Algorithm 1 Overview of pq minimization using
Gaussian mixtures
1: Draw uniform random samples on X
2: Initialize regularization parameter ˇ
3: Compute G.x/ values for those samples
4: repeat
5: Find a mixture distribution q� to minimize sam-

pled pq KL distance
6: Sample from q�

7: Compute G.x/ for those samples
8: Update ˇ
9: until Termination

10: Sample final q� to get solution(s).

samples! All the performance results in Fig. 1 are
based on 50 runs of the PC algorithm, randomly
initialized each time. The sample mean perfor-
mance across these runs is plotted along with
95 % confidence intervals for this sample mean
(shaded regions).

�Cross-Validation for Regularization: We note
that we are using regularization to reduce
variance, but that regularization introduces bias.
As is done in PL, we use standard k-fold cross-
validation to trade-off this bias and variance. We
do this by partitioning the data into k disjoint sets.
The held-out data for the i th fold is just the i th
partition, and the held-in data is the union of all
other partitions. First, we “train” the regularized
algorithm on the held-in data Dt to get an optimal
set of parameters �? and then “test” this �? by
considering unregularized performance on the
held-out data Dv . In our context, “training” refers
to finding optimal parameters by KL distance
minimization using the held-in data, and “testing”
refers to estimating Eq�

ŒG.x/� on the held-out
data using the following formula (Robert and
Casella 2004).

bg.�/ D

X

Dv

q�

�
x.i/

�
G
�
x.i/

�

h
�
x.i/

�

X

Dv

q�

�
x.i/

�

h
�
x.i/

�
:

We do this for several values of the regularization
parameter ˇ in the interval k1ˇ < ˇ < k2ˇ

and choose the one that yield the best held-out

performance, averaged over all folds. For our
experiments, k1 D 0:5; k2 D 3, and we use
five equally spaced values in this interval. Having
found the best regularization parameter in this
range, we then use all the data to minimize KL
distance using this optimal value of ˇ. Note that
all cross-validation is done without any additional
evaluations of G.x/. Cross-validation for ˇ in PC
is similar to optimizing the annealing schedule
in simulated annealing. This “auto-annealing” is
seen in Fig. 1a, which shows the variation of ˇ

with iterations of the Rosenbrock problem. It can
be seen that ˇ value sometimes decreases from
one iteration to the next. This can never happen
in any kind of “geometric annealing schedule,”
ˇ kˇ ˇ; kˇ > 1, of the sort that is often used
in most algorithms in the literature. In fact, we ran
50 trials of this algorithm on the Rosenbrock and
then computed a best-fit geometric variation for
ˇ, that is, a nonlinear least squares fit to variation
of ˇ and a linear least squares fit to the variation
of log.ˇ/. These are shown in Fig. 1c, d. As can
be seen, neither is a very good fit. We then ran
50 trials of the algorithm with the fixed update
rule obtained by best-fit to log.ˇ/ and found that
the adaptive setting of ˇ using cross-validation
performed an order of magnitude better, as shown
in Fig. 1e.
Cross-Validation for Model Selection: Given a set

 (sometimes called a model class) to choose
� from, we can find an optimal � 2
. But
how do we choose the set
? In PL, this is
done using cross-validation. We choose that set

such that arg min�2�
OF .�/ has the best held-out

performance. As before, we use that model class

 that yields the lowest estimate of Eq�

ŒG.x/�

on the held-out data. We demonstrate the use of
this PL technique for minimizing the Rosenbrock
problem, which has a long curved valley that is
poorly approximated by a single Gaussian. We
use cross-validation to choose between a Gaus-
sian mixture with up to four components. The
improvement in performance is shown in Fig. 1d.

Bagging: In bagging (Breiman 1996a), we gen-
erate multiple data sets by resampling the given
data set with replacement. These new data sets
will, in general, contain replicates. We “train” the

http://dx.doi.org/10.1007/978-1-4899-7687-1_190

138 Bias-Variance Trade-Offs: Novel Applications

0.5
100

1

2

3

4

4.5

3.5

2.5

1.5

20 30 40 50 50 10 15 20 25

Iteration Iteration

Cross-validation for Regularization:
Woods Problem.

Best-fit β
Cross-validation for β

Cross-validation for Model-selection:
2-D Rosenbrock.

Single gaussian
Mixture model

0

1

2

3

4
3.5

2.5

–1
–0.5

0.5

1.5

lo
g[

E
(G

)]

lo
g[

E
(G

)]

10–10

1010

100

10 20 30 40 50
0

0 10 20 30 40 500
0

5

10

1
2
3
4

Iteration Iteration

10 20 30 40 500

Iteration

x109 x109Least-squares Fit to β Least-squares Fit to log(β)

βo = 1.809e+00
kβ = 1.548

βo = 1.240e−03
kβ = 1.832

β β

lo
g(

β)

10–10

1010

100

10 20 30 40 500

Iteration

lo
g(

β)

–4

–2

0

2

4

6

8a b

c d

e f

g h

50 10 15 20 25 30 302520151050

0

1

2

3

4

–2

–1

Iteration

lo
g(

β)

Cross-validation for β: log(β)
History.

Cross-validation for β: log[E(G)]
History.

Iteration

lo
g(

E
(G

))

Iteration

lo
g[

E
(G

)]

Bagging: Noisy Rosenbrock.
4

3

2

1

0

0 5 10 15 20 25

Iteration

0 5 10 15 20 25

lo
g[

E
(G

)]

1

0

2

3

4

–2

–1–1

–2

Model Selection Methods: Noisy
Rosenbrock.

Single gaussian
Cross-validation
Stacking

No bagging
Bagging

Bias-Variance Trade-Offs: Novel Applications, Fig. 1 Various PL techniques improve MCO performance

Bias-Variance-Covariance Decomposition 139

B

learning algorithm on each of these resampled
data sets and average the results. In our case,
we average the q� got by our KL divergence
minimization on each data set. PC works even on
stochastic objective functions, and on the noisy
Rosenbrock, we implemented PC with bagging
by resampling ten times and obtained significant
performance gains, as seen in Fig. 1g.

Stacking: In bagging, we combine estimates of
the same learning algorithm on different data
sets generated by resampling, whereas in stack-
ing (Breiman 1996b; Smyth and Wolpert 1999),
we combine estimates of different learning al-
gorithms on the same data set. These combined
estimated are often better than any of the single
estimates. In our case, we combine the q� ob-
tained from our KL divergence minimization al-
gorithm using multiple models
. Again, Fig. 1h
shows that cross-validation for model selection
performs better than a single model, and stacking
performs slightly better than cross-validation.

Conclusions

The conventional goal of reducing bias plus
variance has interesting applications in a variety
of fields. In straightforward applications, the
bias-variance trade-offs can decrease the MSE
of estimators, reduce the generalization error of
learning algorithms, and so on. In this article,
we described a novel application of bias-variance
trade-offs: we placed bias-variance trade-offs in
the context of MCO and discussed the need for
higher moments in the trade-off, such as a bias-
variance-covariance trade-off. We also showed
a way of applying just a bias-variance trade-off,
as used in parametric learning, to improve the
performance of MCO algorithms.

Recommended Reading

Angluin D (1992) Computational learning theory: sur-
vey and selected bibliography. In: Proceedings of
the twenty-fourth annual ACM symposium on the-
ory of computing, Victoria. ACM, New York

Berger JO (1985) Statistical decision theory and
bayesian analysis. Springer, New York

Breiman L (1996a) Bagging predictors. Mach Learn
24(2):123–140

Breiman L (1996b) Stacked regression. Mach Learn
24(1):49–64

Buntine W, Weigend A (1991) Bayesian back-
propagation. Complex Syst 5:603–643

Ermoliev YM, Norkin VI (1998) Monte carlo op-
timization and path dependent nonstationary laws
of large numbers. Technical Report IR-98-009. In-
ternational Institute for Applied Systems Analysis,
Austria

Lepage GP (1978) A new algorithm for adaptive mul-
tidimensional integration. J Comput Phys 27:192–
203

Mackay D (2003) Information theory, inference, and
learning algorithms. Cambridge University Press,
Cambridge

Robert CP, Casella G (2004) Monte Carlo statistical
methods. Springer, New York

Rubinstein R, Kroese D (2004) The cross-entropy
method. Springer, New York

Smyth P, Wolpert D (1999) Linearly combin-
ing density estimators via stacking. Mach Learn
36(1–2):59–83

Vapnik VN (1982) Estimation of dependences based
on empirical data. Springer, New York

Vapnik VN (1995) The nature of statistical learning
theory. Springer, New York

Wolpert DH (1997) On bias plus variance. Neural
Comput 9:1211–1244

Wolpert DH, Rajnarayan D (2007) Parametric learning
and monte carlo optimization. arXiv:0704.1274v1
[cs.LG]

Wolpert DH, Strauss CEM, Rajnarayan D (2006) Ad-
vances in distributed optimization using probability
collectives. Adv Complex Syst 9(4):383–436

Bias-Variance-Covariance
Decomposition

The bias-variance-covariance decomposition
is a theoretical result underlying � ensemble
learning algorithms. It is an extension of
the � bias-variance decomposition, for linear
combinations of models. The expected squared
error of the ensemble Nf .x/ from a target d is:

EDf Nf .x/ � d/2g D bias
2
C

1

T
var

C

�
1 �

1

T

�
covar:

The error is composed of the average bias of
the models, plus a term involving their average
variance, and a final term involving their average

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_74

140 Bilingual Lexicon Extraction

pairwise covariance. This shows that while a sin-
gle model has a two-way bias-variance tradeoff,
an ensemble is controlled by a three-way tradeoff.
This ensemble tradeoff is often referred to as the
accuracy-diversity dilemma for an ensemble. See
� ensemble learning for more details.

Bilingual Lexicon Extraction

Bilingual lexicon extraction is the task of auto-
matically identifying a terms in a first language
and terms in a second language which are trans-
lation f one another. In this context, a term can be
either a single word or an expression composed
of several words the full meaning of which cannot
be derived compositionally from the meaning of
the individual words. Bilingual lexicon extraction
is itself a form of � cross-lingual text mining
and is an essential preliminary step in many
approaches for performing other � cross-lingual
text mining tasks.

Binning

�Discretization

Biological Learning: Synaptic
Plasticity, Hebb Rule and Spike
Timing Dependent Plasticity

Wulfram Gerstner
Brain Mind Institute, Lausanne EPFL, Lausanne,
Switzerland

Synonyms

Correlation-based learning; Hebb rule; Hebbian
learning

Definition

The brain of humans and animals consists of a
large number interconnected neurons. Learning

in biological neural systems is thought to take
place by changes in the connections between
these neurons. Since the contact points between
two neurons are called synapses, the change in
the connection strength is called synaptic plas-
ticity. The mathematical description of synaptic
plasticity is called a (biological) learning rule.
Most of these biological learning rules can be
categorized in the context of machine learning as
unsupervised learning rules, and the remaining
ones as reward-based or reinforcement learn-
ing. The Hebb rule is an example of an unsu-
pervised correlation-based learning rule formu-
lated on the level of neuronal firing rates. Spike-
timing-dependent plasticity (STDP) is an unsu-
pervised learning rule formulated on the level of
spikes. Modulation of learning rates in a Hebb
rule or STDP rule by a diffusive signal carrying
reward-related information yields a biologically
plausible form of a reinforcement learning rule.

Motivation and Background

Humans and animals can adapt to environmental
conditions and learn new tasks. Learning be-
comes measurable by changes in the behavior:
humans and animals get better at seeing and
distinguishing visual objects with experience; an-
imals can learn to go to a target location; humans
can memorize a list words and recall the items
2 days later. How learning is implemented in the
biological substrate is only partially known.

The brain consists billions of neurons. Each
neuron has long wire-like extensions and makes
contacts with thousands of other neurons. This
network of neurons is not fixed but constantly
changes. Connections can be formed or can dis-
appear, and existing connections can be strength-
ened or weakened. Neuroscientists have shown
in numerous experiments that changes can be
induced by stimulating neuronal activity in an
appropriate fashion. Moreover, changes in synap-
tic connections that have been induced in one
or a few seconds can persist for hours or days,
an effect called long-term potentiation (LTP) or
long-term depression (LTD) of synapses.

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_221
http://dx.doi.org/10.1007/978-1-4899-7687-1_100089
http://dx.doi.org/10.1007/978-1-4899-7687-1_100195
http://dx.doi.org/10.1007/978-1-4899-7687-1_360

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity 141

B

The question arises of whether such long-
lasting changes in connections are useful for
learning. To answer this question, research in the-
oretical and computational neuroscience needs
to solve two problems: First, develop a com-
pact but realistic description of the phenomenon
of synaptic plasticity observed in biology, i.e.,
extract learning rules from the biological data;
and second, study the functional consequences of
these learning rules. An important insight from
experiments on LTP is that the activation of a
synaptic connection alone does not lead to a long-
lasting change; however, if the activation of the
synapses by presynaptic signals is combined with
some activation of the postsynaptic neuron, then
a long-lasting change of the synapse may occur.
The coactivation of presynaptic and postsynaptic
neurons as a condition for learning is the key
ingredient of Hebbian learning rules. Here, ac-
tivation of the presynaptic neuron means that it
fires one or several action potentials; activation
of the postsynaptic neuron can be represented
by high firing rates, a few well-timed action
potentials or input from other neurons that lead
to an increase in the membrane voltage.

Structure of the Learning System

The Hebb Rule
Hebbian learning rules are local, i.e., they depend
only on the state of the presynaptic and postsy-
naptic neurons plus possibly the current value of
the synaptic weight itself. Let wij denotes the
weight between a presynaptic neuron j and a
postsynaptic neuron i , and let us describe the
activity (e.g., the firing rate) each neuron by
a continuous variable vj and vi , respectively.
Mathematically, we may therefore write for a
local learning rule

d

dt
wij D F.wij I vi ; vj / (1)

where F is an unknown function. In addition to
locality, Hebbian learning requires some kind of
cooperation or correlation between the activity of
the presynaptic neuron and that of the postsynap-

tic neuron. At the moment we restrict ourselves
to the requirement of simultaneous activity of
presynaptic and postsynaptic neurons. Since F is
a function of the rates vi and vj , we may expand
F about vi D vj D 0. An expansion to second
order of the rates yields

d

dt
wij .t/ � c0.wij /C c

pre
1 .wij /vj C c

post
1 .wij /vi

C ccorr
2 .wij /vi vj C c

post
2 .wij /v2

i

C c
pre
2 .wij /v2

j CO.v3/: (2)

Here, vi and vj are functions of time, i.e., vi .t/

and vj .t/ and so is the weight wij . The bilinear
term vi .t/vj .t/ is sensitive to the instantaneous
correlations between presynaptic and postsynap-
tic activities. It is this term that makes Hebbian
learning a useful concept. The simplest imple-
mentation of Hebbian plasticity would be to re-
quire ccorr

2 > 0 and set all other parameters in the
expansion (2) to zero

d

dt
wij D ccorr

2 .wij /vi vj : (3)

Equation (3) with fixed parameter ccorr
2 > 0

is the prototype of Hebbian learning. However,
since the activity variables vi and vj are always
positive, such a rule will lead eventually to an
increase of all weights in a network. Hence, some
of the other terms (e.g., c0 or c

pre
1 / need to have

a negative coefficient to make Hebbian learning
stable. In passing we note that a learning rule with
ccorr

2 < 0 is usually called anti-Hebbian.
Oja’s rule. A particular interesting case is a

model with coefficients ccorr
2 > 0 and c

post
2 < 0,

since it guarantees the normalization of the set
of weights wi1; : : : wiN converging onto the same
postsynaptic neuron i .

BCM rule. The Bienenstock–Cooper–Munro
learning rule (also called BCM rule) with

d

dt
wij D a.wij /Φ.vj � #/vj (4)

where Φ is some nonlinear function with Φ.0/ D

0 is a special case of (1). The parameter #

depends on the average firing rate.

142 Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity

Temporally asymmetric Hebbian learning. In
the Taylor expansion (2) we focused on instanta-
neous correlations. More generally, we can use a
Volterra expansion so as to also include tempo-
ral correlations with nonzero time lag. With the
additional assumptions that changes are instan-
taneous, a Volterra expansion generates terms of
the form

d

dt
wij /

Z 1

0
ŒWC.s/vi .t/vj .t � s/

CW�.s/vj .t/vi .t � s/�ds (5)

with some functions WC and W�. For reasons of
causality, WC and W� must vanish for s < 0.
Since WC.s/ ¤ W�.s/, learning is asymmetric
in time so that learning rules of the form (5) are
called temporally asymmetric Hebbian learning.
In the special case WC.s/ D �W�.s/, we have
antisymmetric Hebbian learning. The functions
WC and W� may depend on the present weight
value.

STDP rule. STDP is a form of Hebbian learn-
ing with increased temporal resolution. In con-
trast to rate-based Hebb models, neuronal activ-
ity is described by the firing times of the neu-
ron, i.e., the moments when the presynaptic and
postsynaptic neurons emit action potentials. Let
t
f
j denote the f th spike of the presynaptic neuron

j and tn
i the nth spike of the postsynaptic neuron

i . The weight change in an STDP rule depends
on the exact timing presynaptic and postsynaptic
spikes

d

dt
wij D

X

n

X

f

ŒA.wij I t � t
f
j /ı.t � tn

i /

C B.wij I t � t
f
i /ı.t � t

f
j /� (6)

where A.x/ and B.x/ are some real-valued func-
tions with A.wij ; x/ D B.wij ; x/ D 0 for x < 0.
Thus, at the moment of a postsynaptic spike the
synaptic weight is updated by an amount that
depends on the time t

f
i � t

f
j since a previous

presynaptic spike t
f
j . Similarly, at the moment of

a presynaptic spike the synaptic weight is updated
by an amount that depends on the time t

f
j �

t
f
i since a previous postsynaptic spike t

f
i . The

dependence on the present value wij can be used
to keep the weight in a desired range 0 < wij <

wmax. A standard choice for the functions A and
B is A.wij /I t�t

f
j D AC.wij / expŒ�.t�t

f
j /=�C�

for t � t
f
j > 0 and zero otherwise. Similarly,

B.wij I t � tn
i / D B�.wij / expŒ�.t � tn

i /=��� for

t � t
f
i > 0 and zero otherwise. Here, �C and

�� are time constants in the range of 10–50 ms.
The case AC.x/ D .wmax � x/cC and Bx.x/ D

�c�x is called soft bounds. The choice AC.x/ D

cCΘ.wmax�x/ and Bx D �c�Θ.x/ is called hard
bounds. Here, cC and c–are positive constants.
The term proportional to AC causes potentiation
(weight increase), the one proportional to A�

causes depression (weight decrease) of synapses.
Note that the STDP rule (6) can be interpreted
as a spike-based form of temporally asymmetric
Hebbian learning.

Functional Consequences of Hebbian
Learning
Sensitivity to correlations. All Hebbian learning
rules are sensitive to the correlations between the
activity of the presynaptic neuron j and that of
the postsynaptic neuron i . If the activity of the
postsynaptic neuron is given by a linear sum of all
inputs rates, i.e., vi D �†j wij vj , then correla-
tions between presynaptic and postsynaptic activ-
ities can be traced back to correlations in the in-
put. A particular clear example of learning driven
by correlations in the input is Oja’s learning rule
applied to a statistical ensemble of inputs with
zero mean. In this case, the postsynaptic neu-
ron becomes sensitive to the dominant principal
component of the input ensemble. If the neuron
model is nonlinear, Hebbian learning extracts the
independent components of the statistical input
ensemble. These two examples show that learn-
ing by a Hebbian learning rule makes neurons
adapt to the statistics of the input. While the
condition of zero-mean input is biologically not
realistic (because neuronal firing rates are always
positive), this condition can be relaxed so that
the same result is also applicable to biologically
plausible learning rules.

Biomedical Informatics 143

B

Receptive fields and cortical maps. Neurons
in the primary visual cortex of cats and monkeys
respond to visual stimuli in a localized region of
the visual field. This small sensitive zone is called
the receptive field of the neuron. Neighboring
neurons normally have very similar receptive
fields. The exact location and properties of the
receptive field are not fixed, but can be influenced
by sensory stimulation. Models of unsupervised
Hebbian learning can explain the development
of receptive fields and the adaptation of corti-
cal maps to the statistics of the ensemble of
stimuli.

Beyond the Hebb rule. Standard models of
Hebbian learning are formulated on the level of
neuronal firing rates, a graded variable charac-
terizing neuronal activity. However, real neurons
communicate by spikes, short electrical pulses or
“action potentials” with a rather stereotyped time
course. Experiments have shown that the changes
of synaptic efficacy depend not only on the mean
firing rate of action potentials but on the relative
timing of presynaptic and postsynaptic spikes on
the level milliseconds. This Spike-Timing Depen-
dent Synaptic Plasticity (STDP) can be consid-
ered a temporally more precise form of Hebbian
learning. The STDP rule indicated above sup-
poses that pairs of spikes (one presynaptic and
one postsynaptic action potential) within some
time window cause a weight change. However,
experimentally it was shown that at least three
spikes are necessary (one presynaptic and two
postsynaptic spikes). Moreover, the voltage of the
postsynaptic neuron matters even in the absence
of spikes.

In most models of Hebbian learning and
STDP, the factors c0; c

pre
1 : : : are constant or

depend only on the synaptic weight. However,
in biological context the speed of learning is
often gated by neuromodulators. Since some of
these neuromodulators contain reward-related
information, one can think of learning as a three-
factor rule where weight changes depend on
presynaptic activity, postsynaptic activity, and the
presence of a reward-related factor. A prominent
neuro-modulator linked to reward information is
dopamine. Three factor learning rules fall in the
class of reinforcement learning algorithms.

Cross-References

�Dimensionality Reduction
�Reinforcement Learning
� Self-Organizing Maps

Recommended Reading

Bliss T, Gardner-Medwin A (1973) Long-lasting po-
tentation of synaptic transmission in the den-
date area of unanaesthetized rabbit following stim-
ulation of the perforant path. J Physiol 232:
357–374

Bliss T, Collingridge G, Morris R (2003) Long-term
potentiation: enhancing neuroscience for 30 years –
introduction. Philos Trans R Soc Lond Ser B Biol
Sci 358:607–611

Cooper L, Intrator N, Blais B, Shouval HZ (2004)
Theory of cortical plasticity. World Scientific, Sin-
gapore

Dayan P, Abbott LF (2001) Theoretical neuroscience.
MIT Press, Cambridge, MA

Gerstner W, Kistler WK (2002) Spiking neuron mod-
els. Cambridge University Press, Cambridge, UK

Gerstner W, Kempter R, van Hemmen JL, Wagner H
(1996) Aneuronal learning rule for sub-millisecond
temporal coding. Nature 383:76–78

Hebb DO (1949) The organization of behavior. Wiley,
New York

Lisman J (2003) Long-term potentiation: outstanding
questions and attempted synthesis. Philos Trans R
Soc Lond Ser B Biol Sci 358:829–842

Malenka RC, Nicoll RA (1999) Long-term
potentiation-a decade of progress? Science 285:
1870–1874

Markram H, Lübke J, Frotscher M, Sakmann B (1997)
Regulation of synaptic efficacy by coincidence of
postysnaptic AP and EPSP. Science 275:213–215

Schultz W, Dayan P, Montague R (1997) A neural sub-
strate for prediction and reward. Science 275:1593–
1599

Biomedical Informatics

C. David Page1 and Sriraam Natarajan2;3

1Department of Biostatistics and Medical
Informatics, University of Wisconsin Medical
School, Madison, WI, USA
2Department of Computer Science, University of
Wisconsin Medical School, Madison, WI, USA
3School of Informatics and Computing, Indiana
University, Bloomington, IN, USA

http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_746

144 Biomedical Informatics

Introduction

Recent years have witnessed a tremendous in-
crease in the use of machine learning for biomedi-
cal applications. This surge in interest has several
causes. One is the successful application of ma-
chine learning technologies in other fields such as
web search, speech and handwriting recognition,
agent design, spatial modeling, etc. Another is
the development of technologies that enable the
production of large amounts of data in the time it
used to take to generate a single data point (run
a single experiment). A third most recent devel-
opment is the advent of electronic medical/health
records (EMRs/EHRs). The drastic increase in
the amount of data generated has led the biolo-
gists and clinical researchers to adopt algorithms
that can construct predictive models from large
amounts of data. Naturally, machine learning is
emerging as a tool of choice.

In this entry, we will present a few data types
and tasks involving such large-scale biological
data, where machine learning techniques have
been applied. For each of these data types and
tasks, we first present the required background,
followed by the challenges involved in addressing
the tasks. Then, we present the machine learning
techniques that have been applied to these data
sets. Finally and most importantly, we present
the lessons learned in these tasks. We hope that
these lessons will be helpful to researchers who
aim to apply machine learning algorithms to
biological applications and equip them with
useful knowledge when they collaborate with
biological scientists.

Some of the data types that we present in this
work are:

• Gene expression microarrays
• SNPS and genetic data
• Mass spectrometry and other proteomic data
• High-throughput screening data for drug de-

sign
• Electronic medical records (EMR) and per-

sonalized medicine

Some of the key lessons learned from all these
data types include the following: (1) We can often

do surprisingly well with far more features than
data points if there are many highly predictive
features (e.g., predicting cancer from microarray
data) and if we use methods that are robust to
overfitting such as voted decision stumps (Hardin
et al. 2004; Waddell et al. 2005) (ensemble learn-
ing and decision stumps), naive Bayes (Golub
et al. 1999; Listgarten et al. 2004), or linear
SVMs (Furey et al. 2000; Hardin et al. 2004). (2)
Bayes net learning (Friedman 2000) often does
not give us causality, but active learning and time-
series data help if available (Pe’er et al. 2001;
Ong et al. 2002; Tucker et al. 2005; Zou and
Conzen 2005). (3) Multi-relational methods are
useful for EMRs or molecular data as the data in
these cases are very highly relational. (4) There
are more important issues than just increasing
the accuracy of the learned model on these data
sets. Such issues include how data was created,
its comprehensibility (physicians typically want
to understand the model that has been learned),
and its privacy (some data sets contain private
information that cannot be posted on public web-
sites and cannot even be downloaded off-site).

The rest of the entry is organized as fol-
lows: First, we present gene expression microar-
rays, followed by SNPS and other genetic data.
We then present mass spectrometry (MS) and
related proteomic data. Next, we present high-
throughput screening data for drug design, fol-
lowed by EMR data and personalized medicine.
For each of these data types, we motivate the
problem and survey the different machine learn-
ing solutions. Finally, we conclude by outlining
the lessons learned from all these data types and
presenting some interesting and exciting direc-
tions for future research.

Gene Expression Microarrays

This data type was presented in detail in AI
Magazine (Molla et al. 2004), and hence we will
brief it in this section. We encourage the reader
to read Molla et al. (2004) for more details on
this data type. Genes are contained in the DNA of
an organism. The mechanism by which proteins
are produced from their corresponding genes is a

Biomedical Informatics 145

B

two-step process. The first step is the transcrip-
tion of a gene into a messenger RNA (mRNA),
and in the second step called as translation, a
protein is built using mRNA as a blueprint.

One property that DNA and RNA have in com-
mon is that each is a chain of chemicals called
as bases. In the case of DNA, these bases are
adenine, cytosine, guanine, and thymine, com-
monly referred to as A, C , G, and T , respectively.
RNA has the same set of four bases, except
thymine; RNA has uracil, commonly referred
as U . An important characteristic of DNA and
RNA is complementarity, that is, each base only
binds well with its complement: A with T (or
U) and G with C . As a result of complemen-
tarity, a strand of either DNA or RNA has a
strong affinity toward what is known as its reverse
complement, which is a strand of either DNA or
RNA that has bases exactly complementary to
the original strand. Complementarity is central
to the processes of replication of the DNA and
transcription.

In addition, complementarity can be used to
detect specific sequences of bases within strands
of DNA and RNA. This is done by first syn-
thesizing a probe, a piece of DNA that is the
complement of a sequence that one wants to de-
tect, and then introducing this probe to a solution
containing the genetic material (DNA or RNA) to
be searched. This solution of genetic material is
called the sample. In theory, the probe will bind
to the sample if and only if the probe finds its
complement in the sample (in reality, this process
is often imperfect). The act of binding between
a sample and probe is called hybridization. Prior
to the experiment, a biologist labels the probe
using a florescent flag. After the hybridization
experiment, one can easily scan to see if the probe
has hybridized to its reverse complement in the
sample. This allows the molecular biologist to de-
termine the presence or absence of the sequence
in the sample.

Gene Chips

DNA probe technology has been adapted for
detection of tens of thousands of sequences si-

multaneously. This has become possible due to
the device called a microarray or gene chip,
the working of which is illustrated in Fig. 1.
When using the chips, it is more common to
label (luminescently) the samples than the probe.
Thousands of copies of this labeled sample are
spread across the probe, followed by washing
away any copies that do not remain bound. Since
the probes are attached at specific locations on
the chip, if a labeled sample is detected at any
position in the chip, the probe that is hybridized
to its complement can be easily determined. The
most common use of these gene chips is to
measure the expression levels of various genes in
the organism.

Probes are typically on the order of 25 bases
long, whereas samples are usually about 10 times
as long, with a large variation due to the process
that breaks up long sequences of RNA into small
samples (Molla et al. 2004).

To understand about the biology of an organ-
ism, say to understand human biology to design
new drugs or lower the blood pressure or to cure
diabetes, there is a necessity to understand the
degree to which different genes get expressed
as proteins under different conditions and differ-
ent cell types. It is much easier to estimate the
amount of mRNA for a gene than the protein-
production rate. Microarrays provide the mea-
surement of RNAs corresponding to the given
gene rather than the amounts of protein.

In brief, experiments with the microarrays
are performed as follows: As can be seen from
the figure, probes are DNA strands attached to
the gene chip surface. A typical probe length is

Gene chip surface

Probes(DNA)

Labeled sample (RNA)

Hybridization

Biomedical Informatics, Fig. 1 Hybridization of sam-
ple to probe

146 Biomedical Informatics

25 bases (i.e., 25 letters from A, C , G, T to
represent a gene). There may be several differ-
ent subsequences of these 25 bases. Then the
mRNA (which is the labeled sample) is passed
over the microarrays, and the mRNA will bind
to the complementary DNA corresponding to the
gene better than the other DNA strings. Then the
florescence levels of the different gene chips seg-
ments are measured, which in turn measures the
amount of mRNA on that surface. This mRNA
measurement serves as a surrogate to the expres-
sion level of the gene.

Machine Learning for Microarrays

The data from microarrays (gene chips) have
been analyzed and used by machine learning
researchers in two different ways:

1. Data points are genes. This is the case where
the examples are genes while the features are
the samples (measured expression levels of a
single gene under a variety of conditions). The
goal of this view is to categorize new genes
based on the current set of examples.

2. Data points are samples (e.g., patients). This is
the case where the examples are patients and
the features are the measured expression levels
of genes under one condition.

The problems have been approached in two dif-
ferent ways. In the unsupervised learning ap-
proach, the goal is to cluster the genes according
to their expression levels or to cluster the patients
(samples) based on their gene expression levels or
both. Hierarchical clustering is especially widely
applied. As one of many examples, see Perou
et al. (1999). In the supervised learning setting,
the class labels are the category of the genes
or the samples. The latter is the more common
supervised task, each sample being mRNA from
a different patient (with the same cell type from
each patient) or an organism under different con-
ditions to learn a model that accurately predicts
the class based on the features. The features
could be the patient’s expression values for each
gene, while the class labels might be the patient’s

disease state. We discuss this task further in the
subsequent paragraphs.

Yet another widely studied supervised learn-
ing task is to predict cancer vs. normal for a wide
variety of cancer types. One of the significant
lessons learned is that it is easy to predict cancer
vs. normal in patients based on the gene ex-
pression by several machine learning techniques,
largely regardless of the type of cancer. The main
reason for this is that if cancer is present, many
genes in the cancer cells “go haywire” and hence
are very predictive of the cancer. The primary
challenge in this prediction problem is the noise
in the data (impure RNA, cross-hybridization,
etc.).

Other related tasks that have been addressed
include distinguishing related cancer types and
distinguishing cancer from a related benign
condition. An early success was a work by
Golub et al. (1999), distinguishing acute myeloid
leukemia and acute lymphoblastic leukemia
(ALL). They used a weighted voting algorithm
similar to naive Bayes and achieved a very
high accuracy. This result has been repeated
on this data with many other machine learning
(ML) approaches. Other work examined multiple
myeloma vs. benign condition. This task is
challenging because the benign condition is very
similar to the cancer, and hence the machine
learning algorithms had a difficult time predicting
accurately. We refer to Hardin et al. (2004) for
more details on the experiments.

Another important lesson for machine learn-
ing researchers from this data type is that the biol-
ogists often do not want one predictive model, but
a rank-ordered list of genes that a biologist can
explore further with additional lab tests on certain
genes. Hence, there is a need to present a small
set of highly interesting genes to perform follow-
up experiments on. Toward this end, statisticians
have used mutual information or a t-test to rank
the genes. When using a t-test, they check if
the mean expression levels are different under
the two conditions (cancer vs. normal), yielding
a p-value. But the issue is that when working
with a large number of genes (typically in the
order of 30,000), there could be some genes with
lower p-value by chance. This is known as the

Biomedical Informatics 147

B

“multiple comparisons problem.” One solution
is to do a Bonferroni correction (multiply p-
values by the number of genes), but this can be
a drastic step and may eliminate all the genes.
There are other methods such as false discovery
rate (Storey and Tibshirani 2003) that uses the
notion of q-values. We do not go into detail of this
method. But the key recommendation we make
is that such a method should be used along with
the supervised learning method, as the biological
collaborators might be interested in the ranking
of genes.

One of the most important research directions
for the use of microarray data lies in the prognosis
and treatment. The features are the same as those
of diagnosis, but the class value becomes life
expectancy for a given treatment (or a positive
response vs. no response to a given treatment).
The goal is to use the person’s genes to make
these predictions. An example of this is the breast
cancer prognosis study (Van’t Veer et al. 2002),
where the goal is to predict good prognosis (no
metastasis within 5 years of initial diagnosis) vs.
poor prognosis. They used an ensemble of voting
algorithms and obtained very good results. Nev-
ertheless, an important lesson learned from this
experiment and others was that when using cross-
validation, there is a need to tune parameters and
perform feature selection independently on each
fold of the cross-validation. There can be a large
number of features, and it is natural to want to
reduce the size of the data set before working
with it. But reducing the number of features
by some measure of correlation with the class,
such as information gain, using the entire data
set means that on each fold of cross-validation,
information has leaked from the labeled test set
into the training process – labels of test cases
were used to eliminate many features from the
training set. Hence, selecting features by looking
at the entire data set can partially negate the effect
of cross-validation, sometimes yielding accuracy
estimates that are more than 10 % points overly
optimistic. Hence the entire training process of
selecting features, tuning parameters, and learn-
ing a model must be repeated for every fold in
cross-validation by looking only at the training
data for that fold.

An important use of microarrays for prognosis
and therapy is in the area of predictive personal-
ized medicine (PPM). While we present the idea
of PPM later in the entry, it must be mentioned
that combining gene expression data with clinical
trials of the patients to recommend the best treat-
ment for the patients is a very exciting problem
with promising impact in the area of PPM.

Bayesian Networks for Regulatory Pathways:
Bayes nets have been one of the successful
machine learning methods used for the analysis
of microarray data. Recall that a Bayes net is a
directed acyclic graph, such as the one shown
in Fig. 2 that defines a joint distribution over the
variables using a set of conditional distributions.
Friedman and Halpern (1999) were the first to
use Bayes nets for the microarray data type.
In particular, the problem that was considered
was finding regulatory pathways in genes. This
problem can be posed as a supervised learning
task as follows:

• Given: A set of microarray experiments for a
single organism under different conditions.

• Do: Learn a graphical model that accurately
predicts expression of some genes in terms of
others.

Friedman and Halpern showed that using statisti-
cal methods, a Bayes net representing the obser-
vations (expression levels of different genes) can
be learned automatically. A main advantage of
Bayes nets is that they can (potentially) provide
insight into the interaction networks within cells
that regulate the expression of genes. But one
has to exercise caution, interpreting the arcs of
a learned Bayes net as representing causality.
For example, in Fig. 2, one might interpret the
network to mean that gene A causes gene B and
gene C to be expressed, in turn influencing gene
D. Note that, however, the Bayes net in this case
just denotes the correlation and not the causality,
that is, the direction of an arc merely represents
the fact that one variable is a good predictor of
the other, as illustrated in Fig. 3.

One possible method of learning causality is to
use knockout methods (Pe’er et al. 2001), where

148 Biomedical Informatics

Biomedical Informatics,
Fig. 2 A simple Bayes net.
The actual learning task
typically involves
thousands of variables

Gene A

Gene B Gene C

Gene D

A P(B)
0.9
0.1

T
F

P(A)
0.2

A
T
F 0.1

0.8
P(C)

B

T
T

F
F F

T

F
T

C P(D)

0.9
0.2

0.3
0.1

Problem: Not Causality

A B

A is a good predictor of B. But is A regulating B??
Ground truth might be:

B A A C B

B C A

B

C

A
Or a more complicated variant

Biomedical Informatics, Fig. 3 Why a learned
Bayesian network may not be representing regulation of
one gene by another

for 300 of the genes in S . cerevisiae (bakers’
yeast), biologists have created a knockout mutant
or a genetic mutant lacking that gene. If the parent
of a gene in the Bayes net is knocked out and
the child’s status remains unchanged, then it is
unlikely that the arc from the parent to the child
captures causality. A key limitation is that the
mutants are not available for many organisms.
Some other approaches such as RNAi have been
proposed for more efficiently doing knockouts,
but a limitation is that RNAi typically reduces
rather than eliminates expression of a gene.

Ong et al. (2002) used time-series data (data
from the same organism at various time points) to
partially address the issue of causality. They used
these data to learn dynamic Bayesian networks
in order to infer temporal direction for gene

interactions, thereby getting a potentially better
handle on causality. DBNs have been employed
by other researchers for time-series gene expres-
sion data, and the approach has been extended
to learn DBNs with continuous variables (Segal
et al. 2005).

Single-Nucleotide Polymorphisms

Single-nucleotide polymorphisms (SNPs) are in-
dividual base positions (i.e., single-nucleotide po-
sitions) in DNA, where people (or the organism
of interest) vary. Most of the variation in human
DNA is due to SNP variations. (There are other
variations such as copy number, insertions, and
deletions that we do not consider in this entry.)
There are well over three million known SNPs
in humans. Technologies such as Illumina or
Affymetrix whole-genome scan can measure a
million SNPs in a short time. The measurement
of these variations is an order of magnitude faster,
easier, and cheaper than sequencing all the genes
of the person.

It is believed that in the next decade, it will
be possible to obtain the entire genome sequence
for an individual human for under $1,000 (Mardis
2006). If we had every human’s entire sequence,
it could be used to predict the susceptibility of
diseases for humans or the adverse reactions to
drugs for a certain subset of patients. The idea
is illustrated in Fig. 4. Suppose the red dots in
the figure are two copies of nucleotide A and
the green dots denote a different nucleotide, say

Biomedical Informatics 149

B

Susceptible to disease D or responds to treatment T

Not susceptible or not responding

Biomedical Informatics, Fig. 4 Example application of
sequencing human genes. The top half is the case where
patients respond to a treatment, and the bottom is the case
where three patients do not respond to the treatment

C . As can be seen from the figure, people who
respond to a treatment T (top half of the figure)
have two copies of A (for instance, these could
be the positive examples), while the people who
do not respond to the treatment have at most one
copy of A (negative examples and are presented
in the bottom half of the figure). Now, we can
imagine modeling the sequence to predict the
susceptibility to a disease or responsiveness to a
treatment.

SNP data can serve as a surrogate for the above
problem. SNPs allow us to detect the variations
among humans. An example of SNP data is
presented in Fig. 5 for the prediction of myeloma
cancer that is common with older people (with
age >70) and is very rare in younger people (age
<40). This data set consists of 40 people diag-
nosed with myeloma at young age and 40 people
who weren’t diagnosed till they were 70 when
the disease is more common. Most SNP positions
represent a pair of nucleotides and are typically
restricted in the combinations of values they may
assume. For example, in the figure, SNP 1 can
take values from the three possible combinations
< CT; CC; TT > for its two positions. The
goal is to use the feature values of the different
SNPs to predict the class label which could be
the susceptibility. That is, the goal is to determine
genetic difference between people who got the
disease at a young age vs. people who did not
until they were old.

There is also the possibility of two patients
having the same SNP pattern in the data but not
the identical DNA. Patients 1 and 2 may have CT
for the SNP1 and GA for SNP2, where both SNPs
are on chromosome 1. But Patient 1 has C on
SNP1 in the same copy of chromosome 1 as the
G in SNP2, whereas Patient 2 has C on the same
copy as an A. Hence, while they have the same
SNP pattern of CT and GA, they do not have
identical DNA. The process of converting the
data from the form in the table below to the form
above is called phasing. From a machine learning
perspective, there is a choice of either working
with the unphased data or to use an algorithm for
phasing. It turns out that phasing is very difficult
and is an active research area. If there are a num-
ber of unrelated patients, phasing is very hard.
Hence many machine learning researchers work
mainly with unphased data. Admittedly, there is a
small loss of information with the unphased data
that compensates for the difficulty of phasing.

Most biologists and statisticians using SNP
data perform genome-wide association studies
(GWAS). The goal in this work is to find in-
dividual SNPs that are significantly associated
with disease, that is, such that one of the SNP
values, or alleles, raises the risk of disease. This is
typically measured by “relative risk” or by “odds
ratio,” and significance is typically measured by
statistical tests such as Wald test, Score test, or
LRLR (logistic regression log likelihood, where
each SNP is used individually to predict disease,
and log likelihood of the predictive model is
compared to guessing under the null hypothesis
that the SNP is not associated). One of many ex-
amples is the use of SNPs to predict susceptibility
to breast cancer (Easton et al. 2007).

The advantages of SNP data compared to
microarray data are the following: (1) Because
SNP analysis is typically performed on DNA
from saliva or peripheral blood cells, a person’s
SNP pattern does not change with time or disease.
If the SNPs are collected from a blood sample
of a person aged 40 years, the SNP patterns are
probably the same as when they were born. This
gives more insight to the susceptibility of the per-
son to many diseases. Hence, we do not see the
widespread changes in SNP pattern with cancer,

150 Biomedical Informatics

Person 1

Person 2 C C A

Person 3 T T A A C C

Person 1 2 3 . . . Class

C T A G T T . . . Old

G C T . . . Young

. . . Old

Person 4 C T G G T T . . . Young

.

.

.

SNP

Biomedical Informatics, Fig. 5 Example of SNP data

for example, that we see in microarray data from
tumor samples. (2) It is easier to collect the
samples. These can be obtained from the blood
samples as against obtaining, say, the biopsy of
other tissue types.

The challenges of SNP data are as follows:
(1) As explained earlier, the data is unphased.
Algorithms exist for phasing (haplotyping), but
they are error prone and do not work well with
unrelated patient samples. They require the data
to consist of related individuals in order to have
a dense coverage. (2) Missing values are more
common than in microarray data. The good news
is that the amount of missing values is decreasing
substantially (down from 30–40 % a few years
ago to 1–2 %). (3) The sheer volume of mea-
surements – currently, it is possible to measure
a million SNPs out of over three million SNPs
in the human genome. While this provides a
tremendous amount of potential information, the
resulting high dimensionality causes problems
for machine learning. As with gene expression
microarray data, we have a multiple comparisons
problem, so approaches such as Bonferroni cor-
rection or q-values from false discovery rate can
again be applied. But even when a significant
SNP is found, it usually only increases our ac-
curacy at predicting disease by 2 or 3 % points,
because a single SNP typically either has a small
effect or small penetrance (the variation is fairly
rare – one value of the SNP is strongly predomi-
nant). So GWAS are missing a major opportunity
to build predictive models by combining multiple

SNPs with small effects – this is an exciting
opportunity for machine learning.

The supervised learning task can be defined as
follows:

• Given: A set of SNP profiles each from a
different patient.

Phased: Nucleotides at each SNP position on
each copy of each chromosome constitute the
features, and patient’s disease susceptibility or
drug response constitutes the class.

Unphased: Unordered pair of nucleotides at
each SNP position constitutes the features, and
patient’s disease susceptibility or drug response
constitutes the class.

• Do: Learn a model to predict the class based
on the features.

We now briefly present one example of su-
pervised learning from SNP data. Waddell et al.
(2005) found that there was evidence of a genetic
component in predicting the blood cancer multi-
ple myeloma as it was possible to distinguish the
two cases significantly better than chance (71 %
accuracy). The results from using support vector
machines (SVMs) are presented in Fig. 6. Similar
results were obtained using a naive Bayes model
as well. Listgarten et al. (2004) also used the SNP
data with the goal of predicting lung cancer. The
accuracy of 69 % obtained by them was remark-

Biomedical Informatics 151

B

Old

Old

Young

Young

Actual
31

14 26

9

Biomedical Informatics, Fig. 6 Results on predicting
multiple myeloma, young (susceptible) vs. old (less sus-
ceptible), 3,000 SNPs

ably similar to the task of predicting multiple
myeloma. The best models for predicting lung
cancer were also naive Bayes and SVMs. There is
a striking similarity between the two experiments
on unrelated tasks using SNPs. When only the
individual SNPs were considered, the accuracy
for both the experiments fell to 60 %.

The lessons learned from SNP data are the fol-
lowing: (1) Supervised learning algorithms such
as naive Bayes and SVM that can handle a large
number of features in the presence of smaller
number of training examples can predict dis-
ease susceptibility at rates better than chance and
better than individual SNPS. (2) Accuracies are
much lower than the ones with microarray data.

This is mainly due to the fact that we are
predicting the susceptibility to the diseases (or
the response to a drug) as against predicting
whether a person already has the disease (as with
the microarray data). While we are predicting
using the genetic component, there are also many
environmental components that are responsible
for the diseases and the response. We are not
considering such components in our model, and
hence the accuracies are often not very high. In
spite of relatively lower accuracies, they give a
different valuable insight to the human gene.

We now briefly outline a couple of exciting
future directions for the use of SNP data. Phar-
macogenetics is the problem of predicting drug
response from SNP profile and has been gaining
momentum over the past few years. This includes
predicting drug efficacy and adverse reactions to
certain drugs, given a person’s SNP profile. A
recent New England Journal of Medicine article
showed that the analysis of SNPs can signifi-
cantly improve the dosing model for the most
widely used orally available blood thinner, war-

farin (IWPC 2009). Another exciting direction
is the combination of SNP data with other data
types such as clinical data that includes the his-
tory of the patient and the lab tests and microarray
data. The combination of these different data sets
will not only improve the accuracy of the learned
model but also provide a deeper insight to the
different kinds of interactions that occur within
a human, such as gene interactions with other
drugs.

It should be mentioned that other genetic data
types are becoming available and maybe useful
for supervised learning as well. These data types
can provide additional information about DNA
sequence beyond SNPs but without the expense
of full genome sequencing. They include copy-
number variations and exon sequencing.

Mass Spectrometry and Proteomics

Microarrays are useful primarily because mRNA
concentrations can serve as surrogates for pro-
tein concentrations and they are easier to mea-
sure. Though measuring protein concentrations
directly is possible, it cannot be done in the same
high-throughput manner as measuring mRNA.
Recently, techniques such as mass spectrometry
(MS or mass spec) have been successful in high-
throughput measuring of proteins. Mass spec still
does not give the complete coverage that microar-
rays provide, nor as good a quantitation.

Mass spectrometry is improving on many
fronts, using many technologies. As one
example, we present time-of-flight (TOF) mass
spectrometry illustrated in Fig. 7. This measures
the time required for an ionized particle starting
from the sample plate (bottom of the figure)
to hit the detector. The key idea is to place
some proteins (indicated as larger circles) into a
matrix (smaller circles are the matrix molecules).
Because of mass spec limitations, the proteins
typically are digested (broken into smaller
peptides), for example, by the compound trypsin.
When struck by a laser, the matrix molecules
release protons that attach themselves to the
peptides or protein fragments (shown in (a)).
Note that the plate where the peptides are present

152 Biomedical Informatics

Biomedical Informatics,
Fig. 7 Time-of-flight mass
spectrometry

+10kv

Laser
Detector

The protons from the matrix molecules
get attached to the proteins

+10kv

Laser
Detector

Positively charged proteins are
repelled towards the detector

Smaller mass molecules hit detector
first, while heavier ones detected later

ba

+
+ + ++

+

+

+
+

+
+

is positively charged. This causes the peptides to
migrate toward the detector.

As can be seen in (b) of the figure, the
molecules with smaller mass move faster toward
the detector. The idea is to detect the number of
molecules that hit the detector at any given time.
This makes it possible to use time as a surrogate
for mass of the protein. The experiment is
repeated a number of times, counting frequencies
of “flight-times” Plotting time vs. the number of
particles hitting the detector yields a spectrum
as presented in Fig. 8. The figure shows three
different fractions from the same sample. These
kinds of spectra provide us an insight about the
different types of proteins in a given sample.
A technical detail is that sometimes molecules
receive additional charge (additional protons) and
hence fly faster. Therefore, the horizontal mass
axis in a spectrum is actually a mass/charge ratio.

The main issues for machine learning
researchers working with mass spectrometry data
compared to microarray data are as follows: (1)
There is a lot of noise in the data. The noise
is due to extra peaks from handling of sample,
from machine and environment (e.g., electrical
noise). Also the mass to charge values may not
exactly align across the spectra; the accuracy
of the mass/charge values is the resolution of
the mass spec. (2) Intensities (peak heights)

are not calibrated across the spectra, making
quantification difficult. This is to say that if
one spectrum is compared to another, and if
one of them has more intensity at a particular
mass/charge, it does not necessarily mean that
the levels of the peptide at that mass/charge
are higher in that spectrum. (3) Another issue
is that the mass spectrometry data is not as
comprehensive as microarray data, in that it is not
possible to measure all peptides (typically only
several hundreds of them can be obtained). To get
the best results, there is a need to fractionate the
sample beforehand, getting different groups of
proteins in different subsamples (fractions). (4)
As already mentioned, the proteins themselves
typically must be broken down (digested) into
smaller peptides in order to get accurate readings
from the mass spec. But this means processing
is needed afterward not only to determine from a
spectrum which peptides are present but also
from that determination which proteins are
present. It is worth noting that some of these
challenges are being partially addressed by
ongoing improvements in mass spectrometry
technologies, including the use of “tandem mass
spectrometry.”

This data type opens up a lot of possibilities
for machine learning research. Some of the learn-
ing tasks include:

Biomedical Informatics 153

B

7000

6000

5000

4000

3000

2000

1000

0
0 20000 40000 60000 80000 100000 120000 140000 160000

line 1
line 2
line 3

Biomedical Informatics, Fig. 8 Example spectra from a competition by Lin et al.

• Learn to predict proteins from spectra, when
the organism’s proteome (full set of proteins)
is known.

• Learn to identify isotopic distributions
(combinations of multiple peaks for a given
molecule arising from different isotypes of
carbon, nitrogen, and oxygen).

• Learn to predict disease from either proteins,
peaks, or isotopic distributions as features.

• Construct pathway models.

We will now present one case study that was
successful and generated a lot of interest – Early
Detection of Ovarian Cancer (Petricoin et al.
2002). Ovarian cancer is difficult to detect early,
often leading to poor prognosis. The goal of this
work was to predict ovarian cancer from blood
samples. To this effect, the researchers trained
and tested on mass spectra from blood serum.
They used 100 training cases (50 positive) and
used a held-out test set of 116 cases (50 positive).
The results were extremely impressive (100 %
sensitivity, 95 % specificity).

While the results were extremely impressive
and while the machine learning methodology
seemed very sound, it turns out that the prepro-
cessing stage of the data may have introduced er-

rors (Baggerly et al. 2004). Mass spectrometry is
very sensitive to the external factors as well. For
instance, if we run cancer samples on Monday
and normal samples on Wednesday, it is possible
that we could get differences from variations in
the machine or nearby electrical equipment that is
running on Monday but not Wednesday. Hence,
one of the important lessons learned from this
data type is the need for careful randomization
of the data samples. This is to say that we should
sample the positive and negative samples under
identical conditions. It should not be the case
that the positive examples are run through the
machine on one day and the negatives on the
other day. Any preprocessing of the data must be
performed similarly.

While mass spectrometry is a widely used type
of high-throughput proteomic data, other types of
data are also important and are briefly covered
next.

Protein Structures

X-ray crystallography and nuclear magnetic
resonance are widely used to determine the three-
dimensional structures of proteins. Predicting

154 Biomedical Informatics

protein structures has been a very fertile field for
machine learning research for several decades.

While the amino acid sequence of a protein
is called its primary structure, it is more diffi-
cult to determine secondary structure and tertiary
(3D) structure. Secondary structure maps sub-
sequences of the primary structure in the three
classes of alpha helix (helical structures akin to a
telephone cord, often denoted by A), beta strand
(which comes together with other strand sections
to form planar structures called beta sheets, often
denoted by B), and less descript regions referred
to as coil, or loop regions, often denoted by C.

Predicting secondary structure and tertiary
structure has been a popular topic for machine
learning for many years, because training
data exists, yet it is difficult and expensive to
experimentally determine structures. We will not
attempt to survey all the work in this area. Waltz
and colleagues (Zhang et al. 1992) showed the
benefit of applying neural networks to the task
of secondary structure prediction, and the best
secondary structure predictors (e.g., Rost and
Sander 1993) have continued to be constructed
by machine learning over the years. Approaches
for predicting the tertiary structure have also
relied heavily on machine learning and include
ab initio prediction (e.g., Bonneau and Baker
2001), prediction aided by crystallography data
(e.g., DiMaio et al. 2007), and homology-based
prediction (by finding similar proteins). For over
a decade, there has been a regular competition
in the prediction of protein structures (Critical
Assessment of Structure Prediction [CASP]).

Protein–Protein Interactions

Another proteomics data type is protein–protein
interactions. This is illustrated in Fig. 9. The idea
is to identify proteins that interact with the current
protein say P . Generally, this is performed as
follows: In the sample, there are some proteins
of type X (shown in pink in the figure) and
other types of proteins. Proteins that interact with
X are bonded to X . Then antibodies (shown as
Y-shaped green objects) are introduced in the
sample. The idea of antibodies is to collect the

proteins of type X . Once the antibodies have
collected all protein X ’s in the sample, they can
be analyzed through mass spectrometry presented
earlier.

A particularly high-throughput way of
measuring protein–protein interactions is through
“ChIP-chip” data. The supervised learning tasks
for this task include:

• Learn to predict protein–protein interactions:
Protein three-dimensional structures may be
critical.

• Use protein–protein interactions in construc-
tion of pathway models.

• Learn to predict protein function from interac-
tion data.

Related Data Types

• Metabolomics measures concentration of each
low-molecular-weight molecule in sample.
These typically are metabolites, or small
molecules produced or consumed by reactions
in biochemical pathways. These reactions are
typically catalyzed by proteins (specifically,
enzymes). This data typically uses mass
spectrometry.

• ChIP-chip data measures protein-DNA inter-
actions. For example, transcription factors are
proteins that interact with DNA in specific
locations to alter transcription of a nearby
gene.

• Lipomics is analogous to metabolomics but
measuring concentrations of lipids rather than
metabolites. These potentially help induce
biochemical pathway information or help in
disease diagnosis or treatment choice.

High-Throughput Screening Data for
Drug Design

The typical steps in designing a drug are the
following: (1) Identifying a target protein – for
example, while developing an antibiotic, it will be
useful to find a protein that belongs to the bacteria

Biomedical Informatics 155

B

Biomedical Informatics,
Fig. 9 Schematic of
antibody-based
identification of
protein–protein
interactions Antibody

The pink objects are protein X and
they get attached to other proteins (2 in
this figure). The green Y-shaped objects
are the antibodies

The antibodies get attached only to
protein X and hence collecting the
antibodies will result in collecting X ’s
and the proteins that interact with X

ba

Identify target protein

Determine target
site structure

Synthesize a molecule
that will bind

Biomedical Informatics, Fig. 10 Steps involved in drug
design

that we are interested in and find a small molecule
that will bind to that protein. In order to perform
this, we need the knowledge of proteome/genome
and the relevant biological pathways. (2) Deter-
mining the target site structure once the protein
has been identified – this is typically performed
using crystallography. (3) Finding a molecule
that will bind to the target site. These steps are
presented in Fig. 10.

The molecules that bind to the target may
have a number of other problems, and hence
they cannot directly be used as a drug. Some
common problems are as follows: (1) They may
bind too tightly or not tightly enough. (2) They
may be toxic. (3) They may have unanticipated
side effects in the body. (4) They may break down
as soon as they get into the body or may not leave
the body soon enough. (5) They may not get to

the right target in the body (e.g., cross blood–
brain barrier). (6) They may not diffuse from gut
to bloodstream. Also, since the organisms are
different, even if a molecule works in the test
tube and in animal studies, it may fail in clinical
trials. Also while a molecule may work for some
people, it may not work for others. Conversely,
while some molecules may cause harmful side
effects in some people, they may not do so in
others.

Often pharmaceutical companies will use
robotic high-throughput screening assays to
test many thousands of molecules to see
if they bind to the target protein, and then
computational chemists will work to determine
the commonalities that allow them to bind to the
target as often the structure of the target protein
cannot be determined. The process of discovering
the commonalities across the different molecules
presents a great opportunity for machine learning
research. The first study of this task using
machine learning was by Dietterich, Lathrop,
and Lozano-Perez and led to the formulation of
multi-instance learning. Yet, another machine
learning task could be to predict the reactions of
the patients to the drugs.

High-Throughput Screening: When the tar-
get structure is unknown, it is a common prac-
tice to test many molecules (1,000,000) to find
some that bind to the target. This is called as
high-throughput screening. Hence, it is impor-
tant to infer the shape of the target from three-

156 Biomedical Informatics

Biomedical Informatics, Fig. 11 An example of struc-
ture learning

dimensional structural similarities. The shared
three-dimensional structure is called as pharma-
cophore. This is a perfect example of a machine
learning task with a spatial target and is presented
in Fig. 11.

Given: A set of molecules, each labeled by
activity (binding affinity for a target protein) and
a set of low-energy conformers for each molecule

Do: Learn a model that accurately predicts the
activity (may be Boolean or real valued).

The common machine learning approaches
taken toward solving this problem are:

1. Representing a molecule by thousands to mil-
lions of features and using standard techniques
(KDD 2001)

2. Representing each low-energy conformer by
feature vector and using multiple-instance
learning (Jain et al. 1994)

3. Relational learning – using either inductive
logic programming techniques (Finn et al.
1998) or graph mining

Thermolysin Inhibitors: We present some results
of relational learning algorithms on thermolysin
inhibitor data set (Davis 2007a). Thermolysin be-
longs to the family of metalloproteases and plays
roles in physiological processes such as digestion

and blood pressure regulation. The molecules
in the data set are known inhibitors of ther-
molysin. Activity for these molecules is mea-
sured in pKi D � log Ki , where Ki is a dis-
sociation constant, measuring the ratio of the
concentrations of bound product to unbound con-
stituents. A higher value indicates a stronger
affinity for binding. The data set that was used
had the ten lowest energy conformations (as com-
puted by the SYBYL software package [www.
tripos.com]) for each of 31 thermolysin inhibitors
along with their activity levels.

The key results for this data set using the rela-
tional algorithm SAYU (Davis 2007b) were:

• Ten five-point pharmacophores identified,
falling into two groups (7/10 molecules):
– Three “acceptors,” one hydrophobe, and

one donor
– Four “acceptors” and one donor

• Common core of Zn ligands, Arg203, and
Asn112 interactions identified

• Correct assignments of functional groups
• Correct geometry to 1 Å tolerance
• Increasing tolerance to 1.5 Å finds common

six-point pharmacophore including one extra
interaction

Antibacterial Peptides: This is a data set
of 11 pentapeptides showing activity against
Pseudomonas aeruginosa (Spatola et al. 1999).
There are six active pharmacophores with
<64 μg=ml of IC50 and five inactives. The
pharmacophore that has been identified is
presented in Table 1.

Dopamine Agonists: The last data set that we
present here consists of dopamine agonists (Mar-
tin et al. 1993). Dopamine works as a neurotrans-
mitter in the brain, where it plays a major role
in the movement control. Dopamine agonists are
molecules that function like dopamine and pro-
duce dopamine-like effects and can potentially be
used to treat diseases such as Parkinson’s disease.
The data set had 23 dopamine agonists along
with their activity levels. The pharmacophore
identified using inductive logic programming is
presented in Table 2.

www.tripos.com
www.tripos.com

Biomedical Informatics 157

B

Biomedical Informatics, Table 1 Identified pharmacophore

A molecule M is active against Pseudomonas aeruginosa if it has a conformation B such that:

M has a hydrophobic group C
M has a hydrogen acceptor D
The distance between C and D in conformation B is 11.7 Å
M has a positively charged atom E
The distance between C and E in conformation B is 4 Å
The distance between D and E in conformation B is 9.4 Å
M has a positively charged atom F
The distance between C and F in conformation B is 11.1 Å
The distance between D and F in conformation B is 12.6 Å
The distance between E and F in conformation B is 8.7 Å
Tolerance 1.5 Å

Biomedical Informatics, Table 2 Pharmacophore identified for dopamine agonists

Molecule A has the desired activity if:

• In conformation B molecule A contains a hydrogen acceptor at C
• In conformation B molecule A contains a basic nitrogen group at D
• The distance between C and D is 7:05966 ˙ 0:75 Å
• In conformation B molecule A contains a hydrogen acceptor at E
• The distance between C and E is 2:80871 ˙ 0:75 Å
• The distance between D and E is 6:36846 ˙ 0:75 Å
• In conformation B molecule A contains a hydrophobic group at F
• The distance between C and F is 2:68136 ˙ 0:75 Å
• The distance between D and F is 4:80399 ˙ 0:75 Å
• The distance between E and F is 2:74602 ˙ 0:75 Å

Electronic Medical Records (EMR) and
Personalized Medicine

Predictive personalized medicine (PPM) is a
vision of the future, whose parts are beginning
to come into place now. Under this vision,
physicians can construct safer and more effective
prevention and treatment plans for each patient.
This is rendered possible by predicting the impact
of treatments on patients – their effectiveness for
different classes of patients, adverse reactions
of certain drugs that are prescribed to the
patients, and susceptibility of different types
of patients to diseases. PPM can become a
reality due to three reasons: The first is the
widespread use by many clinics of electronic
medical records (EMR, also called as Electronic
Health Records – EHR). The second is that
whole-genome scan technology makes it possible
in one experiment, for well under $1,000, to
measure for one patient a half million to one
million SNPs or individual positions in the DNA

where humans vary. The third key reason is the
advancement of statistical modeling (machine
learning) methods in the past decade that can
handle large relational longitudinal databases
with significant amount of noise. The first two
reasons make it possible for the clinics to have
a relational database of the form presented in
Fig. 12.

Given such a database, it is conceivable to use
existing machine learning algorithms for achiev-
ing the goal of PPM. These algorithms could
focus on predicting which patients are at risk
(positive and negative examples). Another task
is predicting which patients will respond to a
specific treatment – a set of patients who have
undergone specific treatments in order to learn
predictive models that could be extended to simi-
lar patients of the population. Similarly, it is pos-
sible to focus on certain drugs and their adverse
reactions and use them to predict the adverse
reactions of similar drugs that are released in the
market. In this work, we focus on the machine

158 Biomedical Informatics

Patient ID Gender Birthdate Patient ID

Patient ID SNP1 SNP2 … SNP500K

P1 M 3/22/63

Date Physician Diagnosis

P1
P1

1/1/01
2/1/03

Smith
Jones

Palpitations
Fever, Aches

Patient ID Date Lab Test Result

P1

P1

1/1/01

1/9/01

42

45

P1

P2

AA

AB

AB

BB

BB

AA

Patient ID Date Prescribed Date Filled Physician Medication Dose Duration

P1 5/17/98 5/18/98 Jones Prilosec 10 mg 3 months

blood glucose

blood glucose

Hypoglycemic
influenza

Symptoms

Biomedical Informatics, Fig. 12 Electronic health records (dramatically simplified) – most data currently do not
include SNP information but are anticipated in the future

learning solutions to predict adverse drug reac-
tions for different drugs.

There are actually at least three different tasks
for machine learning in predicting adverse drug
events (ADEs).
Task 1:

Given: Patient data (from claims databases
and/or EMRs) and a drug D

Do: Construct a model to predict a minimum
efficacious dose of drug D, because a minimum
dose is less likely to induce an ADE.

An example of this task is predicting the
“stable dose” of the blood thinner warfarin
(Coumadin) for a patient (McCarty et al. 2005).
A stable dose of Warfarin yields the desired
degree of anticoagulation, whereas a higher dose
can lead to bleeding ADEs; the stable dose for
a patient is currently found by trial and error,
modifying the dose and measuring the degree
of anticoagulation. The cited study shows that a
learned dosing model can predict a significantly
better starting dose (significantly closer to the
final “stable dose”) than the 5 mg/day starting
dose currently used in many clinics.
Task 2:

Given: Patient data (from claims databases
and/or EMRs), a drug D, and an adverse event E

Do: Construct a model to predict which pa-
tients are likely to suffer the adverse event E if
they take D.

In this second task, we assume that the as-
sociation between D and E already has been
hypothesized. We seek to construct models that
can predict who will suffer a given event if they
take the drug. Here, whether the patient will
suffer adverse event E is the class variable to be
predicted. This task is important for personalized
medicine, as accurate models for this task can be
used to identify patients who should not be given
a particular drug. An earlier study has demon-
strated the benefit of a statistical relational learn-
ing (SRL) system called SAYU (Davis 2007b)
over standard machine learning approaches with
a feature-vector representation of the EHR for the
task of predicting which users of cox2 inhibitors
would have an MI.
Task 3:

Given: Patient data (from claims databases
and/or EMRs) and a drug D

Do: Determine if evidence exists that asso-
ciates D with a previously unanticipated adverse
event.

This third task is the most challenging because
no associated event has been hypothesized. There
is a need to identify the response variable to be
predicted. In brief, the major approach for this
task is to use machine learning “in reverse.” We
seek a model that can predict which patients are
on drug D using the data after they start the drug
(left censored) and also censoring the indications

Biomedical Informatics 159

B

of the drug. If a model can predict (with accuracy
better than chance on held-aside data) which
patients are taking the drug, there must be some
combination of variable settings more common
among patients on the drug. Because we have
left censored, in theory, this commonality should
not consist of common symptoms, but common
effects, presumably from the drug. The model
can then be examined by the experts to see if it
might indicate a possible new adverse event for
the drug.

The preceding use of machine learning “in
reverse” actually can be viewed as subgroup
discovery (Wrobel 1997; Klösgen 2002), finding
a subgroup of patients on drug D who share some
subsequent clinical events. The learned model –
say an if–then rule – need not correctly iden-
tify everyone on the drug but rather merely a
subgroup of those on the drug, while not gener-
ating many false positives (individuals not on the
drug). This task poses several different challenges
that traditional ML methods will find difficult to
handle.

First, the data is multi-relational. There are
several objects such as doctors, patients, drugs,
diseases, and labs that are connected through
relations such as visits, prescriptions, diagnoses,
etc. If traditional machine learning (ML) tech-
niques are to be employed on this problem, they
require flattening the data into a single table. All
known flattening techniques such as computing
a join or summary features result in either (1)
changes in frequencies on which machine learn-
ing algorithms critically depend or (2) loss of
information. They also typically result in loss
of some correlations between the objects and
explosion in database size. Second, the data is
non-i.i.d., as there are relationships between the
objects and between different rows within a table.
Third, there are arbitrary numbers of patient
visits, diagnoses, and prescriptions for different
patients. This is to say that there is no fixed
pattern in the diagnoses and prescriptions of the
patients. It is incorrect to assume that the patients
are diagnosed a fixed number of times or to
assume only the last diagnosis is relevant. To
predict the adverse reactions to a drug, it is
important to consider the other drugs that the
patient is prescribed or has been prescribed in

the past, as well as past diagnoses and laboratory
results. To capture these interactions, it is critical
to explicitly model time since the interactions are
highly temporal. Some drugs taken at the same
time can lead to side effects, while in some cases,
drugs taken after one another cause side effects.
It is important to capture such interactions to be
able to make useful predictions for the physicians
and the Federal Drug Authority (FDA). In this
work, we focus on this hardest task and present
the results on two data sets.

Cox2 Inhibitors: Recently, a study was
performed to see if there were any unanticipated
adverse events that occurred when subjects
used cox2 inhibitors (Vioxx, Celebrex, and
Bextra). Cox2 inhibitors are a nonsteroidal
anti-inflammatory class of drugs that were used
to reduce joint pain. Vioxx, Celebrex, and Bextra
were approved for use in the late 1990s and were
ranked as one of the top therapeutic drugs in the
USA. Several clinical trials were conducted,
and the APPROVe trial (focused on Vioxx
outcomes) showed an increase of adverse events
from myocardial infarction, stroke, and vascular
thrombosis. The manufacturer withdrew Vioxx
from the market shortly after the results were
published. The other cox2 inhibitor drugs were
discontinued shortly thereafter.

This study utilized the Marshfield Clinic’s Per-
sonalized Medicine Research Project (McCarty
et al. 2005) (PMRP) cohort consisting of ap-
proximately 19;700C subjects. The PMRP co-
hort included adults aged 18 years and older,
who reside in the Marshfield Epidemiology Study
Area (MESA). Marshfield has one of the oldest
internally developed electronic medical records
(Cattails MD) in the USA, with coded diagnoses
dating back to the early 1960s. Cattails MD has
over 13,000 users throughout central and north-
ern Wisconsin.

Since the data is multi-relational, an inductive
logic programming (Muggleton and De Raedt
1994) system, Aleph (Srinivasan 2001) was used
to learn the models. Aleph learns rules in the form
of Prolog clauses and scores rules by positive
examples covered (P) minus negative examples
covered (N). Seventy-five percent of the data was
used for training and rule development, while

160 Biomedical Informatics

Biomedical Informatics, Table 3 Cox2 inhibitor test
data results

Actual

Rule C �

C 438 158 596

� 269 549 818

707 707 1;414

Accuracy 0:69801

the remaining 25 % was used for testing. There
were 14,654 subjects within the PMRP cohort
that had medication records. Within this cohort,
almost 20 % of the subjects indicated use of
a cox2 inhibitor, and more specifically, 8.5 %
indicated the use of Vioxx. Approximately, 3.5 %
of this cohort had an indicated use of clopidogrel
biosulfate (Plavix).

Aleph generated thousands of rules and se-
lected a subset of the “best” rules that were
based on the scoring algorithm. The authors also
developed specific hypotheses to test for known
adverse events to validate the approach (indi-
cated by # A). This rule was: cox2(A):- diag-
noses(A, ,‘410’). It states that if finding (A),
the subject would have the diagnosis coded as
410 (myocardial infarction). Aleph also provided
summary statistics on model performance for
identifying subjects on cox2 inhibitors, as indi-
cated in Table 3. If we assume that the probability
of being on the cox2 inhibitor is greater than
5 (the common threshold), then the model has
a predictive probability of 69 % to predict cox2
inhibitor use.

OMOP Challenge: Observational Medical Out-
comes Partnership (OMOP) designed and devel-
oped an automated procedure to construct sim-
ulated data sets to identify adverse drug events.
The simulated data sets are modeled after real
observational data sources but are comprised of
hypothetical persons with fictional drug exposure
and health outcome occurrence. The data sets are
constructed such that the relationships between
the fictional drugs and fictional outcomes are well
characterized as true and false associations. That
is, hypothetical persons are created and assigned
fictional drug exposure periods and instances of
health outcomes based on random sampling from

probability distributions that define the relation-
ships between the fictional drugs and outcomes.
The relationships created within the simulated
data sets are contrived but are representative of
the types of relationships observed within real ob-
servational data sources. OMOP has made a sim-
ulated data set and the simulator itself publicly
available as part of the OMOP Cup Data Mining
Competition (http://omopcup.orwik.com).

Aleph was used to learn rules from a subset
of the data (about 10,000 patients). Each patient
had a record of drugs and diagnoses (conditions)
with dates attached. A few examples of the rules
learned by Aleph in this data set are:

on drug(A):-condition occurrence(B,C,A,D, E,3450,F,G,H)

on drug(A):- condition occurrence(B,C,A,D,E, 140,F,G,H)

condition occurrence(I,J,A,K,L, 1487,M,N,O)

The first rule identifies drug 3450 as interesting,
while the second rule identifies two other drugs
as interesting when predicting the reaction for
person A. With about 150 rules, Aleph was able
to achieve a 67 % coverage. The results were
compared against a statistical relational learning
technique (SRL) (Getoor and Taskar 2007) that
uses a probability distribution on the rules. The
results are presented in Fig. 13. As expected, with
a small number of rules, SRL has a better per-
formance than Aleph, but as the number of rules
increase, they converge on the same performance.

Lessons Learned: The lessons learned from
the EHR data and experiments are: (1) We do
not want to find patterns in the patients who get
prescribed a particular drug, because we already
know such patterns – they are the indications
of the drug. Therefore, it is important to censor
(omit) data about patients before they started
the drug. Nevertheless, this left censoring is in-
sufficient to guarantee that the learned models
describe only ADEs. Some diagnoses may get
repeated at a later date in the patient’s record.
There may be additional diagnoses, drugs, labs,
or vitals that are correlated with the indication
of the drug being studied. (2) Despite left cen-
soring, a high accuracy or highly accurate dis-
covered subgroup does not automatically mean

http://omopcup.orwik.com

Biomedical Informatics 161

B

Biomedical Informatics,
Fig. 13 Results of OMOP
data

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 3 5 10

A
cc

ur
ac

y

Number of Rules

Aleph SRL

we have uncovered one or more ADEs. Instead,
all rules must be vetted by a human expert to
determine if they are representative of an ADE or
of some other phenomenon such as that patients
on arthritis medication such as cox2 inhibitors
also suffer from other correlated ailments. Once
these associated conditions are also censored,
learning ideally should be rerun in case ADEs
were masked by other rules that scored better.
(3) Another lesson is that data is multi-relational,
including longitudinal (temporal), and hence may
be best analyzed by methods that can directly
handle such data. Nevertheless, the initial ap-
proach presented earlier does not make full use of
the relational nature of the data, especially of its
longitudinal nature. It would be desirable to take
into account time from drug exposure to events,
but this is a challenging direction because differ-
ent drugs can cause ADEs over different ranges
of time. Some drugs may cause an ADE only
within hours after they are taken, whereas others
may have permanent effects that only manifest
themselves as an ADE years later.

Identifying previously unanticipated ADEs,
predicting who is most at risk for an ADE, and
predicting safe and efficacious doses of drugs
for particular patients are all important needs for
society. With the recent advent of “paperless”
medical record systems, the pieces are in place
for machine learning to help meet these important
needs.

Conclusion

In this work, we aim to survey the abundant op-
portunities in biomedical applications to machine
learning researchers by presenting several data
types to which machine learning techniques have
been applied successfully or showing tremendous
promise. One of the most important develop-
ments in biology and medicine over the last few
years is the availability of technologies that can
produce large volumes of data. This in turn has
necessitated the need for processing large vol-
umes of data in a reasonable amount of time, pre-
senting the perfect setting for machine learning
algorithms to have an impact. We outlined several
data types including gene expression microarrays
(measuring mRNA), mass spectrometry (mea-
suring proteins), SNP chips (measuring genetic
variation), and electronic medical/health records
(EMR/EHRs).

The key lessons learned from all these data
types are as follows: (1) Even if the number
of features is greater than the number of data
points (e.g., predicting cancer from microarray
data), we can do well provided the features are
highly predictive. (2) Careful randomization of
data samples is necessary. (3) It is very easy to
overfit the data, and hence robust techniques such
as voted decision stumps, naive Bayes, or linear
SVMs are in general very useful tools for such
data sets. (4) Bayes nets do not give us causality,

162 Biomedical Informatics

and hence knockout experiments (active learning)
and DBNs with time-series data can help. (5)
Multi-relational methods such as SRL and ILP
are helpful for predictive personalized medicine
due to the relational nature of the data. (6) Mostly,
the collaborators are interested in measures other
than just accuracy. Comprehensibility, privacy,
and ranking are other criteria that are important
to biologists.

This chapter is necessarily incomplete because
so many exciting tasks and data types exist within
biology and medicine. While we have touched
on many of the leading such data types, other
related ones also exist. For example, there are
many opportunities in analyzing genomic and
protein sequences (�Learning Models of Biolog-
ical Sequences). Other opportunities exist within
phylogenetics, for example, see work by Heck-
erman and colleagues on HIV (Carlson et al.
2009). New technologies such as optical map-
ping are constantly being developed and refined
(Ananiev et al. 2008). Machine learning has great
potential for developing models for computer-
aided diagnosis (CAD), for example, for mam-
mography (Burnside et al. 2009). Data types
such as metabolomics and auxotrophic growth
experiments raise opportunities for active learn-
ing and for automatic revision of biological net-
work models, for example, as in the Robot Sci-
entist projects (Jones et al. 2004; Oliver et al.
2009). Incorporation of multiple data types can
further help in mapping out the regulatory entities
and networks of an organism (Noto and Craven
2006). It is our hope that this article will encour-
age some machine learning researchers to delve
deeper into these and other related opportunities.

Cross-References

�Learning Models of Biological Sequences

Recommended Reading

Ananiev GE, Goldstein S, Runnheim R, Forrest DK,
Zhou S, Potamousis K, Churas CP, Bergendah V,
Thomson JA, David C (2008). Schwartz1. Optical

mapping discerns genome wide DNA methylation
profiles. BMC Mol Biol 9. doi:10.1186/1471-2199-
9-68.

Baggerly K, Morris JS, Combes KR (2004) Repro-
ducibility of seldi-tof protein patterns in serum:
comparing datasets from different experiments.
Bioinformatics 20:777–785

Bonneau R, Baker D (2001) Ab initio protein structure
prediction: progress and prospects. Ann Rev Bio-
phys Biomol Struct 30:173–189

Burnside ES, Davis J, Chhatwal J, Alagoz O,
Lindstrom MJ, Geller BM, Littenberg B, Kahn
CE, Shaffer K, Page D (2009) Unique fea-
tures of HLA-mediated hiv evolution in a Mexi-
can cohort: a comparative study. Radiology 251:
663–672

Carlson J, Valenzuela-Ponce H, Blanco-Heredia J,
Garrido-Rodriguez D, Garcia-Morales C, Hecker-
man D et al (2009) Unique features of HLA-
mediated HIV evolution in a Mexican cohort: a
comparative study. Retrovirology 6(72):39

Davis J, Santos Costa V, Ray S, Page D (2007a)
An integrated approach to feature construction and
model building for drug activity prediction. In: Pro-
ceedings of the 24th international conference on
machine learning (ICML), Corvalis

Davis J, Ong I, Struyf J, Burnside E, Page D, San-
tos Costa V (2007b) Change of representation for
statistical relational learning. In: Proceedings of
the 20th international joint conference on artificial
intelligence (IJCAI), Hyderabad

DiMaio F, Kondrashov D, Bitto E, Soni A, Bingman C,
Phillips G, Shavlik J (2007) Creating protein models
from electron-density maps using particle-filtering
methods. Bioinformatics 23:2851–2858

Easton DF, Pooley KA, Dunning AM, Pharoah PD
et al (2007) Genome-wide association study iden-
tifies novel breast cancer susceptibility loci. Nature
447:1087–1093

Finn P, Muggleton S, Page D, Srinivasan A (1998)
Discovery of pharmacophores using the inductive
logic programming system PROGOL. Mach Learn
30(1,2):241–270

Friedman N (2000) Being Bayesian about network
structure. Mach Learn 50:95–125

Friedman N, Halpern J (1999) Modeling beliefs in
dynamic systems. Part II: revision and update. J AI
Res 10:117–167

Furey TS, Cristianini N, Duffy N, Bednarski BW,
Schummer M, Haussler D (2000) Support vector
classification and validation of cancer tissue sam-
ples using microarray expression. Bioinformatics
16(10):906–914

Getoor L, Taskar B (2007) Introduction to statistical
relational learning. MIT, Cambridge

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasen-
beek M, Mesirov JP et al (1999) Molecular clas-
sification of cancer: class discovery and class pre-
diction by gene expression monitoring. Science
286:531–537

http://dx.doi.org/10.1007/978-1-4899-7687-1_468
http://dx.doi.org/10.1007/978-1-4899-7687-1_468

Blog Mining 163

B

Hardin J, Waddell M, Page CD, Zhan F, Barlogie B,
Shaugh-nessy J et al (2004) Evaluation of multi-
ple models to distinguish closely related forms of
disease using DNA microarray data: an application
to multiple myeloma. Stat Appl Gene Mol Biol
3(1):1018

Jain AN, Dietterich TG, Lathrop RH, Chapman D,
Critchlow RE, Bauer BE et al (1994) Compass: a
shape-based machine learning tool for drug design.
Aided Mol Des 8(6):635–652

Jones KE, Reiser FM, Bryant PGK, Muggleton CH,
Kell S, King DB et al (2004) Functional genomic
hypothesis generation and experimentation by a
robot scientist. Nature 427:247–252

KDD Cup (2001) http://pages.cs.wisc.edu/-dpage/
kddcup2001/

Klösgen W (2002) Handbook of data mining and
knowledge discovery, chapter 16.3: subgroup dis-
covery. Oxford University Press, New York

Listgarten J, Damaraju S, Poulin B, Cook L, Du-
four J, Driga A et al (2004) Predictive models for
breast cancer susceptibility from multiple single nu-
cleotide polymorphisms. Clin Cancer Res 10:2725–
2737

Mardis ER (2006) Anticipating the 1,000 dollar
genome. Genome Biol 7(7):112

Martin YC, Bures MG, Danaher EA, DeLazzer J,
Lico II, Pavlik PA (1993) A fast new approach
to pharmacophore mapping and its application to
dopaminergic and benzodiazepine agonists. J Com-
put Aided Mol Des 8:751–758

McCarty C, Wilke RA, Giampietro PF, Wesbrook
SD, Caldwell MD (2005) Personalized medicine
research project (PMRP): design, methods and re-
cruitment for a large population-based biobank. Per-
sonal Med 2:49–79

Molla M, Waddell M, Page D, Shavlik J (2004)
Using machine learning to design and inter-
pret gene expression microarrays. AI Mag 25(1):
23–44

Muggleton S, De Raedt L (1994) Inductive logic
programming: theory and methods. J Log Program
19(20):629–679

Noto K, Craven M (2006) A specialized learner for
inferring structured cis-regulatorymodules. BMC
Bioinform 7(528). doi:10.1186/1471-2105-7-528

Oliver SG, Young M, Aubrey W, Byrne E, Liakata M,
Markham M et al (2009) The automation of science.
Science 324:85–89

Ong I, Glassner J, Page D (2002) Modelling regulatory
pathways in E.coli from time series expression pro-
files. Bioinformatics 18:241S–248S

Pe’er D, Regev A, Elidan G, Friedman N (2001)
Inferring subnetworks from perturbed expression
profiles. Bioinformatics 17:215–224

Perou C, Jeffrey S, Van De Rijn M, Rees CA, Eisen
MB, Ross, DT et al (1999) Distinctive gene expres-
sion patterns in human mammary epithelial cells
and breast cancers. Proc Natl Acad Sci 96:9212–
9217

Petricoin EF III, Ardekani AM, Hitt BA, Levine PJ,
Fusaro VA, Steinberg SM et al (2002) Use of pro-
teomic patterns in serum to identify ovarian cancer.
Lancet 359:572–577

Rost B, Sander C (1993) Prediction of protein sec-
ondary structure at better than 70 accuracy. J Mol
Biol 232:584–599

Segal E, Pe’er D, Regev A, Koller D, Friedman N
(2005) Learning module networks. J Mach Learn
Res 6:557–588

Spatola A, Page D, Vogel D, Blondell S, Crozet Y
(1999) Can machine learning and combinatorial
chemistry co-exist? In: Proceedings of the Ameri-
can peptide symposium, Minneapolis. Kluwer Aca-
demic

Srinivasan A (2001) The aleph manual. http://web.
comlab.ox.ac.uk/oucl/research/areas/machlearn/
Aleph/

Storey JD, Tibshirani R (2003) Statistical signifi-
cance for genome-wide studies. Proc Natl Acad Sci
100:9440–9445

The International Warfarin Pharmacogenetics Consor-
tium (2009) Estimation of the Warfarin dose with
clinical and pharmacogenetic data. N Engl J Med
360:753–764

Tucker A, Vinciotti V, Hoen PAC, Liu X, Famili AF
(2005) Bayesian network classifiers for time-series
microarray data. Adv Intell Data Anal VI 3646:475–
485

Van’t Veer LL, Dai H, van de Vijver MM, He Y, Hart
A, Mao M et al (2002) Gene expression profiling
predicts clinical outcome of breast cancer. Nature
415:530–536

Waddell M, Page D, Shaughnessy J Jr (2005) Pre-
dicting cancer susceptibility from single-nucleotide
polymorphism data: a case study in multiple
myeloma. In: BIOKDD’05: proceedings of the fifth
international workshop on bioinformatics, Chicago

Wrobel S (1997) An algorithm for multi-relational
discovery of subgroups. In: European symposium
on principles of KDD, Trondheim. Lecture notes in
computer science. Springer, pp 78–87

Zhang X, Mesirov JP, Waltz DL (1992) Hybrid system
for protein secondary structure prediction. J Mol
Biol 225:81–92

Zou M, Conzen SD (2005) A new dynamic Bayesian
network approach for identifying gene regulatory
networks from time course microarray data. Bioin-
formatics 21:71–79

Blog Mining

Blog mining is the application of data mining
(in particular, Web mining) techniques on blogs,
adapted to the content, format, and language of
the medium blog. A blog is a (more or less) fre-

http://pages.cs.wisc.edu/-dpage/kddcup2001/
http://pages.cs.wisc.edu/-dpage/kddcup2001/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

164 Boltzmann Machines

quently updated publication on the Web, sorted
in (usually reverse) chronological order of the
constituent blog posts. As in other areas of the
Web, mining is applied to the content of blogs, to
the various types of links between blogs, and to
blog-related behavior. The latter comprises blog
authoring including link setting, blog reading
and commenting, and querying (often in blog
search engines). For more details on blogs and
on mining them, see � text mining for news and
blogs analysis.

Boltzmann Machines

Geoffrey Hinton
University of Toronto, Toronto, ON, Canada

Definition

A Boltzmann machine is a network of symmet-
rically connected, neuron-like units that make
stochastic decisions about whether to be on or off.
Boltzmann machines have a simple learning al-
gorithm (Hinton and Sejnowski 1983) that allows
them to discover interesting features that repre-
sent complex regularities in the training data. The
learning algorithm is very slow in networks with
many layers of feature detectors, but it is fast
in “restricted Boltzmann machines” that have a
single layer of feature detectors. Many hidden
layers can be learned efficiently by composing
restricted Boltzmann machines, using the feature
activations of one as the training data for the next.

Boltzmann machines are used to solve two
quite different computational problems. For a
search problem, the weights on the connections
are fixed and are used to represent a cost func-
tion. The stochastic dynamics of a Boltzmann
machine then allow it to sample binary state
vectors that have low values of the cost function.
For a learning problem, the Boltzmann machine
is shown a set of binary data vectors, and it
must learn to generate these vectors with high
probability. To do this, it must find weights on

the connections so that relative to other possible
binary vectors, the data vectors have low values
of the cost function. To solve a learning problem,
Boltzmann machines make many small updates
to their weights, and each update requires them
to solve many different search problems.

Motivation and Background

The brain is very good at settling on a sensible
interpretation of its sensory input within a few
hundred milliseconds, and it is also very good,
over a much longer timescale, at learning the
code that is used to express its interpretations. It
achieves both the settling and the learning using
spiking neurons which, over a period of a few
milliseconds, have a state of 1 or 0. These neurons
have intrinsic noise caused by the quantal release
of vesicles of neurotransmitter at the synapses
between the neurons.

Boltzmann machines were designed to model
both the settling and the learning and were based
on two seminal ideas that appeared in 1982.
Hopfield (1982) showed that a neural network
composed of binary units would settle to a mini-
mum of a simple, quadratic energy function pro-
vided that the units were updated asynchronously
and the pairwise connections between units were
symmetrically weighted. Kirkpatrick et al. (1983)
showed that systems that were settling to energy
minima could find deeper minima if noise was
added to the update rule so that the system could
occasionally increase its energy to escape from
poor local minima.

Adding noise to a Hopfield net allows it to
find deeper minima that represent more probable
interpretations of the sensory data. More signif-
icantly, by using the right kind of noise, it is
possible to make the log probability of finding
the system in a particular global configuration
be a linear function of its energy. This makes it
possible to manipulate log probabilities by ma-
nipulating energies, and since energies are simple
local functions of the connection weights, this
leads to a simple, local learning rule.

http://dx.doi.org/10.1007/978-1-4899-7687-1_831

Boltzmann Machines 165

B

Structure of Learning System

The learning procedure for updating the connec-
tion weights of a Boltzmann machine is very
simple, but to understand why it works, it is
first necessary to understand how a Boltzmann
machine models a probability distribution over a
set of binary vectors and how it samples from this
distribution.

The Stochastic Dynamics of a Boltzmann
Machine
When unit i is given the opportunity to update
its binary state, it first computes its total input,
xi , which is the sum of its own bias, bi , and the
weights on connections coming from other active
units:

xi D bi C
X

j

sj wij (1)

where wij is the weight on the connection be-
tween i and j and sj is 1 if unit j is on and 0,
otherwise. Unit i then turns on with a probability
given by the logistic function

prob.si D 1/ D
1

1C e�xi
(2)

If the units are updated sequentially in any or-
der that does not depend on their total inputs, the
network will eventually reach a Boltzmann dis-
tribution (also called its equilibrium or stationary
distribution) in which the probability of a state
vector, v, is determined solely by the “energy”
of that state vector relative to the energies of all
possible binary state vectors:

P.v/ D e�E.v/=
X

u

e�E.u/ (3)

As in Hopfield nets, the energy of state vector
v is defined as

E.v/ D �
X

i

sv
i bi �

X

i<j

sv
i sv

j wij (4)

where sv
i is the binary state assigned to unit i by

state vector v.

If the weights on the connections are chosen
so that the energies of state vectors represent the
cost of those state vectors, then the stochastic
dynamics of a Boltzmann machine can be viewed
as a way of escaping from poor local optima
while searching for low-cost solutions. The total
input to unit i , xi , represents the difference in
energy depending on whether the unit is off or
on, and the fact that unit i occasionally turns
on even if xi is negative means that the energy
can occasionally increase during the search, thus
allowing the search to jump over energy barriers.

The search can be improved by using sim-
ulated annealing. This scales down all of the
weights and energies by a factor, T , which is
analogous to the temperature of a physical sys-
tem. By reducing T from a large initial value
to a small final value, it is possible to benefit
from the fast equilibration at high temperatures
and still have a final equilibrium distribution that
makes low-cost solutions much more probable
than high-cost ones. At a temperature of 0, the up-
date rule becomes deterministic and a Boltzmann
machine turns into a Hopfield network.

Learning in Boltzmann Machines Without
Hidden Units
Given a training set of state vectors (the data), the
learning consists of finding weights and biases
(the parameters) that make those state vectors
good. More specifically, the aim is to find weights
and biases that define a Boltzmann distribution in
which the training vectors have high probability.
By differentiating (3) and using the fact that

@E.v/=@wij D �sv
i sv

j (5)

it can be shown that

@ log P.v/

@wij

�

data

D hsi sj idata � hsi sj imodel (6)

where h�idata is an expected value in the data
distribution and h�imodel is an expected value when
the Boltzmann machine samples state vectors
from its equilibrium distribution at a tempera-
ture of 1. To perform gradient ascent in the log

166 Boltzmann Machines

probability that the Boltzmann machine would
generate the observed data when sampling from
its equilibrium distribution, wij is incremented by
a small learning rate times the RHS of (6). The
learning rule for the bias, bi , is the same as (6),
but with sj omitted.

If the observed data specifies a binary state for
every unit in the Boltzmann machine, the learning
problem is convex: there are no nonglobal optima
in the parameter space. However, sampling from
h�imodel may involve overcoming energy barriers
in the binary state space.

Learning with Hidden Units
Learning becomes much more interesting if the
Boltzmann machine consists of some “visible”
units whose states can be observed and some
“hidden” units whose states are not specified
by the observed data. The hidden units act as
latent variables (features) that allow the Boltz-
mann machine to model distributions over visible
state vectors that cannot be modeled by direct
pairwise interactions between the visible units.
A surprising property of Boltzmann machines is
that, even with hidden units, the learning rule
remains unchanged. This makes it possible to
learn binary features that capture higher-order
structure in the data. With hidden units, the ex-
pectation hsi sj idata is the average, over all data
vectors, of the expected value of si sj when a
data vector is clamped on the visible units, and
the hidden units are repeatedly updated until they
reach equilibrium with the clamped data vector.

It is surprising that the learning rule is so sim-
ple because @ log P.v/=@wij depends on all the
other weights in the network. Fortunately, the lo-
cally available difference in the two correlations
in (6) tells wij everything it needs to know about
the other weights. This makes it unnecessary to
explicitly propagate error derivatives, as in the
backpropagation algorithm.

Different Types of Boltzmann Machine
The stochastic dynamics and the learning rule
can accommodate more complicated energy
functions (Sejnowski 1986). For example, the
quadratic energy function in (4) can be replaced
by an energy function that has typical term

si sj skwijk . The total input to unit i that is used
in the update rule must then be replaced by

xi D bi C
X

j <k

sj skwijk: (7)

The only change in the learning rule is that si sj

is replaced by si sj sk .
Boltzmann machines model the distribution of

the data vectors, but there is a simple extension,
the “conditional Boltzmann machine” for model-
ing conditional distributions (Ackley et al. 1985).
The only difference between the visible and the
hidden units is that when sampling hsi sj idata, the
visible units are clamped and the hidden units
are not. If a subset of the visible units are also
clamped when sampling hsi sj imodel, this subset
acts as “input” units and the remaining visible
units act as “output” units. The same learning rule
applies, but now it maximizes the log probabili-
ties of the observed output vectors conditional on
the input vectors.

Instead of using units that have stochastic
binary states, it is possible to use “mean field”
units that have deterministic, real-valued states
between 0 and 1, as in an analog Hopfield net.
Equation (2) is used to compute an “ideal” value
for a unit’s state, given the current states of the
other units, and the actual value is moved toward
the ideal value by some fraction of the differ-
ence. If this fraction is small, all the units can
be updated in parallel. The same learning rules
can be used by simply replacing the stochastic,
binary values by the deterministic real values
(Peterson and Anderson 1987), but the learn-
ing algorithm is hard to justify and the mean
field nets have problems in modeling multimodal
distributions.

The binary stochastic units used in Boltzmann
machines can be generalized to “softmax” units
that have more than two discrete values, Gaussian
units whose output is simply their total input plus
Gaussian noise, binomial units, Poisson units,
and any other type of unit that falls in the expo-
nential family (Welling et al. 2005). This family
is characterized by the fact that the adjustable
parameters have linear effects on the log proba-
bilities. The general form of the gradient required

Boltzmann Machines 167

B

for learning is simply the change in the sufficient
statistics caused by clamping data on the visible
units.

The Speed of Learning
Learning is typically very slow in Boltzmann
machines with many hidden layers because large
networks can take a long time to approach their
equilibrium distribution, especially when the
weights are large and the equilibrium distribution
is highly multimodal, as it usually is when the
visible units are unclamped. Even if samples
from the equilibrium distribution can be obtained,
the learning signal is very noisy because it is the
difference of two sampled expectations. These
difficulties can be overcome by restricting the
connectivity, simplifying the learning algorithm,
and learning one hidden layer at a time.

Restricted Boltzmann Machines
A restricted Boltzmann machine (Smolensky
1986) consists of a layer of visible units and
a layer of hidden units with no visible-visible
or hidden-hidden connections. With these
restrictions, the hidden units are conditionally
independent given a visible vector, so unbiased
samples from hsi sj idata can be obtained in
one parallel step. To sample from hsi sj imodel

still requires multiple iterations that alternate
between updating all the hidden units in parallel
and updating all of the visible units in parallel.
However, learning still works well if hsi sj imodel

is replaced by hsi sj ireconstruction which is obtained
as follows:

1. Starting with a data vector on the visible units,
update all of the hidden units in parallel.

2. Update all of the visible units in parallel to get
a “reconstruction.”

3. Update all of the hidden units again.

This efficient learning procedure approxi-
mates gradient descent in a quantity called
“contrastive divergence” and works well in
practice (Hinton 2002).

Learning Deep Networks by Composing
Restricted Boltzmann Machines
After learning one hidden layer, the activity vec-
tors of the hidden units, when they are being
driven by the real data, can be treated as “data”
for training another restricted Boltzmann ma-
chine. This can be repeated to learn as many
hidden layers as desired. After learning multiple
hidden layers in this way, the whole network
can be viewed as a single, multilayer generative
model, and each additional hidden layer improves
a lower bound on the probability that the mul-
tilayer model would generate the training data
(Hinton et al. 2006).

Learning one hidden layer at a time is a very
effective way to learn deep neural networks with
many hidden layers and millions of weights.
Even though the learning is unsupervised, the
highest-level features are typically much more
useful for classification than the raw data vectors.
These deep networks can be fine-tuned to be bet-
ter at classification or dimensionality reduction
using the backpropagation algorithm (Hinton and
Salakhutdinov 2006). Alternatively, they can be
fine-tuned to be better generative models using
a version of the “wake-sleep” algorithm Hinton
et al. (2006).

Relationships to Other Models
Boltzmann machines are a type of Markov ran-
dom field (see �Graphical Models), but most
Markov random fields have simple, local interac-
tion weights which are designed by hand rather
than being learned. Boltzmann machines are also
like Ising models, but Ising models typically use
random or hand-designed interaction weights.
The search procedure for Boltzmann machines is
an early example of Gibbs sampling, a �Markov
chain Monte Carlo method which was invented
independently (Geman and Geman 1984) and
was also inspired by simulated annealing.

Boltzmann machines are a simple type of
undirected graphical model. The learning algo-
rithm for Boltzmann machines was the first learn-
ing algorithm for undirected graphical models
with hidden variables (Jordan 1998). When re-
stricted Boltzmann machines are composed to
learn a deep network, the top two layers of the

http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_952

168 Boosting

resulting graphical model form an undirected
Boltzmann machine, but the lower layers form a
directed acyclic graph with directed connections
from higher layers to lower layers (Hinton et al.
(2006)).

Conditional random fields (Lafferty et al.
2001) can be viewed as simplified versions of
higher-order, conditional Boltzmann machines
in which the hidden units have been eliminated.
This makes the learning problem convex but
removes the ability to learn new features.

Recommended Reading

Ackley D, Hinton G, Sejnowski T (1985) A Learn-
ing algorithm for Boltzmann machines. Cognit Sci
9(1):147–169

Geman S, Geman D (1984) Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration
of images. IEEE Trans Pattern Anal Mach Intell
6(6):721–741

Hopfield JJ (1982) Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proc Natl Acad Sci U S A 79:2554–2558

Hinton GE (2002) Training products of experts by
minimizing contrastive divergence. Neural Comput
14(8):1711–1800

Hinton GE, Osindero S, Teh YW (2006) A fast learn-
ing algorithm for deep belief nets. Neural Comput
18:1527–1554

Hinton GE, Salakhutdinov RR (2006) Reducing the di-
mensionality of data with neural networks. Science
313:504–507

Hinton GE, Sejnowski TJ (1983) Optimal perceptual
inference. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, Wash-
ington, DC, pp 448–453

Jordan MI (1998) Learning in graphical models. MIT,
Cambridge

Kirkpatrick S, Gelatt DD, Vecci MP (1983)
Optimization by simulated annealing. Science
220(4598):671–680

Lafferty J, McCallum A, Pereira F (2001) Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In: Proceedings of the
18th international conference on machine learning,
Williamstown, pp 282–289. Morgan Kaufmann, San
Francisco

Peterson C, Anderson JR (1987) A mean field theory
learning algorithm for neural networks. Complex
Syst 1(5):995–1019

Sejnowski TJ (1986) Higher-order Boltzmann ma-
chines. AIP Conf Proc 151(1):398–403

Smolensky P (1986) Information processing in dy-
namical systems: foundations of harmony theory.

In: Rumelhart DE, McClelland JL (eds) Parallel
distributed processing. Foundations, vol 1. MIT,
Cambridge, pp 194–281 Press.

Welling M, Rosen-Zvi M, Hinton GE (2005) Expo-
nential family harmoniums with an application to
information retrieval. In: Lawrence K. Saul, Yair
Weiss and Leon Bottou (eds) Advances in neural
information processing systems, vol 17. MIT, Cam-
bridge, pp 1481–1488

Boosting

Boosting is a family of � ensemble learning
methods. The Boosting framework is an answer
to a question posed on whether two complexity
classes of learning problems are equivalent:
strongly learnable, and weakly learnable. The
Boosting framework is a proof by construction
that the answer is positive, they are equivalent.
The framework allows a “weak” model, only
slightly better than random guessing, to be
boosted into an arbitrarily accurate strong model.
�Adaboostis the most well known and successful
of the Boosting family, though there exist many
variants specialized for particular tasks, such as
cost-sensitive and noise-tolerant versions. See
� ensemble learning for full details.

Bootstrap Sampling

Definition

Bootstrap sampling is a process for creating a
distribution of datasets out of a single dataset.
It is used in the � ensemble learning algorithm
�Bagging. It can also be used in � algorithm
evaluation to create a distribution of training sets
from which to estimate properties of an algo-
rithm.

Recommended Reading

Davison AC, Hinkley D (2006) Bootstrap methods and
their applications, 8th edn. Cambridge series in sta-
tistical and probabilistic mathematics. Cambridge
University Press, Cambridge

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_18

Breakeven Point 169

B

Bottom Clause

Synonyms

Saturation; Starting clause

Definition

The bottom clause is a notion from the field of
� inductive logic programming. It is used to refer
to the most specific hypothesis covering a par-
ticular example when learning from entailment.
When � learning from entailment, a hypothesis
H covers an example e relative to the background
theory B if and only if B ^ H � e, that is,
B together with H � entails the example e. The
bottom clause is now the most specific clause
satisfying this relationship w.r.t the background
theory B and a given example e.

For instance, given the background
theory B

bird :- blackbird.
bird :- ostrich.

and the example e:

flies :- blackbird, normal.

the bottom clause is H

flies :- bird, blackbird, normal.

The bottom clause can be used to constrain
the search for clauses covering the given example
because all clauses covering the example relative
to the background theory should be more general
than the bottom clause. The bottom clause can be
computed using inverse entailment.

Cross-References

�Entailment
� Inductive Logic Programming
� Inverse Entailment
�Logic of Generality

Bounded Differences Inequality

�McDiarmid’s Inequality

BP

�Backpropagation

Breakeven Point

More accurately described as precision–recall
BEP, it is an evaluation measure originally in-
troduced in the field of information retrieval to
evaluate retrieval systems that return a list of doc-
uments ordered by their supposed relevance to
the user’s information need (see also �Document
Classification). It can also be used to evalu-
ate any classification model f that addresses a
two-class classification problem but outputs real-
valued predictions f .x/ instead of binary ones.
To use such a classifier in practice, one would
select a threshold � and predict an instance x to
be positive if f .x/ > � and negative otherwise.
Thus, the � precision and � recall of this system
depend on the choice of the threshold � . A lower
threshold means higher recall, but usually also
lower precision. At some point (when the number
of instances predicted to be positive is the same
as the actual number of positive instances), preci-
sion and recall are equal; this value of precision
and recall is known as the precision–recall BEP.
It is a useful measure of the quality of our
classifier because it gives us guidance into what
sort of tradeoffs are available to the user of such a
classifier via the choice of threshold: if we want a
precision above the BEP, we must accept that our
recall will be below the BEP, and vice versa. A
different meaning of the term “breakeven point”
is sometimes used in ROC (�ROC Analysis),
where the ROC breakeven is defined as the point
where the true positive rate and the false posi-
tive rate sum to 1; smaller values of the ROC
breakeven are better than larger ones. Informally,
the ROC breakeven measures how close the ROC
curve gets to the “ROC sweet spot” in the top left
corner (where the � true positive rate is 1 and the
� false positive rate is 0).

http://dx.doi.org/10.1007/978-1-4899-7687-1_100416
http://dx.doi.org/10.1007/978-1-4899-7687-1_100444
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_117
http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_415
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_521
http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://dx.doi.org/10.1007/978-1-4899-7687-1_300

C

Candidate-Elimination Algorithm

Mitchell’s, (1982; 1997) candidate-elimination
algorithm performs a bidirectional search in the
� hypothesis space. It maintains a set, S , of most
specific hypotheses that are consistent with the
training data and a set, G, of most general hy-
potheses consistent with the training data. These
two sets form two boundaries on the version
space.

Recommended Reading

Mitchell TM (1982) Generalization as search Artif
Intell 18(2):203–226

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Cannot-Link Constraint

A pairwise constraint between two items indi-
cating that they should be placed into different
clusters in the final partition.

Cascade Correlation

Thomas R. Shultz1 and Scott E. Fahlman2

1McGill University, Montréal, QC, Canada
2Carnegie Mellon University, Pittsburgh,
PA, USA

Synonyms

Cascor; CC

Definition

Cascade–correlation (often abbreviated as “Cas-
cor” or “CC”) is a supervised learning algo-
rithm for artificial neural networks. It is related
to the back-propagation algorithm (“backprop”).
CC differs from backprop in that a CC network
begins with no hidden units and then adds units
one by one, as needed during learning.

Each new hidden unit is trained to correlate
with residual error in the network built so far.
When it is added to the network, the new unit
is frozen, in the sense that its input weights are
fixed. The hidden units form a cascade: each

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_100043
http://dx.doi.org/10.1007/978-1-4899-7687-1_100050

172 Cascade Correlation

new unit receives weighted input from all the
original network inputs and from the output of
every previously created hidden unit. This cas-
cading creates a network that is as deep as the
number of hidden units. Stated another way, the
CC algorithm is capable of efficiently creating
complex, higher-order nonlinear basis functions –
the hidden units – which are then combined to
form the desired outputs.

The result is an algorithm that learns com-
plex input/output mappings very fast compared
to backprop and that builds a multilayer network
structure that is customized for the problem at
hand.

Motivation and Background

Cascade–correlation was designed (Fahlman and
Lebiere 1990) to address two well-known prob-
lems with the popular back-propagation algo-
rithm (“backprop”). First, a backprop user has to
guess what network structure – the number of
hidden layers and the number of units in each
layer – would be best for a given learning prob-
lem. If the network is too small or too shallow,
it won’t solve the problem; if it is too large or
too deep, training is very slow, and the network
is prone to overfitting the training data. Because
there is no reliable way to choose a good structure
before training begins, most backprop users have
to train many different structures before finding
one that is well matched to the task.

Second, even if a backprop user manages to
choose a good network structure, training is gen-
erally very slow. That is particularly true in net-
works with many hidden units or with more than
one hidden layer. One cause of slow learning
in backprop is the use of a uniform learning
rate parameter for updating network weights.
This problem was addressed with the Quickprop
algorithm (Fahlman 1988), an approximation to
Newton’s method that adapts the learning rate
for each weight parameter depending on the first
two derivatives of the local error surface. Quick-
prop improved learning speed, sometimes dra-
matically, but learning was still too slow in large
or deep networks.

Another cause of slow learning in backprop is
the “herd effect” (Fahlman and Lebiere 1990).
If the solution to a network problem requires,
say, 30 hidden units, each of these units must be
trained to do a different job – that is, to compute
a different nonlinear basis function. Each hidden
unit starts with a different and randomly chosen
set of input weights; but if the units are all trained
at once, they all see the same error signal. There
is no central authority telling each unit to do
a separate job, so they tend to drift toward the
same part of parameter space, forming a herd
that moves around together. Eventually, the units
may drift apart and begin to differentiate, but
there is nothing to compel this, so the process
is slow and unreliable. Usually, in selecting an
initial topology for a backprop net, it is necessary
to include many extra hidden units to increase the
odds that each job will be done by some unit.

CC addresses this problem by introducing and
training hidden units one by one. Each hidden
unit sees a strong, clear error gradient, not con-
fused by the simultaneous movement of other
hidden units. A new hidden unit can thus move
quickly and decisively to a position in param-
eter space where it can perform a useful func-
tion, reducing the residual error. One by one,
Cascor-hidden units take up distinct jobs, instead
of milling about together competing to do the
same job.

Structure of Learning System

The Algorithm
The CC architecture is illustrated in Fig. 1. It
begins with some inputs and one or more output
units, but no hidden units. The numbers of inputs
and outputs are dictated by the problem. As in
backprop, the output units generally have a sig-
moid activation function, but could alternatively
have a linear activation function. Every input is
connected to every output unit by a connection
with an adjustable weight. There is also a bias
input, permanently set toC1.

Hidden units are added to the network one by
one. Each new hidden unit receives a weighted
connection from each of the network’s original

Cascade Correlation 173

C

Outputs

Outputs

Outputs

Initial network
No hidden units

Inputs

After adding first
Hidden unit

After adding second
Hidden unit

+1

Inputs

+1

Inputs

+1

Cascade Correlation, Fig. 1 The Cascade–correlation
(CC) architecture, as new hidden units are added. Black
circles are frozen connection weights; white circles are

weights trained during output training phase. The vertical
lines sum all incoming activation

inputs and also from every existing hidden unit.
Each new unit therefore adds a new single-unit
layer to the network. This makes it possible
to create high-order nonlinear feature detectors,
customized for the problem at hand.

As noted, learning begins without hidden
units. The direct input–output connections are

trained as well as possible over the entire set of
training examples, using Quickprop. At some
point, this training approaches an asymptote.
When no significant error reduction has occurred
after a certain number of training cycles, this
output phase is terminated and there is a shift to
input phase to recruit a new hidden unit, using

174 Cascade Correlation

the unit-creation algorithm to be described. The
new unit is added to the net, its input weights are
frozen, and all the output weights are once again
trained using Quickprop. This cycle repeats until
the error is acceptably small, in the sense that
all network outputs for all training patterns are
within a specified threshold of their target values.

To create a new hidden unit, input phase be-
gins with several candidate units that receive
trainable input connections from all of the net-
work inputs and from all existing hidden units.
The outputs of these candidates are not yet con-
nected to the network. There are a number of
passes over the examples of the training set,
adjusting the candidate unit’s input weights after
each pass. The goal of these adjustments, using
Quickprop, is to maximize the correlation be-
tween each candidate’s output and the residual
error.

When these correlation measures show no fur-
ther significant improvement, input phase stops,
the best-correlating candidate’s input weights are
frozen, and that unit is installed in the network.
The remaining candidates are discarded and the
algorithm then retrains the output weights, mak-
ing use of this new feature as well as all the
old ones. As the new unit’s output correlates
well with some component of the residual error,
its output weights can be quickly adjusted to
reduce that component. So after adding each new
hidden unit, the network’s residual error should
be smaller than before.

Using several candidates, each with differ-
ently initialized input weights, greatly reduces
the chances of installing a bad hidden unit that
gets the network stuck in a local optimum far
from the global optimum value. All candidates
receive the same input signals and see the same
residual error for each training pattern. Because
they do not interact with one another or affect
the network during training, these candidates can
be trained in parallel. In a pool of four to eight
candidates, there are almost always several high-
quality candidates with nearly equal correlation
values.

Hidden units continue to be recruited until
network error reaches an acceptable level, or until
cross-validation signals a stop. Because only a

single layer of weights is adjusted at a time, rather
than back-propagating an error signal through
several layers of shifting units, CC training pro-
ceeds very quickly.

Performance
CC is designed to produce a network just large
enough to solve the problem and to do so much
faster than backprop and related algorithms. In
many reported cases that require hidden units, CC
learns the desired behavior 10–100 times faster
than standard backprop (Fahlman and Lebiere
1990). One striking example of this is the two-
spirals problem, an artificial benchmark designed
to be very difficult for neural networks with
sigmoid units. At the time CC was developed,
the best known backprop solutions for two spirals
required a network with three hidden layers of
five units each. CC typically solves this problem
with 12 hidden units and has found solutions
with as few as nine hidden units. In terms of
runtime, CC training was about 50 times faster
than standard backprop and 23 times faster than
Quickprop used within a static network.

Variants of Cascade Correlation

Flat Cascade Correlation
In standard CC, each new hidden unit receives in-
puts from every existing unit, so the net becomes
one level deeper every time a unit is added. This
is a powerful mechanism, creating increasingly
complex feature detectors as the network learns.
But sometimes this added depth is not required
for the problem, creating a very deep network
that performs no better than a shallow one. The
resulting network might have more weights than
are required for the problem, raising concern
about overfitting. Another concern was that the
cascaded nonlinearity of CC might also compro-
mise generalization. To address these concerns,
a flat variant of Cascor adds new recruited units
onto a single layer (i.e., cascaded connections are
eliminated), limiting the depth of the network and
eliminating all cascaded weights between hidden
units.

Comparison of flat to standard CC on gener-
alization in particular learning problems yielded

Cascade Correlation 175

C

inconsistent results, but a more problem–neutral,
student–teacher approach found no generaliza-
tion differences between flat and standard ver-
sions of CC (Dandurand et al. 2007). Here, flat
and standard student CC networks learned the
input–output mappings of other randomly ini-
tialized flat and standard CC teacher networks,
where task complexity was systematically ma-
nipulated. Both standard and flat CC student net-
works learned and generalized well on problems
of varying complexity. In low-complexity tasks,
there were no significant performance differences
between flat and standard CC student networks.
For high-complexity tasks, flat CC student net-
works required fewer connection weights and
learned with less computational cost than did
standard CC student networks.

Sibling–Descendant Cascade–Correlation
(SDCC)
SDCC (Baluja and Fahlman 1994) provides a
more general solution to the problem of network
depth. In the candidate pool, there are two kinds
of candidate units: descendant units that receive
inputs from all existing hidden units and sibling
units that receive the same inputs as the deepest
hidden units in the current net. When the time
comes to choose a winning candidate, the can-
didate with the best correlation wins, but there
is a slight preference for sibling units. So unless
a descendant unit is clearly superior, a sibling
unit will be recruited, making the active network
larger, but not deeper. In problems where stan-
dard CC produces a network with 15 or 20 hidden
units and an equal number of layers, SDCC often
produces a network with only two or three hidden
layers.

Recurrent Cascade–Correlation (RCC)
Standard CC produces a network that maps its
current inputs to outputs. The network has no
memory of recent inputs, so this architecture is
not able to learn to recognize a sequence of
inputs. In the RCC algorithm, each candidate and
hidden unit takes the same inputs as in standard
CC, but it also takes an additional input: the unit’s
own previous output, delayed by one time interval

(Fahlman 1991). The weight on this time-delayed
input is trained by the same algorithm as all the
other inputs.

This delayed loop gives RCC networks a way
of remembering past inputs and internal states,
so they can learn to recognize sequences of input
patterns. In effect, the architecture builds a finite-
state machine tailored specifically to recognize
the pattern sequences in the training set. For
example, an RCC net learned to recognize char-
acters in Morse code.

Knowledge-Based Cascade–Correlation (KBCC)
KBCC is a variant that can recruit previously-
learned networks or indeed any differentiable
function, in competition with single hidden units
(Shultz and Rivest 2001; Shultz et al. 2007).
The recruit is the candidate whose output cor-
relates best with residual network error, just as
in ordinary CC. The candidate pool usually has
a number of randomly initialized sigmoid units
and a number of candidate source networks, i.e.,
networks previously trained on other tasks. The
input weights to multiple copies of the source
networks are usually randomly initialized to im-
prove optimization. Of these copies, one is typi-
cally connected with an identity matrix with off-
diagonal zeros, to enable quick learning of the
target task when exact knowledge is available. A
hypothetical KBCC network is shown in Fig. 2.

Software
Most CC algorithms are available in a variety of
formats and languages, including:

CASCOR: Lisp and C implementations of
cascade–correlation
http://www.cs.cmu.edu/afs/cs/project/ai-repos
itory/ ai/areas/neural/systems/cascor/0.html
Free Lisp and C implementations of cascade–
correlation
Cascade Neural Network Simulator
http://www.cs.cmu.edu/�sef/sefSoft.htm
A public domain C program that implements
cascade–correlation and recurrent cascade–
correlation, plus experimental versions of
cascade 2 and recurrent cascade 2
LNSC cascade–correlation simulator applet

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ ai/areas/neural/systems/cascor/0.html
http://www.cs.cmu.edu/~sef/sefSoft.htm

176 Cascade Correlation

Outputs

Unit

Source

Bias Inputs

Cascade Correlation, Fig. 2 Hypothetical knowledge-
based cascade–correlation (KBCC) network that has re-
cruited a source network and then a sigmoid unit, each
installed on a separate layer. The dashed line represents a
single connection weight, thin solid lines represent weight
vectors, and thick solid lines represent weight matrices

http://www.psych.mcgill.ca/perpg/fac/shultz/
cdp/lnsc applet.htm
A Java applet allowing direct comparisons
of cascade–correlation and back-propagation
algorithms on some benchmark problems, also
permitting entry of text-edited custom training
and test patterns.
LNSC Java Code Library
http://www.lnsclab.org/
Free compiled Java versions of BP, CC,
SDCC, and KBCC neural network software,
along with a tutorial

Applications

CC
Partly because of its ability to grow its own
networks and build new learning on top
of existing knowledge, CC has been used
to simulate many phenomena in cognitive
development. These characteristics embody the
constructivism that developmental psychologists
often discussed but did not formulate precisely.
Simulations are typically evaluated by how
well they capture the various psychological
phenomena that characterize a particular domain.

The balance-scale task involves presenting a
child with a rigid beam balanced on a fulcrum

with pegs spaced at equal intervals to the left
and right of the fulcrum. A number of identical
weights are placed on a peg on the left side
and a peg on the right side, and the child is
asked to predict which side will descend when the
beam is released from its moorings. CC networks
passed through the stages observed with chil-
dren and captured the so-called torque difference
effect, the tendency to do better on problems
with large absolute torque differences than on
problems with small torque differences (Shultz
et al. 1994; Shultz and Takane 2007).

The conservation task presents a child with
two quantities of objects that the child judges to
be equal and then transforms one set in a way that
either changes that relationship or conserves it.
CC networks captured four important conserva-
tion regularities (Shultz 1998):

1. A shift from nonconservation to conservation
beliefs

2. A sudden spurt in performance during acqui-
sition

3. Emergence of correct conservation judgments
for small quantities before larger quantities

4. Young children’s choice of the longer row as
having more items than the shorter row

Analysis of network solutions at various points
in development revealed a gradual shift from
perceptual (how the sets of items look) to cogni-
tive (whether or not the transformation changed
a quantity) solutions, similar to what had been
found with children.

The seriation task requires a child to order
a disordered collection of sticks of different
lengths. CC networks passed through the four
stages seen in children (total failure, partial
sort, trial-and-error sort, and systematic sort)
and captured the tendency for sets with smaller
differences to be more difficult to sort (Mareschal
and Shultz 1999). Analysis of network solutions
revealed early success at the short end of the
series that was gradually extended to the longer
end, as in children.

The transitivity problem typically also em-
ploys sticks of different length. Here the child
is trained on all pairs of sticks that are adjacent

http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/lnsc_applet.htm
http://www.psych.mcgill.ca/perpg/fac/shultz/cdp/lnsc_applet.htm
http://www.lnsclab.org/

Cascade Correlation 177

C

in length and then is asked to infer the relative
length of untrained pairs. Five psychological reg-
ularities were captured when CC networks were
trained to compare the relative sizes of adjacent
pairs (Shultz and Vogel 2004):

1. Learning short or long adjacent pairs before
adjacent pairs of medium length.

2. Faster inferences with pairs farther apart
in length than with pairs close together in
length, an effect that diminished with age.
A constraint-satisfaction network module
simulated reaction times by inputting the
output of a CC network and settling over time
cycles into a low-energy solution that satisfied
the constraints supplied by connection weights
and inputs, effectively cleaning up the output
of the CC network.

3. Faster inferences with pairs containing the
shortest or longest stick.

4. Faster inferences when the expression used in
the question (e.g., shorter) is compatible with
an end stick (e.g., the shortest stick) in the
compared pair than when the question term
(e.g., shorter) is incompatible with an end
stick (e.g., the longest stick) in the compared
pair.

5. Older children learned adjacent pairs
faster and made inference comparisons
faster and more accurately than did young
children.

The computational bases for these effects were
revealed by examining the pattern of connection
weights within the CC network module. The
pattern of these weights formed a cubic shape,
symmetrical for the two sticks being compared,
in which discrimination was better at the ends of
the array than in the middle and became sharper
with deeper learning.

Another task calls for integration of cues for
moving objects, governed by the equation ve-
locityD distance/time. Children were presented
with information on two of those quantities and
asked to infer the third. Three stages involved first
using the quantity that varied positively with the
quantity to be inferred, second adding or subtract-
ing the known quantities, and finally multiplying

or dividing the known quantities. Already docu-
mented stages were captured and others were cor-
rectly predicted by CC networks (Buckingham
and Shultz 2000).

Semantic rules for deictic personal pronouns
specify that me refers to the person using the
pronoun and you refers to the person who is being
addressed. Although most children acquire these
pronouns without notable errors, a few reverse
these pronouns, persistently calling themselves
you and the mother me. Such reversals in children
are produced by lack of opportunity to overhear
these pronouns used by other people, where the
shifting reference can be observed. CC networks
covered these phenomena and generated predic-
tions for effective therapy to correct reversal
errors (Oshima-Takane et al. 1999).

Discrimination shift learning tasks repeatedly
present pairs of stimuli with mutually exclusive
attributes on several binary dimensions, such as
color, shape, and position, and a child learns
to select the correct stimulus in each pair, e.g.,
square. Feedback is given and learning continues
until the child reaches a success criterion, e.g.,
8/10 correct. Then reward contingencies shift,
usually without warning. A reversal shift stays
within the initially relevant dimension, e.g., from
square to circle. A nonreversal shift is to another
dimension, such as from square to blue. There
are related tasks that use new stimulus values in
the shift phase. These are called intradimensional
shifts if the shift remains within the initial dimen-
sion, e.g., square to triangle, or extradimensional
if there is a change to another dimension, e.g.,
from square to yellow. The optional shift task
presents only two stimulus pairs in the shift
phase, making it ambiguous whether the shift
is a reversal or nonreversal shift. The pattern
of subsequent choices allows determination of
whether the child interprets this as a reversal or
a nonreversal shift.

Age differences in the large literature on these
shifts indicate that older children learn a reversal
shift faster than a nonreversal shift, learn an
intradimensional shift faster than an extradimen-
sional shift, make a reversal shift in the optional
task, and are initially impaired on unchanged
pairs during a nonreversal shift. Younger children

178 Cascade Correlation

learn reversal and nonreversal shifts equally fast,
learn an intradimensional shift faster than an
extradimensional shift, make a nonreversal shift
in the optional task, and are unimpaired on un-
changed pairs during a nonreversal shift. These
findings were simulated by CC networks (Sirois
and Shultz 1998), which also generated predic-
tions that were later confirmed.

When infants repeatedly experience stimuli
from a particular class, their attention decreases,
but it recovers to stimuli from a different class.
This familiarize-and-test paradigm is responsible
for most of the discoveries of infant psycho-
logical abilities. CC networks simulated findings
on infant attention to syntactic patterns in an
artificial language (Shultz and Bale 2006) and
age differences in infant categorization of visual
stimuli (Shultz and Cohen 2004) and generated
several predictions, some of which were tested
and confirmed.

SDCC
Because of SDCC’s ability to create a variety of
network topologies, it is beginning to be used in
psychology simulations: infant learning of word-
stress patterns in artificial languages (Shultz
and Bale 2006), syllable boundaries (Shultz
and Bale 2006), visual concepts (Shultz 2006),
and false-belief tasks; learning the structure of
mathematical groups (Schlimm and Shultz 2009);
replication of the results of the CC simulation
of conservation acquisition (Shultz 2006); and
concept acquisition.

CC and SDCC networks capture developmen-
tal stages by growing in computational power
and by being sensitive to statistical patterns in
the training environment (Shultz 2003). The im-
portance of growth was demonstrated by com-
parisons with static backprop networks, designed
with the same final topology as successful CC
networks, that learn only by adjusting connection
weights (Shultz 2006). Coupled with the variety
of successful SDCC topologies, this suggests that
the constructive process is more important than
precise network topologies. Capturing stages is
challenging because the system has to not only
succeed on the task but also make the same
mistakes on the road to success that children

do. CC and SDCC arguably produced the best
data coverage of any models applied to the fore-
going phenomena. Both static and constructive
networks capture various perceptual effects by
virtue of their sensitivity to quantitative variation
in stimulus inputs (Shultz 2003).

Comparison of the two algorithms in psycho-
logical modeling indicates that SDCC provides
the same functionality as CC but with fewer con-
nection weights and shallower and more variable
network topologies (Shultz 2006).

KBCC
KBCC also has potential for simulating psycho-
logical development, but it has so far been applied
mainly to toy and engineering problems. Explo-
ration of a variety of toy problems was important
in understanding the behavior of this complex
algorithm. Some toy problems involved learning
about two-dimensional geometric shapes under
various transformations such as translation, ro-
tation, and size changes as well as composi-
tions of complex shapes from simpler shapes
(Shultz and Rivest 2001). Networks had to learn
to distinguish points within a target shape from
points outside the shape. Learning time without
relevant knowledge was up to 16 times longer
than with relevant knowledge on these prob-
lems. There was a strong tendency to recruit
relevant knowledge whenever it was available.
Direct comparison revealed that KBCC learned
spatial translation problems faster than Multitask
Learning networks did.

Parity problems require a network to activate
an output unit only when an odd number of
binary inputs are activated. When parity-4 net-
works were included in the candidate source pool,
KBCC learned parity-8 problems (with eight bi-
nary inputs) faster and with fewer recruits than
did CC networks. Parity-4 networks were re-
cruited by these KBCC target networks whenever
available.

KBCC also learned complex chessboard
shapes from knowledge of simpler chessboards.
As with parity, networks used simpler previous
knowledge to compose a solution to a more
complex problem and learning was speeded
accordingly.

Cascade Correlation 179

C

In a more realistic vein, KBCC networks
recruiting knowledge of vowels from one
sort of speaker (e.g., adult females) learned
to recognize vowels spoken by other sets of
speakers (e.g., children and adult males) faster
than did knowledge-free networks.

KBCC learned an efficient algorithm for de-
tecting prime numbers by recruiting previously
learned knowledge of divisibility (Shultz et al.
2007). This well-known detection algorithm tests
the primality of an integer n by checking if n
is divisible by any integers between 2 and the
integer part of

p
n. Starting with small primes

is efficient because the smaller the prime divisor,
the more composites are detected in a fixed range
of integers. The candidate pool contained net-
works that had learned whether an integer could
be divided by each of a range of integers, e.g.,
a divide- by-2 network, a divide-by-3 network,
etc., up to a divisor of 20. KBCC target net-
works trained on 306 randomly selected integers
from 21 to 360 recruited only source networks
involving prime divisors below the square root of
360, in order from small to large divisors. KBCC
avoided recruiting single hidden units, source
networks with composite divisors, any divisors
greater than the square root of 360 even if prime,
and divisor networks with randomized connec-
tion weights. KBCC never recruited a divide-by-
2 source network because it instead learned to
check the last binary digit of n to determine if n
was odd or even, an effective shortcut to dividing
by 2. Such KBCC networks learned the training
patterns in about one third the time required
by knowledge-free networks, with fewer recruits
on fewer network layers, and they generalized
almost perfectly to novel test integers. In contrast,
even after mastering the training patterns, CC
networks generalized less well than automatic
guessing that the integer was composite, which
was true for 81 % of integers in this range. As pre-
dicted by the simulation, adults testing primality
also used mainly prime divisors below

p
n and

ordered divisors from small to large.
This work underscores the possibility of

neural network approaches to compositionality
because KBCC effectively composed a solution
to prime number detection by recruiting and

organizing previously learned parts of the
problem, in the form of divisibility networks.

Future Directions

One new trend is to inject symbolic rules or func-
tions into KBCC source networks. This is similar
to KBANN, but more flexible because a KBCC
target network decides whether and how to re-
cruit these functions. This provides one method
of integrating symbolic and neural computation
and allows for simulation of the effects of direct
instruction.

Cross-References

�Artificial Neural Networks
�Backpropagation

Recommended Reading

Baluja S, Fahlman SE (1994) Reducing network
depth in the cascade-correlation learning architec-
ture. School of Computer Science, Carnegie Mellon
University, Pittsburgh

Buckingham D, Shultz TR (2000) The developmental
course of distance, time, and velocity concepts:
a generative connectionist model. J Cognit Dev
1:305–345

Dandurand F, Berthiaume V, Shultz TR (2007) A
systematic comparison of flat and standard cascade-
correlation using a student-teacher network approx-
imation task. Connect Sci 19:223–244

Fahlman SE (1988) Faster-learning variations on back-
propagation: an empirical study. In: Touretzky DS,
Hinton GE, Sejnowski TJ (eds) Proceedings of the
1988 connectionist models summer school. Morgan
Kaufmann, Los Altos, pp 38–51

Fahlman SE (1991) The recurrent cascade-correlation
architecture. In: Touretzky DS (ed) Advances in
neural information processing systems, vol 3. Mor-
gan Kaufmann, Los Altos

Fahlman SE, Lebiere C (1990) The cascade-correlation
learning architecture. In: Touretzky DS (ed) Ad-
vances in neural information processing systems,
vol 2. Morgan Kaufmann, Los Altos, pp 524–532

Mareschal D, Shultz TR (1999) Development of chil-
dren’s seriation: a connectionist approach. Connect
Sci 11:149–186

Oshima-Takane Y, Takane Y, Shultz TR (1999) The
learning of first and second pronouns in En-

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_51

180 Cascor

glish: network models and analysis. J Child Lang
26:545–575

Schlimm D, Shultz TR (2009) Learning the structure
of abstract groups. In: Taatgen NA, Rijn HV (eds)
Proceedings of the 31st annual conference of the
cognitive science society. Cognitive Science Soci-
ety, Austin, pp 2950–2955

Shultz TR (1998) A computational analysis of conser-
vation. Dev Sci 1:103–126

Shultz TR (2003) Computational developmental psy-
chology. MIT, Cambridge

Shultz TR (2006) Constructive learning in the model-
ing of psychological development. In: Munakata Y,
Johnson MH (eds) Processes of change in brain and
cognitive development: attention and performance
XXI. Oxford University Press, Oxford, pp 61–86

Shultz TR, Bale AC (2006) Neural networks discover a
near-identity relation to distinguish simple syntactic
forms. Minds Mach 16:107–139

Shultz TR, Cohen LB (2004) Modeling age differences
in infant category learning. Infancy 5:153–171

Shultz TR, Mareschal D, Schmidt WC (1994) Mod-
eling cognitive development on balance scale phe-
nomena. Mach Learn 16:57–86

Shultz TR, Rivest F (2001) Knowledge-based cascade-
correlation: using knowledge to speed learning.
Connect Sci 13:1–30

Shultz TR, Rivest F, Egri L, Thivierge J-P, Dandurand
F (2007) Could knowledge-based neural learning
be useful in developmental robotics? The case of
KBCC. Int J Humanoid Robot 4:245–279

Shultz TR, Takane Y (2007) Rule following and rule
use in simulations of the balance-scale task. Cogni-
tion 103:460–472

Shultz TR, Vogel A (2004) A connectionist model of
the development of transitivity. In: Proceedings of
the twenty-sixth annual conference of the cognitive
science society. Erlbaum, Mahwah, pp 1243–1248

Sirois S, Shultz TR (1998) Neural network modeling
of developmental effects in discrimination shifts.
J Exp Child Psychol 71:235–274

Cascor

�Cascade Correlation

Case

� Instance

Case-Based Learning

� Instance-Based Learning

Case-Based Reasoning

Susan Craw
Robert Gordon University, Aberdeen, UK

Abstract

Case-based reasoning (CBR) solves problems
by retrieving similar, previously solved prob-
lems and reusing their solutions. The case
base contains a set of cases, and each case
holds knowledge about a problem or situation,
together with its corresponding solution or ac-
tion. The case base acts as a memory, remem-
bering is achieved using similarity-based re-
trieval, and the retrieved solutions are reused.
Newly solved problems may be retained in the
case base and so the memory is able to grow
as problem-solving occurs.

CBR reuses remembered experiences,
where the experience need not record how the
solution was reached, simply that the solution
was used for the problem. The reliance
on stored experiences means that CBR is
particularly relevant in domains which are
ill defined, not well understood, or where no
underlying theory is available. CBR systems
are a useful way to capture corporate memory
of human expertise.

The fundamental assumption of CBR is
that similar problems have similar solutions:
a patient with similar symptoms will have
the same diagnosis, the price of a house with
similar accommodation and location will be
similar, the design for a kitchen with a similar
shape and size can be reused, and a journey
plan is similar to an earlier trip. A related
assumption is that the world is a regular place,
and what holds true today will probably be
true tomorrow. A further assumption relevant
to memory is that situations repeat, because
if they do not, there is no point remember-
ing them!

Synonyms

Experience-based reasoning; Lessons-learned
systems; Memory-based learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_33
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_100161
http://dx.doi.org/10.1007/978-1-4899-7687-1_100263
http://dx.doi.org/10.1007/978-1-4899-7687-1_100297

Case-Based Reasoning 181

C

Theory/Solution

Case-based reasoning (CBR) is inspired by
memory-based human problem-solving in
which instances of earlier problem-solving
are remembered and applied to solve new
problems. For example, in case law, the decisions
in trials are based on legal precedents from
previous trials. In this way, specific experiences
are memorized, and remembered and reused
when appropriate. This contrasts with rule-
based or theory-based problem-solving in which
knowledge of how to solve a problem is applied.
A doctor diagnosing a patient’s symptoms may
apply knowledge about how diseases manifest
themselves, or she may remember a previous
patient who demonstrated similar symptoms and
thus apply a case-based approach.

CBR is an example of � lazy learning because
there is no learned model to apply to solve new
problems. Instead, the generalization needed to
solve unseen problems happens when a new prob-

lem is presented and the similarity-based retrieval
identifies relevant previous experiences.

Figure 1 shows the CBR problem-solving cy-
cle proposed by Aamodt and Plaza (1994). A case
base of Previous Cases is the primary knowl-
edge source in a CBR system, with additional
knowledge being used to identify similar cases
in the Retrieve stage, and to Reuse and Revise
the retrieved case. A CBR system learns as it
solves new problems when a Learned Case is
created from the New Case and its Confirmed
Solution, and Retained as a new case in the
case base.

Aamodt and Plaza’s four-stage CBR cycle
for problem-solving and learning is commonly
referred to as the “Four REs” or “R4” cycle to
recognize the following stages in Fig. 1:

– Retrieve: The cases that are most similar to
the New Case defined by the description of
the new problem are identified and retrieved
from the case base. The Retrieve stage uses

New
Case

Suggested
Solution

Other

Tested/
Repaired
Case

Confirmed
Solution

Retrieve

R
eu

se

Revise

R
etain

Retrieved
Case

Solved
Case

Previous
Cases

New
Case

Learned
Case

Problem

Case Base

Other
Knowledge
Containers

Case-Based Reasoning, Fig. 1 CBR cycle (Adapted from Aamodt and Plaza 1994)

http://dx.doi.org/10.1007/978-1-4899-7687-1_449

182 Case-Based Reasoning

the similarity knowledge container in addition
to the case base.

– Reuse: The solutions in the Retrieved (most
similar) Cases are reused to build a Suggested
Solution to create the Solved Case from the
New Case. The Reuse stage may use the
adaptation knowledge container to refine the
retrieved solutions.

– Revise: The Suggested Solution in the Solved
Case is evaluated for correctness and is re-
paired if necessary to provide the Confirmed
Solution in the Tested/Repaired Case. The Re-
vise stage may be achieved manually or may
use adaptation knowledge, but it should be
noted that a revision to a Suggested Solution is
likely to be a less demanding task than solving
the problem from scratch.

– Retain: The Repaired Case may be retained
in the case base as a newly Learned Case if
it is likely to be useful for future problem-
solving. Thus the primary knowledge source
for CBR may be added to during problem-
solving and is an evolving, self-adaptive col-
lection of problem-solving experiences.

This “Four REs” cycle simply Retained the
Tested/Repaired Case as a new Learned Case.
More recently, the Retain stage has been re-
placed with a Recycle-Retain-Refine loop of a
“Six REs” cycle proposed by Gokër and Roth-
Berghofer (1999) and shown in Fig. 2. Learned
Cases are Recycled as potential new cases, the
Retain step validates their correctness, before
the Refine stage decides if the case should be
integrated and how this should be done. The
new case may be added, used to replace redun-
dant cases, or merged with existing cases, and
other case base maintenance may be required to
maintain the integrity of the CBR system. The
maintenance cycle is often executed separately
from the problem-solving Application Cycle.

Knowledge Containers
Case knowledge is the primary source of knowl-
edge in a CBR system. However, case knowledge
is only one of four knowledge containers identi-
fied by Richter (2009):

Recycle

Refine Retain

REVISE RETRIEVE

REUSE

Application

Maintenance

Cycle

Cycle

Case-Based Reasoning, Fig. 2 Six REs CBR cycle
(Adapted from Gokër and Roth-Berghofer 1999)

– Vocabulary: The representation language used
to describe the cases captures the concepts
involved in the problem-solving.

– Similarity knowledge: The similarity measure
defines how the distances between cases are
computed so that the nearest neighbors are
identified for retrieval.

– Adaptation knowledge: Reusing solutions
from retrieved cases may require some
adaptation to enable them to fit the new
problem.

– Case base: The stored cases capture the previ-
ous problem-solving experiences.

The content of each knowledge container is
not fixed, and knowledge in one container can
compensate for lack of knowledge in another. It is
easy to see that a more sophisticated knowledge
representation could be less demanding on the
content of the case base. Similarly, vocabulary
can make similarity assessment during retrieval
easier, or a more complete case base could reduce
the demands on adaptation during reuse. Further

Case-Based Reasoning 183

C

knowledge containers are proposed by others
(e.g., maintenance by Gokër and Roth-Berghofer
1999) .

Cases may be represented as simple feature
vectors containing nominal or numeric values. A
case capturing a whisky-tasting experience might
contain features such as sweetness, peatiness,
color, nose and palate, and the � classification as
the distillery where it was made.

Sweet-
ness

Peati-
ness

Color Nose Palate Distillery

6 5 amber full medium dry Dalmore

More structured representations can use
frame-based or object-oriented cases. The choice
of representation depends on the complexity
of the experiences being remembered and
is influenced by how similarity should be
determined. Hierarchical case representations
allow cases to be remembered at different levels
of abstraction, and retrieval and reuse may occur
at these different levels.

For � classification tasks, the case base can
be considered to contain exemplars of problem-
solving. This notion of exemplar confirms a CBR
case base as a source of knowledge; it contains
only those experiences that are believed to be
useful for problem-solving. A similar view is
taken for non-classification domains where the
case base contains useful prototypes: for exam-
ple, designs that can be used for redesign, plans
for replanning, etc.

One of the advantages of CBR is that a case
base is composed of independent cases that each
captures some local problem-solving knowledge
that has been experienced. Therefore, the “knowl-
edge acquisition bottleneck” of many rule-based
and model-based systems is reduced for CBR.
However, the other knowledge containers pro-
vide additional knowledge acquisition demands
that may lessen the advantage of CBR for some
domains.

Retrieval
CBR retrieval compares the problem part of the
new case with each of the cases in the case base to

establish the distance between the new case and
the stored cases. The cases closest to the new case
are retrieved for reuse. Retrieval is a major focus
of López de Mántaras et al.’s (2005) review of
research contributions related to the CBR cycle.

Similarity- and distance-based neighborhoods
are commonly used interchangeably when dis-
cussing CBR retrieval. Similarity and distance
are inverses: the similarity is highest when the
distance is close to 0, and the similarity is 0 when
the distance is large. Several functions may be
applied to define a suitable relationship between
a distance d and a similarity s, including the
following simple versions:

Inverse: s D
1

d C 1

Linear: s D 1 � d for normalized d (0� d � 1)

It is common to establish the distance between
each pair of feature values and then to use a
distance metric, often Euclidean or �Manhattan
distance (see also � Similarity Measures), to cal-
culate the distance between the feature vectors
for the New and Retrieved Cases. The distance
between two numeric feature values v and w for
a feature F is normally taken to be the distance
between the normalized values:

d.v;w/ D
j v � w j

Fmax � Fmin

where Fmax/Fmin are the maximum/minimum val-
ues of the feature F .

For nominal values v and w, the simplest
approach is to apply a binary distance function:

d.v;w/ D

�
0 if v D w
1 otherwise

For ordered nominal values, a more fine-
grained distance may be appropriate. The
distance between the i th value vi and the j th
value vj in the ordered values v1; v2; : : : ; vn may
use the separation in the ordering to define the
distance:

d.vi ; vj / D
j i � j j

n � 1
:

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_511
http://dx.doi.org/10.1007/978-1-4899-7687-1_766

184 Case-Based Reasoning

Extending this to arbitrary nominal values, a
distance matrix D may define the distance be-
tween each pair of nominal values by assigning
the distance d.vi ; vj / to dij . Alternatively there
may be background knowledge in the form of
an ontology or concept hierarchy where their
depth D in the structure compared to the depth
of their least common ancestor (lca) can provide
a measure of separation:

d.vi ; vj / D
D.vi /CD.vj /

2D.lca/

Returning to the whisky-tasting example, sup-
pose sweetness and peatiness score values 0–10,
color takes ordered values fpale, straw, gold,
honey, amberg, palate uses binary distance, and
nose is defined by the following distance matrix:

Nose Distance Matrix

Distances peat fresh soft full

peat 0 0.3 1 0.5

fresh 0.3 0 0.5 0.7

soft 1 0.5 0 0.3

full 0.5 0.7 0.3 0

Dalmore whisky above can be compared with
Laphroaig and The Macallan as follows:

Sweetness Peatiness Color Nose Palate Distillery

2 10 amber peat medium
dry

Laphroaig

7 4 gold full big
body

The Macallan

The Manh distances are:

d.Dalmore, Laphroaig/ D 0:4C 0:5C 0C 0:5

C 0D 1:4I

d.Dalmore, The Macallan/ D 0:1C0:1C0:5C0

C 1D 1:7:

Taking all the whisky features with equal impor-
tance, Dalmore is more similar to Laphroaig than
to The Macallan.

In situations where the relative importance
of features should be taken into account, a
weighted version of the distance function should
be used; for example, the weighted Manhattan
distance between two normalized vectors x D
.x1; x2; : : : xn/ and y D .y1; y2; : : : yn/ with
weight wi for the i th feature is

d.x; y/ D

Pn
iD1 wi j xi � yi jPn

iD1 wi

In the example above, if Peatiness has weight
4 and the other features have weight 1, then the
weighted Manhattan distances are:

d.Dalmore, Laphroaig/ D .0:4C 4� 0:5C 0

C0:5C0/=8D0:36I

d.Dalmore, The Macallan/ D .0:1C4�0:1C0:5

C0C 1/=8D0:25:

Therefore, emphasizing the distinctive Peatiness
feature, Dalmore is more similar to The Macallan
than to Laphroaig.

The similarity knowledge container contains
knowledge to calculate similarities. For simple
feature vectors, a weighted sum of distances is
often sufficient, and the weights are similarity
knowledge. However, even our whisky-tasting
domain had additional similarity knowledge con-
taining the distance matrix for the nose feature.
Structured cases require methods to calculate
the similarity of two cases from the similarities
of components. CBR may use very knowledge-
intensive methods to decide similarity for the
retrieval stage. Ease of reuse or revision may
even be incorporated as part of the assessment of
similarity. Similarity knowledge may also define
how �missing values are handled: the feature
may be ignored, the similarity may be maximally
pessimistic, or a default or average value may be
used to calculate the distance.

A CBR case base may be indexed to avoid
similarity matching being applied to all the cases
in the case base. One approach uses kd trees to
partition the case base according to hyperplanes.
�Decision Tree algorithms may be used to build

http://dx.doi.org/10.1007/978-1-4899-7687-1_100302
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

Case-Based Reasoning 185

C

the kd tree by using the cases as training data,
partitioning the cases according to the chosen
decision nodes and storing the cases in the ap-
propriate leaf nodes. Retrieval first traverses the
decision tree to select the cases in a leaf node, and
similarity matching is applied to only this parti-
tion. Case Retrieval Nets are designed to speed
up retrieval by applying spreading activation to
select relevant cases. In Case Retrieval Nets, the
feature value nodes are linked via similarity to
each other and to cases. Indexes can speed up
retrieval but they also preselect cases according
to some criteria that may differ from similarity.

Reuse and Revision
Reuse may be as simple as copying the solution
from the Retrieved Case. If k nearest neighbors
are retrieved, then a vote of the classes pre-
dicted in the retrieved cases may be used for
� classification, or the average of retrieved values
for � regression. A weighted vote or weighted
average of the retrieved solutions can take ac-
count of the nearness of the retrieved cases in
the calculation. For more complex solutions, such
as designs or plans, the amalgamation of the
solutions from the Retrieved Cases may be more
knowledge intensive.

If the New Case and the Retrieved Case are
different in a significant way, then it may be that
the solution from the Retrieved Case should be
adapted before being proposed as a Suggested
Solution. Adaptation is designed to recognize
significant differences between the New and Re-
trieved Cases and to take account of these by
adapting the solution in the Retrieved Case.

In classification domains, it is likely that all
classes are represented in the case base. How-
ever, different problem features may alter the
classification and so adaptation may correct for
a lack of cases. In constructive problem-solving
like design and planning, however, it is unlikely
that all solutions (designs, plans, etc.) will be
represented in the case base. Therefore, a re-
trieved case suggests an initial design or plan, and
adaptation alters it to reflect novel feature values.

There are three main types of adaptation that
may be used, as part of the reuse step to refine the
solution in the Retrieved Case to match better the

new problem, or as part of the revise stage to re-
pair the Suggested Solution in the Solved Case:

– Substitution: Replace parts of the retrieved
solution. In Hammond’s (1990) CHEF system
to plan Szechuan recipes, the substitution of
ingredients enables the requirements of the
new menu to be achieved. For example, the
beef and broccoli in a retrieved recipe are
substituted with chicken and snowpeas.

– Transformation: Add, change, or remove parts
of the retrieved solution. CHEF adds a skin-
ning step to the retrieved recipe that is needed
for chicken but not for beef.

– Generative Adaptation: Replay the method
used to derive the retrieved solution. Thus the
retrieved solution is not adapted but a new so-
lution is generated from reusing the retrieved
method for the new circumstances. This ap-
proach is similar to reasoning by analogy.

CHEF also had a clear REVISE stage where
the Suggested Solution recipe was tested in sim-
ulation and any faults were identified, explained,
and repaired using repair templates for different
types of explained failures. In one recipe a straw-
berry soufflé was too liquid, and one repair is to
drain the strawberry pulp, and this transformation
adaptation is one REVISE operation that could be
applied.

The adaptation knowledge container is an im-
portant source of knowledge for some CBR sys-
tems, particularly for design and planning, where
refining an initial design or plan is expected.
Acquiring adaptation knowledge can be oner-
ous, and learning adaptation knowledge from the
cases in the case base or from background knowl-
edge of the domain has been effective (Craw et al.
2006; Jalali and Leake 2013).

Retention and Maintenance
The retention of new cases during problem-
solving is an important advantage of CBR
systems. However, it is not always advantageous
to retain all new cases. The �Utility Problem
– that the computational benefit from additional
knowledge must not outweigh the cost of applying

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_100499

186 Case-Based Reasoning

it – in CBR refers to cases and the added cost
of retrieval. The case base must be kept “lean
and mean,” and so new cases are not retained
automatically, and cases that are no longer useful
are removed. New cases should be retained if
they add to the competence of the CBR system
by providing problem-solving capability in an
area of the problem space that is currently sparse.
Conversely, existing cases should be reviewed
for the role they play, and forgetting cases is an
important maintenance task. Existing cases may
contain outdated experiences and so should be re-
moved, or they may be superseded by new cases.

Case base maintenance manages the contents
of the case base to achieve high competence.
Competence depends on the domain and may
involve:

– quality of solution;
– user confidence in solution; or
– efficiency of solution prediction (e.g., speed-

up learning).

As a result, the RETAIN step in Aamodt and
Plaza’s (1994) “four REs” problem-solving cycle
is normally replaced by some form of case base
maintenance cycle, such as the ReCycle-Retain-
Refine loop in Gokër and Roth-Berghofer’s
(1999) “six REs” cycle.

Case base maintenance systems commonly as-
sume that the case base contains a representative
sample of the problem-solving experiences. They
exploit this by using a leave-one-out approach
where repeatedly for each case in the case base,
the one extracted case is used as a new case
to be solved, and the remaining cases become
the case base. This enables the problem-solving
competence of the cases in the case base to be
estimated using the extracted cases as representa-
tive new cases to be solved. Various researchers
build a competence model for the case base by
identifying groups of cases with similar problem-
solving ability and use this model to underpin
maintenance algorithms that prioritize cases for
deletion and to identify areas where new cases
might be added.

There are several trade-offs to be managed
by case base maintenance algorithms: larger case

bases contain more experiences but take longer
for retrieval; smaller case bases are likely to lack
some key problem-solving ability; cases whose
solution is markedly different from their nearest
neighbors may be noisy or may be an important
outlier. The competence of a case depends on
other knowledge containers, and so case base
maintenance should not proceed in isolation.

CBR Applications and Tools
Two notable successful deployed applications of
CBR are Verdande’s Drilledge that monitors
oil-well drilling operations to reduce non-
productive time (Gundersen et al. 2013),
and General Electric’s FormTool for plastic
color matching (Cheetham 2005). Many more
applications are described in the Fielded
Applications of CBR article in Knowledge
Engineering Review 20(3) CBR Special Issue
(2005) and Montani and Jain’s Successful Case-
Based Reasoning Applications texts (Springer,
2010 & 2014):

– Classification – Medical diagnosis systems
include SHRINK for psychiatry, CASEY for
cardiac disease, and ICONS for antibiotic
therapy for intensive care. Other diagnostic
systems include failure prediction of rails
for Dutch railways, Boeing’s CASSIOPÉE
for trouble-shooting aircraft engines, and
the HOMER Help-Desk (Gokër and Roth-
Berghofer 1999).

– Design – Architectural design was a popular
early domain: ARCHIE and CADsyn. Other
design applications include CADET and
KRITIK for engineering design, pharmaceu-
tical tablet formulation, Déjà Vu for plant
control software, and Lockheed’s CLAVIER
for designing layouts for autoclave ovens.

– Planning – PRODIGY is a general purpose
planner that uses analogical reasoning to adapt
retrieved plans. Other planning applications
include PARIS for manufacturing planning,
mission planning for US navy, and route
planning for DaimlerChrysler cars. A recent
focus is planning in simulated complex
environments as found in Real-Time Strategy
Games (Jaidee et al. 2013; Ontañón and Ram

Case-Based Reasoning 187

C

2011; Wender and Watson 2014). CBR has
other Game AI applications including robot
soccer and poker.

– Textual CBR – Legal decision support systems
were an important early application domain
for textual CBR, including HYPO, GREBE,
and SMILE. Question answering was another
fruitful text-based domain: FAQ-Finder and
FA11Q. More recently, textual CBR is used
for industrial decision support based on tex-
tual reports; e.g., incident management and
Health & Safety.

– Conversational CBR – Conversational sys-
tems extract the problem specification from
the user through an interactive case-based di-
alogue. Examples include help-desk support,
CBR Strategist for fault diagnosis, and Wasabi
and ShowMe product recommender systems.

– Recommender Systems – There has been
a large growth in the use of CBR for
recommendation of products, travel planning,
and online music. Current topics include
preference recommenders for individuals and
groups (Quijano-Sánchez et al. 2012) and
sentiment/opinion mining from social media
to improve personalization (Dong et al. 2014).

– Workflows – A recent interest in process-
oriented CBR has used the CAKE Collab-
orative Agile Knowledge Engine to create
office workflows (Minor et al. 2014). Other
applications include science workflows,
medical pathways, modeling interaction
traces, and recipes. These applications use
structured cases and demand knowledge-rich
adaptation for reuse. An annual Computer
Cooking Competition at recent ICCBR
conferences has encouraged the development
of various case-based recipe systems
including Taaable, JADAWeb, CookIIS,
ChefFroglingo, GoetheShaker (cocktails), and
EARL (sandwiches).

There are two main open-source CBR tools:
myCBR and Colibri. Both provide state-of-
the-art CBR functionality, and Colibri also
incorporates a range of facilities for textual CBR.
The myCBR tool originated from the INRECA

methodology, and its website www.mycbr-
project.net offers downloads, documentation,
tutorials, and publications. Similar Colibri
information is available at gaia.fdi.ucm.es/
research/colibri, with the jColibri framework also
available from www.sourceforge.net. Empolis is
one of the pioneers in CBR with CBR Works
being one of the first commercial CBR tools.
It is now part of Empolis’ Information Access
System, and is available at www.empolis.com.

Future Directions

The drivers for ubiquitous computing – wireless
communication and small devices – also affect
future developments in CBR. The local, inde-
pendent knowledge of case bases makes mobile
devices ideal to collect experiences and to deliver
experience-based knowledge for reuse.

Textual CBR systems are becoming increas-
ingly important for extracting and representing
knowledge captured in textual documents. This is
particularly influenced by the availability of elec-
tronic documents in the Web and social media as
sources of data for the extraction of representa-
tion knowledge. They also provide background
knowledge from which to learn knowledge for
similarity and adaptation containers.

Cross-References

� Instance-Based Learning
�Lazy Learning
�Nearest Neighbor
� Similarity Measures

Recommended Reading

Aamodt A, and Plaza E (1994) Case-based reasoning:
foundational issues, methodological variations, and
system approaches. AI Commun 7:39–59. citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1670

Cheetham W (2005) Tenth anniversary of the plastics
color formulation tool. AI Mag 26(3):51–61 www.a
aai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-
007.pdf

gaia.fdi.ucm.es/research/colibri
gaia.fdi.ucm.es/research/colibri
www.sourceforge.net
www.empolis.com
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1670
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1670
www.mycbrproject.net
www.mycbrproject.net
www.aaai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-007.pdf
www.aaai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-007.pdf
www.aaai.org/Papers/Magazine/Vol26/26-03/AIMag26-03-007.pdf

188 Categorical Attribute

Craw S, Wiratunga N, Rowe RC (2006) Learn-
ing adaptation knowledge to improve case-based
reasoning. Artif Intell 170(16–17):1175–1192.
doi:10.1016/j.artint.2006.09.001

Dong R, Schaal M, O’Mahony MP, McCarthy K,
Smyth B (2014) Further experiments in opinion-
ated product recommendation. In: Lamontagne L,
Plaza E (eds) Proceedings of the 22nd international
conference on case-based reasoning, Cork. LNAI,
vol 8765. Springer, Berlin/Heidelberg, pp 110–124.
doi:10.1007/978-3-319-11209-1 9

Gokër MH, Roth-Berghofer T (1999) The development
and utilization of the case-based help-desk support
system HOMER. Eng Appl Artif Intell 12:665–680.
doi:10.1016/S0952-1976(99)00037-8

Gundersen OE, Sørmo F, Aamodt A, Skalle P (2013)
A real-time decision support system for high cost
oil-well drilling operations. AAAI AI Mag 34(1):
21–31. www.aaai.org/ojs/index.php/aimagazine/
article/view/2434

Hammond KJ (1990) Explaining and repairing plans
that fail. Artif Intell 45(1–2):173–228

Jaidee U, Muñoz-Avila H, Aha DW (2013) Case-
based goal-driven coordination of multiple learn-
ing agents. In: Delaney SJ, Ontanon S (eds)
Proceedings of the 21st international conference
on case-based reasoning, Saratoga Springs. LNAI,
vol 7969. Springer, Berlin/Heidelberg, pp 164–178.
doi:10.1007/978-3-642-39056-2 12

Jalali V, Leake D (2013) Extending case adaptation
with automatically-generated ensembles of adap-
tation rules. In: Delaney SJ, Ontanon S (eds)
Proceedings of the 21st international conference
on case-based reasoning, Saratoga Springs. LNAI,
vol 7969. Springer, Berlin/Heidelberg, pp 188–202.
doi:10.1007/978-3-642-39056-2 14

López de Mántaras R, McSherry D, Bridge D, Leake
D, Smyth B, Craw S, Faltings B, Maher ML,
Cox MT, Forbus K, Aamodt A, Watson I (2005)
Retrieval, reuse, revision, and retention in case-
based reasoning. Knowl Eng Rev 20(3):215–240.
doi:10.1017/S0269888906000646

Minor M, Bergmann R, Görg S (2014) Case-based
adaptation of workflows. Inf Syst 40:142–152.
doi:10.1016/j.is.2012.11.011

Ontañón S, Ram A (2011) Case-based reasoning and
user-generated AI for real-time strategy games. In:
Artificial intelligence for computer games. Springer,
New York, pp 103–124. doi:10.1007/978-1-4419-
8188-2 5

Quijano-Sánchez L, Bridge D, Dı́az-Agudo B, Recio-
Garcı́a JA (2012) Case-based aggregation of prefer-
ences for group recommenders. In: Dı́az-Agudo B,
Watson I (eds) Proceedings of the 20th international
conference on case-based reasoning, Lyon. LNAI,
vol 7466. Springer, Berlin/Heidelberg, pp 17–31.
doi:10.1007/978-3-642-32986-9 25

Richter MM (2009) The search for knowledge, con-
texts, and case-based reasoning. Eng Appl Artif In-
tell 22(1):3–9. doi:10.1016/j.engappai.2008.04.021

Wender S, Watson I (2014) Combining case-based
reasoning and reinforcement learning for unit nav-
igation in real-time strategy game AI. In: Lam-
ontagne L, Plaza E (eds) Proceedings of the 22nd
international conference on case-based reasoning,
Cork. LNAI, vol 8765. Springer, Berlin/Heidelberg,
pp 511–525. doi:10.1007/978-3-319-11209-1 36

Categorical Attribute

Synonyms

Qualitative attribute

Categorical attributes are attributes whose val-
ues can be placed into distinct categories See
�Attribute and �Measurement Scales.

Categorical Data Clustering

Periklis Andritsos1 and Panayiotis Tsaparas2

1Faculty of Information, University of Toronto,
Toronto, ON, Canada
2Department of Computer Science &
Engineering, University of Ioannina, Ioannina,
Greece

Abstract

In this chapter, we provide an overview of the
categorical data clustering problem. We first
present different techniques for the general
cluster analysis problem, and then study how
these techniques specialize to the case of non-
numerical (categorical) data. We also present
measures and techniques developed specifi-
cally for this domain.

Synonyms

Clustering of nonnumerical data; Grouping

Definition

Data clustering is informally defined as the prob-
lem of partitioning a set of objects into groups,

www.aaai.org/ojs/index.php/aimagazine/article/view/2434
www.aaai.org/ojs/index.php/aimagazine/article/view/2434
http://dx.doi.org/10.1007/978-1-4899-7687-1_100385
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_100062
http://dx.doi.org/10.1007/978-1-4899-7687-1_100193

Categorical Data Clustering 189

C

such that objects in the same group are sim-
ilar, while objects in different groups are dis-
similar. Categorical data clustering refers to the
case where the data objects are defined over
categorical attributes. A categorical attribute is
an attribute whose domain is a set of discrete
values that are not inherently comparable. That
is, there is no single ordering or inherent distance
function for the categorical values, and there is
no mapping from categorical to numerical values
that is semantically sensible.

Motivation and Background

Clustering is a problem of great practical im-
portance that has been the focus of substantial
research in several domains for decades. As the
volume of collected data grows, the need to
mine and understand the data becomes impera-
tive. Clustering plays an instrumental role in this
process. As a result in the recent years, there
has been a surge of research activity in devising
new clustering algorithms that can handle large
amounts of data and produce results of high
quality.

In data clustering we want to partition ob-
jects into groups such that similar objects are
grouped together, while dissimilar objects are
grouped separately. This definition assumes that
there is some well-defined notion of similarity,
or distance, between data objects, and a way to
decide if a group of objects is a homogeneous
cluster. Most of the clustering algorithms in the
literature focus on data sets where objects are
defined over numerical attributes. In such cases,
the similarity (or dissimilarity) of objects can be
defined using well-studied measures that are de-
rived from geometric analogies. These definitions
rely on the semantics of the data values them-
selves (e.g., the values $100,000 and $110,000
are more similar than $100,000 and $1). The
existence of a distance measure enables us to
define a quality measure for a clustering (e.g.,
the mean square distance between each point and
the representative of its cluster). Clustering then
becomes the problem of grouping together points
such that the quality measure is optimized.

Categorical Data Clustering, Table 1 An instance of a
movie database

Director Actor Genre

t1 (Godfather II) Scorsese De Niro Crime

t2 (Good fellas) Coppola De Niro Crime

t3 (Vertigo) Hitchcock Stewart Thriller

t4 (N by NW) Hitchcock Grant Thriller

t5 (Bishop’s wife) Koster Grant Comedy

t6 (Harvey) Koster Stewart Comedy

However, there are many data sets where the
data objects are defined over attributes, which
are neither numerical nor inherently compara-
ble in any way. We term such data sets cate-
gorical, since they represent values of certain
categories. As a concrete example, consider the
toy data set in Table 1 that stores information
about movies. For the purpose of exposition,
a movie is characterized by the attributes “di-
rector,” “actor/actress,” and “genre.” In this set-
ting, it is not immediately obvious what the dis-
tance, or similarity, is between the values “Cop-
pola” and “Scorsese” or the tuples “Vertigo” and
“Harvey.”

There are plenty of examples of categorical
data: product data, where products are defined
over attributes such as brand, model, or color;
census data, where information about individ-
uals includes attributes such as marital status,
address, and occupation; ecological data where
plants and animals can be described with at-
tributes such as shape of petals or type of habitat.
There is a plethora of such data sets, and there
is always a need for clustering and analyzing
them.

The lack of an inherent distance or similarity
measure between categorical data objects makes
clustering of categorical data a challenging
problem. The challenge lies in defining a
quality measure for categorical data clustering
that captures the human intuition of what
it means for categorical data objects to be
similar. In the following, we will present an
overview of the different efforts at addressing
this problem and the resulting clustering
algorithms.

190 Categorical Data Clustering

Structure of the Learning System

Generic Data Clustering System
We first describe the outline for a generic data
clustering system, not necessarily of categorical
data. We will then focus on techniques specific to
categorical data clustering.

Data clustering is not a one-step process. In
one of the seminal texts on cluster analysis, Jain
and Dubes (1988) divided the clustering process
into seven different stages starting from the data
collection and ending with the result interpreta-
tion. In this article we are interested in prob-
lems relating to the representation of the data,
which affects the notion of similarity between
the categorical tuples and the clustering strategy,
which determines the final algorithm. These lie
in the heart of the data clustering problem, and
there has been considerable research effort in
these areas within the data mining and machine
learning communities. More specifically we will
consider the following two subproblems: (a) the
formal formulation of the clustering problem and
(b) the clustering algorithm.

Formal formulation of the clustering problem:
In order to devise algorithms for clustering, we
need to mathematically formulate the intuition
behind the informal definition of the clustering
problem where “similar objects are grouped to-
gether and dissimilar objects are grouped sep-
arately.” The problem formulation typically re-
quires at least one of the following:

• A measure of similarity or distance between
two data objects.

• A measure of similarity or distance between
a data object and a cluster of objects. This is
often defined by defining a representative for
a cluster as a (new) data object and comparing
the data object with the representative.

• A measure of the quality of a cluster of data
objects.

The result of the formulation step is to define
a clustering optimization criterion that guides the
grouping of the objects into clusters.

When the data is defined over numerical at-
tributes, these measures are defined using geo-
metric analogies. For example, in one possible
formulation, we can view each object as a point
in the Euclidean space, and define the distance
between two points as the Euclidean distance,
and the representative of a cluster as the mean
Euclidean vector. The quality of a cluster can
be defined with respect to the “variance” of the
cluster, that is, the sum of squares of the distances
between each object and the mean of the cluster.
The optimization problem then becomes to mini-
mize the variance over all clusters.

The clustering algorithm: Once we have
a mathematical formulation of the clustering
problem, we need an algorithm that will find
the optimal clustering in an efficient manner.
In most cases finding the optimal solution is
an NP-hard problem, so there are a variety of
efficient heuristics or approximation algorithms.
There is an extensive literature on this subject that
approaches the problem from different angles and
a wide variety of different clustering techniques
and algorithms. We now selectively describe
some broad classes of clustering algorithms and
problems. A thorough categorization of cluster-
ing techniques can be found in Han and Kamber
(2001), where different clustering problems,
paradigms, and techniques are discussed.

Hierarchical clustering algorithms: This is
a popular clustering technique since it is easy to
implement, and it lends itself well to visualization
and interpretation. Hierarchical algorithms create
a hierarchical decomposition of the objects. They
are either agglomerative (bottom-up) or divisive
(top-down). Agglomerative algorithms start with
each object being a separate cluster itself and
successively merge groups according to some
criterion. Divisive algorithms follow the opposite
strategy. They start with one cluster consisting
of all objects and successively split clusters
into smaller ones, until each object falls in one
cluster, or the desired given condition is met. The
hierarchical dendrogram produced is often in
itself the output of the algorithm, since it can be
used for visualizing the data. Most of the times,

Categorical Data Clustering 191

C

both approaches suffer from the fact that once a
merge or a split is committed, it cannot be undone
or refined.

Partitional clustering algorithms: Partitional
clustering algorithms define a clustering opti-
mization criterion and then seek the partition
that optimizes this criterion. Exhaustive search
over all partitions is infeasible since even for
few data objects, the number of possible parti-
tions is prohibitively large. Partitional clustering
algorithms often start with an initial, usually
random, partition and proceed with its refine-
ment by locally improving the optimization cri-
terion. The majority of them could be consid-
ered as greedy-like algorithms. They suffer from
the fact that they can easily get stuck to local
optima.

Spectral clustering algorithms: Spectral algo-
rithms use the data set to be clustered to con-
struct a two-dimensional matrix of data objects
and attributes. The entries in the matrix may be
the raw values or some transformation of these
values. The principal eigenvectors of the matrix
are then used to reveal the clustering structure
in the data. There is a rich literature on different
types of spectral algorithms.

Graph clustering: Graph clustering defines a
range of clustering problems, where the distinc-
tive characteristic is that the input data is rep-
resented as a graph. The nodes of the graph
are the data objects, and the (possibly weighted)
edges capture the similarity or distance between
the data objects. The data may come naturally
in the form of a graph (e.g., a social network),
or the graph may be derived in some way from
the data (e.g., link two products if they appear
together in a transaction). Some of the techniques
we describe above are directly applicable to graph
data.

Categorical Data Clustering System
In the clustering paradigm we outlined, a step of
fundamental importance is to formally formulate
the clustering problem, by defining a clustering
optimization criterion. As we detail above, for

this step we need a measure of distance or sim-
ilarity between the data objects or a measure of
cluster quality for a group of data objects. For
categorical data there exists no inherent ordering
or distance measure, and no natural geometric
analogies we can explore, causing the cluster-
ing paradigm to break down. Research efforts
on categorical data clustering have focused on
addressing this problem by imposing distance
measures on the categorical data and defining
clustering quality criteria. We now outline some
of these approaches.

Overlap-based similarity measures: A simple
and intuitive method for comparing two cate-
gorical data objects is to view them as sets of
attribute values and count the overlap between the
categorical values of the objects. The higher the
overlap, the more similar the two objects are. This
intuition leads to the use of well-known measures
such as the (generalized) Hamming distance (Jain
and Dubes 1988), which measures the number
of common values between two tuples, or the
Jaccard similarity measure, which is defined as
the intersection over the union of the values in
the two tuples. In the example of Table 1, tuples
t1 and t2 have Hamming distance 1 and Jaccard
coefficient 1=2.

Two algorithms that make use of overlap-
based measures are k-modes (Huang 1998) and
ROCK (RObust Clustering using linKs) (Guha
et al. 1999). The k-modes algorithm is a parti-
tional algorithm inspired by the k-means algo-
rithm, a well-known clustering algorithm for nu-
merical data. The representative of a categorical
data cluster is defined to be a data object where
each attribute takes the mode value: the mode of
an attribute is the most frequent attribute value
in the cluster. The ROCK algorithm makes use
of the Jaccard coefficient to define links between
data objects. The data is then represented in
the form of a graph, and the problem becomes
essentially a graph clustering problem. Given two
clusters of categorical data, ROCK measures the
similarity of two clusters by comparing their ag-
gregate interconnectivity against a user-specified
model, thus avoiding the problem of defining a
cluster representative.

192 Categorical Data Clustering

Context-based similarity measures: One way
to define relationships between categorical val-
ues is by comparing the context in which they
appear. For two categorical attribute values, we
define the context as the values of other attributes
with which they co-occur in the data set. The
more similar these two contexts are, the more
similar the attribute values are. For example, in
Table 1, Scorsese and Coppola are close since
they appear in exactly the same context, while
Scorsese and Hitchcock are far since their con-
texts are completely disjoint. Defining a distance
between value contexts can be done using over-
lap similarity measures (Das and Mannila 2000)
or by using information-theoretic measures, i.e.,
comparing the distributions defined by the two
contexts (Andritsos et al. 2004). Once we have
the relationships between the values, we can use
standard clustering techniques for solving the
clustering problem.

There are various algorithms that make use
of the idea that similar values should appear in
similar contexts in order to cluster categorical
data. The CACTUS (clustering categorical data
using summaries) algorithm (Ganti et al. 1999)
creates groups of attribute values based on
the similarity of their context. It then uses a
hierarchical greedy algorithm for grouping tuples
and attributes. In a slightly different fashion,
STIRR (sieving through iterated relational
reinforcement) (Ganti et al. 1998) uses the idea
that similar tuples should contain co-occurring
values, and similar values should appear in tuples
with high overlap. This idea is implemented via
a dynamical system, inspired by information
retrieval techniques. When the dynamical system
is linear, the algorithm is similar to spectral
clustering algorithms. CLICKS (Zaki et al. 2005)
is an algorithm that is similar to STIRR. Rather
than a measure of similarity/distance, it uses
a graph-theoretic approach to find k disjoint
sets of vertices in a graph constructed for a
particular data set. One special characteristic
of this algorithm is that it discovers clusters in a
subset of the underlying set of attributes.

Information-theoretic clustering criteria: The
information content in a data set can be quantified

through the well-studied notions of entropy and
mutual information (Cover and Thomas 1991).
Entropy measures the uncertainty in predicting
the values of the data when drawn from a distribu-
tion. If we view each tuple, or cluster of tuples, as
a distribution over the categorical values, then we
can define the conditional entropy of the attribute
values given a set of tuples, as the uncertainty of
predicting the values in this set of tuples. If we
have a single tuple, then the entropy is zero, since
we can accurately predict the values. For tuple
t1 we know the director, the actor, and the genre
with full certainty. As we group tuples together,
the uncertainty (and entropy) increases. Grouping
together tuples t1 and t2 creates uncertainty about
the director attribute, while grouping t1 and t3

creates uncertainty about all attributes. Hence
the latter grouping has higher entropy than the
former. Information-theoretic criteria for cluster-
ing aim at generating clusters with low entropy,
since this would imply that the clusters are ho-
mogeneous, and there is little information loss.
This formulation allows for defining the distance
between sets of tuples, using entropy-based diver-
gences, such as the Jensen-Shannon divergence
(Cover and Thomas 1991). Jensen-Shannon di-
vergence captures the information contained in
the data set, in a similar way that mean-squared
distance captures geometric notions inherent in
numerical data.

Two algorithms that make use of this idea are
COOLCAT (Barbarà et al. 2002) and LIMBO
(scalable information bottleneck) (Andritsos
et al. 2004). COOLCAT is a partitional algorithm
that performs a local search for finding the
partition with k clusters with the lowest entropy.
LIMBO works by constructing a summary of
the data set that preserves as much information
about the data as possible and then produce a
hierarchical clustering of the summary. It is a
scalable algorithm that can be used in both static
and streaming environments.

A related approach is adopted by the
COBWEB algorithm (Fisher 1987; Gluck and
Corter 1985), a divisive hierarchical algorithm
that optimizes the category utility measure,
which measures how well particular values
can be predicted given the clustering as

Categorical Data Clustering 193

C

opposed to having them in the original data set
unclustered.

Categorical clustering as clustering aggrega-
tion: A different approach to the categorical data
clustering problem is to view it as a clustering
aggregation problem. Given a collection of clus-
terings of the data objects, the clustering aggrega-
tion problem looks for the single clustering that
agrees as much as possible from the input clus-
terings. The problem of clustering aggregation
has been shown to be equivalent to categorical
data clustering (Gionis et al. 2007), where each
categorical attribute defines a clustering of the
data objects, grouping all the objects with the
same value together. For example, in Table 1,
the attribute “genre” defines three clusters: the
crime cluster, the thriller cluster, and the comedy
cluster. Similarly, the attribute “actor” defines
three clusters, and the attribute “director” defines
four clusters.

Various definitions have been considered in
the literature for the notion of agreement between
the output clustering and the input clusterings.
One definition looks at all pairs of objects and
defines a disagreement between two clusterings if
one clustering places the two objects in the same
cluster, while the other places them in different
clusters; an agreement is defined otherwise. The
clustering criterion is then to minimize the num-
ber of disagreements (or maximize the number of
agreements). Other definitions are also possible,
which make use of information-theoretic mea-
sures or mappings between the clusters of the two
clusterings. There is a variety of algorithms for
finding the best aggregate cluster, many of which
have also been studied theoretically.

Cross-References

�Data mining on Text
� Instance-Based Learning

Recommended Reading

Andritsos P, Tsaparas P, Miller RJ, Sevcik KC (2004)
LIMBO: scalable clustering of categorical data. In:
Proceedings of the 9th international conference on

extending database technology (EDBT), Heraklion,
14–18 Mar 2004, pp 123–146

Barbarà D, Couto J, Li Y (2002) COOLCAT: an
entropy-based algorithm for categorical clustering.
In: Proceedings of the 11th international con-
ference on information and knowledge manage-
ment (CIKM), McLean, 4–9 Nov 2002, pp 582–
589

Cover TM, Thomas JA (1991) Elements of information
theory. Wiley, New York

Das G, Mannila H (2000) Context-based similarity
measures for categorical databases. In: Proceedings
of the 4th European conference on principles of data
mining and knowledge discovery (PKDD), Lyon,
13–16 Sept 2000, pp 201–210

Fisher DH (1987) Knowledge acquisition via in-
cremental conceptual clustering. Mach Learn 2:
139–172

Ganti V, Gehrke J, Ramakrishnan R (1999) CACTUS:
clustering categorical data using summaries. In:
Proceedings of the 5th international conference on
knowledge discovery and data mining, (KDD), San
Diego, 15–18 Aug 1999, pp 73–83

Gionis A, Mannila H, Tsaparas P (2007) Cluster-
ing aggregation. In: ACM transactions on knowl-
edge discovery from data (TKDD), Mar 2007,
vol 1, No 1. Association for Computing Machinery,
New York

Gibson D, Kleinberg JM, Raghavan P (1998) Cluster-
ing categorical data: an approach based on dynam-
ical systems. In: Proceedings of the 24rth interna-
tional conference on very large data bases, (VLDB),
New York, 24–27 Aug 1998, pp 311–322

Gluck M, Corter J (1985) Information, uncertainty, and
the utility of categories. In: Proceedings of the 7th
annual conference of the Cognitive Science Society
(COGSCI), Irvine, pp 283–287

Guha S, Rastogi R, Shim K (1999) ROCK: a robust
clustering algorithm for categorical atributes. In:
Proceedings of the 15th international conference
on data engineering, Sydney, 23–26 Mar 1999,
pp 512–521

Jain AK, Dubes RC (1988) Algorithms for clustering
data. Prentice-Hall, Englewood Cliffs

Jarke M, Lenzerini M, Vassiliou Y, Vassiliadis P (1999)
Fundamentals of data warehouses. Springer-Verlag,
Berlin/Heidelberg

Han J, Kamber M (2001) Data mining: concepts and
techniques. Morgan Kaufmann, San Francisco

Huang Z (1998) Extensions to the k-means algorithm
for clustering large data sets with categorical values.
Data Min Knowl Discov 2(3):283–304

Zaki MJ, Peters M, Assent I, Seidl T (2005) CLICKS:
an effective algorithm for mining subspace clusters
in categorical datasets. In: Proceeding of the 11th
international conference on knowledge discovery
and data mining (KDD), Chicago, 21–24 Aug 2005,
pp 736–742

http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_409

194 Categorization

Categorization

�Classification
�Concept Learning

Category

�Class

Causal Discovery

�Learning Graphical Models

Causality

Ricardo Silva
Centre for Computational Statistics and Machine
Learning, University College London, London,
UK

Abstract

Causality is an essential concept in our under-
standing of the world as, in order to predict
how a system behaves under an intervention,
it is necessary to have causal knowledge of
the impact of interventions. This knowledge
should be expressed in a language built on top
of probabilistic models, since the axioms of
probability do not provide a way of express-
ing how external interventions affect a sys-
tem. Learning this knowledge from data also
poses additional challenges compared to the
standard machine learning problem, as much
data comes from passive observations that do
not follow the same regime under which our
predictions will take place.

Definition

The main task in causal inference is the prediction
of the outcome of an intervention. For example, a

treatment assigned by a doctor that will change
the patient’s heart condition is an intervention.
Predicting the change in patient condition is a
causal inference task. In general, an interven-
tion is an action taken by an external agent that
changes the original values, or the probability
distributions, of some of the variables in the
system. Besides predicting outcomes of actions,
causal inference is also concerned with expla-
nation: identifying which were the causes of a
particular event that happened in the past.

Motivation and Background

Many problems in machine learning are predic-
tion problems. Given a feature vector X, the
task is to provide an estimate of some output
vector Y or its conditional probability distribution
P.YjX/. This typically assumes that the distri-
bution of Y given X during learning is the same
distribution at prediction time. There are many
scenarios where this is not the case.

Epidemiology and several medical sciences
provide counterexamples. Consider two seem-
ingly straightforward learning problems. In the
first example, one is given epidemiological data
where smokers are clearly more inclined than
nonsmokers to develop lung cancer. Can I use
this data to learn that smoking causes cancer? In
the second example, consider a group of patients
suffering from a type of artery disease. In this
group, those that receive a bypass surgery are
likely to survive longer than those that receive a
particular set of drugs with no surgery.

There is no fundamental problem on using
such datasets to predict the probability of a
smoker developing lung cancer or the life
expectancy of someone who went through
surgery. Yet, the data does not necessarily tell
you if smoking is a cause of lung cancer or
that nationwide the government should promote
surgery as the treatment of choice for that
particular heart disease. What is going on?

There are reasons to be initially suspicious
of such claims. This is well known in statistics
as the expression “association is not causation”
(Wasserman 2004, p. 253). The data generat-

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_465

Causality 195

C

ing mechanism for our outcome Y (“developing
lung cancer,” “getting cured from artery disease”)
given the relevant inputs X (“smoking habit,”
“having a surgery”) might change under an inter-
vention for reasons such as follows.

In the smoking example, the reality might be
that there are several hidden common causes that
are responsible for the observed association. A
genetic factor includes, for instance, the possi-
bility that there is a class of genotypes on which
people are more likely to pick up smoking and
develop lung cancer, without any direct causal
connection between these two variables. In the
artery disease example, surgery might not be the
best choice to be made by a doctor. It might have
been the case that so far patients in better shape
were more daring in choosing, by themselves, the
surgery treatment. This selection bias will favor
surgery over drug treatment, since from the outset
the patients that are most likely to improve take
that treatment.

When treatment is enforced by an external
agent (the doctor), such selection bias disap-
pears, and the resulting P.YjX/ will not be the
same. One way of learning this relationship is
through randomized trials (Rosenbaum 2002).
The simplest case consists on flipping a coin for
each patient on the training set. Each face of
the coin corresponds to a possible treatment, and
assignment is done accordingly. Since assign-
ment does not depend on any hidden common
cause or selection bias, this provides a basis for
learning causal effects. Machine learning and
statistical techniques can be applied directly in
this case (e.g., logistic regression). Data analysis
performed with a randomized trial is sometimes
called an interventional study.

The smoking case is more complicated: a
direct intervention is not possible, since it is not
acceptable to force someone to smoke or not to
smoke. The inquiry asks only for a hypothetical
intervention, i.e., if someone is forced to smoke,
will his or her chances of developing lung can-
cer increase? Such an intervention will not take
place, but this still has obvious implications in
public policy. This is the heart of the matter in
issues such as deciding on raising tobacco taxes
or forbidding smoking in public places. How-

ever, data that measures this interventional data
generation mechanism will never be available for
ethical reasons. The question has to be addressed
through an observational study, i.e., a study for
causal predictions without interventional data.

Observational studies arise not only under the
impossibility of performing interventions but also
in the case where performing interventions is
too expensive or time consuming. In this case,
observational studies, or a combination of ob-
servational and interventional studies, can pro-
vide extra information to guide an experimental
analysis (Hyttinen et al. 2013; Sachs et al. 2005;
Cooper and Yoo 1999; Eaton and Murphy 2007).
The use of observational data, or the combina-
tion of several interventional datasets, is where
the greatest contributions of machine learning to
causal inference rest.

Structure of the Learning System

Background
Knowledge

Observational
Data

Interventional
Data

Causal Query

Prediction

Causal Model

Structure of Causal Inference
In order to use observational data, a causal in-
ference system needs a way of linking the state
of the world under an intervention to the natural
state of the world. The natural state is defined
as the one to which no external intervention is
applied. In the most general formulation, this link
between the natural state and the manipulated
world is defined for interventions in any subset
of variables in the system.

A common language for expressing the rela-
tionship between the different states of the world
is a causal graph, as explained in more detail
in the next section. A causal model is composed
of the graph and a probability distribution that

196 Causality

A G H

F

D

C

BE

A G H

F

D

C

BE

I

A G H

F

D

C

BE

a b c

Causality, Fig. 1 (a) A causal DAG. (b) Structure of the causal graph under some intervention that sets the value of A
to a constant. (c) Structure of the causal graph under some intervention that changes the distribution of A

factorizes according to the graph, as in a standard
graphical model. The only difference between a
standard graphical model and a causal graphical
model is that in the latter, extra assumptions are
made. The graphical model can be seen as a way
of encoding such assumptions.

The combination of assumptions and
observational and interventional data generates
such a graphical causal model. In the related
problem of reinforcement learning, the agent
has to maximize a specific utility function and
typically has full control on which interventions
(actions) can be performed. Here we will focus
on the unsupervised problem of learning a causal
model for a fixed input of observational and
interventional data.

Because only some (or no) interventional data
might be available, the learning system might not
be able to answer some causal queries. That is,
the system will not provide an answer for some
prediction tasks.

Languages and Assumptions for Causal
Inference
Directed acyclic graphs (DAGs) are a popular
language in machine learning to encode qual-
itative statements about causal relationships. A
DAG is composed of a set of vertices and a set of
directed edges. The notions of parents, children,
ancestors, and descendants are the usual ones
found in graphical modeling literature.

In terms of causal statements, a directed edge
A ! B states that A is a direct cause of B:
that is, different interventions on A will result on
different distributions for B , even if we intervene
on all other variables. The assumption that A is
a cause of B is not used in non-causal graphical
models.

A causal DAG G satisfies the causal Markov
condition if and only if a vertex is independent of
all of its non-descendants given its direct causes
(parents). In Fig. 1a, A is independent of D, E,
and F given its parents, B and C . It may or may
not be independent of G given B and C .

The causal Markov condition implies several
other conditional independence statements. For
instance, in Fig. 1a, we have that H is inde-
pendent of F given A. Yet, this is not a state-
ment about the parents of any vertex. Pearl’s
d-separation criterion (Pearl 2000) is a sound
and complete way of reading off independencies,
out of a DAG, which are entailed by the causal
Markov condition. We assume that the joint prob-
ability distribution over the vertex variables is
Markov with respect to the graph, that is, any
independence statement that is encoded by the
graph should imply the corresponding indepen-
dence in the distribution.

Representing Interventions
The local modularity given by the causal Markov
condition leads to a natural notion of intervention.
Random variable V , represented by a particular
vertex in the graph, is following a local mecha-
nism: its direct causes determine the distribution
of V before its direct effects are generated. The
role of an intervention is to override the natural
local mechanism. An external agent substitutes
the natural P.V jParents.V // by a new dis-
tribution PMan.V jParents.V // while keeping
the rest of the model unchanged (“Man” here
stands for a particular manipulation). The no-
tion of intervening by changing a single local
mechanism is sometimes known as an ideal in-
tervention. Other general types of interventions

Causality 197

C

can be defined (Eaton and Murphy 2007), but the
most common frameworks for calculating causal
effects rely on this notion.

A common type of intervention is the point
mass intervention, which happens when V is
set to some constant v. This can be represented
graphically by “wiping out” all edges into V .
Figure 1b represents the resulting graph in (a)
under a point manipulation of A. Notice that A is
now d-separated from its direct causes under this
regime. It is also probabilistically independent,
since A is now constant. This allows for a graph-
ical machinery that can read off independencies
out of a manipulated graph (i.e., the one with
removed edges). It is the idea of representing the
natural state of the world with a single causal
graph, and allowing for modifications in this
graph according to the intervention of choice,
that links the different regimes obtained under
different interventions.

For the general case where a particular vari-
able V is set to a new distribution, a manipu-
lation node is added as an extra parent of V :
this represents that an external agent is acting
over that particular variable (Spirtes et al. 2000;
Pearl 2000; Dawid 2003), as illustrated in Fig. 1c.
P.V jParents.V // under intervention I is some
new distribution PMan.V jParents.V /; I /.

Calculating Distributions Under
Interventions
The notion of independence is a key aspect of
probabilistic graphical models, where it allows
for efficient computation of marginal probabili-
ties. In causal graphical models, it also fulfills an-
other important role: independencies indicate that
the effect of some interventions can be estimated
using observational data.

We will illustrate this concept with a simple
example. One of the key difficulties in calculating
a causal effect is unmeasured confounding, i.e.,
hidden common causes. Consider Fig. 2a, where
X is a direct cause of Y and H is a hidden
common cause of both. I is an intervention ver-
tex. Without extra assumptions, there is no way
of estimating the effect of X on Y using a
training set that is sampled from the observed
marginal P.X; Y /. This is more easily seen in

H

I X Y

HZ

I X Y

a b

Causality, Fig. 2 (a) X and Y have a hidden common
cause H . (b) Y is dependent on the intervention node I
given X , but conditioning on Z and marginalizing it out
will allow us to eliminate the “backdoor” path that links
X and Y through the hidden common cause H

the case where the model is multivariate Gaussian
with zero mean. In this case, each variable is a
linear combination of its parents with standard
Gaussian additive noise

X D aH C �X

Y D bX C cH C �Y

where H is also a standard normal ran-
dom variable. The manipulated distribution
PMan.Y jX; I /, where I is a point intervention
setting X D x, is a Gaussian distribution with
mean b � x. Value x is given by construction, but
one needs to learn the unknown value b.

One can verify that the covariance of X and Y
in the natural state is given by a C bc. Observa-
tional data, i.e., data sampled from P.X; Y /, can
be used to estimate the covariance of X and Y in
the natural state, but from that it is not possible to
infer the value of b: there are too many degrees
of freedom.

However, there are several cases where the
probability of Y given some intervention on X
can be estimated with observational data and a
given causal graph. Consider the graph in Fig. 2b.
The problem again is to learn the distribution
of Y given X under regime I , i.e., P.Y jX; I /.
It can be read off from the graph that I and
Y are not independent given X , which means
P.Y jX; I / ¤ P.Y jX/. How can someone then
estimate P.Y jX; I / if no data for this process has
been collected? The answer lies on reducing the
“causal query” to a “probabilistic query” where
the dependence on I disappears (and, hence, the
necessity of having data measured under the I
intervention). This is done by relying on the
assumptions encoded by the graph:

198 Causality

P.Y jX; I / D
P

´ P.Y jX; I; ´/P.Z D ´jX; I / (Z is discrete in this example)
D
P

´ P.Y jX; ´/P.Z D ´jX; I / (Y and I are independent given Z)
/
P

´ P.Y jX; ´/P.X j´; I /P.Z D ´jI / (By Bayes’ rule)
D
P

´ P.Y jX; ´/P.X j´; I /P.Z D ´/ (Z and I are marginally independent)

(1)

In the last line, we haveP.Y jX;Z/ andP.Z/,
which can be estimated with observational data,
since no intervention variable I appears in the
expression. P.X jZ; I / is set by the external
agent: its value is known by construction. This
means that the causal distribution P.Y jX; I / can
be learned even in this case where X and Y share
a hidden common cause H .

There are several notations for denoting an in-
terventional distribution such as P.Y jX; I /. One
of the earliest was due to Spirtes et al. (2000),
which used the notation P.Y jset X D x/ to
represent the distribution under an intervention I
that fixed the value ofX to some constant x. Pearl
(2000) defines the operator do with an analogous
purpose:

P.Y jdo.X D x// (2)

Pearl’s do-calculus is essentially a set of op-
erations for reducing a probability distribution
that is a function of some intervention to a prob-
ability distribution that does not refer to any
intervention. All reductions are conditioned on
the independencies encoded in a given causal
graph. This is in the same spirit of the example
presented above.

The advantage of such notations is that, for
point interventions, they lead to simple yet effec-
tive transformations (or to a report that no trans-
formation is possible). Spirtes et al. (2000) and
Pearl (2000) provide a detailed account of such
prediction tools. By making a clear distinction
between P.Y jX/ (X under the natural state) and
P.Y jdo.X// (X under some intervention), much
of the confusion that conflates causal and non-
causal predictions disappears.

It is important to stress that methods such as
the do-calculus are nonparametric, in the sense
that they rely on conditional independence con-
straints only. More informative reductions are
possible if one is willing to provide extra infor-
mation, such as assuming linearity of causal ef-

fects. For such cases, other parametric constraints
can be exploited (Spirtes et al. 2000; Pearl 2000).

Learning Causal Structure
In all of the previous sections, we assumed that
a causal graph was available. Since background
knowledge is often limited, learning such graph
structures becomes an important task. However,
this cannot be accomplished without extra as-
sumptions. To see why, consider again the ex-
ample in Fig. 2a: if a C bc D 0, it follows that
the X and Y are independent in the natural state.
However, Y is not causally independent of X (if
b ¤ 0): P.Y jdo.XDx1// and P.Y jdo.XDx2//

will be two different Gaussians with means b � x1

and b � x2, respectively.
This example demonstrates that an indepen-

dence constraint that is testable by observational
data does not warrant causal independence, at
least based on the causal Markov condition only.
However, an independence constraint that arises
from particular identities such as a C bc D 0
is not stable, in the sense that it does not follow
from the qualitative causal relations entailed by
the Markov condition: a change in any of the
parameter values will destroy such a constraint.

The artificiality of unstable independencies
motivates an extra assumption: the faithfulness
condition (Spirtes et al. 2000), also known as
the stability condition (Pearl 2000). We say that
a distribution P is faithful to a causal graph
G if P is Markov with respect to G and if
each conditional independence in P corresponds
to some d-separation in G. That is, on top of
the causal Markov condition, we assume that all
independencies in P are entailed by the causal
graph G.

The faithfulness condition allows us to re-
construct classes of causal graphs from observa-
tional data. In the simplest case, observing that
X and Y are independent entails that there is
no causal connection between X and Y . Conse-

Causality 199

C

X

W

Z

Y X

W

Z

Y X

W

Z

a b c
Y

Causality, Fig. 3 (a) A particular causal graph which
entails a few independence constraints, such as X and Z
being independent given W . (b) A different causal graph

that entails exactly the same independence constraints as
in (a). (c) A representation for all graphs that entail the
same conditional independencies as (a) and (b)

quently, P.Y jdo.X// D P.Y jX/ D P.Y /. No
interventional data was necessary to arrive at this
conclusion, given the faithfulness condition.

In general, the solution is undetermined: more
than one causal graph will be compatible with a
set of observable independence constraints. Con-
sider a simple example, where data is generated
by a causal model with a causal graph given as in
Fig. 3a. This graph entails some independencies,
for instance, that X and Z are independent given
W or thatX and Y are not independent given any
subset of fW;Zg. However, several other graphs
entail the same conditional independences. The
graph in Fig. 3b is one example. The learning
task is then discovering an equivalence class of
graphs, not necessarily a particular graph. This is
in contrast with the problem of learning the struc-
ture of non-causal graphical models: the fact that
there are other structures compatible with the data
is not important in this case, since we will not
use such graphical models to predict the effect of
some hypothetical intervention. An equivalence
class might not be enough information to reduce
a desired causal query to a probabilistic query, but
it might require much less prior knowledge than
specifying a full causal graph.

Assume for now that no hidden common
causes exist in this domain. In particular, the
graphical object in Fig. 3c is a representation
of the equivalence class of graphs that are
compatible with the independencies encoded
in Fig. 3a (Pearl 2000; Spirtes et al. 2000). All
members of the equivalence class will have the
same skeleton of this representation, i.e., the
same adjacencies. An undirected edge indicates

that there are two members in the equivalence
class where directionality of this particular edge
goes in opposite directions. Some different
directions are illustrated in Fig. 3b. One can
verify from the properties of d-separation that,
if an expert or an experiment indicates that
X � W should be directed as X ! W , then
the edge W � Z is compelled to be directed as
W ! Z: the direction W Z is incompatible
with the simultaneous findings that X and Z are
independent given W and that X causes W .

More can be discovered if more independence
constraints exist. In Fig. 4a, X is not a cause
of Y . If we assume no hidden common causes
exist in this domain, then no other causal graph
is compatible with the independence constraints
of Fig. 4a: the equivalence class is this graph
only. However, the assumption of no hidden
common causes is strong and undesirable. For
instance, the graph in Fig. 4b, where H1 and
H2 are hidden, is in the same equivalence
class of (a). Yet, the graph in (a) indicates
that P.W jdo.X// D P.W jX/, which can be
arbitrarily different from the real P.W jdo.X// if
Fig. 4b is the real graph. Some equivalence class
representations, such as the Partial Ancestral
Graph representation (Spirtes et al. 2000), are
robust to hidden common causes: in Fig. 4c, an
edge that has a circle as endpoint indicates that
is not known if there is a causal path into both,
e.g., X and W (which would be the case for a
hidden common cause of X and W). The arrow
into W does indicate that W cannot be a cause
of X . A fully directed edge such as W ! Z

indicates total information: W is a cause of Z,

200 Causality

X

W

Z

Y
X

W

Z

Y

H 1 H 2

X

Z

Y

W

a b c

Causality, Fig. 4 (a) A particular causal graph with no
other member on its equivalence class (assuming there
are no hidden common causes). (b) Graph under the
presence of two hidden common causes H1 and H2.

(c) A representation for all graphs that entail the same
conditional independencies as (a), without assuming the
nonexistence of hidden common causes

Z is not a cause of W , and W and Z have no
hidden common causes.

Given equivalence class representations and
background knowledge, different types of algo-
rithms explore independence constraints to learn
an equivalence class. It is typically assumed that
the true graph is acyclic. The basic structure is
to evaluate how well a set of conditional inde-
pendence hypotheses is supported by the data.
Depending on which constraints are judged to
hold in the population, we keep, delete, or ori-
ent edges accordingly. Some algorithms, such
as the PC algorithm (Spirtes et al. 2000), test
a single independence hypothesis at a time and
assemble the individual outcomes in the end
into an equivalence class representation. Other
algorithms such as the GES algorithm (Meek
1997; Chickering 2002) start from a prior dis-
tribution for graphs and parameters and proceed
to compare the marginal likelihood of members
of different equivalence classes (which can be
seen as a Bayesian joint test of independence
hypotheses). In the end, this reduces to a search
for the maximum a posteriori equivalence class
estimator. Both PC and GES have consistency
properties: in the limit of infinite data, they return
the right equivalence class under the faithful-
ness assumption. However, both PC and GES,
and most causal discovery algorithms, assume
that there are no hidden common causes in the
domain. The Fast Causal Inference (FCI) algo-
rithm of Spirtes et al. (2000) is able to generate
equivalence class representations as in Fig. 4c.

As in the PC algorithm, this is done by testing
a single independence hypothesis at a time and
therefore is a high-variance estimator given small
samples. A GES-like algorithm with the consis-
tency properties of FCI is not currently known.
An algorithm that allows for cyclic networks is
discussed by Richardson (1996).

Semiparametric Models
Our examples relied on conditional independence
constraints. In this case, the equivalence class is
known as the Markov equivalence class. Markov
equivalence classes are “nonparametric,” in the
sense that they do not refer to any particular
probability family. In practice, this advantage is
limited by our ability to test independence hy-
potheses within flexible probability families. An-
other shortcoming of Markov equivalence classes
is that they might be poorly informative if few
independence constraints exist in the population.
This will happen, for instance, if a single hid-
den variable is a common cause of all observed
variables. If one is willing to incorporate further
assumptions, such as linearity of causal relation-
ships, semiparametric constraints can be used to
define other types of equivalence classes that are
more discriminative than the Markov equivalence
class. Silva et al. (2006) describe how some
rank constraints in the covariance matrix of the
observed variables can be used to learn the struc-
ture of linear models, even if no independence
constraints are observable. Shimizu et al. (2006)
provide a solution to find the causal ordering of

Causality 201

C

a linear DAG model without latent variables, by
exploiting information beyond the second mo-
ments of a distribution in the non-Gaussian case.
Entner et al. (2012) introduce an approach to
estimate causal effects in non-Gaussian linear
systems under some assumptions of direction-
ality but allowing for unmeasured confounding.
Peters et al. (2014) develop a general method for
learning directionality in nonlinear models with
additive noise.

Confidence Intervals
Several causal learning algorithms such as the
PC and FCI algorithms (Spirtes et al. 2000) are
consistent, in the sense that they can recover the
correct equivalence class given the faithfulness
assumption and an infinite amount of data. Al-
though point estimates of causal effects are im-
portant, it is also important to provide confidence
intervals. From a frequentist perspective, it has
been shown that this is not possible given the
faithfulness assumption only (Robins et al. 2003).
An intuitive explanation is as follows: consider
the model such as the one in Fig. 2a. For any
given sample size, there is at least one model such
that the associations due to the paths X H !

Y and X ! Y nearly cancel each other (faithful-
ness is still preserved), making the covariance of
X and Y statistically indistinguishable from zero.
In order to achieve uniform consistency, causal
inference algorithms need assumptions stronger
than faithfulness. Zhang and Spirtes (2003) pro-
vide some directions.

Other Languages and Tasks in Causal
Learning
A closely related language for representing
causal models is the potential outcomes
framework popularized by Donald Rubin (Rubin
2005). In this case, random variables for a same
variable Y are defined for each possible state
of the intervened variable X . Notice that, by
definition, only one of the possible Y outcomes
can be observed for any specific data point. This
framework is popular in the statistics literature
as a type of missing data model. The relation
between potential outcomes and several other

representations of causality is discussed by
Richardson and Robins (2013).

A case where potential outcomes become par-
ticularly motivated is in causal explanation. In
this setup, the model is asked for the probability
that a particular event in time was the cause
of a particular outcome. This is often cast as a
counterfactual question: had A been false, would
B still have happened? Questions in history and
law are of this type: the legal responsibility of
an airplane manufacturer in an accident depends
on technical malfunction being an actual cause
of the accident. Ultimately, such issues of causal
explanation, actual causation and other counter-
factual answers, are untestable. Although ma-
chine learning can be a useful tool to derive
the consequences of assumptions combined with
data about other events of the same type, in
general the answers will not be robust to changes
in the assumptions, and the proper assumptions
ultimately cannot be selected with the available
data. Some advances in generating explanations
with causal models are described by Halpern and
Pearl (2005).

Recommended Reading

Chickering D (2002) Optimal structure identifica-
tion with greedy search. J Mach Learn Res
3:507–554

Cooper G, Yoo C (1999) Causal discovery from a
mixture of experimental and observational data. In:
Proceedings of the 15th conference on uncertainty
in artificial intelligencem (UAI-1999), Stockholm,
pp 116–125

Dawid AP (2003) Causal inference using influence dia-
grams: the problem of partial compliance. In: Green
PJ, Hjort NL, Richardson S (eds) Highly structured
stochastic systems. Oxford University Press, New
York, pp 45–65

Eaton D, Murphy K (2007) Exact Bayesian structure
learning from uncertain interventions. In: Proceed-
ings of the 11th international conference on artifi-
cial intelligence and statistics (AISTATS-2007), San
Juan, pp 107–114

Entner D, Hoyer PO, Spirtes P (2012) Statistical
test for consistent estimation of causal effects in
linear non-gaussian models. In: Proceedings of
the 15th international conference on artificial intel-
ligence and statistics (AISTATS-2012), La Palma,
pp 364–372

202 CC

Halpern J, Pearl J (2005) Causes and explanations: a
structural-model approach. Part II: explanations. Br
J Philos Sci 56:889–911

Hyttinen A, Eberhardt F, Hoyer PO (2013) Experiment
selection for causal discovery. J Mach Learn Res
14:3041–3071

Meek C (1997) Graphical models: selecting causal
and statistical models. PhD thesis, Carnegie Mellon
University

Pearl J (2000) Causality: models, reasoning and
inference. Cambridge University Press, New York

Peters J, Mooij JM, Janzing D, Schölkopf B (2014)
Causal discovery with continuous additive noise
models. J Mach Learn Res 15:2009–2053

Richardson TS (1996) A discovery algorithm for
directed cyclic graphs. In: Proceedings of 12th
conference on uncertainty in artificial intelligence,
Portland

Richardson TS, Robins J (2013) Single world in-
tervention graphs (SWIGs): a unification of the
counterfactual and graphical approaches to causal-
ity. Working Paper Number 128, Center for
Statistics and the Social Sciences, University of
Washington

Robins J, Scheines R, Spirtes P, Wasserman L
(2003) Uniform consistency in causal inference.
Biometrika 90:491–515

Rosenbaum P (2002) Observational studies. Springer,
New York

Rubin D (2005) Causal inference using potential
outcomes: design, modeling, decisions. J Am Stat
Assoc 100(469):322–331

Sachs K, Perez O, Pe’er D, Lauffenburger D, Nolan
G (2005) Causal protein-signaling networks de-
rived from multiparameter single-cell data. Science
308:523–529

Shimizu S, Hoyer P, Hyvärinen A, Kerminen A (2006)
A linear non-Gaussian acyclic model for causal
discovery. J Mach Learn Res 7:2003–2030

Silva R, Scheines R, Glymour C, Spirtes P (2006)
Learning the structure of linear latent variable mod-
els. J Mach Lear Res 7:191–246

Spirtes P, Glymour C, Scheines R (2000) Causation,
prediction and search. MIT Press, Cambridge

Wasserman L (2004) All of statistics. Springer,
New York

Zhang J, Spirtes P (2003) Strong faithfulness and
uniform consistency in causal inference. In: Pro-
ceedings of the 19th conference in uncertainty
in artificial intelligence (UAI-2013), Acapulco,
pp 632–639

CC

�Cascade Correlation

Certainty Equivalence Principle

� Internal Model Control

Characteristic

�Attribute

Citation or Reference Matching
(When Applied to Bibliographic
Data)

�Record Linkage

City Block Distance

�Manhattan Distance

Class

Chris Drummond
National Research Council of Canada, Ottawa,
ON, Canada

Synonyms

Category; Collection; Kind; Set; Sort; Type

Definition

A class is a collection of things that might rea-
sonably be grouped together. Classes that we
commonly encounter have simple names so, as
humans, we can easily refer to them. The class
of dogs, for example, allows me to say “my dog
ate my newspaper” without having to describe a
particular dog, or indeed, a particular newspaper.
In machine learning, the name of the class is
called the class label. Exactly what it means
to belong to a class, or category, is a complex
philosophical question but often we think of a
class in terms of the common properties of its
members. We think particularly of those proper-

http://dx.doi.org/10.1007/978-1-4899-7687-1_33
http://dx.doi.org/10.1007/978-1-4899-7687-1_413
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_511
http://dx.doi.org/10.1007/978-1-4899-7687-1_100048
http://dx.doi.org/10.1007/978-1-4899-7687-1_100069
http://dx.doi.org/10.1007/978-1-4899-7687-1_100237
http://dx.doi.org/10.1007/978-1-4899-7687-1_100427
http://dx.doi.org/10.1007/978-1-4899-7687-1_100433
http://dx.doi.org/10.1007/978-1-4899-7687-1_100493

Class Binarization 203

C

ties which seperate them from other things which
are in many ways similar, e.g., cats mieow and
dogs bow-wow. We would be unlikely to form a
class from a random collection of things, as they
would share no common properties. Knowing
something belonged to such a collection would be
of no particular benefit. Although many every day
classes will have simple names, we may construct
them however we like, e.g., “The things I like
to eat for breakfast on a Saturday morning.” As
there is no simple name for such a collection, in
machine learning we would typically refer to it
as the positive class, and all occurences of it are
positive examples; the negative class would be
everything else.

Motivation and Background

The idea of a class is important in learning.
If we discover something belongs to a class,
we suddenly know quite a lot about it even if
we have not encountered that particular example
before. In machine learning, our use of the term
accords closely with the mathematical definition
of a class, as a collection of sets unambiguously
defined by a property that all its members share. It
also accords with the idea of equivalence classes,
which group similar things. Sets have an inten-
sion, the description of what it means to be a
member, and an extension, things that belong to
the set, useful properties of a class in machine
learning. Class is also a term used extensively in
knowledge bases to denote an important relation-
ship between groups, of sub-class and super class.
Learning is often viewed as a way of solving
the knowledge acquisition bottleneck (Buchanan
et al. 1983) in knowledge bases and the use of
the term class in machine learning highlights this
connection.

Recommended Reading

Buchanan B, Barstow D, Bechtel R, Bennett J, Clancey
W, Kulikowski C et al (1983) Constructing an expert
system. In: Hayes-Roth F, Waterman DA, Lenat
DB (eds) Building expert systems. Addison-Wesley,
Reading, pp 127–167

Class Binarization

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Many learning algorithms are only designed
to separate two classes from each other.
For example, � concept-learning algorithms
assume positive examples and negative
examples (counterexamples) for the concept to
learn, and many statistical learning techniques,
such as neural networks or � support vector
machines, can only find a single separating
decision surface. One way to apply these
algorithms to multi-class problem is to
transform the original multi-class problem
into multiple binary problems.

Synonyms

Error-correcting output codes (ECOC); One-a-
gainst-all training; One-against-one training;
Pairwise classification

Methods

The best-known techniques are:

One against all: one concept-learning problem is
defined for each class, i.e., each class is in turn
used as the positive class, and all other classes
form the negative class.

Pairwise (One against one): one concept is
learned for each pair of classes (Fürnkranz
2002). This may be viewed as a special case
of � preference learning.

Error-correcting output codes: ECOC allow
arbitrary subsets of the classes to form
the positive and negative classes of the
binary problems. In the original formulation
(Dietterich and Bakiri 1995), all classes
have to be used for each problem, a later

http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_100141
http://dx.doi.org/10.1007/978-1-4899-7687-1_100348
http://dx.doi.org/10.1007/978-1-4899-7687-1_100349
http://dx.doi.org/10.1007/978-1-4899-7687-1_100356
http://dx.doi.org/10.1007/978-1-4899-7687-1_667

204 Class Imbalance Problem

generalization (Allwein et al. 2000) allows
arbitrary combinations. Clearly, one against
all and one against one are special cases of
ECOC.

The predictions of the binary classifiers must
then be combined into an overall prediction.
Commonly used techniques include voting
and finding the nearest neighbor in the ECOC
decoding matrix (Allwein et al. 2000).

Cross-References

� Preference Learning
�Rule Learning

Recommended Reading

Allwein EL, Schapire RE, Singer Y (2000) Re-
ducing multiclass to binary: a unifying approach
for margin classifiers. J Mach Learn Res 1:
113–141

Dietterich TG, Bakiri G (1995) Solving multiclass
learning problems via error-correcting output codes.
J Artif Intell Res 2:263–286

Fürnkranz J (2002) Round robin classification. J
Mach Learn Res 2:721–747. http://www.ai.mit.edu/
projects/jmlr/papers/volume2/fuernkranz02a/html/.

Class Imbalance Problem

Charles X. Ling and Victor S. Sheng
The University of Western Ontario, London, ON,
Canada

Definition

Data are said to suffer the Class Imbalance Prob-
lem when the class distributions are highly im-
balanced. In this context, many � classification
learning algorithms have low predictive accuracy
for the infrequent class. �Cost-sensitive learning
is a common approach to solve this problem.

Motivation and Background

Class imbalanced datasets occur in many real-
world applications where the class distributions

of data are highly imbalanced. For the two-class
case, without loss of generality, one assumes that
the minority or rare class is the positive class,
and the majority class is the negative class. Often
the minority class is very infrequent, such as
1 % of the dataset. If one applies most tradi-
tional (cost-insensitive) classifiers on the dataset,
they are likely to predict everything as negative
(the majority class). This was often regarded as
a problem in learning from highly imbalanced
datasets.

However, Provost (2000) describes two fun-
damental assumptions that are often made by
traditional cost-insensitive classifiers. The first is
that the goal of the classifiers is to maximize
the accuracy (or minimize the error rate); the
second is that the class distribution of the training
and test datasets is the same. Under these two
assumptions, predicting everything as negative
for a highly imbalanced dataset is often the right
thing to do. Drummond and Holte (2005) show
that it is usually very difficult to outperform this
simple classifier in this situation.

Thus, the imbalanced class problem becomes
meaningful only if one or both of the two as-
sumptions above are not true; that is, if the cost
of different types of error (false positive and
false negative in the binary classification) is not
the same, or if the class distribution in the test
data is different from that of the training data.
The first case can be dealt with effectively us-
ing methods in cost-sensitive meta-learning (see
�Cost-sensitive learning).

In the case when the misclassification cost is
not equal, it is usually more expensive to misclas-
sify a minority (positive) example into the major-
ity (negative) class, than a majority example into
the minority class (otherwise it is more plausible
to predict everything as negative). That is, FNcost
> FPcost. Thus, given the values of FNcost and
FPcost, a variety of cost-sensitive meta-learning
methods can be, and have been, used to solve the
class imbalance problem (Japkowicz and Stephen
2002; Ling and Li 1998). If the values of FNcost
and FPcost are not unknown explicitly, FNcost
and FPcost can be assigned to be proportional to
the number of positive and negative training cases
(Japkowicz and Stephen 2002).

http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://www.ai.mit.edu/projects/jmlr/papers/volume2/fuernkranz02a/html/
http://www.ai.mit.edu/projects/jmlr/papers/volume2/fuernkranz02a/html/
http://dx.doi.org/10.1007/978-1-4899-7687-1_112
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_181

Classification 205

C

In case the class distributions of training and
test datasets are different (e.g., if the training data
is highly imbalanced but the test data is more
balanced), an obvious approach is to sample the
training data such that its class distribution is the
same as the test data. This can be achieved by
oversampling (creating multiple copies of exam-
ples of) the minority class and/or undersampling
(selecting a subset of) the majority class (Provost
2000).

Note that sometimes the number of examples
of the minority class is too small for classifiers to
learn adequately. This is the problem of insuffi-
cient (small) training data and different from that
of imbalanced datasets.

Recommended Reading

Drummond C, Holte R (2000) Exploiting the cost
(in)sensitivity of decision tree splitting criteria. In:
Proceedings of the seventeenth international confer-
ence on machine learning, Stanford, pp 239–246

Drummond C, Holte R (2005) Severe class imbalance:
why better algorithms aren’t the answer. In: Pro-
ceedings of the sixteenth European conference of
machine learning, Porto, vol 3720. LNAI, pp 539–
546

Japkowicz N, Stephen S (2002) The class imbal-
ance problem: a systematic study. Intell Data Anal
6(5):429–450

Ling CX, Li C (1998) Data mining for direct market-
ing – specific problems and solutions. In: Proceed-
ings of fourth international conference on knowl-
edge discovery and data mining (KDD-98), New
York City, pp 73–79

Provost F (2000) Machine learning from imbalanced
data sets 101. In: Proceedings of the AAAI’2000
workshop on imbalanced data

Classification

Chris Drummond
National Research Council of Canada, Ottawa,
ON, Canada

Synonyms

Categorization; Generalization; Identification;
Induction; Recognition

Definition

In common usage, the word classification means
to put things into categories, group them together
in some useful way. If we are screening for a
disease, we would group people into those with
the disease and those without. We, as humans,
usually do this because things in a group, called a
� class in machine learning, share common char-
acteristics. If we know the class of something,
we know a lot about it. In machine learning,
the term classification is most commonly asso-
ciated with a particular type of learning where
examples of one or more � classes, labeled with
the name of the class, are given to the learning
algorithm. The algorithm produces a classifier
which maps the properties of these examples,
normally expressed as � attribute-value pairs, to
the class labels. A new example whose class is
unknown is classified when it is given a class
label by the classifier based on its properties. In
machine learning, we use the word classification
because we call the grouping of things a class.
We should note, however, that other fields use
different terms. In philosophy and statistics, the
term categorization is more commonly used. In
many areas, in fact, classification often refers to
what is called clustering in machines learning.

Motivation and Background

Classification is a common, and important, hu-
man activity. Knowing something’s class allows
us to predict many of its properties and so act
appropriately. Telling other people its class al-
lows them to do the same, making for efficient
communication. This emphasizes two commonly
held views of the objectives of learning. First, it
is a means of � generalization, to predict accu-
rately the values for previously unseen examples.
Second, it is a means of compression, to make
transmission or communication more efficient.
Classification is certainly not a new idea and has
been studied for some considerable time. From
the days of the early Greek philosophers such as
Socrates, we had the idea of categorization. There
are essential properties of things that make them

http://dx.doi.org/10.1007/978-1-4899-7687-1_100046
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_100201
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_100397
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_327

206 Classification

what they are. It embodies the idea that there are
natural kinds, ways of grouping things, that are
inherent in the world. A major goal of learning,
therefore, is recognizing natural kinds, establish-
ing the necessary and sufficient conditions for
belonging to a category. This “classical” view of
categorization, most often attributed to Aristotle,
is now strongly disputed. The main competitor
is prototype theory; things are categorized by
their similarity to a prototypical example (Lakoff
1987), either real or imagined. There is also much
debate in psychology (Ashby and Maddox 2005),
where many argue that there is no single method
of categorization used by humans.

As much of the inspiration for machine learn-
ing originated in how humans learn, it is unsur-
prising that our algorithms reflect these distinc-
tions. �Nearest neighbor algorithms would seem
to have much in common with prototype theory.
These have been part of pattern recognition for
some time (Cover and Hart 1967) and have be-
come popular in machine learning, more recently,
as � instance-based learners (Aha et al. 1991). In
machine learning, we measure the distance to one
or more members of a concept rather a specially
constructed prototype. So, this type of learning
is perhaps more a case of the exemplar learning
found in the psychological literature, where mul-
tiple examples represent a category. The closest
we have to prototype learning occurs in clus-
tering, a type of � unsupervised learning, rather
than classification. For example, in � k-means
clustering group membership is determined by
closeness to a central value.

In the early days of machine learning, our
algorithms (Mitchell 1977; Winston 1975) had
much in common with the classical theory of cat-
egorization in philosophy and psychology. It was
assumed that the data were consistent, there were
no examples with the same attribute values but
belonging to different classes. It was quickly re-
alized that, even if the properties where necessary
and sufficient to capture the class, there was often
noise in the attribute and perhaps the class values.
So, complete consistency was seldom attainable
in practice. New � classification algorithms were
designed, which could tolerate some noise, such
as � decision trees (Breiman et al. 1984; Quinlan

1986, 1993) and rule-based learners (see �Rule
Learning) (Clark and Niblett 1989; Holte 1993;
Michalski 1983).

Structure of the Learning System

Whether one uses instance-based learning, rule-
based learning, decision trees, or indeed any
other classification algorithm, the end result is the
division of the input space into regions belonging
to a single class. The input space is defined by the
Cartesian product of the attributes, all possible
combinations of possible values.

As a simple example, Fig. 1 shows two classes
C and �, each a random sample of a normal
distribution. The attributes are X and Y of real
type. The values for each attribute range from
˙1. The figure shows a couple of alternative
ways that the space may be divided into regions.
The bold dark lines, construct regions using lines
that are parallel to the axes. New examples that
have Y less than 1 and X less than 1.5 with be
classified as C, all others classified as �. Deci-
sion trees and rules form this type of boundary. A
� linear discriminant function, such as the bold
dashed line, would divide the space into half-
spaces, with new examples below the line being
classified as C and those above as �. Instance-
based learning will also divide the space into re-

−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+
+

+

+
+ +

+

+

+
++

+

+
+

+ +

+

+

+
+

++
+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

++

+

+

+

+

+

+
+

+

+

+
+

+ +

+

+

+

+

+

+

+

+
+

+

+

+
+

+

++

+

+

+

+

+ ++

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+ ++

+

++

+

+

+

+
+

+

+

+

+

+
+

+

+

+ ++

+

+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+
+

+

+

+

+ +

+
+

+

+

+

+

+

+ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

++
+

−

−
−

−

−

− −

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−−

−

− −− −

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−
−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−

−

−
−

−

−

−−

−

−

−

−

− −

−

−

−−

−

−

−

−

− −

−

−

−

−

−

−

−

−

−

−

−

− −

−

−

−

−−

−

−

−

−

−

−

−

−

−
− −

−−

X

−4

−2

0

2

4

Y

0 2 4−4 −2

Classification, Fig. 1 Dividing the input space

http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_112
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_480

Classification 207

C

gions but the boundary is implicit. Classification
occurs by choosing the class of the majority of
the nearest neighbors to a new example. To make
the boundary explicit, we could mark the regions
where an example would be classified as C and
those classified as �. We would end up with
regions bounded by polygons.

What differs among the algorithms is the
shape of the regions, and how and when they
are chosen. Sometimes the regions are implicit
as in lazy learners (see �Lazy Learning) (Aha
1997), where the boundaries are not decided until
a new example is being classified. Sometimes
the regions are determined by decision theory
as in generative classifiers (see �Generative
Learning) (Rubinstein and Hastie 1997), which
model the full joint distribution of the classes.
For all classifiers though, the input space is
effectively partitioned into regions representing a
single class.

Applications

One of the reasons that classification is an im-
portant part of machine learning is that it has
proved to be a very useful technique for solving
practical problems. Classification has been used
to help scientists in the exploration, and compre-
hension, of their particular domains of interest.
It has also been used to help solve significant
industrial problems. Over the years a number of
authors have stressed the importance of applica-
tions to machine learning and listed many suc-
cessful examples (Brachman et al. 1996; Langley
and Simon 1995; Michie 1982). There have also
been workshops on applications (Kodratoff 1994;
Aha and Riddle 1995; Engels et al. 1997) at
major machine learning conferences and a special
issue of Machine Learning (Kohavi and Provost
1998), one of the main journals in the field. There
are now conferences that are highly focused on
applications. Collocated with major artificial in-
telligence conferences is the Innovative Applica-
tions of Artificial Intelligence conference. Since
1989, this conference has highlighted practical
applications of machine learning, including clas-
sification (Schorr and Rappaport 1989). In addi-

tion, there are now at least two major knowledge
discovery and data mining conferences (Fayyad
and Uthurusamy 1995; Komorowski and Zytkow
1997) with a strong focus on applications.

Future Directions

In machine learning, there are already a large
number of different classification algorithms, yet
new ones still appear. It seems unlikely that there
is an end in sight. The “no free lunch theory”
(Wolpert and Macready 1997) indicates that there
will never be a single best algorithm, better than
all others in terms of predictive power. However,
apart from their predictive performance, each
classifier has its own attractive properties which
are important to different groups of people. So,
new algorithms are still of value. Further, even
if we are solely concerned about performance, it
may be useful to have many different algorithms,
all with their own biases (see � Inductive Bias).
They may be combined together to form an en-
semble classifier (Caruana et al. 2004), which
outperforms single classifiers of one type (see
�Ensemble Learning).

Limitations

Classification has been critical part of machine
research for some time. There is a concern that
the emphasis on classification, and more gen-
erally on � supervised learning, is too strong.
Certainly much of human learning does not use,
or require, labels supplied by an expert. Ar-
guably, unsupervised learning should play a more
central role in machine learning research. Al-
though classification does require a label, it does
necessarily need an expert to provide labeled
examples. Many successful applications rely on
finding some, easily identifiable, property which
stands in for the class.

Recommended Reading

Aha DW (1997) Editorial. Artif Intell Rev 11(1–5):1–6
Aha DW, Riddle PJ (eds)(1995) Workshop on applying

machine learning in practice. In: Proceedings of the

http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_333
http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

208 Classification Algorithms

12th international conference on machine learning,
Tahoe City

Aha DW, Kibler D, Albert MK (1991) Instance-based
learning algorithms. Mach Learn 6(1):37–66

Ashby FG, Maddox WT (2005) Human category learn-
ing. Ann Rev Psychol 56:149–178

Bishop CM (2007) Pattern recognition and machine
learning. Springer, New York

Brachman RJ, Khabaza T, Kloesgen W, Piatetsky-
Shapiro G, Simoudis E (1996) Mining business
databases. Commun ACM 39(11):42–48

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees. Wadsworth, Bel-
mont

Caruana R, Niculescu-Mizil A, Crew G, Ksikes A
(2004) Ensemble selection from libraries of models.
In: Proceedings of the 21st international conference
on machine learning, Banff, pp 137–144

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3:261–284

Cover T, Hart P (1967) Nearest neighbor pattern clas-
sification. IEEE Trans Inf Theory 13:21–27

Dietterich T, Shavlik J (eds) Readings in machine
learning. Morgan Kaufmann, San Mateo

Engels R, Evans B, Herrmann J, Verdenius F (eds)
(1997) Workshop on machine learning applications
in the real world; methodological aspects and im-
plications. In: Proceedings of the 14th international
conference on machine learning, Nashville

Fayyad UM, Uthurusamy R (eds)(1995) Proceedings
of the first international conference on knowledge
discovery and data mining, Montreal

Holte RC (1993) Very simple classification rules per-
form well on most commonly used datasets. Mach
Learn 11(1):63–91

Kodratoff Y (ed)(1994) Proceedings of MLNet work-
shop on industrial application of machine learning,
Douran

Kodratoff Y, Michalski RS (1990) Machine learning:
an artificial intelligence approach, vol 3. Morgan
Kaufmann, San Mateo

Kohavi R, Provost F (1998) Glossary of terms. Edi-
torial for the special issue on applications of ma-
chine learning and the knowledge discovery pro-
cess. Mach Learn 30(2/3)

Komorowski HJ, Zytkow JM (eds) (1997) Proceedings
of the first European conference on principles of
data mining and knowledge discovery

Lakoff G (1987) Women, fire and dangerous things.
University of Chicago Press, Chicago

Langley P, Simon HA (1995) Applications of ma-
chine learning and rule induction. Commun ACM
38(11):54–64

Michalski RS (1983) A theory and methodology of
inductive learning. In: Michalski RS, Carbonell TJ,
Mitchell TM (eds) Machine learning: an artificial in-
telligence approach. TIOGA Publishing, Palo Alto,
pp 83–134

Michalski RS, Carbonell JG, Mitchell TM (eds)
(1983) Machine learning: an artificial intelli-

gence approach. Tioga Publishing Company, Palo
Alto

Michalski RS, Carbonell JG, Mitchell TM (eds)
(1986) Machine learning: an artificial intelligence
approach, vol 2. Morgan Kaufmann, San Mateo

Michie D (1982) Machine intelligence and related
topics. Gordon and Breach Science Publishers, New
York

Mitchell TM (1977) Version spaces: a candidate elimi-
nation approach to rule learning. In: Proceedings of
the fifth international joint conferences on artificial
intelligence, Cambridge, pp 305–310

Mitchell TM (1997) Machine learning. McGraw-Hill,
Boston

Quinlan JR (1986) Induction of decision trees. Mach
Learn 1:81–106

Quinlan JR (1993) C4.5 programs for machine learn-
ing. Morgan Kaufmann, San Mateo

Rubinstein YD, Hastie T (1997) Discriminative vs
informative learning. In: Proceedings of the third
international conference on knowledge discovery
and data mining, Newport Beach, pp 49–53

Russell S, Norvig P (2003) Artificial intelligence:
a modern approach. Prentice-Hall, Upper Saddle
River

Schorr H, Rappaport A (eds) (1989) Proceedings of
the first conference on innovative applications of
artificial intelligence, Stanford

Winston PH (1975) Learning structural descriptions
from examples. In: Winston PH (ed) The psychol-
ogy of computer vision. McGraw-Hill, New York,
pp 157–209

Witten IH, Frank E (2005) Data mining: practical ma-
chine learning tools and techniques. Morgan Kauf-
mann, San Fransisco

Wolpert DH, Macready WG (1997) No free lunch the-
orems for optimization. IEEE Trans Evol Comput
1(1):67–82

Classification Algorithms

There is a very large number of classifica-
tion algorithms, including � decision trees,
� instance-based learners, � support vector
machines, � rule-based learners, � neural
networks, �Bayesian networks. There also ways
of combining them into ensemble classifiers such
as � boosting, � bagging, � stacking, and forests
of trees.

To delve deeper into classifiers and their role
in machine learning, a number of books are rec-
ommended covering machine learning (Bishop
2007; Mitchell 1997; Witten and Frank 2005)

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_100443

Classification Tree 209

C

and artificial intelligence (Russell and Norvig
2003) in general. Seminal papers on classifiers
can be found in collections of papers on machine
learning (Dietterich and Shavlik 1990; Kodratoff
and Michalski 1990; Michalski et al. 1983, 1986).

Recommended Reading

Bishop CM (2007) Pattern recognition and machine
learning. Springer, New York

Dietterich T, Shavlik J (eds) (1990) Readings in ma-
chine learning. Morgan Kaufmann, San Mateo

Kodratoff Y, Michalski RS (1990) Machine learning:
an artificial intelligence approach, vol 3. Morgan
Kaufmann, San Mateo

Michalski RS, Carbonell JG, Mitchell TM (eds)
(1983) Machine learning: an artificial intelligence
approach. Tioga Publishing Company, Palo Alto

Michalski RS, Carbonell JG, Mitchell TM (eds)
(1986) Machine learning: an artificial intelligence
approach, vol 2. Morgan Kaufmann, San Mateo

Mitchell TM (1997) Machine learning. McGraw-Hill,
Boston

Russell S, Norvig P (2003) Artificial intelligence:
a modern approach. Prentice-Hall, Upper Saddle
River

Witten IH, Frank E (2005) Data mining: practical ma-
chine learning tools and techniques. Morgan Kauf-
mann, San Fransisco

Classification Learning

�Concept Learning

Classification Rule

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

A classification rule is an IF-THEN rule.
The condition of the rule (the rule body or

antecedent) typically consists of a conjunction
of Boolean terms, each one constituting a
constraint that needs to be satisfied by an
example. If all constraints are satisfied, the
rule is said to fire, and the example is said
to be covered by the rule. The rule head
(also called the consequent or conclusion)
consists of a single � class value, which is
predicted in case the rule fires. This is in
contrast to � association rules, which allow
multiple features in the head.

Method

Typical terms consist of tests for the presence
of a particular � attribute value or, in the case
of numerical attributes, of an inequality that re-
quires that the observed value is above or below
a threshold. More expressive constraints include
set-valued attributes (several values of the same
attribute can be observed in the training exam-
ples), internal disjunctions (only one of several
values of the same attribute needs to present),
hierarchical attributes (certain values of the at-
tributes subsume other values), etc.

Conjunctive combinations of features may be
viewed as statements in � propositional logic
(� propositional rules). If relations between fea-
tures can be considered (i.e., if propositions can
be formulated in � first-order logic), we speak of
� first-order rules.

Cross-References

�Association Rule
�Decision List
� First-Order Logic
� Propositional Logic
�Rule Learning

Classification Tree

�Decision Tree

http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_963
http://dx.doi.org/10.1007/978-1-4899-7687-1_963
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_963
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

210 Classifier Calibration

Classifier Calibration

Peter A. Flach
Department of Computer Science, University of
Bristol, Bristol, UK

Abstract

Classifier calibration is concerned with the
scale on which a classifier’s scores are
expressed. While a classifier ultimately maps
instances to discrete classes, it is often
beneficial to decompose this mapping into
a scoring classifier which outputs one or more
real-valued numbers and a decision rule which
converts these numbers into predicted classes.
For example, a linear classifier might output
a positive or negative score whose magnitude
is proportional to the distance between the
instance and the decision boundary, in which
case the decision rule would be a simple
threshold on that score. The advantage of
calibrating these scores to a known, domain-
independent scale is that the decision rule
then also takes a domain-independent form
and does not have to be learned. The best-
known example of this occurs when the
classifier’s scores approximate, in a precise
sense, the � posterior probability over the
classes; the main advantage of this is that
the optimal decision rule is to predict the
class that minimizes expected cost averaged
over all possible true classes. The main
methods to obtain calibrated scores are logistic
calibration, which is a parametric method
that assumes that the distances on either
side of the decision boundary are normally
distributed and a nonparametric alternative
that is variously known as isotonic regression,
the pool adjacent violators (PAV) method or
the ROC convex hull (ROCCH) method.

Synonyms

Isotonic calibration; Logistic calibration; Proba-
bility calibration; Sigmoid calibration

Motivation and Background

A predictive model can be said to be well cali-
brated if its predictions match observed distribu-
tions in the data. In particular, a probabilistic clas-
sifier is well calibrated if, among the instances
receiving a predicted probability vector p, the
class distribution is approximately distributed as
p. Hence, the classifier approximates, in some
sense, the class posterior, although the approx-
imation can be crude: for example, a constant
classifier predicting the overall class distribution
for every instance is perfectly calibrated in this
sense.

Calibration is closely related to optimal
decision making and cost-sensitive classification,
where we wish to determine the predicted class
that minimizes expected misclassification cost
averaged over all possible true classes. The
better our estimates of the class posterior are,
the closer we get to the (irreducible) Bayes
risk. A sufficiently calibrated classifier can
be simply thresholded at a threshold directly
derived from the misclassification costs. Similar
thresholds can be used to optimally adapt to
a change in class prior or to a combination of
both.

Some training algorithms naturally yield well-
calibrated classifiers, including � logistic regres-
sion and � decision trees (with Laplace smooth-
ing but without pruning; Provost and Domingos
2003; Ferri et al. 2003). Others do not take
sufficient account of distributional factors (e.g.,
� support vector machines) or make unrealistic
assumptions (e.g., � naive Bayes) and need to
be calibrated in post-processing. Well-established
calibration methods include logistic calibration
(parametric) and the ROC convex hull method,
also known as pair-adjacent violators and isotonic
regression (nonparametric).

In order to evaluate the quality of probability
estimates, we can use the Brier score, which mea-
sures mean squared deviation from the “ideal”
probabilities 1 and 0. The Brier score can be
decomposed into refinement loss and calibration
loss, where the former assesses the likelihood
of instances from different classes receiving the
same probability estimate, and the latter measures

http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_100224
http://dx.doi.org/10.1007/978-1-4899-7687-1_100276
http://dx.doi.org/10.1007/978-1-4899-7687-1_100376
http://dx.doi.org/10.1007/978-1-4899-7687-1_100428
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_748

Classifier Calibration 211

C

the mean squared deviation from the empirical
probabilities. Both quantities can be further de-
composed: e.g., the refinement loss has model-
dependent and model-independent components
(grouping loss and irreducible loss), and the cali-
bration loss has a component that can be reduced
to zero by a simple affine transformation of the
scores (Kull and Flach 2015). These losses and
decompositions can be visualized by means of
various cost curves.

One topic of current interest is that the above
view of classifier calibration is closely tied to a
particular family of losses (error rate and cost-
sensitive variants). Class posteriors are the right
thing to model for this family, but not for others.
For example, it is known that thresholds on the
class posterior that are optimal for F1-score are
lower than optimal thresholds for accuracy, but
there is no one-to-one mapping between the two.
The cost-sensitive perspective offers an alterna-
tive view of calibration: a classifier is well cal-
ibrated if it outputs, for every instance, the cost
parameter for which that instance is on (or close
to) the decision boundary. This naturally leads to
the idea of classifiers outputting several scores,
each calibrated for a different cost model (e.g.,
accuracy and F1-score).

Solutions

We start by demonstrating that better approxima-
tion of posterior probabilities allows the classifier
to make better predictions in a decision-theoretic
sense (see also �Cost-Sensitive Classification).
Denote the cost of predicting class j for an
instance of true class i as C. OY D j jY D i/.
Since we don’t know the true class of an unla-
belled instance, we need to base our prediction
on an assessment of the expected cost over all
possible true classes. The (true) expected cost of
predicting class j for instance x is

C. OY D j jX D x/

D
X

i

P.Y D i jX D x/C. OY D j jY D i/

(1)

where P.Y D i jX D x/ is the probability of
instance x having true class i . The optimal deci-
sion is then to predict the class which minimizes
expected cost:

OY � D arg min
j
C. OY D j jX D x/

D arg min
j

X
i

P.YDi jXDx/C. OYDj jYDi/

In the special case that all misclassifications have
equal cost, we can assume without loss of gener-
ality that C. OY D j jY D i/ D 1 for i ¤ j and
C. OY D j jY D i/ D 0 for i D j , which gives

C. OY D j jX D x/ D
X
i¤j

P.Y D i jX D x/

D 1 � P.Y D j jX D x/

OY �Darg min
j
Œ1�P.Y Dj jXDx/�

D arg max
j
P.Y D j jX D x/

The main point is that knowing the true class
posterior allows the classifier to make optimal
decisions, either in a cost-sensitive or cost-
indifferent setting. It therefore makes sense for a
classifier to (approximately) learn the true class
posterior. (Notice that this crucially depends
on the cost model expressed by Eq. (1), which
assumes that our aim is to optimize a cost-based
version of accuracy. A different cost model will
require a different notion of calibrated score, as
will be briefly considered later for the case of the
Fˇ score.) For the remainder of this entry, we will
concentrate on binary classification, returning to
the challenges of multiclass calibration at the end.

Optimal Decision Thresholds
In binary classification we have the following ex-
pected costs for positive and negative predictions:

C. OY D CjX D x/ D P.Cjx/C.CjC/

C .1 � P.Cjx//C.Cj�/

C. OY D �jX D x/ D P.Cjx/C.�jC/

C .1 � P.Cjx//C.�j�/

http://dx.doi.org/10.1007/978-1-4899-7687-1_100092

212 Classifier Calibration

where P.Cjx/ is shorthand for P.YDCjXDx/
and C.j ji/ for C. OY D j jY D i/. On the optimal
decision boundary, these two expected costs are
equal, which gives

P.Cjx/C.CjC/C .1 � P.Cjx//C.Cj�/

D P.Cjx/C.�jC/C .1 � P.Cjx//C.�j�/

and so

P.Cjx/

D
C.Cj�/ � C.�j�/

C.Cj�/ � C.�j�/C C.�jC/ � C.CjC/
,c

(2)

This demonstrates that, from a decision-theoretic
perspective, the cost matrix has one degree of
freedom. Without loss of generality, we can there-
fore assume that costs are expressed on an ar-
bitrary (but linear) scale and that correct clas-
sifications have zero cost: under this interpreta-
tion, c quantifies the proportion of loss attributed
to the negatives if equal numbers of positives
and negatives are misclassified. This relative cost
then gives the optimal threshold on the positive
posterior. For example, if a false positive incurs
four units of cost and a false negative one unit,
then c D 4=5, and hence we would increase
the decision threshold from the default, cost-
indifferent threshold of 1=2, in order to make
fewer positive predictions which are much more
costly when wrong.

How is the class posterior affected when the
class prior changes, but the class-conditional like-
lihoods P.X jY / stay the same? Suppose the
proportion of positives changes from � to � 0, and
let p denote the posterior probability under prior
� , then Elkan (2001) derives the following ex-
pression for the posterior probability under prior
� 0 (assuming the class-conditional likelihoods
remain unchanged):

p0 D � 0
p � p�

� � p� C � 0p � �� 0

Noting that the denominator can be rewritten to
.1 � �/� 0p C �.1 � � 0/.1 � p/ and switching

to odds, we obtain an expression that can be
rewritten as a product of odds:

p0

1 � p0
D

� 0

1 � � 0
1 � �

�

p

1 � p

This is best interpreted right to left. The rightmost
term is the posterior odds under the original prior
� ; multiplying this with the reciprocal of the orig-
inal prior odds gives the likelihood ratio, and mul-
tiplying this again with the new prior odds gives
the desired posterior odds under the new prior � 0.
For example, if at training time we have balanced
classes (� D 1=2), while at deployment time
we have 20 % positives (� 0 D 1=5), then p0 is
adjusted downward accordingly. Conversely, the
(cost-indifferent) deployment decision threshold
p0 D 1=2 corresponds to p D 4=5, highlighting
the duality with the cost-sensitive example above.

More generally, for p0 D 1=2 we have that

p D
.1 � � 0/�

.1 � � 0/� C � 0.1 � �/
, d (3)

is the decision threshold on the original posterior
that takes account of the changed class distri-
bution. Hence, d parameterizes the distribution
change from � to � 0 in the same way as c
parameterizes the change from cost-indifference
to cost-sensitivity. Clearly, this opens up the way
to combining changes in both class and cost
distribution in a straightforward way.

Evaluation Metrics for Calibration
A multiclass scoring classifier outputs, for
every test instance x, a probability vector
.p1.x/; : : : ; pk.x//, where k is the number
of classes and

Pk
iD1 pi .x/ D 1. Suppose

the true class is represented by a bit vector
.b1.x/; : : : ; bk.x// such that the bit correspond-
ing to the true class is set to 1 and the remaining
are 0, then the Brier score over a test set T is
defined as

BS D
1

jT j

X
x2T

1

2

kX
iD1

.pi .x/ � bi .x//
2

Classifier Calibration 213

C

The factor 1/2 ensures that the squared error
per example is normalized between 0 and 1: the
worst possible situation is that a wrong class is
predicted with certainty, in which case two “bits”
are wrong (Brier did not include this factor 1=2
in his original account; Brier 1950). For binary
classification this expression can be simplified to
BS D 1=jT j

P
x2T .p.x/ � b.x//

2, where p.x/
is the predicted probability of a designated class
(the true class, say) and b.x/ is 1 if the designated
class is the actual one and 0 otherwise.

Suppose we want to assign the same probabil-
ity vector .p1; : : : ; pk/ to all labeled instances in
a given set S – for example, all training instances
that get filtered into the same leaf of a decision
tree. Which assignment results in the lowest Brier
score? As it turns out, this is exactly the empirical
class distribution in the set, which will be denoted
. Pp1; : : : ; Ppk/. This follows from the fact that the
Brier score over S can be decomposed as

BS.S/ D
1

2

kX
iD1

.pi � Ppi /
2 C

1

2

kX
iD1

Ppi .1 � Ppi /

The first term in this decomposition is known
as the calibration loss, and the second term is
called the refinement loss. As both terms in this
decomposition are nonnegative and refinement
loss is independent of pi , the overall expression is
minimized by minimizing calibration loss, which
gives pi D Ppi for all i .

By taking a weighted average over all leaves
of a decision tree, the decomposition can be
applied to the Brier score over the entire data
set. However, for a linear classifier which poten-
tially assigns unique probabilities to every test
instance, we need some way to group instances
with similar probabilities together so that we can
calculate the empirical probabilities. There are
several ways of achieving this grouping, but the
decomposition will in general be approximate
(unless we have access to the true distributions,
for which Hernández-Orallo et al. (2012) give the
exact decomposition). Nevertheless, the impor-
tant point to note is that Brier score is a combined
measure of how well calibrated a classifier is and

how well separated the scores for positives and
negatives are.

The fact that Brier score is minimized if the
predicted probabilities match the empirical prob-
abilities identifies it as a so-called proper scoring
rule (Gneiting and Raftery 2007). Many other
proper scoring rules exist, including logarith-
mic loss which penalizes a probability vector
with the negative logarithm of the probability
assigned to the true class. These other scoring
rules are amenable to similar decompositions:
e.g., logarithmic loss uses Kullback-Leibler di-
vergence between predicted and empirical prob-
abilities to quantify calibration loss and Shan-
non entropy to quantify refinement loss of the
empirical probabilities. Kull and Flach (2015)
give an overview and also provides an under-
lying four-way decomposition which includes
a model-independent irreducible component as
well as a component that can be reduced to zero
by a simple affine transformation of the scores.

Calibration Methods
In order to understand what it means for a
classifier to be calibrated, it is instructive to
consider its ROC curve (see �ROC Analysis). A
ROC curve plots true positive rate against false
positive rate when the decision threshold is var-
ied, and its slope is proportional to the empirical
probability among instances receiving the same
(or similar) scores from the classifier. Consider a
small example in which a classifier assigns scores
. 1: 00; 0: 90; 0: 80; 0:70; 0:55; 0:45; 0:30; 0:20;
0:10; 0:0/ to 10 test instances with true classes
.1; 1; 0; 1; 1; 0; 0; 1; 0; 0/, which is visualized in
Fig. 1. The first thing we note is that the ROC
curve on the top left has “dents” or concavities
where the slope – and therefore the empirical
probability – increases but the scores decrease
(e.g., scores .0:80; 0:70; 0:55/ with empirical
probabilities .0; 1; 1/). We can “repair” these
concavities by tying the scores .2=3; 2=3; 2=3/,
thereby forming the ROC convex hull (dashed
line in the top left figure) and a piecewise constant
calibration map (crosses in the middle figure).

The idea of using the ROC convex hull
as a calibration method is related to isotonic
regression, which differs from standard least-

http://dx.doi.org/10.1007/978-1-4899-7687-1_739

214 Classifier Calibration

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

o

o

o o

o

o o o

o o o

l l

l

l l

l l

l

l l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classifier scores

C
la

ss
 a

nd
 c

al
ib

ra
te

d
pr

ob
ab

ili
tie

s

x x

x x x

x x x

x x

+
+

+
+

+
+

+
+

+
+

l l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cost proportion

Lo
ss

ooo
oo

o

o
o
o o

o o
o o

o
o

o
oo

oooxx

x x

xx

Classifier Calibration, Fig. 1 (top left) Example ROC
curve (black, solid line) and convex hull (blue, dashed
line) on a small data set with 10 instances. (top right)
Uncalibrated scores against true classes (black circles),
calibrated scores obtained with isotonic regression (blue
crosses), and logistic calibration (red plusses); the effect

of calibration is larger for points further away from the di-
agonal. (bottom) Cost curves obtained when thresholding
at cost proportion c for the original, uncalibrated scores
(black, solid line) and isotonically calibrated scores (blue,
dashed line); the difference between the two curves repre-
sents the decrease in Brier score achievable by calibration

squares regression in that the fitted line be
piecewise constant. The standard algorithm to
perform isotonic regression is the pool adjacent
violators (PAV) method, which was introduced to
the machine learning community by Zadrozny
and Elkan (2001). The method, which we
will call isotonic calibration in this entry, was
demonstrated to be equivalent to the ROC convex
hull algorithm by Fawcett and Niculescu-Mizil
(2007). The key idea is that the slope of a ROC
curve segment represents an empirical likelihood
ratio LR and hence

p D
LR

LRC a
(4)

with a D .1 � �/=� is the corresponding
empirical posterior probability (where � is the
proportion of positives). See �ROC Analysis for
further details.

Alternatively, we can obtain LR from a para-
metric model. For example, suppose that the
scores are obtained from a linear model s.x/ D
w � x� t and assume for simplicity that the weight
vector w is unit length, then s.x/ gives the signed
distance of x from the decision boundary in the
direction given by w. The parametric assumption
is that these distances are normally distributed
within each class with the same variance �2, from
which we can derive

http://dx.doi.org/10.1007/978-1-4899-7687-1_739

Classifier Calibration 215

C

LR.x/ D exp.�.w � x � t 0//

D exp.�.s.x/ � .t 0 � t ///

� D w � .�C � ��/=�2

t 0 D w � .�C C ��/=2

where �C and �� are the class means. Plugging
this back into Eq. (4) and assuming a D 1 for
simplicity gives

p.x/ D
1

1C exp.��.w � x � t 0//

D
1

1C exp.��.s.x/ � .t 0 � t ///

Interpreted as a mapping from s to p, this defines
a logistic curve with midpoint s D t 0�t and slope
� at this midpoint. The location parameter t 0 � t
shifts the decision boundary such that it cuts the
line connecting the two class means halfway; the
shape parameter � quantifies how well separated
the two classes are. This method was popularized
by John Platt as a way to get probabilities out
of � support vector machines (Platt 2000) and
is often referred to as Platt scaling; we call it
logistic calibration in this entry.

Figure 1 shows the results of both logistic
and isotonic calibration on the running exam-
ple. The isotonically calibrated classifier both
has higher AUC than the uncalibrated one (0:88
rather than 0:80) – since tying the scores as sug-
gested by the ROC convex hull leads to a better
ranking – and also lower Brier score (0:1333
rather than 0:1885). The latter is visualized in the
cost curves on the bottom, which plot the cost-
sensitive loss for different values of the cost pro-
portion c (Drummond and Holte 2006). Treating
the uncalibrated scores as if they were calibrated
and hence using c for the decision threshold as
derived in Eq. (2) yields the upper, solid cost
curve, the area under which is equal to the un-
calibrated Brier score (Hernández-Orallo et al.
2011). Using the isotonically calibrated scores
yields the lower, dashed cost curve upon which
we cannot improve without changing the model.

Also shown in the top right plot are the logis-
tically calibrated scores; as this is a monotonic

transformation, it doesn’t affect the ranking or the
ROC curve. The model assumptions of logistic
calibration (normally distributed scores per class)
are not really satisfied on this small example, and
hence the logistically calibrated scores only lead
to a small decrease in Brier score (0:1871) with
a cost curve similar to the uncalibrated one (not
shown).

If we decompose the Brier score into cali-
bration loss and refinement loss, we see that for
the uncalibrated scores refinement loss is zero
as no instances from different classes receive the
same score, so the Brier score equals calibration
loss. Conversely, we see that for the isotonically
calibrated scores, the calibration loss is zero, and
hence the Brier score equals the refinement loss
(on the labeled data on which calibration was
carried out). Hence, isotonic calibration increases
the refinement loss in order to achieve a larger
decrease in calibration loss. In contrast, logistic
calibration only affects calibration loss.

Practically speaking, calibration methods re-
quire a separate calibration set to avoid overfit-
ting. For experimental studies on classifier cali-
bration methods, see Niculescu-Mizil and Caru-
ana (2005) and Bella et al. (2013).

Future Directions

Multiclass and Multilabel Calibration
Calibration of a multiclass classifier is not a
solved problem, but there are several possible
strategies. As logistic calibration essentially
involves fitting a univariate logistic regression
model to the scores output by the classifier, a
natural way to extend this to more than two
classes is to use multinomial logistic regression.
This is again a parametric model which assumes
that scores are normally distributed within each
class.

A simple method that is recommended by
Zadrozny and Elkan (2002) is to perform a lo-
gistic or isotonic calibration for each class sep-
arately, treating all other classes as the negative
class (one-versus-rest). Since the resulting prob-
abilities don’t necessarily add up to one, they can
be renormalized by dividing them by their sum.

http://dx.doi.org/10.1007/978-1-4899-7687-1_810

216 Classifier Calibration

Alternatively, one might consider to calibrate
each class against each other class (one-versus-
one). This results in more probabilities than
there are classes, and hence methods to produce
a multinomial probability vector are more
involved. Hastie and Tibshirani (1998) proposed
a solution called coupling, and Zadrozny (2001)
generalized it to other code matrices (see �Error
Correcting Output Codes). Kong and Dietterich
(1997) proposed an alternative method, also
based on ECOC.

Multilabel classifiers differ from multiclass
classifiers in that several labels may apply si-
multaneously. In the presence of sparse labels,
calibration is particularly important, but it needs
to be considered in the context of how multil-
abel classification performance will be evaluated.
For example, one popular evaluation metric is
Hamming loss which calculates the proportion
of labels that are mispredicted – this effectively
puts all labels in the same bag, and hence there
is no point in separately calibrating the scores
for each label. Other evaluation metrics are cal-
culated label-wise or even instance-wise. Further
research is needed to identify the right calibration
methods for these cases.

Calibrating for Different Losses
Throughout this entry we have made an im-
plicit assumption that our goal is to maximize
accuracy: the proportion of correctly classified
instances (true positives and true negatives). This
justifies the additive cost model of Eq. (1) which
led to the model-independent thresholds summa-
rized in Eqs. (2) and (3). However, there is a range
of recent results demonstrating that this threshold
is suboptimal for other performance metrics. For
example, Zhao et al. (2013) proved that if our
goal is to maximize the F-score (the harmonic
mean of precision and recall), then the optimal
threshold �� on the true posterior is half the F-
score obtained at that threshold – it follows that
the optimal threshold for F-score is less than
or equal to the optimal threshold for accuracy,
with equality obtained only for perfect classifiers.
Koyejo et al. (2014) extends the analysis to a fam-
ily of performance metrics including accuracy
and the Fˇ -score (a weighted harmonic mean of

precision and recall, with ˇ D 1 yielding the
F-score). Specifically, if F �

ˇ
denotes the optimal

Fˇ -score achievable by a model, then �� D

F �
ˇ
=.1C ˇ2/.
Instead of investigating how to adapt the de-

cision rule on the class posterior to account for a
different performance metric – which is necessar-
ily classifier dependent – Flach and Kull (2015)
suggest for the classifier to output a different
score specifically adapted for the Fˇ metric. Let
p be the calibrated posterior probability for a
given instance; let B be the value of ˇ for which
the instance is on the Fˇ decision boundary (i.e.,
the Fˇ -score would be the same regardless of
whether the instance is predicted to be positive
or negative); and let F �B be the optimal Fˇ -
score achievable by the model for that value
of ˇ D B; then the model outputs the score
p=F �B D 1=.1 C B2/. All quantities involved
can be precomputed from the ROC convex hull.
This naturally leads to the idea of a classifier
outputting multiple calibrated scores: calibrated
estimates of the posterior probability for optimiz-
ing accuracy, adjustments of the posterior as just
described for optimizing F-scores, and possibly
others. The latter can still be seen as calibrated
scores if we adopt a broader view of calibration:
a well-calibrated classifier calculates the cost
parameters under which the expected cost for
the instance under consideration is the same
regardless of the predicted class.

Cross-References

�Classification
�Class Imbalance Problem
�Cost-Sensitive Learning
�Logistic Regression
� Posterior Probability
�ROC Analysis

Recommended Reading

Bella A, Ferri C, Hernández-Orallo J, Ramı́rez-
Quintana MJ (2013) On the effect of calibration in
classifier combination. Appl Intell 38(4):566–585

http://dx.doi.org/10.1007/978-1-4899-7687-1_260
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_110
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_739

Classifier Systems 217

C

Brier G (1950) Verification of forecasts expressed in
terms of probabilities. Mon Weather Rev 78:1–3

Drummond C, Holte R (2006) Cost curves: an im-
proved method for visualizing classifier perfor-
mance. Mach Learn 65(1):95–130

Elkan C (2001) The foundations of cost-sensitive
learning. In: Proceedings of 17th international joint
conference on artificial intelligence (IJCAI’01).
Morgan Kaufmann, pp 973–978

Fawcett T, Niculescu-Mizil A (2007) PAV and the ROC
convex hull. Mach Learn 68(1):97–106

Ferri C, Flach P, Hernández-Orallo J (2003) Improv-
ing the AUC of probabilistic estimation trees. In:
14th European conference on machine learning
(ECML’03). Springer, pp 121–132

Flach P, Kull M (2015) Precision-recall-gain curves:
PR analysis done right. In: Advances in neural
information processing systems (NIPS’15), pp 838–
846

Gneiting T, Raftery AE (2007) Strictly proper scoring
rules, prediction, and estimation. J Am Stat Assoc
102(477):359–378

Hastie T, Tibshirani R (1998) Classification by pair-
wise coupling. Ann Stat 26(2):451–471

Hernández-Orallo J, Flach P, Ferri C (2011) Brier
curves: a new cost-based visualisation of clas-
sifier performance. In: Proceedings 28th interna-
tional conference on machine learning (ICML’11),
pp 585–592

Hernández-Orallo J, Flach P, Ferri C (2012) A unified
view of performance metrics: translating threshold
choice into expected classification loss. J Mach
Learn Res 13(1):2813–2869

Kong EB, Dietterich T (1997) Probability estimation
via error-correcting output coding. In: International
conference on artificial intelligence and soft com-
puting

Koyejo OO, Natarajan N, Ravikumar PK, Dhillon IS
(2014) Consistent binary classification with general-
ized performance metrics. In: Advances in neural in-
formation processing systems (NIPS’14), pp 2744–
2752

Kull M, Flach P (2015) Novel decompositions of
proper scoring rules for classification: score adjust-
ment as precursor to calibration. In: Machine learn-
ing and knowledge discovery in databases (ECML-
PKDD’15). Springer, pp 68–85

Niculescu-Mizil A, Caruana R (2005) Predicting good
probabilities with supervised learning. In: Proceed-
ings of 22nd international conference on machine
learning (ICML’05), pp 625–632

Platt J (2000) Probabilities for SV machines. In: Smola
A, Bartlett P, Schölkopf B, Schuurmans D (eds)
Advances in large margin classifiers. MIT Press,
Cambridge, pp 61–74

Provost F, Domingos P (2003) Tree induction for
probability-based ranking. Mach Learn 52(3):199–
215

Zadrozny B (2001) Reducing multiclass to binary
by coupling probability estimates. In: Advances in

neural information processing systems (NIPS’01),
pp 1041–1048

Zadrozny B, Elkan C (2001) Obtaining calibrated
probability estimates from decision trees and naive
bayesian classifiers. In: Proceedings of 18th interna-
tional conference on machine learning (ICML’01),
pp 609–616

Zadrozny B, Elkan C (2002) Transforming classi-
fier scores into accurate multiclass probability es-
timates. In: Proceedings of 8th international con-
ference on knowledge discovery and data mining
(KDD’02). ACM, pp 694–699

Zhao M-J, Edakunni N, Pocock A, Brown G (2013)
Beyond Fano’s inequality: bounds on the optimal F-
score, BER, and cost-sensitive risk and their impli-
cations. J Mach Learn Res 14(1):1033–1090

Classifier Systems

Pier Luca Lanzi
Politecnico di Milano, Milano, Italy

Synonyms

Genetics-based machine learning; Learning clas-
sifier systems

Definition

Classifier systems are rule-based systems that
combine � temporal difference learning or
� supervised learning with a genetic algorithm to
solve classification and � reinforcement learning
problems. Classifier systems come in two flavors:
Michigan classifier systems, which are designed
for online learning, but can also tackle offline
problems; and Pittsburgh classifier systems,
which can only be applied to offline learning.

In Michigan classifier systems (Holland
1976), learning is viewed as an online adaptation
process to an unknown environment that
represents the problem and provides feedback in
terms of a numerical reward. Michigan classifier
systems maintain a single candidate solution
consisting of a set of rules, or a population of
classifiers. Michigan systems apply (1) temporal
difference learning to distribute the incoming
reward to the classifiers that are accountable
for it; and (2) a genetic algorithm to select,

http://dx.doi.org/10.1007/978-1-4899-7687-1_100188
http://dx.doi.org/10.1007/978-1-4899-7687-1_100249
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

218 Classifier Systems

recombine, and mutate individual classifiers so
as to improve their contribution to the current
solution.

In contrast, in Pittsburgh classifier systems
(Smith 1980), learning is viewed as an offline op-
timization process in which a genetic algorithm
alone is applied to search for the best solution to
a given problem. In addition, Pittsburgh classifier
systems maintain not one, but a set of candidate
solutions. While in the Michigan classifier system
each individual classifier represents a part of the
overall solution, in the Pittsburgh system each
individual is a complete candidate solution (itself
consisting of a set of classifiers). The fitness of
each Pittsburgh individual is computed offline by
testing it on a representative sample of problem
instances. The individuals compete among them-
selves through selection, while crossover and
mutation recombine solutions to search for better
solutions.

Motivation and Background

Machine learning is usually viewed as a search
process in which a solution space is explored
until an appropriate solution to the target prob-
lem is found (Mitchell 1982) (see �Supervised
Learning). Machine learning methods are charac-
terized by the way they represent solutions (e.g.,
using � decision trees, rules), by the way they
evaluate solutions (e.g., classification accuracy,
information gain) and by the way they explore the
solution space (e.g., using a � general-to-specific
strategy or a specific-to-general strategy).

Classifier systems are methods of genetics-
based machine learning introduced by Holland,
the father of � genetic algorithms. They made
their first appearance in Holland (1976) where
the first diagram of a classifier system, labeled
“cognitive system,” was shown. Subsequently,
they were described in detail in the paper “Cog-
nitive Systems based on Adaptive Algorithms”
(Holland and Reitman 1978). Classifier systems
are characterized by a rule-based representation
of solutions and a genetics-based exploration of
the solution space. While other � rule learning
methods, such as CN2 (Clark and Niblett 1989)

and FOIL (Quinlan and Cameron-Jones 1995),
generate one rule at a time following a sequential
covering strategy (see �Covering Algorithm),
classifier systems work on one or more solutions
at once, and they explore the solution space by
applying the principles of natural selection and
genetics.

In classifier systems (Holland 1976; Holland
and Reitman 1978; Wilson 1995), machine learn-
ing is modeled as an online adaptation process to
an unknown environment, which provides feed-
back in terms of a numerical reward. A clas-
sifier system perceives the environment through
its detectors and, based on its sensations, it se-
lects an action to be performed in the environ-
ment through its effectors. Depending on the
efficacy of its actions, the environment may even-
tually reward the system. A classifier system
learns by trying to maximize the amount of re-
ward it receives from the environment. To pur-
sue such a goal, it maintains a set (a popula-
tion) of condition-action-prediction rules, called
classifiers, which represents the current solution.
Each classifier’s condition identifies some part of
the problem domain; the classifier’s action rep-
resents a decision on the subproblem identified
by its condition; and the classifier’s prediction,
or strength, estimates the value of the action in
terms of future rewards on that subproblem. Two
separate components, credit assignment and rule
discovery, act on the population with different
goals. �Credit assignment, implemented either
by methods of temporal difference or supervised
learning, exploits the incoming reward to esti-
mate the action values in each subproblem so
as to identify the best classifiers in the popu-
lation. At the same time, rule discovery, usu-
ally implemented by a genetic algorithm, selects,
recombines, and mutates the classifiers in the
population to improve the current solution.

Classifier systems were initially conceived as
modeling tools. Given a real system with un-
known underlying dynamics, for instance a finan-
cial market, a classifier system would be used to
generate a behavior that matched the real system.
The evolved rules would provide a plausible,
human readable model of the unknown system –
a way to look inside the box. Subsequently, with

http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_331
http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_185

Classifier Systems 219

C

the developments in the area of machine learning
and the rise of reinforcement learning, classifier
systems have been more and more often studied
and presented as alternatives to other machine
learning methods. Wilson’s XCS (1995), the most
successful classifier system to date, has proven to
be both a valid alternative to other reinforcement
learning approaches and an effective approach to
classification and data mining (Bull 2004; Bull
and Kovacs 2005; Lanzi et al. 2000).

Kenneth de Jong and his students (de Jong
1988; Smith 1980, 1983) took a different
perspective on genetics-based machine learning
and modeled learning as an optimization process
rather than an adaptation process as done in
Holland (1976). In this case, the solution space
is explored by applying a genetic algorithm to
a population of individuals each representing
a complete candidate solution – that is, a set
of rules (or a production system, de Jong
1988; Smith 1980. At each cycle, a critic is
applied to each individual (to each set of rules)
to obtain a performance measure that is then
used by the genetic algorithm to guide the
exploration of the solution space. The individuals
in the population compete among themselves
through selection, while crossover and mutation
recombine solutions to search for better ones.

The approaches of Holland (Holland 1976;
Holland and Reitman 1978) and de Jong (de Jong
1988; Smith 1980, 1983) have been extended
and improved in several ways (see Lanzi et al.
(2000) for a review). The models of classifier
systems that are inspired by the work of Holland
(1976) at the University of Michigan are usually
called Michigan classifier systems; the ones that
are inspired by Smith (1980, 1983) and de Jong
(1988) at the University of Pittsburgh are usually
termed Pittsburgh classifier systems – or briefly,
Pitt classifier systems.

Pittsburgh classifier systems separate the eval-
uation of candidate solutions, performed by an
external critic, from the genetic search. As they
evaluate candidate solutions as a whole, Pitts-
burgh classifier systems can easily identify and
emphasize sequentially cooperating classifiers,
which is particularly helpful in problems involv-
ing partial observability. In contrast, in Michi-

gan classifier systems the credit assignment is
focused, due to identification of the actual classi-
fiers that produce the reward, so learning is much
faster but sequentially cooperating classifiers are
more difficult to spot. As Pittsburgh classifier
systems apply the genetic algorithm to a set of so-
lutions, they only work offline, whereas Michigan
classifier systems work online, although they can
also tackle offline problems. Finally, the design
of Pittsburgh classifier systems involves decisions
as to how an entire solution should be represented
and how solutions should be recombined – a task
which can be daunting. In contrast, the design
of Michigan classifier systems involves simpler
decisions about how a rule should be represented
and how two rules should be recombined. Ac-
cordingly, while the representation of solutions
and its related issues play a key role in Pittsburgh
models, Michigan models easily work with sev-
eral types of representations (Lanzi 2001; Lanzi
and Perrucci 1999; Mellor 2005).

Structure of the Learning System

Michigan and Pittsburgh classifier systems were
both inspired by the work of Holland on the
broadcast language (Holland 1975). However,
their structures reflect two different ways to
model machine learning: as an adaptation process
in the case of Michigan classifier systems;
and as an optimization problem, in the case
of Pittsburgh classifier systems. Thus, the
two models, originating from the same idea
(Holland’s broadcast language), have radically
different structures.

Michigan Classifier Systems

Holland’s classifier systems define a general
paradigm for genetics-based machine learning.
The description in Holland and Reitman
(1978) provides a list of principles for online
learning through adaptation. Over the years,
such principles have guided researchers who
developed several models of Michigan classifier
systems (Butz 2002; Wilson 1994, 1995, 2002)
and applied them to a large variety of domains

220 Classifier Systems

(Bull 2004; Lanzi and Riolo 2003; Lanzi et al.
2000). These models extended and improved
Holland’s original ideas, but kept all the
ingredients of the original recipe: a population of
classifiers, which represents the current system
knowledge; a performance component, which is
responsible for the short-term behavior of the
system; a credit assignment (or reinforcement)
component, which distributes the incoming
reward among the classifiers; and a rule discovery
component, which applies a genetic algorithm to
the classifiers to improve the current knowledge.

Knowledge Representation

In Michigan classifier systems, knowledge is rep-
resented by a population of classifiers. Each clas-
sifier is usually defined by four main parameters:
the condition, which identifies some part of the
problem domain; the action, which represents a
decision on the subproblem identified by its con-
dition; the prediction or strength, which estimates
the amount of reward that the system will receive
if its action is performed; and finally, the fitness,
which estimates how good the classifier is in
terms of problem solution.

The knowledge representation of Michigan
classifier systems is extremely flexible. Each one
of the four classifier components can be tailored
to fit the need of a particular application, with-
out modifying the main structure of the sys-
tem. In problems involving binary inputs, classi-
fier conditions can be simply represented using
strings defined over the alphabet f0, 1, #g, as
done in Holland and Reitman (1978), Goldberg
(1989), and Wilson (1995). In problems involv-
ing real inputs, conditions can be represented
as disjunctions of intervals, similar to the ones
produced by other rule learning methods (Clark
and Niblett 1989). Conditions can also be repre-
sented as general-purpose symbolic expressions
(Lanzi 2001; Lanzi and Perrucci 1999) or first-
order logic expressions (Mellor 2005). Classifier
actions are typically encoded by a set of sym-
bols (either binary strings or simple labels), but
continuous real-valued actions are also available
(Wilson 2007). Classifier prediction (or strength)

is usually encoded by a parameter (Goldberg
1989; Holland and Reitman 1978; Wilson 1995).
However, classifier prediction can also be com-
puted using a parameterized function (Wilson
2002), which results in solutions represented as
an ensemble of local approximators – similar to
the ones produced in generalized reinforcement
learning (Sutton and Barto 1998).

Performance Component

A simplified structure of Michigan classifier sys-
tems is shown in Fig. 1. We refer the reader
to Goldberg (1989) and Holland and Reitman
(1978) for a detailed description of the original
model and to Butz (2002) and Wilson (1994,
1995, 2001) for descriptions of recent classifier
system models.

A classifier system learns through trial and
error interactions with an unknown environment.
The system and the environment interact con-
tinually. At each time step, the classifier system
perceives the environment through its detectors;
it builds a match set containing all the classifiers
in the population whose condition matches the
current sensory input. The match set typically
contains classifiers that advocate contrasting ac-
tions; accordingly, the classifier system evalu-
ates each action in the match set, and selects
an action to be performed balancing exploration
and exploitation. The selected action is sent to
the effectors to be executed in the environment;
depending on the effect that the action has in the
environment, the system receives a scalar reward.

Credit Assignment

The credit assignmentcomponent (also called
reinforcement component, Wilson 1995) dis-
tributes the incoming reward to the classifiers that
are accountable for it. In Holland and Reitman
(1978), credit assignment is implemented by
Holland’s bucket brigade algorithm (Holland
1986), which was partially inspired by the credit
allocation mechanism used by Samuel in his
pioneering work on learning checkers-playing
programs (Samuel 1959).

Classifier Systems 221

C

Classifier Systems, Fig. 1
Simplified structure of a
Michigan classifier system.
The system perceives the
environment through its
detectors and (1) it builds
the match set containing
the classifiers in the
population that match the
current sensory inputs;
then (2) all the actions in
the match set are evaluated,
and (3) an action is
selected to be performed in
the environment through
the effectors

In the early years, classifier systems and the
bucket brigade algorithm were confined to the
evolutionary computation community. The rise of
reinforcement learning increased the connection
between classifier systems and temporal differ-
ence learning (Sutton 1988; Sutton and Barto
1998): in particular, Sutton (1988) showed that
the bucket brigade algorithm is a kind of tem-
poral difference learning, and similar connec-
tions were also made in Watkins (1989) and
Dorigo and Bersini (1994). Later, the connec-
tion between classifier systems and reinforcement
learning became tighter with the introduction of
Wilson’s XCS (1995), in which credit assignment
is implemented by a modification of Watkins
Q-learning (Watkins 1989). As a consequence,
in recent years, classifier systems are often pre-
sented as methods of reinforcement learning with
genetics-based generalization (Bull and Kovacs
2005).

Rule Discovery Component

The rule discovery component is usually
implemented by a genetic algorithm that

selects classifiers in the population with
probability proportional to their fitness; it copies
the selected classifiers and applies genetic
operators (usually crossover and mutation) to
the offspring classifiers; the new classifiers
are inserted in the population, while other
classifiers are deleted to keep the population
size constant.

Classifiers selection plays a central role in
rule discovery. Classifier selection depends
on the definition of classifier fitness and on
the subset of classifiers considered during the
selection process. In Holland and Reitman
(1978), classifier fitness coincides with classifier
prediction, while selection is applied to all the
classifiers in the population. This approach
results in a pressure toward classifiers predicting
high returns, but typically tends to produce
overly general solutions. To avoid such solutions,
Wilson (1995) introduced the XCS classifier
system in which accuracy-based fitness is
coupled with a niched genetic algorithm. This
approach results in a pressure toward accurate
maximally general classifiers, and has made
XCS the most successful classifier system to
date.

222 Classifier Systems

Pittsburgh Classifier Systems

The idea underlying the development of Pitts-
burgh classifier systems was to show that inter-
esting behaviors could be evolved using a simpler
model than the one proposed by Holland with
Michigan classifier systems (Holland 1976; Hol-
land and Reitman 1978).

In Pittsburgh classifier systems, each
individual is a set of rules that encodes an
entire candidate solution; each rule has a fixed
length, but each rule set (each individual) usually
contains a variable number of rules. The genetic
operators, crossover and mutation, are tailored to
the rule-based, variable-length representation.
The individuals in the population compete
among themselves, following the selection-
recombination-mutation cycle that is typical of
genetic algorithms (Goldberg 1989; Holland
1975). While in Michigan classifier systems
individuals in the population (the single rules)
cooperate, in Pittsburgh classifier systems there is
no cooperation among individuals (the rule sets),
so that the genetic algorithm operation is simpler
for Pittsburgh models. However, as Pittsburgh
classifier systems explore a much larger search
space, they usually require more computational
resources than Michigan classifier systems.

The pseudo-code of a Pittsburgh classifier sys-
tem is shown in Fig. 2. At first, the individuals in
the population are randomly initialized (line 2).
At time t , the individuals are evaluated by an
external critic, which returns a performance mea-
sure that the genetic algorithm exploits to com-
pute the fitness of individuals (lines 3 and 10).
Following this, selection (line 6), recombination,
and mutation (line 7) are applied to the individu-

als in the population – as done in a typical genetic
algorithm. The process stops when a termination
criterion is met (line 4), usually when an appro-
priate solution is found.

The design of Pittsburgh classifier systems fol-
lows the typical steps of genetic algorithm design,
which means deciding how a rule set should be
represented, what genetic operators should be ap-
plied, and how the fitness of a set of rules should
be calculated. In addition, Pittsburgh classifier
systems need to address the bloat phenomenon
(Tackett 1994) that arises with any variable-sized
representation, like the rule sets evolved by Pitts-
burgh classifier systems. Bloat can be defined as
the growth of individuals without an actual fitness
improvement. In Pittsburgh classifier systems,
bloat increases the size of candidate solutions by
adding useless rules to individuals, and it is typi-
cally limited by introducing a parsimony pressure
that discourages large rule sets (Bassett and de
Jong 2000). Alternatively, Pittsburgh classifier
systems can be combined with multi-objective
optimization, so as to separate the maximization
of the rule set performance and the minimization
of the rule set size.

Examples of Pittsburgh classifier systems in-
clude SAMUEL (Grefenstette et al. 1990), the
Genetic Algorithm Batch-Incremental Concept
Learner (GABIL) (de Jong and Spears 1991),
GIL Janikow (1993), GALE (Llorá 2002), and
GAssist (Bacardit 2004).

Applications

Classifier systems have been applied to a large
variety of domains, including computational

Classifier Systems, Fig. 2
Pseudo-code of a
Pittsburgh classifier system

1. t := 0
2. Initialize the population P(t)
3. Evaluate the rules sets in P(t)
4. While the termination condition is not satisfied
5. Begin
6. Select the rule sets in P(t) and generate Ps(t)
7. Recombine and mutate the rule sets in Ps(t)
8. P(t+1) := Ps(t)
9. t := t+1
10. Evaluate the rules sets in P(t)
11. End

Classifier Systems 223

C

economics (e.g., Arthur et al. 1996), au-
tonomous robotics (e.g., Dorigo and Colombetti
1998), classification (e.g., Barry et al. 2004),
fighter aircraft maneuvering (Bull 2004; Smith
et al. 2000), and many others. Reviews of
classifier system applications are available in
Lanzi et al. (2000); Lanzi and Riolo (2003), and
Bull (2004).

Programs and Data

The major sources of information about clas-
sifier systems are the LCSWeb maintained by
Alwyn Barry, which can be reached through, and
www.learning-classifier-systems.org maintained
by Xavier Llorà.

Several implementations of classifier systems
are freely available online. The first standard
implementation of Holland’s classifier system in
Pascal was described in Goldberg (1989), and it is
available at http://www.illigal.org/; a C version of
the same implementation, developed by Robert E.
Smith, is available at http://www.etsimo.uniovi.
es/ftp/pub/EC/CFS/src/. Another implementation
of an extension of Holland’s classifier system in
C by Rick L. Riolo is available at http://www.
cscs.umich.edu/Software/Contents.html. Imple-
mentations of Wilson’s XCS 1995 are distributed
by Alwyn Barry at the LCSWeb, by Martin V.
Butz (at www.illigal.org), and by Pier Luca Lanzi
(at xcslib.sf.net). Among the implementations of
Pittsburgh classifier systems, the Samuel system
is available from Alan C. Schultz at http://www.
nrl.navy.mil/; Xavier Llorà distributes GALE
(Genetic and Artificial Life Environment) a fine-
grained parallel genetic algorithm for data mining
at www.illigal.org/xllora.

Cross-References

�Credit Assignment
�Genetic and Evolutionary Algorithms
�Reinforcement Learning
�Rule Learning

Recommended Reading

Arthur BW, Holland JH, LeBaron B, Palmer R, Talyer
P (1996) Asset pricing under endogenous expecta-
tions in an artificial stock market. Technical report,
Santa Fe Institute

Bacardit i Peñarroya J (2004) Pittsburgh genetic-based
machine learning in the data mining era: represen-
tations, generalization, and run-time. PhD thesis,
Computer Science Department, Enginyeria i Arqui-
tectura La Salle Universitat Ramon Llull, Barcelona

Barry AM, Holmes J, Llora X (2004) Data mining
using learning classifier systems. In: Bull L (ed)
Applications of learning classifier systems, studies
in fuzziness and soft computing, vol 150. Springer,
Pagg, pp 15–67

Bassett JK, de Jong KA (2000) Evolving behaviors for
cooperating agents. In: Proceedings of the twelfth
international symposium on methodologies for in-
telligent systems. LNAI, vol 1932. Springer, Berlin

Booker LB (1989) Triggered rule discovery in classi-
fier systems. In: Schaffer JD (ed) Proceedings of the
3rd international conference on genetic algorithms
(ICGA89). Morgan Kaufmann, San Francisco

Bull L (ed) (2004) Applications of learning classi-
fier systems, studies in fuzziness and soft comput-
ing, vol 150. Springer, Berlin. ISBN 978-3-540-
21109-9

Bull L, Kovacs T (eds) (2005) Foundations of learn-
ing classifier systems, studies in fuzziness and soft
computing, vol 183. Springer, Berlin. ISBN 978-3-
540-25073-9

Butz MV (2002) Anticipatory learning classifier sys-
tems. Genetic algorithms and evolutionary compu-
tation. Kluwer, Boston Academic Publishers.

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3(4):261–283

de Jong K (1988) Learning with genetic algorithms: an
overview. Mach Learn 3(2–3):121–138

de Jong KA, Spears WM (1991) Learning concept
classification rules using genetic algorithms. In:
Proceedings of the international joint conference
on artificial intelligence. Morgan Kaufmann, San
Francisco, pp 651–656

Dorigo M, Bersini H (1994) A comparison of
Q-learning and classifier systems. In: Cliff D, Hus-
bands P, Meyer J-A, Wilson SW (eds) From animals
to animats 3: proceedings of the third international
conference on simulation of adaptive behavior. MIT
Press, Cambridge, pp 248–255

Dorigo M, Colombetti M (1998) Robot shaping:
an experiment in behavior engineering. MIT
Press/Bradford Books, Cambridge

Goldberg DE (1989) Genetic algorithms in search, op-
timization, and machine learning. Addison-Wesley,
Reading

Grefenstette JJ, Ramsey CL, Schultz A (1990) Learn-
ing sequential decision rules using simulation mod-
els and competition. Mach Learn 5(4):355–381

http://www.illigal.org/
http://www.etsimo.uniovi.es/ftp/pub/EC/CFS/src/
http://www.etsimo.uniovi.es/ftp/pub/EC/CFS/src/
http://www.cscs.umich.edu/Software/Contents.html
http://www.cscs.umich.edu/Software/Contents.html
www.illigal.org
xcslib.sf.net
http://www.nrl.navy.mil/
http://www.nrl.navy.mil/
http://www.illigal.org/xllora
http://dx.doi.org/10.1007/978-1-4899-7687-1_185
http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://www.learning-classifier-systems.org

224 Clause

Holland J (1986) Escaping brittleness: the possibili-
ties of general-purpose learning algorithms applied
to parallel rule-based systems. In: Michalski RS,
Carbonell JG, Mitchell TM (eds) Machine learning,
an artificial intelligence approach, vol II, Chap. 20.
Morgan Kaufmann, San Francisco, pp 593–623

Holland JH (1975) Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor
(Reprinted by the MIT Press in 1992)

Holland JH (1976) Adaptation. Progress in theoretical
biology 4:263–293

Holland JH, Reitman JS (1978) Cognitive systems
based on adaptive algorithms. In: Waterman DA,
Hayes-Roth F (eds) Pattern-directed inference sys-
tems. Academic Press, New York (Reprinted from
Evolutionary computation. The fossil record. Fogel
DB (ed.) IEEE Press (1998))

Janikow CZ (1993) A knowledge-intensive genetic
algorithm for supervised learning. Mach Learn
13(2–3):189–228

Lanzi PL (2001) Mining interesting knowledge from
data with the XCS classifier system. In: Spector
L, Goodman ED, Wu A, Langdon WB, Voigt H-
M, Gen M et al (eds) Proceedings of the genetic
and evolutionary computation conference (GECCO-
2001). Morgan Kaufmann, San Francisco, pp 958–
965

Lanzi PL (2005) Learning classifier systems: a rein-
forcement learning perspective. In: Bull L, Kovacs
T (eds) Foundations of learning classifier systems,
studies in fuzziness and soft computing. Springer,
Berlin, pp 267–284

Lanzi PL, Perrucci A (1999) Extending the represen-
tation of classifier conditions part II: from messy
coding to S-expressions. In: Banzhaf W, Daida J,
Eiben AE, Garzon MH, Honavar V, Jakiela M,
Smith RE (eds) Proceedings of the genetic and
evolutionary computation conference (GECCO 99).
Morgan Kaufmann, Orlando, pp 345–352

Lanzi PL, Riolo RL (2003) Recent trends in learning
classifier systems research. In: Ghosh A, Tsutsui S
(eds) Advances in evolutionary computing: theory
and applications. Springer, Berlin, pp 955–988

Lanzi PL, Stolzmann W, Wilson SW (eds) (2000)
Learning classifier systems: from foundations to
applications. Lecture notes in computer science,
vol 1813. Springer, Berlin

Llorá X (2002) Genetics-based machine learning using
fine-grained parallelism for data mining. PhD thesis,
Enginyeria i Arquitectura La Salle, Ramon Llull
University, Barcelona

Mellor D (2005) A first order logic classifier system.
In: Beyer H (ed) Proceedings of the 2005 conference
on genetic and evolutionary computation (GECCO
’05). ACM Press, New York, pp 1819–1826

Quinlan JR, Cameron-Jones RM (1995) Induction of
logic programs: FOIL and related systems. New
Gener Comput 13(3–4):287–312

Samuel AL (1959) Some studies in machine learning
using the game of checkers. In: Feigenbaum, Feld-

man J (eds) Computers and thought. McGraw-Hill,
New York

Smith RE, Dike BA, Niehra RK, Ravichandran B,
El-Fallah A (2000) Classifier systems in com-
bat: two-sided learning of maneuvers for advanced
fighter aircraft. Comput Methods Appl Mech Eng
186(2–4):421–437

Smith SF (1980) A learning system based on genetic
adaptive algorithms. Doctoral dissertation, Depart-
ment of Computer Science, University of Pittsburgh

Smith SF (1983) Flexible learning of problem solving
heuristics through adaptive search. In: Proceedings
of the eighth international joint conference on ar-
tificial intelligence. Morgan Kaufmann, Los Altos,
pp 421–425

Sutton RS (1988) Learning to predict by the methods
of temporal differences. Mach Learn 3:9–44

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT Press, Cambridge

Tackett WA (1994) Recombination, selection, and the
genetic construction of computer programs. Unpub-
lished doctoral dissertation, University of Southern
California

Watkins C (1989) Learning from delayed rewards. PhD
thesis, King’s College

Wilson SW (1995) Classifier fitness based on accuracy.
Evol Comput 3(2):149–175

Wilson SW (2002) Classifiers that approximate func-
tions. Natl Comput 1(2–3):211–234

Wilson SW (2007). “Three architectures for continu-
ous action” learning classifier systems. International
workshops, IWLCS 2003–2005, revised selected
papers. In: Kovacs T, Llorà X, Takadama K, Lanzi
PL, Stolzmann W, Wilson SW (eds) Lecture notes
in artificial intelligence, vol 4399. Springer, Berlin,
pp 239–257

Clause

A clause is a logical rule in a � logic program.
Formally, a clause is a disjunction of (possibly
negated) literals, such as

grandfather.x; y/ _ :father.x; ´/

_ :parent.´; y/

In the logic programming language �Prolog this
clause is written as

grandfather(X,Y) :- father(X,Z),
parent(Z,Y).

The part to the left of :- (“if”) is the head of the
clause, and the right part is its body. Informally,

http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_677

Cluster Editing 225

C

the clause asserts the truth of the head given the
truth of the body. A clause with exactly one literal
in the head is called a Horn clause or definite
clause; logic programs mostly consist of definite
clauses. A clause without a body is also called
a fact; a clause without a head is also called a
denial, or a query in a proof by refutation. The
clause without head or body is called the empty
clause: it signifies inconsistency or falsehood
and is denoted �. Given a set of clauses, the
resolution inference rule can be used to deduce
logical consequences and answer queries (see
� First-Order Logic).

In machine learning, clauses can be used to
express classification rules for structured individ-
uals. For example, the following definite clause
classifies a molecular compound as carcinogenic
if it contains a hydrogen atom with charge above
a certain threshold.

carcinogenic(M) :- atom(M,A1),
element(A1,h),
charge(A1,C1),
geq(C1,0.168).

Cross-References

� First-Order Logic
� Inductive Logic Programming
�Learning from Structured Data
�Logic Program
� Prolog

Clause Learning

In � speedup learning, clause learning is a
� deductive learning technique used for
the purpose of � intelligent backtracking in
satisfiability solvers. The approach analyzes
failures at backtracking points and derives
clauses that must be satisfied by the solution.
The clauses are added to the set of clauses
from the original satisfiability problem and
serve to prune new search nodes that violate
them.

Click-Through Rate (CTR)

CTR measures the success of a ranking of search
results, or advertisement placing. Given the num-
ber of impressions, the number of times a web
result or ad has been displayed, and the number
of clicks, the number of users who clicked on the
result/advertisement, CTR is the number of clicks
divided by the number of impressions.

Clonal Selection

The clonal selection theory (CST) is the theory
used to explain the basic response of the adap-
tive immune system to an antigenic stimulus. It
establishes the idea that only those cells capable
of recognizing an antigenic stimulus will prolif-
erate, thus being selected against those that do
not. Clonal selection operates on both T-cells
and B-cells. When antibodies on a B-cell bind
with an antigen, the B-cell becomes activated
and begins to proliferate. New B-cell clones are
produced that are an exact copy of the parent
B-cell, but then they undergo somatic hypermu-
tation and produce antibodies that are specific to
the invading antigen. The B-cells, in addition to
proliferating or differentiating into plasma cells,
can differentiate into long-lived B memory cells.
Plasma cells produce large amounts of antibody
which will attach themselves to the antigen and
act as a type of tag for T-cells to pick up on
and remove from the system. This whole process
is known as affinity maturation. This process
forms the basis of many artificial immune system
algorithms such as AIRS and aiNET.

Closest Point

�Nearest Neighbor

Cluster Editing

The Cluster Editing problem is almost equivalent
to Correlation Clustering on complete instances.
The idea is to obtain a graph that consists only

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_677
http://dx.doi.org/10.1007/978-1-4899-7687-1_778
http://dx.doi.org/10.1007/978-1-4899-7687-1_206
http://dx.doi.org/10.1007/978-1-4899-7687-1_411
http://dx.doi.org/10.1007/978-1-4899-7687-1_579

226 Cluster Ensembles

of cliques. Although Cluster Deletion requires us
to delete the smallest number of edges to obtain
such a graph, in Cluster Editing we are permitted
to add as well as remove edges. The final variant
is Cluster Completion in which edges can only be
added: each of these problems can be restricted to
building a specified number of cliques.

Cluster Ensembles

Cluster ensembles are an unsupervised � ensemble
learning method. The principle is to create
multiple different clusterings of a dataset,
possibly using different algorithms, then
aggregate the opinions of the different clusterings
into an ensemble result. The final ensemble
clustering should be in theory more reliable than
the individual clusterings.

Cluster Initialization

�K-Means Clustering

Cluster Optimization

�Evolutionary Clustering

Clustering

Clustering is a type of � unsupervised learning in
which the goal is to partition a set of � examples
into groups called clusters. Intuitively, the exam-
ples within a cluster are more similar to each
other than to examples from other clusters. In or-
der to measure the similarity between examples,
clustering algorithms use various distortion or
� distance measures. There are two major types
clustering approaches: generative and discrimina-
tive. The former assumes a parametric form of
the data and tries to find the model parameters

that maximize the probability that the data was
generated by the chosen model. The latter repre-
sents graph-theoretic approaches that compute a
similarity matrix defined over the input data.

Cross-References

�Categorical Data Clustering
�Cluster Editing
�Cluster Ensembles
�Clustering
�Clustering from Data Streams
�Consensus Clustering
�Constrained Clustering
�Correlation Clustering
�Cross-Language Document Categorization
�Density-Based Clustering
�Dirichlet Process
�Evolutionary Clustering
�Graph Clustering
�K-Means Clustering
�K-Mediods Clustering
�Model-Based Clustering
� Partitional Clustering
� Projective Clustering
� Sublinear Clustering

Clustering Aggregation

�Consensus Clustering

Clustering Ensembles

�Consensus Clustering

Clustering from Data Streams

João Gama
University of Porto, Porto, Portugal

Abstract

Clustering is one of the most popular data min-
ing techniques. In this article, we review the

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_100193
http://dx.doi.org/10.1007/978-1-4899-7687-1_100117
http://dx.doi.org/10.1007/978-1-4899-7687-1_35
http://dx.doi.org/10.1007/978-1-4899-7687-1_121
http://dx.doi.org/10.1007/978-1-4899-7687-1_122
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_41
http://dx.doi.org/10.1007/978-1-4899-7687-1_162
http://dx.doi.org/10.1007/978-1-4899-7687-1_163
http://dx.doi.org/10.1007/978-1-4899-7687-1_176
http://dx.doi.org/10.1007/978-1-4899-7687-1_186
http://dx.doi.org/10.1007/978-1-4899-7687-1_70
http://dx.doi.org/10.1007/978-1-4899-7687-1_219
http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_432
http://dx.doi.org/10.1007/978-1-4899-7687-1_554
http://dx.doi.org/10.1007/978-1-4899-7687-1_637
http://dx.doi.org/10.1007/978-1-4899-7687-1_676
http://dx.doi.org/10.1007/978-1-4899-7687-1_798
http://dx.doi.org/10.1007/978-1-4899-7687-1_162
http://dx.doi.org/10.1007/978-1-4899-7687-1_162

Clustering from Data Streams 227

C

relevant methods and algorithms for design-
ing cluster algorithms under the data streams
computational model, and discuss research di-
rections in tracking evolving clusters.

Definition

Clustering is the process of grouping objects into
different groups, such that the common prop-
erties of data in each subset are high and be-
tween different subsets are low. The data stream
clustering problem is defined as to maintain a
continuously consistent good clustering of the
sequence observed so far, using a small amount
of memory and time. The issues are imposed by
the continuous arriving data points and the need
to analyze them in real time. These characteristics
require incremental clustering, maintaining clus-
ter structures that evolve over time. Moreover,
the data stream may evolve over time, and new
clusters might appear, other disappears, reflecting
the dynamics of the stream.

Main Techniques

Clustering data streams requires a process able
to continuously cluster objects within memory
and time restrictions (Gama 2010). Following
Silva et al. (2013), algorithms for clustering data
streams should ideally fulfill the following re-
quirements:

(i) provide timely results by performing fast
and incremental processing of data objects;

(ii) rapidly adapt to changing dynamics of the
data, which means algorithms should detect
when new clusters may appear or others
disappear;

(iii) scale to the number of objects that are con-
tinuously arriving;

(iv) provide a model representation that is not
only compact, but that also does not grow
with the number of objects processed (notice
that even a linear growth should not be
tolerated);

(v) rapidly detect the presence of outliers and act
accordingly; and

(vi) deal with different data types, e.g., XML
trees, DNA sequences, and GPS temporal
and spatial information. Although these
requirements are only partially fulfilled
in practice, it is instructive to keep them
in mind when designing algorithms for
clustering data streams.

Major clustering approaches in data stream
cluster analysis include:

• Partitioning algorithms: construct a partition
of a set of objects into k clusters, which min-
imize some objective function (e.g., the sum
of squared distances to the centroid represen-
tative). Examples include k-means (Farnstrom
et al. 2000) and k-medoids (Guha et al. 2003);

• Micro-clustering algorithms: divide the clus-
tering process into two phases, where the
first phase is online and summarizes the data
stream in local models (micro-clusters) and
the second phase generates a global cluster
model from the micro-clusters. Examples of
these algorithms include BIRCH (Zhang et al.
1996), CluStream (Aggarwal et al. 2003), and
ClusTree (Kranen et al. 2011).

Basic Concepts

Data stream clustering algorithms can be sum-
marized into two main steps: data summarization
step and clustering step, as illustrated in Fig. 1.
The online abstraction step summarizes the data
stream with the help of particular data struc-
tures in order to deal with space and memory
constraints of stream applications. These data
structures summarize the stream in order to pre-
serve the meaning of the original objects with-
out the need of storing them. Among the com-
monly employed data structures, we highlight
the feature vectors (Zhang et al. 1996; Aggarwal
et al. 2003), prototype arrays (Guha et al. 2003),
coreset trees (Ackermann et al. 2012), and data
grids (Gama et al. 2011).

228 Clustering from Data Streams

Clustering from Data
Streams, Fig. 1 A generic
schema for clustering data
streams

A powerful idea in clustering from data
streams is the concept of cluster feature – CF.
A cluster feature, or micro-cluster, is a compact
representation of a set of points. A CF structure is
a triple .N;LS; SS/, used to store the sufficient
statistics of a set of points:

• N is the number of data points;
• LS is a vector, of the same dimension of

data points, that store the linear sum of the N
points;

• SS is a vector, of the same dimension of data
points, that store the square sum of the N
points.

The properties of cluster features are:

• Incrementality
If a point x is added to a cluster A, the

sufficient statistics are updated as follows:

LSA LSA C xISSA SSA C x
2INA

 NA C 1

• Additivity
If A and B are disjoint sets, merging them

is equal to the sum of their parts. The additive
property allows us to merge subclusters incre-
mentally:

LSC LSA C LSB ISSC

 SSA C SSB INC NA CNB :

A CF entry has sufficient information to cal-
culate the norms

L1 D

nX
iD1

jLSai
� LSbi

j and

L2 D

vuut nX
iD1

.LSai
� LSbi

/2

and basic measures to characterize a cluster:

• Centroid, defined as the gravity center of the
cluster:

EX0 D
LS

N

• Radius, defined as the average distance from
member points to the centroid:

R D

s
SS

N
�
LS

N

2

:

• Diameter, defined as the largest distance be-
tween member points:

R D

s
2N � SS � 2 � LS2

N � .N � 1/
:

When processing and summarizing continu-
ously arriving stream data, the most recent ob-
servations are more important because they re-
flect the current state of the process generating
the data. A popular approach in data stream

Clustering from Data Streams 229

C

clustering consists of defining a time window
that covers the most recent data. The window
models that have been used in the literature are
the landmark model, sliding-window model, and
damped model (Gama 2010).

Partitioning Clustering

K-means is the most widely used clustering
algorithm. It constructs a partition of a set of
objects into k clusters, that minimize some
objective function, usually a squared error
function, which imply round-shape clusters. The
input parameter k is fixed and must be given
in advance that limits its real applicability to
streaming and evolving data.

Farnstrom et al. (2000) propose a single-
pass k-Means algorithm. The main idea is to
use a buffer where points of the dataset are
kept in a compressed way. The data stream is
processed in blocks. All available space on the
buffer is filled with points from the stream. Using
these points, find k-centers such that the sum of
distances from data points to their closest center
is minimized. Only the k-centroids (representing
the clustering results) are retained, with the
corresponding k-cluster features. Only the k-
centroids (representing the clustering results)
are retained, with the corresponding k-cluster
features. In the next iterations, the buffer is
initialized with the k-centroids, found in the
previous iteration and the incoming data points
from the stream. The very fast k-means algorithm
(VFKM) (Domingos and Hulten 2001) uses the
Hoeffding bound to determine the number of
examples needed in each step of a k-means
algorithm. VFKM runs as a sequence of k-means
runs, with an increasing number of examples
until the Hoeffding bound is satisfied.

Guha et al. (2003) present an analytical study
on k-median clustering data streams. The pro-
posed algorithm makes a single pass over the data
stream and uses small space. It requires O.nk/
time and O.n�/ space where k is the number of
centers, n is the number of points, and � < 1.
They have proved that any k-median algorithm

that achieves a constant factor approximation
cannot achieve a better run time than O.nk/.

Micro-clustering

The idea of dividing the clustering process into
two layers, where the first layer generates lo-
cal models (micro-clusters) and the second layer
generates global models from the local ones, is a
powerful idea that has been used elsewhere.

The BIRCH system (Zhang et al. 1996) builds
a hierarchical structure of data, the CF-tree (see
Fig. 2), where each node contains a set of cluster
features. These CFs contain the sufficient statis-
tics describing a set of points in the dataset and
all information of the cluster features below in
the tree. The system requires two user-defined
parameters: b the branch factor or the maximum
number of entries in each non-leaf node and T the
maximum diameter (or radius) of any CF in a leaf
node. The maximum diameter T defines the ex-
amples that can be absorbed by a CF. Increasing
T , more examples can be absorbed by a micro-
cluster and smaller CF-trees are generated.

When an example is available, it traverses
down the current tree from the root, till finding
the appropriate leaf. At each non-leaf node, the
example follows the closest CF path, with respect
to norms L1 or L2. If the closest CF in the leaf
cannot absorb the example, make a new CF entry.
If there is no room for new leaf, split the parent
node. A leaf node might be expanded due to the
constrains imposed by B and T . The process
consists of taking the two farthest CFs and creates
two new leaf nodes. When traversing backup the
CFs are updated.

Monitoring the Evolution of the Cluster
Structure
The CluStream algorithm (Aggarwal et al. 2003)
is an extension of the BIRCH system designed
for data streams. Here, the CFs include temporal
information: the time stamp of an example is
treated as a feature. For each incoming data point,
the distance to the centroids of existing CFs
is computed. The data point is absorbed by an
existing CF if the distance to the centroid falls

230 Clustering from Data Streams

Clustering from Data
Streams, Fig. 2 The
clustering feature tree in
BIRCH. B is the maximum
number of CFs in a level of
the tree

Clustering from Data Streams, Fig. 3 The figure presents a natural tilted time window. The most recent data is stored
with high detail, while older data is stored in a compressed way. The degree of detail decreases with time

within the maximum boundary of the CF. The
maximum boundary is defined as a factor t of the
radius deviation of the CF; otherwise, the data
point starts a new micro-cluster.

CluStream can generate approximate clusters
for any user-defined time granularity. This is
achieved by storing the CF at regular time
intervals, referred to as snapshots. Suppose the
user wants to find clusters in the stream based on
a history of length h. The off-line component can
analyze the snapshots stored at time t , the current
time, and .t � h/ by using the addictive property
of CF. An important problem is when to store the
snapshots of the current set of micro-clusters. For
example, the natural time frame stores snapshots
each quarter, 4 quarters are aggregated in hours,
24 h are aggregated in days, etc. (Fig. 3). The ag-
gregation level is domain dependent and explores

the addictive property of CF. Along similar ideas,
Kranen et al. (2011) present ClusTree that uses a
weighted CF vector, which is kept into a hierar-
chical tree. ClusTree provides strategies for deal-
ing with time constraints for anytime clustering,
i.e., the possibility of interrupting the process of
inserting new objects in the tree at any moment.

Tracking the Evolution of the Cluster
Structure
Promising research lines are tracking change in
clusters. Spiliopoulou et al. (2006) present sys-
tem MONIC, for detecting and tracking change
in clusters. MONIC assumes that a cluster is
an object in a geometric space. It encompasses
changes that involve more than one cluster, al-
lowing for insights on cluster change in the whole
clustering. The transition tracking mechanism is

Coevolutionary Computation 231

C

based on the degree of overlapping between the
two clusters. The concept of overlap between two
clusters, X and Y , is defined as the normed num-
ber of common records weighted with the age of
the records. Assume that cluster X was obtained
at time t1 and cluster Y at time t2. The degree of
overlapping between the two clusters is given by
overlap.X; Y / D

P
a2X\Y age.a;t2/P

x2X age.x;t2/
. The degree

of overlapping allows inferring properties of the
underlying data stream. Cluster transition at a
given timepoint is a change in a cluster discov-
ered at an earlier timepoint. MONIC considers
internal and external transitions, which reflect
the dynamics of the stream. Examples of cluster
transitions include the cluster survives, the cluster
is absorbed; a cluster disappears; and a new
cluster emerges.

Recommended Reading

Ackermann MR, Martens M, Raupach C, Swierkot K,
Lammersen C, Sohler C (2012) Streamkm++: a
clustering algorithm for data streams. ACM J Exp
Algorithmics 17:1

Aggarwal C, Han J, Wang J, Yu P (2003) A framework
for clustering evolving data streams. In: Proceed-
ings of twenty-ninth international conference on
very large data bases. Morgan Kaufmann, St. Louis,
pp 81–92

Domingos P, Hulten G (2001) A general method
for scaling up machine learning algorithms and its
application to clustering. In: Proceedings of inter-
national conference on machine learning. Morgan
Kaufmann, San Francisco, pp 106–113

Farnstrom F, Lewis J, Elkan C (2000) Scalability for
clustering algorithms revisited. SIGKDD Explor
2(1):51–57

Gama J (2010) Knowledge discovery from data
streams. Chapman & Hall/CRC Press, Boca Raton

Gama J, Rodrigues PP, Lopes L (2011) Clustering
distributed sensor data streams using local process-
ing and reduced communication. Intell Data Anal
15(1):3–28

Guha S, Meyerson A, Mishra N, Motwani R,
O’Callaghan L (2003) Clustering data streams:
theory and practice. IEEE Trans Knowl Data Eng
15(3):515–528

Kranen P, Assent I, Baldauf C, Seidl T (2011) The
clustree: indexing micro-clusters for anytime stream
mining. Knowl Inf Syst 29(2):249–272

Silva JA, Faria E, Barros R, Hruschka E, Carvalho A,
Gama J (2013) Data stream clustering: a survey.
ACM Comput Surv 46(1):13

Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R
(2006) Monic: modeling and monitoring cluster
transitions. In: Proceedings of ACM SIGKDD
international conference on knowledge discovery
and data mining, Philadelphia, pp 706–711

Zhang T, Ramakrishnan R, Livny M (1996) Birch:
an efficient data clustering method for very large
databases. In: Proceedings of ACM SIGMOD
international conference on management of data.
ACM Press, New York, pp 103–114

Clustering of Nonnumerical Data

�Categorical Data Clustering

Clustering with Advice

�Correlation Clustering

Clustering with Constraints

�Correlation Clustering

Clustering with Qualitative
Information

�Correlation Clustering

Clustering with Side Information

�Correlation Clustering

Coevolution

�Coevolutionary Learning

Coevolutionary Computation

�Coevolutionary Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_35
http://dx.doi.org/10.1007/978-1-4899-7687-1_176
http://dx.doi.org/10.1007/978-1-4899-7687-1_176
http://dx.doi.org/10.1007/978-1-4899-7687-1_176
http://dx.doi.org/10.1007/978-1-4899-7687-1_176
http://dx.doi.org/10.1007/978-1-4899-7687-1_944
http://dx.doi.org/10.1007/978-1-4899-7687-1_944

232 Coevolutionary Learning

Coevolutionary Learning

R. Paul Wiegand
University of Central Florida, Orlando, FL, USA

Synonyms

Coevolution; Coevolutionary computation

Definition

Coevolutionary learning is a form of evolution-
ary learning (see �Evolutionary Algorithms) in
which the fitness evaluation is based on interac-
tions between individuals. Since the evaluation of
an individual is dependent on interactions with
other evolving entities, changes in the set of
entities used for evaluation can affect an indi-
vidual’s ranking in a population. In this sense,
coevolutionary fitness is subjective, while fitness
in traditional evolutionary learning systems typi-
cally uses an objective performance measure.

Motivation and Background

Ideally, coevolutionary learning systems focus on
relevant areas of a search space by making adap-
tive changes between interacting, concurrently
evolving parts. This can be particularly helpful
when problem spaces are very large – infinite
search spaces in particular. Additionally, coevolu-
tion is useful when applied to problems when no
intrinsic objective measure exists. The interactive
nature of evaluation makes them natural methods
to consider for problems such as the search for
game-playing strategies (Fogel 2001). Finally,
some coevolutionary systems appear natural for
search spaces which contain certain kinds of
complex structures (Potter 1997; Stanley 2004),
since search on smaller components in a larger
structure can be emphasized. In fact, there is rea-
son to believe that coevolutionary systems may
be well suited for uncovering complex structures
within a problem (Bucci and Pollack 2002).

Still, the dynamics of coevolutionary learning
can be quite complex, and a number of patholo-
gies often plague naı̈ve users. Indeed, because
of the subjective nature of coevolution, it can be
easy to apply a particular coevolutionary learning
system without a clear understanding of what
kind of solution one expects a coevolutionary
algorithm to produce. Recent theoretical anal-
ysis suggests that a clear concept of solution
and a careful implementation of an evaluation
process consistent with this concept can produce
a coevolutionary system capable of addressing
many problems (de Jong and Pollack 2004; Ficici
2004; Panait 2006; Wiegand 2003). Accordingly,
a great deal of research in this area focuses on
evaluation and progress measurement.

Structure of Learning System

Coevolutionary learning systems work in much
the same way that an evolutionary learning sys-
tem works: individuals encode some aspect of
potential solutions to a problem, those represen-
tatives are altered during search using genetic-
like operators such as mutation and crossover,
and the search is directed by selecting better
individuals as determined by some kind of fitness
assessment. These heuristic methods gradually
refine solutions by repeatedly cycling through
such steps, using the ideas of heredity and sur-
vival of the fittest to produce new generations
of individuals, with increased quality of solution.
Just as in traditional evolutionary computation,
there are many choices available to the engineer
in designing such systems. The reader is referred
to the chapters relating to evolutionary learning
for more details.

However, there are some fundamental differ-
ences between traditional evolution and coevolu-
tion. In coevolution, measuring fitness requires
evaluating the interaction between multiple in-
dividuals. Interacting individuals may reside in
the same population or in different populations;
the interactive nature of coevolution evokes no-
tions of cooperation and competition in entirely
new ways; the choices regarding how to best
conduct evaluation of these interactions for the

http://dx.doi.org/10.1007/978-1-4899-7687-1_100067
http://dx.doi.org/10.1007/978-1-4899-7687-1_100068
http://dx.doi.org/10.1007/978-1-4899-7687-1_270

Coevolutionary Learning 233

C

purposes of selection are particularly important;
and there are unique coevolutionary issues sur-
rounding representation. In addition, because of
its interactive nature, the dynamics of coevolu-
tion can lead to some well-known pathological
behaviors, and particularly careful attention to
implementation choices to avoid such conditions
is generally necessary.

Multiple Versus Single Population
Approaches
Coevolution can typically be broadly classified
as to whether interacting individuals reside in
different populations or in the same population.

In the case of multipopulation coevolution,
measuring fitness requires evaluating how indi-
viduals in one population interact with individu-
als in another. For example, individuals in each
population may represent potential strategies for
particular players of a game, they may represent
roles in a larger ecosystem (e.g., predators and
prey), or they may represent components that
are fitted into a composite assembly with other
component then applied to a problem. Though
individuals in different populations interact for
the purposes of evaluation, they are typically
otherwise independent of one another in the co-
evolutionary search process.

In single population coevolution, an individual
in the population is evaluated based on his or
her interaction with other individuals in the same
population. Such individuals may again represent
potential strategies in a game, but evaluation may
require them to trade off roles as to which player
they represent in that game. Here, individuals in-
teract not only for evaluation, but also implicitly
compete with one another as resources used in the
coevolutionary search process itself.

There is some controversy in the field as to
whether this latter type qualifies as “coevolution.”
Evolutionary biologists often define coevolution
exclusively in terms of multiple populations;
however, in biological systems, fitness is
always subjective, while the vast majority
of computational approaches to evolutionary
learning involve objective fitness assessment –
and this subjective/objective fitness distinction
creates a useful classification.

To be sure, there are fundamental differences
between how single population and multipopula-
tion learning systems behave (Ficici 2004). Still,
single population systems that employ subjec-
tive fitness assessment behave a lot more like
multipopulation coevolutionary systems than like
objective fitness based evolution. Moreover, his-
torically, the field has used the term coevolution
whenever fitness assessment is based on interac-
tions between individuals, and a large amount of
that research has involved systems with only one
population.

Competition and Cooperation
The terms cooperative and competitive have been
used to describe aspects of coevolution learning
in at least three ways.

First and less commonly, these adjectives can
describe qualitatively observed behaviors of po-
tential solutions in coevolutionary systems, the
results of some evolutionary process (e.g., “tit-
for-tat” strategies, Axelrod 1984).

Second, problems are sometimes considered
to be inherently competitive or cooperative.
Indeed, game theory provides some guidance
for making such distinctions. However, since in
many kinds of problems little may be known
about the actual structure of the payoff functions
involved, we may not actually be able to classify
the problem as definitively competitive or
cooperative.

The final and by far most common use of
the term is to distinguish algorithms themselves.
Cooperative algorithms are those in which inter-
acting individuals succeed or fail together, while
competitive algorithms are those in which indi-
viduals succeed at the expense of other individu-
als.

Because of the ambiguity of the terms,
some researchers advocate abandoning them
altogether, instead focusing distinguishing ter-
minology on the form a potential solution takes.
For example, using the term � compositional
coevolution to describe an algorithm designed
to return a solution composed of multiple
individuals (e.g., a multiagent team) and using
the term � test-based coevolution to describe an
algorithm designed to return an individual who

http://dx.doi.org/10.1007/978-1-4899-7687-1_150
http://dx.doi.org/10.1007/978-1-4899-7687-1_822

234 Coevolutionary Learning

performs well against an adaptive set of tests
(e.g., sorting network). This latter pair of terms is
a slightly different, though probably more useful
distinction than the cooperative and competitive
terms.

Still, it is instructive to survey the algorithms
based on how they have been historically
classified.

Examples of competitive coevolutionary
learning include simultaneously learning sorting
networks and challenging data sets in a predator–
prey type relationship (Hillis 1991). Here,
individuals in one population representing
potential sorting networks are awarded a fitness
score based on how well they sort opponent data
sets from the other population. Individuals in
the second population represent potential data
sets whose fitness is based on how well they
distinguish opponent sorting networks.

Competitive coevolution has also been applied
to learning game-playing strategies (Fogel 2001;
Rosin and Belew 1996). Additionally, competi-
tion has played a vital part in the attempts to co-
evolve complex agent behaviors (Sims 1994). Fi-
nally, competitive approaches have been applied
to a variety of more traditional machine learning
problems, for example, learning classifiers in one
population and challenging subsets of exemplars
in the other (Paredis 1994).

Potter developed a relatively general frame-
work for cooperative coevolutionary learning, ap-
plying it first to static function optimization and
later to neural network learning (Potter 1997).
Here, each population contains individuals repre-
senting a portion of the network, and evolution of
these components occurs almost independently,
in tandem with one another, interacting only to
be assembled into a complete network in order to
obtain fitness. The decomposition of the network
can be static and a priori, or dynamic in the sense
that components may be added or removed during
the learning process.

Moriarty et al. take a different, somewhat
more adaptive approach to cooperative coevolu-
tion of neural networks (Moriarty and Miikku-
lainen 1997). In this case, one population rep-
resents potential network plans, while a second
is used to acquire node information. Plans are

evaluated based on how well they solve a problem
with their collaborating nodes, and the nodes
receive a share of this fitness. Thus, a node is
rewarded for participating more with successful
plans, and thus receives fitness only indirectly.

Evaluation
Choices surrounding how interacting individu-
als in coevolutionary systems are evaluated for
the purposes of selection are perhaps the most
important choices facing an engineer employing
these methods. Designing the evaluation method
involves a variety of practical choices, as well
as a broader eye to the ultimate purpose of the
algorithm itself.

Practical concerns in evaluation include deter-
mining the number of individuals with whom to
interact, how those individuals will be chosen for
the interaction, and how the selection will operate
on the results of multiple interactions (Wiegand
2003). For example, one might determine the
fitness of an individual by pairing him or her
with all other individuals in the other populations
(or the same population for single population
approaches) and taking the average or maximum
value of such evaluations as the fitness assess-
ment. Alternatively, one may simply use the sin-
gle best individual as determined by a previous
generation of the algorithm, or a combination
of those approaches. Random pairings between
individuals is also common. This idea can be
extended to use tournament evaluation where
successful individuals from pairwise interactions
are promoted and further paired, assigning fitness
based on how far an individual progresses in the
tournament. Many of these methods have been
evaluated empirically on a variety of types of
problems (Angeline and Pollack 1993; Bull 1997;
Wiegand 2003).

However, the designing of the evaluation
method also speaks to the broader issue of how
to best implement the desired � solution concept,
(a criterion specifying which locations in the
search space are solutions and which are not)
(Ficici 2004). The key to successful application
of coevolutionary learning is to first elicit a clear
and precise solution concept and then design an

http://dx.doi.org/10.1007/978-1-4899-7687-1_764

Coevolutionary Learning 235

C

algorithm (an evaluation method in particular)
that implements such a concept explicitly.

A successful coevolutionary learner capable
of achieving reliable progress toward a particular
solution concept often makes use of an archive
of individuals and an update rule for that
archive that insists the distance to a particular
solution concept decrease with every change to
the archive. For example, if one is interested
in finding game strategies that satisfy Nash
equilibrium constraints, one might consider
comparing new individuals to an archive of
potential individual strategies found so far
that together represent a potential Nash mixed
strategy (Ficici 2004). Alternatively, if one
is interested in maximizing the sum of an
individual’s outcomes over all tests, one may
likewise employ an archive of discovered tests
that candidate solutions are able to solve (de Jong
2004).

It is useful to note that many coevolutionary
learning problems are multiobjective in nature.
That is, � underlying objectives may exist in such
problems, each creating a different ranking for
individuals depending on the set of tests being
considered during evaluation (Bucci and Pollack
2002). The set of all possible underlying objec-
tives (were it known) is sufficient to determine
the outcomes on all possible tests. A careful
understanding of this can yield approaches that
create ideal and minimal evaluation sets for such
problems (de Jong and Pollack 2004).

By acknowledging the link between multi-
objective optimization and coevolutionary learn-
ing, a variety of evaluation and selection meth-
ods based on notions of multiobjective optimiza-
tion have been employed. For example, there
are selection methods that use Pareto dominance
between candidate solutions and their tests as
their basis of comparison (Ficici 2004). Addi-
tionally, such methods can be combined with
archive-based approaches to ensure monotonicity
of progress toward a Pareto dominance solution
concept (de Jong and Pollack 2004).

Representation
Perhaps the core representational question in co-
evolution is the role that an individual plays.

In test-based coevolution, an individual typically
represents a potential solution to the problem
or a test for a potential solution, whereas in
compositional coevolution individuals typically
represent a candidate component for a composite
or ensemble solution.

Even in test-based approaches, the true solu-
tion to the problem may be expressed as a popula-
tion of individuals, rather than a single individual.
The population may represent a mixed strategy
while individuals represent potential pure strate-
gies for a game. Engineers using such approaches
should be clear of the form of the final solution
produced by the algorithm, and that this form is
consistent with the prescribed solution concept.

In compositional approaches, the key issues
tend to surround about how the problem is
decomposed. In some algorithms, this decom-
position is performed a priori, having different
populations represent explicit components of
the problem (Potter 1997). In other approaches,
the decomposition is intended to be somewhat
more dynamic (Moriarty and Miikkulainen 1997;
Potter 1997). Still more recent approaches
seek to harness the potential of compositional
coevolutionary systems to search open-ended
representational spaces by gradually complex-
ifying the representational space during the
search (Stanley 2004).

In addition, a variety of coevolutionary sys-
tems have successfully dealt with some inherent
pathologies by representing populations in spatial
topologies, and restricting selection and interac-
tion using geometric constraints defined by those
topologies (Pagie 1999). Typically, these systems
involve overlaying multiple grids of individuals,
applying selection within some neighborhood in
a given grid, and evaluating interactions between
individuals in different grids using a similar type
of cross-population neighborhood. The benefits
of these systems are in part due to their ability
to naturally regulate loss of diversity and spread
of interaction information by explicit control over
the size and shape of these neighborhoods.

Pathologies and Remedies
Perhaps the most commonly cited pathology is
the so-called loss of gradient problem, in which

http://dx.doi.org/10.1007/978-1-4899-7687-1_859

236 Coevolutionary Learning

one population comes to severely dominate the
others, thus creating a situation in which indi-
viduals cannot be distinguished from one an-
other. The populations become disengaged and
evolutionary progress may stall or drift (Watson
and Pollack 2001). Disengagement most com-
monly occurs when distinguishing individuals
are lost in the evolutionary process (forgetting),
and the solution to this problem typically in-
volves somehow retaining potentially informa-
tive, though possibly inferior quality individuals
(e.g., archives).

Intransitivities in the reward system can cause
some coevolutionary systems to exhibit cycling
dynamics (Watson and Pollack 2001), where re-
ciprocal changes force the system to orbit some
part of a potential search space. The remedy
to this problem often involves creating coevolu-
tionary systems that change in response to traits
in several other populations. Mechanisms intro-
duced to produce such effects include competitive
fitness sharing (Rosin and Belew 1996).

Another challenging problem occurs when
individuals in a coevolutionary systems over-
specialize on one underlying objective at the
expense of other necessary objectives (Watson
and Pollack 2001). In fact, overspecialization can
be seen as a form of disengagement on some
subset of underlying objectives, and likewise the
repair to this problem often involves retaining
individuals capable of making distinctions in as
many underlying objectives as possible (Bucci
and Pollack 2003).

Finally, certain kinds of compositional
coevolutionary learning algorithms can be prone
to relative overgeneralization, a pathology in
which components that perform reasonably well
in a variety of composite solutions are favored
over those that are part of an optimal solution
(Wiegand 2003). In this case, it is typically
possible to bias the evaluation process toward
optimal values by evaluating an individual in a
variety of composite assemblies and assigning the
best objective value found as the fitness (Panait
2006).

In addition to pathological behaviors in co-
evolution, the subjective nature of these learning
systems creates difficulty in measuring progress.

Since fitness is subjective, it is impossible to de-
termine whether these relative measures indicate
progress or stagnation when the measurement
values do not change much. Without engaging
some kind of external or objective measure, it is
difficult to understand what the system is really
doing. Obviously, if an objective measure exists
then it can be employed directly to measure
progress (Watson and Pollack 2001).

A variety of measurement methodologies have
been employed when objective measurement is
not possible. One method is to compare current
individuals against all ancestral opponents (Cliff
and Miller 1995). Another predator/prey based
method holds master tournaments between all the
best predators and all the best prey found during
the search (Nolfi and Floreano 1998). A similar
approach suggests maintaining the best individ-
uals from each generation in each population in
a hall of fame for comparison purposes (Rosin
and Belew 1996). Still other approaches seek
to record the points during the coevolutionary
search in which a new dominant individual was
found (Stanley 2004). A more recent approach
advises looking at the population differential,
examining all the information from ancestral gen-
erations rather than simply selecting a biased
subset (Bader and Pollack 2005). Conversely,
an alternative idea is to consider how well the
dynamics of the best individuals in different pop-
ulations reflect the fundamental best response
curves defined by the problem (Popovici 2006).

With a clear solution concept, an appropriate
evaluation mechanism implementing that con-
cept, and practical progress measures in place,
coevolution can be an effective and versatile
machine learning tool.

Cross-References

�Evolutionary Algorithms

Recommended Reading

Angeline P, Pollack J (1993) Competitive environ-
ments evolve better solutions for complex tasks. In:
Forest S (ed) Proceedings of the fifth international

http://dx.doi.org/10.1007/978-1-4899-7687-1_270

Collection 237

C

conference on genetic algorithms. Morgan Kauf-
mann, San Mateo, pp 264–270

Axelrod R (1984) The evolution of cooperation. Basic
Books, New York

Bader-Natal A, Pollack J (2005) Towards metrics and
visualizations sensitive to Coevolutionary failures.
In: AAAI technical report FS-05-03 coevolutionary
and coadaptive systems. AAAI Fall Symposium,
Washington, DC

Bucci A, Pollack JB (2002) A mathematical frame-
work for the study of coevolution. In: Poli R et al
(eds) Foundations of genetic algorithms VII. Mor-
gan Kaufmann, San Francisco, pp 221–235

Bucci A, Pollack JB (2003) Focusing versus intransi-
tivity geometrical aspects of coevolution. In: Cantú-
Paz E et al (eds) Proceedings of the 2003 genetic
and evolutionary computation conference. Springer,
Berlin, pp 250–261

Bull L (1997) Evolutionary computing in multi-agent
environments: Partners. In: Bäck T (ed) Proceedings
of the seventh international conference on genetic
algorithms. Morgan Kaufmann, San Mateo, pp 370–
377

Cliff D, Miller GF (1995) Tracking the red queen: mea-
surements of adaptive progress in co-evolutionary
simulations. In: Proceedings of the third Euro-
pean conference on artificial life. Springer, Berlin,
pp 200–218

de Jong E (2004) The maxsolve algorithm for coevolu-
tion. In: Beyer H et al (eds) Proceedings of the 2005
genetic and evolutionary computation conference.
ACM Press, New York, pp 483–489

de Jong E, Pollack J (2004) Ideal evaluation from
coevolution. Evol Comput 12:159–192

Ficici SG (2004) Solution concepts in coevolutionary
algorithms. PhD thesis, Brandeis University, Boston

Fogel D (2001) Blondie24: playing at the edge of artifi-
cial intelligence. Morgan Kaufmann, San Francisco

Hillis D (1991) Co-evolving parasites improve simu-
lated evolution as an optimization procedure. Artifi-
cial life II, SFI studies in the sciences of complexity,
vol 10. pp 313–324

Moriarty D, Miikkulainen R (1997) Forming neural
networks through efficient and adaptive coevolution.
Evol Comput 5:373–399

Nolfi S, Floreano D (1998) Co-evolving predator and
prey robots: do “arm races” arise in artificial evolu-
tion? Artif Life 4:311–335

Pagie L (1999) Information integration in evolution-
ary processes. PhD thesis, Universiteit Utrecht, the
Netherlands

Panait L (2006) The analysis and design of concur-
rent learning algorithms for cooperative multiagent
systems. PhD thesis, George Mason University,
Fairfax

Paredis J (1994) Steps towards co-evolutionary clas-
sification networks. In: Brooks RA, Maes P (eds)
Artificial life IV, proceedings of the fourth in-
ternational workshop on the synthesis and simu-

lation of living systems. MIT Press, Cambridge,
pp 359–365

Popovici E (2006) An analysis of multi-population co-
evolution. PhD thesis, George Mason University,
Fairfax

Potter M (1997) The design and analysis of a com-
putational model of cooperative co-evolution. PhD
thesis, George Mason University, Fairfax

Rosin C, Belew R (1996) New methods for competitive
coevolution. Evol Comput 5:1–29

Sims K (1994) Evolving 3D morphology and behavior
by competition. In: Brooks RA, Maes P (eds) Arti-
ficial life IV, proceedings of the fourth international
workshop on the synthesis and simulation of living
systems. MIT Press, Cambridge, pp 28–39

Stanley K (2004) Efficient evolution of neural net-
works through complexification. PhD thesis, The
University of Texas at Austin, Austin

Watson R, Pollack J (2001) Coevolutionary dynamics
in a minimal substrate. In: Spector L et al (eds)
Proceedings from the 2001 genetic and evolutionary
computation conference. Morgan Kaufmann, San
Francisco, pp 702–709

Wiegand RP (2003) An analysis of cooperative co-
evolutionary algorithms. PhD thesis, George Mason
University, Fairfax

Collaborative Filtering

Collaborative Filtering (CF) refers to a class
of techniques used in recommender systems,
that recommend items to users that other
users with similar tastes have liked in the
past. CF methods are commonly sub-divided
into neighborhood-based and model-based
approaches. In neighborhood-based approaches,
a subset of users are chosen based on their
similarity to the active user, and a weighted
combination of their ratings is used to produce
predictions for this user. In contrast, model-based
approaches assume an underlying structure to
users’ rating behavior, and induce predictive
models based on the past ratings of all
users.

Collection

�Class

http://dx.doi.org/10.1007/978-1-4899-7687-1_940

238 Collective Classification

Collective Classification

Galileo Namata, Prithviraj Sen, Mustafa Bilgic,
and Lise Getoor
University of Maryland, College Park, MD, USA

Synonyms

Iterative classification; Link-based classification

Definition

Many real-world � classification problems can
be best described as a set of objects intercon-
nected via links to form a network structure. The
links in the network denote relationships among
the instances such that the class labels of the
instances are often correlated. Thus, knowledge
of the correct label for one instance improves
our knowledge about the correct assignments to
the other instances it connects to. The goal of
collective classification is to jointly determine the
correct label assignments of all the objects in the
network.

Motivation and Background

Traditionally, a major focus of machine learning
is to solve classification problems: given a corpus
of documents, classify each according to its topic
label; given a collection of e-mails, determine
which are spam; given a sentence, determine the
part-of-speech tag for each word; given a hand-
written document, determine the characters, etc.
However, much of the work in machine learning
makes an independent and identically distributed
(IID) assumption and focuses on predicting the
class label of each instance in isolation. In many
cases, however, the class labels whose values
need to be determined can benefit if we know
the correct assignments to related class labels.
For example, it is easier to predict the topic of
a webpage if we know the topics of the webpages
that link to it, the chance of a particular word
being a verb increases if we know that the pre-
vious word in the sentence is a noun, knowing

the rest of the characters in a word can make it
easier to identify an unknown character, etc. In
the last decade, many researchers have proposed
techniques that attempt to classify samples in a
joint or collective manner instead of treating each
sample in isolation and reported significant gains
in classification accuracy.

Theory/Solution

Collective classification is a combinatorial
optimization problem, in which we are given a set
of nodes, V D fv1; : : : ; vng, and a neighborhood
function N , where Ni � Vnfvig, which
describes the underlying network structure.
Each node in V is a random variable that
can take a value from an appropriate domain,
L D fl1; : : : ; lqg. V is further divided into two
sets of nodes: X , the nodes for which we know
the correct values (observed variables), and Y ,
the nodes whose values need to be determined.
Our task is to label the nodes yi 2 Y with one of
a small number of predefined labels in L.

Even though it is only in the last decade that
collective classification has entered the collective
conscience of machine learning researchers, the
general idea can be traced further back (Besag
1986). As a result, a number of approaches have
been proposed. The various approaches to collec-
tive classification differ in the kinds of informa-
tion they aim to exploit to arrive at the correct
classification and their mathematical underpin-
nings. We discuss each in turn.

Relational Classification

Traditional classification concentrates on using
the observed attributes of the instance to be
classified. Relational classification (Slattery and
Craven 1998) attempts to go a step further
by classifying the instance using not only
the instance’s own attributes but also the
instance’s neighbors’ attributes. For example,
in a hypertext classification domain where we
want to classify webpages, not only would we
use the webpage’s own words but we would also
look at the webpages linking to this webpage

http://dx.doi.org/10.1007/978-1-4899-7687-1_100228
http://dx.doi.org/10.1007/978-1-4899-7687-1_100268
http://dx.doi.org/10.1007/978-1-4899-7687-1_111

Collective Classification 239

C

using hyperlinks and their words to arrive at
the correct class label. Results obtained using
relational classification have been mixed. For
example, even though there have been reports
of classification accuracy gains using such
techniques, in certain cases, these techniques
can harm classification accuracy (Chakrabarti
et al. 1998).

Iterative Collective Classification with
Neighborhood Labels

A second approach to collective classification is
to use the class labels assigned to the neighbor in-
stead of using the neighbor’s observed attributes.
For example, going back to our hypertext clas-
sification example, instead of using the linking
webpage’s words, we would, in this case, use its
assigned labels to classify the current webpage.
Chakrabarti et al. (1998) illustrated the use of this
approach and reported impressive classification
accuracy gains. Neville and Jensen (2000) fur-
ther developed the approach, and referred to the
approach as iterative classification, and studied
the conditions under which it improved classifi-
cation performance (Jensen et al. 2004). Tech-
niques for feature construction from the neigh-
boring labels were developed and studied (Lu
and Getoor 2003), along with methods that make
use of only the label information (Macskassy and
Provost 2007), as well as a variety of strategies
for when to commit the class labels (McDowell
et al. 2007).

Algorithm 1 depicts pseudo-code for a simple
version of the iterative classification algorithm
(ICA). The basic premise behind ICA is ex-
tremely simple. Consider a node Yi 2 Y whose
value we need to determine and suppose we
know the values of all the other nodes in its
neighborhood Ni (note that Ni can contain both
observed and unobserved variables). Then, ICA
assumes that we are given a local classifier f
that takes the values of Ni as arguments and
returns a label value for Yi from the class label
set L. For local classifiers f that do not return a
class label but a goodness/likelihood value given
a set of attribute values and a label, we simply

choose the label that corresponds to the maxi-
mum goodness/likelihood value; in other words,
we replace f with argmaxl2L f . This makes the
local classifier f extremely flexible, and we can
use anything ranging from a decision tree to a
� support vector machine (SVM). Unfortunately,
it is rare in practice that we know all values in
Ni , which is why we need to repeat the process
iteratively, in each iteration, labeling each Yi

using the current best estimates of Ni and the
local classifier f and continuing to do so until
the assignments to the labels stabilize.

Most local classifiers are defined as functions
whose argument consists of a fixed-length vec-
tor of attribute values. A common approach to
circumvent such a situation is to use an aggre-
gation operator such as count, mode, or prop,
which measures the proportion of neighbors with
a given label. In Algorithm 1, we use Eai to denote
the vector encoding the values in Ni obtained
after aggregation. Note that in the first ICA it-
eration, all labels yi are undefined, and to ini-
tialize them we simply apply the local classifier
to the observed attributes in the neighborhood
of Yi ; this is referred to as “bootstrapping” in
Algorithm 1.

Researchers in collective classification (Mac-
skassy and Provost 2007; McDowell et al. 2007;
Neville and Jensen 2000) have extended the sim-
ple algorithm described above and developed a
version of Gibbs sampling that is easy to imple-

Algorithm 1 Iterative classification algorithm
Iterative Classification Algorithm
(ICA)

for each node Yi 2 Y do fbootstrappingg
fcompute label using only observed nodes in Nig
compute Eai using only X \Ni

yi f .Eai /
end for
repeat fiterative classificationg

generate ordering O over nodes in Y
for each node Yi 2 O do
fcompute new estimate of yig
compute Eai using current assignments to Ni

yi f .Eai /
end for

until all class labels have stabilized or a threshold
number of iterations have elapsed

http://dx.doi.org/10.1007/978-1-4899-7687-1_810

240 Collective Classification

ment and faster than traditional Gibbs sampling
approaches. The basic idea behind this algorithm
is to assume, just like in the case of ICA, that
we have access to a local classifier f that can
sample for the best label estimate for Yi given all
the values for the nodes in Ni . We keep doing
this repeatedly for a fixed number of iterations
(a period known as “burn-in”). After that, not
only do we sample for labels for each Yi 2 Y
but we also maintain count statistics as to how
many times we sampled label l for node Yi . After
collecting a predefined number of such samples,
we output the best label assignment for node
Yi by choosing the label that was assigned the
maximum number of times to Yi while collecting
samples.

One of the benefits of both variants of ICA
is fairly simple to make use of any local clas-
sifier. Some of the classifiers used included the
following: naı̈ve Bayes (Chakrabarti et al. 1998;
Neville and Jensen 2000), � logistic regression
(Lu and Getoor 2003), � decision trees, (Jensen
et al. 2004) and weighted-vote relational neigh-
bor (Macskassy and Provost 2007). There is some
evidence to indicate that discriminately trained
local classifiers such as logistic regression tend
to produce higher accuracies than others; this is
consistent with results in other areas.

Other aspects of ICA that have been the sub-
ject of investigation include the ordering strategy
to determine in which order to visit the nodes
to relabel in each ICA iteration. There is some
evidence to suggest that ICA is fairly robust
to a number of simple ordering strategies such
as random ordering, visiting nodes in ascend-
ing order of diversity of its neighborhood class
labels, and labeling nodes in descending order
of label confidences (Getoor 2005). However,
there is also some evidence that certain modifica-
tions to the basic ICA procedure tend to produce
improved classification accuracies. For example,
both (Neville and Jensen 2000) and (McDowell
et al. 2007) propose a strategy where only a
subset of the unobserved variables are utilized as
inputs for feature construction. More specifically,
in each iteration, they choose the top-k most
confident predicted labels and use only those
unobserved variables in the following iteration’s

predictions, thus ignoring the less confident pre-
dicted labels. In each subsequent iteration, they
increase the value of k so that in the last iteration,
all nodes are used for prediction. McDowell et al.
report that such a “cautious” approach leads to
improved accuracies.

Collective Classification with
Graphical Models

In addition to the approaches described above,
which essentially focus on local representations
and propagation methods, another approach to
collective classification is by first representing
the problem with a high-level global � graphical
model and then using learning and inference tech-
niques for the graphical modeling approach to
arrive at the correct classifications. These propos-
als include the use of both directed � graphical
models (Getoor et al. 2001) and undirected graph-
ical models (Lafferty et al. 2001; Taskar et al.
2002). See � statistical relational learning and
Getoor and Taskar (2007) for a survey of various
graphical models that are suitable for collective
classification. In general, these techniques can
use both neighborhood labels and observed at-
tributes of neighbors. On the other hand, due
to their generality, these techniques also tend
to be less efficient than the iterative collective
classification techniques.

One common way of defining such a global
model uses a pairwise Markov random field (pair-
wise MRF) (Taskar et al. 2002). Let G D .V; E/
denote a graph of random variables as before
where V consists of two types of random vari-
ables, the unobserved variables, Y , which need
to be assigned domain values from label set L,
and observed variables X whose values we know
(see �Graphical Models). Let Ψ denote a set of
clique potentials. Ψ contains three distinct types
of functions:

• For each Yi 2 Y , i 2 Ψ is a mapping
 i W L ! R�0, where R�0 is the set of
nonnegative real numbers.

• For each .Yi ; Xj / 2 E, ij 2 Ψ is a mapping
 ij W L! R�0.

http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_119

Collective Classification 241

C

• For each .Yi ; Yj / 2 E, ij 2 Ψ is a mapping
 ij W L � L! R�0.

Let x denote the values assigned to all the ob-
served variables in V , and let xi denote the
value assigned to Xi . Similarly, let y denote any
assignment to all the unobserved variables in V ,
and let yi denote a value assigned to Yi . For
brevity of notation, we will denote by 	i the
clique potential obtained by computing 	i .yi / D

 i .yi /
Q

.Yi ;Xj /2E ij .yi /. We are now in a po-
sition to define a pairwise MRF.

Definition 1 A pairwise Markov random
field (MRF) is given by a pair hG;Ψi where
G is a graph and Ψ is a set of clique
potentials with 	i and ij as defined above.
Given an assignment y to all the unobserved
variables Y , the pairwise MRF is associated
with the probability distribution P.yjx/ D

1
Z.x/

Q
Yi2Y 	i .yi /

Q
.Yi ;Yj /2E ij .yi ; yj /where

x denotes the observed values of X and Z.x/ DP
y0

Q
Yi2Y 	i

�
y0i
�Q

.Yi ;Yj /2E ij

�
y0i ; y

0
j

�
.

Given a pairwise MRF, it is conceptually simple
to extract the best assignments to each unob-
served variable in the network. For example,
we may adopt the criterion that the best label
value for Yi is simply the one corresponding
to the highest marginal probability obtained by
summing over all other variables from the prob-
ability distribution associated with the pairwise
MRF. Computationally, however, this is diffi-
cult to achieve since computing one marginal
probability requires summing over an exponen-
tially large number of terms, which is why we
need approximate inference algorithms. Hence,
approximate inference algorithms are typically
employed, the two most common being loopy be-
lief propagation (LBP) and mean-field relaxation
labeling.

Applications

Due to its general applicability, collective
classification has been applied to a number
of real-world problems. Foremost in this list

is document classification. Chakrabarti et al.
(1998) was one of the first to apply collective
classification to corpora of patents linked
via hyperlinks and reported that considering
attributes of neighboring documents actually
hurts classification performance. Slattery and
Craven (1998) also considered the problem
of document classification by constructing
features from neighboring documents using an
� inductive logic programming rule learner.
Yang et al. (2002) conducted an in-depth
investigation over multiple datasets commonly
used for document classification experiments and
identified different patterns. Other applications of
collective classification include object labeling in
images (Hummel and Zucker 1983), analysis
of spatial statistics (Besag 1986), iterative
decoding (Berrou et al. 1993), part-of-speech
tagging (Lafferty et al. 2001), classification of
hypertext documents using hyperlinks (Taskar
et al. 2002), link prediction (Getoor et al. 2002;
Taskar et al. 2003b), optical character recognition
(Taskar et al. 2003a), entity resolution in
sensor networks (Chen et al. 2003), predicting
disulfide bonds in protein molecules (Taskar
et al. 2005), segmentation of 3D scan data
(Anguelov et al. 2005), and classification
of e-mail speech acts (Carvalho and Cohen
2005). Recently, there have also been attempts
to extend collective classification techniques
to the semi-supervised learning scenario
(Lu and Getoor 2003b; Macskassy 2007; Xu
et al. 2006).

Cross-References

�Decision Tree
� Inductive Logic Programming
�Learning From Structured Data
�Relational Learning
� Semi-supervised Learning
� Statistical Relational Learning

Recommended Reading

Anguelov D, Taskar B, Chatalbashev V, Koller D,
Gupta D, Heitz G et al (2005) Discriminative learn-
ing of Markov random fields for segmentation of 3D

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_786

242 Commercial Email Filtering

scan data. In: IEEE computer society conference on
computer vision and pattern recognition, San Diego.
IEEE Computer Society, Washington, DC

Berrou C, Glavieux A, Thitimajshima P (1993) Near
Shannon limit error-correcting coding and decod-
ing: Turbo codes. In: Proceedings of IEEE interna-
tional communications conference, Geneva. IEEE

Besag J (1986) On the statistical analysis of dirty
pictures. J R Stat Soc B-48:259–302

Carvalho V, Cohen WW (2005) On the collective clas-
sification of email speech acts. In: Special interest
group on information retrieval, Salvador. ACM

Chakrabarti S, Dom B, Indyk P (1998) Enhanced
hypertext categorization using hyperlinks. In: Inter-
national conference on management of data, Seattle.
ACM, New York

Chen L, Wainwright M, Cetin M, Willsky A (2003)
Multitarget multisensor data association using the
tree-reweighted max-product algorithm. In: SPIE
Aerosense conference, Orlando

Getoor L (2005) Link-based classification. In: Ad-
vanced methods for knowledge discovery from
complex data. Springer, New York

Getoor L, Taskar B (eds) (2007) Introduction to statis-
tical relational learning. MIT, Cambridge

Getoor L, Segal E, Taskar B, Koller D (2001) Prob-
abilistic models of text and link structure for hy-
pertext classification. In: Proceedings of the IJCAI
workshop on text learning: beyond supervision,
Seattle

Getoor L, Friedman N, Koller D, Taskar B (2002)
Learning probabilistic models of link structure. J
Mach Learn Res 3:679–707

Hummel R, Zucker S (1983) On the foundations of
relaxation labeling processes. IEEE Trans Pattern
Anal Mach Intell 5:267–287

Jensen D, Neville J, Gallagher B (2004) Why collective
inference improves relational classification. In: Pro-
ceedings of the 10th ACM SIGKDD international
conference on knowledge discovery and data min-
ing, Seattle. ACM

Lafferty JD, McCallum A, Pereira FCN (2001) con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In: Proceedings
of the international conference on machine learning,
Washington, DC. Morgan Kaufmann, San Francisco

Lu Q, Getoor L (2003a) Link based classification.
In: Proceedings of the international conference on
machine learning, Washington, DC. AAAI

Lu Q, Getoor L (2003b) Link-based classification us-
ing labeled and unlabeled data. In: ICML workshop
on the continuum from labeled to unlabeled data in
machine learning and data mining, Washington, DC

Macskassy S, Provost F (2007) Classification in net-
worked data: a toolkit and a univariate case study. J
Mach Learn Res 8:935–983

Macskassy SA (2007) Improving learning in net-
worked data by combining explicit and mined links.
In: Proceedings of the twenty-second AAAI confer-
ence on artificial intelligence, Vancouver. AAAI

McDowell LK, Gupta KM, Aha DW (2007) Cautious
inference in collective classification. In: Proceed-
ings of the twenty-second AAAI conference on
artificial intelligence, Vancouver. AAAI

Neville J, Jensen D (2007) Relational dependency
networks. J Mach Learn Res 8:653–692

Neville J, Jensen D (2000) Iterative classification in
relation data. In: Workshop on statistical relational
learning. AAAI

Slattery S, Craven M (1998) Combining statistical
and relational methods for learning in hypertext
domains. In: International conferences on inductive
logic programming, Madison. Springer, London

Taskar B, Abbeel P, Koller D (2002) Discriminative
probabilistic models for relational data. In: Proceed-
ings of the annual conference on uncertainty in ar-
tificial intelligence, Edmonton. Morgan Kauffman,
San Francisco

Taskar B, Guestrin C, Koller D (2003a) Max-margin
Markov networks. In: Neural information process-
ing systems. MIT, Cambridge

Taskar B, Wong MF, Abbeel P, Koller D (2003b) Link
prediction in relational data. In: Natural information
processing systems. MIT, Cambridge

Taskar B, Chatalbashev V, Koller D, Guestrin C (2005)
Learning structured prediction models: a large mar-
gin approach. In: Proceedings of the international
conference on machine learning, Bonn. ACM, New
York

Xu L, Wilkinson D, Southey F, Schuurmans D (2006)
Discriminative unsupervised learning of structured
predictors. In: Proceedings of the international con-
ference on machine learning, Pittsburgh. ACM, New
York

Yang Y, Slattery S, Ghani R (2002) A study of ap-
proaches to hypertext categorization. J Intell Inf
Syst 18(2–3):219–241

Commercial Email Filtering

�Text Mining for Spam Filtering

Committee Machines

�Ensemble Learning

Community Detection

�Group Detection

http://dx.doi.org/10.1007/978-1-4899-7687-1_828
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_355

Complexity in Adaptive Systems 243

C

Comparable Corpus

A comparable corpus (pl. corpora) is a document
collection composed of two or more disjoint
subsets, each written in a different language, such
that documents in each subset are on a same topic
as the documents in the others. The prototypi-
cal example of a comparable corpora is a col-
lection of newspaper article written in different
languages and reporting about the same events:
while they will not be, strictly speaking, the
translation of one another, they will share most
of the semantic content. Some methods for cross-
language text mining rely, totally or partially, on
the statistical properties of comparable corpora.

Comparison Training

� Preference Learning

Competitive Coevolution

�Test-Based Coevolution

Competitive Learning

A Competitive learning is an � artificial neural
network learning process where different neu-
rons or processing elements compete on who is
allowed to learn to represent the current input.
In its purest form competitive learning is in the
so-called winner-take-all networks where only
the neuron that best represents the input is al-
lowed to learn. Since all neurons learn to better
represent the kinds of inputs they already are
good at representing, they become specialized to
represent different kinds of inputs. For vector-
valued inputs and representations, the input be-
comes quantized to the unit having the closest
representation (model), and the representations
are adapted to minimize the representation error
using stochastic gradient descent.

Competitive learning networks have been
studied as models of how receptive fields and
feature detectors, such as orientation-selective
visual neurons, develop in neural networks. The
same process is at work in online �K-means
clustering, and variants of it in �Self-Organizing
Maps (SOM) and the EM algorithm of mixture
models.

Complex Adaptive System

�Complexity in Adaptive Systems

Complexity in Adaptive Systems

Jun He
Aberystwyth University, Aberystwyth, UK

Abstract

The complexity in adaptive systems is clas-
sified into two types: internal complexity for
model complexity and external complexity for
data complexity. As an application, the two
concepts are put into the background of learn-
ing and are used to explain statistical learning.

Synonyms

Adaptive system; Complex adaptive system

Definition

An adaptive system, or complex adaptive system,
is a special case of complex systems, which is
able to adapt its behavior according to changes
in its environment or in parts of the system itself.
In this way, the system can improve its perfor-
mance through a continuing interaction with its
environment. The concept of complexity in an
adaptive system is used to analyze the interactive
relationship between the system and its environ-
ment, which can be classified into two types:
internal complexity for model complexity and ex-
ternal complexity for data complexity. The inter-

http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_822
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_100421
http://dx.doi.org/10.1007/978-1-4899-7687-1_45
http://dx.doi.org/10.1007/978-1-4899-7687-1_100505
http://dx.doi.org/10.1007/978-1-4899-7687-1_100075

244 Complexity in Adaptive Systems

nal complexity is defined by the amount of input,
information, or energy that the system receives
from its environment. The external complexity
refers to the complexity of how the system rep-
resents these inputs through its internal process.

Motivation and Background

Adaptive systems range from natural systems
to artificial systems (Holland 1992, 1995;
Mitchell 1992). Examples of natural systems
include ant colonies, ecosystem, the brain,
neural network and immune system, cell,
and developing embryo; examples of artificial
systems include the stock market, social system,
manufacturing businesses, and human social
group-based endeavor in a cultural and social
system such as political parties or communities.
All these systems have a common feature: they
can adapt to their environment.

An adaptive system is adaptive in that way it
has the capacity to change its internal structure
for adapting the environment. It is complex in
the sense that it interacts with their environment.
The interaction between an adaptive system and
its environment is dynamic and nonlinear. Com-
plexity emerges from the interaction among the
system and environment and the elements of the
system, where the emergent macroscopic patterns
are more complex than the sum of the these
low-level (microscopic) elements encompassed
in the system. Understanding the evolution and
development of adaptive systems still faces many
mathematical challenges (Levin 2003).

The concepts of external and internal com-
plexity are used to analyze the relation between
an adaptive system and its environment. The
description given below is based on Jürgen Jost’s
work (Jost 2004), which introduced these two
concepts and applied the theoretical framework
to the construction of learning models, e.g., to
design neural network architectures. In the fol-
lowing, the concepts are mainly applied to ana-
lyze the interaction between the system and its
environment. The interaction among individual
elements of the system is less discussed; however,
the concepts can be explored in that situation too.

Theory

Adaptive System, Environment, and
Regularities
The environment of an adaptive system is more
complex than the system itself and its changes
cannot be completely predictable for the system.
However, the changes of the environment are not
purely random and noisy; there exist regulari-
ties in the environment. An adaptive system can
recognize these regularities; and depending on
these regularities, the system will express them
through its internal process in order to adapt to
the environment.

The input that an adaptive system receives or
extracts from its environment usually includes
two parts: one is the part with regularities and
another is that appears random to the system. The
part of regularities is useful and meaningful. An
adaptive system will represent these regularities
by internal processes. But the part of random
input is useless, and even at the worst it will
be detrimental for an adaptive system. However,
it will depend on the adaptive system’s internal
model of the external environment for how to
determine which part of input is meaningful and
regular and which part is random and devoid of
meaning and structure.

An adaptive system will translate the external
regularities into its internal ones, and only the
regularities are useful to the system. The system
tries to extract regularities as many as possible
and to represent these regularities as efficiently
as possible in order to make optimal use of its
capacity.

The notions of external complexity and inter-
nal complexity are used to investigate these two
complementary aspects conceptually and quan-
titatively. In terms of these notions, an adaptive
system aims to increase their external complexity
and reduce their internal complexity.

The two processes operate on their own time
scale but are intricately linked and mutually de-
pendent on each other. For example, the internal
complexity will be only reduced if the external
complexity is fixed. Under fixed inputs received
from the external environment, an adaptive sys-
tem can represent these inputs systems more

Complexity in Adaptive Systems 245

C

efficiently and optimize its internal structure. If
the external complexity is increased, e.g., addi-
tional new input is required to handle by the
system, then it is necessary to increase its internal
complexity.

The increase of internal complexity may oc-
cur through the creation of redundancy in the
existing adaptive system, e.g., to duplicate some
internal structures and then enable the system to
handle more external input. Once the input is
fixed, the adaptive then will represent the input
as efficiently as possible and reduce the internal
input. The decrease of internal complexity can
be achieved through discarding some input as
meaningless and irrelevant, e.g., leaving some
regularities out, for the purpose.

Since the inputs relevant for the systems
are those which can be reflected in the internal
model, the external complexity is not equivalent
to the amount of raw data received from the
environment. In fact, it is only relevant to the
inputs which can be processed in the internal
model or observations in some adaptive systems.
Thus the external complexity ultimately is
decided by the internal model constructed by
the system.

External and Internal Complexity
External complexity means data complexity,
which is used to measure the amount of input
received from the environment for the system to
handle and process. Such a complexity can be
measured by entropy in the term of information
theory.

Internal complexity is model complexity,
which is used to measure the complexity of a
model for representing the input or information
received by the system.

The aim of the adaptive system is to obtain
an efficient model as simple as possible, with the
capacity to handle as much input as possible. On
the one hand, the adaptive system will try to max-
imize its external complexity and then to adapt
to its environment in a maximal way and, on the
other hand, to minimize its internal complexity
and then to construct a model to process the input
in the most efficient way.

These two aims sometimes seem conflicting,
but such a conflict can be avoided when these
two processes operate on different time scales. If
given a model, the system will organize the input
data and try to increase its ability to deal input
from its environment and then increase its ex-
ternal complexity. If given the input, conversely,
it tries to simplify its model which represents
that input and thus to decrease the internal com-
plexity. The meaning of the input is relevant to
the time scale under investigation. On a short
time scale, for example, the input may consist
of individual signals, but on a long time scale,
it will be a sequence of signals, which satisfies
a probability distribution. A good internal model
tries to express regularities in the input sequence,
rather than several individual signals. And the
decrease of internal complexity will happen on
this time scale.

A formal definition of the internal and external
complexity concepts is based on the concept of
entropy from statistical mechanics and informa-
tion theory. Given a model � , the system can
model data as with X.�/ D .X1; � � � ; Xk/, which
is assumed to have an internal probability distri-
bution P.X.�// so that entropy can be computed.
The external complexity is defined by

�

kX
iD1

P.Xi .�// log2 P.Xi .�//: (1)

An adaptive system tries to maximize the
above external complexity.

The probability distribution P.X.�// is for
quantifying the information value of the data
X.�/. The value of information can be described
in other approaches, e.g., the length of the repre-
sentation of the data in the internal code of the
system (Rissanen 1989/1998). In this case, the
optimal coding is a consequence of the minimiza-
tion of internal complexity, and then the length
of the representation of data Xi .�/ behaves like
log2 P.X.�// (Rissanen 1989/1998).

On a short time scale, for a given model
� , the system tries to increase the amount of
meaningful input information X.�/. On a long
time scale, when the input is given, e.g., when the

246 Complexity in Adaptive Systems

system has gathered a set of input on a time scale
with a stationary probability distribution of input
patterns Ξ, then the model should be improved
to handle the input as efficiently as possible and
reduce the complexity of model. This complexity,
or internal complexity, is defined by

�

kX
iD1

P.Ξi j �/ log2 P.Ξi j �/� log2 P.�/; (2)

with respect to the model � .
If Rissanen’s minimum description length

principle (Rissanen 1989/1998) is applied to
the above formula, then the optimal model will
satisfy the following variation problem:

min
�
.� log2 P.Ξ j �/ � log2 P.�// : (3)

Here in the above minimization problem, there
are two objectives to minimize. The first term is
to measure how efficiently the model represents
or encodes the data and the second one to how
complicated the model is. In computer science,
this latter term corresponds to the length of the
program required to encode the model.

The concepts of external and internal com-
plexity can be applied into a system divided into
subsystems. In this case, some internal part of the
original whole system will become external to a
subsystem. Thus the internal input of a subsystem
consists of original external input and also input
from the rest of the system, i.e., other subsystems.

Application: Learning

The discussion of these two concepts, external
and internal complexity, can be put into the back-
ground of learning. In statistical learning the-
ory (Vapnik 1998), the criterion for evaluating a
learning process is the expected prediction error
of future data by the model based on training
data set with partial and incomplete information.
The task is to construct a probability distribution
drawn from an a priori specific class for repre-
senting the distribution underlying the input data
received. Usually if a higher error is produced by

a model on the training data, then a higher error
will be expected on the future data. The error will
depend on two factors: one is the accuracy of the
model on the training data set and another is the
simplicity of the model itself. The description of
the data set can be split into two parts, the regular
part, which is useful in construct the model, and
the random part, which is a noise to the model.

The learning process fits very well into the
theory framework of internal and external com-
plexity. If the model is too complicated, it will
bring the risk of over-fitting the training dada. In
this case, some spurious or putative regularity is
incorporated into the model, which will not ap-
pear in the future data. The model should be con-
strained within some model class with bounded
complexity. This complexity in this context of
statistical learning theory is measured by the
Vapnik-Chervonenkis dimension (Vapnik 1998).
Under the simplest form of statistical learning
theory, the system aims at finding a representation
with smallest error in a class with given com-
plexity constraints; and then the model should
minimize the expected error on future data and
also over-fitting error.

The two concepts of over-fitting and leav-
ing out regularities can be distinguished in the
following sense. The former is caused by the
noise in the data, i.e., the random part of the
data, and this leads to putative regularities, which
will not appear in the future data. The latter,
leaving out regularities, means the system can
forgo some part of regularities in the data, or
it is possible to make data compression. Thus
leaving out regularities can be used to simplify
the model and reduce the internal complexity.
However, a problem is still waiting for answer
here, that is, what regularities in the data set are
useful for data compression and also meaningful
for future prediction and what parts are random
to the model.

The internal complexity is the model complex-
ity. If the internal complexity is chosen too small,
then the model does not have enough capacity to
represent all the important features of the data set.
If the internal complexity is too large, on the other
hand, then the model doesn’t represent the data
efficiently. The internal complexity is preferably

Complexity of Inductive Inference 247

C

minimized under appropriate constraints on the
adequacy of the representation of data. This is
consistent with Rissanen’s principle of minimum
description length (Rissanen 1989/1998), to rep-
resent the given data set in the most efficient way.
Thus a good model is both to simplify the model
itself and to represent the data efficiently.

The external complexity is the data complexity
which should be large to represent the input
accurately. This is related to Jaynes’ principle of
maximizing the ignorance (Jaynes 1957), where
a model for representing data should have the
maximal possible entropy under the constraint
that all regularities can be reproduced. In this
way, putative regularities could be eliminated in
the model. However, this principle should be
applied with some conditions; as argued by Gell-
Mann and Lloyd (1996), it cannot eliminate the
essential regularities in the data, and an overly
complex model should be avoided.

For some learning system, only a selection of
data is gathered and observed by the system. Thus
a middle term, observation, is added between
model and data. The concept of observation refers
to the extraction of value of some specific quan-
tity from a given data or data pool. What a system
can observe depends on its internal structure and
its general model of the environment. The system
doesn’t have direct access to the raw data, but
through constructing a model of the environment
solely on the basis of the values of its observation.

For such kind of learning system, Jaynes’
principle (Jaynes 1957) is still applicable for
increasing the external complexity. For the given
observation made on a data set, the maximum en-
tropy representation should be selected. However,
this principle is still subject to the modification
of Gell-Mann and Lloyd (1996) to the principle,
where the model should not lose the essential
regularities observed in the data.

In contrast, the observations should be se-
lected to reduce the internal complexity. Given
a model, if the observation can be made on a
given data set, then these observations should be
selected so as to minimize the resulting entropy
of the model, with the purpose of minimizing the
uncertainty left about the data. Thus it leads to
reduce complexity.

In most cases, the environment is dynamic,
i.e., the data set itself can be varied, then the
external complexity should be maximized again.
Thus the observation should be chosen for maxi-
mal information gain extracted from the data to
increase the external complexity. Jaynes’ prin-
ciple (Jaynes 1957) can be applied as the same
as in previous discussion. But in a longer time
scale, when the input reaches some stationary
distribution, the model should be simplified to
reduce its internal complexity.

Recommended Reading

Gell-Mann, M and Lloyd, S (1996) Information mea-
sures, effective complexity, and total information.
Complexity 2(1):44–52

Holland J (1992) Adaptation in natural and artificial
systems. MIT Press, Cambridge

Holland J (1995) Hidden order: how adaptation builds
complexity. Addison-Wesley, Redwood City

Jaynes, E. (1957) Information theory and statistical
mechanics. Physical Review 106(4):620–630

Jost J (2004) External and internal complexity of com-
plex adaptive systems. Theory Biosci 123(1):69–88

Levin S (2003) Complex adaptive systems: exploring
the known, the unknown and the unknowable. Bull
Am Math Soc 40(1):3–19

Rissanen J (1989/1998) Stochastic complexity in sta-
tistical inquiry. World Scientific, Singapore

Vapnik V (1998) Statistical learning theory. Wiley,
New York (1998)

Mitchell W. M (1992) Complexity: the emerging sci-
ence at the edge of order and chaos. Simon and
Schuster, New York

Complexity of Inductive Inference

Sanjay Jain1 and Frank Stephan2

1School of Computing, National University of
Singapore, Singapore, Singapore
2Department of Mathematics, National
University of Singapore, Singapore, Singapore

Definition

In � inductive inference, the complexity of learn-
ing can be measured in various ways: by the num-
ber of hypotheses issued in the worst case until

http://dx.doi.org/10.1007/978-1-4899-7687-1_134

248 Complexity of Inductive Inference

the correct hypothesis is found, by the number of
data items to be consumed or to be memorized
in order to learn in the worst case, by the Turing
degree of oracles needed to learn the class under a
certain criterion, and by the intrinsic complexity
which is – like the Turing degrees in recursion
theory – a way to measure the complexity of
classes by using reducibilities between them.

Detail

We refer the reader to the article � Inductive
Inference for basic definitions in inductive infer-
ence and the notations used below. Let N denote
the set of natural numbers. Let '0; '1; : : : de-
note a fixed acceptable numbering of the partial-
recursive functions (Rogers 1967). Let Wi D

domain.'i /.

Mind Changes and Anomalies

The first measure of complexity of learning can
be considered as the number of mind changes
needed before the learner converges to its final
hypothesis in the TxtEx model of learning. The
number of mind changes by a learnerM on a text
T can be counted as card .fm W ‹ ¤ M.T Œm�/ ¤
M.T Œm C 1�/g/. A learner M TxtExn learns a
class L of languages if M TxtEx learns L and
for all L 2 L, for all texts T for L, M makes
at most n mind changes on T . TxtExn is defined
as the collection of language classes which can
be TxtExn identified (see Case and Smith (1983)
for details).

Consider the class of languages LnDfL W

card.L/�ng. It can be shown that LnC1 2

TxtExnC1 � TxtExn.
Now consider anomalous learning. A class C

is TxtExa
b learnable if there is a learner, which

makes at most b mind changes (where b D �
denotes that the number of mind changes is finite
on each text for a language in the class, but not
necessarily bounded by a constant) and whose
final hypothesis is allowed to make up to a errors
(where a D � denotes finitely many errors). For
these learning criteria, we get a two-dimensional
hierarchy on what can be learnt. Let Cn D ff W

'f .0/ D
n f g. For a total function f , let Lf D

fhx; f .x/i W x 2 Ng, where h � ; � i denotes a
computable pairing function: a bijective mapping
from N�N to N. Let LC D fLf W f 2 Cg. Then,
one can show that LCnC1 2 TxtExnC1

0 �TxtExn.
Similarly, if we consider the class Sn D ff W

card.fm W f .m/ ¤ f .m C 1/g/ � ng, then one
can show that LSnC1 2 TxtEx0

nC1 � TxtEx�n (we
refer the reader to Case and Smith (1983) for a
proof of the above).

Data and Time Complexity

Wiehagen (1986) considered the complexity of
the number of data needed for learning. Regard-
ing time complexity, one should note the result
by Pitt (1989) that any TxtEx-learnable class of
languages can be TxtEx-learnt by a learner that
has time complexity (with respect to the size of
the input) bounded by a linear function. This
result is achieved by a delaying trick, where the
learner just repeats its old hypothesis unless it has
enough time to compute its later hypothesis. This
seriously effects what one can say about time
complexity of learning. One proposal made by
Daley and Smith (1986) is to consider the total
time used by the learner until its sequence of hy-
potheses converges, resulting in a possibly more
reasonable measure of time in the complexity of
learning.

Iterative and Memory-Bounded
Learning

Another measure of complexity of learning can
be considered when one restricts how much past
data a learner can remember. Wiehagen (1976)
introduced the concept of iterative learning in
which the learner cannot remember any past data.
Its new hypothesis is based only on its previous
conjecture and the new datum it receives. In
other words, there exists a recursive function F
such that M.T Œn C 1�/ D F.M.T Œn�/; T .n//,
for all texts T and for all n. Here, M.T Œ0�/ is
some fixed value, say the symbol “?” which is
used by the learner to denote the absence of
a reasonable conjecture. It can be shown that

http://dx.doi.org/10.1007/978-1-4899-7687-1_134

Complexity of Inductive Inference 249

C

being iterative restricts the learning capacity of
learners. For example, let Le D f2x W x 2 Ng

and let L D fLeg [ffS [f2n C 1gg W n 2
N; S � Le; and max.S/ � ng; then L can be
shown to be TxtEx learnable but not iteratively
learnable.

Memory-bounded learning (see Lange and
Zeugmann 1996) is an extension of memory-
limited learning, where the learner is allowed to
memorize up to some fixed number of elements
seen in the past. Thus, M is an m-memory-
bounded learner if there exists a function mem
and two computable functions mF and F such
that, for all texts T and all n:

– mem.T Œ0�/ D ;;
– M.T ŒnC1�/DF.M.T Œn�/;mem.T Œn�/; T .nC

1//;
– mem.T ŒnC1�/ D mF.M.T Œn�/;mem.T Œn�/,
T .nC 1//;

– mem.T ŒnC 1�/�mem.T Œn�/ � fT .nC 1/g;
– card.mem.T Œn�// � m.

It can be shown that the criteria of inference
based on TxtEx learning bym-memory-bounded
learners form a proper hierarchy.

Besides memorizing some past elements seen,
another way to address this issue is by giving
feedback to the learner (see Case et al. 1999) on
whether some element has appeared in the past
data. A feedback learner is an iterative learner,
which is additionally allowed to query whether
certain elements appeared in earlier data. An
n-feedback learner is allowed to make n such
queries at each stage (when it receives the new
input datum). Thus, M is an m-feedback learner
if there exist computable functions Q and a F
such that, for all texts T and all n:

– Q.M.T Œn�/; T .n// is defined and is a set ofm
elements

– If Q.M.T Œn�/; T .n// D .x1; x2; : : : ; xm/,
then M.T Œn C 1�/ D F.M.T Œn�/; T .n/;
y1; y2; : : : ; ym/, where yi D 1 iff xi 2

ctnt.T Œn�/.

Again, it can be shown that allowing more feed-
back gives greater learning power, and thus one

can get a hierarchy based on the amount of
feedback allowed.

Complexity of Final Hypothesis

Another possibility on complexity of learning
is to consider the complexity or size of the
final grammar output by the learner. Freivalds
(1975) considered the case when the final
program/grammar output by the learner is
minimal: that is, there is no smaller index that
accepts/generates the same language. He showed
that this severely restricts the learning capacity
of learners. Not only that, the learning capacity
depends on the acceptable programming system
chosen, unlike the case for most other criteria
of learning such as TxtEx or TxtBc, which
are independent of the acceptable programming
system chosen. In particular, there are acceptable
programming systems in which only classes
containing finitely many infinite languages can
be learnt using minimal final grammars (see
Freivalds 1975; Jain and Sharma 1993). Chen
(1982) considered a modification of such a
paradigm where one considers convergence
to nearly minimal grammars rather than
minimal. That is, instead of requiring that the
final grammars are minimal, one requires that
they are within a recursive function h of minimal.
Here h may depend on the class being learnt.
Chen showed that this allows one to have the
criteria of minimal learnability to be independent
of the acceptable programming system chosen.
However, one can show that some simple classes
are not minimally learnable. An example of such
a class is the class LC which is derived from
C D ff W 81xŒf .x/ D 0�g, the class of all
functions which are almost everywhere 0.

Intrinsic Complexity

Another way to consider complexity of learning
is to consider relative complexity in a way similar
to how one considers Turing reductions in com-
putability theory. Such a notion is called intrinsic
complexity of the class. This was first considered

250 Complexity of Inductive Inference

by Freivalds et al. (1995) for function learning.
Jain and Sharma (1996) considered it for lan-
guage learning, and the following discussion is
from there.

An enumeration operator (see Rogers 1967),

, is an algorithmic mapping from SEQ into
SEQ such that the following two conditions are
satisfied:

– for all �; � 2 SEQ, if � � � , then
.�/ �

.�/;

– for all texts T , limn!1 j
.T Œn�/j D 1.

By extension, we think of
 as also mapping
texts to texts such that
.T / D

S
n
.T Œn�/.

Furthermore, we define
.L/ D fctnt.
.T // W
T is a text for Lg. Intuitively,
.L/ denotes the
set of languages to whose texts
 maps texts of
L. The reader should note the overloading of this
notation because the type of the argument to

could be a sequence, a text, or a language.

One says that a sequence of grammars
g0; g1; : : : is an acceptable TxtEx sequence for
L if the sequence of grammars converges to a
grammar for L.

L1 �weak L2 if there are two operators
 and
� such that for all L 2 L1, for all texts T for
L,
.T / is a text for some L0 2 L2 such that if
g0; g1; : : : is an acceptable TxtEx sequence for
L0, then �.g0; g1; : : :/ is an acceptable TxtEx
sequence for L.

Note that different texts for the same language
L may be mapped by
 to texts for different
languages in L2 above. If we require that different
texts for L are mapped to texts for the same
language L0 in L2, then we get a stronger notion
of reduction called strong reduction: L1 �strong

L2 if L1 �weak L2 and for all L 2 L1,
.L/
contains only one language, where
 is as in the
definition for �weak reduction.

It can be shown that FIN is a complete class
for TxtEx identification with respect to �weak

reduction (see Jain and Sharma 1996). Interest-
ingly, it was shown that the class of pattern
languages (Angluin 1980), the class SD D fL W
Wmin.L/ D Lg, and the class COINIT D ffx W
x � ng W n 2 Ng are all equivalent under

�strong. Let code be a bijective mapping from
nonnegative rational numbers to natural numbers.
Then, one can show that the class RINIT D
ffcode.x/ W 0 � x � r , x is a rational numberg W
0 � r � 1, r is a rational number g is �strong

complete for TxtEx (see Jain et al. 2001).
Interestingly every finite directed acyclic

graph can be embedded into the �strong degree
structure (Jain and Sharma 1997a). On the other
hand, the degree structure is non-dense in the
sense that there exist classes L1 and L2 such
that L1 <strong L2, but for any class L such that
L1 �strong L �strong L2, either L1 	strong L or
L 	strong L2. A similar result holds for �weak

reducibility (see Jain and Sharma 1997a).
Interesting connections between learning of

elementary formal systems (Shinohara 1994),
intrinsic complexity, and ordinal mind changes
(Freivalds and Smith 1993) were shown in Jain
and Sharma (1997b).

Learning Using Oracles

Another method to measure complexity of learn-
ing is to see how powerful an oracle (given
to the learning machine) has to be to make a
class learnable. It can be shown that an oracle
A permits to explanatorily learn the class of all
recursive functions iff A is high (Adleman and
Blum 1991). Furthermore, an oracle is trivial,
that is, does not give additional learning power
for explanatory learning of function classes iff
the oracle has 1-generic Turing degree and is
Turing reducible to the halting problem (Slaman
and Solovay 1991). The picture is a bit different
in the general case of learning languages. For
every oracle A, there is an oracle B and a class,
which is TxtEx learnable using the oracle B but
not using the oracle A (Jain and Sharma 1993).
Note that there are also classes of languages like
Gold’s class of all finite languages plus the set of
natural numbers which are not TxtEx learnable
using any oracle. Furthermore, for oracles above
the halting problem, TxtEx learning and TxtBc
learning using these oracles coincide.

Acknowledgements Sanjay Jain was supported in part
by NUS grant numbers C252-000-087-001, R146-000-

Computational Complexity of Learning 251

C

181-112, R252-000-534-112. Frank Stephen was sup-
ported in part by NUS grant numbers R146-000-181-112,
R252-000-534-112.

Recommended Reading

Adleman L, Blum M (1991) Inductive inference and
unsolvability. J Symb Log 56:891–900

Angluin D (1980) Finding patterns common to a set of
strings. J Comput Syst Sci 21:46–62

Case J, Smith CH (1983) Comparison of identifica-
tion criteria for machine inductive inference. Theor
Comput Sci 25:193–220

Case J, Jain S, Lange S, Zeugmann T (1999) Incre-
mental concept learning for bounded data mining.
Inf Comput 152(1):74–110

Chen K-J (1982) Tradeoffs in inductive inference
of nearly minimal sized programs. Inf Control
52:68–86

Daley RP, Smith CH (1986) On the complexity of
inductive inference. Inf Control 69:12–40

Freivalds R (1975) Minimal Gödel numbers and their
identification in the limit. Lect Not Comput Sci
32:219–225

Freivalds R, Smith CH (1993) On the role of
procrastination in machine learning. Inf Comput
107(2):237–271

Freivalds R, Kinber E, Smith CH (1995) On the intrin-
sic complexity of learning. Inf Comput 123:64–71

Jain S, Sharma A (1993) On the non-existence of max-
imal inference degrees for language identification.
Inf Process Lett 47:81–88

Jain S, Sharma A (1994) Program size restric-
tions in computational learning. Theor Comput Sci
127:351–386

Jain S, Sharma A (1996) The intrinsic complex-
ity of language identification. J Comput Syst Sci
52:393–402

Jain S, Sharma A (1997a) The structure of intrinsic
complexity of learning. J Symb Log 62:1187–1201

Jain S, Sharma A (1997b) Elementary formal systems,
intrinsic complexity and procrastination. Inf Com-
put 132:65–84

Jain S, Kinber E, Wiehagen R (2001) Language
learning from texts: degrees of intrinsic complex-
ity and their characterizations. J Comput Syst Sci
63:305–354

Lange S, Zeugmann T (1996) Incremental learning
from positive data. J Comput Syst Sci 53:88–103

Pitt L (1989) Inductive inference, DFAs, and computa-
tional complexity. In: Analogical and inductive in-
ference, second international workshop (AII 1989).
LNAI, vol 397. Springer, Heidelberg, pp 18–44

Rogers H (1967) Theory of recursive functions and
effective computability. McGraw-Hill, New York
(Reprinted, MIT Press 1987)

Shinohara T (1994) Rich classes inferable from pos-
itive data: length–bounded elementary formal sys-
tems. Inf Comput 108:175–186

Slaman TA, Solovay R (1991) When oracles do not
help. In: Proceedings of the fourth annual workshop
on computational learning theory, Santa Cruz. Mor-
gan Kaufmann, pp 379–383

Wiehagen R (1976) Limes-Erkennung rekursiver
Funktionen durch spezielle Strategien. J Inf Process
Cybern EIK 12:93–99

Wiehagen R (1986) On the complexity of effective
program synthesis. In: Jantke K (ed) Analogical and
inductive inference. Proceedings of the international
workshop. LNCS, vol 265. Springer, pp 209–219

Compositional Coevolution

Synonyms

Cooperative coevolution

Definition

A coevolutionary system constructed to learn
composite solutions in which individuals repre-
sent different candidate components and must
be evaluated together with other individuals in
order to form a complete solution. Though not
precisely the same as cooperative coevolution,
there is a significant overlap.

Cross-References

�Coevolutionary Learning

Computational Complexity of
Learning

Sanjay Jain1 and Frank Stephan2

1School of Computing, National University of
Singapore, Singapore, Singapore
2Department of Mathematics, National
University of Singapore, Singapore, Singapore

Definition

Measures of the complexity of learning have been
developed for a number of purposes including

http://dx.doi.org/10.1007/978-1-4899-7687-1_100086
http://dx.doi.org/10.1007/978-1-4899-7687-1_944

252 Computational Complexity of Learning

� Inductive Inference, �PAC Learning, and
�Query-Based Learning. The complexity is
usually measured by the largest possible usage
of resources that can occur during the learning of
a member of a class. Depending on the context,
one measures the complexity of learning either
by a single number/ordinal for the whole class
or by a function in a parameter n describing
the complexity of the target to be learned. The
actual measure can be the number of mind
changes, the number of queries submitted to a
teacher, the number of wrong conjectures issued,
the number of errors made, or the number of
examples processed until learning succeeds. In
addition to this, one can equip the learner with
an oracle and determine the complexity of the
oracle needed to perform the learning process.
Alternatively, in complexity theory, instead of
asking for an NP-complete oracle to learn a
certain class, the result can also be turned into
the form “this class is unlearnable unless RP D
NP” or something similar. (Here RP is the class
of decision problems solvable by a randomized
polynomial time algorithm, and NP is the class of
decision problems solvable by a nondeterministic
polynomial time algorithm, and both algorithms
never give “yes” answer for an instance of the
problem with “no” answer.)

Detail

In � PAC Learning, one usually asks how many
examples are needed to learn the concept, where
the number of examples needed mainly depends
on the Vapnik-Chervonenkis dimension of the
class to be learned, the error permitted, and the
confidence required. Furthermore, for certain
classes of finite Vapnik-Chervonenkis dimension,
learnability can still fail when the learner is
required to be computable in polynomial time;
hence, there is, besides the dimension, also a
restriction stemming from the computational
complexity of problems such as the complexity of
finding concepts consistent with all data observed
so far.

For �Query-Based Learning, one common
criterion to be looked at is the number of queries

made during the learning process. If a class con-
tains 2n different f0; 1g-valued functions f and
one is required to learn the class using member-
ship queries, that is, by asking queries of the form
whether f .x/ D 0 or f .x/ D 1, then there
is a function f on which the learner needs at
least n queries until it knows which of the given
functions f is; for some classes consisting of
2n functions, the number of queries needed can
be much worse – as much as 2n � 1. A well-
known result of Angluin is that one can learn the
class of all regular languages with polynomially
many equivalence and membership queries mea-
sured with respect to the number of states of the
smallest deterministic finite automaton accepting
the language to be learned. Further research has
been done dealing with which query algorithms
can be implemented by a polynomial time learner
and which need for polynomial time learning, in
addition to the teacher informing on the target
concept, also some oracle supplying information
that cannot be computed in polynomial time.
See the entry �Query-Based Learning for an
overview of these results.

For � Inductive Inference, most complexity
measures are measures applying to the overall
class and not just a parameterized version. When
learning the class of all sets with up to n elements,
the learner might first issue the conjecture ; and
then revise (up to n times) its hypothesis when
a new datum is observed; such a measure is
called the mind change complexity of learning.
Mind change complexity has been generalized to
measure the complexity by recursive ordinals or
the notation of these. Furthermore, one can mea-
sure the long-term memory of past data observed
either by a certain number of examples remem-
bered or by the number of bits stored on a tape
describing the long-term memory of the learner.
Besides these quantitative notions, a further fre-
quently studied question is the following: Which
oracles support the learning process in a way that
some classes become learnable using the oracle,
but are unlearnable without using any oracle? An
example of such a type of result is that the class
of all recursive functions can be learned if and
only if the learner has access to a high oracle, that
is, an oracle that permits to compute a function

http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_694
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_694
http://dx.doi.org/10.1007/978-1-4899-7687-1_694
http://dx.doi.org/10.1007/978-1-4899-7687-1_134

Concept Drift 253

C

which dominates (i.e., grows faster than) every
recursive function. See the entry �Complexity of
Inductive Inference for more information.

Acknowledgements Sanjay Jain was supported in part
by NUS grant numbers C252-000-087-001, R146-000-
181-112, R252-000-534-112. Frank Stephen was sup-
ported in part by NUS grant numbers R146-000-181-112,
R252-000-534-112.

Computational Discovery of
Quantitative Laws

�Equation Discovery

Concept Drift

Claude Sammut1 and Michael Harries2

1The University of New South Wales, Sydney,
NSW, Australia
2Citrix Labs, Advanced Products Group, North
Ryde, NSW, Australia

Synonyms

Context-sensitive learning; Learning with hidden
context

Definition

Concept drift occurs when the values of hid-
den variables change over time. That is, there
is some unknown context for � concept learning
and when that context changes, the learned con-
cept may no longer be valid and must be updated
or relearned.

Motivation and Background

Prediction in real-world domains is complicated
by potentially unstable phenomena that are not
known in advance to the learning system. For ex-

ample, financial market behavior can change dra-
matically with changes in contract prices, interest
rates, inflation rates, budget announcements, and
political and world events. Thus, concept defini-
tions that may have been learned in one context
become invalid in a new context. This concept
drift can be due to changes in context and is
often directly reflected by one or more attributes.
When changes in context are not reflected by any
known attributes they can be said to be hidden.
Hidden changes in context cause problems for
any predictive approach that assumes concept
stability.

Structure of the Learning System

Machine learning approaches can be broadly
categorized as either � batch Learning or
� incremental learning. Batch systems learn off-
line by examining a large collection of instances
en masse and form a single concept. Incremental
systems evolve and change a concept definition
as new observations are processed (Schlimmer
and Granger 1986a; Aha et al. 1991; Kolter and
Maloof 2003).

The most common approach to learning in
domains with hidden changes in context has been
to use an incremental learning approach in which
the importance of older items is progressively
decayed. A popular implementation of this, orig-
inally presented in Kubat (1989), is to use a
window of recent instances from which concept
updates are derived. Other examples of this ap-
proach include Widmer and Kubat (1996), Ku-
bat and Widmer (1995), Kilander and Jansson
(1993), and Salganicoff (1993). Swift adaptation
to changes in context can be achieved by dy-
namically varying the window size in response
to changes in accuracy and concept complexity
(Widmer and Kubat 1996).

There are many domains in which the context
can be expected not only to change but for ear-
lier contexts to hold again at some time in the
future. That is, contexts can repeat in domains
such as financial prediction, dynamic control,
and underrepresented data mining tasks. In these
domains, prediction accuracy can be improved

http://dx.doi.org/10.1007/978-1-4899-7687-1_46
http://dx.doi.org/10.1007/978-1-4899-7687-1_258
http://dx.doi.org/10.1007/978-1-4899-7687-1_100083
http://dx.doi.org/10.1007/978-1-4899-7687-1_100261
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_58
http://dx.doi.org/10.1007/978-1-4899-7687-1_130

254 Concept Drift

by storing knowledge about past contexts for
reuse. FLORA3 (Widmer and Kubat 1993) ad-
dresses domains in which contexts recur by stor-
ing and retrieving concepts that appear stable as
the learner traverses the series of input data.

In many situations, there is no constraint to
learn incrementally. For example, many organi-
zations maintain large data bases of historical
data that are suitable for data mining. These
data bases may hold instances that belong to a
number of contexts but do not have this context
explicitly recorded. Many of these data bases
may incorporate time as an essential attribute, for
example, financial records and stock market price
data. Interest in mining datasets of this nature
suggests the need for systems that can learn
global concepts and are sensitive to changing
and hidden contexts. Systems such as FLORA3
also imply that an off-line recognition of stable
concepts can be useful for � on-line prediction.

An alternative to on-line learning for domains
with hidden changes in context is to examine
the data en masse in an attempt to directly iden-
tify concepts associated with stable, hidden con-
texts. Some potential benefits of such an ap-
proach are:

1. Context specific (known as local) concepts
could be used as part of a multiple model on-
line predictive system.

2. Local concepts could be verified by experts, or
used to improve domain understanding.

3. A model of the hidden context could be
induced using context characteristics such
as context duration, order, and stability. The
model could also use existing attributes and
domain feedback if available.

4. Stable contexts identified could be used as
target characteristics for selecting additional
attributes from the outside world as part of an
iterative data mining process.

Splice (Harries et al. 1998) is a �meta-learning
system that implements a context sensitive batch
learning approach. Splice is designed to identify
intervals with stable hidden context, and to in-
duce and refine local concepts associated with
hidden contexts.

Identifying Context Change

In many domains with hidden changes in context,
time can be used to differentiate hidden contexts.
Most machine learning approaches to these do-
mains do not explicitly represent time as they
assume that current context can be captured by
focusing on recent examples. The implication is
that hidden context will be reflected in contiguous
intervals of time. For example, an attempt to build
a system to predict changes in the stock market
could produce the following � decision tree:

Year > 2002
Year < 2005

Attribute A D true W Market Rising
Attribute A D false W Market Falling

Year � 2005
Attribute B D true W Market Rising
Attribute B D false W Market Falling

This tree contains embedded knowledge about
two intervals of time: in one of which, 2002–
2004, attribute A is predictive; in the other, 2005
onward, attribute B is predictive. As time (in
this case, year) is a monotonically increasing
attribute, future classification using this decision
tree will only use attribute B. If this domain can
be expected to have recurring hidden context,
information about the prior interval of time could
be valuable.

The decision tree in the example above con-
tains information about changes in context. We
define context as:

Context is any attribute whose values are largely
independent but tend to be stable over contiguous
intervals of another attribute known as the environ-
mental attribute.

The ability of decision trees to capture context
is associated with the fact that decision tree al-
gorithms use a form of context-sensitive feature
selection (CSFS). A number of machine learning
algorithms can be regarded as using CSFS includ-
ing decision tree algorithms (Quinlan 1993), rule
induction algorithms (Clark and Niblett 1989),
and � ILP systems (Quinlan 1990). All of these

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Concept Drift 255

C

systems produce concepts containing local infor-
mation about context.

When contiguous intervals of time reflect a
hidden attribute or context, we call time the envi-
ronmental attribute. The environmental attribute
is not restricted to time alone as it could be any
ordinal attribute over which instances of a hidden
context are liable to be contiguous. There is also
no restriction, in principle, to one dimension.
Some alternatives to time as environmental at-
tributes are dimensions of space, and space–time
combinations.

Given an environmental attribute, we can uti-
lize a CSFS machine learning algorithm to gain
information on likely hidden changes in context.
The accuracy of the change points found will be
dependent upon at least hidden context duration,
the number of different contexts, the complexity
of each local concept, and noise.

The CSFS identified context change points can
be expected to contain errors of the following
types:

1. �Noise or serial correlation errors. These
would take the form of additional incorrect
change points.

2. Errors due to the repetition of tests on time
in different parts of the concept. These would
take the form of a group of values clustered
around the actual point where the context
changed.

3. Errors of omission, change points that are
missed altogether.

The initial set of identified context changes can
be refined by contextual � clustering.

This process combines similar intervals of the
dataset, where the similarity of two intervals is
based upon the degree to which a partial model is
accurate on both intervals.

Recent Advances

With the increasing amount of data being gen-
erated by organizations, recent work on concept
drift has focused on mining from high volume
� data streams (Hulten et al. 2001; Wang et al.

2003; Kolter and Maloof 2003; Mierswa et al.
2006; Chu and Zaniolo 2004; Gaber et al. 2005).
Methods such as Hulten et al.’s, combine deci-
sion tree learning with incremental methods for
efficient updates, thus avoiding relearning large
decision trees. Koltzer and Maloof also use in-
cremental methods combined in an � ensemble.

Cross-References

�Decision Tree
�Ensemble Learning
� Incremental Learning
� Inductive Logic Programming
�Lazy Learning

Recommended Reading

Aha DW, Kibler D, Albert MK (1991) Instance-based
learning algorithms. Mach Learn 6:37–66

Chu F, Zaniolo C (2004) Fast and light boosting
for adaptive mining of data streams. In: Advances
in knowledge discovery and data mining. Lecture
notes in computer science, vol 3056, pp 282–292.
Springer, Berlin/New York

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3:261–283

Clearwater S, Cheng T-P, Hirsh H (1989) Incremental
batch learning. In: Proceedings of the sixth in-
ternational workshop on machine learning, Ithaca.
Morgan Kaufmann, pp 366–370

Domingos P (1997) Context-sensitive feature selec-
tion for lazy learners. Artif Intell Rev 11:227–253.
[Aha D (ed) Special issue on lazy learning.]

Gaber MM, Zaslavsky A, Krishnaswamy S (2005)
Mining data streams: a review. SIGMOD Rec
34(2):18–26

Harries M, Horn K (1996) Learning stable concepts in
domains with hidden changes in context. In: Kubat
M, Widmer G (eds) Learning in context-sensitive
domains (workshop notes). 13th international con-
ference on machine learning, Bari

Harries MB, Sammut C, Horn K (1998) Extracting
hidden context. Mach Learn 32(2):101–126

Hulten G, Spencer L, Domingos P (2001) Mining time-
changing data streams. In: KDD’01: proceedings of
the seventh ACM SIGKDD international conference
on knowledge discovery and data mining. ACM,
New York, pp 97–106

Kilander F, Jansson CG (1993) COBBIT – a control
procedure for COBWEB in the presence of concept
drift. In: Brazdil PB (ed) European conference on
machine learning. Springer, Berlin, pp 244–261

http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_41
http://dx.doi.org/10.1007/978-1-4899-7687-1_122
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_130
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_449

256 Concept Learning

Kolter JZ, Maloof MA (2003) Dynamic weighted
majority: a new ensemble method for tracking
concept drift. In: Third IEEE international confer-
ence on data mining ICDM-2003, Melbourne. IEEE
CS Press, pp 123–130

Kubat M (1989) Floating approximation in time-
varying knowledge bases. Pattern Recognit Lett
10:223–227

Kubat M (1992) A machine learning based approach to
load balancing in computer networks. Cybern Syst J

Kubat M (1996) Second tier for decision trees. In:
Machine learning: proceedings of the 13th inter-
national conference. Morgan Kaufmann, San Fran-
cisco, pp 293–301

Kubat M, Widmer G (1995) Adapting to drift in con-
tinuous domains. In: Proceedings of the eighth Eu-
ropean conference on machine learning. Springer,
Berlin, pp 307–310

Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler
T (2006) Yale: rapid prototyping for complex data
mining tasks. In: KDD’06: proceedings of the 12th
ACM SIGKDD international conference on knowl-
edge discovery and data mining. ACM, New York,
pp 935–940

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Mateo

Salganicoff M (1993) Density adaptive learning and
forgetting. In: Machine learning: proceedings of the
tenth international conference. Morgan Kaufmann,
San Mateo, pp 276–283

Schlimmer JC, Granger RI Jr (1986a) Beyond incre-
mental processing: tracking concept drift. In: Pro-
ceedings AAAI-86. Morgan Kaufmann, Los Altos,
pp 502–507

Schlimmer J, Granger R Jr (1986b) Incremental learn-
ing from noisy data. Mach Learn 1(3):317–354

Turney PD (1993a) Exploiting context when learning
to classify. In: Brazdil PB (ed) European conference
on machine learning. Springer, Berlin, pp 402–407

Turney PD (1993b) Robust classification with con-
text sensitive features. In: Paper presented at the
industrial and engineering applicatións of artificial
intelligence and expert systems, Edinburgh

Turney P, Halasz M (1993) Contextual normalization
applied to aircraft gas turbine engine diagnosis. J
Appl Intell 3:109–129

Wang H, Fan W, Yu PS, Han J (2003) Mining concept-
drifting data streams using ensemble classifiers. In:
KDD’03: proceedings of the ninth ACM SIGKDD
international conference on knowledge discovery
and data mining. ACM, New York, pp 226–235

Widmer G (1996) Recognition and exploitation of
contextual clues via incremental meta-learning. In:
Saitta L (ed) Machine learning: proceedings of the
13th international workshop. Morgan Kaufmann,
San Francisco, pp 525–533

Widmer G, Kubat M (1993) Effective learning in
dynamic environments by explicit concept tracking.

In: Brazdil PB (ed) European conference on ma-
chine learning. Springer, Berlin, pp 227–243

Widmer G, Kubat M (1996) Learning in the presence
of concept drift and hidden contexts. Mach Learn
23:69–101

Concept Learning

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

Categorization; Classification learning

Definition

The term concept learning is originated in psy-
chology, where it refers to the human ability
to learn categories for object and to recognize
new instances of those categories. In machine
learning, concept is more formally defined as
“inferring a boolean-valued function from train-
ing examples of its inputs and outputs” (Mitchell
1997).

Background

Bruner et al. (1956) published their book A Study
of Thinking, which became a landmark in psy-
chology and would later have a major impact
on machine learning. The experiments reported
by Bruner, Goodnow, and Austin were directed
toward understanding a human’s ability to cate-
gorize and how categories are learned.

We begin with what seems a paradox. The world
of experience of any normal man is composed
of a tremendous array of discriminably different
objects, events, people, impressions. . . But were
we to utilize fully our capacity for registering
the differences in things and to respond to
each event encountered as unique, we would
soon be overwhelmed by the complexity of our

http://dx.doi.org/10.1007/978-1-4899-7687-1_100046
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055

Concept Learning 257

C

environment. . . The resolution of this seeming
paradox. . . is achieved by man’s capacity to
categorize. To categorize is to render discriminably
different things equivalent, to group objects and
events and people around us into classes. . . The
process of categorizing involves. . . an act of
invention. . . If we have learned the class “house”
as a concept, new exemplars can be readily
recognised. The category becomes a tool for
further use. The learning and utilization of
categories represents one of the most elementary
and general forms of cognition by which man
adjusts to his environment.

The first question that they had to deal with
was that of representation: what is a concept?
They assumed that objects and events could be
described by a set of attributes and were con-
cerned with how inferences could be drawn from
attributes to class membership. Categories were
considered to be of three types: conjunctive, dis-
junctive, and relational.

. . . when one learns to categorize a subset of events
in a certain way, one is doing more than simply
learning to recognise instances encountered.
One is also learning a rule that may be applied
to new instances. The concept or category is
basically, this “rule of grouping” and it is such
rules that one constructs in forming and attaining
concepts.

The notion of a rule as an abstract representa-
tion of a concept influenced research in machine
learning. For example, � decision tree learning
was used as a means of creating a cognitive
model of concept learning (Hunt et al. 1966). This
model later inspired Quinlan’s development of
ID3 (Quinlan 1983).

The learning experience may be in the form
of examples from a trainer or the results of trial
and error. In either case, the program must be able
to represent its observations of the world, and it
must also be able to represent hypotheses about
the patterns it may find in those observations.
Thus, we will often refer to the � observation
language and the � hypothesis language. The
observation language describes the inputs and
outputs of the program and the hypothesis lan-
guage describes the internal state of the learning
program, which corresponds to its theory of the
concepts or patterns that exist in the data.

The input to a learning program consists of
descriptions of objects from the universe and, in
the case of � supervised learning, an output value
associated with the example. The universe can
be an abstract one, such as the set of all natural
numbers, or the universe may be a subset of the
real world. No matter which method of represen-
tation we choose, descriptions of objects in the
real world must ultimately rely on measurements
of some properties of those objects. These may be
physical properties such as size, weight, and color
or they may be defined for objects, for example,
the length of time a person has been employed
for the purpose of approving a loan. The accuracy
and reliability of a learned concept depends on
the accuracy and reliability of the measurements.

A program is limited in the concepts that
it can learn by the representational capabilities
of both observation and hypothesis languages.
For example, if an attribute/value list is used
to represent examples for an induction program,
the measurement of certain attributes and not
others clearly places bounds on the kinds of
patterns that the learner can find. The learner
is said to be biased by its observation language
(see �Language Bias). The hypothesis language
also places constraints on what may and may
not be learned. For example, in the language
of attributes and values, relationships between
objects are difficult to represent. Whereas, a more
expressive language, such as first-order logic, can
easily be used to describe relationships.

Unfortunately, representational power comes
at a price. Learning can be viewed as a search
through the space of all sentences in a language
for a sentence that best describes the data. The
richer the language, the larger is the search space.
When the search space is small, it is possible to
use “brute force” search methods. If the search
space is very large, additional knowledge is re-
quired to reduce the search.

Rules, Relations, and Background
Knowledge

In the early 1960s, there was no discipline called
“machine learning.” Instead, learning was consid-

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_440

258 Concept Learning

ered to be part of “pattern recognition,” which
had not yet split from AI. One of the main prob-
lems addressed at that time was how to represent
patterns so that they could be recognized easily.
Symbolic description languages were developed
to be expressive and learnable.

Banerji (1960, 1962) first devised a language,
which he called a “description list,” which uti-
lized an object’s attributes to perform pattern
recognition. Pennypacker, a masters student of
Banerji at the Case Institute of Technology, im-
plemented the recognition procedure and also
used Bruner, Goodnow, and Austin’s Conser-
vative Focussing Strategy to learn conjunctive
concepts (Pennypacker 1963). Bruner, Goodnow,
and Austin describe the strategy as follows:

. . . this strategy may be described as finding a
positive instance to serve as a focus, then making a
sequence of choices each of which alters but one
attribute value [of the focus] and testing to see
whether the change yields a positive or negative
instance. Those attributes of the focus which, when
changed, still yield positive instance are not part
of the concept. Those attributes of the focus that
yield negative instances when changed are features
of the concept.

The strategy is only capable of learning con-
junctive concepts, that is, the concept description
can only consist of a simple conjunction of tests
on attribute values. Recognizing the limitations
of simple attribute/value representations, Banerji
(1964) introduced the use of predicate logic as a
description language. Thus, Banerji was one of
the earliest advocates of what would, many years
later, become Inductive Logic Programming.

In the 1970s, a series of algorithms emerged
that developed concept learning further.
Winston’s ARCH program (Winston, Learning
structural descriptions from examples. PhD
Thesis, MIT Artificial Intelligence Laboratory,
1970, unpublished) was influential as one of the
first widely known concept learning programs.
Michalski (1973, 1983) devised the Aq family
of learning algorithms that set some of the
early benchmarks for learning programs. Early
relational learning programs were developed by
Hayes-Roth (1973), Hayes-Roth and McDermott
(1977), and Vere (1975, 1977).

Banerji emphasized the importance of a de-
scription language that could “grow.” That is, its
descriptive power should increase as new con-
cepts are learned. These concepts become back-
ground knowledge for future learning. A simple
example from Banerji (1980) illustrates the use
of background knowledge. There is a language
for describing instances of a concept and another
for describing concepts. Suppose we wish to rep-
resent the binary number, 10, by a left-recursive
binary tree of digits “0” and “1”:

Œhead W Œhead W 1I tail W nil�I tail W 0�

“head” and “tail” are the names of attributes.
Their values follow the colon. The concepts of
binary digit and binary number are defined as

x 2 digit 	 x D 0 _ x D 1

x 2 num 	 .tail.x/ 2 digit

^ head.x/ D nil/

_ .tail.x/ 2 digit

^ head.x/ 2 num/

Thus, an object belongs to a particular class
or concept if it satisfies the logical expression
in the body of the description. Note that the
concept above is disjunctive. Predicates in the
expression may test the membership of an object
in a previously learned concept and can express
relations between objects. Cohen and Sammut
(1982) devised a learning system based on
Banerji’s ideas of a growing concept description
language and this was further extended by
Sammut and Banerji (1986).

Concept Learning and Noise

One of the most severe drawbacks of early con-
cept learning systems was that they assumed that
data sets were not noisy. That is, all attribute
values and class labels in the training data are
assumed to be correct. This is unrealistic in most
real applications. Thus, concept learning systems
began incorporating statistical measures to min-
imize the effects of noise and to estimate error

Conditional Random Field 259

C

rates (Breiman et al. 1984; Cohen 1995; Quinlan
1986, 1993).

Learning to classify objects from training ex-
amples has gone on to become one of the central
themes of machine learning research. As the ro-
bustness of classification systems has increased,
they have found many applications, particularly
in data mining but in a broad range of other areas.

Cross-References

�Data mining on Text
�Decision Tree
� Induction
� Inductive Logic Programming
�Learning as Search
�Relational Learning
�Rule Learning

Recommended Reading

Banerji RB (1960) An information processing program
for object recognition. Gen Syst 5:117–127

Banerji RB (1962) The description list of concepts.
Commun Assoc Comput Mach 5(8):426–432

Banerji RB (1964) A language for the description of
concepts. Gen Syst 9:135–141

Banerji RB (1980) Artificial intelligence: a theoretical
approach. North Holland, New York

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees. Wadsworth, Bel-
mont

Bruner JS, Goodnow JJ, Austin GA (1956) A study of
thinking. Wiley, New York

Cohen WW (1995) In fast effective rule induction. In:
Proceedings of the twelfth international conference
on machine learning, Lake Tahoe. Morgan Kauf-
mann, Menlo Park

Cohen BL, Sammut CA (1982) Object recognition
and concept learning with CONFUCIUS. Pattern
Recognit J 15(4):309–316

Hayes-Roth F (1973) A structural approach to pattern
learning and the acquisition of classificatory power.
In: First international joint conference on pattern
recognition, Washington, DC, pp 343–355

Hayes-Roth F, McDermott J (1977) Knowledge acqui-
sition from structural descriptions. In: Fifth inter-
national joint conference on artificial intelligence,
Cambridge, MA, pp 356–362

Hunt EB, Marin J, Stone PJ (1966) Experiments in
induction. Academic, New York

Michalski RS (1973) Discovering classification rules
using variable valued logic system VL1. In: Third
international joint conference on artificial intelli-
gence, Stanford, pp 162–172

Michalski RS (1983) A theory and methodology of
inductive learning. In: Michalski RS, Carbonell JG,
Mitchell TM (eds) Machine learning: an artificial
intelligence approach. Tioga, Palo Alto

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Pennypacker JC (1963) An elementary informa-
tion processor for object recognition. SRC No.
30-I-63-1. Case Institute of Technology

Quinlan JR (1983) Learning efficient classification
procedures and their application to chess end games.
In: Michalski RS, Carbonell JG, Mitchell TM
(eds) Machine learning: an artificial intelligence
approach. Tioga, Palo Alto

Quinlan JR (1986) The effect of noise on concept
learning. In: Michalski RS, Carbonell JG, Mitchell
TM (eds) Machine learning: an artificial intelli-
gence approach, vol 2. Morgan Kaufmann, Los
Altos

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Mateo

Sammut CA, Banerji RB (1986) Learning concepts by
asking questions. In: Michalski RS, Carbonell JG,
Mitchell TM (eds) Machine learning: an artificial
intelligence approach, vol 2. Morgan-Kaufmann,
Los Altos, pp 167–192

Vere S (1975) Induction of concepts in the predicate
calculus. In: Fourth international joint conference
on artificial intelligence, Tbilisi, pp 351–356

Vere SA (1977) Induction of relational productions in
the presence of background information. In: Fifth
international joint conference on artificial intelli-
gence, Cambridge, MA

Conditional Random Field

A Conditional Random Field is a form of
�Graphical Model for segmenting and � cla-
ssifying sequential data. It is the � discriminative
learning counterpart to the � generative learning
Markov Chain model.

Recommended Reading

Lafferty J, McCallum A, Pereira F (2001) Condi-
tional random fields: probabilistic models for seg-
menting and labeling sequence data. In: Proceed-
ings of the 18th international conference on ma-
chine learning. Morgan Kaufmann, San Francisco,
pp 282–289

http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_754
http://dx.doi.org/10.1007/978-1-4899-7687-1_222
http://dx.doi.org/10.1007/978-1-4899-7687-1_333

260 Confirmation Theory

Confirmation Theory

The branch of philosophy concerned with how
(and indeed whether) evidence can confirm a hy-
pothesis, even though typically it does not entail
it. A distinction is sometimes drawn between
total confirmation: how well confirmed a hypoth-
esis is, given all available evidence and weight-
of-evidence: the amount of extra confirmation
added to the total confirmation of a hypothesis
by a particular piece of evidence. Confirmation is
often measured by the probability of a hypothesis
conditional on evidence.

Confusion Matrix

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Definition

A confusion matrix summarizes the classifica-
tion performance of a � classifier with respect to
some � test data. It is a two-dimensional matrix,
indexed in one dimension by the true class of
an object and in the other by the class that the
classifier assigns. Table 1 presents an example of
confusion matrix for a three-class classification
task, with the classes A, B; and C .

The first row of the matrix indicates that 13
objects belong to the class A and that 10 are
correctly classified as belonging to A, two mis-
classified as belonging toB; and one as belonging
to C .

Confusion Matrix, Table 1 An example of a three-class
confusion matrix

A
ct

ua
lc

la
ss

Assigned class

A B C

A 10 2 1

B 0 6 1

C 0 3 8

Confusion Matrix, Table 2 The outcomes of classifica-
tion into positive and negative classes

A
ct

ua
lc

la
ss Assigned class

Positive Negative
Positive TP FN
Negative FP TN

A special case of the confusion matrix is
often utilized with two classes, one designated the
positive class and the other the negative class. In
this context, the four cells of the matrix are des-
ignated as � true positives (TP), � false positives
(FP), � true negatives (TN), and � false negatives
(FN), as indicated in Table 2.

A number of measures of classification perfor-
mance are defined in terms of these four classifi-
cation outcomes:

� SpecificityD�True negative rate D

TN/(TN C FP)
� SensitivityD�True positive rateD�Recall

D TP/ (TPC FN)
�Positive predictive valueD�PrecisionD

TP/(TPC FP)
�Negative predictive valueDTN/(TNC FN)

Conjunctive Normal Form

Bernhard Pfahringer
University of Waikato, Hamilton, New Zealand

Conjunctive normal form (CNF) is an important
normal form for propositional logic. A logic for-
mula is in conjunctive normal form if it is a single
conjunction of disjunctions of (possibly negated)
literals. No more nesting and no other negations
are allowed. Examples are:

a

:b

a ^ b

.a _ :b/ ^ .c _ d/

:a ^ .b _ :c _ d/ ^ .a _ :d/

http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_853
http://dx.doi.org/10.1007/978-1-4899-7687-1_299
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_100491
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_100492
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_100367
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_582

Connections Between Inductive Inference and Machine Learning 261

C

Any arbitrary formula in propositional logic can
be transformed into conjunctive normal form by
application of the laws of distribution, De Mor-
gan’s laws, and by removing double negations. It
is important to note that this process can lead to
exponentially larger formulas which implies that
the process in the worst case runs in exponential
time. An example for this behavior is the follow-
ing formula given in � disjunctive normal form
(DNF), which is linear in the number of propo-
sitional variables in this form. When transformed
into conjunctive normal form (CNF), its size is
exponentially larger.

DNF: (a0^a1/_.a2^a3/_: : :_.a2n^a2nC1/

CNF: (a0 _ a2 _ : : :_ a2n/^ .a1 _ a2 _ : : :_

a2n/ ^ : : : ^ .a1 _ a3 _ : : : _ a2nC1/

Recommended Reading

Russell S, Norvig P (2002) Artificial intelligence: a
modern approach. Prentice Hall, p 215

Connection Strength

�Weight

Connections Between Inductive
Inference and Machine Learning

John Case1 and Sanjay Jain2

1University of Delaware, Newark, DE, USA
2School of Computing, National University of
Singapore, Singapore, Singapore

Abstract

Inductive inference is a branch of computa-
tional learning theory which deals with learn-
ing in the limit. Though this topic deals with
mostly theoretical work, it has provided some
results which can be of use to practical ma-
chine learning. Some of these works include

the work multitask or context-sensitive learn-
ing, learnability of elementary formal systems,
behavioral cloning, learning to coordinate, ge-
ometrical clustering, and so on. The results
in these areas also often give insights into
limitations of science.

Definition

Inductive inference is a theoretical framework to
model learning in the limit. Here we will discuss
some results in inductive inference, which have
relevance to machine learning community.

The mathematical/theoretical area called
� inductive inference is also known as com-
putability theoretic learning and learning in the
limit (Jain et al. 1999; Odifreddi 1999) typically
but, as will be seen below, not always involves a
situation depicted in (1) just below.

Data d0; d1; d2; : : :
In
�!M

Out
�!

Programs e0; e1; e2; : : : : (1)

Let N D the set of nonnegative integers.
Strings, including program strings, computer re-
als, and other data structures, inside computers,
are finite bit strings and, hence, can be coded
into N. Therefore, mathematically at least, it is
without loss of mathematical generality that we
sometimes use the data type N where standard
practice would use a different type.

In (1), d0; d1; d2; : : : can be, e.g., the suc-
cessive values of a function f W N ! N or
the elements of a (formal) language L � N

in some order, M is a machine, the ei ’s are
from some hypothesis space of programs, and,
for M ’s successful learning, later ei ’s exactly or
approximately compute the f or L.

Such learning is offline: in successful cases,
one comes away with programs for past and
future data. For the related problem of online
extrapolation of next values for a function f ,
suitable ei ’s may be the values of f .i/’s based
on having seen strictly prior values of f .

http://dx.doi.org/10.1007/978-1-4899-7687-1_223
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_134

262 Connections Between Inductive Inference and Machine Learning

Detail

We will discuss the off-line case until we say oth-
erwise. It is typical in applied machine learning to
present to a learner whatever data one has and to
obtain one corresponding program hopefully for
predicting these data and future data. In inductive
inference the case where only one program is
output is called one-shot learning. More typi-
cally, in inductive inference, one allows for mind
changes, i.e., for a succession of output programs,
as one receives successively more input data, with
the later programs hopefully eventually being
useful for predictions. Typically, one does not get
success on one’s first conjecture/output program,
but, rather, one may achieve success eventually
or, as it is said, in the limit after some sequence
of trial and error. It is helpful at this juncture to
present a problem for which this latter approach
makes more sense than the one-shot approach.

We will consider some different criteria of
successful learning of f orL byM . For example,
Ex-style criteria will require that all but finitely
many of the ei ’s are syntactically the same and
do a reasonable job of computing the f or L.
Bc-style criteria are more relaxed, more pow-
erful, but less useful (Bārzdiņš 1974; Case and
Lynes 1982; Case and Smith 1983): they do not
require almost all ei ’s be the same syntactically.

Here is a well-known regression technique
from, e.g., Hildebrand (1956), for exactly “curve-
fitting” polynomials. It is the method involving
calculating forward differences. We express it as a
learning machine M0 and illustrate with its being
fed an example data sequence generated by a
cubic polynomial

x3 � 2x2 C 2x C 3: (2)

Connections Between Inductive Inference and Ma-
chine Learning, Table 1 Example sequence and its it-
erated forward differences

Sequence: 3 4 7 18 43

1st Diffs: 1 3 11 25

2nd Diffs: 2 8 14

3rd Diffs: 6 6

See Hildebrand (1956), for how to recover the
polynomials themselves.
M0, fed a finite data sequence of natural num-

bers, first looks for iterated forward differences to
become (apparently) constant and then outputs a
rule/program, which uses the (apparent) constant
to extrapolate the data sequence for any desired
prediction. For example, were M0 given the data
sequence in the top row of Table 1, it would
calculate 6 to be the apparent constant after three
differencings, so M0 then outputs the following
informal rule/program.

� To generate the level 0 sequence, at level 0,
start with 3; at level 1, start with 1; at level 2,
start with 2; add the apparent constant 6 from
level 3 to get successive level 2 data items; add
successive level 2 items to get successive level 1
data items; finally, add successive level 1 items to
get as many successive level 0 data items as needed
for prediction.

This program, eventually output by M0 when
its input the whole top row of Table 1, cor-
rectly predicts the elements of the cubic poly-
nomial, on successive values in N – the whole
sequence 3; 4; 7; 18; 43; 88; 159; : : :. Along the
way, though, just after the first data point, M0

thinks the apparent constant is 0; just after the
second that it is 1; just after the third that it
is 2; and only after more of the data points does
it converge for this cubic polynomial to the ap-
parent (and, on this example, actual) constant 6.
In general, M0, on a polynomial of degree m,
changes its mind up to m times until converging
to its final program (of course on f .x/ D 2x ,
M0 never converges, and each level of forward
differences is just the sequence f again.).

Hence, M0 above Ex-learns, e.g., the integer
polynomials f W N ! N , but it does not in
general one-shot learn these polynomials – since
the data alone do not disclose the degree of a
generating polynomial.

In this entry we survey some results from in-
ductive inference but with an eye to topics having
something to say regarding or to applied machine
learning. In some cases, the theoretical results
lend mathematical support to preexisting empiri-
cal observations about the efficacy of known ma-
chine learning techniques. In other cases, the the-

Connections Between Inductive Inference and Machine Learning 263

C

oretical results provide some, typically abstract,
suggestions for the machine learning practitioner.
In some of these cases, some of the suggestions
apparently pay off in others, intriguingly, we do
not know yet.

Multitask or Context-Sensitive
Learning

In empirical, applied machine learning, multitask
or context-sensitive learning involves trying to
learn Y by first (de Garis 1990a,b; Fahlman 1991;
Thrun 1996; Thrun and Sullivan 1996; Tsung
and Cottrell 1989; Waibel 1989a,b) or simulta-
neously (Caruana 1993, 1996; Matwin and Kubat
1996; Bartlmae et al. 1997; Dietterich et al. 1995;
Mitchell et al. 1994; Pratt et al. 1991; Sejnowski
and Rosenberg 1986) trying to learn also X –
even in cases where there may be no inherent
interest in learning X . There is, in many cases,
an apparent empirical advantage in doing this for
someX; Y . It can happen that Y is not apparently
or easily learnable by itself but is learnable if
one learns X first or simultaneously in some case
X itself can be a sequence of tasks X1; : : : ; Xn.
Here the Xi s may need to be learned sequentially
or simultaneously to learn Y . For example, to
teach a robot to drive a car, it is useful to train
it also to predict the center of the road markings
(see, e.g., Baluja and Pomerleau 1995; Caru-
ana 1996). For another example, an experimental
system to predict the value of German Daimler
stock performed better when it was modified
to track simultaneously the German stock index
DAX (Bartlmae et al. 1997). The value of the
Daimler stock here was the primary or target
concept and the value of the DAX – a related
concept – provided useful auxiliary context.

Angluin et al. (1989) shows mathematically
that, in effect, there are (mathematical) learning
scenarios for which it was provable that Y could
not be learned without learning X first , and,
in other scenarios (Angluin et al. 1989; Kinber
et al. 1995), Y could not be learned without
simultaneously learning X . These mathematical
results provide a kind of evidence that the empir-
ical observations as to the apparent usefulness of

multitask or context-sensitive learning may not be
illusionary, luck, or a mere accident of happening
to use some data sets but not others.

For illustration, here is a particularly simple
theoretical example needing to be learned simul-
taneously and similar to examples in Angluin
et al. (1989). Let R be the set of all computable
functions mapping N to N. We use numerical
names in N for programs. Let

S D f. f; g/ 2 R �R j f .0/ is a program for

g ^ g.0/ is a program for f g: (3)

We say .p; q/ is a program for . f; g/ 2 R�R iff
p is a program for f and q is a program for g.

Consider a machine M which, if, as in (1),
M is fed d0; d1; : : :, but where each di is
. f .i/; g.i//, then M outputs each ei D

.g.0/; f .0//. Clearly, M one-shot learns S . It
can be easily shown that the component f ’s
and g’s for . f; g/ 2 S are not separately
even Bc-learnable. It is important to note that,
perhaps quite unlike real-world problems, the
definition of this example S employs a simple
self-referential coding trick: useful programs are
coded into values of the functions at argument
zero. A number of inductive inference results
have been proved by means of (sometimes
more complicated) self-referential coding tricks
(see, e.g., Case 1994). Bārzdiņš indirectly (see
Zeugmann 1986) provided a kind of informal
robustness idea in his attempt to be rid of
such coding tricks in inductive inference. More
formally, Fulk (1990) considered a learnability
result involving a witnessing class C of (tuples
of) functions to be robust iff each computable
scrambling of C also witnesses the learnability
result (the allowed computable scramblers are
the general recursive operators of (Rogers
1967), but we omit the formal details herein.)
Example: A simple shift scrambler converting
each f to f 0, where f 0.x/ D f .x C 1/, would
eliminate the coding tricks just above – since
the values of f at argument zero would be lost
in this scrambling. Some inductive inference
results hold robustly and some not (see, e.g.,
Fulk 1990; Jain et al. 1999, 2001; Jain 1999;

264 Connections Between Inductive Inference and Machine Learning

Case et al. 2000). Happily, the S � R � R
above (i.e., learnable, but its components not)
can be replaced by a more complicated class S 0
that robustly witnesses the same result. This is
better theoretical evidence that the empirically
noticed efficacy of multitask or context-sensitive
learning is not just an accident. It is residually
important to note that (Jain et al. 2001) shows,
though, that the computable scramblers cannot
get rid of more sophisticated coding tricks they
called topological. S 0 mentioned just above turns
out to employ this latter kind of coding trick. It
is hypothesized in Case et al. (2000) that nature
likely employs some sophisticated coding tricks
itself. For a separate informal argument about
coding tricks of nature, see Case (1999). Ott
and Stephan (2002) introduce a finite invariance
constraint on top of robustness. This so-called
hyperrobustness does destroy all coding tricks,
and the result about the theoretical efficacy of
multitask or context-sensitive learning is not
hyperrobust. However, hyperrobustness, perhaps,
leaves unrealistically sparse structure.

Final note: Machine learning is an engineering
endeavor. However, philosophers of science as
well as practitioners in classical scientific disci-
plines should likely be considering the relevance
of multitask or context-sensitive inductive infer-
ence to their endeavors.

Special Cases of Inductive Logic
Programming

In this section we discuss some learning in
the limit results for elementary formal systems
(EFSs) (Smullyan 1961). Essentially, EFSs are
programs in a string rewriting system. It is well
known (Arikawa et al. 1992) that EFSs are
essentially (pure) logic programs over strings.
Hence, the results have possible relevance for
� inductive logic programming (ILP) (Muggleton
and De Raedt 1994; Lavrač and Džeroski 1994;
Bratko and Muggleton 1995; Mitchell 1997).

First we will discuss some important spe-
cial cases based on Angulin’s pattern languages
(Angluin 1980).

A pattern language is (by definition) one gen-
erated by all the positive length substitution in-
stances in a pattern, such as,

abXYcbbZXa (4)

— where the variables (for substitutions) are de-
picted in upper case and the constants/terminals
in lower case and are from, say, the alphabet
fa,b,cg. Just below is an EFS or logic program
based on this example pattern.

abXYcbbZXa : (5)

It must be understood, though, that in (5) and
in the next example EFS below, only positive
length strings are allowed to be substituted for the
variables.

Angluin (1980) showed the Ex-learnability
of the class of pattern languages from positive
data. For these results, in the paradigm of (1)
above d0; d1; d2; : : : is a listing or presentation of
some formal language L over a finite nonempty
alphabet, and the ei ’s are programs that generate
languages. In particular, for Angluin’s M , for
L a pattern language, the ei ’s are patterns, and,
for each presentation of L, all but finitely many
of the corresponding ei ’s are the same correct
pattern for L.

Much work has been done on the learnability
of pattern languages, e.g., Salomaa (1994a,b),
Case et al. (2001), and on bounded finite unions
thereof, e.g., Shinohara (1983), Wright (1989),
Kilpeläinen et al. (1995), Brazma et al. (1996),
and Case et al. (1999).

Regarding bounded finite unions of pattern
languages, an n-pattern language is the union
of the pattern languages for some n patterns
P1; : : : ; Pn. Each n-pattern language is also Ex-
learnable from positive data (see Wright 1989).
An EFS or logic program corresponding to the
n-patterns P1; : : : ; Pn and generating the corre-
sponding n-pattern language is just below.

P1 :

:::

Pn :

http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Connections Between Inductive Inference and Machine Learning 265

C

Pattern language learning algorithms have
been successfully applied toward some problems
in molecular biology; see, e.g., Shimozono et al.
(1994), Shinohara and Arikawa (1995).

Lange and Wiehagen (1991) present an inter-
esting iterative (Wiehagen 1976) algorithm learn-
ing the class of pattern languages – from positive
data only and with fair polynomial time con-
straints (for examples of fair vs. unfair polyno-
mial time learning, see Case and Kötzing 2009).
Iterative learners are Ex-learners for which each
output depends only on its just prior output (if
any) and the input data element currently seen.
Their algorithm works in polynomial time (actu-
ally quadratic time) in the length of the latest data
item and the previous hypothesis. Furthermore,
the algorithm has a linear set of good examples, in
the sense that if the input data contains these good
examples, then the algorithm already converges
to the correct hypothesis. The number of good
examples needed is at most jP j C 1, where P
is a pattern generating the data d0; d1; d2; : : :

for the language being learned. This algorithm
may be useful in practice due to its fast run time
and being able to converge quickly, if enough
good data is available early. Furthermore, due to
iterativeness, it does not need to store previous
data!

Zeugmann (1998) considers total learning
time up to convergence of the algorithm just
discussed in the just prior paragraph. Note that,
for arbitrary presentations, d0; d1; d2; : : :, of a
pattern language, this time can be unbounded.
In the best case, it is polynomial in the length
of a generating pattern P , where d0; d1; d2; : : :

is based on using P to get good examples
early – in fact the time taken in the best case
is ‚.jP j2logs.s C k//, where P is the pattern,
s is the alphabet size, and k is the number of
variables in P . Much more interesting is the
case of average time taken up to convergence.
The probability distribution (called uniform by
Zeugmann) considered is as follows. A variable
X is replaced by a string w with probability

1
.2s/jwj

(i.e., all strings of length r together have
probability 2�r , and the distribution is uniform
among strings of length r). Different variables
are replaced independently of each other. In this

case the average total time up to convergence is
O.2kk2sjP j2logs.ks//. The main thing is that
for average case on probabilistic data (as can be
expected in real life, though not necessarily with
this kind of uniform distribution), the algorithm
converges pretty fast and computations are done
efficiently.

A number of papers consider Ex-learning of
EFSs (Krishna Rao 1996; Krishna Rao and Sattar
1998; Krishna Rao 2000, 2004, 2005) including
with various bounds on the number of mind
changes until syntactic convergence to correct
programs (Jain and Sharma 1997, 2002). The
EFSs considered are patterns, n-patterns, those
with a constant bound on the length of clauses,
and some with constant bounds on search trees.
The mind change bounds are typically more dy-
namic than those given by constants: they involve
counting down from finite representations (called
notations) for infinite constructive ordinals. An
example of this kind of bound: one can algorith-
mically, based on some input parameters, decide
how many mind changes will be allowed. In other
examples, the decision as to how many mind
changes will be allowed can be algorithmically
revised some constant number of times. It is
possible that not yet created special cases of
some of these algorithms could be made feasible
enough for practice.

Learning Drifting Concepts

A drifting concept to be learned is one which is a
moving target (see �Concept Drift). In some
machine learning applications, concept drift
must be dealt with (Bartlett et al. 1996; Blum
and Chalasani 1992; Devaney and Ram 1994;
Freund and Mansour 1997; Helmbold and Long
1994; Kubat 1992; Wrobel 1994; Widmer and
Kubat 1996). An inductive inference contribution
is (Case et al. 2001) in which it is shown, for
online extrapolation by computable martingale
betting strategies, upper bounds on the “speed”
of the moving target that permit success at all.
Here success is to make unbounded amounts
of “money” betting on correctness of one’s
extrapolations. Here is an illustrative result from

http://dx.doi.org/10.1007/978-1-4899-7687-1_153

266 Connections Between Inductive Inference and Machine Learning

(Case et al. 2001). For the pattern languages
considered in the previous section, only positive
length strings of terminals can be substituted for a
variable in an associated pattern. The (difficult to
learn) pattern languages with erasing are just
the languages obtained by also allowing the
substitution of the empty string for variables in a
pattern. For our example, we restrict the terminal
alphabet to be f0,1g. With each pattern language
with erasing L (over this terminal alphabet), we
associate its characteristic function L, which
is 1 on terminal strings in L and 0 on those not
in L. For " denoting the empty string, and for the
terminal strings in length-lexicographical order,
"; 0; 1; 00; 01; 10; 11; 000; : : :, we would input a
L itself to a potential extrapolating machine
as the bit string, L."/; L.0/; L.1/; L.00/;
L.01/; : : :. Let E be the class of these
characteristic functions. Pick a positive integer
constant p. To model drift with permanence
p, we imagine that a potential extrapolator
for E receives successive bits from a member
of E but keeps switching to the next bits of
another, etc., but it must see at least p bits in
a row of each member of E it sees before it
can see the next bits of another. p is, then, a
speed limit on drift. The result is that some
suitably clever computable martingale betting
strategy is successful at extrapolating E with
drift permanence (speed limit on drift) of
p D 7.

Behavioral Cloning

Kummer and Ott (1996) and Case et al. (2002)
studied learning in the limit of winning control
strategies for closed computable games. These
games nicely model reactive process-control
problems. Included are such example process-
control games as regulating temperature of
a room to be in a desired interval, forever
after no more than some fixed number of
moves between the thermostat and processes
disturbing the temperature (Roughly, closed
computable games are those so that one
can tell algorithmically when one has lost.
A temperature control game that requires

stability forever after some undetermined finite
number of moves is not a closed computable
game. For a more formal treatment, see
Cenzer and Remmel (1992), Maler et al.
(1995), Thomas (1995), and Kummer and Ott
(1996).

In machine learning, there are cases where one
wants to teach a machine some motor skill pos-
sessed by human experts and where these human
experts do not have access to verbalizable knowl-
edge about how they perform expertly. Piloting
an aircraft or expert operation of a swinging
shipyard crane provide examples, and machine
learning employs, in these cases, � behavioral
cloning, which uses direct performance data from
the experts (Bain and Sammut 1999; Bratko et al.
1998; Šuc 2003).

Case et al. (2002) study the effects on learn-
ing in the limit closed computable games where
the learning procedures also had access to the
behavioral performance (but not the algorithms)
of masters/experts at the games. For example,
it is showed that, in some cases, there is better
performance cloning nC1 disparate masters over
cloning only n. For a while it was not known in
machine learning how to clone multiple experts
even after Case et al. (2002) was known to some;
however, independently of Case et al. (2002),
and later, Dorian Šuc (2003) found a way to
clone behaviorally more than one human expert
simultaneously (for the free-swinging shipyard
crane problem) – by having more than one level
of feedback control, and he got enhanced perfor-
mance from cloning the multiple experts!

Learning to Coordinate

Montagna and Osherson (1999) begin the study
of learning in the limit to coordinate (digital)
moves between at least two agents.

The machines of Montagna and Osherson
(1999) are, in effect, general extrapolating
devices (Montagna and Osherson 1999; Case
et al. 2005). Technically, and without loss of
generality of the results, we restrict the moves
of each coordinator to bits, i.e., zeros and
ones. Coordination is achieved between two

http://dx.doi.org/10.1007/978-1-4899-7687-1_69

Connections Between Inductive Inference and Machine Learning 267

C

coordinators iff each, reacting to the bit sequence
of the other, eventually (in the limit) matches it
bit for bit. Montagna and Osherson (1999) give
an example of two people who show up in a park
each day at one of noon (bit 0) or 6pm (bit 1);
each silently watches the other’s past behavior,
and each tries, based on the past behavior of
the other, to show up eventually exactly when
the other shows up. If they manage it, they have
learned to coordinate.

A blind coordinator is one that reacts only to
the presence of a bit from another process, not to
which bit the other process has played (Montagna
and Osherson 1999).

Case et al. (2005) developed and studied the
notion of probabilistically correct algorithmic co-
ordinators. Next is a sample of theorems to the
effect that just a few random bits can enhance
learning to coordinate.

Theorem 1 (Case et al. 2005) Suppose 0 �
p < 1. There exists a class of deterministic
algorithmic coordinators C such that:

(1) No deterministic algorithmic coordinator
can coordinate with all of C

(2) For k chosen so that 1�2�k � p, there exists
a blind, probabilistic algorithmic coordinator
PM, such that:
(i) For each member of C, PM can coordi-

nate with with probability 1 � 2�k � p

(ii) PM is k-memory limited in the sense
of (Osherson et al. 1986, P. 66); more
specifically, PM needs to remember
whether it is outputting one of its first
k bits — which are its only random bits
(e.g., for p D 255

256 , a mere k D 8 random
bits suffice.).

Regarding possible eventual applicability:
Maye et al. (2007) cite finding deterministic
chaos but not randomness in the behavior of
animals. Hence, animals may not be exploiting
random bits in learning anything, including to
coordinate. However, one might build artifactual
devices to exploit randomness, say, from
radioactive decay, including, then, for enhancing
learning to coordinate.

Learning Geometric Clustering

Case et al. (2006) showed that learnability in the
limit of � clustering, with or without additional
information, depends strongly on geometric con-
straints on the shape of the clusters. In this ap-
proach the hypothesis space of possible clusters
is pre-given in each setting. It was hoped to obtain
thereby insight into the difficulty of clustering
when the clusters are restricted to preassigned
geometrically defined classes.

This is interestingly complementary to
the conceptual clustering approach (see, e.g.,
Pitt and Reinke 1988; Mishra et al. 2004)
where one restricts the possible clusters to
have good “verbal” descriptions in some
language.

Clustering of many of the geometric classes
investigated was shown to require information
in addition to a presentation, d0; d1; d2; : : :, of
the set of points to be clustered. For example,
for clusters as convex hulls of finitely many
points in a rational vector space, clustering can
be done – but with the number of clusters as
additional information. Let S consist of all poly-
gons including their interiors – in the rational
two-dimensional plane without intersections and
degenerated angles. (Attention was restricted to
spaces of rationals since 1. computer reals are
rationals, 2. this avoids the uncountability of
the set of reals, and 3. this avoids dealing with
uncomputable real points.) The class S can be
clustered – but with the number of vertices of
the polygons of the clusters involved as additional
information.

Correspondingly, then, it was shown that the
class S 0 containing S together with all such
polygons but with one hole (the nondegenerate
differences of two members in S) cannot be clus-
tered with the number of vertices as additional
information, yet S 0 can be clustered with area as
additional information – and this even in higher
dimensions and with any number of holes (Case
et al. 2006).

It remains to be seen if some forms of geo-
metrically constrained clustering can be usefully
complementary to, say, conceptually/verbally
constrained clustering.

http://dx.doi.org/10.1007/978-1-4899-7687-1_943

268 Connections Between Inductive Inference and Machine Learning

Insights for Limitations of Science

We briefly treat below in some problems re-
garding parsimonious, refutable, and consistent
hypotheses.

It is common wisdom in science that one
should fit parsimonious explanations, hypotheses,
or programs to data. In machine learning, this
has been successfully applied, e.g., (Wallace and
Dowe 1999; Wallace 2005).

Curiously, though, there are many results in
inductive inference in which we see sometimes
severe degradations of learning power caused
by demanding parsimonious predictive programs
(see, e.g., Freivalds 1975; Kinber 1977; Chen
1982; Case et al. 1996; Ambainis et al. 2004).

It is an interesting problem to resolve the
seeming, likely not actual contradiction between
the just prior two paragraphs.

Popper’s Refutability (1962) asserts that
hypotheses in science should be subject to
refutation. Besides the well-known difficulties
of Duhem–Quine (Harding 1976) of knowing
which component hypothesis to throw out when
a compound hypothesis badly fails to make
correct predictions, inductive inference theorems
have provided very different difficulties. Case
and Smith (1983) outline cases of usefully
incomplete (hence wrong) hypothesis that cannot
be refuted, and Case and Suraj (2007) (see also
Case 2007) provide cases of inductively inferable
higher order hypothesis not totally subject to
refutation in cases where ordinary hypotheses
subject to full refutation cannot be inductively
inferred.

While Duhem–Quine may impact machine
learning eventually, it remains to be seen about
the inductive inference results of the just prior
paragraph.

Requiring � inductive inference procedures
always to output an hypothesis in various senses
consistent with (e.g., not ignoring) the data
on which that hypothesis is based seems like
mere common sense. However, from Bārzdiņš
(1974a), Blum and Blum (1975), Wiehagen
(1976), and Case et al. (2004), we see that strict
adherence to various consistency principles can
severely attenuate the learning power of inductive

inference machines. Furthermore, interestingly,
even when inductive inference is polytime
constrained, we see similar counterintuitive
results to the effect that a kind of consistency
can strictly attenuate learning power (Wiehagen
and Zeugmann 1994).

A machine learning analog might be
Breiman’s bagging (Breiman 1996) and random
forests (Breiman 2001), where data is purposely
ignored. However, in these cases, the purpose of
ignoring data is to avoid overfitting to noise.

It remains to be seen, whether, in applied
machine learning involving cases of practically
noiseless data, one can also obtain some ad-
vantage in ignoring some consistency principles.
Again the potential lesson from inductive in-
ference is abstract and provides only a hint of
something to work out in real machine learning
problems.

Cross-References

�Behavioral Cloning
�Clustering
�Concept Drift
� Inductive Logic Programming

Recommended Reading

Ambainis A, Case J, Jain S, Suraj M (2004) Parsimony
hierarchies for inductive inference. J Symb Logic
69:287–328

Angluin D, Gasarch W, Smith C (1989) Training se-
quences. Theor Comput Sci 66(3):255–272

Angluin D (1980) Finding patterns common to a set of
strings. J Comput Syst Sci 21:46–62

Arikawa S, Shinohara T, Yamamoto A (1992) Learn-
ing elementary formal systems. Theor Comput Sci
95:97–113

Bain M, Sammut C (1999) A framework for be-
havioural cloning. In: Furakawa K, Muggleton S,
Michie D (eds) Machine intelligence, vol 15. Oxford
University Press, Oxford

Baluja S, Pomerleau D (1995) Using the representation
in a neural network’s hidden layer for task specific
focus of attention. Technical report CMU-CS-95-
143, School of Computer Science, CMU, May 1995.
Appears in proceedings of the 1995 IJCAI

Bartlett P, Ben-David S, Kulkarni S (1996) Learning
changing concepts by exploiting the structure of

http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Connections Between Inductive Inference and Machine Learning 269

C

change. In: Proceedings of the ninth annual confer-
ence on computational learning theory, Desenzano
del Garda. ACM Press, New York

Bartlmae K, Gutjahr S, Nakhaeizadeh G (1997) Incor-
porating prior knowledge about financial markets
through neural multitask learning. In: Refenes APN,
Burgess AN, Moody JE (eds) Decision technologies
for computational finance. Proceedings of the fifth
international conference on computational finance.
Kluwer Academic, pp 425–432

Bārzdiņš J (1974a) Inductive inference of automata,
functions and programs. In: Proceedings of the in-
ternational congress of mathematicians, Vancouver,
pp 771–776

Bārzdiņš J (1974b) Two theorems on the limiting
synthesis of functions. In: Theory of algorithms and
programs, vol 210. Latvian State University, Riga,
pp 82–88

Blum L, Blum M (1975) Toward a mathematical theory
of inductive inference. Inf Control 28:125–155

Blum A, Chalasani P (1992) Learning switching con-
cepts. In: Proceedings of the fifth annual conference
on computational learning theory, Pittsburgh. ACM
Press, New York, pp 231–242

Bratko I, Muggleton S (1995) Applications of
inductive logic programming. Commun ACM
38(11):65–70

Bratko I, Urbančič T, Sammut C (1998) Behavioural
cloning of control skill. In: Michalski RS, Bratko
I, Kubat M (eds) Machine learning and data min-
ing: methods and applications. Wiley, New York,
pp 335–351

Brazma A, Ukkonen E, Vilo J (1996) Discovering
unbounded unions of regular pattern languages from
positive examples. In: Proceedings of the seventh
international symposium on algorithms and com-
putation (ISAAC’96). Lecture notes in computer
science, vol 1178. Springer, Berlin, pp 95–104

Breiman L (1996) Bagging predictors. Mach Learn
24(2):123–140

Breiman L (2001) Random forests. Mach Learn
45(1):5–32

Caruana R (1993) Multitask connectionist learning. In:
Proceedings of the 1993 connectionist models sum-
mer school. Lawrence Erlbaum, Hillsdale, pp 372–
379

Caruana R (1996) Algorithms and applications for
multitask learning. In: Proceedings 13th interna-
tional conference on machine learning. Morgan
Kaufmann, San Francisco, pp 87–95

Case J (1994) Infinitary self-reference in learning the-
ory. J Exp Theor Artif Intell 6:3–16

Case J (1999) The power of vacillation in language
learning. SIAM J Comput 28(6):1941–1969

Case J (2007) Directions for computability theory be-
yond pure mathematical. In: Gabbay D, Goncharov
S, Zakharyaschev M (eds) Mathematical problems
from applied logic II. New logics for the twenty-first
century. International mathematical series, vol 5.
Springer, New York

Case J, Kötzing T (2009) Difficulties in forcing fair-
ness of polynomial time inductive inference. In:
Gavalda R, Lugosi G, Zeugmann T, Zilles S (eds)
20th international conference on algorithmic learn-
ing theory (ALT’09). LNAI, vol 5809. Springer,
Berlin, pp 263–277

Case J, Lynes C (1982) Machine inductive infer-
ence and language identification. In: Nielsen M,
Schmidt E (eds) Proceedings of the 9th international
colloquium on automata, languages and program-
ming. Lecture notes in computer science, vol 140.
Springer, Berlin, pp 107–115

Case J, Smith C (1983) Comparison of identifica-
tion criteria for machine inductive inference. Theor
Comput Sci 25:193–220

Case J, Suraj M (2007) Weakened refutability for
machine learning of higher order definitions 2007.
Working paper for eventual journal submission

Case J, Jain S, Kaufmann S, Sharma A, Stephan
F (2001) Predictive learning models for concept
drift (special issue for ALT’98). Theor Comput Sci
268:323–349

Case J, Jain S, Lange S, Zeugmann T (1999) Incre-
mental concept learning for bounded data mining.
Inf Comput 152:74–110

Case J, Jain S, Montagna F, Simi G, Sorbi A (2005) On
learning to coordinate: random bits help, insightful
normal forms, and competency isomorphisms (spe-
cial issue for selected learning theory papers from
COLT’03, FOCS’03, and STOC’03). J Comput Syst
Sci 71(3):308–332

Case J, Jain S, Martin E, Sharma A, Stephan F (2006)
Identifying clusters from positive data. SIAM J
Comput 36(1):28–55

Case J, Jain S, Ott M, Sharma A, Stephan F (2000)
Robust learning aided by context (special issue for
COLT’98). J Comput Syst Sci 60:234–257

Case J, Jain S, Sharma A (1996) Machine induction
without revolutionary changes in hypothesis size.
Inf Comput 128:73–86

Case J, Jain S, Stephan F, Wiehagen R (2004) Ro-
bust learning – rich and poor. J Comput Syst Sci
69(2):123–165

Case J, Ott M, Sharma A, Stephan F (2002) Learning to
win process-control games watching gamemasters.
Inf Comput 174(1):1–19

Cenzer D, Remmel J (1992) Recursively presented
games and strategies. Math Soc Sci 24:117–139

Chen K (1982) Tradeoffs in the inductive inference of
nearly minimal size programs. Inf Control 52:68–86

de Garis H (1990a) Genetic programming: building
nanobrains with genetically programmed neural net-
work modules. In: IJCNN: international joint con-
ference on neural networks, vol 3. IEEE Service
Center, Piscataway, pp 511–516

de Garis H (1990b) Genetic programming: modular
neural evolution for Darwin machines. In: Caudill
M (ed) IJCNN-90-WASH DC; international joint
conference on neural networks, vol 1. Lawrence
Erlbaum Associates, Hillsdale, pp 194–197

270 Connections Between Inductive Inference and Machine Learning

de Garis H (1991) Genetic programming: building arti-
ficial nervous systems with genetically programmed
neural network modules. In: Soušek B, The IRIS
group (eds) Neural and intelligenct systems inte-
geration: fifth and sixth generation integerated rea-
soning information systems, Chap. 8. Wiley, New
York, pp 207–234

Devaney M, Ram A (1994) Dynamically adjusting
concepts to accommodate changing contexts. In:
Kubat M, Widmer G (eds) Proceedings of the
ICML-96 pre-conference workshop on learning in
context-sensitive domains, Bari. Journal submission

Dietterich T, Hild H, Bakiri G (1995) A comparison of
ID3 and backpropogation for English text-tospeech
mapping. Mach Learn 18(1):51–80

Fahlman S (1991) The recurrent cascade-correlation
architecture. In: Lippmann R, Moody J, Touretzky
D (eds) Advances in neural information processing
systems, vol 3. Morgan Kaufmann Publishers, San
Mateo, pp 190–196

Freivalds R (1975) Minimal Gödel numbers and their
identification in the limit. Lecture notes in computer
science, vol 32. Springer, Berlin, pp 219–225

Freund Y, Mansour Y (1997) Learning under persis-
tent drift. In: Ben-David S, (ed) Proceedings of
the third European conference on computational
learning theory (EuroCOLT’97). Lecture notes in
artificial intelligence, vol 1208. Springer, Berlin,
pp 94–108

Fulk M (1990) Robust separations in inductive infer-
ence. In: Proceedings of the 31st annual symposium
on foundations of computer science. IEEE Com-
puter Society, St. Louis, pp 405–410

Harding S (ed) (1976) Can theories be refuted? Essays
on the Duhem-Quine thesis. Kluwer Academic Pub-
lishers, Dordrecht

Helmbold D, Long P (1994) Tracking drifting con-
cepts by minimizing disagreements. Mach Learn
14:27–46

Hildebrand F (1956) Introduction to numerical analy-
sis. McGraw-Hill, New York

Jain S (1999) Robust behaviorally correct learning. Inf
Comput 153(2):238–248

Jain S, Sharma A (1997) Elementary formal systems,
intrinsic complexity, and procrastination. Inf Com-
put 132:65–84

Jain S, Sharma A (2002) Mind change complexity
of learning logic programs. Theor Comput Sci
284(1):143–160

Jain S, Osherson D, Royer J, Sharma A (1999) Systems
that learn: an introduction to learning theory, 2nd
edn. MIT Press, Cambridge, MA

Jain S, Smith C, Wiehagen R (2001) Robust learning is
rich. J Comput Syst Sci 62(1):178–212

Kilpeläinen P, Mannila H, Ukkonen E (1995) MDL
learning of unions of simple pattern languages from
positive examples. In: Vitányi P (ed) Computational
learning theory, second European conference, Eu-
roCOLT’95. Lecture notes in artificial intelligence,
vol 904. Springer, Berlin, pp 252–260

Kinber E (1977) On a theory of inductive inference.
Lecture notes in computer science, vol 56. Springer,
Berlin, pp 435–440

Kinber E, Smith C, Velauthapillai M, Wiehagen R
(1995) On learning multiple concepts in parallel. J
Comput Syst Sci 50:41–52

Krishna Rao M (1996) A class of prolog programs
inferable from positive data. In: Arikawa A, Sharma
A (eds) Seventh international conference on algo-
rithmic learning theory (ALT’ 96). Lecture notes
in artificial intelligence, vol 1160. Springer, Berlin,
pp 272–284

Krishna Rao M (2000) Some classes of prolog pro-
grams inferable from positive data (Special Issue for
ALT’96). Theor Comput Sci A 241:211–234

Krishna Rao M (2004) Inductive inference of term
rewriting systems from positive data. In: Ben-
David S, Case J, Maruoka A (eds) Algorithmic
learning theory: fifteenth international conference
(ALT’2004). Lecture notes in artificial intelligence,
vol 3244. Springer, Berlin, pp 69–82

Krishna Rao M (2005) A class of prolog programs
with non-linear outputs inferable from positive data.
In: Jain S, Simon HU, Tomita E (eds) Algorithmic
learning theory: sixteenth international conference
(ALT’2005). Lecture notes in artificial intelligence,
vol 3734. Springer, Berlin, pp 312–326

Krishna Rao M, Sattar A (1998) Learning from en-
tailment of logic programs with local variables. In:
Richter M, Smith C, Wiehagen R, Zeugmann T
(eds) Ninth international conference on algorithmic
learning theory (ALT’98). Lecture notes in artificial
intelligence, vol 1501. Springer, Berlin, pp 143–157

Kubat M (1992) A machine learning based approach to
load balancing in computer networks. Cybern Syst
23:389–400

Kummer M, Ott M (1996) Learning branches and
learning to win closed recursive games. In: Proceed-
ings of the ninth annual conference on computa-
tional learning theory, Desenzano del Garda. ACM
Press, New York

Lange S, Wiehagen R (1991) Polynomial time in-
ference of arbitrary pattern languages. New Gener
Comput 8:361–370

Lavrač N, Džeroski S (1994) Inductive logic program-
ming: techniques and applications. Ellis Horwood,
New York

Maler O, Pnueli A, Sifakis J (1995) On the synthesis of
discrete controllers for timed systems. In: Proceed-
ings of the annual symposium on the theoretical as-
pects of computer science. LNCS, vol 900. Springer,
Berlin, pp 229–242

Matwin S, Kubat M (1996) The role of context in
concept learning. In: Kubat M, Widmer G (eds)
Proceedings of the ICML-96 pre-conference work-
shop on learning in context-sensitive domains, Bari,
pp 1–5

Maye A, Hsieh C, Sugihara G, Brembs B (2007) Order
in spontaneous behavior. PLoS One, May 2007.
http://brembs.net/spontaneous/

http://brembs.net/spontaneous/

Connections Between Inductive Inference and Machine Learning 271

C

Mishra N, Ron D, Swaminathan R (2004) A new
conceptual clustering framework. Mach Learn 56
(1–3):115–151

Mitchell T (1997) Machine learning. McGraw Hill,
New York

Mitchell T, Caruana R, Freitag D, McDermott J,
Zabowski D (1994) Experience with a learning,
personal assistant. Commun ACM 37:80–91

Montagna F, Osherson D (1999) Learning to coor-
dinate: a recursion theoretic perspective. Synthese
118:363–382

Muggleton S, De Raedt L (1994) Inductive logic pro-
gramming: theory and methods. J Logic Program
19/20:669–679

Odifreddi P (1999) Classical recursion theory, vol II.
Elsivier, Amsterdam

Osherson D, Stob M, Weinstein S (1986) Systems that
learn: an introduction to learning theory for cogni-
tive and computer scientists. MIT Press, Cambridge,
MA

Ott M, Stephan F (2002) Avoiding coding tricks by hy-
perrobust learning. Theor Comput Sci 284(1):161–
180

Pitt L, Reinke R (1988) Criteria for polynomial-time
(conceptual) clustering. Mach Learn 2:371–396

Popper K (1992) Conjectures and refutations: the
growth of scientific knowledge. Basic Books, New
York

Pratt L, Mostow J, Kamm C (1991) Direct transfer
of learned information among neural networks. In:
Proceedings of the 9th national conference on artifi-
cial intelligence (AAAI-91), Anaheim. AAAI press,
Menlo Park

Rogers H (1987) Theory of recursive functions and
effective computability. McGraw Hill, New York.
(Reprinted, MIT Press, 1987)

Salomaa A (1994a) Patterns (The formal language
theory column). EATCS Bull 54:46–62

Salomaa A (1994b) Return to patterns (The for-
mal language theory column). EATCS Bull 55:
144–157

Sejnowski T, Rosenberg C (1986) NETtalk: a par-
allel network that learns to read aloud. Tech-
nical report JHU-EECS-86-01, Johns Hopkins
University

Shimozono S, Shinohara A, Shinohara T, Miyano S,
Kuhara S, Arikawa S (1994) Knowledge acquisi-
tion from amino acid sequences by machine learn-
ing system BONSAI. Trans Inf Process Soc Jpn
35:2009–2018

Shinohara T (1983) Inferring unions of two pattern
languages. Bull Inf Cybern 20:83–88

Shinohara T, Arikawa A (1995) Pattern inference.
In: Jantke KP, Lange S (eds) Algorithmic learn-
ing for knowledge-based systems. Lecture notes
in artificial intelligence, vol 961. Springer, Berlin,
pp 259–291

Smullyan R (1961) Theory of formal systems. Annals
of mathematics studies, vol 47). Princeton Univer-
sity Press, Princeton

Šuc D (2003) Machine reconstruction of human con-
trol strategies. Frontiers in artificial intelligence and
applications, vol 99. IOS Press, Amsterdam

Thomas W (1995) On the synthesis of strategies in
infinite games. In: Proceedings of the annual sympo-
sium on the theoretical aspects of computer science.
LNCS, vol 900. Springer, Berlin, pp 1–13

Thrun S (1996) Is learning the n-th thing any easier
than learning the first? In: Advances in neural in-
formation processing systems, vol 8. Morgan Kauf-
mann, San Mateo

Thrun S, Sullivan J (1996) Discovering structure in
multiple learning tasks: the TC algorithm. In: Pro-
ceedings of the thirteenth international conference
on machine learning (ICML-96). Morgan Kauf-
mann, San Francisco, pp 489–497

Tsung F, Cottrell G (1989) A sequential adder using
recurrent networks. In: IJCNN-89-WASHINGTON
DC: international joint conference on neural net-
works, 18–22 June, vol 2. IEEE Service Center,
Piscataway, pp 133–139

Waibel A (1989a) Connectionist glue: modular de-
sign of neural speech systems. In: Touretzky D,
Hinton G, Sejnowski T (eds) Proceedings of the
1988 connectionist models summer school. Morgan
Kaufmann, San Mateo, pp 417–425

Waibel A (1989b) Consonant recognition by modular
construction of large phonemic time-delay neural
networks. In: Touretzky DS (ed) Advances in neural
information processing systems I. Morgan Kauf-
mann, San Mateo, pp 215–223

Wallace C (2005) Statistical and inductive inference
by minimum message length. Information science
and statistics. Springer, New York. Posthumously
published

Wallace C, Dowe D (1999) Minimum message length
and Kolmogorov complexity (special issue on
Kolmogorov complexity). Comput J 42(4):123–
155. http://comjnl.oxfordjournals.org/cgi/reprint/
42/4/270

Widmer G, Kubat M (1996) Learning in the presence
of concept drift and hidden contexts. Mach Learn
23:69–101

Wiehagen R (1976) Limes-Erkennung rekursiver
Funktionen durch spezielle Strategien. Electronis-
che Informationverarbeitung und Kybernetik 12:
93–99

Wiehagen R, Zeugmann T (1994) Ignoring data may be
the only way to learn efficiently. J Exp Theor Artif
Intell 6:131–144

Wright K (1989) Identification of unions of languages
drawn from an identifiable class. In: Rivest R,
Haussler D, Warmuth M (eds) Proceedings of the
second annual workshop on computational learning
theory, Santa Cruz. Morgan Kaufmann Publishers,
San Mateo, pp 328–333

Wrobel S (1994) Concept formation and knowledge
revision. Kluwer Academic Publishers,
Dordrecht

http://comjnl.oxfordjournals.org/cgi/reprint/42/4/270
http://comjnl.oxfordjournals.org/cgi/reprint/42/4/270

272 Connectivity

Zeugmann T (1986) On Bārzdiņš’ conjecture. In: Jan-
tke KP (ed) Proceedings of the international work-
shop on analogical and inductive inference. Lecture
notes in computer science, vol 265. Springer, Berlin,
pp 220–227

Zeugmann T (1998) Lange and Wiehagen’s pattern
language learning algorithm: an average case analy-
sis with respect to its total learning time. Ann Math
Artif Intell 23:117–145

Connectivity

�Topology of a Neural Network

Consensus Clustering

Synonyms

Clustering aggregation; Clustering ensembles

Definition

In Consensus Clustering we are given a set of n
objects V , and a set of m clusterings fC1, C2,
. . . , Cmg of the objects in V . The aim is to find
a single clustering C that disagrees least with the
input clusterings, that is, C minimizes

D.C/ D
X
Ci

d.C; Cj /;

for some metric d on clusterings of V .
Meilă (2003) proposed the principled variation
of information metric on clusterings, but it has
been difficult to analyze theoretically. The Mirkin
metric is the most widely used, in which d.C; C 0/
is the number of pairs of objects (u, v) that are
clustered together in C and apart in C 0, or vice
versa; it can be calculated in time O.mn/.

We can interpret each of the clusterings Ci

in Consensus Clustering as evidence that pairs
ought be put together or separated. That is, wi

uv

is the number of Ci in which Ci Œu� D Ci Œv� and
w�uv is the number of Ci in which Ci Œu� ¤ Ci Œv�.
It is clear that wCuvCw�uv D m and that Consensus
clustering is an instance of Correlation cluster-

ing in which the w�uv weights obey the triangle
inequality.

Constrained Clustering

Kiri L. Wagstaff
Pasadena, CA, USA

Definition

Constrained clustering is a semisupervised ap-
proach to � clustering data while incorporating
domain knowledge in the form of constraints.
The constraints are usually expressed as pairwise
statements indicating that two items must, or
cannot, be placed into the same cluster. Con-
strained clustering algorithms may enforce every
constraint in the solution, or they may use the
constraints as guidance rather than hard require-
ments.

Motivation and Background

�Unsupervised learning operates without any
domain-specific guidance or preexisting knowl-
edge. Supervised learning requires that all train-
ing examples be associated with labels. Yet it
is often the case that existing knowledge for a
problem domain fits neither of these extremes.
Semisupervised learning methods fill this gap by
making use of both labeled and unlabeled data.
Constrained clustering, a form of semisupervised
learning, was developed to extend clustering al-
gorithms to incorporate existing domain knowl-
edge, when available. This knowledge may arise
from labeled data or from more general rules
about the concept to be learned.

One of the original motivating applications
was noun phrase coreference resolution, in which
noun phrases in a text must be clustered to-
gether to represent distinct entities (e.g., “Mr.
Obama” and “the President” and “he”, separate
from “Sarah Palin” and “she” and “the Alaska
governor”). This problem domain contains sev-

http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_100060
http://dx.doi.org/10.1007/978-1-4899-7687-1_100061
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_976

Constrained Clustering 273

C

eral natural rules for when noun phrases should
(such as appositive phrases) or should not (such
as a mismatch on gender) be clustered together.
These rules can be translated into a collection of
pairwise constraints on the data to be clustered.

Constrained clustering algorithms have now
been applied to a rich variety of domain areas,
including hyperspectral image analysis, road
lane divisions from GPS data, gene expression
microarray analysis, video object identification,
document clustering, and web search result
grouping.

Structure of the Learning System

Constrained clustering arises out of existing work
with unsupervised clustering algorithms. In this
description, we focus on clustering algorithms
that seek a partition of the data into disjoint
clusters, using a distance or similarity measure to
place similar items into the same cluster. Usually,
the desired number of clusters, k, is specified as
an input to the algorithm. The most common clus-
tering algorithms are k-means (MacQueen 1967)
and expectation maximization or EM (Dempster
et al. 1977) (Fig. 1).

A constrained clustering algorithm takes the
same inputs as a regular (unsupervised) clus-
tering algorithm and also accepts a set of pair-
wise constraints. Each constraint is a must-link
or � cannot-link constraint. The must-link con-
straints form an equivalence relation, which per-

mits the inference of additional transitively im-
plied must-links as well as additional entailed
cannot-link constraints between items from dis-
tinct must-link cliques. Specifying a significant
number of pairwise constraints might be tedious
for large data sets, so often they may be generated
from a manually labeled subset of the data or
from domain-specific rules.

The algorithm may interpret the constraints
as hard constraints that must be satisfied in the
output or as soft preferences that can be violated,
if necessary. The former approach was used in
the first constrained clustering algorithms, COP-
COBWEB (Wagstaff and Cardie 2000) and COP-
kmeans (Wagstaff et al. 2001). COP-kmeans
accommodates the constraints by restricting item
assignments to exclude any constraint violations.
If a solution that satisfies the constraints is
not found, COP-kmeans terminates without
a solution. Later, algorithms such as PCK-
means and MPCK-means (Bilenko et al. 2004)
permitted the violation of constraints when
necessary by introducing a violation penalty. This
is useful when the constraints may contain noise
or internal inconsistencies, which are especially
relevant in real-world domains. Constrained ver-
sions of other clustering algorithms such as EM
(Shental et al. 2004) and spectral clustering
(Kamvar et al. 2003) also exist. Penalized
probabilistic clustering (PPC) is a modified
version of EM that interprets the constraints
as (soft) probabilistic priors on the relationships
between items (Lu and Leen 2005).

Constrained Clustering,
Fig. 1 The constrained
clustering algorithm takes
in nine items and two
pairwise constraints (one
must-link and one
cannot-link). The output
clusters respect the
specified constraints

Constraints

Output clustersInput data

=

Domain
knowledge

Constrained
clustering

http://dx.doi.org/10.1007/978-1-4899-7687-1_938

274 Constraint Classification

In addition to constraining the assignment of
individual items, constraints can be used to learn
a better distance metric for the problem at hand
(Bar-Hillel et al. 2005; Klein et al. 2002; Xing
et al. 2003). Must-link constraints hint that the
effective distance between those items should
be low, while cannot-link constraints suggest that
their pairwise distance should be high. Modifying
the metric accordingly permits the subsequent
application of a regular clustering algorithm,
which need not explicitly work with the
constraints at all. The MPCK-means algorithm
fuses these approaches together, providing both
constraint satisfaction and metric learning simul-
taneously (Basu et al. 2004; Bilenko et al. 2004).

More information about subsequent advances
in constrained clustering algorithms, theory, and
novel applications can be found in a compilation
edited by Basu et al. (2008).

Programs and Data

The MPCK-means algorithm is available in a
modified version of the Weka machine learning
toolkit (Java) at http://www.cs.utexas.edu/users/
ml/risc/code/.

Recommended Reading

Bar-Hillel A, Hertz T, Shental N, Weinshall D (2005)
Learning a Mahalanobis metric from equivalence
constraints. J Mach Learn Res 6:937–965

Basu S, Bilenko M, Mooney RJ (2004) A probabilistic
framework for semi-supervised clustering. In: Pro-
ceedings of the tenth ACM SIGKDD international
conference on knowledge discovery and data min-
ing, Seattle, pp 59–68

Basu S, Davidson I, Wagstaff K (eds) (2008) Con-
strained clustering: advances in algorithms, theory,
and applications. CRC Press, Boca Raton

Bilenko M, Basu S, Mooney RJ (2004) Integrating
constraints and metric learning in semi-supervised
clustering. In: Proceedings of the twenty-first in-
ternational conference on machine learning, Banff,
pp 11–18

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc 39(1):1–38

Kamvar S, Klein D, Manning CD (2003) Spec-
tral learning. In: Proceedings of the international

joint conference on artificial intelligence, Acapulco,
pp 561–566

Klein D, Kamvar SD, Manning CD (2002) From
instance-level constraints to space-level constraints:
making the most of prior knowledge in data cluster-
ing. In: Proceedings of the nineteenth international
conference on machine learning, Sydney, pp 307–
313

Lu Z, Leen T (2005) Semi-supervised learning with
penalized probabilistic clustering. In: Advances in
neural information processing systems, vol 17. MIT
Press, Cambridge, MA, pp 849–856

MacQueen JB (1967) Some methods for classification
and analysis of multivariate observations. In: Pro-
ceedings of the fifth symposium on math, statis-
tics, and probability, vol 1. University of California
Press, California, pp 281–297

Shental N, Bar-Hillel A, Hertz T, Weinshall D (2004)
Computing Gaussian mixture models with EM us-
ing equivalence constraints. In: Advances in neural
information processing systems, vol 16. MIT Press,
Cambridge, MA, pp 465–472

Wagstaff K, Cardie C (2000) Clustering with instance-
level constraints. In: Proceedings of the seventeenth
international conference on machine learning. Mor-
gan Kaufmann, San Francisco, pp 1103–1110

Wagstaff K, Cardie C, Rogers S, Schroedl S (2001)
Constrained k-means clustering with background
knowledge. In: Proceedings of the eighteenth inter-
national conference on machine learning. Morgan
Kaufmann, San Francisco, pp 577–584

Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance
metric learning, with application to clustering with
side-information. In: Advances in neural informa-
tion processing systems, vol 15. MIT Press, Cam-
bridge, MA, pp 505–512

Constraint Classification

� Preference Learning

Constraint-Based Mining

Siegfried Nijssen
Katholieke Universiteit Leuven, Leuven,
Belgium

Definition

Constraint-based mining is the research area
studying the development of data mining
algorithms that search through a pattern or

http://www.cs.utexas.edu/users/ml/risc/code/
http://www.cs.utexas.edu/users/ml/risc/code/
http://dx.doi.org/10.1007/978-1-4899-7687-1_667

Constraint-Based Mining 275

C

model space restricted by constraints. The
term is usually used to refer to algorithms that
search for patterns only. The most well-known
instance of constraint-based mining is the mining
of � frequent patterns. Constraints are needed
in pattern mining algorithms to increase the
efficiency of the search and to reduce the number
of patterns that are presented to the user, thus
making knowledge discovery more effective and
useful.

Motivation and Background

Constraint-based pattern mining is a generaliza-
tion of frequent itemset mining. For an introduc-
tion to frequent itemset mining, see �Frequent
Pattern. A constraint-based mining problem is
specified by providing the following elements:

• A database D, usually consisting of indepen-
dent transactions (or instances)

• A � hypothesis space L of patterns
• A constraint q.�;D/ expressing criteria that a

pattern � in the hypothesis space should fulfill
on the database

The general constraint-based mining problem is
to find the set

Th.D;L; q/ D f� 2 Ljq.�;D/ D trueg:

Alternative problem settings are obtained by
making different choices for D;L and q. For
instance,

• If the database and hypothesis space con-
sist of itemsets, and the constraint checks if
the support of a pattern exceeds a predefined
threshold in data, the frequent itemset mining
problem is obtained (see � Frequent Pattern)

• If the database and the hypothesis space con-
sist of graphs or trees instead of itemsets,
a graph mining or a tree mining problem is
obtained. For more information about these
topics, see �Graph Mining and �Tree Mining

• Additional syntactic constraints can be im-
posed

An overview of important types of constraints is
given below.

One can generalize the constraint-based
mining problem beyond pattern mining. Also
models, such as �Decision Trees, could be
seen as languages of interest. In the broadest
sense, topics such as �Constrained Clustering,
�Cost-Sensitive Learning, and even learning
� Support Vector Machines (SVMs) may be seen
as constraint-based mining problems. However,
it is currently not common to categorize these
topics as constraint-based mining; in practice, the
term refers to constraint-based pattern mining.

From the perspective of constraint-based min-
ing, the knowledge discovery process can be seen
as a process in which a user repeatedly specifies
constraints for data mining algorithms; the data
mining system is a solver that finds patterns or
models that satisfy the constraints.

This approach to data mining is very similar
to querying relational databases. Whereas rela-
tional databases are usually queried using oper-
ations such as projections, selections, and joins,
in the constraint-based mining framework data
is queried to find patterns or models that satisfy
constraints that cannot be expressed in these
primitives. A database which supports constraint-
based mining queries, stores patterns and models,
and allows later reuse of patterns and models,
is sometimes also called an inductive database
(Imielinski and Mannila 1996).

Structure of the Learning System

Constraints
Frequent pattern mining algorithms can be gener-
alized along several dimensions.

One way to generalize pattern mining algo-
rithms is to allow them to deal with arbitrary cov-
erage relations, which determine when a pattern
matches a transaction in the data. In the example
of mining itemsets, the subset relation determines
the coverage relation. The coverage relation is at
the basis of constraints such as minimum support;
an alternative coverage relation would be the
superset relation.

http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_851
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_163
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

276 Constraint-Based Mining

From the coverage relation follows a general-
ity relationship. A pattern �1 is defined to be more
specific than a pattern �2 (denoted by �1
 �2)
if any transaction that is covered by �1 is also
covered by �2 (see �Generalization). In frequent
itemset mining, itemset I1 is more general than
itemset I2 if and only I1 � I2.

Generalization and coverage relationships can
be used to identify the following types of con-
straints.

Monotonic and Anti-Monotonic Constraints
An essential property which is exploited in
� frequent pattern mining, is that allsubsets of
a frequent pattern are also frequent. This is a
property that can begeneralized:

• A constraint is called monotonic if any gen-
eralization of a pattern that satisfies the con-
straint, also satisfies the constraint

• A constraint is called anti-monotonic if any
specialization of a pattern that satisfies the
constraint, also satisfies the constraint

In some publications, the definitions of mono-
tonic and anti-monotonic are used reversely.

The following are examples of monotonic con-
straints:

• Minimum support
• Syntactic constraints, for instance: a constraint

that requires that patterns specializing a given
pattern x are excluded a constraint requiring
patterns to be small given a definition of pat-
tern size

• Disjunctions or conjunctions of monotonic
constraints

• Negations of anti-monotonic constraints

The following are examples of anti-monotonic
constraints:

• Maximum support
• Syntactic constraints, for instance, a constraint

that requires that patterns generalizing a given
pattern x are excluded

• Disjunctions or conjunctions of anti-
monotonic constraints

• Negations of monotonic constraints

Succinct Constraints
Constraints that can be pushed in the mining
process by adapting the pattern space or data,
are called succinct constraints. An example of a
succinct constraint is the monotonic constraint
that an itemset should contain the item A. This
constraint could be dealt with by deleting all
transactions that do not contain A. For any fre-
quent itemset found in the new dataset, it is now
known that the item A can be added to it.

Convertible Constraints
Some constraints that are not monotonic, can still
be convertible monotonic (Pei and Han 2002). A
constraint is convertible monotonic if for every
pattern � one least general generalization � 0 can
be identified such that if � satisfies the constraint,
then � 0 also satisfies the constraint. An example
of a convertible constraint is a maximum aver-
age cost constraint. Assume that every item in
an itemset has a cost as defined by a function
c.i/. The constraint c.I / D

P
i2I c.i/=jI j �

maxcost is not monotonic. However, for every
itemset I with c.I / � maxcost, if an item i is
removed with c.i/ D maxi2I c.i/, an itemset
with c.I � fig/ � c.I / � maxcost is obtained.

Maximum average cost has the desirable
property that no access to the data is needed
to identify the generalization that should satisfy
the constraints. If it is not possible to identify
the necessary least general generalization before
accessing the data, the convertible constraint
is also sometimes called weak (anti-)monotone
(Zhu et al. 2007).

Boundable Constraints
Constraints on non-monotonic measures for
which a monotonic bound exist, are called
boundable. An example of such a constraint is
a minimum accuracy constraint in a database
with binary class labels. Assume that every
itemset is interpreted as a rule if I then 1 else
2 (thus, class label 1 is predicted if a transaction
contains itemset I , or class label 2 otherwise;
see �Supervised Descriptive Rule Induction).
A minimum accuracy constraint can be
formalized by the formula .fr.I;D1/ C jD2j �

fr.I;D2//=jDj � minacc, where Dk is the

http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_808

Constraint-Based Mining 277

C

Top element of the partial order

Version
Space (1)

G-Border (1)

S-Border (1)

Version Space (2)

G-Border (2)

S-Border (2)

Top element of the partial order

S-Border

G-Border

Version Space

M
ore general

M
ore specific

A 2-dimensional version spaceA 1-dimensional version space

a b

Constraint-Based Mining, Fig. 1 Version spaces

database containing only the examples labeled
with class label k. It can be derived from this that

fr.I;D1/ � jDjminacc � jD2jC

fr.I;D2/ � jDjminacc � jD2j:

In other words, if a high accuracy is desirable,
a minimum number of examples of class 1 is
required to be covered, and a minimum fre-
quency constraint can thus be derived. Therefore,
minimum support can be used as a bound for
minimum accuracy.

The principle of deriving bounds for non-
monotonic measures can be applied widely
(Bayardo et al. 1999; Morishita and Sese 2000).

Borders
If constraints are not restrictive enough, the num-
ber of patterns can be huge. Ignoring statistics
about patterns such as their exact frequency, the
set of patterns can be represented more compactly
only by listing the patterns in the border(s/ (Man-
nila and Toivonen 1997), similar to the idea of
� version spaces. An example of a border is the
set of maximalfrequent itemsets (see �Frequent
Pattern). Borders can be computed for other-
types of both monotonic and anti-monotonic con-
straints as well. There areseveral complications
compared to the simple frequent pattern min-
ingsetting:

• If there is an anti-monotonic constraint, such
as maximum support, not only is it needed

to compute a border for the most specific
elements in the set (S-Set), but also a border
for the least general elements in the set (G-
Set)

• If the formula is a disjunction of conjunc-
tions, the result of a query becomes a union
of version spaces, which is called a multi-
dimensional version space (see Fig. 1) (De
Raedt et al. 2002); the G-Set of one version
space may be more general than the G-Set of
another version space

Both the S-Set and the G-Set can be repre-
sented by listing elements just within the ver-
sion space (the positive border), or elements just
outside the version space (the negative border).
For instance, the positive border of the G-Set
consists of those patterns which are part of the
version space, and for which no generalizations
exist which are part of the version space.

Similarly, there may exist several representa-
tions of multi-dimensional version spaces; opti-
mizing the representation of multi-dimensional
version spaces is analogous to optimizing queries
in relational databases (De Raedt et al. 2002).

Borders form a condensed representations,
that is, they compactly represent the solution
space; see �Frequent Pattern.

Algorithms
For many of the constraints specified in the pre-
vious section specialized algorithms have been
developed in combination with specific hypoth-

http://dx.doi.org/10.1007/978-1-4899-7687-1_877
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_318

278 Constraint-Based Mining

esis spaces. It is beyond the scope of this chapter
to discuss all these algorithms; only the most
common ideas are provided here.

The main idea is that �Apriori can easily
be updated to deal with general monotonic
constraints in arbitrary hypothesis spaces. The
concept of a specialization refinement operator
is essential to operateon other hypothesis
spaces than itemsets. A specialization operator
�.�/ computes a set of specializations in the
hypothesis space for a given input pattern. In
pattern mining, this operator should have the
following properties:

• Completeness: every pattern in the hypothesis
space should be reachable by repeated appli-
cation of the refinement operator starting from
the most general pattern in the hypothesis
space

• Nonredundancy: every pattern in the hypothe-
sis space should be reachable in only one way
starting from the most general pattern in the
hypothesis space

In itemset mining, optimal refinement is usually
obtained by first ordering the items (for instance,
alphabetically, or by frequency), and then adding
items that are higher in the chosen order to a set
than the items already in the set. For instance, for
the itemset fA;C g, the specialization operator
returns �.fA;C g/ D ffA;C;Dg; fA;C;Egg, as-
suming that the domain of items fA;B;C;D;Eg
is considered. Other refinement operators are
needed while dealing with other hypothesis
spaces, such as in � graph mining.

The search in Apriori proceeds breadth-first.
Each level, the specialization operator is applied
on patterns satisfying the monotonic constraints
to generate candidates for the next level. For
every new candidate it is checked whether its
generalizations satisfy the monotonic constraints.
To create a set of generalizations, a generaliza-
tion refinement operator can be used. In frequent
itemset mining, usually single items are removed
from the itemset to generate generalizations.

More changes are required to deal with anti-
monotonic constraints. A simple way of dealing
with both monotonic and anti-monotonic con-

straints is to first compute all patterns that satisfy
the monotonic constraints, and then to prune the
patterns that fail to satisfy the anti-monotonic
constraints. More challenging is to “push” anti-
monotonic constraints in the mining process. An
observation which is often exploited is that gener-
alizations of patterns that do not satisfy the anti-
monotonic constraint need not be considered.
Well-known strategies are:

• In a breadth-first setting: traverse the lattice in
reverse order for monotonic constraints, after
the patterns have been determined satisfying
the anti-monotonic constraints (De Raedt et al.
2002)

• In a depth-first setting: during the search for
patterns, try to guess the largest pattern that
can still be reached, and prune a branch in
the search if the pattern does not satisfy the
monotonic constraint on this pattern (Bucila
et al. 2003; Kifer et al. 2003)

It is beyond the scope of this chapter to discuss
how to deal with other types of constraints; how-
ever, it should be pointed out that not all com-
binations of constraints and hypothesis spaces
have been studied; it is not obvious whether all
constraints can be pushed usefully in a pattern
search for any hypothesis space, for instance,
when boundable constraints in more complex
hypothesis spaces (such as graphs) are involved.
Research in this area is ongoing.

Cross-References

�Constrained Clustering
� Frequent Pattern
�Graph Mining
�Tree Mining

Recommended Reading

Bayardo RJ Jr, Agrawal R, Gunopulos D (1999)
Constraint-based rule mining in large, dense
databases. In: Proceedings of the 15th international
conference on data engineering (ICDE), Sydney,
pp 188–197

http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_163
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_851

Continual Learning 279

C

Bucila C, Gehrke J, Kifer D, White WM (2003)
DualMiner: a dual-pruning algorithm for itemsets
with constraints. Data Min Knowl Discov 7(3):241–
272

De Raedt L, Jaeger M, Lee SD, Mannila H (2002)
A theory of inductive query answering (extended
abstract). In: Proceedings of the second IEEE inter-
national conference on data mining (ICDM). IEEE
Press, Los Alamitos, pp 123–130

Imielinski T, Mannila H (1996) A database perspective
on knowledge discovery. Commun ACM 39:58–64

Kifer D, Gehrke J, Bucila C, White WM (2003) How
to quickly find a witness. In: Proceedings of the
twenty-second ACM SIGACT-SIGMOD-SIGART
symposium on principles of database systems. ACM
Press, San Diego, pp 272–283

Mannila H, Toivonen H (1997) Levelwise search and
borders of theories in knowledge discovery. Data
Min Knowl Discov 1(3):241–258

Morishita S, Sese J (2000) Traversing itemset lattices
with statistical metric pruning. In: Proceedings of
the nineteenth ACM SIGACT-SIGMOD-SIGART
symposium on database systems (PODS). ACM
Press, San Diego, pp 226–236

Pei J, Han J (2002) Constrained frequent pattern
mining: a pattern-growth view. SIGKDD Explor
4(1):31–39

Zhu F, Yan X, Han J, Yu PS (2007) gPrune: a
constraint pushing framework for graph pattern
mining. In: Proceedings of the sixth Pacific-Asia
conference on knowledge discovery and data min-
ing (PAKDD). Lecture notes in computer science,
vol 4426. Springer, Berlin, pp 388–400

Constructive Induction

Constructive induction is any form of � induction
that generates new descriptors not present in the
input data (Dietterich and Michalski 1983).

Recommended Reading

Dietterich TG, Michalski RS (1983) A comparative
review of selected methods for learning from ex-
amples. In: Michalski RS, Carbonell JG, Mitchell
TM (eds) Machine learning: an artificial intelligence
approach, Tioga, pp 41–81

Content Match

�Text Mining for Advertising

Content-Based Filtering

Synonyms

Content-based recommending

Definition

Content-based filtering is prevalent in � Information
Retrieval, where the text and multimedia content
of documents is used to select documents relevant
to a user’s query. In the context this refers
to content-based recommenders, that provide
recommendations by comparing representations
of content describing an item to representations
of content that interests a user.

Content-Based Recommending

�Content-Based Filtering

Context-Sensitive Learning

�Concept Drift

Contextual Advertising

�Text Mining for Advertising

Continual Learning

Synonyms

Life-long learning

Definition

A learning system that can continue adding new
data without the need to ever stop or freeze the

http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_826
http://dx.doi.org/10.1007/978-1-4899-7687-1_100082
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_167
http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_826
http://dx.doi.org/10.1007/978-1-4899-7687-1_100265

280 Continuous Attribute

updating. Usually continual learning requires in-
cremental and � online learning as a component,
but not every incremental learning system has
the ability to achieve continual learning, i.e., the
learning may deterioate after some time.

Cross-References

�Cumulative Learning

Continuous Attribute

A continuous attribute can assume all values
on the number line within the value range. See
�Attribute and �Measurement Scales.

Contrast Set Mining

Definition

Contrast set mining is an area of � supervised de-
scriptive rule induction. The contrast set mining
problem is defined as finding contrast sets, which
are conjunctions of attributes and values that
differ meaningfully in their distributions across
groups (Bay and Pazzani 2001). In this context,
groups are the properties of interest.

Recommended Reading

Bay SD, Pazzani MJ (2001) Detecting group differ-
ences: mining contrast sets. Data Mining Knowl
Discov 5(3):213–246

Cooperative Coevolution

�Compositional Coevolution

Co-reference Resolution

�Entity Resolution
�Record Linkage

Correlation Clustering

Anthony Wirth
The University of Melbourne, Melbourne, VLC,
Australia

Synonyms

Clustering with advice; Clustering with con-
straints; Clustering with qualitative information;
Clustering with side information

Definition

In its rawest form, correlation clustering is graph
optimization problem. Consider a � clustering C
to be a mapping from the elements to be clus-
tered, V , to the set f1; : : : ; jV jg, so that u and v
are in the same cluster if and only ifC Œu� D C Œv�.
Given a collection of items in which each pair
.u; v/ has two weights wCuv and w�uv , we must find
a clustering C that minimizes

X
C Œu�DC Œv�

w�uv C
X

C Œu�¤C Œv�

wCuv; (1)

or, equivalently, maximizes

X
C Œu�DC Œv�

wCuv C
X

C Œu�¤C Œv�

w�uv: (2)

Note that although wCuv and w�uv may be
thought of as positive and negative evidence
towards coassociation, the actual weights are
nonnegative.

Motivation and Background

The notion of clustering with advice, that is
nonmetric-driven relations between items, had
been studied in other communities (Ferligoj and
Batagelj 1982) prior to its appearance in theoreti-
cal computer science. Traditional clustering prob-
lems, such as k-median and k-center, assume that

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_191
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_150
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_100063
http://dx.doi.org/10.1007/978-1-4899-7687-1_100064
http://dx.doi.org/10.1007/978-1-4899-7687-1_100065
http://dx.doi.org/10.1007/978-1-4899-7687-1_100066
http://dx.doi.org/10.1007/978-1-4899-7687-1_943

Correlation Clustering 281

C

there is some type of distance measure (metric)
on the data items, and often specify the number of
clusters that should be formed. In the clustering
with advice framework, however, the number
of clusters to be built need not be specified in
advance: it can be an outcome of the objective
function. Furthermore, instead of, or in addition
to, a distance function, we are given advice as to
which pairs of items are similar. The two weights
wCuv and w�uv correspond to external advice about
whether the pair should be clustered together
or separately. Bansal et al. (2002) introduced
the problem to the theoretical computer science
and machine-learning communities. They were
motivated by database consistency problems, in
which the same entity appeared in different forms
in various databases. Given a collection of such
records from multiple databases, the aim is to
cluster together the records that appear to corre-
spond to the same entity. From this viewpoint, the
log odds ratio from some classifier,

log

�
Pr.same/

Pr.different/

�
;

corresponds to a label wuv for the pair. In many
applications only one of theC and � weights for
the pair is nonzero, that is

.wCuv;w
�
uv/ D

�
.wuv; 0/ for wuv � 0
.0;�wuv/ for wuv � 0:

In addition, if every pair has weight ˙1, then
the instance is called complete, otherwise it is
referred to as general. Demaine et al. (2006)
suggest the following motivation. Suppose we
have a set of guests at a party. Each guest has
preferences for whom they would like to sit with,
and for whom they would like to avoid. We
must group the guests into tables in a way that
enhances the amicability of the party.

The notion of producing good clusterings
when given inconsistent advice first appeared
in the work of Ben et al. (1999). A canonical
example of inconsistent advice is this: items u
and v are similar, items v and y are similar,
but u and y are dissimilar. It is impossible to
find a clustering that satisfies all the advice.

Correlation Clustering, Fig. 1 Top left is a toy cluster-
ing with advice example showing three similar pairs (solid
edges) and three dissimilar pairs (dashed edges). Bottom
left is a clustering solution for this example with four
singleton clusters, while bottom right has one cluster. Top
right is a partitioning into two clusters that appears to best
respect the advice

Figure 1 shows a very simple example of
inconsistent advice. In addition, although
Correlation clustering is an NP-hard problem,
recent algorithms for clustering with advice
guarantee that their solutions are only a specified
factor worse than the optimal: that is, they are
approximation algorithms.

Theory

In setting out the correlation clustering frame-
work, Bansal et al. (2002) noted that the follow-
ing algorithm produces a 2-approximation for the
maximization problem:

If the total of the positive weights exceeds the total
of the negative weights then, place all the items
in a single cluster; otherwise, make each item a
singleton cluster.

They then showed that complete instances are
NP-hard to optimize, and how to minimize the
penalty (1) with a constant factor approximation.
The constant for this combinatorial algorithm was
rather large. The algorithm relied heavily on the
completeness of the instance; it iteratively cleans
clusters until every cluster is ı-clean. That is, for
each item at most a fraction ı.0 < ı < 1/ of the
other items in its cluster have a negative relation
with it, and at most ı outside its cluster a positive
relation. Bansal et al. also demonstrated that the

282 Correlation Clustering

minimization problem on general instances is
APX-hard: there is some constant, larger than 1,
below which approximation is NP-hard. Finally,
they provided a polynomial time approximation
scheme (PTAS) for maximizing (2) in complete
instances.

The constant factor for minimizing (1) on
complete instances was improved to 4 by
Charikar et al. (2003). They employed a region-
growing type procedure to round the solution of
a linear programming relaxation of the problem:

maximizeX
ij

wCij � xij C w�ij � .1 � xij /

subject to

xik � xij C xjk for all i; j; k
xij 2 Œ0; 1� for all i; j

(3)

In this setting, xij D 1 implies i and j ’s sepa-
ration, while xij D 0 implies coclustering, with
values in between representing partial evidence.
In practice solving this linear program is very
slow and has huge memory demands (Bertolacci
and Wirth 2007). Charikar et al. also showed that
this version of problem is APX-hard.

For the maximization problem (2), they
showed that instances with general weights
were APX-hard and provided a rounding of the
following semidefinite program (SDP) that yields
a 0.7664 factor approximation algorithm.

maximizeX
C.ij /

wij .vi � vj /C
X
�.ij /

wij .1 � vi � vj /

subject to

vi � vi D 1 for all i
vi � vj � 0 for all i; j

(4)

In this case we interpret vi � vj D 1 as evidence
that i and j are in the same cluster, but vi � vj D 0
as evidence toward separation.

Emanuel and Fiat (2003) extended the work
of Bansal et al. by drawing a link between

Correlation Clustering and the Minimum
Multicut problem. This reduction to Multicut
provided an O.logn/ approximation algorithm
for minimizing general instances of Correlation
Clustering. Interestingly, Emanuel and Fiat also
showed that there was reduction in the opposite
direction: an optimal solution to Correlation
Clustering induced an optimal solution to
Minimum Multicut.

Demaine and Immorlica (2003) also drew the
link from Correlation Clustering to Minimum
multicut and its O.logn/ approximation
algorithm. In addition, they described an O.r3/-
approximation algorithm for graphs that exclude
the complete bipartite graph Kr;r as a minor.

Swamy (2004), using the same SDP (4) as
Charikar et al., but different rounding techniques,
showed how to maximize (2) within factor 0.7666
in general instances.

The factor 4 approximation for minimiza-
tion (1) of complete instances was lowered to
2.5 by Ailon et al. (2005). Using the distances
obtained by solving the linear program (3), they
repeat the following steps:

form a cluster around random item i by including
each (unclustered) j with probability 1 � xij ; set
the cluster aside.

Since solving the linear program is highly re-
source hungry, Ailon et al. provided a combinato-
rial alternative: add j to i ’s cluster if wCij > w�ij .
Not only is this algorithm very fast, it is actually
a factor 3 approximation.

Recently, Tan (2007) has shown that the
79=80C � inapproximability for maximizing (2)
on general weighted graphs extends to general
unweighted graphs.

A further variant in the Correlation Clustering
family of problems is the maximization of (2)–
(1), known as maximizing correlation. Charikar
and Wirth (2004) proved an �.1= log n/ approxi-
mation for the general problem of maximizing

nX
iD1

nX
jD1

aijxixj ; s:t xi 2 f�1; 1g for all i;

(5)

Correlation Clustering 283

C

for a matrix A with null diagonal entries, by
rounding the canonical SDP relaxation. This ef-
fectively maximized correlation with the require-
ment that two clusters be formed; it was not
hard to extend this to general instances. The
gap between the vector SDP solution and the
integral solution to maximizing the quadratic pro-
gram (5) was in fact shown to be ‚.1= log n/
in general (Alon et al. 2006). However, in other
instances such as those with a bounded number of
nonzero weights for each item, a constant factor
approximation was possible. Arora et al. (2005)
went further and showed that it is quasi-NP-
hard to approximate the maximization to a factor
better than Ω.1= log� n/ for some � > 0.

Shamir et al. (2004) showed that �Cluster
Editing and p-Cluster Editing, in which p

clusters must be formed, are NP-complete (for
p � 2). Gramm et al. (2004) took an innovative
approach to solving the Clustering Editing
problem exactly. They had previously produced
an O.2:27k C n3/ time hand-made search tree
algorithm, where k is the number of edges that
need to be modified. This “awkward and error-
prone work” was then replaced with a computer
program that itself designed a search tree
algorithm, involving automated case analysis,
that ran in O.1:92k C n3/ time.

Kulis et al. (2005) unify various forms of clus-
tering, correlation clustering, spectral clustering,
and clustering with constraints in their kernel-
based approach to k-means. In this, they have a
general objective function that includes penalties
for violating pairwise constraints and for having
points spread far apart from their cluster centers,
where the spread is measured in some high-
dimensional space.

Applications

The work of Demaine and Immorlica (2003) on
Correlation Clustering was closely linked with
that of Bejerano et al. on Location Area Planning.
This problem is concerned with the allocation of
cells in a cellular network to clusters known as
location areas. There are costs associated with
traffic between the location areas (cuts between

clusters) and with the size of clusters themselves
(related to paging phones within individual cells).
These costs drive the clustering solution in op-
posite directions, on top of which there are con-
straints on cells that must (or cannot) be in the
same cluster. The authors show that the same
O.logn/ region-growing algorithm for minimiz-
ing Correlation Clustering and Multicut applies
to Location Area Planning.

Correlation clustering has been directly
applied to the coreference problem in natural
language processing and other instances in
which there are multiple references to the
same object (Daume 2006; McCallum and
Wellner 2005). Assuming some sort of undirected
graphical model, such as a Conditional Random
Field, algorithms for correlation clustering
are used to partition a graph whose edge
weights corresponding to log-potentials between
node pairs. The machine learning community
has applied some of the algorithms for
Correlation clustering to problems such as email
clustering and image segmentation. With similar
applications in mind, Finley and Joachims (2005)
explore the idea of adapting the pairwise input
information to fit example clusterings given by
a user. Their objective function is the same as
Correlation Clustering (2), but their main tool is
the �Support Vector Machine.

There has been considerable interest in the
� consensus clustering problem, which is an ex-
cellent application of Correlation clustering tech-
niques. Gionis et al. (2005) note several sources
of motivation for the Consensus Clustering; these
include identifying the correct number of clus-
ters and improving clustering robustness. They
adapt Charikar et al.’s region-growing algorithm
to create a three-approximation that performs
reasonably well in practice, though not as well as
local search techniques. Gionis et al. also suggest
using sampling as a tool for handling large data
sets. Bertolacci and Wirth (2007) extended this
study by implementing Ailon et al.’s algorithms
with sampling, and therefore a variety of ways of
developing a full clustering from the clustering
of the sample. They noted that LP-based methods
performed best, but placed a significant strain on
resources.

http://dx.doi.org/10.1007/978-1-4899-7687-1_121
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_162

284 Correlation Clustering

Applications of Clustering with
Advice

The � k-means clustering algorithm is perhaps
the most-used clustering technique: Wagstaff
et al. incorporated constraints into a highly
cited k-means variant called COP-KMEANS.
They applied this algorithm to the task of
identifying lanes of traffic based on input
GPS data.

In the constrained-clustering framework, the
constraints are usually assumed to be consistent
(noncontradictory) and hard. In addition to
the usual must- and cannot-link constraints,
Davidson and Ravi (2005) added constraints
enforcing various requirements on the distances
between points in particular clusters. They
analyzed the computational feasibility of the
problem of establishing the (in) feasibility
of a set of constraints, for various constraint
types. Their constrained k-means algorithms
were used to help a robot discover objects in a
scene.

Recommended Reading

Ailon N, Charikar M, Newman A (2005) Aggregating
inconsistent information: ranking and clustering. In:
Proceedings of the thirty-seventh ACM symposium
on the theory of computing. ACM Press, New York,
pp 684–693

Alon N, Makarychev K, Makarychev Y, Naor A
(2006) Quadratic forms on graphs. Invent Math
163(3):499–522

Arora S, Berger E, Hazan E, Kindler G, Safra S (2005)
On non-approximability for quadratic programs. In:
Proceedings of forty-sixth symposium on founda-
tions of computer science. IEEE Computer Society,
Washington, DC, pp 206–215

Bansal N, Blum A, Chawla S (2002) Correlation clus-
tering. In: Correlation clustering. IEEE Computer
Society, Washington, DC pp 238–247

Ben-Dor A, Shamir R, Yakhini Z (1999) Cluster-
ing gene expression patterns. J Comput Biol 6:
281–297

Bertolacci M, Wirth A (2007) Are approximation al-
gorithms for consensus clustering worthwhile? In:
Proceedings of seventh SIAM international confer-
ence on data mining. SIAM, Philadelphia, pp 437–
442

Charikar M, Guruswami V, Wirth A (2003) Cluster-
ing with qualitative information. In: Proceedings of
forty fourth FOCS, Cambridge, pp 524–533

Charikar M, Wirth A (2004) Maximizing quadratic
programs: extending Grothendieck’s inequality.
In: Proceedings of forty fifth FOCS, Rome,
pp 54–60

Daume H (2006) Practical structured learning tech-
niques for natural language processing. PhD thesis,
University of Southern California

Davidson I, Ravi S (2005) Clustering with constraints:
feasibility issues and the k-means algorithm. In:
Proceedings of fifth SIAM international conference
on data mining, Newport Beach

Demaine E, Emanuel D, Fiat A, Immorlica N (2006)
Correlation clustering in general weighted graphs.
Theor Comput Sci 361(2):172–187

Demaine E, Immorlica N (2003) Correlation clustering
with partial information. In: Proceedings of sixth
workshop on approximation algorithms for combi-
natorial optimization problems, pp 1–13

Emanuel D, Fiat A (2003) Correlation clustering –
minimizing disagreements on arbitrary weighted
graphs. In: Proceedings of eleventh European sym-
posium on algorithms, Budapest, pp 208–220

Ferligoj A, Batagelj V (1982) Clustering with rela-
tional constraint. Psychometrika 47(4):413–426

Finley T, Joachims T (2005) Supervised clustering
with support vector machines. In: Proceedings of
twenty-second international conference on machine
learning, Bonn

Gionis A, Mannila H, Tsaparas P (2005) Clustering
aggregation. In: Proceedings of twenty-first interna-
tional conference on data engineering, Tokyo

Gramm J, Guo J, Hüffner F, Niedermeier R (2004)
Automated generation of search tree algorithms for
hard graph modification problems. Algorithmica
39(4):321–347

Kulis B, Basu S, Dhillon I, Mooney R (2005) Semi-
supervised graph clustering: a kernel approach. In:
Proceedings of twenty-second international confer-
ence on machine learning, Bonn, pp 457–464

McCallum A, Wellner B (2005) Conditional models
of identity uncertainty with application to noun
coreference. In: Saul L, Weiss Y, Bottou L (eds)
Advances in neural information processing systems
17. MIT Press, Cambridge, pp 905–912

Meilă M (2003) Comparing clusterings by the variation
of information. In: Proceedings of sixteenth confer-
ence on learning theory, pp 173–187

Shamir R, Sharan R, Tsur D (2004) Cluster graph
modification problems. Discr Appl Math 144:173–
182

Swamy C (2004) Correlation clustering: maximizing
agreements via semidefinite programming. In: Pro-
ceedings of fifteenth ACM-SIAM symposium on
discrete algorithms, pp 519–520

Tan J (2007) A note on the inapproximability of corre-
lation clustering. Technical report 0704.2092, eprint
arXiv, 2007

http://dx.doi.org/10.1007/978-1-4899-7687-1_431

Cost-Sensitive Learning 285

C

Correlation-Based Learning

�Biological Learning: Synaptic Plasticity, Hebb
Rule and Spike Timing Dependent Plasticity

Cost

In �Markov decision processes, negative
rewards are often expressed as costs. A reward of
�x is expressed as a cost of x. In � supervised
learning, cost is used as a synonym for � loss.

Cross-References

�Loss

Cost Function

�Loss Function

Cost-Sensitive Classification

�Cost-Sensitive Learning

Cost-Sensitive Learning

Charles X. Ling and Victor S. Sheng
The University of Western Ontario, London, ON,
Canada

Synonyms

Cost-sensitive classification; Learning with dif-
ferent classification costs

Definition

Cost-Sensitive Learning is a type of learning that
takes the misclassification costs (and possibly
other types of cost) into consideration. The goal

of this type of learning is to minimize the total
cost. The key difference between cost-sensitive
learning and cost-insensitive learning is that cost-
sensitive learning treats different misclassifica-
tions differently. That is, the cost for labeling
a positive example as negative can be different
from the cost for labeling a negative example as
positive. Cost-insensitive learning does not take
misclassification costs into consideration.

Motivation and Background

Classification is an important task in inductive
learning and machine learning. A classifier,
trained from a set of training examples with
class labels, can then be used to predict the
class labels of new examples. The class label
is usually discrete and finite. Many effective
classification algorithms have been developed,
such as � naı̈ve Bayes, � decision trees, � neural
networks, and � support vector machines.
However, most classification algorithms seek
to minimize the error rate: the percentage of the
incorrect prediction of class labels. They ignore
the difference between types of misclassification
errors. In particular, they implicitly assume that
all misclassification errors have equal cost.

In many real-world applications, this assump-
tion is not true. The differences between different
misclassification errors can be quite large. For
example, in medical diagnosis of a certain cancer
(where having cancer is regarded as the posi-
tive class, and non-cancer (healthy) as negative),
misdiagnosing a cancer patient as healthy (the
patient is actually positive but is classified as
negative; thus it is also called “false negative”) is
much more serious (thus expensive) than a false-
positive error. The patient could lose his/her life
because of a delay in correct diagnosis and treat-
ment. Similarly, if carrying a bomb is positive,
then it is much more expensive to miss a terrorist
who carries a bomb onto a flight than searching
an innocent person.

Cost-sensitive learning takes costs, such as the
misclassification cost, into consideration. Turney
(2000) provides a comprehensive survey of a
large variety of different types of costs in data

http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_499
http://dx.doi.org/10.1007/978-1-4899-7687-1_499
http://dx.doi.org/10.1007/978-1-4899-7687-1_500
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_100092
http://dx.doi.org/10.1007/978-1-4899-7687-1_100260
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

286 Cost-Sensitive Learning

Cost-Sensitive Learning, Table 1 An example of cost
matrix for binary classification

Actual negative Actual positive
Predict negative C.0; 0/, or TP C.0; 1/, or FN
Predict positive C.1; 0/, or FP C.1; 1/, or TP

mining and machine learning, including misclas-
sification costs, data acquisition cost (instance
costs and attribute costs), � active learning costs,
computation cost, human–computer interaction
cost, and so on. The misclassification cost is
singled out as the most important cost, and it has
received the most attention in recent years.

Theory

The theory of cost-sensitive learning (Elkan
2001; Zadrozny and Elkan 2001) describes how
the misclassification cost plays its essential role
in various cost-sensitive learning algorithms.

Without loss of generality, binary classifica-
tion is assumed (i.e., positive and negative class)
in this paper. In cost-sensitive learning, the costs
of false positive (actual negative but predicted
as positive; denoted as FP), false negative (FN),
true positive (TP), and true negative (TN) can
be given in a cost matrix, as shown in Table 1.
In the table, the notation C.i; j / is also used to
represent the misclassification cost of classify-
ing an instance from its actual class j into the
predicted class i (1 is used for positive, and 0
for negative). These misclassification cost values
can be given by domain experts, or learned via
other approaches. In cost-sensitive learning, it is
usually assumed that such a cost matrix is given
and known. For multiple classes, the cost matrix
can be easily extended by adding more rows and
more columns.

Note that C.i; i/ (TP and TN) is usually re-
garded as the “benefit” (i.e., negated cost) when
an instance is predicted correctly. In addition,
cost-sensitive learning is often used to deal with
datasets with very imbalanced class distributions
(see �Class Imbalance Problem) (Japkowicz and
Stephen 2002). Usually (and without loss of gen-
erality), the minority or rare class is regarded as

the positive class, and it is often more expensive
to misclassify an actual positive example into
negative, than an actual negative example into
positive. That is, the value of FN D C.0; 1/ is
usually larger than that of FP D C.1; 0/. This
is true for the cancer example mentioned earlier
(cancer patients are usually rare in the population,
but predicting an actual cancer patient as negative
is usually very costly) and the bomb example
(terrorists are rare).

Given the cost matrix, an example should be
classified into the class that has the minimum
expected cost. This is the minimum expected cost
principle. The expected costR.i jx/ of classifying
an instance x into class i (by a classifier) can be
expressed as:

R.i jx/ D
X

j

P.j jx/C.j; i/; (1)

where P.j jx/ is the probability estimation of
classifying an instance into class j . That is, the
classifier will classify an instance x into positive
class if and only if:

P.0jx/C.1; 0/C P.1jx/C.1; 1/ � P.0jx/C.0; 0/

C P.1jx/C.0; 1/

This is equivalent to:

P.0jx/C.1; 0/ � C.0; 0/ � P.1jx/

.C.0; 1/ � C.1; 1//

Thus, the decision (of classifying an example into
positive) will not be changed if a constant is
added into a column of the original cost matrix.
Thus, the original cost matrix can always be
converted to a simpler one by subtracting C.0; 0/
to the first column, and C.1; 1/ to the second
column. After such conversion, the simpler cost
matrix is shown in Table 2. Thus, any given cost-
matrix can be converted to one with C.0; 0/ D
C.1; 1/ D 0. (Here it is assumed that the misclas-
sification cost is the same for all examples. This
property is a special case of the one discussed in
Elkan (2001).) In the rest of the paper, it will be
assumed that C.0; 0/ D C.1; 1/ D 0. Under this

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_110

Cost-Sensitive Learning 287

C

Cost-Sensitive Learning, Table 2 A simpler cost ma-
trix with an equivalent optimal classification

True negative True positive
Predict negative 0 C.0; 1/�C.1; 1/

Predict positive C.1; 0/�C.0; 0/ 0

assumption, the classifier will classify an instance
x into positive class if and only if:

P.0jx/C.1; 0/ � P.1jx/C.0; 1/

As P.0jx/ D 1 � P.1jx/, a threshold p�

can be obtained for the classifier to classify an
instance x into positive if P.1jx/ � p�, where

P � D
C.1; 0/

C.1; 0/C C.0; 1/
: (2)

Thus, if a cost-insensitive classifier can produce
a posterior probability estimation p.1jx/ for each
test example x, one can make the classifier cost-
sensitive by simply choosing the classification
threshold according to (2), and classify any ex-
ample to be positive whenever P.1jx/ � p�.
This is what several cost-sensitive meta-learning
algorithms, such as Relabeling, are based on (see
later for details). However, some cost-insensitive
classifiers, such as C4.5, may not be able to pro-
duce accurate probability estimation; they return
a class label without a probability estimate. Em-
pirical Thresholding (Sheng and Ling 2006) does
not require accurate estimation of probabilities –
an accurate ranking is sufficient. It simply uses
� cross-validation to search for the best probabil-
ity value p� to use as a threshold.

Traditional cost-insensitive classifiers are de-
signed to predict the class in terms of a default,
fixed threshold of 0.5. Elkan (2001) shows that
one can “rebalance” the original training exam-
ples by sampling, such that the classifiers with
the 0.5 threshold is equivalent to the classifiers
with the p� threshold as in (2), in order to
achieve cost-sensitivity. The rebalance is done
as follows. If all positive examples (as they are
assumed as the rare class) are kept, then the num-
ber of negative examples should be multiplied
by C.1; 0/=C.0; 1/ D FP=FN . Note that as
usually FP < FN , the multiple is less than 1.

This is, thus, often called “under-sampling the
majority class.” This is also equivalent to “pro-
portional sampling,” where positive and negative
examples are sampled by the ratio of:

p.1/FN W p.0/FP (3)

where p.1/ and p.0/ are the prior probability
of the positive and negative examples in the
original training set. That is, the prior probabil-
ities and the costs are interchangeable: doubling
p(1) has the same effect as doubling FN, or
halving FP (Drummond and Holte 2000). Most
sampling meta-learning methods, such as costing
(Zadrozny et al. 2003), are based on (3) above
(see later for details).

Almost all meta-learning approaches are ei-
ther based on (2) or (3) for the thresholding- and
sampling-based meta-learning methods, respec-
tively, to be discussed in the next section.

Structure of Learning System

Broadly speaking, cost-sensitive learning can be
categorized into two categories. The first one
is to design classifiers that are cost-sensitive in
themselves. They are called the direct method.
Examples of direct cost-sensitive learning are
ICET (Turney 1995) and cost-sensitive decision
tree (Drummond and Holte 2000; Ling et al.
2004). The other category is to design a “wrap-
per” that converts any existing cost-insensitive
(or cost-blind) classifiers into cost-sensitive ones.
The wrapper method is also called cost-sensitive
meta-learning method, and it can be further cat-
egorized into thresholding and sampling. Here
is a hierarchy of the cost-sensitive learning and
some typical methods. This paper will focus on
cost-sensitive meta-learning that considers the
misclassification cost only.

Cost-Sensitive learning

– Direct methods
� ICET (Turney 1995)
� Cost-sensitive decision trees (Drummond

and Holte 2000; Ling et al. 2004)

http://dx.doi.org/10.1007/978-1-4899-7687-1_190

288 Cost-Sensitive Learning

– Meta-learning
� Thresholding

� MetaCost (Domingos 1999)
� CostSensitiveClassifier (CSC in short)

(Witten and Frank 2005)
� Cost-sensitive naı̈ve Bayes (Chai et al.

2004)
� Empirical Thresholding (ET in short)

(Sheng and Ling 2006)
� Sampling

� Costing (Zadrozny et al. 2003)
� Weighting (Ting 1998)

Direct Cost-Sensitive Learning
The main idea of building a direct cost-sensitive
learning algorithm is to directly introduce and
utilize misclassification costs into the learning
algorithms. There are several works on direct
cost-sensitive learning algorithms, such as ICET
(Turney 1995) and cost-sensitive decision trees
(Ling et al. 2004).

ICET (Turney 1995) incorporates misclassi-
fication costs in the fitness function of genetic
algorithms. On the other hand, cost-sensitive de-
cision tree (Ling et al. 2004), called CSTree here,
uses the misclassification costs directly in its tree
building process. That is, instead of minimizing
entropy in attribute selection as in C4.5, CSTree
selects the best attribute by the expected total cost
reduction. That is, an attribute is selected as a
root of the (sub) tree if it minimizes the total
misclassification cost.

Note that as both ICET and CSTree directly
take costs into model building, they can also take
easily attribute costs (and perhaps other costs)
directly into consideration, while meta cost-
sensitive learning algorithms generally cannot.

Drummond and Holte (2000) investigate the
cost-sensitivity of the four commonly used at-
tribute selection criteria of decision tree learning:
accuracy, Gini, entropy, and DKM. They claim
that the sensitivity of cost is highest with the
accuracy, followed by Gini, entropy, and DKM.

Cost-Sensitive Meta-Learning
Cost-sensitive meta-learning converts existing
cost- insensitive classifiers into cost-sensitive

ones without modifying them. Thus, it can
be regarded as a middleware component that
preprocesses the training data, or post-processes
the output, from the cost-insensitive learning
algorithms.

Cost-sensitive meta-learning can be further
classified into two main categories: thresholding
and sampling, based on (2) and (3) respectively,
as discussed in the theory section.

Thresholding uses (2) as a threshold to clas-
sify examples into positive or negative if the
cost-insensitive classifiers can produce probabil-
ity estimations. MetaCost (Domingos 1999) is
a thresholding method. It first uses bagging on
decision trees to obtain reliable probability esti-
mations of training examples, relabels the classes
of training examples according to (2), and then
uses the relabeled training instances to build a
cost-insensitive classifier. CSC (Witten and Frank
2005) also uses (2) to predict the class of test
instances. More specifically, CSC uses a cost-
insensitive algorithm to obtain the probability
estimations P.j jx/ of each test instance. (CSC
is a meta-learning method and can be applied to
any classifiers.) Then it uses (2) to predict the
class label of the test examples. Cost-sensitive
naı̈ve Bayes (Chai et al. 2004) uses (2) to classify
test examples based on the posterior probability
produced by the naı̈ve Bayes.

As seen, all thresholding-based meta-learning
methods rely on accurate probability estimations
of p.1jx/ for the test example x. To achieve
this, Zadrozny and Elkan (2001) propose several
methods to improve the calibration of probability
estimates. ET (Empirical Thresholding) (Sheng
and Ling 2006) is a thresholding-based meta-
learning method. It does not require accurate
estimation of probabilities – an accurate ranking
is sufficient. ET simply uses cross-validation to
search the best probability from the training in-
stances as the threshold, and uses the searched
threshold to predict the class label of test in-
stances.

On the other hand, sampling first modifies the
class distribution of the training data according
to (3), and then applies cost-insensitive classifiers
on the sampled data directly. There is no need for
the classifiers to produce probability estimations,

Co-training 289

C

as long as they can classify positive or negative
examples accurately. Zadrozny et al. (2003) show
that proportional sampling with replacement pro-
duces duplicated cases in the training, which
in turn produces overfitting in model building.
Instead, Zadrozny et al. (2003) proposes to use
“rejection sampling” to avoid duplication. More
specifically, each instance in the original training
set is drawn once, and accepted into the sample
with the accepting probability C.j; i/=Z, where
C.j; i/ is the misclassification cost of class i ,
and Z is an arbitrary constant such that Z �
maxC.j; i/. When Z D maxijC.j; i/, this is
equivalent to keeping all examples of the rare
class, and sampling the majority class without
replacement according to C.1; 0/=C.0; 1/ – in
accordance with (3). Bagging is applied after
rejection sampling to improve the results further.
The resulting method is called Costing.

Weighting (Ting 1998) can also be viewed
as a sampling method. It assigns a normalized
weight to each instance according to the misclas-
sification costs specified in (3). That is, examples
of the rare class (which carries a higher mis-
classification cost) are assigned, proportionally,
high weights. Examples with high weights can
be viewed as example duplication – thus over-
sampling. Weighting then induces cost-sensitivity
by integrating the instances’ weights directly into
C4.5, as C4.5 can take example weights directly
in the entropy calculation. It works whenever
the original cost-insensitive classifiers can accept
example weights directly. (Thus, it can be said
that Weighting is a semi meta-learning method.)
In addition, Weighting does not rely on bagging
as Costing does, as it “utilizes” all examples in
the training set.

Recommended Reading

Chai X, Deng L, Yang Q, Ling CX (2004) Test-cost
sensitive naı̈ve Bayesian classification. In: Proceed-
ings of the fourth IEEE international conference
on data mining. IEEE Computer Society Press,
Brighton

Domingos P (1999) MetaCost: a general method for
making classifiers cost-sensitive. In: Proceedings
of the fifth international conference on knowledge

discovery and data mining, San Diego. ACM, New
York, pp 155–164

Drummond C, Holte R (2000) Exploiting the cost
(in)sensitivity of decision tree splitting criteria. In:
Proceedings of the 17th international conference on
machine learning, Stanford, pp 239–246

Elkan C (2001) The foundations of cost-sensitive
learning. In: Proceedings of the 17th international
joint conference of artificial intelligence. Morgan
Kaufmann, Seattle, pp 973–978

Japkowicz N, Stephen S (2002) The class imbal-
ance problem: a systematic study. Intell Data Anal
6(5):429–450

Ling CX, Yang Q, Wang J, Zhang S (2004) Deci-
sion trees with minimal costs. In: Proceedings of
2004 international conference on machine learning
(ICML’2004), Banff

Sheng VS, Ling CX (2006) Thresholding for making
classifiers cost-sensitive. In: Proceedings of the 21st
national conference on artificial intelligence, 16–20
July 2006, Boston, pp 476–481

Ting KM (1998) Inducing cost-sensitive trees via in-
stance weighting. In: Proceedings of the second Eu-
ropean symposium on principles of data mining and
knowledge discovery. Springer, Heidelberg, pp 23–
26

Turney PD (1995) Cost-sensitive classification: em-
pirical evaluation of a hybrid genetic decision tree
induction algorithm. J Artif Intell Res 2:369–409

Turney PD (2000) Types of cost in inductive concept
learning. In: Proceedings of the workshop on cost-
sensitive learning at the 17th international con-
ference on machine learning, Stanford University,
Stanford

Witten IH, Frank E (2005) Data mining – practical
machine learning tools and techniques with Java
implementations. Morgan Kaufmann, San Francisco

Zadrozny B, Elkan C (2001) Learning and making
decisions when costs and probabilities are both
unknown. In: Proceedings of the seventh interna-
tional conference on knowledge discovery and data
mining, pp 204–213

Zadrozny B, Langford J, Abe N (2003) Cost-sensitive
learning by cost-proportionate instance weighting.
In: Proceedings of the third international conference
on data mining, Melbourne

Cost-to-Go Function Approximation

�Value Function Approximation

Co-training

� Semi-supervised Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_749

290 Covariance Matrix

Covariance Matrix

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Covariance matrix is a generalization of
covariance between two univariate random
variables. It is composed of the pairwise
covariance between components of a
multivariate random variable. It underpins
important stochastic processes such as
Gaussian process, and in practice it provides
key characterizations between multiple
random factors.

Definition

It is convenient to define a covariance matrix by
using multivariate random variables (mrv): X D
.X1; : : : ; Xd /

>. For univariate random variables
Xi and Xj , their covariance is defined as

Cov.Xi ; Xj / D E
	
.Xi � �i /

�
Xj � �j

�

;

where �i is the mean of Xi : �i D EŒXi �. As
a special case, when i D j , then we get the
variance of Xi , Var.Xi / D Cov.Xi ; Xi /. Now in
the setting of mrv, assuming that each component
random variable Xi has finite variance under
its marginal distribution, the covariance matrix
Cov.X;X/ can be defined as a d -by-d matrix
whose .i; j /th entry is the covariance:

.Cov.X;X//ij D Cov
�
Xi ; Xj

�
D E

	
.Xi � �i /

�
Xj � �j

�

:

And its inverse is also called precision matrix.

It is easy to rewrite the element-wise definition
into the matrix form:

Cov.X;X/ D E
	
.X � EŒX�/.X � EŒX�/>

;

(1)
which naturally generalizes the variance of uni-
variate random variables: Var.X/ D EŒ.X �

EŒX�/2�.
Moreover, it is also straightforward to extend

the covariance of a single mrv X to two mrv’s X
(d dimensional) and Y (s dimensional), under the
name cross covariance. It quantifies how much
the component random variables in X and Y
change together. The cross-covariance matrix is
defined as a d � s matrix Cov.X;Y/ whose
.i; j /th entry is

.Cov.X;Y//ij D Cov.Xi ; Yj / (2)

D E
	
.Xi �EŒXi �/

�
Yj �EŒYj �

�

:

(3)

Cov.X;Y/ can also be written in the matrix
form as

Cov.X;Y/ D E
	
.X � EŒX�/.Y � EŒY�/>

;

where the expectation is with respect to the joint
distribution of .X;Y/. Obviously, Cov.X;Y/ be-
comes Cov.X;X/ when Y D X.

Motivation and Background

The covariance between two univariate random
variables measures how much they change to-
gether, and as a special case, the covariance of a
random variable with itself is exactly its variance.
It is important to note that covariance is an
unnormalized measure of the correlation between
the random variables.

As a generalization to multivariate random
variables X D .X1; : : : ; Xd /

>, the covariance
matrix is a d -by-d matrix whose .i; j /th com-
ponent is the covariance between Xi and Xj .

In many applications, it is important to charac-
terize the relations between a set of factors, hence

Covariance Matrix 291

C

the covariance matrix plays an important role in
practice, especially in machine learning.

Theory

Properties
Covariance Cov.X;X/ has the following proper-
ties:

1. Positive semi-definiteness. It follows from
Eq. (1) that Cov.X;X/ is positive semi-
definite. Cov.X;X/ D 0 if, and only if, X
is constant almost surely, i.e., there exists
a constant x such that Pr.X ¤ x/ D 0.
Cov.X;X/ is not positive definite if, and only
if, there exists a constant ˛ such that h˛;Xi is
constant almost surely.

2. Relating cumulant to moments: Cov.X;X/ D
EŒXX>� � EŒX�EŒX�>.

3. Linear transform: If Y D AX C b where
A 2 R

s�d and b 2 R
s; then Cov.Y;Y/ D

ACov.X;X/A>.

Cross-covariance Cov.X;Y/ has the following
properties:

1. Symmetry: Cov.X;Y/ D Cov.Y;X/.
2. Linearity: Cov.X1 C X2;Y/ D Cov.X1;Y/C

Cov.X2;Y/.
3. Relating to covariance: If X and Y have the

same dimension, then Cov.XC Y;XC Y/ D
Cov.X;X/C Cov.Y;Y/C 2Cov.Y;X/.

4. Linear transform: Cov.AX;BY/ D ACov.X;
Y/B.

It is highly important to note that Cov.X;Y/ D 0
is a necessary but not sufficient condition for X
and Y to be independent.

Correlation Coefficient
Entries in the covariance matrix are sometimes
presented in a normalized form by dividing each
entry by its corresponding standard deviations.
This quantity is called the correlation coefficient,
represented as �Xi ;Xj

, and defined as

�Xi ;Xj
D

Cov.Xi ; Xj /

Cov.Xi ; Xi /1=2Cov.Xj ; Xj /1=2
:

The corresponding matrix is called the correla-
tion matrix, and for ΓX set to Cov.X;X/ with
all non-diagonal entries zeroed, and ΓY likewise,
then the correlation matrix is given by

Corr.X;Y/ D Γ
�1=2
X Cov.X;Y/Γ�1=2

Y :

The correlation coefficient takes on values be-
tween Œ�1; 1�.

Parameter Estimation
Given observations x1; : : : ;xn of a mrv X, an
unbiased estimator of Cov.X;X/ is

S D
1

n � 1

nX
iD1

.xi � Nx/.xi � Nx/
>;

where Nx D 1
n

Pn
iD1 xi . The denominator n � 1

reflects the fact that the mean is unknown and the
sample mean is used in place. Note the maximum
likelihood estimator in this case replaces the
denominator n � 1 by n.

Conjugate Priors
Covariance matrix is used to define the Gaussian
distribution. In this case, the inverse Wishart dis-
tribution is the conjugate prior for the covariance
matrix. Since the gamma distribution is a 1-D
version of the Wishart distribution, hence in the
1-D case, the gamma is the conjugate prior for
precision matrix.

Applications

Several key uses of the covariance matrix are
reviewed here.

Correlation and Least Squares
Approximation
In many machine learning problems, we often
need to quantify the correlation of two mrvs
which may be from two different spaces. For
example, we may want to study how much the
image stream of a movie is correlated with the
comments it receives. For simplicity, we con-
sider a r-dimensional mrv X and a s-dimensional
mrv Y. To study their correlation, suppose we

292 Covariance Matrix

have n pairs of observations f.xi ;y i /g
n
iD1 drawn

iid from certain underlying joint distribution of
.X;Y/. Let Nx D 1

n

Pn
iD1 xi and Ny D 1

n

Pn
iD1 y i

and stack fxig and fy ig into QX D .x1; : : : ;xn/
>

and QY D .y1; : : : ;yn/
>, respectively. Then the

cross-covariance matrix Cov.X;Y/ can be esti-
mated by 1

n

Pn
iD1.xi � Nx/.y i � Ny/

>. To quan-
tify the cross correlation by a real number, we
need to apply some norm of the cross-covariance
matrix, and the simplest one is the Frobenius
norm: kAk2

F D
P

ij A
2
ij . Therefore we obtain a

measure of cross correlation:

�����
1

n

nX
iD1

.xi� Nx/.y i� Ny/
>

�����
2

F

D
1

n
H QX QX>H QY QY >;

(4)
where Hij D ıij �

1
n

and ıij D 1 if i D j and 0
otherwise. It is important to notice that (a) in this
measure, inner product is performed only in the
space of X and Y separately, i.e., no transforma-
tion between X and Y is required, and (b) the data
points affect the measure only via inner products
x>i xj as the .i; j /th entry of QX QX> (and similarly
for y i). Hence we can endow new inner products
on X and Y, which eventually allows us to apply
kernels, e.g., Gretton et al. (2005). In a nutshell,
kernels (Schölkopf and Smola 2002) redefine the
inner product x>i xj by mapping xi to a richer
feature space via 	.xi / and then compute the
inner product there: k.xi ;xj / WD 	.xi /

>	.xj /.
Since the measure in Eq. (4) only needs inner
products, one can even directly define k without
explicitly specifying 	. This allows us to (a) im-
plicitly use a rich feature space whose dimension
can be infinitely high and (b) apply this measure
of independence to non-Euclidean spaces as long
as a kernel k.xi ;xj / can be defined on it.

Interestingly, this measure can be equivalently
motivated by least square linear regression. That
is, we look for a linear transform T W Rd ! R

s

which minimizes

1

n

nX
iD1

k.y i � Ny/ � T .xi � Nx/k
2 :

And one can show that its minimum objective
value is exactly equal to Eq. (4) up to a constant,

as long as all y i� Ny and xi� Nx have unit length. In
practice, this can be achieved by normalization.
Or, the measure in Eq. (4) itself can be normal-
ized by replacing the covariance matrix with the
correlation matrix.

Principal Component Analysis
The covariance matrix plays a key role in prin-
cipal component analysis (PCA). Assume we are
given n iid observations x1; : : : ;xn of a mrv X,
and let Nx D 1

n

P
i xi . PCA tries to find a set

of orthogonal directions w1;w2; : : :, such that the
projection of X to the direction w1, w>1 X has the
highest variance among all possible directions in
the d -dimensional space. After subtracting from
X the projection to w1, w2 is chosen as the highest
variance projection direction for the remainder.
This procedure goes on, giving w3; : : : ;wd .

To find w1 WD argmaxwVar.w>X/, we need
an empirical estimate of Var.w>X/. Estimating
EŒ.w>X/2� by w>

�
1
n

P
i xi x

>
i

�
w and EŒw>X�

by 1
n

P
i w>xi , we get

w1 D argmaxwWkw1kD1w>Sw; where

S D
1

n

nX
iD1

.xi � Nx/.xi � Nx/
>;

i.e., S is n
n�1 times the unbias empirical es-

timate of the covariance of X, based on sam-
ples x1; : : : ;xn. w1 turns out to be exactly the
eigenvector of S corresponding to the greatest
eigenvalue.

Note that PCA is independent of the distribu-
tion of X. More details on PCA can be found at
Jolliffe (2002).

Gaussian Processes
Gaussian processes are another important
framework in machine learning that relies on
the covariance matrix. It is a distribution over
functions f . � / from certain space X to R, such
that for any n 2 N and any n points fxi 2 X gniD1,
the set of values of f evaluated at fxigi ,
ff .x1/; : : : ; f .xn/g, will have an n-dimensional
Gaussian distribution. Different choices of the
covariance matrix of the multivariate Gaussian
lead to different stochastic processes such as

Covering Algorithm 293

C

Wiener process, Brownian motion, Ornstein-
Uhlenbeck process, etc. In these cases, it makes
more sense to define a covariance function
C W X � X 7! R, such that given any set
fxi 2 X gniD1 for any n 2 N, the n-by-n matrix�
C.xi ;xj /

�
ij

is positive semi-definite and can be
used as the covariance matrix. This further allows
straightforward kernelization of a Gaussian
process by using the kernel function as the
covariance function.

Although the space of functions is infinite di-
mensional, the marginalization property of mul-
tivariate Gaussian distributions guarantees that
the user of the model only needs to consider
the observed xi and ignore all the other possible
x 2 X . This important property says that for a
mrv X D .X>1 ;X

>
2 /
> � N .�;Σ/, the marginal

distribution of X1 is N .�1;Σ11/, where Σ11 is
the submatrix of Σ corresponding to X1 (and
similarly for �1). So taking into account the
random variable X2 will not change the marginal
distribution of X1.

Cross-References

�Gaussian Distribution
�Gaussian Processes

Recommended Reading

For a complete treatment of covariance matrix
from a statistical perspective, see Casella and
Berger (2002) and Mardia et al. (1979) provides
details for the multivariate case. PCA is compre-
hensively discussed in Jolliffe (2002), and kernel
methods are introduced in Schölkopf and Smola
(2002). Williams and Rasmussen (2006) gives the
state of the art on how Gaussian processes can be
utilized for machine learning.

Casella G, Berger R 2002 Statistical inference, 2nd
edn. Duxbury, Pacific Grove

Gaussian Processes for Machine Learning, Carl Ed-
ward Rasmussen and Chris Williams, the MIT
Press, Cambridge, MA, 2006

Gretton A, Herbrich R, Smola A, Bousquet O,
Schölkopf B (2005) Kernel methods for measuring
independence. J Mach Learn Res 6:2075–2129

Jolliffe IT (2002) Principal component analysis.
Springer series in statistics, 2nd edn. Springer,
New York

Mardia KV, Kent JT, Bibby JM (1979) Multivariate
analysis. Academic, London/New York

Schölkopf B, Smola A (2002) Learning with Kernels.
MIT, Cambridge

Covering Algorithm

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

The covering algorithm is the dominant ap-
proach to classification � rule learning. Its dis-
tinguishing feature is the idea to learn one rule
at a time, successively removing all training
examples that are covered by the learned rules.

Synonyms

Separate-and-conquer learning

Method

Most covering algorithms operate in a � concept
learning framework, i.e., they assume a set of pos-
itive and negative training examples. Adaptations
to the multi-class case are typically performed
via � class binarization, learning different � rule
sets for binary problems. Some algorithms, most
notably CN2 (Clark and Niblett 1989; Clark and
Boswell 1991), learn multi-class rules directly by
optimizing overall possible classes in the head of
the rule. In this case, the resulting theory is inter-
preted as a � decision list. In the following, we
will assume a two-class problem with a positive
and a negative class.

The COVERING algorithm starts with an
empty theory. If there are any positive examples
in the training set, it calls the subroutine
FINDBESTRULE for learning a single rule that

http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_100423
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_64

294 Credit Assignment

procedure COVERING(Examples,Classifier)

Input: Examples, a set of positive and negative examples
for a class c.

// initialize the classifier
Classifier D ;

//loop until no more positive examples are covered
while POSITIVE(Examples)¤ ; do

// find the best rule for the current examples
RuleD FINDBESTRULE(Examples)

// check if we need more rules
if RULESTOPPINGCRITERION(Classifier,Rule,

Examples)
then break while

// remove covered examples and add rule to rule set
ExamplesD Examples n COVER(Rule,Examples)
ClassifierD Classifier [Rule

endwhile

// post-process the rule set (e.g., pruning)
Classifier D POSTPROCESSING (Classifier)

Output: Classifier

will cover a subset of the positive examples
(and possibly some negative examples as well).
All covered examples are then separated from
the training set, the learned rule is added to
the theory, and another rule is learned from the
remaining examples. Rules are learned in this
way until no positive examples are left or until the
RULESTOPPINGCRITERION fires. In the simplest
case, the stopping criterion is a check whether
there are still remaining positive examples that
need to be covered. The resulting theory may
also undergo some POSTPROCESSING, e.g., a
separate pruning and re-induction phase as in
RIPPER (Cohen 1995).

A more extensive survey of this family of
algorithms can be found in Fürnkranz (1999a).

Cross-References

�Class Binarization
�Concept Learning
�Decision List
�Rule Learning
�Rule Set

Recommended Reading

Clark P, Boswell R (1991) Rule induction with CN2:
some recent improvements. In: Proceedings of the
5th European working session on learning (EWSL-
91), Porto. Springer, pp 151–163

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3(4):261–283

Cohen WW (1995) Fast effective rule induction. In:
Prieditis A, Russell S (eds) Proceedings of the
12th international conference on machine learn-
ing (ML-95), Lake Tahoe. Morgan Kaufmann,
pp 115–123

Fürnkranz J (1999) Separate-and-conquer rule learn-
ing. Artif Intell Rev 13(1):3–54. http://www.ofai.at/
cgi-bin/tr-online?number+96-25

Credit Assignment

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

Structural credit assignment; Temporal credit as-
signment

Definition

When a learning system employs a complex de-
cision process, it must assign credit or blame for
the outcomes to each of its decisions. Where it
is not possible to directly attribute an individ-
ual outcome to each decision, it is necessary to
apportion credit and blame between each of the
combinations of decisions that contributed to the
outcome. We distinguish two cases in the credit
assignment problem. Temporal credit assignment
refers to the assignment of credit for outcomes to
actions. Structural credit assignment refers to the
assignment of credit for actions to internal deci-
sions. The first subproblem involves determining
when the actions that deserve credit were taken
and the second involves assigning credit to the
internal structure of actions (Sutton 1984).

http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://www.ofai.at/cgi-bin/tr-online?number+96-25
http://www.ofai.at/cgi-bin/tr-online?number+96-25
http://dx.doi.org/10.1007/978-1-4899-7687-1_100450
http://dx.doi.org/10.1007/978-1-4899-7687-1_100467

Credit Assignment 295

C

Motivation

Consider the problem of learning to balance a
pole that is hinged on a cart (Michie and Cham-
bers 1968; Anderson and Miller 1991). The cart
is constrained to run along a track of finite length
and a fixed force can be applied to push the cart
left or right. A controller for the pole and cart
system must make a decision whether to push
left or right at frequent, regular time intervals,
for example, 20 times a second. Suppose that
this controller is capable of learning from trial-
and-error. If the pole falls over, then it must
determine which actions it took helped or hurt its
performance. Determining that action is the prob-
lem of temporal credit assignment. Although the
actions are directly responsible for the outcome
of a trial, the internal process for choosing the
action indirectly affects the outcome. Assigning
credit or blame to those internal processes that
lead to the choice of action is the structural
credit assignment problem: In the case of pole
balancing, the learning system will typically keep
statistics such as how long, on average, the pole
remained balanced after taking a particular action
in a particular state, or after a failure, it may
count back and determine the average amount of
time to failure after taking a particular action in a
particular state. Using these statistics, the learner
attempts to determine the best action for a given
state.

The above example is typical of many prob-
lems in � reinforcement learning (Sutton and
Barto 1998), where an agent interacts with its
environment and through that interaction, learns
to improve its performance in a task. Although
Samuel (1959) was the first to use a form of re-
inforcement learning in his checkers playing pro-
gram, Minsky (1961) first articulated the credit
assignment, as follows:

Using devices that also learn which events
are associated with reinforcement, i.e., reward,
we can build more autonomous “secondary
reinforcement” systems. In applying such methods
to complex problems, one encounters a serious
difficulty – in distributing credit for success of a
complex strategy among the many decisions that
were involved.

The BOXES algorithm of Michie and Cham-
bers (1968) learned to control a pole balancer
and performed credit assignment but the prob-
lem of credit assignment later became central
to reinforcement learning, particularly following
the work of Sutton (1984). Although credit as-
signment has become most strongly identified
with reinforcement learning, it may appear in any
learning system that attempts to assess and revise
its decision-making process.

Structural Credit Assignment

The setting for our learning system is that we
have an agent that interacts with an environment.
The environment may be a virtual one, as in
game playing, or it may be physical, as in a robot
performing some task. The agent receives input,
possibly through sensing devices, that allows it
to characterize the state of the world. Somehow,
the agent must map these inputs to appropriate re-
sponses. These responses may change the state of
the world. In reinforcement learning, we assume
that the agent will receive some reward signal
after an action or sequence of actions. Its job is
to maximize these rewards over time.

Structural credit assignment is associated with
generalization over the input space of the agent.
For example, a game player may have to re-
spond to a very large number of potential board
positions or a robot may have to respond to a
stream of camera images. It is infeasible to learn
a complete mapping from every possible input
to every possible output. Therefore, a learning
agent will typically use some means of grouping
input signals. In the case of the BOXES pole
balancer, Michie and Chambers discretized the
state space. The state is characterized by the cart’s
position and velocity and the pole’s angle and
angular velocity. These parameters create a four-
dimensional space, which was broken into three
regions (left, center, right) for the pole angle,
five for the angular velocity, and three for the
cart position and velocity. These choices were
arbitrary and other combinations also worked.

Having divided the input space into non-
overlapping regions, Michie and Chambers

http://dx.doi.org/10.1007/978-1-4899-7687-1_720

296 Credit Assignment

associated a push-left and push-right action with
each region, or box. The learning algorithm
maintains a score for each action and chooses
the next action based on that score. BOXES
was an early, and simple example, of creating
an internal representation for mapping inputs to
outputs. The problem with this method is that
the structure of the decision-making system is
fixed at the start and the learner is incapable
of changing the representation. This may be
needed if, for example, the subdivisions that
were chosen do not correspond to a real decision
boundary. A learning system that could adapt its
representation has an advantage, in this case.

The BOXES representation can be thought
of as a lookup table that implements a function
that maps an input to an output. The fixed lookup
table can be replaced by a function approxi-
mator that, given examples from the desired
function, generalizes from them to construct
an approximation of that function. Different
function approximation techniques can be used.
For example, Moore’s (1990) function approx-
imator was a � nearest-neighbor algorithm,
implemented using kd-tree to improve efficiency.
Other function approximation methods may also
be used, e.g., Albus’ CMAC algorithm (1975),
� locally weighted regression (Atkeson et al.
1997), � perceptrons Rosenblatt (1962), multi-
layer networks (Hinton et al. 1985), � radial basis
functions, etc. Structural credit assignment is also
addressed in the creation of hierarchical represen-
tations. See � hierarchical reinforcement learn-
ing. Other approaches to structural credit assign-
ment include �Value function approximation
(Bertsekas and Tsitsiklis 1996) and automatic
basis generation (Mahadevan 2009). See the entry
on �Gaussian Processes for examples of recent
Bayesian and kernel method based approaches to
solving the credit assignment problem.

Temporal Credit Assignment

In the pole balancing example described above,
the learning system receives a signal when the
pole has fallen over. How does it know which
actions leading up to the failure contributed to

the fall? The system will receive a high-level
punishment in the event of a failure or a reward
in tasks where there is a goal to be achieved. In
either case, it makes sense to assign the great-
est credit or blame to the most recent actions
and assign progressively less to the preceding
actions. Each time a learning trial is repeated,
the value of an action is updated so that if it
leads to another action of higher value, its weight
is increased. Thus, the reward or punishment
propagates back through the sequence of deci-
sions taken by the system. The credit assignment
problem was addressed by Michie and Chambers,
in the BOXES, algorithm but many other solu-
tions have subsequently been proposed. See the
entries on �Q-learning (Watkins 1989, 1992) and
� temporal difference learning (Barto et al. 1983;
Sutton 1984).

Although temporal credit assignment is
usually associated with reinforcement learning, it
also appears in other forms of learning. In learn-
ing by imitation or � behavioral cloning, an agent
observes the actions of another agent and tries to
learn from traces of behaviors. In this case, the
learner must judge which actions of the other
agent should receive credit or blame. Plan learn-
ing also encounters the same problem (Benson
1995; Wang 1996), as does � explanation-based
learning (Mitchell et al. 1986; Dejong and
Mooney 1986; Laird et al. 1987).

To illustrate the connection with explanation-
based learning, we use one of the earliest ex-
amples of this kind of learning, Mitchell and
Utgoff’s, LEX program (Mitchell et al. 1983).
The program was intended to learn heuristics for
performing symbolic integration. Given a mathe-
matical expression that included an integral sign,
the program tried to transform the expression
into one they did not. The standard symbolic
integration operators were known to the program
but not when it is best to apply them. The task of
the learning system was to learn the heuristics for
when to apply the operators. This was done by
experimentation. If no heuristics were available,
the program attempted a brute force search. If the
search was successful, all the operators applied,
leading to the success were assumed to be posi-
tive examples for a heuristic, whereas operators

http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

Credit Assignment 297

C

applied during a failed attempt became negative
examples. Thus, LEX performed a simple form
of credit assignment, which is typical of any
system that learns how to improve sequences of
decisions.

�Genetic algorithms can also be used to
evolve rules that perform sequences of actions
(Holland 1986). When situation-action rules
are applied in a sequence, we have a credit
assignment problem that is similar to when we
use a reinforcement learning. That is, how do we
know which rules were responsible for success
or failure and to what extent? Grefenstette
(1988) describes a bucket brigade algorithm in
which rules are given strengths that are adjusted
to reflect credit or blame. This is similar to
temporal difference learning except that in the
bucket brigade the strengths apply to rules rather
than states. See Classifier Systems and for a
more comprehensive survey of bucket brigade
methods, see Goldberg (1989).

Transfer Learning

After a person has learned to perform some task,
learning a new, but related, task is usually easier
because knowledge of the first learning episode
is transferred to the new task. Transfer Learning
is particularly useful for acquiring new concepts
or behaviors when given only a small amount for
training data. It can be viewed as a form of credit
assignment because successes or failures in pre-
vious learning episodes bias future learning. Reid
(2004, 2007) identifies three forms of � inductive
bias involved in transfer learning for rules: lan-
guage bias, which determines what kinds of rules
can be constructed by the learner; the search
bias, which determines the order in which rules
will be searched; and the evaluation bias, which
determines how the quality of the rules will be
assessed. Note that learning language bias is a
form of structural credit assignment. Similarly,
where rules are applied sequentially, evaluation
bias becomes temporal credit assignment. Taylor
and Stone (2009) give a comprehensive survey
of transfer in � reinforcement learning, in which
they describe a variety of techniques for trans-

ferring the structure of an RL task from one
case to another. They also survey methods for
transferring evaluation bias.

Transfer learning can be applied in many dif-
ferent settings. Caruana (1997) developed a sys-
tem for transferring inductive bias in � neural
networks performing multitask learning and more
recent research has been directed toward transfer
learning in �Bayesian Networks (Niculescu and
Caruana 2007).

See Transfer Learning and Silver et al. (2005)
and Banerjee et al. (2006) for recent work on
transfer learning.

Cross-References

�Bayesian Network
�Classifier Systems
�Genetic Programming
�Hierarchical Reinforcement Learning
� Inductive Bias
�Locally Weighted Regression for Control
�Nearest Neighbor
� Precision
�Radial Basis Function Networks
�Reinforcement Learning
�Temporal Difference Learning

Recommended Reading

Albus JS (1975) A new approach to manipulator
control: the cerebellar model articulation controller
(CMAC). J Dyn Syst Measur Control Trans ASME
97(3):220–227

Anderson CW, Miller WT (1991) A set of challenging
control problems. In: Miller W, Sutton RS, Werbos
PJ (eds) Neural networks for control. MIT Press,
Cambridge

Atkeson C, Schaal S, Moore A (1997) Locally
weighted learning. AI Rev 11:11–73

Banerjee B, Liu Y, Youngblood GM (eds) (2006)
Proceedings of the ICML workshop on “structural
knowledge transfer for machine learning, Pittsburgh

Barto A, Sutton R, Anderson C (1983) Neuron-like
adaptive elements that can solve difficult learning
control problems. IEEE Trans Syst Man Cybern
SMC-13:834–846

Benson S, Nilsson NJ (1995) Reacting, planning and
learning in an autonomous agent. In: Furukawa K,

http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_376
http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

298 Cross-Language Document Categorization

Michie D, Muggleton S (eds) Machine intelligence,
vol 14. Oxford University Press, Oxford

Bertsekas DP, Tsitsiklis J (1996) Neuro-dynamic pro-
gramming. Athena Scientific, Nashua

Caruana R (1997) Multitask learning. Mach Learn
28:41–75

Dejong G, Mooney R (1986) Explanation-based learn-
ing: an alternative view. Mach Learn 1:145–176

Goldberg DE (1989) Genetic algorithms in search, op-
timization and machine learning. Addison-Wesley
Longman Publishing, Boston

Grefenstette JJ (1988) Credit assignment in rule dis-
covery systems based on genetic algorithms. Mach
Learn 3(2–3):225–245

Hinton G, Rumelhart D, Williams R (1985) Learning
internal representation by back-propagating errors.
In: Rumelhart D, McClelland J, Group TPR (eds)
Parallel distributed computing: explorations in the
microstructure of cognition, vol 1. MIT Press, Cam-
bridge, pp 31–362

Holland J (1986) Escaping brittleness: the possibili-
ties of general-purpose learning algorithms applied
to parallel rule-based systems. In: Michalski RS,
Carbonell JG, Mitchell TM (eds) Machine learning:
an artificial intelligence approach, vol 2. Morgan
Kaufmann, Los Altos

Laird JE, Newell A, Rosenbloom PS (1987) SOAR:
an architecture for general intelligence. Artif Intell
33(1):1–64

Mahadevan S (2009) Learning representation and con-
trol in Markov decision processes: new frontiers.
Found Trends Mach Learn 1(4):403–565

Michie D, Chambers R (1968) Boxes: an experiment
in adaptive control. In: Dale E, Michie D (eds)
Machine intelligence, vol 2. Oliver and Boyd, Ed-
inburgh

Minsky M (1961) Steps towards artificial intelligence.
Proc IRE 49:8–30

Mitchell TM, Keller RM, Kedar-Cabelli ST (1986)
Explanation based generalisation: a unifying view.
Mach Learn 1:47–80

Mitchell TM, Utgoff PE, Banerji RB (1983) Learn-
ing by experimentation: acquiring and refining
problem-solving heuristics. In: Michalski R, Car-
bonell J, Mitchell T (eds) Machine kearning: an
artificial intelligence approach. Tioga, Palo Alto

Moore AW (1990) Efficient memory-based learning
for robot control. Ph.D. thesis, UCAM-CL-TR-209,
Computer Laboratory, University of Cambridge,
Cambridge

Niculescu-mizil A, Caruana R (2007) Inductive trans-
fer for Bayesian network structure learning. In:
Proceedings of the 11th international conference on
AI and statistics (AISTATS 2007), San Juan

Reid MD (2004) Improving rule evaluation using mul-
titask learning. In: Proceedings of the 14th interna-
tional conference on inductive logic programming,
Porto, pp 252–269

Reid MD (2007) DEFT guessing: using inductive
transfer to improve rule evaluation from limited

data. Ph.D. thesis, School of Computer Science and
Engineering, The University of New South Wales,
Sydney

Rosenblatt F (1962) Principles of neurodynamics: per-
ceptrons and the theory of Brain mechanics. Spartan
Books, Washington, DC

Samuel A (1959) Some studies in machine learning
using the game of checkers. IBM J Res Develop
3(3):210–229

Silver D, Bakir G, Bennett K, Caruana R, Pontil M,
Russell S et al (2005) NIPS workshop on “inductive
transfer: 10 years later”, Whistler

Sutton R (1984) Temporal credit assignment in re-
inforcement learning. Ph.D. thesis, Department of
Computer and Information Science, University of
Massachusetts, Amherst

Sutton R, Barto A (1998) Reinforcement learning: an
introduction. MIT Press, Cambridge

Taylor ME, Stone P (2009) Transfer learning for rein-
forcement learning domains: a survey. J Mach Learn
Res 10:1633–1685

Wang X, Simon HA, Lehman JF, Fisher DH (1996)
Learning planning operators by observation and
practice. In: Proceedings of the second interna-
tional conference on AI planning systems (AIPS-
94), Chicago, pp 335–340

Watkins C (1989) Learning with delayed rewards.
Ph.D. thesis, Psychology Department, University of
Cambridge, Cambridge

Watkins C, Dayan P (1992) Q-learning. Mach Learn
8(3–4):279–292

Cross-Language Document
Categorization

Document Categorization is the task consisting in
assigning a document to zero, one or more cate-
gories in a predefined taxonomy. Cross-language
document categorization describes the specific
case in which one is interested in automatically
categorize a document in a same taxonomy re-
gardless of the fact that the document is written
in one of several languages. For more details
on the methods used to perform this task see
� cross-lingual text mining.

Cross-Language Information
Retrieval

Cross-language information retrieval (CLIR) is
the task consisting in recovering the subset of a
document collection D relevant to a query q, in

http://dx.doi.org/10.1007/978-1-4899-7687-1_189

Cross-Lingual Text Mining 299

C

the special case in which D contains documents
written in more than one language. Generally, it
is additionally assumed that the subset of relevant
documents must be returned as an ordered list, in
decreasing order of relevance. For more details
on methods and applications see � cross-lingual
text mining.

Cross-Language Question
Answering

Question answering is the task consisting in find-
ing in a document collection the answer to a
question. CLCat is the specific case in which the
question and the documents can be in different
languages. For more details on the methods used
to perform this task see � cross-lingual text min-
ing.

Cross-Lingual Text Mining

Nicola Cancedda and Jean-Michel Renders
Xerox Research Centre Europe, Meylan, France

Definition

Cross-lingual text mining is a general category
denoting tasks and methods for accessing the
information in sets of documents written in sev-
eral languages, or whenever the language used to
express an information need is different from the
language of the documents. A distinguishing fea-
ture of cross-lingual text mining is the necessity
to overcome some language translation barrier.

Motivation and Background

Advances in mass storage and network connectiv-
ity make enormous amounts of information easily
accessible to an increasingly large fraction of
the world population. Such information is mostly

encoded in the form of running text which, in
most cases, is written in a language different from
the native language of the user. This state of
affairs creates many situations in which the main
barrier to the fulfillment of an information need
is not technological but linguistic. For example,
in some cases the user has some knowledge
of the language in which the text containing a
relevant piece of information is written, but does
not have a sufficient control of this language to
express his/her information needs. In other cases,
documents in many different languages must be
categorized in a same categorization schema, but
manually categorized examples are available for
only one language.

While the automatic translation of text from
a natural language into another (machine trans-
lation) is one of the oldest problems on which
computers have been used, a palette of other
tasks has become relevant only more recently, due
to the technological advances mentioned above.
Most of them were originally motivated by needs
of government Intelligence communities, but re-
ceived a strong impulse from the diffusion of the
World-Wide Web and of the Internet in general.

Tasks and Methods

A number of specific tasks fall under the term of
Cross-lingual text mining (CLTM), including:

• Cross-language information retrieval
• Cross-language document categorization
• Cross-language document clustering
• Cross-language question answering

These tasks can in principle be performed using
methods which do not involve any �Text Mining,
but as a matter of fact all of them have been
successfully approached relying on the statistical
analysis of multilingual document collections,
especially parallel corpora. While CLTM tasks
differ in many respect, they are all characterized
by the fact that they require to reliably measure
the similarity of two text spans written in differ-
ent languages. There are essentially two families
of approaches for doing this:

http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

300 Cross-Lingual Text Mining

1. In translation-based approaches one of the
two text spans is first translated into the lan-
guage of the other. Similarity is then computed
based on any measure used in mono-lingual
cases. As a variant, both text spans can be
translated in a third pivot language.

2. In latent semantics approaches, an abstract
vector space is defined based on the statisti-
cal properties of a parallel corpus (or, more
rarely, of a comparable corpus). Both text
spans are then represented as vectors in such
latent semantic space, where any similarity
measure for vector spaces can be used.

The rest of this entry is organized as follows:
first Translation-related approaches will be intro-
duced, followed by Latent-semantic approaches.
Finally, each of the specific CLTM tasks will be
discussed in turn.

Translation-Based Approaches

The simplest approach consists in using a
manually-written machine-readable bilingual
dictionary: words from the first span are looked
up and replaced with words in the second
language (see e.g., Zhang and Vines 2005). Since
typically dictionaries contain entries for “citation
forms” only (e.g., the singular for nouns, the
infinitive for verbs etc.), words in both spans are
preliminarily lemmatized, i.e., replaced with the
corresponding citation form. In all cases when
the lexica and morphological analyzers required
to perform lemmatization are not available, a
frequently adopted crude alternative consists
in stemming (i.e., truncating by taking away a
suffix) both the words in the span to be translated
and in the corresponding side in the lexicon.
Some languages (e.g., Germanic languages) are
characterized by a very productive compounding:
simpler words are connected together to form
complex words. Compound words are rarely in
dictionaries as such: in order to find them it is
first necessary to break compounds into their
elements. This can be done based on additional
linguistic resources or by means of heuristics, but
in all cases it is a challenging operation in itself.

If the method used afterward to compare the two
spans in the target language can take weights
into account, translations are “normalized” in
such a way that the cumulative weight of all
translations of a word is the same regardless
of the number of alternative translations. Most
often, the weight is simply distributed uniformly
among all alternative translations. Sometimes,
only the first translation for each word is kept, or
the first two or three.

A second approach consists in extracting a
bilingual lexicon from a parallel corpus instead
of using a manually-written one. Methods for
extracting probabilistic lexica look at the frequen-
cies with which a word s in one language was
translated with a word t to estimate the translation
probability p.t js/. In order to determine which
word is the translation of which other word in
the available examples, these examples are pre-
liminarily aligned, first at the sentence level (to
know what sentence is the translation of what
other sentence) and then at the word level. Several
methods for aligning sentences at the word level
have been proposed, and this problem is a lively
research topic in itself (see Brown et al. 1993 for
a seminal paper).

Once a probabilistic bilingual dictionary is
available, it can be used much in the same way
as human-written dictionaries, with the notable
difference that the estimated conditional proba-
bilities provide a natural way to distribute weight
across translations. When the example documents
used for extracting the bilingual dictionaries are
of the same style and domain as the text spans
to be translated, this can result in a significant
increase in accuracy for the final task, whatever
this is.

It is often the case that a parallel corpus
sufficiently similar in topic and style to the spans
to be translated is unavailable, or it is too small
to be used for reliably estimating translation
probabilities. In such cases, it can be possible to
replace or complement the parallel corpus with
a “comparable” corpus. A comparable corpus is
a pair of collections of documents, one in each
of the languages of interest, which are known to
be similar in content, although not the translation
of one another. A typical case might be two

Cross-Lingual Text Mining 301

C

sets of articles from corresponding sections of
different newspapers collected during a same
period of time. If some additional bilingual
seed dictionary (human-written or extracted
from a parallel corpus) is also available, then
the comparable corpus can be leveraged as
well: a word t is likely to be the translation
of a word s if it turns out that the words often
appearing near s are translations of the words
often appearing near t . Using this observation
it is thus possible to estimate the probability
that t is a valid translation of s even though
they are not contained in the original dictionary.
Most approaches proceed by associating with s a
context vector. This vector, with one component
for each word in the source language, can
simply be formed by summing together the
count histograms of the words occurring within
a fixed window centered in all occurrences of
s in the corpus, but is often constructed using
statistically more robust association measures,
such as mutual information. After a possible
normalization step, the context vector CV.s/ is
translated using the seed dictionary into the target
language. A context vector is also extracted from
the corpus for all target words t . Eventually, a
translation score between s and t is computed as
hT r.CV.s//; CV.t/i:

S.s; t/ D hCV.s/; T r.CV.t//i

D
X

.s0;t 0/2D
a.s; s0/a.t; t 0/;

where a is the association score used to construct
the context vector. While effective in many cases,
this approach can provide inaccurate similarity
values when polysemous words and synonyms
appear in the corpus. To deal with this problem,
Gaussier et al. (2004) propose the following ex-
tension:

S.s; t/ D
X

.s0;t 0/2D

 X
s0

a.s0s00/a.s; s00/

!

 X
t 00

a.t 0; t 00/a.t; t 00/

!
;

which is more robust in cases when the entries
in the seed bilingual dictionary do not cover all
senses actually present in the two sides of the
comparable corpus.

Although these methods for building bilingual
dictionaries can be (and often are) used in isola-
tion, it can be more effective to combine them.

Using a bilingual dictionary directly is not the
only way for translating a span from one language
into another. A second alternative consists in
using a machine translation (MT) system. While
the MT system, in turn, relies on a bilingual
dictionary of some sort, it is in general in the
position of leveraging contextual clues to select
the correct words and put them in the right order
in the translation. This can be more or less useful
depending on the specific task. MT systems fall,
broadly speaking, into two classes: rule-based
and statistical. Systems in the first class rely on
sets of hand-written rules describing how words
and syntactic structures should be translated. Sta-
tistical machine translation (SMT) systems learn
this mapping by performing a statistical analysis
of a parallel corpus. Some authors (e.g., Savoy
and Berger 2005) also experimented with com-
bining translation from multiple machine transla-
tion systems.

Latent Semantic Approaches

In CLTM, Latent Semantic approaches rely on
some interlingua (language-independent) repre-
sentation. Most of the time, this interlingua rep-
resentation is obtained by linear or non-linear sta-
tistical analysis techniques and more specifically
� dimensionality reduction methods with ad-hoc
optimization criterion and constraints. But, oth-
ers adopt a more manual approach by exploit-
ing multilingual thesauri or even multilingual
ontologies in order to map textual objects to-
wards a list – possibly weighted – of interlingua
concepts.

For any textual object (typically a document
or a section of document), the interlingua con-
cept representation is derived from a sequence of
operations that encompass:

http://dx.doi.org/10.1007/978-1-4899-7687-1_71

302 Cross-Lingual Text Mining

1. Linguistic preprocessing (as explained in
previous sections, this step amounts to
extract the relevant, normalized “terms”
of the textual objects, by tokenisation,
word segmentation/decompounding, lemma-
tisation/stemming, part-of-speech tagging,
stopword removal, corpus-based term
filtering, Noun-phrase extractions, etc.).

2. Semantic enrichment and/or monolingual di-
mensionality reduction.

3. Interlingua semantic projection.

A typical semantic enrichment method is the
generalized vector space model, that adds
related terms – or neighbour terms – to each
term of the textual object, neighbour terms
being defined by some co-occurrence measures
(for instance, mutual information). Semantic
enrichment can alternatively be achieved by using
(monolingual) thesaurus, exploiting relationships
such as synonymy, hyperonymy and hyponymy.
Monolingual dimensionality reduction consists
typically in performing some latent semantic
analysis (LSA), some form of principal
component analysis on the textual object/term
matrix. Dimensionality reduction techniques
such as LSA or their discrete/probabilistic
variants such as probabilistic semantic analysis
(PLSA) and latent dirichlet allocation (LDA)
offer to some extent a semantic robustness to deal
with the effects of polysemy/synonymy, adopting
a language-dependent concept representation in
a space of dimension much smaller than the size
of the vocabulary in a language.

Of course, steps (1) and (2) are highly
language-dependent. Textual objects written in
different languages will not follow the same
linguistic processing or semantic enrichment/
dimensionality reduction. The last step (3),
however, aims at projecting textual objects in
the same language-independent concept space,
for any source language. This is done by first
extracting these common concepts, typically
from a parallel corpus that offers a natural
multiple-view representation of the same objects.
Starting from these multiple-view observations,
common factors are extracted through the use
of canonical correlation analysis (CCA), cross-

language latent semantic analysis, their kernel-
ized variants (eg. Kernel-CCA) or their discrete,
probabilistic extensions (cross-language latent
dirichlet allocation, multinomial CCA, . . .). All
these methods try to discover latent factors that
simultaneously explain as much as possible
the “intra-language” variance and the “inter-
language” correlation. They differ in the choice
of the underlying distributions and how they
precisely define and combine these two criteria.
The following subsections will describe them in
more details.

As already emphasized, CLTM mainly relies
on defining appropriate similarities between
textual objects expressed in different languages.
Numerous categorization, clustering and retrieval
algorithms focus on defining efficient and
powerful measures of similarity between objects,
as strengthened recently by the development of
kernel methods for textual information access.
We will see that the (linear) statistical algorithms
used for performing steps (2) and (3) can
most of the time be embedded into one valid
(Mercer) kernel, so that we can very easily
obtain non-linear variants of these algorithms,
just by adopting some standard non-linear
kernels.

Cross-Language Semantic Analysis
This amounts to concatenate the vectorial rep-
resentation of each view of the objects of the
parallel collection (typically, objects are aligned
sentences), and then to perform standard singular
value decomposition of the global object/term
matrix. Equivalently, defining the kernel similar-
ity matrix between all pairs of multi-view objects
as the sum of the mono-lingual textual similarity
matrices, this amounts to perform the eigenvalue
decomposition of the corresponding kernel Gram
matrix, if a dual formulation is adopted. The num-
ber of eigenvalues/eigenvectors that are retained
to define the latent factors and the corresponding
projections is typically from several hundreds
of components to several thousands, still much
fewer than the original sizes of the vocabulary.
Note that this process does not really control
the formation of interlingua concepts: nothing

Cross-Lingual Text Mining 303

C

N1 N2

Nseg

W2W1

Z1 Z2

α

β1 β2

θ

Cross-Lingual Text Mining, Fig. 1 Latent dirichlet allo-
cation of a parallel corpus

prevents the method from extracting factors that
are linear combination of terms in one language
only.

Cross-Language Latent Dirichlet
Allocation
The extraction of interlingua components is re-
alised by using LDA to model the set of parallel
objects, by imposing the same proportion of com-
ponents (topics) for all views of the same object.
This is represented in Fig. 1.

LDA is performing some form of clustering,
with a predefined number of components (K)
and with the constraint that the two views of the
same object belongs to the clusters with the same
membership values. This results in 2.K compo-
nent profiles that are then used for “folding in”
(projecting) new documents by launching some
form of EM to derive their posterior probabilities
to belong to each of the language-independent
component. The similarity between two docu-
ments written in different languages is obtained
by comparing their posterior distribution over
these latent classes. Note that this approach could
easily integrate supervised topic information and
provides a nice framework for semi-supervised
interlingua concept extraction.

Cross-Language Canonical Correlation
Analysis

The Primal Formulation
CCA is a standard statistical method to perform
multi-block multivariate analysis, the goal being
to find linear combinations of variables for each
block (i.e., each language) that are maximally
correlated. In other words, CCA is able to enforce
the commonality of latent concept formations
by extracting maximally correlated projections.
Starting from a set of paired views of the same
objects (typically, aligned sentences of a parallel
corpus) in languages L1 and L2, the algebraic for-
mulation of this optimization problem leads to a
generalized eigenvalue problem of size .n1Cn2/,
where n1 and n2 are the sizes of the vocabularies
in L1 and L2 respectively. For obvious scalability
reasons, the dual – or kernel – formulation (of
size N , the number of paired objects in the
training set) is often preferred.

Kernel Canonical Correlation Analysis
Basically, Kernel Canonical Correlation Analy-
sis amounts to do CCA on some implicit, but
more complex feature space and to express the
projection coefficients as linear combination of
the training paired objects. This results in the
dual formulation, which is a generalized eigen-
value/vector problem of size 2N , that involves
only the monolingual kernel gram matrices K1

and K2 (matrices of monolingual textual similar-
ities between all pairs of objects in the training
set in language L1 and L2 respectively). Note
that it is easy to show that the eigenvalues go by
pairs: we always have two symmetrical eigenval-
ues C� and ��. This kernel formulation has the
advantage to include any text specific prior prop-
erties in the kernel (e.g., use of N-gram kernels,
word-sequence kernels, and any semantically-
smoothed kernel). After extraction of the first
k generalized eigenvalues/eigenvectors, the sim-
ilarity between any pair of test objects in lan-
guages L1 and L2 can be computed by using
projection matrices composed of extracted eigen-
vector as well as the (monolingual) kernels of the
test objects with the training objects.

304 Cross-Lingual Text Mining

Regularization and Partial Least Squares
Solution
When the number of training examples .N / is
less than n1 and n2 (the dimensions of the mono-
lingual feature spaces), the eigenvalue spectrum
of the KCCA problem has generally two null
eigenvalues (due to data centering), .N � 1/
eigenvalues in C1 and .N � 1/ eigenvalues in
�1, so that, as such, the KCCA problem only
results in trivial solutions and is useless. When
using kernel methods, the case (N < n1, n2) is
frequent, so that some regularization scheme is
needed. One way of realizing this regularization
is to resort to finding the directions of maxi-
mum covariance (instead of correlation): this can
be considered as a partial least squares (PLS)
problem, whose formulation is very similar to
the CCA problem. Adopting a mixed criterion
CCA/PLS (trying to maximize a combination of
covariance and correlation between projections)
turns out to both avoid over-fitting (or spurious
solutions) and to enhance numerical stability.

Approximate Solutions
Both CCA and KCCA suffer from a lack of
scalability, due to the fact the complexity of
generalized eigenvalue/vector decomposition is
O.N 3/ for KCCA or O.min.n1, n2/

3/ for CCA.
As it can be shown that performing a complete
KCCA (or KPLS) analysis amounts to do first
complete PCA’s, and then a linear CCA (or PLS)
on the resulting new projections, it is obvious that
we could reduce the complexity by working on a
reduced-rank approximation (incomplete KPCA)
of the kernel matrices. However, the implicit
projections derived from incomplete KPCA may
be not optimal with respect to cross-correlation
or covariance criteria. Another idea to decrease
the complexity is to perform some incomplete
Cholesky decomposition of the (monolingual)
kernel matrices K1 and K 2 (that is equivalent
to partial Gram-Schmit orthogonalisation in the
feature space): K1 D G1. Gt

1 and K2 D G2. Gt
2,

with Gi of rank k N . Considering Gi as the
new representation of the training data, KCCA
now reduces to solving a generalized eigenvalue
problem of size 2.k.

Specific Applications

The previous sections illustrated a number of dif-
ferent ways of solving the core problem of cross-
language text mining: quantifying the similarity
between two spans of text in different languages.
In this section we turn to describing some actual
applications relying on these methods.

Cross-Language Information Retrieval
(CLIR)
Given a collection of documents in several lan-
guages and a single query, the CLIR problem
consists in producing a single ranking of all doc-
uments according to their relevance to the query.
CLIR is in particular useful whenever a user
has some knowledge of the languages in which
documents are written, but not enough to express
his/her information needs in those languages by
means of a precise query. Sometimes CLIR en-
gines are coupled with translation tools to help
the user access the content of relevant documents
written in languages unknown to him/her. In
this case document collections in an even larger
number of languages can be effectively queried.

It is probably fair to say that the vast major-
ity of the CLIR systems use a translation-based
approach. In most cases it is the query which is
translated in all languages before being sent to
monolingual search engines. While this limits the
amount of translation work that needs be done,
it requires doing it on-line at query time. More-
over, when queries are short it can be difficult
to translate them correctly, since there is little
context to help identifying the correct sense in
which words are used. For these reasons several
groups also proposed translating all documents
at indexing time instead. Regardless of whether
queries or documents are translated, whenever
similarity scores between (possibly translated)
queries and (possibly translated) documents are
not directly comparable, all methods then face
the problem of merging multiple monolingual
rankings in a single multilingual ranking.

Research in CLIR and cross-language
question answering (see below) has been

Cross-Lingual Text Mining 305

C

significantly stimulated by at least three
government-sponsored evaluation campaigns:

• The NII Test Collection for IR Systems
(NTCIR) (http://research.nii.ac.jp/ntcir/),
running yearly since 1999, focusing on Asian
languages (Japanese, Chinese, Korean) and
English.

• The Cross-Language Evaluation Forum
(CLEF) (http://www.clef-campaign.org),
running yearly since 2000, focusing on
European languages.

• A cross-language track at the Text Retrieval
Conference (TREC) (http://trec.nist.gov/),
which was run until 2002, focused on
querying documents in Arabic using queries
in English.

The respective websites are ideal starting points
for any further exploration on the subject.

Cross-Language Question Answering
(CLQA)
Question answering is the task of automatically
finding the answer to a specific question in a
document collection. While in practice this vague
description can be instantiated in many different
ways, the sense in which the term is mostly
understood is strongly influenced by the task
specification formulated by the National Institute
of Science and Technology (NIST) of the United
States for its TREC evaluation conferences (see
above). In this sense, the task consists in identify-
ing a text snippet, i.e., a substring, of a predefined
maximal length (e.g., 50 characters, or 200 char-
acters) within a document in the collection con-
taining the answer. Different classes of questions
are considered:

• Questions around facts and events.
• Questions requiring the definition of people,

things and organizations.
• Questions requiring as answer lists of people,

objects or data.

Most proposals for solving the QA problem pro-
ceed by first identifying promising documents

(or document segments) by using information
retrieval techniques treating the question as a
query, and then performing some finer-grained
analysis to converge to a sufficiently short snip-
pet. Questions are classified in a hierarchy of
possible “question types.” Also, documents are
preliminarily indexed to identify elements (e.g.,
person names) that are potential answers to ques-
tions of relevant types (e.g., “Who” questions).

Cross-language question answering (CLQA)
is the extension of this task to the case where
the collection contains documents in a language
different than the language of the question. In
this task a CLIR step replaces the monolingual
IR step to shortlist promising documents. The
classification of the question is generally done in
the source language.

Both CLEF and NTCIR (see above) organize
cross-language question answering comparative
evaluations on an annual basis.

Cross-Language Categorization (CLCat)
and Clustering (CLCLu)
Cross-language categorization tackles the prob-
lem of categorizing documents in different lan-
guages in a same categorization scheme.

The vast majority of document categorization
systems rely on machine learning techniques to
automatically acquire the necessary knowledge
(often referred to as a model) from a possibly
large collection of manually categorized docu-
ments. Most often the model is based on fre-
quency counts of words, and is thus intrinsi-
cally language-dependent. The most direct way
to perform categorization in different languages
would consist in manually categorizing a suffi-
cient amount of documents in all languages of
interest and then train a set of independent cat-
egorizer. In some cases, however, it is impractical
to manually categorize a sufficient number of
documents to ensure accurate categorization in
all languages, while it can be easier to identify
bilingual dictionaries or parallel (or comparable)
corpora for the language pairs and in the ap-
plication domain of interest. In such cases it is
then preferable to obtain manually categorized
documents only for a single language A and use
them to train a monolingual categorizer. Any of

http://research.nii.ac.jp/ntcir/
http://www.clef-campaign.org
http://trec.nist.gov/

306 Cross-Validation

the translation-based approaches described above
can then be used to translate a document origi-
nally in language B – or most often its represen-
tation as a bag of words– into language A. Once
the document is translated, it can be categorized
using the monolingual A system.

As an alternative, latent-semantics approaches
can be used as well. An existing parallel corpus
can be used to identify an abstract vector space
common to A and B . The manually categorized
documents in A can then be represented in this
space, and a model can be learned which operates
directly on this latent-semantic representation.
Whenever a document in B needs be catego-
rized, it is first projected in the common seman-
tic space and then categorized using the same
model.

All these considerations carry unchanged
to the cross-language clustering task, which
consists in identifying subsets of documents in
a multilingual document collection which are
mutually similar to one another according to
some criterion. Again, this task can be effectively
solved by either translating all documents into
a single language or by learning a common se-
mantic space and performing the clustering task
there.

While CLCat and Clustering are relevant tasks
in many real-world situations, it is probably fair
to say that less effort has been devoted to them
by the research community than to CLIR and
CLQA.

Recommended Reading

Brown PE, Della Pietra VJ, Della Pietra SA,
Mercer RL (1993) The mathematics of statistical
machine translation: parameter estimation. Comput
Linguist 12(2):263–311

Gaussier E, Renders J-M, Matveeva I, Goutte C,
Déjean H (2004) A geometric view on bilingual
lexicon extraction from comparable corpora. In:
Proceedings of the 42nd annual meeting of the as-
sociation for computational linguistics, Barcelona.
Association for Computational Linguistics, Morris-
town

Savoy J, Berger PY (2005) Report on CLEF-2005
evaluation campaign: monolingual, bilingual and
GIRT information retrieval. In: Proceedings of the

cross-language evaluation forum (CLEF). Springer,
Heidelberg, pp 131–140

Zhang Y, Vines P (2005) Using the web for translation
disambiguation. In: Proceedings of the NTCIR-5
workshop meeting, Tokyo

Cross-Validation

Definition

Cross-validation is a process for creating a distri-
bution of pairs of training and � test sets out of a
single � data set. In cross validation the data are
partitioned into k subsets, S1 : : : Sk , each called
a fold. The folds are usually of approximately the
same size. The learning algorithm is then applied
k times, for i D 1 to k, each time using the union
of all subsets other than Si as the � training set
and using Si as the � test set.

Cross-References

�Algorithm Evaluation
�Leave-One-Out Cross-Validation

Cumulative Learning

Pietro Michelucci1 and Daniel Oblinger2

1Strategic Analysis, Inc., Arlington, VA, USA
2DARPA/IPTO, Arlington, VA, USA

Synonyms

Continual learning; Lifelong learning; Sequential
inductive transfer

Definition

Cumulative learning (CL) exploits knowledge
acquired on prior tasks to improve learning per-
formance on subsequent related tasks. Consider,

http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_469
http://dx.doi.org/10.1007/978-1-4899-7687-1_171
http://dx.doi.org/10.1007/978-1-4899-7687-1_100264
http://dx.doi.org/10.1007/978-1-4899-7687-1_100425

Cumulative Learning 307

C

for example, a CL system that is learning to play
chess. Here, one might expect the system to learn
from prior games concepts (e.g., favorable board
positions, standard openings, end games, etc.)
that can be used for future learning. This is in
contrast to base learning (Vilalta and Drissi 2002)
in which a fixed learning algorithm is applied to
a single task and performance tends to improve
only with more exemplars. So, in CL there tends
to be explicit reuse of learned knowledge to
constrain new learning, whereas base learning
depends entirely upon new external inputs.

Relevant techniques for CL operate over mul-
tiple tasks, often at higher levels of abstraction,
such as new problem space representations, task-
based selection of learning algorithms, dynamic
adjustment of learning parameters, and iterative
analysis and modification of the learning algo-
rithms themselves. Though actual usage of this
term is varied and evolving, CL typically con-
notes sequential � inductive transfer. It should be
noted that the word “inductive” in this connota-
tion qualifies the transfer of knowledge to new
tasks, not the underlying learning algorithms.

Related Terminology

The terms “meta-learning” and “learning to
learn” are sometimes used interchangeably with
CL. However each of these concepts has a
specific relationship to CL.

�Meta-learning (Brazdil et al. 2009; Vilalta
and Drissi 2002) involves the application
of learning algorithms to meta-data, which
are abstracted representations of input data
or learning system knowledge. In the case
that abstractions of system knowledge are
themselves learning algorithms, meta-learning
involves assessing the suitability of these
algorithms for previous tasks and, on that basis,
selecting algorithms for new tasks (see entry
on “�Metalearning”). In general, the sharing of
abstracted knowledge across tasks in a CL system
implies the use of meta-learning techniques.
However, the converse is not true. Meta-learning
can and does occur in learning systems that do

not accumulate and transfer knowledge across
tasks.

Learning to learn is a synonym for inductive
transfer. Thus, learning to learn is more general
than CL. Though it specifies the application of
knowledge learned in one domain to another,
it does not stipulate whether that knowledge is
accumulated and applied sequentially or shared
in a parallel learning context.

Motivation and Background

Traditional � supervised learning approaches
require large datasets and extensive training
in order to generalize to new inputs in a
single task. Furthermore, traditional (non-CL)
� reinforcement learning approaches require
tightly constrained environments to ensure a
tractable state space. In contrast, humans are
able to generalize across tasks in dynamic
environments from brief exposure to small
datasets. The human advantage seems to derive
from the ability to draw upon prior task and
context knowledge to constrain hypothesis
development for new tasks. Recognition of this
disparity between human learning and traditional
machine learning had led to the pursuit of
methods that seek to emulate the accumulation
and exploitation of task-based knowledge that is
observed in humans. A coarse evolution of this
work is depicted in Fig. 1.

History

Advancements in CL have resulted from two
classes of innovation: the development of tech-
niques for � inductive transfer and the integration
of those techniques into autonomous learning
systems.

Alan Turing (1950) was the first to propose
a cumulative learning system. His 1950 paper is
best remembered for the imitation game, later
known as the Turing test. However, the final
sections of the paper address the question of how
a machine could be made sufficiently complex to
be able to pass the test. He posited that program-

http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_138

308 Cumulative Learning

Sequential/
Hybrid:

CUMULATIVE
LEARNING

Supervised Learning

Inductive
Bias

Inductive
Transfer

Reinforcement LearningReinforcement Learning

Supervised LearningSupervised Learning

Parallel:
MULTI-TASK LEARNING

Cumulative Learning, Fig. 1 Evolution of cumulative learning

ming it would be too difficult a task. Therefore,
it should be instructed as one might teach a child,
starting with simple concepts and working up to
more complex ones.

Banerji (1964) introduced the use of predi-
cate logic as a description language for machine
learning. Thus, Banerji was one of the earliest
advocates of what would later become � ILP.
His concept description language allowed the use
of background knowledge and therefore was an
extensible language. The first implementation of
a cumulative learning system based on Banerjis
ideas was Cohens CONFUCIUS (Cohen 1978;
Cohen and Sammut 1982). In this work, an in-
structor teaches the system concepts that are
stored in a long-term memory. When examples
of a new concept are seen, their descriptions are
matched against stored concepts, which allow
the system to re-describe the examples in terms
of the background knowledge. Thus, as more
concepts are accumulated, the system is capable
of describing complex objects more compactly
than if it had not had the background knowl-
edge. Compact representations generally allow
complex concepts to be learned more efficiently.
In many cases, learning would be intractable
without the prior knowledge. See the entries on
� Inductive Logic Programming, which describe
the use of background knowledge further.

Independent of the research in symbolic learn-
ing, much of the � inductive transfer research
that underlies CL took root in � artificial
neural network research, a traditional approach
to � supervised learning. For example, Abu-
Mostafa (1990) introduced the notion of reducing
the hypothesis space of a neural network by

introducing “hints” either as hard-wired additions
to the network or via examples designed to
teach a particular invariance. The task of
a neural network can be thought of as the
determination of a function that maps exemplars
into a classification space. So, in this context,
hints constitute an articulation of some aspect
of the target mapping function. For example,
if a neural network is tasked with mapping
numbers into primes and composites, one “hint”
would be that all even numbers (besides 2) are
composite. Leveraging such a priori knowledge
about the mapping function may facilitate
convergence on a solution. An inherent limitation
to neural networks, however, is their immutable
architecture, which does not lend itself to
the continual accumulation of knowledge.
Consequently, Ring (1991) introduced a neural
network that constructs new nodes on demand
in a reinforcement learning context in order
to support ongoing hierarchical knowledge
acquisition and transfer. In this model, nodes
called “bions” correspond simultaneously to the
enactment and perception of a single behavior. If
two bions are activated in sequence repeatedly,
a new bion is created to join the coincident pair
and represent their collective functionality.

Contemporaneously, Pratt et al. (1991) inves-
tigated the hypothesis that knowledge acquired
by one neural network could be used to assist
another neural network learn a related task. In
the speech recognition domain, they trained three
separate networks, each corresponding to speech
segments of a different length, such that each
network was optimized to learn certain types of
phonemes. They then demonstrated that a di-

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

Cumulative Learning 309

C

rect transfer of information encoded as network
weights from these three specialized networks
to a single, combined speech recognition net-
work resulted in a tenfold reduction in training
epochs for the combined network compared with
the number of training epochs required when
no knowledge was transferred. This was one
of the first empirical results in neural network-
based transfer learning. Caruana (1993) extended
this work to demonstrate the performance ben-
efits associated with the simultaneous transfer
of � inductive bias in a “Multitask Learning”
(MTL) methodology. In this work, Caruana hy-
pothesized that training the same neural network
simultaneously on related tasks would naturally
induce additional constraints on learning for each
individual task. The intuition was that converging
on a mapping in support of multiple tasks with
shared representations might best reveal aspects
of the input that are invariant across tasks, thus
obviating within-task regularities, which might
be less relevant to classification. Those empiri-
cal results are supported by Baxter (1995) who
proved that the number of examples required by
a representation learner for learning a single task
is an inverse linear function of the number of
simultaneous tasks being learned.

Though the innovative underpinnings of
inductive transfer that critically underlie CL
evolved in a supervised learning context, it
was the integration of those methods with
classical reinforcement learning that has led to
current models of CL. Early integration of this
type comes from Thrun and Mitchell (1995),
who applied an extension of explanation-based
learning (EBL), called explanation-based neural
networks (EBNN) (Mitchell and Thrun 1993),
to an agent-based “lifelong learning framework.”
This framework provides for the acquisition of
different control policies for different environ-
ments and reward functions. Since the robot
actuators, sensors, and the environment (largely)
remain invariant, this framework supports the use
of knowledge acquired from one control problem
to be applied to another. By using EBNN to allow
learning from previous control problems to con-
strain learning on new control problems, learning
is accelerated over the lifetime of the robot.

More recently, Silver and Mercer (2002) intro-
duced a hybrid model that involves a combination
of parallel and sequential inductive transfer in an
autonomous agent framework. The so-called task
rehearsal method (TRM) uses MTL to combine
new training inputs with relevant exemplars that
are generated from prior task knowledge. Thus,
inductive bias is achieved by training the neural
networks on new tasks while simultaneously re-
hearsing learned task knowledge.

Structure of the Learning System

CL is characterized by systems that use prior
knowledge to bias future learning. The canonical
interpretation is that knowledge transfer occurs at
the task level. Although this description encom-
passes a broad research space, it is not boundless.
In particular, CL systems must be able to (1)
retain knowledge and (2) use that knowledge to
restrict the hypothesis space for new learning.
Nonetheless, learning systems can vary widely
across numerous orthogonal dimensions and still
meet these criteria.

Toward a CL Specification

Recognizing the empirical utility of a more spe-
cific delineation of CL systems, Silver and Poirier
(2005) introduced a set of functional require-
ments, classification criteria, and performance
specifications that characterize more precisely the
scope of machines capable of lifelong learning.
Any system that meets these requirements is
considered a machine lifelong learning (ML3)
system. A general CL architecture that conforms
to the ML3 standard is depicted in Fig. 2.

Two basic memory constructs are typical
of CL systems. Long term memory (LTM) is
required for storing domain knowledge (DK) that
can be used to bias new learning. Short term
memory (STM) provides a working memory for
building representations and testing hypotheses
associated with new task learning. Most of the
ML3 requirements specify the interplay of these
constructs.

http://dx.doi.org/10.1007/978-1-4899-7687-1_390

310 Cumulative Learning

Cumulative Learning,
Fig. 2 Typical CL system

Assessment Process

STMLTM Environment

State

State

Extracted
DK

Relevant DK

Comparison Process

LTM and STM are depicted in Fig. 2, along
with a comparison process, an assessment pro-
cess, and the learning environment. In this model,
the comparison process evaluates the training
input in the context of LTM to determine the
most relevant domain knowledge that can be used
to constrain short term learning. The comparison
process also determines the weight assigned to
domain knowledge that is used to bias short term
learning. Once the rate of performance improve-
ment on the primary task falls below a thresh-
old the assessment process compares the state
of STM to the environment to determine which
domain knowledge to extract and store in LTM.

Classification of CL Systems

The simplicity of the architecture shown in Fig. 2
belies the richness of the feature space for CL
systems. The following classification dimensions
are derived largely from the ML3 specification.
This list includes both qualitative and quantitative
dimensions. They are presented in three over-
lapping categories: architectural features, char-
acteristics of the knowledge base, and learning
capabilities.

Architecture
The following architectural dimensions for a CL
system range from paradigm choices to low-level
interface considerations.

Learning paradigm – The learning paradigm(s)
may include supervised learning (e.g., neural
network, SVM, ILP, etc.), unsupervised learning
(e.g., clustering), reinforcement learning (e.g.,
automated agent), or some combination thereof.
Figure 2 depicts a general architecture with
processes that are common across these learning
paradigms, and which could be elaborated to
reflect the details of each.

Task order – CL systems may learn tasks se-
quentially (Thrun and Mitchell 1995), in parallel
(e.g., Caruana 1993), or via a hybrid methodol-
ogy (e.g., TRM Silver and Mercer 2002). One
hybrid approach is to engage in practice (i.e., re-
visiting prior learned tasks). Transferring knowl-
edge between learned tasks through practice may
serve to improve generalization accuracy. Task
order would be reflected in the sequence of events
within and among process arrows in the Fig. 2
architecture. For example, a system may alternate
between processing new exemplars and “practic-
ing” with old, stored exemplars.

Transfer method – Knowledge transfer can
also be representational or functional. Functional
transfer provides implicit pressure from related
training exemplars. For example, the environ-
mental input in Fig. 2 may take the form of
training exemplars drawn randomly from data
representing two related tasks, such that learning
to classify exemplars from one task implicitly
constrains learning on the other task. Repre-
sentational knowledge transfer involves the di-
rect or indirect (Pratt et al. 1991) assignment of

Cumulative Learning 311

C

a hypothesis representation. A direct inductive
transfer entails the assignment of an original
hypothesis representation, such as a vector of
trained neural network activation weights. This
might take the form of a direct injection to LTM
in Fig. 2. Indirect transfer implies that some level
of abstraction analysis has been applied to the
hypothesis representation prior to assignment.

Learning stages – A learning system may
implement learning in a single stage or in a series
of stages. An example of a two-stage system is
one that waits to initiate the long-term storage
of domain knowledge until after primary task
learning in short-term memory is complete. Like
task order, learning stages would be reflected in
the sequence of events within and among process
arrows in the Fig. 2 architecture. But in this case,
ordering pertains to the manner in which learning
is staged across encoding processes.

Interface cardinality – The interface cardinal-
ity can be fixed or variable. Fixing the number of
inputs and outputs has the advantage of providing
a consistent interface without posing restrictions
on the growth of the internal representation.

Data type – The input and output data types
can be fixed or variable. A type-flexible system
can produce both categorical and scalar predic-
tions.

Scalability – CL systems may or may not
scale on a variety of dimensions including inputs,
outputs, training examples, and tasks.

Knowledge
This category pertains to the long-term storage of
learned knowledge. Thus, the following CL di-
mensions characterize knowledge representation,
storage, and retrieval.

Knowledge representation – Stored knowl-
edge can manifest as functional or representa-
tional. Functional knowledge retention involves
the storage of specific exemplars or parameter
values, which tends to be more accurate, whereas
representational knowledge retention involves the
storage of hypotheses derived from training on
exemplars, which has the advantage of storage
economy.

Retention efficacy – The efficacy of long term
retention varies across CL systems. Effective re-

tention implies that only domain knowledge with
an acceptable level of accuracy is retained so
that errors aren’t propagated to future hypotheses.
A related consideration is whether or not the con-
solidation of new domain knowledge degrades
the accuracy of current or prior hypotheses.

Retention efficiency – The retention efficiency
of long term memory can vary according to both
economy of representation and computationally
efficiency.

Indexing method – The input to the compari-
son process used to select appropriate knowledge
for biasing new learning may simply be exem-
plars (as provided by LTM in Fig. 2) or may take
a representational form (e.g., a vector of neural
network weights).

Indexing efficiency – CL systems vary in terms
of the speed and accuracy with which they can
identify related prior knowledge that is suitable
for inductive transfer during short term learning.
The input to this selection process is the indexing
method.

Meta-knowledge – CL systems differentially
exhibit the ability to abstract, store, and utilize
meta-knowledge, such as characteristics of the in-
put space, learning system parameter values, etc.

Learning
While all of the dimensions listed herein impact
learning, the following dimensions correspond to
specific learning capabilities or learning perfor-
mance metrics.

Agency – The agency of a learning system is
the degree of sophistication exhibited by its top-
level controller. For example a learning system
may be on the low end of the agency continuum
if it always applies one predetermined learning
method to one task or on the high end if it selects
among many learning methods as a function of
the learning task. One might imagine, for exam-
ple, two process diagrams such as the one de-
picted in Fig. 2, that share the same LTM, but are
otherwise distinct and differentially activated by
a governing controller as a function of qualitative
aspects of the input.

Utility – Domain knowledge acquisition can
be deliberative in the sense that the learning
system decides which hypotheses to incorporate

312 Cumulative Learning

based upon their estimated utility, or reflexive, in
which case all hypotheses are stored irrespective
of utility considerations.

Task awareness – Task awareness character-
izes the system’s ability to identify the beginning
and end of a new task.

Bias modulation – A CL system may have the
ability to determine the extent to which short-
term learning would benefit from inductive trans-
fer and, on that basis, assign a relevant weight.
The depth of this analysis can vary and might
consider factors such as the estimated sample
complexity, number of exemplars, the generaliza-
tion accuracy of retained knowledge, and related-
ness of retained knowledge.

Learning efficacy – A measure of learning
efficacy is derived by comparing generalization
performance in the presence and absence of an
inductive bias. Learning is considered effective
when the application of an inductive bias results
in greater generalization performance on the pri-
mary task than when the bias is absent.

Learning efficiency – Similarly, learning ef-
ficiency is assessed by comparing the computa-
tional time needed to generate a hypothesis in
the presence and absence of an inductive bias.
Lower computational time in the presence of bias
signifies greater learning efficiency.

The Research Space

Table 1 summarizes the classification dimen-
sions, providing an overview of the research
space, an evaluative framework for assessing
and contrasting CL approaches, and a generative
framework for identifying new areas of explo-
ration. In addition, checked items in the Values
column indicate ML3 guidance. Specifically, an
ideal ML3 system would correspond functionally
to the called-out items and performance criteria.
However, Silver and Poirier (2005) allude to the
fact that it would be nigh impossible to generate
a strictly compliant ML3 system since some
of the recommended criteria do not coexist
easily. For example, effective and efficient
learning are mutually incompatible because they
require different forms of knowledge transfer.

Nonetheless, a CL system that falls within scope
of the majority of the ML3 criteria would be well-
positioned to exhibit lifelong learning behavior.

Future Directions
Emergent work (Oblinger 2006; Swarup et al.
2006) in instructable computing has given rise to
a new CL paradigm that is largely ML3 compli-
ant and involves high degrees of task awareness
and agency sophistication. Swarup et al. (2006)
describe an approach in which domain knowl-
edge is represented in the form of structured
graphs. Short term (primary task) learning oc-
curs via a genetic algorithm, after which do-
main knowledge is extracted by mining frequent
subgraphs. The accumulated domain knowledge
forms an ontology to which the learning sys-
tem grounds symbols as a result of structured
interactions with instructional agents. Subsequent
interactions occur using the symbol system as a
shared lexicon for communication between the
instructor and the learning system. Knowledge
acquired from these interactions bootstrap future
learning.

The Bootstrapped Learning framework pro-
posed by Oblinger (2006) provides for hierarchi-
cal, domain-independent learning that, like the ef-
fort described above, is also premised on a model
of building concepts from structured lessons. In
this case, however, there is no a priori knowledge
acquisition. Instead, some “common” knowledge
about the world is provided explicitly to the
learning system, and then lessons are taught by a
human teacher using the same natural instruction
methods that would be used to teach another
human. Rather than requiring a specific learning
algorithm, this framework provides a context for
evaluating and comparing learning algorithms.
It includes a knowledge representation language
that supports syntactic, logical, procedural, and
functional knowledge, an interaction language
for communication among the learning system,
instructor, and environment, and an integration
architecture that evaluates, processes, and re-
sponds to interaction language communiqués in
the context of existing knowledge and through
the selective utilization of available learning al-
gorithms.

Cumulative Learning 313

C

Cumulative Learning, Table 1 CL system dimensions

Category Dimension Values (ML3 guidance is indicated by fXg)
Architecture Learning paradigm Supervised learning

Reinforcement learning
Unsupervised learning
fXg Hybrid

Task order Sequential
Parallel
fXg Revisit (practice)
Hybrid

Transfer method Functional
Representational – direct
Representational – indirect

Learning stages fXg Single (computational retention efficiency)
Multiple

Interface cardinality fXg Fixed
Variable

Data type Fixed
Variable

Scalability fXg Inputs
fXg Outputs
fXg Exemplars
fXg Tasks

Knowledge Representation Functional
Representational – disjoint
fXg Representational – continuous

Retention efficacy fXg Improves prior task performance
fXg Improves new task performance

Retention efficiency fXg Space (memory usage)
fXg Time (computational processing)

Indexing method fXg Deliberative – functional
fXg Deliberative – representational
Reflexive

Indexing efficiency fXg Time < O.nc/; c > 1.n D tasks/
Meta-knowledge fXg Probability distribution of input space

Learning curve
Error rate

Learning Agency Single learning method
Task-based selection of learning method

Utility Single learning method
Task-based selection of learning method

Task awareness Task boundary identification (begin/end)
Bias modulation fXg Estimated sample complexity

fXg Number of task exemplars
fXg Generalization accuracy of retained knowledge
fXg Relatedness of retained knowledge

Learning efficacy fXg Generalization j bias � generalization j no bias
Learning efficiency fXg Time j bias � time j no bias

The learning performance advantages antici-
pated by these proposals for instructional com-
puting seem to stem from the economy of rep-

resentation afforded by hierarchical knowledge
combined with the tremendous learning bias im-
posed by explicit instruction.

314 Curse of Dimensionality

Recommended Reading

Abu-Mostafa Y (1990) Learning from hints in neural
networks (invited). J Complex 6(2):192–198

Banerji RB (1964) A language for the description of
concepts. General Syst 9:135–141

Baxter J (1995) Learning internal representations. In:
(COLT): proceeding of the workshop on computa-
tional learning theory, Santa Cruz. Morgan Kauf-
mann

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2009)
Metalearning applications to data mining. Springer

Caruana R (1993) Multitask learning: a knowledge-
based source of inductive bias. In: Proceedings
of the tenth international conference on machine
learning, University of Massachusetts, Amherst,
pp 41–48

Caruana R (1996) Algorithms and applications for
multitask learning. In: Machine learning: proceed-
ings of the 13th international conference on machine
learning (ICML 1996), Bari. Morgan Kauffmann,
pp 87–95

Cohen BL (1978) A theory of structural concept forma-
tion and pattern recognition. Ph.D. thesis, Depart-
ment of Computer Science, The University of New
South Wales

Cohen BL, Sammut CA (1982) Object recognition
and concept learning with CONFUCIUS. Pattern
Recogn J 15(4):309–316

Mitchell T (1980) The need for biases in learning
generalizations. Rutgers TR CBM-TR-117

Mitchell TM, Thrun SB (1993) Explanation-based
neural network learning for robot control. In:
Hanson CG (eds) Advances in neural information
processing systems, vol 5. Morgan-Kaufmann, San
Francisco, pp 287–294

Nilsson NJ (1996) Introduction to machine learning: an
early draft of a proposed textbook, p 12. Online at
http://ai.stanford.edu/�nilsson/MLBOOK.pdf. Ac-
cessed on 22 July 2010

Oblinger D (2006) Bootstrapped learning proposer in-
formation pamphletfor broad agency announcement
07-04. Online at http://fs1.fbo.gov/EPSData/ODA/
Synopses/4965/BAA07-04/BLPIPfinal.pdf

Pratt LY, Mostow J, Kamm CA (1991) Direct transfer
of learned information among neural networks. In:
Proceedings of the ninth national conference on
artificial intelligence (AAAI-91), Anaheim, pp 584–
589

Ring M (1991) Incremental development of com-
plex behaviors through automatic construction of
sensory-motor hierarchies. In: Proceedings of the
eighth international workshop (ML91), San Mateo

Silver D, Mercer R (2002) The task rehearsal method
of life-long learning: overcoming impoverished
data. In: Cohen R, Spencer B (eds) Advances in arti-
ficial intelligence, 15th conference of the Canadian
society for computational studies of intelligence (AI
2002), Calgary, 27–29 May 2002. Lecture notes

in computer science, vol 2338. Springer, London,
pp 90–101

Silver D, Poirier R (2005) Requirements for machine
lifelong learning. JSOCS technical report TR-2005-
009, Acadia University

Swarup S, Lakkaraju K, Ray SR, Gasser L (2006)
Symbol grounding through cumulative learning. In:
Vogt P et al (eds) Symbol grounding and beyond:
proceedings of the third international workshop on
the emergence and evolution of linguistic communi-
cation, Rome. Springer, Berlin, pp 180–191

Swarup S, Mahmud MMH, Lakkaraju K, Ray SR
(2005) Cumulative learning: towards designing cog-
nitive architectures for artificial agents that have a
lifetime. Technical report UIUCDCS-R-2005-2514

Thrun S (1998) Lifelong learning algorithms. In: Thrun
S, Pratt LY (eds) Learning to learn. Kluwer Aca-
demic, Norwell

Thrun S, Mitchell T (1995) Lifelong robot learning.
Robot Auton Syst 15:25–46

Turing AM (1950) Computing machinery and intelli-
gence. Mind Mind 59(236):433–460

Vilalta R, Drissi Y (2002) A perspective view and
survey of meta-learning. Artif Intell Rev 18:77–95

Curse of Dimensionality

Eamonn Keogh and Abdullah Mueen
University of California-Riverside, Riverside,
CA, USA

Definition

The curse of dimensionality is a term introduced
by Bellman to describe the problem caused by
the exponential increase in volume associated
with adding extra dimensions to Euclidean space
(Bellman 1957).

For example, 100 evenly-spaced sample points
suffice to sample a unit interval with no more than
0.01 distance between points; an equivalent sam-
pling of a 10-dimensional unit hypercube with
a grid with a spacing of 0.01 between adjacent
points would require 1020 sample points: thus,
in some sense, the 10D hypercube can be said
to be a factor of 1018 “larger” than the unit
interval.

Informally, the phrase curse of dimensionality
is often used to simply refer to the fact that
one’s intuitions about how data structures, sim-

http://ai.stanford.edu/~nilsson/MLBOOK.pdf
http://fs1.fbo.gov/EPSData/ODA/Synopses/4965/BAA07-04/BLPIPfinal.pdf
http://fs1.fbo.gov/EPSData/ODA/Synopses/4965/BAA07-04/BLPIPfinal.pdf

Curse of Dimensionality 315

C

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Dimension

r =
Volume of the hypersphere
Volume of the hypercube r

Curse of Dimensionality, Fig. 1 The ratio of the vol-
ume of the hypersphere enclosed by the unit hypercube.
The most intuitive example, the unit square and unit

circle, are shown as an inset. Note that the volume of
the hypersphere quickly becomes irrelevant for higher
dimensionality

ilarity measures, and algorithms behave in low
dimensions do typically generalize well to higher
dimensions.

Background

Another way to envisage the vastness of high-
dimensional Euclidean space is to compare the
size of the unit sphere with the unit cube as the
dimension of the space increases: as the dimen-
sion increases. As we can see in Fig. 1, the unit
sphere becomes an insignificant volume relative
to that of the unit cube. In other words, almost all
of the high-dimensional space is far away from
the center.

In research papers, the phrase curse of di-
mensionality is often used as shorthand for one
of its many implications for machine learning
algorithms. Examples of these implications in-
clude:

• �Nearest neighbor searches can be made sig-
nificantly faster for low-dimensional data by
indexing the data with an R-tree, a KD-tree,
or a similar spatial access method. However,
for high-dimensional data all such methods
degrade to the performance of a simple linear
scan across the data.

• For machine learning problems, a small in-
crease in dimensionality generally requires a
large increase in the numerosity of the data, in

order to keep the same level of performance
for regression, clustering, etc.

• In high-dimensional spaces, the normally in-
tuitive concept of proximity or similarity may
not be qualitatively meaningful. This is be-
cause the ratio of an object’s nearest neighbor
over its farthest neighbor approaches one for
high-dimensional spaces (Aggarwal 2001). In
other words, all objects are approximately
equidistant from each other.

There are many ways to attempt to mitigate the
curse of dimensionality, including � feature se-
lection and � dimensionality reduction. However,
there is no single solution to the many difficulties
caused by the effect.

Recommended Reading

Aggarwal CC, Hinneburg A, Keim DA (2001) On
the surprising behavior of distance metrics in high
dimensional spaces. In: ICDT, London, pp 420–434

Bellman RE (1957) Dynamic programming. Princeton
University Press, Princeton

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh
E (2008) Querying and mining of time series data:
experimental comparison of representations and dis-
tance measures. In: Proceedings of the VLDB en-
dowment, Auckland, vol 1, pp 1542–1552

The major database (SIGMOD, VLDB, PODS), data
mining (SIGKDD, ICDM, SDM), and machine
learning (ICML, NIPS) conferences typically fea-
ture several papers which explicitly address the
curse of dimensionality each year

http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_71

D

Data Augmentation

�Data Enrichment

Data Cleaning

�Data Cleansing

Data Cleansing

Synonyms

Data cleaning; Data reconciliation; Data
scrubbing

Data cleansing is the process of detecting and
correcting (or removing) corrupt or inaccurate
records from data.

Cross-References

�Data Preparation

Data Enrichment

Synonyms

Data augmentation; Data integration

Data enrichment is the process of adding to an
existing data collection. This commonly involves
sourcing of additional information about the data
points on which data are already held.

Cross-References

�Data Preparation

Data Integration

�Data Enrichment

Data Linkage

�Record Linkage

Data Matching

�Record Linkage

Data mining on Text

�Text Mining

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_979
http://dx.doi.org/10.1007/978-1-4899-7687-1_100096
http://dx.doi.org/10.1007/978-1-4899-7687-1_100515
http://dx.doi.org/10.1007/978-1-4899-7687-1_100101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100517
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_100514
http://dx.doi.org/10.1007/978-1-4899-7687-1_100516
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_979
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

318 Data Preparation

Data Preparation

Zahraa S. Abdallah1, Lan Du1, and
Geoffrey I. Webb2

1Faculty of Information Technology, Monash
University, Clayton, Melbourne, VIC, Australia
2Faculty of Information Technology, Monash
University, Victoria, Australia

Abstract

Before data can be analyzed, they must be or-
ganized into an appropriate form. Data prepa-
ration is the process of manipulating and orga-
nizing data prior to analysis.

Data preparation is typically an iterative
process of manipulating raw data, which is
often unstructured and messy, into a more
structured and useful form that is ready for
further analysis. The whole preparation pro-
cess consists of a series of major activities
(or tasks) including data profiling, cleansing,
integration, and transformation.

Synonyms

Data preprocessing; Data wrangling

Motivation and Background

Data are collected for many purposes, not nec-
essarily with machine learning or data mining in
mind. Consequently, there is often a need to iden-
tify and extract relevant data for the given analytic
purpose. Every learning system has specific re-
quirements about how data must be presented for
analysis, and hence data must be transformed to
fulfill those requirements. Further, the selection
of the specific data to be analyzed can greatly
affect the models that are learned. For these
reasons, data preparation is a critical part of any
machine learning exercise and is often the most
time-consuming part of any nontrivial machine
learning or data mining project.

In most cases, the preparation process con-
sists of dozens of transformations and needs to

be repeated several times. Despite advances in
technologies for working with data, each of those
transformations may involve much-handcrafted
work and can consume a significant amount of
time and effort. Thus, working with huge and di-
verse data remains a challenge. It is often agreed
that data wrangling/preparation is the most te-
dious and time-consuming aspect of data analy-
sis. It has become a big bottleneck or “iceberg”
for performing advanced data analysis, particu-
larly on big data. A recent article in the New York
Times For Big-Data Scientists reported that the
whole process of data wrangling could account
up to 80 % of the time in the analysis cycle. In
other words, there is only a small fraction of
time for data analysts and scientists to do anal-
ysis work. According to the data science report
Data science report, published by Crown in 2015,
messy and disorganized data are the number one
obstacle holding data scientists back. The same
study reports that 70 % of a data scientist’s time
is spent in cleaning data.

Processes and Techniques

The manner in which data are prepared varies
greatly depending upon the analytic objectives
for which they are required and the specific learn-
ing techniques and software by which they are to
be analyzed. The following are a number of key
processes and techniques.

Data Profiling: Sourcing, Selecting, and
Auditing Appropriate Data
It is necessary to review the data that are already
available, assess their suitability to the task at
hand, and investigate the feasibility of sourcing
new data collected specifically for the desired
task. It is also important to assess whether there
are sufficient data to realistically obtain the de-
sired machine learning outcomes.

Data quality should also be investigated, as
data sets are often of low quality. Those re-
sponsible for manual data collection may have
little commitment to assuring data accuracy and
may take shortcuts in data entry. For example,
when default values are provided by a system,
these tend to be substantially overrepresented

http://dx.doi.org/10.1007/978-1-4899-7687-1_100100
http://dx.doi.org/10.1007/978-1-4899-7687-1_100102

Data Preparation 319

D

Data Preparation, Fig. 1 Data quality measures
(Adapted from Müller and Freytag 2005)

in the collected data. Automated data collection
processes might be faulty, resulting in inaccurate
or incorrect data. The precision of a measuring
instrument may be lower than desirable. Data
may be out-of-date and no longer correct.

Assuring and improving data quality are two
of the primary reasons for data preprocessing.
There are common criteria to measure and evalu-
ate the quality of data, which can be categorized
into two main elements, accuracy and uniqueness
(Müller and Freytag 2005), as explained in Fig. 1.

Accuracy is described as an aggregated value
over the quality criteria: integrity, consistency,
and density. Intuitively this describes the extent
to which the data are an exact, uniform, and
complete representation of the mini-world: the
aspects of the world that the data describe. We
describe each accuracy criterion as follows:

• Integrity: An integral data collection con-
tains representations of all the entities in the
mini-world and only of those. Integrity re-
quires both completeness and validity.
– Completeness: Complete data give a

comprehensive representation of the
mini-world and contain no missing
values. We achieve completeness within
data cleansing by correcting anomalies
and not just deleting them. It is also
possible that additional data are generated,
representing existing entities that are
currently unrepresented in the data. A
problem with assessing completeness is
that you do not know what you do not
know. As a result, there are no known
gold standard data, which can be used as a
reference to measure completeness.

– Validity: Data are valid when there are no
constraints violated. There are numerous
mechanisms to increase validity including
mandatory fields, enforcing unique values,
and data schema/structure.

• Consistency: This quality concerns syntac-
tic anomalies as well as contradictions. The
main challenge concerning data consistency is
choosing which data source you trust for re-
liable agreement among data across different
sources.
– Schema conformance: This is especially

true for the relational database systems
where the adherence of domain formats
relies on the user.

– Uniformity: This is directly related to ir-
regularities.

• Density: This criterion concerns the quotient
of missing values in the data. There still can be
nonexistent values or properties that have to
be represented by null values having the exact
meaning of not being known.

The above three criteria of integrity, consistency,
and density collectively represent the accuracy
measure.

The other major quality measure that is also
crucial to measure data quality is uniqueness.
Uniqueness is satisfied when the data do not
contain any duplicates.

Timeliness is another criterion that also has
been considered for data quality. This criterion
refers to the currency of the data that keeps it up
to date.

More information about data quality can be
found in Dasu and Johnson (2003) and Müller
and Freytag (2005).

Data Cleansing
Where the data contain noise or anomalies, it may
be desirable to identify and remove outliers and
other suspect data points or take other remedial
action. See � noise.

Data cleansing is defined as the process of
detecting and correcting (or removing) corrupt
or inaccurate records from a record set, table, or
database. Data cleansing can also be referred to as
data cleaning, data scrubbing, or data reconcilia-

http://dx.doi.org/10.1007/978-1-4899-7687-1_957

320 Data Preparation

Data Preparation, Fig. 2 Data cleansing process (Adapted from Müller and Freytag 2005)

tion. More precisely, the process of data cleansing
could be explained as a four-stage process:

1. Define and identify errors in data such as
incompleteness, incorrectness, inaccuracy, or
irrelevancy.

2. Clean and rectify these errors by replacing,
modifying, or deleting them.

3. Document error instances and error types.
4. Measure and verify to see whether the cleans-

ing meets the user’s specified tolerance limits
in terms of cleanliness.

Data Anomalies
Data are symbolic representations of information,
i.e., facts or entities from parts of the world,
called a mini-world, depicted by symbolic val-
ues. Imperfections in the data set correspond to
differences between an ideal (i.e., error-free) data
set (DI) and the real data (DR). In this context,
anomalousness is a property of data that renders
an erroneous representation of the mini-world.

The term data anomaly describes any distor-
tion of data resulting from the data collection
process. From this perspective, anomalies include
duplication, inconsistency, missing values, out-
liers, noisy data, or any kind of distortion that can
cause data imperfections.

Anomalies can be classified at a high level into
three categories:

• Syntactic anomalies: describe characteristics
concerning the format and values used
for the representation of the entities.
Syntactic anomalies include lexical errors,
domain format errors, syntactical errors, and
irregularities.

• Semantic anomalies: hinder the data
collection from being a comprehensive
and nonredundant representation of the
mini-world. These types of anomalies include

integrity constraint violations, contradictions,
duplicates, and invalid tuples.

• Coverage anomalies: decrease the number
of entities and entity properties from the mini-
world that is represented in the data collection.
Coverage anomalies are categorized as
missing values and missing tuples.

Therefore, it is clear that data anomalies can
take a number of different forms, each with a
different range of analytical consequences.

Data Cleansing Process
Data cleansing is an iterative process that consists
of the four consecutive steps (Müller and Freytag
2005), as depicted in Fig. 2:

1. Data auditing: This first step mainly identi-
fies the types of anomalies that reduce data
quality. Data auditing checks the data using
validation rules that are prespecified and then
creates a report of the quality of the data and
its problems. We often apply some statistical
tests in this step for examining the data.

2. Workflow specification: The next step is to
detect and eliminate anomalies by a sequence
of operations on the data. The information
collected from data auditing is then used to
create a data-cleaning plan. It identifies the
causes of the dirty data and plans steps to
resolve them.

3. Workflow execution: The data-cleaning plan
is executed, applying a variety of methods on
the data set.

4. Post-processing and controlling: The post-
processing or control step involves exami-
nation of the workflow results and performs
exception handling for the data mishandled by
the workflow.

Dealing with Missing Values
One major task in data cleansing is dealing
with missing values. It is important to determine

Data Preparation 321

D

whether the data have missing values and, if so,
to ensure that appropriate measures are taken to
allow the learning system to handle this situation
See �missing attribute values.

Handling data that contain missing values is
crucial for the data cleansing process and data
wrangling in general. In real-life data, most of
existing data sets contain missing values that
were not introduced or were lost in the recording
process for many reasons.

Handling Outliers
An outlier is another type of data anomaly that re-
quires attention in the cleansing process. Outliers
are data that do not conform to the overall data
distribution.

Outliers can be seen from two different per-
spectives; first, they might be seen as glitches
in the data. Alternatively, they might be also
seen as interesting elements that could potentially
represent significant elements in the data. For
example, outliers in sales records for a store
might reflect a successful marketing campaign.
Therefore, to classify data as outliers, we must
define what the normal behavior of the data is
and therefore how different or significant the
outlier is relative to normal behavior. There might
be different normal behaviors for data and thus
different classes of outliers. From the above def-
inition, we can see that as the normality in data
differs, various classes of outliers can be detected.
To be able to do that, we need to formalize both
the normality in the data and inconsistency of the
outliers. Read more about handling outliers for
data preprocessing in Han et al. (2011).

Data Enrichment/Integration
Existing data may be augmented through data
enrichment. This commonly involves sourcing
of additional information about the data points
on which data are already held. For example,
customer data might be enriched by obtaining
socioeconomic data about individual customers.
The imported data must be integrated with the
other data for a unified view of all data sources.

Data integration is a crucial task in data prepa-
ration. Combining data from different sources
is not trivial especially when dealing with large
amounts of data and heterogeneous sources. Data

are typically presented in different forms (struc-
tured, semi-structured, or unstructured) as well as
from different sources (web, database) that could
be stored locally or distributed. Moreover, struc-
tured data coming from a single source might
have different schemas. The combination of these
variations is not an easy task.

Integration of data brings many opportunities,
yet it also comes with various challenges. We
highlight the most relevant challenges below:

1. Data are heterogeneous: Data integration in-
volves a combination of data coming from
different sources that have been developed
independently of each other and thus vary in
data format. Each source will have its own
schemas, definition of objects, and structure of
data (tables, XML, unstructured text, etc.).

2. The number of sources: Data integration is
already a challenge for a small number of
sources, but the challenges are exacerbated
when the number of sources grows (such as
Web-scale data integration).

3. Object identity and separate schemas: Dif-
ferences exist both on the level of individual
objects and the schema level. Every source
classifies their data according to taxonomies
pertinent to a certain domain.

4. Time synchronization: Each source might
have a different time window over which data
have been captured, different granularities
at which events are modeled (daily, weekly,
annually), and frequency at which they are
updated. Synchronization of these differences
and making time-sensitive data compatible are
another challenge.

5. Dealing with legacy data: There are still
important data stored in a legacy form such
as IMS, spreadsheets, and ad hoc structures.
Combining legacy data with other modern
data structures such as XML is a challenging
task.

6. Abstraction levels: Different data sources
might provide data at incompatible levels of
abstraction. When combining data, differences
in levels of specificity must be resolved.

7. Data quality: Data are often erroneous, and
combining data often aggravates the problem.
Erroneous data has a potentially devastating

http://dx.doi.org/10.1007/978-1-4899-7687-1_954

322 Data Preparation

impact on the overall quality of the integration
process.

The integration process can be divided into
two main subtasks, schema integration and data
integration, where each has its own techniques
and challenges. Schema integration concerns a
holistic view across data sources. It focuses on
formats, structures, and identification of objects
and their level of abstraction. This includes
semantic mapping, matching, resolving naming
conflicts, and entity resolution. The contents of
data add another clue to the integration process.

Even with data from different sources that
have identical schemas, integration on the
data level is still essential. Data integration
deals with different types of problems that
concern the data itself rather than the overall
structure as in schema integration. Common
data integration problems are duplication in
data and inconsistency. Correlated or duplicated
values/attributes may increase both size and
complexity of the data. Resolving conflicts at
the data level enhances the overall performance
of the integration process.

Data Transformation
It is frequently necessary to transform data from
one representation to another. There are many
reasons for changing representations:

• To generate symmetric distributions
instead of the original skewed distributions.

• Transformation improves visualization of
data that might be tightly clustered relative to
a few outliers.

• Data are transformed to achieve better inter-
pretability.

• Transformations are often used to improve
the compatibility of the data with assump-
tions underlying a modeling process, for
example, to linearize (straighten) the relation
between two variables whose relationship is
nonlinear. Some of the data mining algorithms
require the relationship between data to be
linear.

In the following, we will discuss different types
of transformation whereby each data point xi is

replaced with a transformed value yi D f.xi/,
where f is the transformation function. Many
techniques are applied for data transformation.
Each technique has its own purpose and depen-
dency on the nature of data. Some of the major
transformations are discussed below.

Numeric to Numeric Transformation

Normalization and Rescaling
It is usually the case that raw data are not in a suit-
able form to be processed by machine learning
and data mining techniques. Data normalization
is the process of transforming raw data values
to another form with properties that are more
suitable for modeling and analysis. The normal-
ization process focuses on scaling data in terms
of range and distribution. Therefore, it consists of
two main processes:

• Min-max normalization projects the original
range of data onto a new range. Very
common normalization intervals are [0,1]
and [�1,1]. This normalization method
is very useful when we apply a machine
learning or data mining approach that utilizes
distance. For example, in k-nearest neighbor
methods, using un-normalized values might
cause attributes whose values have greater
magnitudes to dominate over other attributes.
Therefore, normalization aims to standardize
magnitudes across variables. A useful
application for min-max scaling is image
processing where pixel intensities have to be
normalized to fit within a certain range (i.e.,
0–255 for the RGB color range). Also, typical
neural network algorithms (ANN) require data
that is on a 0–1 scale. Normalization provides
the same range of values for each of the inputs
to the model.

• Z-score normalization (also referred to as
standardization) is a normalization method
that transforms not only the data magnitude
but also the dispersion. Some data mining
methods are based on the assumption
that data follow a certain distribution.
For example, methods such as logistic
regression, SVM, and neural network when

Data Preparation 323

D

using gradient descent/ascent optimization
methods assume data follow a Gaussian
distribution. Otherwise, the approaches will
be ill conditioned and might not guarantee
a stable convergence of weight and biases.
Other approaches such as linear discriminant
analysis (LDA), principal component analysis
(PCA), and kernel principal component
analysis require features to be on the same
scale to find directions that maximize the
variance (under the constraints that those
directions/eigenvectors/principal components
are orthogonal). Z-score normalization
overcomes the problem of variables with
different units as it transforms variables so
that they are centered on 0 with a standard
deviation of 1.

• Decimal scaling is another type of scaling
transformation where the decimal place of
a numeric value is shifted so the maximum
absolute value will be always less than 1.

Linear Transformation
Linear transformations preserve linear relation-
ships within data. A function f(.) results in a
linear transformation if and only if for all values
x and y in the original representation, f(x)Cf(y)
= f(xCy) and f(x)�f(y) = f(x�y). Examples of
a linear transformation are transforming Celsius
to Fahrenheit, miles to kilometers, and inches
to centimeters. All linear transformations follow
the standard linear regression formula to convert
variables linearly.

Many other transformations are not linear.
A nonlinear transformation changes (increases
or decreases) linear relationships between vari-
ables and, thus, changes the correlation between
variables. Examples of nonlinear transformations
are square root, raising to a power, logarithm,
and any of the trigonometric functions. In the
following, we discuss some nonlinear transfor-
mation methods.

Power Transformation (Tukey’s Ladder of
Powers)
Tukey describes a way of re-expressing variables
using a power transformation (Tukey 1977). The
aim of this transformation is to improve the lin-

earity between variables. When we consider two
variables (x and y), transformation can be applied
to one variable or both of them depending on
the relationship between the two variables. This
kind of transformation fits when the relationship
between the two variables is monotonic and has
a single bend. When the data are represented as
pairs of (x,y), Tukey has expressed data transfor-
mation as

ya D ˇ0 C ˇ1 C xb:

The choice of a and b decides on the trans-
formation type in the relationship between x and
y. Figure 3 shows a visual rule of thumb that
has been proposed by John Tukey. The following
diagram gives us an insight to understand which
transformations are likely to work with different
types of data.

We explain Tukey’s ladder rule as follows:
Suppose the data patterns follow a similar curve
as the blue line in Q1; thus the data could be
transformed by going up the ladder for x, y, or
both. If the data pattern is shaped similar to that
shown in Q2, then we should try to transform the
data by going the down-ladder for x and/or up-
ladder for y. Similar procedures can be applied
for the other two quarters. Figure 4 explains the
ladder of power for variable y. The transformation
is stronger when the power value is away from
1 (the original data) in both directions (up and
down).

Choosing the Right Numeric
Transformation
There is no definite answer to what is the best
transformation method to use for a particular
data set. The choice is very data dependent and
requires an understanding of the domain as well
as the data distribution. Trial and error for the
common transformation methods may also be
required. Table 1 summarizes the main transfor-
mation methods.

Nominal to Numeric Transformation
All the aforementioned methods transform and
re-express numerical variables. However, the
transformation of nominal variables is equally

324 Data Preparation

Data Preparation, Fig. 3
Tukey’s ladder rule

Data Preparation, Fig. 4
The ladder of power

important, especially for machine learning and
data mining methods that only accept numerical
values such as SVM and ANN. Assume that
we have a nominal variable x with N different
nominal values. There are two approaches to
transform x into a numeric variable:

1. The first and simplest approach is to map
nominal values to the integers 1 to N . Al-

though simple, this method has two major
drawbacks:
• Integer substitution may impose an order-

ing that does not actually exist in the origi-
nal data.

• The integer value might be used as part
of the calculation in the mining algorithm
giving an incorrect meaning of weights
based on the assigned values.

Data Preparation 325

D

Data Preparation, Table 1 Summary of key transformation methods

Method Pros Cons

Standard linear re-
gression

–Preserves the relationship between variables –No actual transformation occurred

Reciprocal
transformation

–Making small values bigger and big values
smaller
–Reducing the effect of outliers

–Not applicable for zero

Log
transformation

–Good for right skewed data
–log10(x) is especially good at handling
higher-order powers of 10 (e.g.,
1000,100,000)

–Not applicable for zero and
negative values (constant can be
added to overcome this)

Root
transformation

–Simple counts
–Good for right skewed data

–Not applicable for negative values (constant
can be added to overcome this)

Logit
transformation

–Works with proportions and percents –Not applicable for 0 and 1 values

Cube root transfor-
mation

–Can be applied on negative and 0 values –Not effective in transformation as long model

2. The other main approach is to first binarize
the variable (see 3.7 Binarization) and then
map each of the N new binary attributes to
the integer values 0 and 1. This approach is
generally viewed as safer than the first and
hence is more widely used.

Propositionalization
Some data sets contain information expressed
in a relational format, describing relationships
between objects in the world. While some learn-
ing systems can accept relations directly, most
operate only on attribute-value representations.
Therefore, a relational representation must be re-
expressed in attribute-value form. In other words,
a representation equivalent to first-order logic
must be converted to a representation equivalent
only to propositional logic.

Discretization
Discretization transforms continuous data into a
discrete form. This is useful in many cases for
better data representation, data volume reduction,
better data visualization, and representing data
at various levels of granularity for data analysis.
Data discretization approaches are categorized
as supervised, unsupervised, bottom-up, or top-
down. Approaches for data discretization include
binning, entropy based, nominal to numeric,

3-4-5 rule, and concept hierarchy. See �Disc-
retization.

Binarization
Some systems cannot process multivalued cate-
gorical variables. This limitation can be circum-
vented by binarization, a process that converts
a multivalued categorical variable into multiple
binary variables, one new variable to represent
the presence or absence of each value of the
original variable.

Conversely, multiple mutually exclusive bi-
nary variables might be converted into a single
multivalued categorical variable.

Granularity
It is important to select appropriate levels of
granularity for analysis. For example, when dis-
tinguishing products, should a gallon of low-
fat milk be described as a dairy product, and
hence not distinguished from any other type of
dairy product; be described as low-fat milk, and
hence not distinguished from other brands and
quantities; or be uniquely distinguished from all
other products?

Analysis at the lowest level of granularity
makes possible identification of potentially valu-
able fine-detail regularities in the data but may
make it more difficult to identify high-level rela-
tionships.

http://dx.doi.org/10.1007/978-1-4899-7687-1_221

326 Data Preparation

Dimensionality Reduction

As many learning systems have difficulty with
high-dimension data, it may be desirable to
project the data onto a lower-dimensional space.
Popular approaches to doing so include principal
component analysis and kernel methods.

Feature Engineering

It is often desirable to create derived values. For
example, the available data might contain fields
for purchase price, costs, and sale price. The
relevant quantity for analysis might be profit,
which must be computed from the raw data.

Feature engineering can be considered as
means for dimensionality reduction also, by
replacing the original features by a smaller
number of derived features.

See �Feature Selection and �Feature Con-
struction in Text Mining.

Sampling

Much of the theory on which learning systems are
based assumes that the training data are randomly
sampled from the population about which the
user wishes to learn a model. However, much
historical data contains sampling biases, for ex-
ample, data that were easy to collect or were
considered interesting for some other purpose.
It is important to consider whether the available
data are sufficiently representative of the future
data to which a learned model is to be applied.

In all sampling methods, the aim is to select a
sample S containing N instances from the entire
data D. Each method models the relationship
between a population and a sample with an un-
derlying mathematical process. We discuss in the
following some of these methods:

Random Sampling
In this method, S is selected randomly from
D with a probability of 1/N for any instance
in D to be selected. Simple random sampling
may have very poor performance in the presence
of skew in data. There are two main variants
of simple random sampling, with replacement

(SRSWR) and without replacement (SRSWOR).
For sampling with replacement, the instance that
is drawn from the population is replaced, and
therefore it might be chosen again. For sampling
without replacement, each instance that is drawn
fromD is removed, and hence S must contain N
distinct instances.

Simple random sampling is usually easy to
implement and to understand. However, it might
cause loss of accuracy if applied to skewed data
by failing to include sufficient data to accurately
represent the tail of the distribution. The simple
random sample might also result in substantial
variance across samples.

Cluster Sampling
This method approximates the percentage of each
class (or subpopulation of interest) in the overall
data set; then it draws a simple random sample
from each cluster. In this method, we might
not have a complete list of population members
(i.e., not all data available). However, a list of
groups or “clusters” of this population is available
and complete. That means the clusters could be
incomplete, but a list of them is complete. There-
fore, cluster sampling is a cost-efficient sampling
method, as it does not require data to be complete.
A drawback for cluster sampling is the possible
poor representation of the diversity in clusters.

Stratified Sampling
If D is divided into mutually disjoint parts called
strata, obtaining a simple random sample from
each stratum generates a stratified sample.

Stratified sampling has a number of advan-
tages. First, inferences can be made about specific
subgroups for more efficient statistical estimates.
Since each stratum is treated as an independent
population, different sampling approaches can be
applied to different strata. Second, this method
will never result in lower efficiency than the sim-
ple random sample, provided that each stratum
is proportional to the group’s size in the popu-
lation. Finally, it increases data readability as it
represents individual preexisting strata within a
population rather than the overall population.

Stratified sampling is complex to implement
and estimate. It also can be sensitive to parame-
ters such as selection criteria and minimum group

http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100

Data Wrangling 327

D

size. Finally, stratified sampling techniques are
generally used when the population is heteroge-
neous, or dissimilar, where certain homogeneous,
or similar, subpopulations can be isolated (strata).
Thus, this method will not be useful when there
are no homogeneous subgroups. Read more about
sampling techniques in Garcı́a et al. (2015).

Balanced sampling is a special case of strati-
fied sampling where the strata correspond to the
classes and the sample drawn from each strata is
proportional to the class’s size in the population.

Cross-References

�Anomaly Detection
�Binning
�Data Set
�Dimensionality Reduction
�Discretization
�Evolutionary Feature Selection and Construc-

tion
� Feature Construction in Text Mining
� Feature Selection
� Feature Selection in Text Mining
�Kernel Methods
�Measurement Scales
�Missing Values
�Noise
� Principal Component Analysis
� Propositionalization
�Record Linkage

Recommended Reading

Barnett V, Lewis T (1994) Outliers in statistical data,
3rd edn. Wiley series in probability and mathe-
matical statistics. Applied probability and statistics.
Wiley, Chichester/New York

Crown (2015) Data science report. http://visit.
crowdflower.com/2015-data-scientist-report.html

Dasu T, Johnson T (2003) Exploratory data mining and
data cleaning, vol 479. Wiley, New York

Data science report (2014) http://visit.crowdflower.
com/2015-data-scientist-report.html

Doan A, Halevy A, Ives Z (2012) Principles of data
integration. Morgan Kaufmann, Waltham

For Big-Data Scientists (2014) ‘Janitor Work’ Is Key
Hurdle to Insights. http://www.nytimes.com/2014/
08/18/technology/for -big-data -scientists-hurdle-to-
insights-is-janitor-work.html? r=0&module=Arrows
Nav&contentCollection = Technology&action = key

press®ion=FixedLeft&pgtype=article (The NYT
article by Steve Lohr)

Garcı́a S, Luengo J, Herrera F (2015) Data preprocess-
ing in data mining. Springer, Cham

Han J, Pei J, Kamber M (2011) Data mining: concepts
and techniques. Elsevier, Burlington

Müller H, Freytag J-C (2005) Problems, methods, and
challenges in comprehensive data cleansing. Profes-
soren des Inst. Für Informatik, Berlin

Pyle D (1999) Data preparation for data mining. Mor-
gan Kaufmann, San Francisco

Tukey JW (1977) Exploratory data analysis, pp 2–3
Witten IH, Frank E (2005) Data mining: practical

machine learning tools and techniques, 2nd edn.
Morgan Kaufmann, Amsterdam/Boston

Data Preprocessing

�Data Preparation

Data Scrubbing

�Data Cleansing

Data Reconciliation

�Data Cleansing
�Record Linkage

Data Set

A data set is a collection of data used for some
specific machine learning purpose. A � training
set is a data set that is used as input to a learning
system, which analyzes it to learn a model. A
� test set or � evaluation set is a data set con-
taining data that are used to evaluate the model
learned by a learning system. A training set may
be divided further into a � growing set and a
� pruning set. Where the training set and the test
set contain disjoint sets of data, the test set is
known as a � holdout set.

Data Wrangling

�Data Preparation

http://dx.doi.org/10.1007/978-1-4899-7687-1_912
http://dx.doi.org/10.1007/978-1-4899-7687-1_100040
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_221
http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_102
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_100302
http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://visit.crowdflower.com/2015-data-scientist-report.html
http://visit.crowdflower.com/2015-data-scientist-report.html
http://visit.crowdflower.com/2015-data-scientist-report.html
http://visit.crowdflower.com/2015-data-scientist-report.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_100096
http://dx.doi.org/10.1007/978-1-4899-7687-1_100096
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_100146
http://dx.doi.org/10.1007/978-1-4899-7687-1_357
http://dx.doi.org/10.1007/978-1-4899-7687-1_682
http://dx.doi.org/10.1007/978-1-4899-7687-1_370
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-toinsights-is-janitor-work.html?r=0&module=ArrowsNav&contentCollection=Technology&action=keypress®ion=FixedLeft&pgtype=article
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-toinsights-is-janitor-work.html?r=0&module=ArrowsNav&contentCollection=Technology&action=keypress®ion=FixedLeft&pgtype=article
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-toinsights-is-janitor-work.html?r=0&module=ArrowsNav&contentCollection=Technology&action=keypress®ion=FixedLeft&pgtype=article
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-toinsights-is-janitor-work.html?r=0&module=ArrowsNav&contentCollection=Technology&action=keypress®ion=FixedLeft&pgtype=article
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-toinsights-is-janitor-work.html?r=0&module=ArrowsNav&contentCollection=Technology&action=keypress®ion=FixedLeft&pgtype=article

328 DBN

DBN

Dynamic Bayesian Network. See �Learning
Graphical Models

Decision Epoch

In a �Markov decision process, decision epochs
are sequences of times at which the decision-
maker is required to make a decision. In a discrete
time Markov decision process, decision epochs
occur at regular, fixed intervals, whereas in a
continuous time Markov decision process (or
semi-Markov decision process), they may occur
at randomly distributed intervals.

Decision List

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Synonyms

Ordered rule set

Definition

A decision list (also called an ordered rule set)
is a collection of individual � classification rules
that collectively form a � classifier. In contrast
to an unordered � rule set, decision lists have an
inherent order, which makes classification quite
straightforward. For classifying a new instance,
the rules are tried in order, and the class of the
first rule that covers the instance is predicted. If
no induced rule fires, a default rule is invoked,
which typically predicts the majority class.

Typically, decision lists are learned with a
� covering algorithm, which learns one rule at
a time, appends it to the list, and removes all
covered examples before learning the next one.

Decision lists are popular in � inductive logic
programming, because PROLOG programs may
be considered to be simple decision lists, where
all rules predict the same concept.

A formal definition of decision lists, a compar-
ison of their expressiveness to decision trees and
rule sets in disjunctive and conjunctive normal
form, as well as theoretical results on the learn-
ability of decision lists can be found in Rivest
(1987).

Cross-References

�Classification Rule
�Decision Lists and Decision Trees
�Rule Learning
�Rule Set

Recommended Reading

Rivest RL (1987) Learning decision lists. Mach Learn
2:229–246

Decision Lists and Decision Trees

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Definition

�Decision trees and � decision lists are two
popular � hypothesis languages, which share
quite a few similarities, but also have important
differences with respect to expressivity and
learnability.

Discussion

The key difference between decision trees and
decision lists is that the former may be viewed as
unordered � rule sets, where each leaf of the tree
corresponds to a single rule with a condition part

http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_100352
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_623

Decision Lists and Decision Trees 329

D

consisting of the conjunction of all edge labels
on the path from the root to this leaf. The hierar-
chical structure of the tree ensures that the rules
in the set are non-overlapping, i.e., each example
is covered by exactly one rule. This additional
constraint makes classification easier (no con-
flicts from multiple rules), but may result in more
complex rules. For example, it has been shown
that decision lists (ordered rule sets) with at most
k conditions per rule are strictly more expressive
than decision trees of depth k Rivest (1987).

This is also reflected in the learning strategies
that are typically used for learning these concept
classes. Decision trees are traditionally learned
with a � divide-and-conquer strategy, which
successively divides the example space into
non-overlapping regions, whereas the � covering
algorithm that is typically used for learning rule
sets is also known as � separate-and-conquer
Fürnkranz (1990) because it successively
removes (separates) examples covered by pre-
viously learned rule. For a comparison between
the two strategies we refer to Boström (1995).

Moreover, the restriction of decision tree
learning algorithms to non-overlapping rules
imposes strong constraints on learnable rules.
One problem resulting from this constraint
is the replicated subtree problem Pagallo and
Haussler (1990); it often happens that identical
subtrees have to be learned at various places in a
decision tree, because of the fragmentation of the
example space imposed by the restriction to non-
overlapping rules. Rule learners do not make such
a restriction, and are thus less susceptible to this
problem. An extreme example for this problem
has been provided by Cendrowska (1987), who
showed that the minimal decision tree for the
concept x defined as

IF A=3 AND B=3 THEN
Class=x

IF C=3 AND D=3 THEN
Class=x

has 10 interior nodes and 21 leafs assuming that
each attribute A . . .D can be instantiated with
three different values.

On the other hand, a key advantage of decision
tree learning is that not only a single rule is

optimized, but that conditions are selected in a
way that simultaneously optimizes the example
distribution in all successors of a node. Attempts
to adopt this property for rule learning have given
rise to several hybrid systems, the best known
being PART Frank and Witten (1998), which
learns a decision list that consists of a list of
rules, each one being the single best rule of a
separate decision tree. This rule can be efficiently
found without learning the full tree, by repeated
expansion of its most promising branch. Simi-
larly, pruning algorithms can be used to convert
decision trees into sets of non-overlapping rules
Quinlan (1987a).

See Also

�Covering Algorithm
�Decision Tree
�Divide-and-Conquer Learning
�Rule Learning

Recommended Reading

Henrik Boström. Covering vs. divide-and-conquer for
top-down induction of logic programs. In Proceed-
ings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI-95), pages 1194–1200,
1995.

Jadzia Cendrowska. PRISM: An algorithm for induc-
ing modular rules. International Journal of Man-
Machine Studies, 27:349–370, 1987.

Eibe Frank and Ian H. Witten. Generating accurate
rule sets without global optimization. In J. Shav-
lik, editor, Proceedings of the 15th International
Conference on Machine Learning (ICML-98), pages
144–151, Madison, Wisconsin, 1998. Morgan Kauf-
mann.

Johannes Fürnkranz Separate-and-Conquer Rule
Learning. Artificial Intelligence Review, 13(1):3–
54, 1999.

Giulia Pagallo and David Haussler. Boolean feature
discovery in empirical learning. Machine Learning,
5:71–99, 1990.

John Ross Quinlan. Generating production rules from
decision trees. In Proceedings of the 10th Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-87), pages 304–307. Morgan Kaufmann,
1987a.

Ronald L. Rivest. Learning decision lists. Machine
Learning, 2:229–246, 1987.

http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_744

330 Decision Rule

Decision Rule

A decision rule is an element (piece) of knowl-
edge, usually in the form of a “if-then statement”:

if < Condition > then < Action >
If its Condition is satisfied (i.e., matches a fact

in the corresponding database of a given problem)
then its Action (e.g., classification or decision
making) is performed. See also �Markovian De-
cision Rule.

Decision Stump

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

A decision stump is a �Decision Tree, which
uses only a single attribute for splitting. For
discrete attributes, this typically means that the
tree consists only of a single interior node (i.e.,
the root has only leaves as successor nodes). If
the attribute is numerical, the tree may be more
complex.

Discussion

Decision stumps perform surprisingly well on
some commonly used benchmark datasets from
the UCI repository (Holte 1993), which illus-
trates that learners with a high �Bias and low
�Variance may perform well because they are
less prone to �Overfitting. Decision stumps are
also often used as weak learners in �Ensemble
Methods such as boosting Freund and Schapire
(1996).

Cross-References

�Bias Variance Decomposition
�Decision Tree
�Overfitting

Recommended Reading

Freund Y, Schapire RE (1996) Experiments with a new
boosting algorithm. In: Saitta L (ed) Proceedings
of the 13th international conference on machine
learning, Bari. Morgan Kaufmann, pp 148–156

Holte RC (1993) Very simple classification rules per-
form well on most commonly used datasets. Mach
Learn 11:63–91

Decision Threshold

The decision threshold of a binary classifier that
outputs scores, such as � decision trees or � naive
Bayes, is the value above which scores are
interpreted as positive classifications. Decision
thresholds can be either fixed if the classifier
outputs calibrated scores on a known scale (e.g.,
0.5 for a probabilistic classifier), or learned from
data if the scores are uncalibrated. See �ROC
Analysis.

Decision Tree

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

The induction of decision trees is one of
the oldest and most popular techniques for
learning discriminatory models, which has
been developed independently in the statistical
(Breiman et al. 1984; Kass 1980) and machine
learning (Hunt et al. 1966; Quinlan 1983,
1986) communities. A decision tree is a
tree-structured classification model, which is
easy to understand, even by non-expert users,
and can be efficiently induced from data. An
extensive survey of decision-tree learning can
be found in Murthy (1998).

Synonyms

Classification tree

http://dx.doi.org/10.1007/978-1-4899-7687-1_518
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_100500
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_100056

Decision Tree 331

D

Representation

Figure 1 shows a well-known dataset, in which
examples are descriptions of weather conditions
(outlook, humidity, windy, temperature), and
the target concept is whether these conditions
are suitable for playing golf or not (Quinlan
1986). On the right, a simple decision tree
that can be induced from such data is shown.
Classification of a new example starts at the top
node – the root – and the value of the attribute that
corresponds to this tree is considered (outlook in
the example). Classification then proceeds by
moving down the branch that corresponds to a
particular value of this attribute, arriving at a
new node with a new attribute. This process is
repeated until we arrive at a terminal node – a
so-called leaf – which is not labeled with an
attribute but with a value of the target attribute
(play golf?). For all examples that arrive at the
same leaf, the same target value will be predicted.
Figure 1 shows leaves as rectangular boxes.

Note that some of the attributes may not occur
at all in the tree. For example, the tree in Fig. 1
does not contain a test on temperature because the
training data can be classified without making a
reference to this variable. More generally, one can
say that the attributes in the upper parts of the tree
(near the root) tend to have a stronger influence
on the value of the target variable than the nodes
in the lower parts of the tree (e.g., outlook will

always be tested, whereas humidity and windy
will only be tested under certain conditions).

Learning Algorithm

Decision trees are learned in a top-down fashion,
with an algorithm known as top-down induction
of decision trees (TDIDT), recursive partitioning,
or divide-and-conquer learning. The algorithm
selects the best attribute for the root of the tree,
splits the set of examples into disjoint sets, and
adds corresponding nodes and branches to the
tree. The simplest splitting criterion is for discrete
attributes, where each test has the form t

.A D v/ where v is one possible value of the
chosen attributeA. The corresponding set St con-
tains all training examples for which the attribute
A has the value t . This can be easily adapted
to numerical attributes, where one typically uses
binary splits of the form t .A < vt /, which
indicate whether the attribute’s value is above or
below a certain threshold value vt . Alternatively,
one can transform the data beforehand using a
� discretization algorithm (Fig. 2).

After splitting the dataset according to the
selected attribute, the procedure is recursively
applied to each of the resulting datasets. If a set
contains only examples from the same class, or if
no further splitting is possible (e.g., because all
possible splits have already been exhausted or all

Outlook Temp Humidity Windy Golf?
rainy hot high false no
rainy hot high true no

overcast hot high false yes
sunny mild high false yes
sunny cool normal false yes
sunny cool normal true no

overcast cool normal true yes
rainy mild high false no
rainy cool normal false yes
sunny mild normal false yes
rainy mild normal true yes

overcast mild high true yes
overcast hot normal false yes
sunny mild high true no

Outlook

yes

ye ys esnono

WindyHumidity

normal high true false

rainsunny overcast

Decision Tree, Fig. 1 A data set describing weather conditions and a target variable (Play Golf?) and a decision tree
learned for this dataset (Quinlan 1986)

http://dx.doi.org/10.1007/978-1-4899-7687-1_221

332 Decision Tree

remaining splits will have the same outcome for
all examples), the corresponding node is turned
into a leaf node and labeled with the respective
class. For all other sets, an interior node is added
and associated with the best splitting attribute for
the corresponding set as described above. Hence,
the dataset is successively partitioned into non-
overlapping, smaller datasets until each set only

function TDIDT(S)

Input: S, a set of labeled examples.

Tree = new empty node
if all examples have the same class c

or no further splitting is possible
then // new leaf

Label(Tree) = c
else // new decision node

(A, T) = FindBestSplit(S)
for each test t ∈ T do

St = all examples that satisfy t
Nodet = TDIDT(St)
AddEdge(Tree t→ Nodet)

endfor
endif
return Tree

Decision Tree, Fig. 2 Top-down induction of decision
trees

contains examples of the same class (a so-called
pure node). Eventually, a pure node can always be
found via successive partitions unless the train-
ing data contains two identical but contradictory
examples, i.e., examples with the same feature
values but different class values.

Attribute Selection
The crucial step in decision-tree induction is the
choice of an adequate attribute. In the sample
tree of Fig. 3, which has been generated from
the same 14 training examples as the tree of
Fig 1, most leaves contain only single training
example, i.e., with the selected splitting criteria,
the termination criterion (all examples of a node
have to be of the same class) could in many
cases only trivially be satisfied (only one exam-
ple remained in the node). Although both trees
classify the training data correctly, the former
appears to be more trustworthy, and in practice,
one can often observe that simpler trees are more
accurate than more complex trees. A possible
explanation could be that labels that are based
on a higher number of training examples tend
to be more reliable. However, this preference for
simple models is a heuristic criterion known as
�Occam’s Razor, which appears to work fairly
well in practice. but is still the subject of ardent
debates within the machine learning community.

Decision Tree, Fig. 3 A needlessly complex decision tree describing the same dataset

http://dx.doi.org/10.1007/978-1-4899-7687-1_614

Decision Tree 333

D

Typical attribute selection criteria use a func-
tion that measures the impurity of a node, i.e.,
the degree to which the node contains only exam-
ples of a single class. Two well-known impurity
measures are the information-theoretic entropy
(Quinlan 1986) and the Gini index (Breiman et al.
1984), which are defined as

Entropy.S/ D �

cX

iD1

jSi j

jS j
� log2

�
jSi j

jS j

�

Gini.S/ D 1 �
cX

iD1

�
jSi j

jS j

�2

where S is a set of training examples and Si is
the set of training examples that belong to class
ci . Both functions have their maximum at the
point where the classes are equally distributed
(i.e., where all Si have the same size, maximum
impurity), and their minimum at the point where
one Si contains all examples (Si D S) and all
other Sj ; j ¤ i are empty (minimum impurity).

A good attribute divides the dataset into sub-
sets that are as pure as possible ideally into sets
so that each one only contains examples from the
same class. Thus, we want to select the attribute
that provides the highest decrease in average
impurity, the so-called gain:

Gain.S;A/

D Impuri ty.S/ �
X

t

jSt j

jS j
� Impuri ty.St /

where St are non-overlapping disjoint subsets
St 2 S that are induced by splitting the attribute
A, and Impurity can be any impurity measure.
As the first term, Impurity.S/, is constant for
all attributes, one can also omit it and directly
minimize the average impurity (which is typically
done when Gini is used as an impurity measure).

A common problem is that attributes with
many values have a higher chance of resulting
in pure successor nodes and are therefore often
preferred over attributes with fewer values. To
counter this, the so-called gain ratio normalizes
the gained entropy with the intrinsic entropy of
the split:

GainRatio.S;A/ D
Gain.S;A/

P
t

jSt j
jS j
� log2

�
jSt j
jS j

�

A similar phenomenon can be observed for
numerical attributes, where the number of pos-
sible threshold values determines the number of
possible binary splits for this attribute. Numerical
attributes with many possible binary splits are
often preferred over numerical attributes with
fewer splits because they have a higher chance
that one of their possible splits fits the data. A
discussion of this problem and a proposal for a
solution can be found in Quinlan (1996).

Other attribute selection measures, which
do not conform to the gain framework laid
out above, are also possible, such as CHAID’s
evaluation with a �2 test statistic (Kass 1980).
Experimental comparison of different measures
can be found in Mingers (1989a) and Buntine
and Niblett (1992).

Thus, the final tree is constructed by a se-
quence of local choices that each consider only
those examples that end up at the node that is
currently split. Of course, such a procedure can
only find local optima for each node, but cannot
guarantee convergence to a global optimum (the
smallest tree). One of the key advantages of
this divide-and-conquer approach is its efficiency,
which results from the exponential decrease in
the quantity of data to be processed at successive
depths in the tree.

Overfitting Avoidance
In principle, a decision-tree model can be fit to
any training set that does not contain contradic-
tions (i.e., there are no examples with identical at-
tributes but different class values). This may lead
to �Overfitting in the form of overly complex
trees.

For this reason, state-of-the-art decision-tree
induction techniques employ various �Pruning
techniques for restricting the complexity of the
found trees. For example, C4.5 has a pre-pruning
parameter m that is used to prevent further split-
ting unless at least two successor nodes have at
least m examples. The cost-complexity pruning
method used in CART may be viewed as a simple

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_687

334 Decision Tree

�Regularization method, where a good choice
for the regularization parameter, which trades off
the fit of the data with the complexity of the tree,
is determined via �Cross-validation.

More typically, post-pruning is used for re-
moving branches and nodes from the learned tree.
More precisely, this procedure replaces some of
the interior nodes of the tree with a new leaf,
thereby removing the subtree that was rooted at
this node. An empirical comparison of different
decision-tree pruning techniques can be found in
Mingers (1989b).

It is important to note that the leaf nodes of the
new tree are no longer pure nodes, i.e., they no
longer need to contain training examples that all
belong to the same class. Typically, this is simply
resolved by predicting the most frequent class at a
leaf. The class distribution of the training exam-
ples within the leaf may be used as a reliability
criterion for this prediction.

Well-Known Decision-Tree Learning
Algorithms

The probably best-known decision-tree learning
algorithm is C4.5 (Quinlan 1993), which is based
upon (Quinlan 1983), which, in turn, has been
derived from an earlier concept learning sys-
tem (Hunt et al. 1966). ID3 realized the basic
recursive partitioning algorithm for an arbitrary
number of classes and for discrete attribute val-
ues. C4.5 (Quinlan 1993) incorporates several
key improvements that were necessary for tack-
ling real-world problems, including handling of
numeric and missing attribute values, overfit-
ting avoidance, and improved scalability. A C-
implementation of C4.5 is freely available from
its author. A re-implementation is available under
the name J4.8 in the Weka data mining library.
C5.0 is a commercial successor of C4.5, dis-
tributed by RuleQuest Research. CART (Breiman
et al. 1984) is the best-known system in the
statistical learning community. It is integrated
into various statistical software packages, such as
R or S.

Decision trees are also often used as compo-
nents in �Ensemble Methods such as random
forests (Breiman 2001) or AdaBoost (Freund and

Schapire 1996). They can also be modified for
predicting numerical target variables, in which
case they are known as � regression trees. One
can also put more complex prediction models into
the leaves of a tree, resulting in �Model Trees.

Cross-References

�Decision List
�Decision Lists and Decision Trees
�Decision Stump
�Divide-and-Conquer Learning
�Model Trees
� Pruning
�Regression Trees
�Rule Learning

Recommended Reading

Breiman L (2001) Random forests. Mach Learn 45(1):
5–32

Breiman L, Friedman JH, Olshen R, Stone C (1984)
Classification and regression trees. Wadsworth &
Brooks, Pacific Grove

Buntine W, Niblett T (1992) A further comparison
of splitting rules for decision-tree induction. Mach
Learn 8:75–85

Freund Y, Schapire RE (1996) Experiments with a new
boosting algorithm. In: Saitta L (ed) Proceedings
of the 13th international conference on machine
learning, Bari. Morgan Kaufmann, pp 148–156

Hunt EB, Marin J, Stone PJ (1966) Experiments in
induction. Academic, New York

Kass GV (1980) An exploratory technique for investi-
gating large quantities of categorical data. Appl Stat
29:119–127

Mingers J (1989a) An empirical comparison of se-
lection measures for decision-tree induction. Mach
Learn 3:319–342

Mingers J (1989b) An empirical comparison of prun-
ing methods for decision tree induction. Mach Learn
4:227–243

Murthy SK (1998) Automatic construction of decision
trees from data: a multi-disciplinary survey. Data
Min Knowl Discov 2(4):345–389

Quinlan JR (1983) Learning efficient classification
procedures and their application to chess end games.
In: Michalski RS, Carbonell JG, Mitchell TM (eds)
Machine learning. An artificial intelligence ap-
proach, Tioga, Palo Alto, pp 463–482

Quinlan JR (1986) Induction of decision trees. Mach
Learn 1:81–106

Quinlan JR (1993) C4.5: Programs for machine learn-
ing. Morgan Kaufmann, San Mateo

http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_285
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_744

Deep Belief Nets 335

D

Quinlan JR (1996) Improved use of continuous at-
tributes in C4.5. J Artif Intell Res 4:77–90

Decision Trees for Regression

�Regression Trees

Deductive Learning

Synonyms

Analytical learning; Explanation-based learning

Definition

Deductive learning is a subclass of machine
learning that studies algorithms for learning
provably correct knowledge. Typically such
methods are used to speedup problem solvers
by adding knowledge to them that is deductively
entailed by existing knowledge, but that may
result in faster solutions.

Deduplication

�Entity Resolution

Deduplication or Duplicate
Detection (When Applied to One
Database Only)

�Record Linkage

Deep Belief Nets

Geoffrey Hinton
University of Toronto, Toronto, ON, Canada

Synonyms

Deep belief networks

Definition

Deep belief nets are probabilistic generative
models that are composed of multiple layers
of stochastic latent variables (also called “feature
detectors” or “hidden units”). The top two layers
have undirected, symmetric connections between
them and form an associative memory. The lower
layers receive top-down, directed connections
from the layer above. Deep belief nets have two
important computational properties. First, there
is an efficient procedure for learning the top-
down, generative weights that specify how the
variables in one layer determine the probabilities
of variables in the layer below. This procedure
learns one layer of latent variables at a time.
Second, after learning multiple layers, the values
of the latent variables in every layer can be
inferred by a single, bottom-up pass that starts
with an observed data vector in the bottom layer
and uses the generative weights in the reverse
direction.

Motivation and Background

The perceptual systems of humans and other
animals show that high-quality pattern recogni-
tion can be achieved by using multiple layers
of adaptive nonlinear features, and researchers
have been trying to understand how this type
of perceptual system could be learned, since the
1950s (Selfridge 1958). Perceptrons (Rosenblatt
1962) were an early attempt to learn a biologi-
cally inspired perceptual system, but they did not
have an efficient learning procedure for multi-
ple layers of features. Backpropagation (Werbos
1974; Rumelhart et al. 1986) is a supervised
learning procedure that became popular in the
1980s because it provided a fairly efficient way
of learning multiple layers of nonlinear features
by propagating derivatives of the error in the
output backward through the multilayer network.
Unfortunately, backpropagation has difficulty op-
timizing the weights in deep networks that con-
tain many layers of hidden units and it requires
labeled training data, which is often expensive
to obtain. Deep belief nets overcome the limita-
tions of backpropagation by using unsupervised

http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_100015
http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_100107

336 Deep Belief Nets

learning to create layers of feature detectors that
model the statistical structure of the input data
without using any information about the required
output. High-level feature detectors that capture
complicated higher-order statistical structure in
the input data can then be used to predict the
labels.

Structure of the Learning System

Deep belief nets are learned one layer at a time by
treating the values of the latent variables in one
layer, when they are being inferred from data, as
the data for training the next layer. This efficient,
greedy learning can be followed by, or combined
with, other learning procedures that fine-tune all
of the weights to improve the generative or dis-
criminative performance of the whole network.
Discriminative fine-tuning can be performed by
adding a final layer of variables that represent
the desired outputs and backpropagating error
derivatives. When networks with many hidden
layers are applied in domains that contain highly
structured input vectors, backpropagation learn-
ing works much better if the feature detectors
in the hidden layers are initialized by learning
a deep belief net that models the structure in
the input data (Hinton and Salakhutdinov 2006).
Matlab code for learning and fine-tuning deep
belief nets can be found at http://cs.toronto.edu/�

hinton.

Composing Simple Learning Modules
Early deep belief networks could be viewed as
a composition of simple learning modules, each
of which is a “restricted Boltzmann machine.”
Restricted Boltzmann machines contain a layer
of “visible units” that represent the data and a
layer of “hidden units” that learn to represent
features that capture higher-order correlations in
the data. The two layers are connected by a matrix
of symmetrically weighted connections, W , and
there are no connections within a layer. Given
a vector of activities v for the visible units, the
hidden units are all conditionally independent so
it is easy to sample a vector, h, from the posterior

distribution over hidden vectors, p.hjv;W/. It is
also easy to sample from p.vjh;W/. By starting
with an observed data vector on the visible units
and alternating several times between sampling
from p.hjv;W/ and p.vjh;W/, it is easy to get
a learning signal which is simply the difference
between the pairwise correlations of the visible
and hidden units at the beginning and end of the
sampling (see Chapter �Boltzmann Machines
for details).

The Theoretical Justification of the
Learning Procedure
The key idea behind deep belief nets is that the
weights, W, learned by a restricted Boltzmann
machine define both p.vjh;W/ and the prior
distribution over hidden vectors, p.hjW/, so the
probability of generating a visible vector, v, can
be written as

p.v/ D
X

h

p.hjW/p.vjh;W/ (1)

After learning W, we keep p.vjh;W/ but we re-
place p.hjW/ by a better model of the aggregated
posterior distribution over hidden vectors – i.e.,
the nonfactorial distribution produced by averag-
ing the factorial posterior distributions produced
by the individual data vectors. The better model
is learned by treating the hidden activity vectors
produced from the training data as the training
data for the next learning module. Hinton et al.
(2006) show that this replacement improves a
variational lower bound on the probability of the
training data under the composite model.

Deep Belief Nets with Other Types of
Variable
Deep belief nets typically use the logistic func-
tion y D 1=.1C exp.�x// of the weighted input,
x, received from above or below to determine
the probability that a binary latent variable has a
value of 1 during top-down generation or bottom-
up inference. Other types of variable within the
exponential family, such as Gaussian, Poisson,
or multinomial, can also be used (Welling
et al. 2005; Movellan and Marks 2001) and the

http://cs.toronto.edu/~hinton
http://cs.toronto.edu/~hinton
http://dx.doi.org/10.1007/978-1-4899-7687-1_31

Deep Belief Nets 337

D

variational bound still applies. However,
networks with multiple layers of Gaussian or
Poisson units are difficult to train and can
become unstable. To avoid these problems, the
function log.1Cexp.x// can be used as a smooth
approximation to a rectified linear unit. Units
of this type often learn features that are easier
to interpret than those learned by logistic units.
log.1C exp.x// is not in the exponential family,
but it can be approximated very accurately as a
sum of a set of logistic units that all share the
same weight vector and adaptive bias term, but
differ by having offsets to the shared bias of
�0:5;�1:5;�2:5; : : :.

Using Autoencoders as the Learning
Module
A closely related approach that is also called a
“deep belief net” uses the same type of greedy,
layer-by-layer learning with a different kind of
learning module – an “autoencoder” that simply
tries to reproduce each data vector from the
feature activations that it causes (Hinton 1989;
Bengio et al. 2007; LeCun and Bengio 2007).
However, the variational bound no longer applies,
and an autoencoder module is less good at ignor-
ing random noise in its training data (Larochelle
et al. 2007).

Applications of Deep Belief Nets
Deep belief nets have been used for generating
and recognizing images (Bengio et al. 2007;
Hinton et al. 2006; Ranzato et al. 2007), video
sequences (Sutskever and Hinton 2007), and
motion-capture data (Taylor et al. 2007). If the
number of units in the highest layer is small, deep
belief nets perform nonlinear dimensionality
reduction (Hinton and Salakhutdinov 2006),
and by pretraining each layer separately, it is
possible to learn very deep autoencoders that
can then be fine-tuned with backpropagation
(Hinton and Salakhutdinov 2006). Such networks
cannot be learned in reasonable time using
backpropagation alone. Deep autoencoders learn
compact representations of their input vectors
that are much better than those found by linear
methods such as principal component analysis,

and if the highest level code is forced to be
binary, they allow extremely fast retrieval of
documents or images (Salakhutdinov and Hinton
2007; Torralba et al. 2008).

Recommended Reading

Bengio Y, Lamblin P, Popovici P, Larochelle H (2007)
Greedy layer-wise training of deep networks. In:
Advances in neural information processing systems,
Vancouver, vol 19. MIT, Cambridge

Hinton GE (1989) Connectionist learning procedures.
Artif Intell 40(1–3):185–234

Hinton GE, Osindero S, Teh YW (2006) A fast
learning algorithm for deep belief nets. Neural
Comput 18:1527–1554

Hinton GE, Salakhutdinov RR (2006) Reducing the di-
mensionality of data with neural networks. Science
313:504–507

Larochelle H, Erhan D, Courville A, Bergstra J, Bengio
Y (2007) An empirical evaluation of deep architec-
tures on problems with many factors of variation. In:
Proceedings of the 24th international conference on
machine learning, Corvalis. ACM, New York

LeCun Y, Bengio Y (2007) Scaling learning algorithms
towards AI. In: Bottou L et al (eds) Large-scale
kernel machines. MIT, Cambridge

Movellan JR, Marks TK (2001) Diffusion networks,
product of experts, and factor analysis

Ranzato M, Huang FJ, Boureau Y, LeCun Y (2007)
Unsupervised learning of invariant feature hierar-
chies with applications to object recognition. In:
Proceedings of computer vision and pattern recog-
nition conference (CVPR 2007), Minneapolis

Rosenblatt F (1962) Principles of neurodynamics.
Spartan Books, Washington, DC

Rumelhart DE, Hinton GE, Williams RJ (1986) Learn-
ing representations by back-propagating errors. Na-
ture 323:533–536

Salakhutdinov RR, Hinton GE (2007) Semantic hash-
ing. In: Proceedings of the SIGIR workshop on
information retrieval and applications of graphical
models, Amsterdam

Selfridge OG (1958) Pandemonium: a paradigm for
learning. In: Proceedings of a symposium on mech-
anisation of though processes, National Physical
Laboratory. HMSO, London

Sutskever I, Hinton GE (2007) Learning multilevel
distributed representations for high-dimensional se-
quences. In: Proceedings of the eleventh interna-
tional conference on artificial intelligence and statis-
tics, San Juan

Taylor GW, Hinton GE, Roweis S (2007) Modeling
human motion using binary latent variables. In:
Advances in neural information processing systems,
Vancouver, vol 19. MIT, Cambridge

338 Deep Belief Networks

Torralba A, Fergus R, Weiss Y (2008) Small codes and
large image databases for recognition. In: IEEE con-
ference on computer vision and pattern recognition,
Anchorage, pp 1–8

Welling M, Rosen-Zvi M, Hinton GE (2005) Expo-
nential family harmoniums with an application to
information retrieval. In: Advances in neural infor-
mation processing systems, Vancouver, vol 17. MIT,
Cambridge, pp 1481–1488

Werbos P (1974) Beyond regression: new tools for
prediction and analysis in the behavioral sciences.
PhD thesis, Harvard University, Cambridge

Deep Belief Networks

�Deep Belief Nets

Deep Learning

Jürgen Schmidhuber
The Swiss AI Lab, IDSIA, USI & SUPSI,
Manno & Lugano, Switzerland

Abstract

Deep learning artificial neural networks have
won numerous contests in pattern recognition
and machine learning. They are now widely
used by the worlds most valuable public com-
panies. I review the most popular algorithms
for feedforward and recurrent networks and
their history.

Introduction

Deep learning has revolutionized Pattern Recog-
nition and Machine Learning. It is about credit
assignment in adaptive systems with long chains
of potentially causal links between actions and
consequences.

The ancient term “deep learning” was first in-
troduced to Machine Learning by Dechter (1986)
and to artificial neural networks (NNs) by Aizen-
berg et al. (2000). Subsequently it became espe-
cially popular in the context of deep NNs, the

most successful deep learners, which are much
older though, dating back half a century. This
article will focus on essential developments since
the 1960s, addressing supervised, unsupervised,
and (briefly) reinforcement learning. There is a
recent, more detailed survey with 888 references
(Schmidhuber 2015). LeCun et al. (2015) provide
a more limited view of more recent deep learning
history. The present condensed survey is based on
the Scholarpedia article (Schmidhuber 2015b).

A standard NN consists of many simple, con-
nected processors called units, each producing a
sequence of real-valued activations. Input units
get activated through sensors perceiving the en-
vironment, other units through connections with
real-valued weights from previously active units.
Some units may influence the environment by
triggering actions. Learning or credit assignment
is about finding weights that make the NN exhibit
desired behavior, such as controlling a robot.
Depending on the problem and how the units are
connected, such behavior may require long causal
chains of computational stages, where each stage
transforms (often in a nonlinear way) the aggre-
gate activation of the network. Deep learning in
NNs is about accurately assigning credit across
many such stages.

In a sense, sequence-processing recurrent NNs
(RNNs) are the ultimate NNs, because they are
general computers (an RNN can emulate the cir-
cuits of a microchip). In fully connected RNNs,
all units have connections to all non-input units.
Unlike feedforward NNs, RNNs can implement
while loops, recursion, etc. The program of an
RNN is its weight matrix. RNNs can learn pro-
grams that mix sequential and parallel informa-
tion processing in a natural and efficient way.

To measure whether credit assignment in a
given NN application is of the deep or shallow
type, we consider the length of the corresponding
credit assignment paths, which are chains of pos-
sibly causal connections between subsequent unit
activations, e.g., from input units through hidden
units to output units in feedforward NNs (FNNs)
without feedback connections or through trans-
formations over time in RNNs. FNNs with fixed
topology have a problem-independent maximal
problem depth bounded by the number of layers

http://dx.doi.org/10.1007/978-1-4899-7687-1_67

Deep Learning 339

D

of units. RNNs, the deepest of all NNs, may
learn to solve problems of potentially unlimited
depth, for example, by learning to store in their
activation-based “short-term memory” represen-
tations of certain important previous observations
for arbitrary time intervals.

The difficulty of a problem may have little to
do with its depth. Some NNs can quickly learn to
solve certain deep but simple problems through
random weight guessing (e.g., Hochreiter and
Schmidhuber 1997b). In general, however, find-
ing an NN that precisely models a given training
set (of input patterns and corresponding labels) is
an NP-complete problem and also in the case of
deep NNs (e.g., Sima 1994).

First Deep Learners

Certain early NNs (McCulloch and Pitts 1943)
did not learn at all. Hebb (1949) published ideas
about unsupervised learning. The following
decades brought shallow unsupervised NNs
and supervised NNs (e.g., Rosenblatt 1958).
Early supervised NNs were essentially variants
of linear regressors dating back two centuries
(Gauss, Legendre).

Deep learning networks originated in the
1960s when Ivakhnenko and Lapa (1965)
published the first general, working learning
algorithm for supervised deep feedforward mul-
tilayer perceptrons. Their units had polynomial
activation functions combining additions and
multiplications in Kolmogorov-Gabor polyno-
mials. Ivakhnenko (1971) already described a
deep network with eight layers trained by the
“group method of data handling,” still popular
in the new millennium. Given a training set of
input vectors with corresponding target output
vectors, layers are incrementally grown and
trained by regression analysis and then pruned
with the help of a separate validation set, where
regularization is used to weed out superfluous
units. The numbers of layers and units per layer
can be learned in problem-dependent fashion.

Like later deep NNs, Ivakhnenko’s nets
learned to create hierarchical, distributed, internal
representations of incoming data. Many later

nonneural methods of Artificial Intelligence and
Machine Learning also learn more and more
abstract, hierarchical data representations. For
example, syntactic pattern recognition methods
(Fu 1977) such as grammar induction discover
hierarchies of formal rules to model observations.

Architectures of Convolutional NNs
(CNNs)

The 1970s also saw the birth of the convolutional
NN (CNN) architecture (Fukushima’s Neocog-
nitron, 1979) inspired by neurophysiological in-
sights. Today such architectures are widely used
for computer vision. Here the (typically rectan-
gular) receptive field of a unit with given weight
vector (a filter) is shifted step by step across a
two-dimensional array of input values, such as
the pixels of an image (usually there are several
such filters). The resulting array of subsequent
activation events of this unit can then provide
inputs to higher-level units and so on. Due to
massive weight replication, relatively few param-
eters may be necessary to describe the behavior
of such convolutional layers, which typically feed
downsampling layers consisting of units whose
fixed-weight connections originate from physi-
cal neighbors in the convolutional layers below.
Downsampling units use “spatial averaging” to
become active if at least one of their inputs is
active; their responses are insensitive to certain
small image shifts. Weng (1993) later replaced
spatial averaging by “max-pooling” (MP), which
is widely used today. Here a two-dimensional
layer or array of unit activations is partitioned
into smaller rectangular arrays. Each is replaced
in a downsampling layer by the activation of its
maximally active unit.

Backpropagation

Ivakhnenko and Fukushima did not yet use super-
vised backpropagation (BP) to train the weights
of their nets by gradient descent in an objective
function, such as the total classification error on
a given training set of input patterns and corre-
sponding labels, although BP was also developed
back then.

340 Deep Learning

BP’s continuous form was derived in the early
1960s (Kelley 1960; Bryson 1961; Bryson and
Ho 1969). Dreyfus (1962) published the elegant
derivation of BP based on the chain rule only.
BP’s modern efficient version for discrete sparse
networks (including FORTRAN code) was pub-
lished by Linnainmaa (1970). Here the complex-
ity of computing the derivatives of the output
error with respect to each weight is proportional
to the number of weights. That’s the method still
used today. Dreyfus (1973) used BP to change
weights of controllers in proportion to such gra-
dients. By 1980, automatic differentiation could
derive BP for any differentiable graph (Speelpen-
ning 1980). Werbos (1982) published the first ap-
plication of BP to NNs, extending thoughts in his
1974 thesis, which did not yet have Linnainmaa’s
modern, efficient form of BP. In 1980–1990,
computers became 10,000 times faster than those
of 1960–1970 and widely accessible in academic
labs. Computational experiments then demon-
strated that BP in NNs can indeed yield useful
internal representations in hidden layers of NNs
(Rumelhart et al. 1986). Wan (1994) produced the
first BP-trained NN to win a controlled pattern
recognition contest with secret test set. Amari
(1998) described BP for natural gradient-based
NNs. By 2003, deep BP-based standard FNNs
with up to seven layers were used to successfully
classify high-dimensional data (e.g., Vieira and
Barradas 2003).

In the 2000s, computing hardware had again
become 10,000 times faster than in the 1980s.
Cheap massively parallel graphics processing
units (GPUs, originally developed for video
games) started to revolutionize NN research.
Standard FNNs implemented on GPU were 20
times faster than on CPU (Oh and Jung 2004).
A plain GPU-based FNN trained by BP with
pattern distortions (Baird 1990) set a new record
of 0.35 % error rate (Ciresan et al. 2010) on
the MNIST handwritten digit dataset, which by
then had been the perhaps most famous machine
learning benchmark for decades. This seemed
to suggest that advances in exploiting modern
computing hardware were more important than
advances in algorithms.

Backpropagation for CNNs

LeCun et al. (1989) first applied BP to
Neocognitron-like CNNs, achieving good
performance on MNIST. Similar CNNs were
used commercially in the 1990s. Ranzato et al.
(2007) first applied BP to max-pooling CNNs
(MPCNNs); advantages of doing this were
pointed out subsequently (Scherer et al. 2010).

Efficient parallelized GPU-based MPCNNs
(Ciresan et al. 2011) further improved the
MNIST record dramatically, achieving human
performance (around 0.2 %) for the first time
(Ciresan et al. 2012c). To detect human actions
in surveillance videos, a three-dimensional CNN,
combined with support vector machines, was
part of a larger system using a bag of features
approach to extract regions of interest. The
system won three 2009 TRECVID competitions.
These were possibly the first official international
contests won with the help of (MP)CNNs;
compare (Ji et al. 2013).

In 2011, an ensemble (Breiman 1996;
Schapire 1990) of GPU-based MPCNNs also
was the first system to achieve superhuman visual
pattern recognition in a controlled competition,
namely, the IJCNN 2011 traffic sign recognition
contest in Silicon Valley (Ciresan et al. 2012c).
The system was twice better than humans and
three times better than the nearest nonhuman
competitor. Subsequently, similar committees of
GPU-MPCNNs became widely used and also
won the 2012 ImageNet classification contest
(Krizhevsky et al. 2012), which is popular in the
computer vision community. Further progress on
ImageNet was achieved through variants of such
systems (e.g., Zeiler and Fergus 2013; Szegedy
et al. 2014; Simonyan and Zisserman 2015).

In 2012, a GPU-MPCNN committee also was
the first deep learning NN to win a contest on
visual object discovery in large images (Ciresan
et al. 2013), namely, the ICPR 2012 Contest on
Mitosis Detection in Breast Cancer Histologi-
cal Images. Here deep MPCNNs are trained on
labelled patches of big images and then used as
feature detectors to be shifted across unknown
visual scenes, using various rotations and zoom

Deep Learning 341

D

factors. Image parts that yield highly active out-
put units are likely to contain objects similar to
those the NN was trained on. A similar GPU-
MPCNN committee was the first deep learner
to win a pure image segmentation contest (Cire-
san et al. 2012a), namely, the ISBI 2012 seg-
mentation of neuronal structures in EM stacks
challenge. The MPCNN learned to predict for
each pixel whether it belongs to the background.
Fast MPCNN image scanners avoid redundant
computations and speed up naive implementa-
tions by up to three orders of magnitude (Masci
et al. 2013), extending earlier efficient methods
for CNNs without MP (Vaillant et al. 1994).

It is fair to say that deep GPU-CNNs have
revolutionized computer vision. For example,
GPU-MPCNNs helped to recognize multi-
digit numbers in Google Street View images
(Goodfellow et al. 2014b), where part of the
NN was trained to count visible digits. Other
successful recent CNN applications include scene
parsing (Farabet et al. 2013), shadow detection
(Khan et al. 2014), and video classification
(Karpathy et al. 2014), to name a few.

Fundamental Deep Learning Problem
and Unsupervised Pre-training of
RNNs and FNNs

There are extensions of backpropagation (BP) for
supervised RNNs (e.g., Williams 1989; Robinson
and Fallside 1987; Werbos 1988). During training
by “BP through time” (BPTT), the RNN is “un-
folded” into an FNN that has essentially as many
layers as there are time steps in the observed
sequence of input vectors.

The drawbacks of BP and BPTT became obvi-
ous in 1991, when the vanishing/exploding gra-
dient problem or “Fundamental Deep Learning
Problem” was identified and analyzed (Hochre-
iter 1991): With standard activation functions,
cumulative backpropagated error signals either
shrink exponentially in the number of layers (or
time steps) or grow out of bounds. The prob-
lem is most apparent in RNNs, the deepest of
all NNs.

To some extent, Hessian-free optimization
can alleviate the problem for FNNs (Moller
1993; Pearlmutter 1994) and RNNs (Martens
and Sutskever 2011).

To overcome the vanishing gradient problem,
an early generative model was proposed, namely,
an unsupervised stack of RNNs called the neural
history compressor (Schmidhuber 1992b). A first
RNN uses unsupervised learning to predict its
next input. Each higher level RNN tries to learn a
compressed representation of the info in the RNN
below, trying to minimize the description length
(or negative log probability) of the data. The top
RNN may then find it easy to classify the data
by supervised learning. One can also “distill” the
knowledge of a higher RNN (the teacher) into
a lower RNN (the student) by forcing the lower
RNN to predict the hidden units of the higher
one. In the early 1990s, such systems could solve
previously unsolvable “very deep learning” tasks
involving hundreds of subsequent computational
stages.

A conceptually very similar but FNN-based
system was the deep belief network (DBN, Hin-
ton and Salakhutdinov 2006), a stack of restricted
Boltzmann machines (RBMs, Smolensky 1986)
with a single layer of feature-detecting units.
They can be trained by the contrastive diver-
gence algorithm (Hinton 2002). At least in theory
under certain assumptions, adding more layers
improves a bound on the data’s negative log
probability (Hinton et al. 2006), equivalent to
the data’s description length – just like with the
RNN history compressor above. A GPU-DBN
implementation (Raina et al. 2009) was orders of
magnitudes faster than previous CPU-DBNs; see
also Coates et al. (2013). DBNs achieved good
results on phoneme recognition (Mohamed and
Hinton 2010). Autoencoder stacks (Ballard 1987)
became a popular alternative way of pre-training
deep FNNs in unsupervised fashion, before fine-
tuning them through BP (e.g., Bengio et al. 2007).

Generally speaking, unsupervised learning
(UL) can help to encode input data in a
form advantageous for further processing. For
example, FNNs may profit from pre-training by
competitive UL prior to BP-based fine-tuning

342 Deep Learning

(Maclin and Shavlik 1995). Many UL methods
generate distributed, sparse representations of
input patterns. Ideally, given an ensemble of
input patterns, redundancy reduction through a
deep NN will create a factorial code (a code
with statistically independent components) of
the ensemble (Barlow et al. 1989). Such codes
may be sparse and can be advantageous for (1)
data compression, (2) speeding up subsequent
BP, and (3) trivializing the task of subsequent
naive yet optimal Bayes classifiers. Methods
for deep UL FNNs include hierarchical self-
organizing Kohonen maps (e.g., Koikkalainen
and Oja 1990), hierarchical Gaussian potential
function networks (Lee and Kil 1991), layer-
wise UL of feature hierarchies fed into SL
classifiers (Behnke 1999), the self-organizing tree
algorithm (Herrero et al. 2001), and nonlinear
autoencoders (AEs) with five or more layers
(e.g., Kramer 1991). Predictability minimization
(Schmidhuber 1992c) searches for factorial codes
through nonlinear feature detectors that fight
nonlinear predictors, trying to become both as
informative and as unpredictable as possible.
Hierarchical CNNs in a Neural Abstraction
Pyramid (e.g., Behnke 2003b) can be trained
to reconstruct images corrupted by structured
noise, thus enforcing increasingly abstract image
representations in deeper and deeper layers.

In many applications of the 2000s, however,
DBNs and other unsupervised methods were
largely replaced by purely supervised FNNs,
especially MPCNNs (see above). Here history
repeated itself, because already in the 1990s,
unsupervised RNN-based history compressors
(see above) were largely replaced by purely
supervised LSTM RNNs (see below).

Very Deep Learning in Supervised
Sequence-Processing RNNs

Supervised long short-term memory (LSTM)
RNNs have been developed since the 1990s
(e.g., Hochreiter and Schmidhuber 1997b; Gers
and Schmidhuber 2001; Graves et al. 2009).
Parts of LSTM RNNs are designed such that
backpropagated errors can neither vanish nor

explode but flow backward in “civilized” fashion
for thousands or even more steps. Thus, LSTM
variants could learn previously unlearnable very
deep learning tasks (including some unlearnable
by the 1992 history compressor above) that
require to discover the importance of (and
memorize) events that happened thousands of
discrete time steps ago, while previous standard
RNNs already failed in case of minimal time
lags of ten steps. It is possible to evolve good
problem-specific LSTM-like topologies (Bayer
et al. 2009).

Recursive NNs (Goller and Küchler 1996)
generalize RNNs, by operating on hierarchical
structures, recursively combining child represen-
tations into parent representations. Bidirectional
RNNs (BRNNs) (Schuster and Paliwal 1997)
are designed for input sequences whose starts
and ends are known in advance, such as spo-
ken sentences to be labeled by their phonemes.
DAG-RNNs (Baldi and Pollastri 2003) generalize
BRNNs to multiple dimensions. Recursive NNs,
BRNNs, and DAG-RNNs unfold their full poten-
tial when combined with LSTM (Graves et al.
2009).

Particularly successful in competitions were
stacks of LSTM RNNs (Fernandez et al.
2007b) trained by connectionist temporal
classification (CTC, Graves et al. 2006), a
gradient-based method for finding RNN weights
that maximize the probability of teacher-given
label sequences, given (typically much longer
and more high-dimensional) streams of real-
valued input vectors. CTC performs simultaneous
segmentation (alignment) and recognition. In
2009, CTC-trained LSTM became the first RNN
to win controlled international contests, namely,
three competitions in connected handwriting
recognition. Hannun et al. (2014) used CTC-
trained RNNs to break a famous speech
recognition benchmark record, without using
any traditional speech processing methods such
as hidden Markov models (HMMs) or Gaussian
mixture models.

Unlike HMMs and previous RNNs, LSTM can
learn to recognize context-sensitive languages.
By 2007, LSTM had started to revolutionize
speech recognition, outperforming traditional

Deep Learning 343

D

HMMs in keyword spotting tasks (Fernandez
et al. 2007b). By 2013, LSTM achieved best
known results on the famous TIMIT phoneme
recognition benchmark (Graves et al. 2013).
Hybrids of traditional methods and LSTM RNNs
obtained best known performance on large-
vocabulary speech recognition (Sak et al.; Google
2014a; Li and Wu 2015). LSTM also helped to
improve the state of the art in numerous other
fields, including image caption generation (in
conjunction with CNNs) (Vinyals et al.; Google
2014a), machine translation (Sutskever et al.;
Google 2014), text-to-speech synthesis (Fan
et al. 2015; Zen and Sak 2015, now available
for Google Android), photo-real talking heads
(Fan et al.; Microsoft 2015), syntactic parsing
for natural language processing (Vinyals et al.;
Google, 2014b), and many other applications. In
2015, CTC-trained LSTM dramatically improved
Google Voice (by 49 %) and is now available to a
billion smartphone users (Sak et al. 2015).

Gradient-based LSTM is no panacea though.
Other methods sometimes outperformed LSTM
at least on certain tasks (e.g., Jaeger 2004;
Schmidhuber et al. 2007; Martens and Sutskever
2011; Zimmermann et al. 2012; Pascanu et al.
2013b; Koutnik et al. 2014). Several alternative
RNN-related methods with fast memory control
have been proposed over the decades (e.g.,
AMAmemory 2015).

Some Tricks to Improve NNs

BP-like methods can be used to search for
“simple,” low-complexity NNs with high
generalization capability. For example, weight
decay (e.g., Hanson and Pratt 1989) encourages
near-zero weights, by penalizing large weights.
Related weight priors are implicit in additional
penalty terms (MacKay 1992) or in methods
based on validation sets (e.g., Hastie and
Tibshirani 1990). Similar priors (or biases
towards simplicity) are implicit in constructive
and pruning algorithms, e.g., layer-by-layer se-
quential network construction (e.g., Ivakhnenko
1971), input pruning (Moody 1992), unit pruning
(e.g., Ivakhnenko 1971; Mozer and Smolensky

1989), weight pruning (e.g., LeCun et al. 1990b),
fast and short weight matrix-computing programs
(Schmidhuber 1997), and flat minimum search
(FMS, Hochreiter and Schmidhuber 1999). DBN
training can be improved (Cho et al. 2012)
through Tikhonov-type regularization (Tikhonov
et al. 1977). See also sparsity-enforcing methods
mentioned earlier.

Dropout (Hinton et al. 2012b) removes units
from NNs during training to improve generaliza-
tion. It is closely related to older, biologically
plausible techniques for adding noise to neurons
or synapses during training (e.g., Hanson 1990).
NNs with competing units (e.g., Schmidhuber
1989b; Maass 2000; Goodfellow et al. 2013) tend
to outperform those with noncompeting units and
avoid catastrophic forgetting through BP when
training sets change over time (Srivastava et al.
2013).

The popular activation function f of rectified
linear units (ReLUs) is f.x/ D x for x > 0;
f.x/ D 0 otherwise. ReLU NNs are useful for
RBMs (Nair and Hinton 2010; Maas et al. 2013),
outperformed sigmoidal activation functions in
deep NNs (Glorot et al. 2011), and helped to ob-
tain best results on several benchmark problems
across multiple domains (e.g., Krizhevsky et al.
2012).

Many additional tricks for improving NNs
have been described (e.g., Montavon et al. 2012;
Schmidhuber 2015).

Consequences for Neuroscience

Artificial NNs (ANNs) can help to better un-
derstand biological NNs (BNNs). The feature
detectors learned by single-layer visual ANNs are
similar to those found in early visual processing
stages of BNNs. Likewise, the feature detectors
learned in deep layers of visual ANNs should
be highly predictive of what neuroscientists will
find in deep layers of BNNs. While the visual
cortex of BNNs may use quite different learning
algorithms, its objective function to be mini-
mized may be rather similar to the one of visual
ANNs. In fact, results obtained with relatively
deep artificial NNs (e.g., Yamins et al. 2013)

344 Deep Learning

seem compatible with insights about the visual
pathway in the primate cerebral cortex, which has
been studied for many decades.

Deep Learning with Spiking Neurons?

Current deep NNs greatly profit from GPUs,
which are little ovens, much hungrier for energy
than biological brains, whose neurons efficiently
communicate by brief spikes (e.g., Hodgkin and
Huxley 1952) and often remain quiet. Many com-
putational models of such spiking neurons have
been proposed and analyzed (e.g., Gerstner and
Kistler 2002). Future energy-efficient hardware
for DL in NNs may implement aspects of such
models – see numerous references in the survey
(Schmidhuber 2015, Sect. 5.26). In practical ap-
plications, however, current artificial networks of
spiking neurons cannot yet compete with the best
traditional deep NNs.

Deep Reinforcement Learning (RL)

Reinforcement learning (RL) is the most general
type of learning. General RL agents must dis-
cover, without the aid of a teacher, how to interact
with a dynamic, initially unknown, partially ob-
servable environment in order to maximize their
expected cumulative reward signals (e.g., Kael-
bling et al. 1996; Sutton and Barto 1998; Wiering
and van Otterlo 2012). There may be arbitrary,
a priori unknown delays between actions and
perceivable consequences. The RL problem is as
hard as any problem of computer science, since
any task with a computable description can be
formulated in the general RL framework (e.g.,
Hutter 2005). Deep FNNs and RNNs are useful
tools for various types of RL. Many references
on this since the 1980s can be found in the recent
survey (Schmidhuber 2015, Sect. 6).

Outlook

Deep learning in NNs is more than a temporary
fad. Physics seems to dictate that any future

efficient computational hardware will have to
be brain-like, with many compactly placed
processors in three-dimensional space, sparsely
connected by many short and few long wires,
to minimize total connection cost (even if the
“wires” are actually light beams). The basic
architecture is essentially the one of a deep,
sparsely connected, three-dimensional RNN,
and deep learning methods for such RNNs are
expected to become even much more important
than they are today.

The contents of this article may be used for ed-
ucational and noncommercial purposes, includ-
ing articles for Wikipedia and similar sites.

Recommended Reading

Aizenberg I, Aizenberg NN, Vandewalle JPL (2000)
Multi-valued and universal binary neurons: theory,
learning and applications. Springer, Boston. First
work to introduce the term “Deep Learning” to
Neural Networks

AMAmemory (2015) Answer at reddit AMA
(Ask Me Anything) on “memory networks”
etc (with references) http://www.reddit.com/r/
MachineLearning/comments/2xcyrl/i am j%C3
%BCrgen schmidhuber ama/cp0q12t

Amari S-I (1998) Natural gradient works efficiently in
learning. Neural Comput 10(2):251–276

Baird H (1990) Document image defect models. In:
Proceedings of IAPR workshop on syntactic and
structural pattern recognition, Murray Hill

Baldi P, Pollastri G (2003) The principled design of
large-scale recursive neural network architectures –
DAG-RNNs and the protein structure prediction
problem. J Mach Learn Res 4:575–602

Ballard DH (1987) Modular learning in neural net-
works. In: Proceedings of AAAI, Seattle, pp 279–
284

Barlow HB, Kaushal TP, Mitchison GJ (1989) Finding
minimum entropy codes. Neural Comput 1(3):412–
423

Bayer J, Wierstra D, Togelius J, Schmidhuber J (2009)
Evolving memory cell structures for sequence learn-
ing. In: Proceedings of ICANN, vol 2. Springer,
Berlin/New York, pp 755–764

Behnke S (1999) Hebbian learning and competition in
the neural abstraction pyramid. In: Proceedings of
IJCNN, vol 2. Washington, pp 1356–1361

Behnke S (2003) Hierarchical neural networks for
image interpretation. Lecture notes in computer sci-
ence, vol LNCS 2766. Springer, Berlin/New York

Bengio Y, Lamblin P, Popovici D, Larochelle H (2007)
Greedy layer-wise training of deep networks. In:

http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/cp0q12t
http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/cp0q12t
http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/cp0q12t

Deep Learning 345

D

Cowan JD, Tesauro G, Alspector J (eds) Proceed-
ings of NIPS 19, MIT Press, Cambridge, pp 153–
160

Breiman L (1996) Bagging predictors. Mach Learn
24(2):123–140

Bryson AE (1961) A gradient method for optimizing
multi-stage allocation processes. In: Proceedings of
Harvard university symposium on digital computers
and their applications, Harvard University Press,
Cambridge

Bryson A, Ho Y (1969) Applied optimal control:
optimization, estimation, and control. Blaisdell Pub-
lishing Company, Washington

Cho K, Ilin A, Raiko T (2012) Tikhonov-type reg-
ularization for restricted Boltzmann machines. In:
Proceedings of ICANN 2012, Springer, Berlin/New
York, pp 81–88

Ciresan DC, Meier U, Gambardella LM, Schmidhuber
J (2010) Deep big simple neural nets for handwritten
digit recogntion. Neural Comput 22(12):3207–3220

Ciresan DC, Meier U, Masci J, Gambardella LM,
Schmidhuber J (2011) Flexible, high performance
convolutional neural networks for image classifica-
tion. In: Proceedings of IJCAI, pp 1237–1242

Ciresan DC, Giusti A, Gambardella LM, Schmidhuber
J (2012a) Deep neural networks segment neuronal
membranes in electron microscopy images. In: Pro-
ceedings of NIPS, Quebec City, pp 2852–2860

Ciresan DC, Meier U, Masci J, Schmidhuber J (2012b)
Multi-column deep neural network for traffic sign
classification. Neural Netw 32:333–338

Ciresan DC, Meier U, Schmidhuber J (2012c) Multi-
column deep neural networks for image classifica-
tion. In: Proceedings of CVPR 2012, Long preprint.
arXiv:1202.2745v1 [cs.CV]

Ciresan DC, Giusti A, Gambardella LM, Schmidhuber
J (2013) Mitosis detection in breast cancer histology
images with deep neural networks. In: Proceedings
of MICCAI, vol 2. Nagoya, pp 411–418

Coates A, Huval B, Wang T, Wu DJ, Ng AY, Catanzaro,
B (2013) Deep learning with COTS HPC systems.
In: Proceedings of ICML’13

Dechter R (1986) Learning while searching
in constraint-satisfaction problems.
University of California, Computer Science
Department, Cognitive Systems Laboratory.
First paper to introduce the term “Deep
Learning” to Machine Learning; compare
a popular G+ post on this. https://plus.
google.com/100849856540000067209/posts/7N6z2
51w2Wd?pid=6127540521703625346&oid=1008
49856540000067209

Dreyfus SE (1962) The numerical solution of varia-
tional problems. J Math Anal Appl 5(1):30–45

Dreyfus SE (1973) The computational solution of op-
timal control problems with time lag. IEEE Trans
Autom Control 18(4):383–385

Fan B, Wang L, Soong FK, Xie L (2015) Photo-
real talking head with deep bidirectional LSTM. In:
Proceedings of ICASSP 2015, Brisbane

Farabet C, Couprie C, Najman L, LeCun Y (2013)
Learning hierarchical features for scene labeling.
IEEE Trans Pattern Anal Mach Intell 35(8):1915–
1929

Fernandez S, Graves A, Schmidhuber J (2007a) An ap-
plication of recurrent neural networks to discrimina-
tive keyword spotting. In: Proceedings of ICANN,
vol 2. pp 220–229

Fernandez S, Graves A, Schmidhuber J (2007b) Se-
quence labelling in structured domains with hierar-
chical recurrent neural networks. In: Proceedings of
IJCAI

Fu KS (1977) Syntactic pattern recognition and appli-
cations. Springer, Berlin

Fukushima K (1979) Neural network model for a
mechanism of pattern recognition unaffected by
shift in position – neocognitron. Trans. IECE J62-
A(10):658–665

Gers FA, Schmidhuber J (2001) LSTM recurrent
networks learn simple context free and context
sensitive languages. IEEE Trans Neural Netw
12(6):1333–1340

Gerstner W, Kistler WK (2002) Spiking neuron mod-
els. Cambridge University Press, Cambridge

Glorot X, Bordes A, Bengio Y (2011) Deep sparse
rectifier networks. In: Proceedings of AISTATS, vol
15. Fort Lauderdale, pp 315–323

Goodfellow IJ, Warde-Farley D, Mirza M, Courville A,
Bengio Y (2013) Maxout networks. In: Proceedings
of ICML, Atlanta

Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V
(2014b) Multi-digit number recognition from street
view imagery using deep convolutional neural net-
works. arXiv preprint arXiv:1312.6082 v4

Goller C, Küchler A (1996) Learning task-dependent
distributed representations by backpropagation
through structure. In: IEEE international conference
on neural networks 1996, vol 1, pp 347–352

Graves A, Fernandez S, Gomez FJ, Schmidhuber
J(2006) Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent
neural nets. In: Proceedings of ICML’06, Pittsburgh,
pp 369–376

Graves A, Liwicki M, Fernandez S, Bertolami R,
Bunke H, Schmidhuber J (2009) A novel connec-
tionist system for improved unconstrained hand-
writing recognition. IEEE Trans Pattern Anal Mach
Intell 31(5):855–868

Graves A, Mohamed A-R, Hinton GE (2013) Speech
recognition with deep recurrent neural networks. In:
Proceedings of ICASSP, Vancouver, pp 6645–6649

Hannun A, Case C, Casper J, Catanzaro B, Diamos G,
Elsen E, Prenger R, Satheesh S, Sengupta S, Coates
A, Ng AY (2014) Deep speech: scaling up end-to-
end speech recognition. arXiv preprint http://arxiv.
org/abs/1412.5567

Hanson SJ, Pratt LY (1989) Comparing biases for min-
imal network construction with back-propagation.
In: Touretzky DS (ed) Proceedings of NIPS, vol 1.
Morgan Kaufmann, San Mateo, pp 177–185

https://plus.google.com/100849856540000067209/posts/7N6z251w2Wd?pid=6127540521703625346&oid=100849856540000067209
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567

346 Deep Learning

Hanson SJ (1990) A stochastic version of the delta rule.
Phys D: Nonlinear Phenom 42(1):265–272

Hastie TJ, Tibshirani RJ (1990) Generalized additive
models, vol 43. CRC Press

Hebb DO (1949) The organization of behavior. Wiley,
New York

Herrero J, Valencia A, Dopazo J (2001) A hierar-
chical unsupervised growing neural network for
clustering gene expression patterns. Bioinformatics
17(2):126–136

Hinton G, Salakhutdinov R (2006) Reducing the di-
mensionality of data with neural networks. Science
313(5786):504–507

Hinton GE (2002) Training products of experts by
minimizing contrastive divergence. Neural Comput
14(8):1771–1800

Hinton GE, Osindero S, Teh Y-W (2006) A fast learn-
ing algorithm for deep belief nets. Neural Comput
18(7):1527–1554

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I,
Salakhutdinov RR (2012b) Improving neural net-
works by preventing co-adaptation of feature detec-
tors. Technical report. arXiv:1207.0580

Hochreiter S (1991) Untersuchungen zu dynamischen
neuronalen Netzen. Diploma thesis, Institut fuer
Informatik, Lehrstuhl Prof. Brauer, Tech. Univ. Mu-
nich. Advisor: J. Schmidhuber

Hochreiter S, Schmidhuber J (1997a) Flat minima.
Neural Comput 9(1):1–42

Hochreiter S, Schmidhuber J (1997b) Long short-term
memory. Neural Comput 9(8):1735–1780. Based on
TR FKI-207-95, TUM (1995)

Hochreiter S, Schmidhuber J (1999) Feature extraction
through LOCOCODE. Neural Comput 11(3):679–
714

Hodgkin AL, Huxley AF (1952) A quantitative de-
scription of membrane current and its application
to conduction and excitation in nerve. J Physiol
117(4):500

Hutter M (2005) Universal artificial intelligence: se-
quential decisions based on algorithmic probability.
Springer, Berlin

Ivakhnenko AG, Lapa VG (1965) Cybernetic Predict-
ing Devices. CCM Information Corporation, New
York

Ivakhnenko AG (1971) Polynomial theory of complex
systems. IEEE Trans Syst Man Cybern (4):364–378

Jaeger H (2004) Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless com-
munication. Science 304:78–80

Ji S, Xu W, Yang M, Yu K (2013) 3D convolu-
tional neural networks for human action recogni-
tion. IEEE Trans Pattern Anal Mach Intell 35(1):
221–231

Kaelbling LP, Littman ML, Moore AW (1996) Rein-
forcement learning: a survey. J AI Res 4:237–285

Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar
R, Fei-Fei L (2014) Large-scale video classification
with convolutional neural networks. In: Proceedings
of CVPR, Columbus

Kelley HJ (1960) Gradient theory of optimal flight
paths. ARS J 30(10):947–954

Khan SH, Bennamoun M, Sohel F, Togneri R (2014)
Automatic feature learning for robust shadow detec-
tion. In: Proceedings of CVPR, Columbus

Koikkalainen P and Oja E (1990) Self-organizing hi-
erarchical feature maps. In: Proceedings of IJCNN,
pp 279–284

Koutnik J, Greff K, Gomez F, Schmidhuber J (2014) A
Clockwork RNN. In: Proceedings of ICML, vol 32.
pp 1845–1853. arXiv:1402.3511 [cs.NE]

Kramer M (1991) Nonlinear principal component anal-
ysis using autoassociative neural networks. AIChE J
37:233–243

Krizhevsky A, Sutskever I, Hinton GE (2012) Ima-
genet classification with deep convolutional neural
networks. In: Proceedings of NIPS, Nevada, p 4

LeCun Y, Boser B, Denker JS, Henderson D,
Howard RE, Hubbard W, Jackel LD (1989) Back-
propagation applied to handwritten zip code recog-
nition. Neural Comput 1(4):541–551

LeCun Y, Denker JS, Solla SA (1990b) Optimal brain
damage. In: Touretzky DS (ed) Proceedings of NIPS
2, Morgan Kaufmann, San Mateo, pp 598–605

LeCun Y, Bengio Y, Hinton G (2015) Deep Learn-
ing. Nature 521:436–444. Link. See critique
by J. Schmidhuber (2015) http://people.idsia.ch/�
juergen/deep-learning-conspiracy.html

Lee S, Kil RM (1991) A Gaussian potential function
network with hierarchically selforganizing learning.
Neural Netw 4(2):207–224

Li X, Wu X (2015) Constructing long short-term mem-
ory based deep recurrent neural networks for large
vocabulary speech recognition. In: Proceedings of
ICASSP 2015. http://arxiv.org/abs/1410.4281

Linnainmaa S (1970) The representation of the cumu-
lative rounding error of an algorithm as a Taylor
expansion of the local rounding errors. Master’s
thesis, University of Helsinki

Linnainmaa S (1976) Taylor expansion of the accumu-
lated rounding error. BIT Numer Math 16(2):146–
160

Maas AL, Hannun AY, Ng AY (2013) Rectifier non-
linearities improve neural network acoustic models.
In: Proceedings of ICML, Atlanta

Maass W (2000) On the computational power of
winner-take-all. Neural Comput 12:2519–2535

MacKay, DJC (1992) A practical Bayesian framework
for backprop networks. Neural Comput 4:448–472

Maclin R, Shavlik JW (1995) Combining the predic-
tions of multiple classifiers: using competitive learn-
ing to initialize neural networks. In: Proceedings of
IJCAI, pp 524–531

Martens J, Sutskever I (2011) Learning recurrent neu-
ral networks with Hessian-free optimization. In:
Proceedings of ICML, pp 1033–1040

Masci J, Giusti A, Ciresan DC, Fricout G, Schmidhu-
ber J (2013) A fast learning algorithm for image
segmentation with max-pooling convolutional net-
works. In: Proceedings of ICIP13, pp 2713–2717

http://people.idsia.ch/~juergen/deep-learning-conspiracy.html
http://people.idsia.ch/~juergen/deep-learning-conspiracy.html
http://arxiv.org/abs/1410.4281

Deep Learning 347

D

McCulloch W, Pitts W (1943) A logical calculus of
the ideas immanent in nervous activity. Bull Math
Biophys 7:115–133

Mohamed A, Hinton GE (2010) Phone recognition us-
ing restricted Boltzmann machines. In: Proceedings
of ICASSP, Dallas, pp 4354–4357

Moller MF (1993) Exact calculation of the product
of the Hessian matrix of feed-forward network
error functions and a vector in O(N) time. Techni-
cal report PB-432, Computer Science Department,
Aarhus University

Montavon G, Orr G, Mueller K (2012) Neural
networks: tricks of the trade. Lecture notes in
computer science, vol LNCS 7700. Springer,
Berlin/Heidelberg

Moody JE (1992) The effective number of parame-
ters: an analysis of generalization and regularization
in nonlinear learning systems. In: Proceedings of
NIPS’4, Morgan Kaufmann, San Mateo, pp 847–
854

Mozer MC, Smolensky P (1989) Skeletonization: a
technique for trimming the fat from a network via
relevance assessment. In: Proceedings of NIPS 1,
Morgan Kaufmann, San Mateo, pp 107–115

Nair V, Hinton GE (2010) Rectified linear units im-
prove restricted Boltzmann machines. In: Proceed-
ings of ICML, Dallas

Oh K-S, Jung K (2004) GPU implementation of neural
networks. Pattern Recognit 37(6):1311–1314

Pascanu R, Mikolov T, Bengio Y (2013b) On the
difficulty of training recurrent neural networks. In:
ICML’13: JMLR: W&CP, vol 28

Pearlmutter BA (1994) Fast exact multiplication by the
Hessian. Neural Comput 6(1):147–160

Raina R, Madhavan A, Ng A (2009) Large-scale deep
unsupervised learning using graphics processors. In:
Proceedings of ICML, Montreal, pp 873–880

Ranzato MA, Huang F, Boureau Y, LeCun Y (2007)
Unsupervised learning of invariant feature hierar-
chies with applications to object recognition. In:
Proceedings of CVPR, Minneapolis, pp 1–8

Robinson AJ, Fallside F (1987) The utility driven
dynamic error propagation network. Technical re-
port CUED/F-INFENG/TR.1, Cambridge Univer-
sity Engineering Department

Rosenblatt F (1958) The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychol Rev 65(6):386

Rumelhart DE, Hinton GE, Williams RJ (1986) Learn-
ing internal representations by error propagation. In:
Rumelhart DE, McClelland JL (eds) Parallel dis-
tributed processing, vol 1, MIT Press, Cambridge,
pp 318–362

Sak H, Senior AW, Beaufays F (2014) Long short-term
memory recurrent neural network architectures for
large scale acoustic modeling. INTERSPEECH

Sak H, Senior A, Rao K, Beaufays F,
Schalkwyk J (2015) Google research blog.
http://googleresearch.blogspot.ch/2015/09/google-
voice-search-faster-and-more.html

Schapire RE (1990) The strength of weak learnability.
Mach Learn 5(2):197–227

Scherer D, Mueller A, Behnke S (2010) Evaluation
of pooling operations in convolutional architectures
for object recognition. In: Proceedings of ICANN,
Thessaloniki, pp 92–101

Schmidhuber J (1989b) A local learning algorithm
for dynamic feedforward and recurrent networks.
Connect Sci 1(4):403–412

Schmidhuber J (1992b) Learning complex, extended
sequences using the principle of history compres-
sion. Neural Comput 4(2):234–242. Based on TR
FKI-148-91, TUM, 1991

Schmidhuber J (1992c) Learning factorial codes
by predictability minimization. Neural Comput
4(6):863–879

Schmidhuber J (1997) Discovering neural nets
with low Kolmogorov complexity and high
generalization capability. Neural Netw 10(5):
857–873

Schmidhuber J, Wierstra D, Gagliolo M, Gomez FJ
(2007) Training recurrent networks by Evolino.
Neural Comput 19(3):757–779

Schmidhuber J (2015) Deep learning in neural net-
works: an overview. Neural Netw 61:85–117. arXiv
preprint 1404.7828

Schmidhuber J (2015) Deep learning. Scholarpedia
10(11):32832

Schuster M, Paliwal KK (1997) Bidirectional recur-
rent neural networks. IEEE Trans Signal Process
45:2673–2681

Sima J (1994) Loading deep networks is hard. Neural
Comput 6(5):842–850

Simonyan K, Zisserman A (2015) Very deep convo-
lutional networks for large-scale image recognition.
arXiv preprint http://arxiv.org/abs/1409.1556

Smolensky P (1986) Parallel distributed processing:
explorations in the microstructure of cognition,
chapter information processing in dynamical sys-
tems: foundations of Harmony theory, vol 1. MIT
Press, Cambridge, pp 194–281

Speelpenning B (1980) Compiling fast partial deriva-
tives of functions given by algorithms. Ph.D. thesis,
Department of Computer Science, University of
Illinois, Urbana-Champaign

Srivastava RK, Masci J, Kazerounian S, Gomez F,
Schmidhuber J (2013) Compete to compute. In:
Proceedings of NIPS, Nevada, pp 2310–2318

Sutskever I, Vinyals O, Le QV (2014) Sequence to se-
quence learning with neural networks. In: Proceed-
ings of NIPS’2014. arXiv preprint arXiv:1409.3215
[cs.CL]

Sutton R, Barto A (1998) Reinforcement learning: an
introduction. MIT Press, Cambridge

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S,
Anguelov D, Erhan D, Vanhoucke V, Rabinovich
A (2014) Going deeper with convolutions. arXiv
preprint arXiv:1409.4842 [cs.CV]

Tikhonov AN, Arsenin VI, John F (1977) Solutions of
ill-posed problems. Winston, New York

http://googleresearch.blogspot.ch/2015/09/google-voice-search-faster-and-more.html
http://arxiv.org/abs/1409.1556

348 Density Estimation

Vaillant R, Monrocq C, LeCun Y (1994) Original
approach for the localisation of objects in images.
IEE Proc Vision Image Signal Process 141(4):245–
250

Vieira A, Barradas N (2003) A training algorithm for
classification of high-dimensional data. Neurocom-
puting 50:461–472

Vinyals O, Toshev A, Bengio S, Erhan D (2014a) Show
and tell: a neural image caption generator. arXiv
Preprint http://arxiv.org/pdf/1411.4555v1.pdf

Vinyals O, Kaiser L, Koo T, Petrov S, Sutskever I,
Hinton G (2014b) Grammar as a foreign language.
Preprint http://arxiv.org/abs/1412.7449

Wan EA (1994) Time series prediction by using a
connectionist network with internal delay lines.
In: Weigend AS, Gershenfeld NA (eds) Time se-
ries prediction: forecasting the future and un-
derstanding the past. Addison-Wesley, Reading,
pp 265–295

Weng JJ, Ahuja N, Huang TS (1993) Learning recog-
nition and segmentation of 3-d objects from 2-
d images. Proceedings of the fourth international
conference on computer vision. IEEE

Williams RJ (1989) Complexity of exact gradient
computation algorithms for recurrent neural net-
works. Technical Report NU-CCS-89-27, North-
eastern University, College of Computer Science,
Boston

Wiering M, van Otterlo M (2012) Reinforcement learn-
ing. Springer, Berlin/Heidelberg

Werbos PJ (1974) Beyond regression: new tools for
prediction and analysis in the behavioral sciences.
Ph.D. thesis, Harvard University

Werbos PJ (1982) Applications of advances in nonlin-
ear sensitivity analysis. In: Proceedings of the 10th
IFIP conference, 31.8–4.9, NYC, pp 762–770

Werbos PJ (1988) Generalization of backpropagation
with application to a recurrent gas market model.
Neural Netw 1(4):339–356

Yamins D, Hong H, Cadieu C, DiCarlo JJ (2013) Hier-
archical modular optimization of convolutional net-
works achieves representations similar to macaque
IT and human ventral stream. In: Proceedings of
NIPS, Nevada, pp 1–9

Zeiler MD, Fergus R (2013) Visualizing and under-
standing convolutional networks. Technical report
arXiv:1311.2901 [cs.CV], NYU

Zen H, Sak H (2015) Unidirectional long short-term
memory recurrent neural network with recurrent
output layer for low-latency speech synthesis. In:
Proceedings of ICASSP, Brisbane, pp 4470–4474

Zimmermann H-G, Tietz C, Grothmann R (2012) Fore-
casting with recurrent neural networks: 12 tricks. In:
Montavon G, Orr GB, Mueller K-R (eds) Neural
networks: tricks of the trade, 2nd edn. Lecture
Notes in Computer Science, vol 7700. Springer,
Berlin/New York, pp 687–707

Density Estimation

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

Kernel density estimation

Definition

Given a set of observations, x1; : : : ; xN , which
is a random sample from a probability density
function fX .x/, density estimation attempts to
approximate fX .x/ by bf X .x0/.

A simple way of estimating a probability den-
sity function is to plot a histogram from a random
sample drawn from the population. Usually, the
range of data values is subdivided into equally
sized intervals or bins. How well the histogram
estimates the function depends on the bin width
and the placement of the boundaries of the bins.
The latter can be somewhat improved by modi-
fying the histogram so that fixed boundaries are
not used for the estimate. That is, the estimate
of the probability density function at a point
uses that point as the centre of a neighborhood.
Following Hastie et al. (2009), the estimate can
be expressed as:

cfX .x0/ D
#xi 2 N.x0/

N�
(1)

where x1; : : : ; xN is a random sample drawn
from a probability density function fX .x/ and
cfX .x0/ is the estimate of fX at point x0.N.x0/ is
a neighborhood of width �, around x0. That is, the
estimate is the normalized count of the number of
values that fall within the neighborhood of x0.

The estimate above is still bumpy, like the
histogram. A smoother approximation can be
obtained by using a kernel function. Each xi in

http://arxiv.org/pdf/1411.4555v1.pdf
http://arxiv.org/abs/1412.7449
http://dx.doi.org/10.1007/978-1-4899-7687-1_100231

Density-Based Clustering 349

D

the sample is associated with a kernel function,
usually Gaussian. The count in formula (1) above
is replaced by the sum of the kernel function
applied to the points in the neighborhood of x0:

cfX .x0/ D
1

N�

NX

iD1

K�.x0; xi / (2)

where K is the kernel function associated with
sample xi near x0. This is called the Parzen
estimate (Parzen 1962). The bandwidth, �,
affects the roughness or smoothness of the kernel
histogram. The kernel density estimate is said to
be under-smoothed if the bandwidth is too small.
The estimate is over-smoothed if the bandwidth
is too large.

Density estimation is most often used in
association with memory-based classification
methods, which can be thought of as weighted
� nearest neighbor classifiers.

�Mixture models and �Locally weighted re-
gression are forms of kernel density estimation.

Cross-References

�Kernel Methods
�Locally Weighted Regression for Control
�Mean Shift
�Mixture Model
�Nearest Neighbor
� Support Vector Machines

Recommended Reading

Kernel Density estimation is well covered in texts
including Hastie et al. (2009), Duda et al. (2001)
and Ripley (1996)

Duda RO, Hart PE, Stork DG (2001) Pattern classifica-
tion, 2nd edn. Wiley, New York

Hastie T, Tibshirani R, Friedman J (2009) The ele-
ments of statistical learning: data mining, inference
and perception, 2nd edn. Springer, New York

Parzen E (1962) On the estimation of a probability
density function and the mode. Ann Math Stat
33:1065–1076

Ripley BD (1996) Pattern recognition and neural net-
works. Cambridge University Press, Cambridge

Density-Based Clustering

Joerg Sander
University of Alberta, Edmonton, AB, Canada
Statistical Machine Learning Group, NICTA,
Canberra, ACT, Australia

Abstract

The chapter gives a concise explanation of the
basic principles of density-based clustering
and points out important ”milestone papers”
in this area.

Synonyms

Estimation of density level sets; Mode analysis;
Nonparametric cluster analysis

Definition

Density-based clustering refers to unsupervised
learning methods that identify distinctive
groups/clusters in the data, based on the idea
that a cluster in a data space is a contiguous
region of high point density, separated from other
such clusters by contiguous regions of low point
density. The data points in the separating regions
of low point density are typically considered
noise/outliers.

Motivation and Background

Clustering in general is an unsupervised learning
task that aims at finding distinct groups in data,
called “clusters.” The minimum requirements for
this task are that the data is given as some set
of objects O for which a dissimilarity-distance

http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_532
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_100142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100307
http://dx.doi.org/10.1007/978-1-4899-7687-1_100335

350 Density-Based Clustering

function d : O � O ! RC is given. Often,
O is a set of d -dimensional real-valued points,
O � Rd , which can be viewed as a sample from
some unknown probability density p.x/, with d
as the Euclidean or some other form of distance.

There are different approaches to characteriz-
ing what establishes distinct groups in the data.

From a procedural point of view, many clus-
tering methods try to find a partition of the data
into k groups so that the within-cluster dissimi-
larities are minimized, while the between-cluster
dissimilarities are maximized. The notions of
within-cluster and between-cluster dissimilarity
are defined using the given distance function d .
Such methods correspond, from a statistical point
of view, to a parametric approach where the un-
known density p.x/ of the data is assumed to be a
mixture of k densities pi .x/, each corresponding
to one of the k groups in the data; the pi .x/ are
assumed to come from some parametric family
(e.g., Gaussian distributions) with unknown pa-
rameters, which are then estimated from the data.

In contrast, density-based clustering is a non-
parametric approach where the groups in the
data are considered to be the high-density areas
of the density p.x/. Density-based clustering
methods do not require the number of clusters as
input parameters, nor do they make assumptions
about the underlying density p.x/ or the variance
within the groups that may exist in the data.
Consequently, density-based clusters are not nec-
essarily groups of points with high within-cluster
similarity as measured by the distance function
d but can have “arbitrary shape” in the feature
space; they are sometimes also referred to as
“natural clusters.” This property makes density-
based clustering particularly suitable for applica-
tions where clusters cannot be well described as
distinct groups of low within-cluster dissimilar-
ity, as, for instance, in spatial data where clusters
of points in the space may form along natural
structures such a rivers, roads, seismic faults, etc.
Figure 1 illustrates density-based clusters using
two-dimensional example, where the assumed
dissimilarity function between the points is the
Euclidean distance: there are three clusters in-

Density-Based Clustering, Fig. 1 Illustration of a
density-based clustering, showing three distinguishable
groups

dicated by triangles, points, and rectangles, as
well as some noise points, indicated by diamond
shapes. Note that the distance between some
points within the clusters is much larger than
the distance between some points from different
clusters, yet the regions containing the clusters
have clearly a higher point density than the region
between them, and they can easily be separated.

Density-based clustering is one of the promi-
nent paradigms for clustering large data sets in
the data mining community. It has been exten-
sively studied and successfully used in many
applications.

Structure of Learning System

Assuming that the data set O � Rd is a sample
from some unknown probability density p.x/,
there are different ways of determining high-
density areas of the density p.x/. Commonly,
the notion of a high-density area is (implicitly
or explicitly) based on a local density estimate
at each point (typically some kernel or nearest
neighbor density estimate) and a notion of con-
nection between objects (typically points are con-
nected if they are within a certain distance " from
each other); clusters are essentially constructed
as maximal sets of objects which are directly or
transitively connected to objects whose density

Density-Based Clustering 351

D

exceeds some threshold �. The set fx j p(x) > �g
of all high-density objects is called the density
level set of p at �. Objects that are not part of
such clusters are called noise or outliers.

Different proposed density-based methods
distinguish themselves mainly by how the density
p.x/ is estimated, how the notion of connectivity
is defined, and how the algorithm for finding
connected components of the induced graph is
implemented and supported by suitable data
structures to achieve scalability for large data
sets. Some methods include in a cluster only
objects whose density exceed the threshold �;
others also include objects with lower density
if they are connected to an object with density
above the threshold �.

Density-based clustering was probably intro-
duced the first time by Wishart (1969). His al-
gorithm for one level mode analysis consists of
six steps: “(a) Select a distance threshold r, and a
frequency (or density) threshold k. (b) Compute
the triangular similarity matrix of all inter-point
distances. (c) Evaluate the frequency ki of each
data point, defined as the number of points which
lie within a distance r of point i (: : :). (d) Remove
the ‘noise’ or non-dense points, those for which
ki < k. (e) Cluster the remaining dense points
(ki > k/ by single linkage, forming the mode
nuclei. (f) Reallocate each non-dense point to a
suitable cluster according to some criterion (: : :).”
(Wishart 1969).

Hartigan (1975) suggested a more general def-
inition of a density-based cluster, a density con-
tour cluster at level �, as a maximally connected
set of points x for which p.x/ > �, given a
density p.x/ at each point x, a density threshold
�, and links specified for some pairs of objects.
For instance, given a particular distance function,
points can be defined as linked if the distance
between them is no greater than some threshold
r , or, if only direct links are available, one can
define a “distance” for pairs of objects x and y in
the following way:

d.x; y/D

�
�minŒp.x/; p.y/� x and y are linked

0 otherwise

To compute the density contour clusters,
Hartigan, like Wishart, suggest a version of
single-linkage clustering, which will construct
the maximal connected sets of objects of density
greater than the given threshold �.

The DBSCAN algorithm (Ester et al.
1996) introduced density-based clustering
independently to the Computing Science
Community, also proposing the use of spatial
index structures to achieve a scalable clustering
algorithm. Assuming a distance threshold r , and
a density threshold k, DBSCAN, like Wishart’s
method, estimates the density for each point xi as
the number ki of points that lie inside a radius r
around x. Core points are defined as data points
for which ki > k. Points are considered directly
connected if the distance between them is no
greater than r . Density-based clusters are defined
as maximally connected components of the set of
points that lie within distance r from some core
object (i.e., a cluster may contain points xi with
ki < k, called border objects, if they are within
distance r of a core object of that cluster). Objects
not part of a cluster are considered as noise.
The algorithm DBSCAN constructs clusters
iteratively, starting a new cluster C with a non-
assigned core object x and assigning all points to
C that are directly or transitively connected to x.
To determine directly and transitively connected
points for a given point, a spatial index structure
is used to perform range queries with radius r
for each object that is newly added to a current
cluster, resulting in an algorithm that performs
well in practical situations when spatial index
structures are effective (typically for low- to
medium dimensional data), and has quadratic
worst case runtime when index structures are not
effective (e.g., for high-dimensional data).

DENCLUE (Hinneburg and Keim 1998) pro-
posed a notion of density-based clusters using
kernel density estimation. Each data point x is
associated with (“attracted by”) a local maxi-
mum (“density attractor”) of the overall den-
sity function that lies in the direction of maxi-
mum increase in density from x. Density-based
clusters are defined as connected components

352 Density-Based Clustering

of density attractors with their associated points
whose density estimate is above a given threshold
�. In this formulation, DBSCAN and Wishart’s
method can be seen as special cases of DEN-
CLUE, using a uniform spherical kernel and, for
Wishart’s method, not including attracted points
whose density is below �. DENCLUE essentially
uses a truncated Gaussian kernel for the imple-
mentation, which is based on a clever data struc-
ture to speed up local density estimation. The
data space is partitioned into d -dimensional cells;
nonempty cells are mapped to one-dimensional
keys which are stored together with some suffi-
cient statistics about the cell (number of points,
pointers to points, and linear sum of the points
belonging to the cell) in a search tree for ef-
ficient retrieval of neighboring cells and local
density estimation (Hinneburg and Keim (1998)
report that in an experimental comparison on
11-dimensional data sets of different sizes, DEN-
CLUE runs up to 45 times faster than DBSCAN).

A large number of related methods and
extensions have been proposed, particularly
in computing science and application-oriented
domains, some motivated by algorithmic
considerations that could improve efficiency of
the computation of density-based clusters, others
motivated by special applications, proposing
essentially density-based clustering algorithms
using specific density measures and notions of
connectivity. An algorithmic framework, called
GDBSCAN, that generalizes the topological
properties of density-based clusters can be found
in Sander et al. (1998). GDBSCAN generalizes
the notion of a density-based clustering to that
of a density-connected decomposition, assuming
only a reflexive and symmetric neighborhood
relation for pairs of objects (direct links between
some objects), and an arbitrary predicate, called
“MinWeight,” that evaluates to true for some
neighborhood sets of objects and false on others,
a core object can be defined as an object whose
neighborhood satisfies the MinWeight predicate.
Then, a density-connected decomposition
consists of the maximally connected components
of the set of objects that are in the neighborhood
of some core object, and they can be computed

with the same algorithmic scheme as density-
based clusters by DBSCAN.

One of the principal problems of finding the
density-based clusters of a density level set for
a single level � is how to determine a suitable
level �. The result of a density-based clustering
method depends critically on the choice of �,
which may be difficult to determine even in situ-
ations when a meaningful level exists, depending
on how well the clusters are separated in the given
sample. In other situations, it may not even be
possible to characterize the cluster structure ap-
propriately using a single density threshold, when
modes exist in different regions of the data space
that have very different local densities or when
clusters are nested within clusters. The problem
of selecting suitable density threshold parameters
has been already observed by Wishart (1969) who
also proposed a hierarchical algorithm to repre-
sent the clusters at different density levels. Harti-
gan (1975) also observed that density-based clus-
ters at different density levels have a hierarchical
structure, a density contour tree, based on the fact
that two clusters (i.e., connected components)
of different density levels are either disjoint or
the cluster of higher density is completely con-
tained in the cluster of lower density. Recent pro-
posals for hierarchical clustering methods based
on a density estimate and a notion of linkage
are, e.g., Ankerst et al. (1999), Stuetzle (2003),
and Campello et al. (2013). These hierarchical
methods are closely related and are essentially
processing and rendering a minimum spanning
tree of the data –with edge weights defined in dif-
ferent ways– and are thus also closely related to
single-linkage clustering. Hierarchical methods
do not, in a strict sense, compute a partition of the
data but compute a representation of the overall
hierarchical density structure of the data from
which particular density-based clusters at differ-
ent density levels or a global density threshold
(a “cut level”) could be determined. Recent work
(Campello et al. 2013) provides an efficient hi-
erarchical version DBSCAN, called HDBSCAN,
which includes a method for automatically ex-
tracting a flat partitioning from possibly different
levels of a density-based clustering hierarchy,

Digraphs 353

D

containing only significant clusters according to
a cluster stability measure.

Cross-References

�Clustering
�Density Estimation

Recommended Reading

Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999)
OPTICS: ordering points to identify the cluster-
ing structure. In: Delis A, Faloutsos C, Ghande-
harizadeh S (eds) Proceedings of the 1999 ACM
SIGMOD international conference on management
of data, Philadelphia

Campello RJGB, Moulavi D, Sander J (2013) Density-
based clustering based on hierarchical density es-
timates. In: Proceedings of the 17th Pacific-Asia
conference on knowledge discovery in databases,
PAKDD 2013. Lecture notes in computer science,
vol 7819, p 160

Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-
based algorithm for discovering clusters in large
spatial databases with noise. In: Simoudis E, Han
J, Fayyad UM (eds) Proceedings of the 2nd interna-
tional conference on knowledge discovery and data
mining, Portland

Hartigan JA (1975) Clustering algorithms. Wiley, New
York

Hinneburg A, Keim DA (1998) An efficient approach
to clustering in large multimedia databases with
noise. In: Agrawal R, Stolorz P (eds) Proceedings
of the 4th international conference on knowledge
discovery and data mining, New York City

Sander J, Ester M, Kriegel H-P, Xu X (1998) Density-
Based clustering in spatial databases: the algorithm
GDBSCAN and its applications. Data Min Knowl
Discov 2(2):169–194

Stuetzle W (2003) Estimating the cluster tree of a
density by analyzing the minimal spanning tree of
a sample. J Classif 20(1):025–047

Wishart D (1969) Mode analysis: a generalization of
nearest neighbor which reduces chaining effects.
In: Numerical Taxonomy, ed. A. J. Cole, London:
Academic Press, 282–311

Dependency Directed Backtracking

� Intelligent Backtracking

Detail

In �Minimum Message Length, detail is the code
or language shared between sender and receiver
that is used to describe the data conditional on
the asserted model.

Diagonal Matrix

�K-Way Spectral Clustering

Differential Prediction

�Uplift Modeling

Digraphs

Synonyms

Directed graphs

Definition

A digraph D consists of a (finite) set of vertices
V(D/ and a set A.D/ of ordered pairs, called
arcs, of distinct vertices. An arc .u; v/ has tail u
and head v, and it is said to leave u and enter v.

Figure 1 shows a digraph D with vertex set
V.D/ D fu; v;w; x; y; ´g and arc set A.D/ D
f.u; v/; .u;w/; .v;w/; .w; x/; .x;w/; .x; ´/; .y; x/;

u

v

w x

y

z

Digraphs, Fig. 1 A digraph

http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_210
http://dx.doi.org/10.1007/978-1-4899-7687-1_411
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_433
http://dx.doi.org/10.1007/978-1-4899-7687-1_911
http://dx.doi.org/10.1007/978-1-4899-7687-1_100113

354 Dimensionality Reduction

.´; x/g. Digraphs can be viewed as generaliza-
tions of � graphs.

Dimensionality Reduction

Michail Vlachos
IBM Research, Zurich, Switzerland

Abstract

Dimensionality reduction in an important data
pre-processing when dealing with Big Data.
We explain how it can be used for speeding
up search operation and show applications for
time-series datasets.

Synonyms

Feature selection; Feature projection; lossy com-
pression

Introduction

Every data object in a computer is represented
and stored as a set of features, for example, color,
price, dimensions, and so on. Instead of the term
features, one can interchangeably use the term
dimensions because an object with n features
can also be represented as a multidimensional
point in an n-dimensional space. Therefore, di-
mensionality reduction (dR) refers to the process
of mapping an n-dimensional point into a lower
k-dimensional space. This operation reduces the
size for representing and storing an object or a
dataset in general; hence, dimensionality reduc-
tion can be seen as a method for data compres-
sion. In addition, this process promotes data vi-
sualization, particularly when objects are mapped
onto two or three dimensions. Finally, in the
context of classification, dimensionality reduc-
tion can be a useful tool for (a) making tractable
classification schemes that are superlinear with
respect to dimensionality tractable, (b) reducing
the variance of classifiers that are plagued by

large variance in higher dimensionalities, and (c)
removing the noise that may be present, thus
boosting classification accuracy.

Motivation and Background

There are many techniques for dimensionality
reduction. The objective of these techniques is
to appropriately select the k dimensions (and
also the number k) so that the important char-
acteristics of the original object are retained.
For example, when performing dimensionality
reduction on an image, e.g., using a wavelet-
based technique, the desirable outcome is that
the difference between the original and the final
images is almost imperceptible.

When performing dimensionality reduction
not on a single object, but on a dataset, an
additional requirement is that the relationship
between the objects in the original space be
preserved. This is particularly important for
reasons of classification and visualization in the
new space.
Two important categories of dimensionality re-
duction techniques exist:

• Feature selection techniques, in which
only the most important or descriptive
features/dimensions are retained, and the
rest are discarded. More details on such
techniques can be found under the entry
� Feature Selection

• Feature projection methodologies, which
project the existing features onto different
dimensions or axes. The aim here is, again, to
find those new data axes that retain the dataset
structure and preserve its variance as closely
as possible.

Feature projection techniques typically exploit
the correlations between the various data dimen-
sions, with the goal of creating dimensions/axes
that are uncorrelated and sufficiently describe the
data.

One of the most popular dimensionality reduc-
tion techniques is principal component analysis
or PCA. It attempts to discover those axes (or

http://dx.doi.org/10.1007/978-1-4899-7687-1_352
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100166
http://dx.doi.org/10.1007/978-1-4899-7687-1_100280
http://dx.doi.org/10.1007/978-1-4899-7687-1_101

Dimensionality Reduction 355

D

Dimensionality
Reduction, Fig. 1
Principal component
analysis

Temperature
H

um
id

ity

First Principal Component

Original Data on 3D PCA Mapping on 2Dba c ISOMAP Mapping on 2D

Dimensionality Reduction, Fig. 2 Nonlinear dimensionality reduction techniques produce a better low-dimensional
data mapping than PCA if the original data lie on a high-dimensional manifold

components) onto which the data can be pro-
jected while maintaining the original correlation
between the dimensions. Consider, for example,
a dataset that contains records of environmental
measurements over a period of time, such as
humidity and temperature. The two attributes
can be highly correlated, as shown in Fig. 1. By
deploying PCA, this trend will be discovered,
and the original two-dimensional points can be
reduced to one-dimensional by projecting the
original points onto the first principal component.
In that way, the derived dataset can be stored in
less space.

PCA uses the Euclidean distance as the
measure of dissimilarity among objects. The
first principal component (or axis) indicates the
direction of maximum variance in the original
dimensions. The second component shows the
direction of the next highest variance (and is
uncorrelated to the first component), etc.

Other dimensionality reduction techniques
optimize or preserve other criteria than PCA
does. Manifold-inspired methods such as
ISOMAP (Tenenbaum et al. 2000) preserve the
geodesic distances between objects. The notion
here is to approximate the distance between
objects “through” the remaining ones. The result
of such dimensionality reduction techniques is
that when the data lie on a manifold, the projected
dimensions effectively “unfold” the underlying
high-dimensional manifold. An example of this
mapping is illustrated in Fig. 2, where it is also
compared with the respective PCA mapping.

Other recent dimensionality reduction tech-
niques include locally linear embedding (LLE)
(Roweis and Saul 2000) and Laplacian eigen-
maps (Belkin and Niyogi 2002). We also refer
the interested practitioner to van der Maaten
et al. (2009), for a detailed comparison of var-
ious techniques and also for Matlab implemen-

356 Dimensionality Reduction

tations on a variety of dimensionality reduction
algorithms.

In general, dimensionality reduction is a com-
monly practiced and useful operation in database
and machine-learning systems because it offers
the following desirable properties:

• Data compression: the dataset objects are
represented in fewer dimensions, hence saving
important disk storage space and offering
faster loading of the compressed data from the
disk.

• Better data visualization: the relationships be-
tween the original high-dimensional objects
can be visualized in two- or three-dimensional
projections.

• Improved classification accuracy: this can be
attributed to both variance reduction and noise
removal from the original high-dimensional
dataset.

• More efficient data retrieval: dimensionality
reduction techniques can also assist in making
the retrieval of the original uncompressed data
faster and more efficient, by offering very fast
prefiltering with the help of the compressed
data representation.

• High index performance: more effective use
of indexing structures can be achieved by
using the compressed data, because indexing
techniques only work efficiently with lower-
dimensional data (e.g., from 1 to 30 dimen-
sions, depending on the type of the index).

The fact that indexing structures do not per-
form efficiently for higher-dimensional data is
also known as the �Curse of Dimensionality.
Suppose that we are interested in performing
search operations on a set of high-dimensional
data. For simplicity, let us assume that the data
lie in a unit hypercube C D Œ0; 1�d , where d
is the data dimensionality. Given a query point,
the probability Pw that a match (neighbor) exists
within radius w in the data space of dimensional-
ity d is given by Pw.d/ D wd .

Figure 3 illustrates this probability for various
values of w. Evidently, at higher dimensionali-
ties the data becomes very sparse, and even at
large radii, only a small portion of the entire
space is covered. In simple terms the “curse
of dimensionality” translates into the following
fact: for large dimensionalities, existing indexing
structures outperform a linear scan of all the
data, only when the dataset size (number of
objects) grows exponentially with respect to the
dimensionality.

Applications: Dimensionality
Reduction for Time-Series Data

In this section, we provide more detailed exam-
ples of dimensionality reduction techniques for
time-series data. We chose time series to convey
visually the effect of dimensionality reduction
particularly for high-dimensional data such as

Dimensionality
Reduction, Fig. 3
Probability Pw.d/ against
dimensionality d . The data
becomes sparse in higher
dimensions

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w=0.99
w=0.97
w=0.9

Number of Dimensions

P
ro

ba
bi

lit
y

of
 fi

nd
in

g
N

ei
gh

bo
r w

ith
in

 ra
ng

e
w

http://dx.doi.org/10.1007/978-1-4899-7687-1_192

Dimensionality Reduction 357

D

Time Series

a0

 Fourier Components

a1

a2

a3

a4

a5

a6

Dimensionality Reduction, Fig. 4 Decomposition of a signal into the first 7 Fourier coefficients. We can see that by
using even only few of the Fourier coefficients we can achieve a good reconstruction of the original signal

time series. Later, we also show how dimension-
ality reduction on large datasets can help speed up
search operations over the original uncompressed
data.

Dimensionality reduction for one- and two-
dimensional signals is commonly accomplished
using Fourier decomposition. This method for
data representation was first presented in the
beginning of the nineteenth century by Jean
Baptiste Fourier (1768–1830), in his seminal
work “On the Propagation of Heat in Solid
Bodies.” Fourier came to the conclusion that
every function could be expressed as a sum of
trigonometrical series (i.e., sines and cosines).
This original work was initially met with
doubt (even by famous mathematicians such as
Lagrange and Laplace), because of its unexpected
result, and moreover, the solution was considered
impractical because of the complex integration
functions.

However, in the twentieth century, no one
can deny the importance of Fourier’s findings.
With the introduction of fast ways to compute
the Fourier decomposition in the 1960s (fast
Fourier transform or FFT), the barrier of the high
computational complexity was lifted. What the
Fourier transform attempts to achieve is to rep-
resent the original signal as a linear combination
of sinusoids. Therefore, each Fourier coefficient
is a complex number that essentially encodes the
amplitude and the phase of each of these sinu-
soids, after the original signal has been projected
on them.

For most signals, the original sequence can
be reconstructed with high accuracy using just
few of the coefficients. This is where the great
power of the Fourier transformation lies: by ne-
glecting the majority of the coefficients, we can
essentially compress the signal or describe it with
fewer numbers. For stock market data or other

358 Dimensionality Reduction

PAA
 e= 48.3, coeffs=10

APCA
 e= 46, coeffs=5

Chebyshev
 e= 47.7, coeffs=10

Fourier (first coeffs)
 e= 47.4, coeffs=5

Fourier (best coeffs)
 e= 29.3, coeffs=5

PAA
 e= 22.5, coeffs=10

APCA
 e= 23.1, coeffs=5

Chebyshev
 e= 19.2, coeffs=10

Fourier (first coeffs)
 e= 19.5, coeffs=5

Fourier (best coeffs)
 e= 15.4, coeffs=5

Dimensionality Reduction, Fig. 5 Comparison of var-
ious dimensionality reduction techniques for time-series
data. The darker line indicates the approximation us-
ing the number of coefficients reported. Each figure

also shows the error e introduced by the dimensionality
reduction technique. Lower errors indicate better low-
dimensional approximation of the original object

time series that follow the pattern of a random
walk, the first few coefficients, which capture the
low frequencies of the signal, are sufficient to
describe the signal accurately (or, equivalently,
to capture most of its energy). Figure 4 depicts a
signal of 1024 points and its reconstruction using
7 Fourier coefficients (i.e., using 7 � 2 D 14
numbers).

Other popular dimensionality reduction
techniques for time-series data are the various
wavelet transforms; piecewise linear approx-
imations; piecewise aggregate approximation
(PAA), which can be regarded as a projection
in time of the wavelet coefficients adaptive
piecewise constant approximation (APCA
Keogh et al. 2001) and uses the highest energy
wavelet coefficients; Chebyshev polynomial
approximation symbolic approximation of time
series (such as the SAX representation Lin et al.
2003).

No dimensionality reduction technique is uni-
versally better than all the others. Depending
on the dataset characteristics, one method may
provide a better approximation of a dataset than
the other techniques. Therefore, the key is to
carefully pick the representation that best suits
the specific application or the task at hand. In
Fig. 5, we demonstrate various dimensionality

reduction techniques and the quality of the time-
series approximation. For all methods, the same
storage space is allocated for the compressed se-
quences. The time-series reconstruction is shown
in a darker color, and the approximation error to
the original sequence is also reported. In general,
we notice that dimensionality reduction tech-
niques based on selection of the highest energy
coefficients consistently provide a high-quality
sequence approximation.

Dimensionality Reduction and Lower
Bounding
Dimensionality reduction can be a useful tool
for speeding up search operations. Figure 6
illustrates dimensionality reduction for high-
dimensional time-series data. After dimension-
ality reduction, each object is represented using
fewer dimensions (attributes), so it is represented
in a lower-dimensional space. Then, suppose that
a user poses another high-dimensional object as
query and wishes to find all the objects closest to
this query.

To avoid the search on the original high-
dimensional space, the query is also transformed
into a point in the lower-dimensional space, and
its closest matches can be discovered in the
vicinity of the projected query point. However,

Dimensionality Reduction 359

D

Dimensionality
Reduction, Fig. 6 Search
and dimensionality
reduction. Every object
(time series in this case) is
transformed into a
lower-dimensional point.
User queries are also
projected into the new
space. Similarity search
consists of finding the
closest points to the query
projection

Query

x

when searching using the compressed objects,
one needs to provide an estimate of the distance
between the original objects. Typically, it is
preferable that the distance in the new space
underestimates (or lower bounds) the distance in
the original high-dimensional space. The reason
for this is the following.

Suppose that we are seeking the 1-Nearest-
Neighbor (1-NN) a query Q in a database D.
By examining all objects (linear scan), one can
guarantee that the best match will be found. Can
one provide the same guarantee (i.e., that the
same best match will be returned) when examin-
ing the compressed objects (after dimensionality
reduction)?

The answer is positive, as long as the distance
on the compressed data underestimates or lower
bounds the distance on the raw data. In other
words, the dimensionality reduction (dR) that is
performed on the raw data must have the follow-
ing property:

Having A � D dR
��! a and Q

dR
��! q

then

Δ.q; a/ � Δ.Q;A/

As the computed distance Δ between any
two compressed objects is underestimated, false
alarms may arise. Suppose, for example, that our
database consists of 6 two-dimensional points
(Fig. 7). If the user query is: “Find everything that
lies within a radius of 1 around A,” then B is the
only result.

Let us assume for a minute that the dimension-
ality reduction performed on the data is simply
a projection on the x-axis (Fig. 8). In this new
space, seeking for points within a range of 1
from A would also retrieve point C , which is
called a false alarm. However, this does not con-
stitute a problem; in a post-processing, in a post-
processing phase, the calculation of the exact

360 Dimensionality Reduction

Dimensionality
Reduction, Fig. 7 Range
search in the original space
returns only object B

1 2 3 4 5

1

2

3

4

5

Query
A

F

D

C

E

B

1 2 3 4 5
Query

A FDC EB

false alarm

Dimensionality Reduction, Fig. 8 Because of the dimensionality reduction, false alarms may arise

1 2 3 4 5
Query

A FDC EB

false dismissal

Dimensionality Reduction, Fig. 9 False dismissals may happen when the lower-bounding lemma is not obeyed

distance will remove any false alarms. Suppose
now that another dimensionality reduction results
in the projection of Fig. 9. Here, we have a case
of a false dismissal, because object B lies outside
the range of search.

This generic framework for similarity search
using dimensionality reduction and lower-
bounding distance functions was proposed in
Agrawal et al. (1993) and is called GEMINI
(GEneric Multimedia INdexIng). One can
show that orthonormal dimensionality reduction

techniques (PCA, Fourier, wavelets) satisfy the
lower-bounding lemma when the distance used is
the Euclidean distance.

In conclusion, by using dimensionality reduc-
tion for search operations, one can first examine
the compressed objects and eliminate many of
the uncompressed objects from examination by
using a lower-bounding approximation of the
distance function. This initial search will return
a superset of the correct answers (no false dis-
missals). False alarms can be filtered out by

Dirichlet Process 361

D

computing the original distance between the re-
maining uncompressed objects and the query.
Therefore, a significant speedup is achieved by
examining only a small subset of the original raw
data.

Cross-References

�Curse of Dimensionality

Recommended Reading

Agrawal R, Faloutsos C, Swami A (1993) Efficient
similarity search in sequence databases. In: Pro-
ceedings of the foundations of data organization and
algorithms, Chicago, pp 69–84

Belkin M, Niyogi P (2002) Laplacian eigenmaps and
spectral techniques for embedding and clustering.
Adv Neural Inf Process Syst 1:585–591

Jolliffee IT (2002) Principal component analysis. 2nd
edn. Springer, New York

Keogh E, Chakrabarti K, Pazzani M, Mehrotra
S (2001) Locally adaptive dimensionality reduc-
tion for indexing large time series databases. In:
Proceedings of ACM SIGMOD, Santa Barbara,
pp 151–162

Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic
representation of time series, with implications for
streaming algorithms. In: Proceedings of the 8th
ACM SIGMOD workshop on research issues in data
mining and knowledge discovery, San Diego

Roweis S, Saul L (2000) Nonlinear dimensionality
reduction by locally linear embedding. Science
290(5500):2323–2326

van der Maaten LJP, Postma EO, van den Herik HJ
(2009) Dimensionality reduction: a comparative re-
view. Technical report, Tilburg University, TiCC-TR
2009-005

Tenenbaum JB, de Silva V, Langford JC (2000)
A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500):
2319–2323

Dimensionality Reduction on Text
via Feature Selection

� Feature Selection in Text Mining

Directed Graphs

�Digraphs

Dirichlet Process

Yee Whye Teh
University College London, London, UK

Definition

The Dirichlet process (DP) is a stochastic pro-
cess used in �Bayesian nonparametric models
of data, particularly in Dirichlet process mixture
models (also known as infinite mixture mod-
els). It is a distribution over distributions, that
is, each draw from a Dirichlet process is it-
self a distribution. It is called a Dirichlet pro-
cess because it has Dirichlet distributed finite
dimensional marginal distributions, just as the
�Gaussian process, another popular stochastic
process used for Bayesian nonparametric regres-
sion, has Gaussian distributed finite dimensional
marginal distributions. Distributions drawn from
a Dirichlet process are discrete, but cannot be
described using a finite number of parameters,
thus the classification as a nonparametric model.

Motivation and Background

Probabilistic models are used throughout ma-
chine learning to model distributions over ob-
served data. Traditional parametric models using
a fixed and finite number of parameters can suffer
from over- or under-fitting of data when there is a
misfit between the complexity of the model (often
expressed in terms of the number of parameters)
and the amount of data available. As a result,
model selection, or the choice of a model with
the right complexity, is often an important issue
in parametric modeling. Unfortunately, model
selection is an operation that is fraught with

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_102
http://dx.doi.org/10.1007/978-1-4899-7687-1_215
http://dx.doi.org/10.1007/978-1-4899-7687-1_928
http://dx.doi.org/10.1007/978-1-4899-7687-1_108

362 Dirichlet Process

difficulties, whether we use � cross validation or
marginal probabilities as the basis for selection.
The Bayesian nonparametric approach is an al-
ternative to parametric modeling and selection.
By using a model with an unbounded complex-
ity, underfitting is mitigated, while the Bayesian
approach of computing or approximating the full
posterior over parameters mitigates overfitting.
For a general overview of Bayesian nonparamet-
rics, see �Bayesian Nonparametric Models.

Nonparametric models are also motivated
philosophically by Bayesian modeling. Typically
we assume that we have an underlying and un-
known distribution which we wish to infer given
some observed data. Say we observe x1; : : : ; xn,
with xi � F independent and identical draws
from the unknown distribution F . A Bayesian
would approach this problem by placing a prior
overF then computing the posterior overF given
data. Traditionally, this prior over distributions
is given by a parametric family. But constraining
distributions to lie within parametric families
limits the scope and type of inferences that can
be made. The nonparametric approach instead
uses a prior over distributions with wide support,
typically the support being the space of all
distributions. Given such a large space over
which we make our inferences, it is important
that posterior computations are tractable.

The Dirichlet process is currently one of the
most popular Bayesian nonparametric models.
It was first formalized in Ferguson (1973) for
general Bayesian statistical modeling, as a prior
over distributions with wide support yet tractable
posteriors. (Note however that related models in
population genetics date back to Ewens 1972).
Unfortunately the Dirichlet process is limited by
the fact that draws from it are discrete distribu-
tions, and generalizations to more general priors
did not have tractable posterior inference until the
development of MCMC (�Markov chain Monte
Carlo) techniques (Escobar and West 1995; Neal
2000). Since then there has been significant de-
velopments in terms of inference algorithms, ex-
tensions, theory and applications. In the machine
learning, community work on Dirichlet processes
date back to Neal (1992) and Rasmussen (2000).

Theory

The Dirichlet process (DP) is a stochastic process
whose sample paths are probability measures
with probability one. Stochastic processes are
distributions over function spaces, with sample
paths being random functions drawn from the
distribution. In the case of the DP, it is a dis-
tribution over probability measures, which are
functions with certain special properties, which
allow them to be interpreted as distributions over
some probability space ‚. Thus draws from a
DP can be interpreted as random distributions.
For a distribution over probability measures to be
a DP, its marginal distributions have to take on
a specific form which we shall give below. We
assume that the user is familiar with a modicum
of measure theory and Dirichlet distributions.

Before we proceed to the formal definition,
we will first give an intuitive explanation of
the DP as an infinite dimensional generalization
of Dirichlet distributions. Consider a Bayesian
mixture model consisting of K components:

�j˛ � Dir
�

˛
K
; : : : ; ˛

K

�
��

k
jH � H

´i j� �Mul t.�/ xi j´i ; f�
�
k
g � F

�
��

´i

�

(1)

where � is the mixing proportion, ˛ is the pseu-
docount hyperparameter of the Dirichlet prior,
H is the prior distribution over component pa-
rameters ��

k
, and F.�/ is the component dis-

tribution parametrized by � . It can be shown
that for large K, because of the particular way
we parametrized the Dirichlet prior over � , the
number of components typically used to model
n data items becomes independent of K and is
approximately O.˛ logn/. This implies that the
mixture model stays well defined as K ! 1,
leading to what is known as an infinite mix-
ture model (Neal 1992; Rasmussen 2000). This
model was first proposed as a way to sidestep the
difficult problem of determining the number of
components in a mixture, and as a nonparametric
alternative to finite mixtures whose size can grow
naturally with the number of data items. The
more modern definition of this model uses a DP

http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_928
http://dx.doi.org/10.1007/978-1-4899-7687-1_952

Dirichlet Process 363

D

and with the resulting model called a DP mixture
model. The DP itself appears as the K ! 1

limit of the random discrete probability measurePK
kD1 �kı��

k
, where ı� is a point mass centered

at � . We will return to the DP mixture toward the
end of this entry.

Dirichlet Process

For a random distribution G to be distributed ac-
cording to a DP, its marginal distributions have to
be Dirichlet distributed (Ferguson 1973). Specif-
ically, let H be a distribution over ‚ and ˛

be a positive real number. Then for any finite
measurable partition A1; : : : ; Ar of ‚ the vector
.G.A1/; : : : ; G.Ar // is random since G is ran-
dom. We say G is Dirichlet process distributed
with base distribution H and concentration pa-
rameter ˛, written G � DP.˛;H/, if

.G.A1/; : : : ; G.Ar //

� Dir.˛H.A1/; : : : ; ˛H.Ar // (2)

for every finite measurable partition A1; : : : ; Ar

of ‚.
The parametersH and ˛ play intuitive roles in

the definition of the DP. The base distribution is
basically the mean of the DP: for any measurable
set A � ‚, we have EŒG.A/� D H.A/. On the
other hand, the concentration parameter can be
understood as an inverse variance: V ŒG.A/� D
H.A/.1 � H.A//=.˛ C 1/. The larger ˛ is, the
smaller the variance, and the DP will concentrate
more of its mass around the mean. The con-
centration parameter is also called the strength
parameter, referring to the strength of the prior
when using the DP as a nonparametric prior over
distributions in a Bayesian nonparametric model,
and the mass parameter, as this prior strength can
be measured in units of sample size (or mass)
of observations. Also, notice that ˛ and H only
appear as their product in the definition (3) of
the DP. Some authors thus treat eH D ˛H , as
the single (positive measure) parameter of the
DP, writing DP.eH/ instead of DP.˛;H/. This
parametrization can be notationally convenient,

but loses the distinct roles ˛ and H play in
describing the DP.

Since ˛ describes the concentration of mass
around the mean of the DP, as ˛ ! 1, we
will have G.A/ ! H.A/ for any measurable A,
that is G ! H weakly or pointwise. However
this not equivalent to saying that G ! H . As
we shall see later, draws from a DP will be
discrete distributions with probability one, even
if H is smooth. Thus G and H need not even be
absolutely continuous with respect to each other.
This has not stopped some authors from using the
DP as a nonparametric relaxation of a parametric
model given by H . However, if smoothness is
a concern, it is possible to extend the DP by
convolving G with kernels so that the resulting
random distribution has a density.

A related issue to the above is the coverage
of the DP within the class of all distributions
over ‚. We already noted that samples from
the DP are discrete, thus the set of distributions
with positive probability under the DP is small.
However it turns out that this set is also large in
a different sense: if the topological support of H
(the smallest closed set S in ‚ with H.S/ D 1/
is all of ‚, then any distribution over ‚ can be
approximated arbitrarily accurately in the weak
or pointwise sense by a sequence of draws from
DP.˛;H/. This property has consequence in the
consistency of DPs discussed later.

For all but the simplest probability spaces, the
number of measurable partitions in the definition
(3) of the DP can be uncountably large. The
natural question to ask here is whether objects
satisfying such a large number of conditions as
(3) can exist. There are a number of approaches
to establish existence. Ferguson (1973) noted
that the conditions (3) are consistent with each
other, and made use of Kolmogorov’s consistency
theorem to show that a distribution over functions
from the measurable subsets of ‚ to [0, 1] exists
satisfying (3) for all finite measurable partitions
of ‚. However it turns out that this construction
does not necessarily guarantee a distribution over
probability measures. Ferguson (1973) also pro-
vided a construction of the DP by normalizing a
gamma process. In a later section we will see that

364 Dirichlet Process

the predictive distributions of the DP are related
to the Blackwell–MacQueen urn scheme. Black-
well and MacQueen (1973) made use of this,
along with de Finetti’s theorem on exchangeable
sequences, to prove existence of the DP. All the
above methods made use of powerful and general
mathematical machinery to establish existence,
and often require regularity assumptions on H
and‚ to apply these machinery. In a later section,
we describe a stick-breaking construction of the
DP due to Sethuraman (1994), which is a direct
and elegant construction of the DP, which need
not impose such regularity assumptions.

Posterior Distribution
Let G � DP.˛;H/. Since G is a (random)
distribution, we can in turn draw samples from
G itself. Let �1; : : : ; �n be a sequence of indepen-
dent draws from G. Note that the �i ’s take values
in ‚ since G is a distribution over ‚. We are
interested in the posterior distribution of G given

observed values of �1; : : : ; �n. Let A1; : : : ; Ar be
a finite measurable partition of ‚, and let nk D

#fi W �i 2 Akg be the number of observed values
in Ak . By (3) and the conjugacy between the
Dirichlet and the multinomial distributions, we
have

.G.A1/; : : : ; G.Ar //j�1; : : : ; �n

� Dir.˛H.A1/C n1; : : : ; ˛H.Ar /C nr / (3)

Since the above is true for all finite measurable
partitions, the posterior distribution over G must
be a DP as well. A little algebra shows that the
posterior DP has updated concentration param-

eter ˛ C n and base distribution
˛HC

Pn
iD1 ı�i

˛Cn
,

where ıi is a point mass located at �i and nk DPn
iD1 ıi .Ak/. In other words, the DP provides a

conjugate family of priors over distributions that
is closed under posterior updates given observa-
tions. Rewriting the posterior DP, we have

Gj�1; : : : ; �n � DP

�
˛ C n;

˛

˛ C n
H C

n

˛ C n

Pn
iD1 ı�i

n

�
(4)

Notice that the posterior base distribution is a
weighted average between the prior base distri-

bution H and the empirical distribution
Pn

iD1 ı�i

n
.

The weight associated with the prior base distri-
bution is proportional to ˛, while the empirical
distribution has weight proportional to the num-
ber of observations n. Thus we can interpret ˛ as
the strength or mass associated with the prior. In
the next section we will see that the posterior base
distribution is also the predictive distribution of
�nC1 given �1; : : : ; �n. Taking ˛ ! 0, the prior
becomes non-informative in the sense that the
predictive distribution is just given by the empiri-
cal distribution. On the other hand, as the amount
of observations grows large, n� ˛, the posterior
is simply dominated by the empirical distribution,
which is in turn a close approximation of the true
underlying distribution. This gives a consistency
property of the DP: the posterior DP approaches
the true underlying distribution.

Predictive Distribution and the
Blackwell–MacQueen Urn Scheme
Consider again drawing G � DP.˛;H/, and
drawing an i.i.d. (independently and identically
distributed) sequence �1; �2; : : : � G. Consider
the predictive distribution for �nC1, conditioned
on �1; : : : ; �n and withG marginalized out. Since
�nC1jG; �1; : : : ; �n � G, for a measurable A �
‚, we have

P.�nC1 2 Aj�1; : : : ; �n/ D EŒG.A/j�1; : : : ; �n�

D
1

˛ C n

˛H.A/C

nX

iD1

ı�i
.A/

!
(5)

where the last step follows from the posterior
base distribution of G given the first n observa-
tions. Thus with G marginalized out:

Dirichlet Process 365

D

�nC1j�1; : : : ; �n �
1

˛ C n

˛H C

nX

iD1

Cı�i

!

(6)

Therefore the posterior base distribution given
�1; : : : ; �n is also the predictive distribution of
�nC1.

The sequence of predictive distributions (6)
for �1; �2; : : : is called the Blackwell–MacQueen
urn scheme (Blackwell and MacQueen 1973).
The name stems from a metaphor useful in in-
terpreting (6). Specifically, each value in ‚ is a
unique color, and draws � � G are balls with
the drawn value being the color of the ball. In
addition we have an urn containing previously
seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H , that
is, draw �1 � H , paint a ball with that color,
and drop it into the urn. In subsequent steps, say
the nC 1st, we will either, with probability ˛

˛Cn
,

pick a new color (draw �nC1 � H/, paint a ball
with that color and drop the ball into the urn, or,
with probability n

˛Cn
, reach into the urn to pick

a random ball out (draw �nC1 from the empirical
distribution), paint a new ball with the same color,
and drop both balls back into the urn.

The Blackwell–MacQueen urn scheme has
been used to show the existence of the DP (Black-
well and MacQueen 1973). Starting from (6),
which are perfectly well defined conditional dis-
tributions regardless of the question of the exis-
tence of DPs, we can construct a distribution over
sequences �1; �2; : : : by iteratively drawing each
�i given �1; : : : ; �i�1. For n 	 1 let

P.�1; : : : ; �n/ D

nY

iD1

P.�i j�1; : : : ; �i�1/ (7)

be the joint distribution over the first n obser-
vations, where the conditional distributions are
given by (6). It is straightforward to verify that
this random sequence is infinitely exchangeable.
That is, for every n, the probability of generating
�1; : : : ; �n using (6), in that order, is equal to the
probability of drawing them in any alternative
order. More precisely, given any permutation �
on 1; : : : ; n, we have

P.�1; : : : ; �n/ D P.��.1/
; : : : ; ��.n// (8)

Now de Finetti’s theorem states that for any
infinitely exchangeable sequence �1; �2; : : : there
is a random distribution G such that the sequence
is composed of i.i.d. draws from it:

P.�1; : : : ; �n/ D

Z nY

iD1

G.�i /dP.G/ (9)

In our setting, the prior over the random distri-
bution P.G/ is precisely the Dirichlet process
DP.˛;H/, thus establishing existence.

A salient property of the predictive distribu-
tion (6) is that it has point masses located at the
previous draws �1; : : : ; �n. A first observation is
that with positive probability draws from G will
take on the same value, regardless of smoothness
of H . This implies that the distribution G itself
has point masses. A further observation is that
for a long enough sequence of draws from G, the
value of any draw will be repeated by another
draw, implying that G is composed only of a
weighted sum of point masses, that is, it is a
discrete distribution. We will see two sections
below that this is indeed the case, and give a sim-
ple construction for G called the stick-breaking
construction. Before that, we shall investigate the
clustering property of the DP.

Clustering, Partitions, and the Chinese
Restaurant Process
In addition to the discreteness property of draws
from a DP, (6) also implies a � clustering prop-
erty. The discreteness and clustering properties
of the DP play crucial roles in the use of DPs
for clustering via DP mixture models, described
in the application section. For now we assume
that H is smooth, so that all repeated values
are due to the discreteness property of the DP
and not due to H itself. (Similar conclusions
can be drawn when H has atoms, there is just
more bookkeeping.) Since the values of draws
are repeated, let ��

1 ; : : : ; �
�
m be the unique val-

ues among �1; : : : ; �n, and nk be the number of
repeats of ��

k
. The predictive distribution can be

equivalently written as

http://dx.doi.org/10.1007/978-1-4899-7687-1_943

366 Dirichlet Process

�nC1

ˇ̌
�1; : : : ; �n �

1

˛ C n

˛H C

mX

kD1

nkı��

k

!

(10)

Notice that value ��
k

will be repeated by �nC1

with probability proportional to nk , the number
of times it has already been observed. The larger
nk is, the higher the probability that it will grow.
This is a rich-gets-richer phenomenon, where
large clusters (a set of �i ’s with identical values
��

k
being considered a cluster) grow larger faster.
We can delve further into the clustering prop-

erty of the DP by looking at partitions induced
by the clustering. The unique values of �1; : : : ; �n

induce a partitioning of the set Œn� D f1; : : : ; ng
into clusters such that within each cluster, say
cluster k, the �i ’s take on the same value ��

k
.

Given that �1; : : : ; �n are random, this induces a
random partition of [n]. This random partition in
fact encapsulates all the properties of the DP, and
is a very well-studied mathematical object in its
own right, predating even the DP itself (Aldous
1985; Ewens 1972; Pitman 2002). To see how it
encapsulates the DP, we simply invert the genera-
tive process. Starting from the distribution over
random partitions, we can reconstruct the joint
distribution (7) over �1; : : : ; �n, by first drawing
a random partition on [n], then for each cluster
k in the partition draw a ��

k
� H , and finally

assign �i D ��
k

for each i in cluster k. From
the joint distribution (7) we can obtain the DP by
appealing to de Finetti’s theorem.

The distribution over partitions is called the
Chinese restaurant process (CRP) due to a differ-
ent metaphor. (The name was coined by Lester
Dubins and Jim Pitman in the early 1980s (Al-
dous 1985)) In this metaphor we have a Chinese
restaurant with an infinite number of tables, each
of which can seat an infinite number of cus-
tomers. The first customer enters the restaurant
and sits at the first table. The second customer
enters and decides either to sit with the first
customer, or by herself at a new table. In general,
the n C 1st customer either joins an already
occupied table k with probability proportional to
the number nk of customers already sitting there,
or sits at a new table with probability proportional

to ˛. Identifying customers with integers 1; 2; : : :
and tables as clusters, after n customers have sat
down the tables define a partition of [n] with the
distribution over partitions being the same as the
one above. The fact that most Chinese restaurants
have round tables is an important aspect of the
CRP. This is because it does not just define a
distribution over partitions of [n], it also defines
a distribution over permutations of [n], with each
table corresponding to a cycle of the permutation.
We do not need to explore this aspect further and
refer the interested reader to Aldous (1985) and
Pitman (2002).

This distribution over partitions first appeared
in population genetics, where it was found to
be a robust distribution over alleles (clusters)
among gametes (observations) under simplifying
assumptions on the population, and is known un-
der the name of Ewens sampling formula (Ewens
1972). Before moving on we shall consider just
one illuminating aspect, specifically the distribu-
tion of the number of clusters among n observa-
tions. Notice that for i 	 1, the observation �i

takes on a new value (thus incrementing m by
one) with probability ˛

˛Ci�1 independently of the
number of clusters among previous � ’s. Thus the
number of cluster m has mean and variance:

EŒmjn� D

nX

iD1

˛

˛ C i � 1
D ˛. .˛ C n/� .˛//

' log
�

1C
n

˛

�
forN; ˛ � 0; (11)

V Œmjn� D ˛. .˛ C n/ � .˛//

C ˛2. 0.˛ C n/ � 0.˛//

' ˛ log
�

1C
n

˛

�
for n > ˛ � 0;

(12)

where . � / is the digamma function. Note that
the number of clusters grows only logarithmically
in the number of observations. This slow growth
of the number of clusters makes sense because of
the rich-gets-richer phenomenon: we expect there
to be large clusters thus the number of clusters m
has to be smaller than the number of observations
n. Notice that ˛ controls the number of clusters in

Dirichlet Process 367

D

a direct manner, with larger ˛ implying a larger
number of clusters a priori. This intuition will
help in the application of DPs to mixture models.

Stick-Breaking Construction
We have already intuited that draws from a DP
are composed of a weighted sum of point masses.
Sethuraman (1994) made this precise by pro-
viding a constructive definition of the DP as
such, called the stick-breaking construction. This
construction is also significantly more straight-
forward and general than previous proofs of the
existence of DPs. It is simply given as follows:

ˇk � Beta.1; ˛/ ��
k
� H

�k D ˇk

k�1Q
lD1

G D
1P

kD1
�kı��

k

(13)

Then G � DP.˛;H/. The construction of � can
be understood metaphorically as follows. Starting
with a stick of length 1, we break it at ˇ1, as-
signing �1 to be the length of stick we just broke
off. Now recursively break the other portion to
obtain �2; �3, and so forth. The stick-breaking
distribution over � is sometimes written � �

GEM.˛/, where the letters stand for Griffiths,
Engen, and McCloskey (Pitman 2002). Because
of its simplicity, the stick-breaking construction
has lead to a variety of extensions as well as novel
inference techniques for the Dirichlet process
(Ishwaran and James 2001).

Applications

Because of its simplicity, DPs are used across a
wide variety of applications of Bayesian analysis
in both statistics and machine learning. The
simplest and most prevalent applications include
Bayesian model validation, density estimation,
and clustering via mixture models. We shall
briefly describe the first two classes before
detailing DP mixture models.

How does one validate that a model gives a
good fit to some observed data? The Bayesian
approach would usually involve computing the
marginal probability of the observed data under
the model, and comparing this marginal proba-

bility to that for other models. If the marginal
probability of the model of interest is highest
we may conclude that we have a good fit. The
choice of models to compare against is an issue
in this approach, since it is desirable to compare
against as large a class of models as possible.
The Bayesian nonparametric approach gives an
answer to this question: use the space of all
possible distributions as our comparison class,
with a prior over distributions. The DP is a
popular choice for this prior, due to its simplicity,
wide coverage of the class of all distributions,
and recent advances in computationally efficient
inference in DP models. The approach is usually
to use the given parametric model as the base
distribution of the DP, with the DP serving as a
nonparametric relaxation around this parametric
model. If the parametric model performs as well
or better than the DP relaxed model, we have
convincing evidence of the validity of the model.

Another application of DPs is in � density
estimation (Escobar and West 1995; Lo 1984;
Neal 1992; Rasmussen 2000). Here we are in-
terested in modeling the density from which a
given set of observations is drawn. To avoid lim-
iting ourselves to any parametric class, we may
again use a nonparametric prior over all densities.
Here again DPs are a popular. However note that
distributions drawn from a DP are discrete, thus
do not have densities. The solution is to smooth
out draws from the DP with a kernel. Let G �
DP.˛;H/ and let f .xj�/ be a family of densities
(kernels) indexed by � . We use the following as
our nonparametric density of x:

p.x/ D

Z
f .xj�/G.�/d� (14)

Similarly, smoothing out DPs in this way is also
useful in the nonparametric relaxation setting
above. As we see below, this way of smoothing
out DPs is equivalent to DP mixture models, if the
data distributions F.�/ below are smooth with
densities given by f .xj�/.

Dirichlet Process Mixture Models
The most common application of the Dirich-
let process is in clustering data using mixture

http://dx.doi.org/10.1007/978-1-4899-7687-1_210

368 Dirichlet Process

models (Escobar and West 1995; Lo 1984; Neal
1992; Rasmussen 2000). Here the nonparamet-
ric nature of the Dirichlet process translates to
mixture models with a countably infinite num-
ber of components. We model a set of observa-
tions fx1; : : : ; xng using a set of latent parameters
f�1; : : : ; �ng. Each �i is drawn independently and
identically fromG, while each xi has distribution
F.�i / parametrized by �i :

xi j�i � F.�i /

�i jG � G

Gj˛;H � DP.˛;H/ (15)

Because G is discrete, multiple �i ’s can take on
the same value simultaneously, and the above
model can be seen as a mixture model, where
xi ’s with the same value of �i belong to the same
cluster. The mixture perspective can be made
more in agreement with the usual representation
of mixture models using the stick-breaking con-
struction (13). Let ´i be a cluster assignment
variable, which takes on value k with probability
�k . Then (15) can be equivalently expressed as

�j˛ � GEM.˛/ ��
k
jH � H

´i j� �Mul t.�/ xi j´if�
�
k
g � F.��

´i
/

(16)

with G D
P1

kD1 �kı��

k
and �i D ��

´i
. In

mixture modeling terminology, � is the mixing
proportion, ��

k
are the cluster parameters, F.��

k
/

is the distribution over data in cluster k, and H
the prior over cluster parameters.

The DP mixture model is an infinite mixture
model – a mixture model with a countably in-
finite number of clusters. However, because the
�k’s decrease exponentially quickly, only a small
number of clusters will be used to model the
data a priori (in fact, as we saw previously, the
expected number of components used a priori is
logarithmic in the number of observations). This
is different than a finite mixture model, which
uses a fixed number of clusters to model the
data. In the DP mixture model, the actual number
of clusters used to model data is not fixed, and

can be automatically inferred from data using
the usual Bayesian posterior inference framework
(see Neal (2000) for a survey of MCMC infer-
ence procedures for DP mixture models). The
equivalent operation for finite mixture models
would be model averaging or model selection
for the appropriate number of components, an
approach that is fraught with difficulties. Thus
infinite mixture models as exemplified by DP
mixture models provide a compelling alternative
to the traditional finite mixture model paradigm.

Generalizations and Extensions

The DP is the canonical distribution over proba-
bility measures and a wide range of generaliza-
tions have been proposed in the literature. First
and foremost is the Pitman–Yor process (Ish-
waran and James 2001; Pitman and Yor 1997),
which has recently seen successful applications
modeling data exhibiting power-law properties
(Goldwater 2006; Teh 2006). The Pitman–Yor
process includes a third parameter d 2 Œ0; 1/,
with d D 0 reducing to the DP. The various
representations of the DP, including the Chi-
nese restaurant process and the stick-breaking
construction, have analogues for the Pitman–
Yor process. Other generalizations of the DP are
obtained by generalizing one of its representa-
tions. These include Pólya trees, normalized ran-
dom measure, Poisson–Kingman models, species
sampling models and stick-breaking priors.

The DP has also been used in more complex
models involving more than one random prob-
ability measure. For example, in nonparametric
regression we might have one probability mea-
sure for each value of a covariate, and in multi-
task settings each task might be associated with
a probability measure with dependence across
tasks implemented using a hierarchical Bayesian
model. In the first situation, the class of models
is typically called dependent Dirichlet processes
(MacEachern 1999), while in the second the
appropriate model is a hierarchical Dirichlet pro-
cess (Teh et al. 2006).

Dirichlet Process 369

D

Future Directions

The Dirichlet process, and Bayesian nonpara-
metrics in general, is an active area of research
within both machine learning and statistics. Cur-
rent research trends span a number of directions.
Firstly, there is the issue of efficient inference
in DP models. Reference Neal (2000) is an ex-
cellent survey of the state-of-the-art in 2000,
with all algorithms based on Gibbs sampling
or small-step Metropolis–Hastings MCMC sam-
pling. Since then there has been much work,
including split-and-merge and large-step auxil-
iary variable MCMC sampling, sequential Monte
Carlo, expectation propagation, and variational
methods. Secondly, there has been interest in
extending the DP, both in terms of new random
distributions, as well as novel classes of non-
parametric objects inspired by the DP. Thirdly,
theoretical issues of convergence and consistency
are being explored to provide frequentist guaran-
tees for Bayesian nonparametric models. Finally,
there are applications of such models, to cluster-
ing, transfer learning, relational learning, models
of cognition, sequence learning, and regression
and classification among others. We believe DPs
and Bayesian nonparametrics will prove to be
rich and fertile grounds for research for years to
come.

Cross-References

�Bayesian Methods
�Bayesian Nonparametric Models
�Clustering
�Density Estimation
�Gaussian Process
� Prior Probability

Further Reading

In addition to the references embedded in the
text above, we recommend the book (Hjort et al.
2010) on Bayesian nonparametrics.

Recommended Reading

Aldous D (1985) Exchangeability and related topics.
In: École d’Été de Probabilités de Saint-Flour XIII-
1983. Springer, Berlin, pp 1–198

Antoniak CE (1974) Mixtures of Dirichlet processes
with applications to Bayesian nonparametric prob-
lems. Ann Stat 2(6):1152–1174

Blackwell D, MacQueen JB (1973) Ferguson distribu-
tions via Pólya urn schemes. Ann Stat 1:353–355

Escobar MD, West M (1995) Bayesian density estima-
tion and inference using mixtures. J Am Stat Assoc
90:577–588

Ewens WJ (1972) The sampling theory of selectively
neutral alleles. Theor Popul Biol 3:87–112

Ferguson TS (1973) A Bayesian analysis of some
nonparametric problems. Ann Stat 1(2):209–230

Goldwater S, Griffiths TL, Johnson M (2006) Inter-
polating between types and tokens by estimating
power-law generators. Adv Neural Inf Process Syst
18:459–466

Hjort N, Holmes C, Müller P, Walker S (eds) (2010)
Bayesian nonparametrics. Cambridge series in sta-
tistical and probabilistic mathematics, vol 28. Cam-
bridge University Press, Cambridge/New York

Ishwaran H, James LF (2001) Gibbs sampling methods
for stick-breaking priors. J Am Stat Assoc 96(453):
161–173

Lo AY (1984) On a class of Bayesian nonparametric
estimates: I. Density estimates. Ann Stat 12(1):
351–357

MacEachern S (1999) Dependent nonparametric pro-
cesses. In: Proceedings of the section on Bayesian
statistical science. American Statistical Association,
Alexandria

Neal RM (1992) Bayesian mixture modeling. In: Pro-
ceedings of the workshop on maximum entropy and
Bayesian methods of statistical analysis, vol 11.
Kluwer Academic Publishers, Dordrecht/Boston,
pp 197–211

Neal RM (2000) Markov chain sampling methods for
Dirichlet process mixture models. J Comput Graph
Stat 9:249–265

Pitman J (2002) Combinatorial stochastic processes
(Technical Report 621). Department of Statistics,
University of California at Berkeley. Lecture notes
for St. Flour Summer School

Pitman J, Yor M (1997) The two-parameter Poisson–
Dirichlet distribution derived from a stable subordi-
nator. Ann Probab 25:855–900

Rasmussen CE (2000) The infinite Gaussian mixture
model. Adv Neural Inf Process Syst 12:554–560

Sethuraman J (1994) A constructive definition of
Dirichlet priors. Stat Sin 4:639–650

Teh YW (2006) A hierarchical Bayesian language
model based on Pitman–Yor processes. In: Proceed-
ings of the 21st international conference on compu-
tational linguistics and 44th annual meeting of the

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_928
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_210
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_962

370 Discrete Attribute

association for computational linguistics, Sydney,
pp 985–992

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hi-
erarchical Dirichlet processes. J Am Stat Assoc
101(476):1566–1581

Discrete Attribute

A discrete attribute assumes values that can be
counted. The attribute cannot assume all values
on the number line within its value range. See
�Attribute and �Measurement Scales.

Discretization

Ying Yang
Australian Taxation Office, Box Hill, VIC,
Australia

Synonyms

Binning

Definition

Discretization is a process that transforms a
� numeric attribute into a � categorical attribute.
Under discretization, a new categorical attribute
X 0 is formed from and replaces an existing
numeric attribute X . Each value x0 of X 0

corresponds to an interval (a,b] of X . Any
original numeric value x of X that belongs to
(a,b] is replaced by x0. The boundary values of
formed intervals are often called “cut points.”

Motivation and Background

Many learning systems require categorical data,
while many data are numeric. Discretization al-
lows numeric data to be transformed into categor-
ical form suited to processing by such systems.
Further, in some cases effective discretization
can improve either computational or prediction

performance relative to learning from the original
numeric data.

Taxonomy
The following taxonomy identifies many key di-
mensions along which alternative discretization
techniques can be distinguished.

Supervised vs. Unsupervised (Dougherty et al.
1995). Supervised methods use the class informa-
tion of the training instances to select discretiza-
tion cut points. Methods that do not use the class
information are unsupervised.
Global vs. Local (Dougherty et al. 1995). Global
methods discretize with respect to the whole
training data space. They perform discretization
only once, using a single set of intervals through-
out a single classification task. Local methods
allow different sets of intervals to be formed
for a single attribute, each set being applied in
a different classification context. For example,
different discretizations of a single attribute might
be applied at different nodes of a decision tree
(Quinlan 1993).
Eager vs. Lazy (Hsu et al. 2000). Eager methods
perform discretization prior to classification time.
Lazy methods perform discretization during the
process of classification.
Disjoint vs. Nondisjoint (Yang and Webb 2002).
Disjoint methods discretize the value range of
a numeric attribute into disjoint intervals. No
intervals overlap. Nondisjoint methods discretize
the value range into intervals that can overlap.
Parameterized vs. Unparameterized. Parame-
terized discretization requires input from the user,
such as the maximum number of discretized inter-
vals. Unparameterized discretization uses infor-
mation only from data and does not need input
from the user, for instance, the entropy minimiza-
tion discretization (Fayyad and Irani 1993).
Univariate vs. Multivariate (Bay 2000). Meth-
ods that discretize each attribute in isolation are
univariate. Methods that take into consideration
relationships among attributes during discretiza-
tion are multivariate.
Split vs. Merge (Kerber 1992) vs. Single-scan
(Yang and Webb 2001). Split discretization ini-
tially has the whole value range as an interval

http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_100040
http://dx.doi.org/10.1007/978-1-4899-7687-1_604
http://dx.doi.org/10.1007/978-1-4899-7687-1_98

Disjunctive Normal Form 371

D

and then continues splitting it into subintervals
until some threshold is met. Merge discretization
initially puts each value into an interval and then
continues merging adjacent intervals until some
threshold is met. Single-scan discretization uses
neither split nor merge process. Instead, it scans
the ordered values only once, sequentially form-
ing the intervals.

Recommended Reading

Bay SD (2000) Multivariate discretization of contin-
uous variables for set mining. In: Proceedings of
the sixth ACM SIGKDD international conference
on knowledge discovery and data mining, pp 315–
319

Dougherty J, Kohavi R, Sahami M (1995) Supervised
and unsupervised discretization of continuous fea-
tures. In: Proceedings of the twelfth international
conference on machine learning, pp 194–202

Fayyad UM, Irani KB (1993) Multi-interval discretiza-
tion of continuous-valued attributes for classifi-
cation learning. In: Proceedings of the thirteenth
international joint conference on artificial intelli-
gence, pp 1022–1027

Hsu CN, Huang HJ, Wong TT (2000) Why discretiza-
tion works for naı̈ve Bayesian classifiers. In: Pro-
ceedings of the seventeenth international conference
on machine learning, pp 309–406

Kerber R (1992) ChiMerge: discretization for numeric
attributes. In: AAAI national conference on artificial
intelligence, pp 123–128

Kononenko I (1992) Naive Bayesian classifier and
continuous Attributes. Informatica 16(1):1–8

Quinlan JR (1993) C4.5: Programs for machine learn-
ing. Morgan Kaufmann Publishers, San Francisco

Yang Y, Webb G (2001) Proportional k-interval dis-
cretization for naive-Bayes classifiers. In: Proceed-
ings of the twelfth European conference on machine
learning, pp 564–575

Yang Y, Webb G (2002) Non-disjoint discretization for
naive-Bayes classifiers. In: Proceedings of the nine-
teenth international conference on machine learn-
ing, pp 666–673

Discriminative Learning

Definition

Discriminative learning refers to any � classifi-
cation learning process that classifies by using
a model or estimate of the probability P.yjx/

without reference to an explicit estimate of any
of P(x), P(y; x), or P(xjy), where y is a class and
x is a description of an object to be classified.
Discriminative learning contrasts to � generative
learning which classifies by using an estimate
of the joint probability P(y; x) or of the prior
probability P(y) and the conditional probability
P(xjy).

It is also common to categorize as discrim-
inative any approaches that are directly based
on a decision risk function (such as �Support
Vector Machines, �Artificial Neural Networks,
and �Decision Trees), where the decision risk is
minimized without estimation of P(x), P(y; x), or
P(xjy).

Cross-References

�Generative and Discriminative Learning

Disjunctive Normal Form

Bernhard Pfahringer
University of Waikato, Hamilton, New Zealand

Disjunctive normal form is an important normal
form for propositional logic. A logic formula
is in disjunctive normal form if it is a single
disjunction of conjunctions of (possibly negated)
literals. No more nesting and no other negations
are allowed. Examples are:

a

:b

a _ b

.a ^ :b/ _ .c ^ d/

:a _ .b ^ :c ^ d/ _ .a ^ :d/

Any arbitrary formula in propositional logic
can be transformed into disjunctive normal form
by application of the laws of distribution, De
Morgan’s laws, and by removing double nega-
tions. It is important to note that this process

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_333
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_113

372 Distance

can lead to exponentially larger formulas which
implies that the process in the worst case runs in
exponential time. An example for this behavior
is the following formula given in � conjunctive
normal form (CNF), which is linear in the number
of propositional variables in this form. When
transformed into disjunctive normal form (DNF),
its size is exponentially larger.

CNF: .a0 _ a1/^ .a2 _ a3/^ � � � ^ .a2n _ a2nC1/

DNF: .a0 ^ a2 ^ � � � ^ a2n/ _ .a1 ^ a2 ^ � � �

^ a2n/ _ � � � _ .a1 ^ a3 ^ � � � ^ a2nC1/

Recommended Reading

Mendelson E (1997) Introduction to mathematical
logic, 4th edn. Chapman & Hall, Princeton, p 30

Distance

� Similarity Measures

Distance Functions

� Similarity Measures

Distance Measures

� Similarity Measures

Distance Metrics

� Similarity Measures

Distribution-Free Learning

� PAC Learning

Divide-and-Conquer Learning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Synonyms

Recursive partitioning; TDIDT strategy

Definition

The divide-and-conquer strategy is a learning al-
gorithm for inducing �Decision Trees. Its name
reflects its key idea, which is to successively
partition the dataset into smaller sets (the divide
part) and recursively call itself on each subset (the
conquer part). It should not be confused with the
separate-and-conquer strategy which is used in
the �Covering Algorithm for rule learning.

Cross-References

�Covering Algorithm
�Decision Tree

Document Categorization

�Document Classification

Document Classification

Dunja Mladenić1, Janez Brank2, and
Marko Grobelnik2

1Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia
2Jožef Stefan Institute, Ljubljana, Slovenia

Abstract

Document Classification analogous to
general classification of instances, deals with

http://dx.doi.org/10.1007/978-1-4899-7687-1_158
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_100400
http://dx.doi.org/10.1007/978-1-4899-7687-1_100466
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_75

Document Classification 373

D

assigning labels to documents. The documents
can be written in different natural languages,
can be of different length and structure, can
be written by different authors using variety
of writing styles. Moreover, the documents to
classify can be obtained from different sources
including official news, internal company
documentation, as well as public Web pages
and texts from social media. In document
classification, in addition to the algorithm we
are using for constructing a classifier, data
representation is crucial. Commonly used
is word vector representation, where either
raw data in the form of words and phrases is
used or a more abstract form is constructed.
Deep learning has been shown very effective
for learning text representation using various
deep learning architectures.

Synonyms

Document categorization; Supervised learning on
text data

Definition

Document classification refers to a process of
assigning one or more � labels for a document
from a predefined set of labels (also referred
to class values). The main issues in document
classification are connected to classification of
free text giving document content, for instance,
classifying Web documents on the content topic
as being about arts, education, science, etc., or
on the page type (personal homepage, company
page, etc.), classifying news articles by their
topic (politics, technology, science, health, etc.),
and classifying movie reviews by their opinion
(positive review, negative review). In general, one
can consider different properties of a document in
document classification and combine them, such
as document type, authors, links to other docu-
ments, content, etc. Machine � learning methods
applied to document classification are based on
general classification methods adjusted to handle
some specifics of text data.

Motivation and Background

Documents and text data provide for valuable
sources of information and their growing
availability in electronic form naturally led to
application of different analytic methods. One of
the common ways is to take a whole vocabulary
of the natural language in which the text is
written as a feature set, resulting in several tens
of thousands of features. In a simple setting, each
feature gives a count of the word occurrences in
a document. In this way, text of a document
is represented as a vector of numbers. The
representation of a particular document contains
many zeros, as most of the words from the
vocabulary do not occur in a particular document.
In addition to the already mentioned two common
specifics of text data, having a large number
of features and a sparse data representation, it
was observed that frequency of words in text
generally follows Zipf’s law – a small subset
of words occur very frequently in texts, while
a large number of words occur only rarely.
Document classification takes these and some
other data specifics into account when developing
the appropriate classification methods.

Structure of Learning System

Document classification is usually performed by
representing documents as vectors of feature;
usually the features are words so each document
is a word vector and the representation is referred
to as the “bag-of-words” or “vector space model”
representation. Classifier is then built using a set
of documents that have been manually classified
(Cohen and Singer 1996; Mladenić and Grobel-
nik 2003; Sebastiani 2002; Yang 1997).

Data Representation

In the word vector representation of a document,
a vector of word weights is formed taking all
the words occurring in all the documents. Most
researchers have used single words when rep-
resenting text, but there is also research that

http://dx.doi.org/10.1007/978-1-4899-7687-1_100120
http://dx.doi.org/10.1007/978-1-4899-7687-1_100456
http://dx.doi.org/10.1007/978-1-4899-7687-1_438
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055

374 Document Classification

proposes using additional information to improve
classification results. For instance, the feature
set might be extended with various multi-word
features, e.g., n-grams (sequences of n adjacent
words), loose phrases (n-grams in which word
order is ignored), or phrases based on grammat-
ical analysis (noun phrases, verb phrases, etc.).
Information external to the documents might also
be used if it is available, for example, when deal-
ing with Web pages, their graph organization can
be a source of additional features (e.g., features
corresponding to the adjacency matrix, features
based on graph vertex statistics such as degree or
PageRank, or features taken from the documents
that are adjacent to the current document in the
Web graph).

The commonly used approach to weighting
words is based on �TF-IDF weights where
the number of occurrences of the word in the
document, referred to as term frequency (TF), is
multiplied by the importance of the word with
regard to the whole corpus (� (IDF) inverse
document frequency). The IDF weight for the
i th word is defined as IDFi = log(N /DFi), where
N is total number of documents and DFi is
the document frequency of the i th word (the
number of documents from the whole corpus in
which the i th word appears). The IDF weight
decreases the influence of common words (which
are not as likely to be useful for discriminating
between classes of documents) and favors the less
common words. However, the least frequently
occurring words are often deleted from the
documents as a preprocessing step, based on
the notion that if a word that does not occur
often enough in the training set cannot be
useful for learning and generalization and would
effectively be perceived as noise by the learning
� algorithm. A stopword list is also often used
to delete some of the most common and low-
content words (such as “the,” “of,” “in,” etc.)
during preprocessing. For many purposes, the
vectors used to represent documents should
be normalized to unit length so that the vector
reflects the contents and themes of the document
but not its length (which is typically not relevant
for the purposes of document categorization).

Even in a corpus of just a few thousand docu-
ments, this approach to document representation
can easily lead to a feature space of thousands,
possibly tens of thousands, of features. Therefore,
feature selection is sometimes used to reduce
the feature set before training. Such questions
as whether feature selection is needed and/or
beneficial, and which feature selection method
should be used, depend considerably on the learn-
ing algorithm used; the number of features to be
retained depends both on the learning algorithm
and on the feature selection method used. For
example, � naive Bayes tends to benefit, indeed
require, heavy feature selection, while � support
vector machines (SVMs) tend to benefit little or
nothing from it. Similarly, odds ratio tends to
value (some) rare features highly and therefore
requires a lot of features to be kept, while in-
formation gain tends to score some of the more
frequent features highly and thus often works
better if a smaller number of features is kept (see
also � Feature Selection in Text Mining).

Due to the large number of features in the orig-
inal data representation, some of the more com-
putationally expensive feature selection methods
from traditional machine learning cannot be used
with textual data. Typically, simple feature scor-
ing measures, such as information gain, odds
ratio, and chi-squared, are used to rank the fea-
tures, and the features whose score falls below
a certain threshold are discarded. A better but
computationally more expensive feature scoring
method is to train a linear classifier on the full
feature set first (e.g., using linear �SVM, see
below) and rank the features by the absolute value
of their weights in the resulting linear model (see
also � Feature Construction in Text Mining).

Classification

Different � classification algorithms have been
adjusted and applied on text data. A few more
popular are described here.

�Naive Bayes based on the multinomial
model, where the predicted class for document
d is the one that maximizes the � posterior

http://dx.doi.org/10.1007/978-1-4899-7687-1_832
http://dx.doi.org/10.1007/978-1-4899-7687-1_832
http://dx.doi.org/10.1007/978-1-4899-7687-1_112
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_102
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_112
http://dx.doi.org/10.1007/978-1-4899-7687-1_581

Document Classification 375

D

probability P.cjd/ / P.c/ΠtP.t jc/ TF(t ,
d/, where P.c/ is the � prior probability that
a document belongs to class c, P.t jc/ is the
probability that a word chosen randomly in
a document from class c equals t , and TF(t ,
d/ is the “term frequency,” or the number of
occurrences of word t in a document d . Where
there are only two classes, say cC and c�,
maximizing P.cjd/ is equivalent to taking the
sign of ln P.cCjd//P.c�jd/, which is a linear
combination of TF(w, d/. Thus, the naive Bayes
classifier can be seen as a linear classifier as well.
The training consists simply of estimating the
probabilities P.t jc/ and P.c/ from the training
documents.

� Perceptron trains a linear classifier in an
incremental way as a neural unit using an addi-
tive update rule. The prediction for a document
represented by the vector x is sgn(wT x), where
w is a vector of weights obtained during train-
ing. Computation starts with w D 0 and then
considers each training example xi in turn. If the
present w classifies document xi correctly, it is
left unchanged; otherwise, it is updated according
to the additive rule: w w C yi xi , where
yi is the correct class label of the document xi ,
namely, yi D C1 for a positive document and
yi D 1 for a negative one.

� SVM trains a linear classifier of the form sgn
(wT xCb/. Learning is posed as an optimization
problem with the goal of maximizing the margin,
i.e., the distance between the separating hyper-
plane wT xCb D 0 and the nearest training vec-
tors. An extension of this formulation, known as
the soft margin, also allows for a wider margin at
the cost of misclassifying some of the � training
examples. The dual form of this optimization task
is a quadratic programming problem and can be
solved numerically.

Results of numerous experiments reported
in research papers suggest that among the
classification algorithms that have been adjusted
to text data SVM, � naive Bayes and k-nearest
neighbor are among the best performing (Lewis
et al. 1996). Moreover, experimental evaluation
on some standard Reuters news datasets shows
that SVM tends to outperform other classifiers

including naive Bayes and perceptron (Mladenic
et al. 2004).

In many applications, a document may belong
to multiple classes, e.g., because it includes dis-
cussion relevant to several topics. The classifiers
described above can naturally provide multi-label
predictions in a multi-class learning problem sim-
ply by treating each class as a two-class problem
separately from the other classes. However, there
are also methods that try to model the multi-
class nature of individual documents directly. For
example, recently there has been an increase of
interest in using artificial neural networks for text
classification, with a multiunit output layer that
can generate predictions for all classes at once
(Zhang and Zhou 2006; Nam et al. 2014).

Evaluation Measures

A � characteristic property of machine learning
problems arising in document classification is
a very unbalanced class distribution. In a typ-
ical dataset, there may be tens (or sometimes
hundreds or thousands) of categories, most of
which are very small. When we train a binary
(two-class) classification model for a particular
category, documents belonging to that category
are treated as the positive class, while all other
documents are treated as the negative class. Thus,
the negative class is typically vastly larger as
the positive one. These circumstances are not
well suited to some traditional machine learning
� evaluation measures, such as � accuracy (if
almost all documents are negative, then a useless
classifier that always predicts the negative class
will have very high accuracy). Instead, evaluation
measures from information retrieval are more
commonly used, such as � precision, � recall, the
F1-measure, the � breakeven point (BEP), and
the area under the � receiver operating character-
istic (ROC) curve (see also �ROC Analysis).

The evaluation of a binary classifier for a given
category c on a given � test set can be conve-
niently summarized in a contingency table. We
can divide documents into four groups depending
on whether they belong to c and whether our

http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_100480
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_100052
http://dx.doi.org/10.1007/978-1-4899-7687-1_265
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_937
http://dx.doi.org/10.1007/978-1-4899-7687-1_735
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_820

376 Document Classification

classifier predicted them as positive (i.e., suppos-
edly belonging to c) or not:

Given the number of documents in each of
the four groups (TP, FP, TN, and FN), we can
compute various evaluation measures as follows:

• Precision D TP/(TPC FP)
• Recall D TPrate D TP/(TPC FN)
• FPrate D FP/(TN C FP)
• F1 D 2 •precision •recall/(precision + recall)

Belongs to c Not in c

Predicted
positive

TP (true positives) FP (false positives)

Predicted
negative

FN (false negatives) TN (true negatives)

Thus, precision is the proportion of documents
predicted positive that are really positive, while
recall is the proportion of positive documents that
have been correctly predicted as positive. The F1

is the � harmonic mean of precision and recall;
thus, it lies between � precision and recall but
is closer to the lower of these two values. This
means that a classifier with high F1 has both good
precision and good recall. In practice, there is
usually a tradeoff between precision and recall;
by making the classifier more liberal (i.e., more
likely to predict positive), we can increase recall
at the expense of precision, while by making it
more conservative (less likely to predict positive),
we can usually increase precision at the expense
of recall. Often the classification model involves
a threshold which can be varied at will to obtain
various hprecision, recalli pairs. These can be
plotted on a chart, resulting in the precision-recall
curve. As we decrease the threshold (thus making
the classifier more liberal), precision decreases
and recall increases until at some point precision
and recall are equal; this value is known as the
(precision-recall) BEP (Lewis 1991). Instead of
hprecision, recalli pairs, one can measure hTPrate,
FPratei pairs, resulting in an �ROC curve (see
�ROC analysis). The � area under the ROC
curve is another valuable measure of the classifier
quality.

Document classification problems are typi-
cally multi-class, multi-label problems, which are
treated by regarding each category as a separate
two-class classification problem. After training a
two-class classifier for each category and evalu-
ating it, the question arises how to combine these
evaluation measures into an overall evaluation
measure. One way is macroaveraging, which
means that the values of precision, recall, F1,
or whatever other measure we are interested in
are simply averaged over all the categories. Since
small categories tend to be much more numerous
than large ones, macroaveraging tends to empha-
size the performance of our learning algorithm
on small categories. An alternative approach is
microaveraging, in which the contingency tables
for individual two-class classifiers are summed
up and measures such as precision, recall, and
F1 computed from the resulting aggregated table.
This approach emphasizes the performance of
our learning algorithm on larger categories.

Cross-References

�Classification
� Feature Selection
� Precision
� Semi-supervised Text Processing
� Support Vector Machines
�Text Visualization

Recommended Reading

Cohen WW, Singer Y (1996) Context sensitive learn-
ing methods for text categorization. In: Proceedings
of the 19th annual international ACM SIGIR con-
ference on research and development in information
retrieval. ACM, Zurich, pp 307–315

Lewis DD (1991) Representation and learning in
information retrieval. PhD thesis, Department of
computer science, University of Massachusetts,
Amherst

Lewis DD, Schapire RE, Callan JP, Ron Papka R
(1996) Training algorithms for linear text classifiers.
In: Proceedings of the 19th annual international
ACM SIGIR conference on research and develop-
ment in information retrieval SIGIR-1996. ACM,
New York, pp 298–306

http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_735
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_918
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_837

Dynamic Programming 377

D

Mladenic D, Brank J, Grobelnik M, Milic-Frayling
N (2004) Feature selection using linear classifier
weights: interaction with classification models. In:
Proceedings of the twenty-seventh annual interna-
tional ACM SIGIR conference on research and
development in information retrieval SIGIR-2004.
ACM, New York, pp 234–241

Mladenić D, Grobelnik M (2003) Feature selection on
hierarchy of Web documents. J Decis Support Syst
35:45–87

Nam J, Kim J, Mencia EL, Gurevych I, Fürnkranz
J (2014) Large-scale multi-label text classifica-
tion – revisiting neural networks. In: Proceedings of
ECML/PKDD, Nancy, pp 437–452

Sebastiani F (2002) Machine learning for automated
text categorization. ACM Comput Surv 34(1):1–47

Yang Y (1997) An evaluation of statistical approaches
to text categorization. J Info Retr 1:67–88

Zhang ML, Zhou ZH (2006) Multilabel neural net-
works with applications to functional genomics and
text categorization. IEEE Trans Knowl Data Eng
18:1338–1351

Domain Adaptation

� Inductive Transfer

Dual Control

�Bayesian Reinforcement Learning
� Partially Observable Markov Decision
Processes

Duplicate Detection

�Entity Resolution

Dynamic Bayesian Network

�Learning Graphical Models

Dynamic Decision Networks

� Partially Observable Markov Decision
Processes

Dynamic Programming

Martin L. Puterman1 and Jonathan Patrick2

1University of British Columbia, Vancouver, BC,
Canada
2University of Ottawa, Ottawa, ON, Canada

Definition

Dynamic programming is a method for model-
ing a sequential decision process in which past
decisions impact future possibilities. Decisions
can be made at fixed discrete time intervals or at
random time intervals triggered by some change
in the system. The decision process can last
for a finite period of time or run indefinitely
– depending on the application. Each time a
decision needs to be made, the decision-maker
(referred to as “he” in this entry with no sexist
connotation intended) views the current � state
of the system and chooses from a known set of
possible � actions. As a result of the state of the
system and the action chosen, the decision-maker
receives a reward (or pays a � cost) and the sys-
tem evolves to a new state based on known prob-
abilities. The challenge faced by the decision-
maker is to choose a sequence of actions that
will lead to the greatest reward over the length
of the decision-making horizon. To do this, he
needs to consider not only the current reward (or
cost) for taking a given action but the impact
such an action might have on future rewards. A
policy is a complete sequence of decisions that
dictates what action to take in any given state
and at any given time. Dynamic programming
finds the optimal policy by developing mathemat-
ical recursions that decompose the multi-decision
problem into a series of single-decision problems
that are analytically or computationally more
tractable.

Background and Motivation

The earliest concepts that later developed into
dynamic programming can be traced back to the

http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_781
http://dx.doi.org/10.1007/978-1-4899-7687-1_5
http://dx.doi.org/10.1007/978-1-4899-7687-1_178

378 Dynamic Programming

calculus of variation problems in the seventeenth
century. However, the modern investigation of
stochastic sequential decision problems arguably
dates back to the work by Wald in 1947 on
sequential statistical analysis. At much the same
time, Pierre Masse was analyzing similar prob-
lems applied to water resource management in
France. However, the major name associated with
dynamic programming is that of Richard Bellman
who established the optimality equations that
form the basis of dynamic programming.

It is not hard to demonstrate the potential
scope of dynamic programming. Table 1 gives
a sense of the breadth of application as well
as highlighting the stochastic nature of most in-
stances.

Structure of the Learning System

A dynamic program is a general representation of
a sequential decision problem under uncertainty
about the future and is one of the main meth-
ods for solving Markov decision problems (see
�Markov Decision Processes). Like a decision
tree, it models a process where the decision we
make “today” impacts where we end up tomor-
row and therefore what decisions are available
to us tomorrow. It has distinct advantages over a
decision tree in that:

• It is a more compact representation of a deci-
sion process

• It enables efficient calculation
• It allows exploration of the structural proper-

ties of optimal decisions
• It can analyze and solve problems with infinite

or indefinite time horizons

The Finite-Horizon Setting

A finite-horizon MDP is a decision process with
a known end date. Thus, the decision-maker is
faced with the task of making a finite sequence
of decisions at fixed intervals. The MDP model is
based on five elements:

�Decision epochs: Sequences of decision times
n D 1; : : : ; N (in the infinite horizon, we set
N D 1). In a discrete-time MDP, these de-
cision times happen at regular, fixed intervals
while in a continuous-time model, they occur
at random times triggered by a change in the
system. The time between decision epochs is
called a period.

� State space: States represent the possible sys-
tem configurations facing the decision-maker
at each decision epoch. They contain all infor-
mation available to the decision-maker at each
decision epoch. The state space, S , is the set
of all such states (often assumed to be finite).
In choosing the state space, it is important
to include all the information that may be
relevant in determining a decision and that
may change from decision epoch to decision
epoch.

�Actions: Actions are the available choices
for the decision-maker at any given decision
epoch, in any given state. A.s/ is the set of all
actions available in state s (usually assumed
to be finite for all s). No action is taken in the
final decision epoch N .

�Transition probabilities: The probability of be-
ing in state s0 at time t C 1, given you take
action a from state s at time t , is written
as pt .s

0js; a/. It clearly makes sense to al-
low the transition probabilities to be condi-
tional upon the current state and the action
taken.

�Rewards/costs: In most MDP applications, the
decision-maker receives a reward each period.
This reward can depend on the current state,
the action taken, and the next state and is
denoted by rt .s; a; s0/. Since a decision must
be made before knowing the next state, s0,
the MDP formulation deals with the expected
reward:

rt .s; a/ D
X

s02S

rt .s; a; s
0/pt .s

0js; a/:

We also define the terminal rewards as rN .s/
for being in state s at the final decision epoch.

http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_198
http://dx.doi.org/10.1007/978-1-4899-7687-1_781
http://dx.doi.org/10.1007/978-1-4899-7687-1_5
http://dx.doi.org/10.1007/978-1-4899-7687-1_849
http://dx.doi.org/10.1007/978-1-4899-7687-1_729

Dynamic Programming 379

D

Dynamic Programming, Table 1 Dynamic programming applications

Application System state Actions Rewards Stochastic aspect

Capacity Size of plant Maintain or add
capacity

Costs of expansion and
production at current
capacity

Demand for a product

Cash mgt Cash available Borrow or invest Transaction costs and
less interest

External demand for
cash

Catalog mailing Customer purchase
record

Type of catalog to send,
if any

Purchases in current
period less mailing costs

Customer purchase
amount

Clinical trials Number of successes
with each treatment

Stop or continue the trial Costs of treatment and
incorrect decisions

Response of a subject to
treatment

Economic growth State of the economy Investment or
consumption

Utility of consumption Effect of investment

Fisheries mgt Fish stock in each age
class

Number of fish to
harvest

Value of the catch Population size

Forest mgt Size and condition of
stand

Harvesting and
reforestation activities

Revenues and less
harvesting costs

Stand growth and price
fluctuation

Gambling Current wealth Stop or continue playing Cost of playing Outcome of the game

Inventory control Stock on hand Order additional stock Revenue per item sold
and less ordering,
holding, and penalty
costs

Demand for items

Project selection Status of each project Project to invest in at
present

Return from investing in
project

Change in project status

Queueing control Number in the queue Accept/reject new
customers or control
service rate

Revenue from serving
customers and less
delay costs

Interarrival times and
service times

Reliability Age or status of
equipment

Inspect and repair or
replace if necessary

Inspection, repair, and
failure costs

Failure and deterioration

Reservations Number of confirmed
reservations

Accept, wait-list, or
reject new reservation

Profit from satisfied
reservations and less
overbooking penalties

Number of arrivals and
the demand for
reservations

Scheduling Activities completed Next activity to schedule Cost of activity Length of time to
complete activity

Selling an asset Current offer Accept or reject the
offer

The offer is less than the
cost of holding the asset
for one period

Size of the offer

Water resource
management

Level of water in each
reservoir

Quantity of water to
release

Value of power
generated

Rainfall and runoff

These are independent of the action since no
action is taken at that point.

The objective in the finite-horizon model is to
maximize total expected reward:

max

�
E

	 NX

tD1

rt .st ; at ; stC1/CrN .sN /js1 D s

�
:

(1)

At any given time t , the decision-maker has
observed the history up to time t , represented
by ht D .s1; a1; s2; a2; : : : ; at�1; st /, and needs
to choose at in such a way as to maximize (1).
A � decision rule, dt , determines what action
to take, based on the history to date at a given
decision epoch and for any possible state. It is
deterministic if it selects a single member ofA.s/
with probability 1 for each s 2 S and for a
given ht , and it is � randomized (� randomized

http://dx.doi.org/10.1007/978-1-4899-7687-1_201
http://dx.doi.org/10.1007/978-1-4899-7687-1_100393

380 Dynamic Programming

decision rule) if it selects a member of A.s/ at
random with probability qdt .ht /.a/. It is Marko-
vian (�Markovian decision rule) if it depends on
ht only through st . That is, dt .ht / D dt .st /.

A policy, � D .d1; : : : ; dN �1/, denotes
a complete sequence of decision rules over
the whole horizon. It can be viewed as a
“contingency plan” that determines the action
for each possible state at each decision epoch.
One of the major results in MDP theory is that,
under reasonable conditions, it is possible to
prove that there exists a Markovian, deterministic
policy that attains the maximum total expected
reward. Thus, for the purposes of this entry,
we will concentrate on this subset of all
policies.

If we define vt .s/ as the expected total
reward from time t to the end of the planning
horizon, given that at time t the system
occupies state s, then a recursion formula can
be built that represents vt in terms of vtC1.
Specifically,

vt .s/ D max
a2A.s/

�
rt .s; a/C

X

s02S

p.s0js; a/vtC1.s
0/

�

(2)
This is often referred to as the �Bellman equa-
tion, named after Richard Bellman who was re-
sponsible for the seminal work in this area. It
breaks the total reward at time t into the imme-
diate reward rt .s; a/ and the total future expected
reward,

P
s02S p.s

0js; a/vtC1.s
0/. Define A�

s;t as
the set of actions that attain the maximum in (2)
for a given state s and decision epoch t . Then the
finite-horizon discrete-time MDP can be solved
through the following backward induction algo-
rithm.

Backward Induction Algorithm
• Set t D N and vt .s/ D rN .s/ 8s 2 S

(since there is no decision at epoch N and
no future epochs, it follows that the optimal
reward-to-go function is just the terminal re-
ward).

• Let t D t � 1 and compute for each s 2 St

vt .s/ D max
a2A.s/

(
rt .s; a/C

X

s02S

p.s0js; a/vtC1.s
0/

)
:

• For each s 2 St , compute A�
s;t by solving

argmaxa2A.s/

(
rt .s; a/C

X

s02S

p.s0js; a/vtC1.s
0/

)
:

• If t D 1 then stop else return to step 2.

The function v1.s/ is the maximum expected
reward over the entire planning horizon given the
system starts in state s. The optimal policy is
constructed by choosing a member of A�

s;t for
each s 2 S and t 2 f1; : : : ; N g. In essence, the
algorithm solves a complex N -period decision
problem by solving N simple 1-period decision
problems.

Example – inventory control: Periodically
(daily, weekly, or monthly), an inventory
manager must determine how much of a product

to stock in order to satisfy random external
demand for the product. If too little is in stock,
potential sales are lost. Conversely, if too much is
on hand, a cost for carrying inventory is incurred.
The objective is to choose an ordering rule that
maximizes expected total profit (sales minus
holding and ordering costs) over the planning
horizon. To formulate an MDP model of this
system requires precise assumptions such as:

• The decision regarding the quantity to order
is made at the beginning of each period and
delivery occurs instantaneously.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100393
http://dx.doi.org/10.1007/978-1-4899-7687-1_518
http://dx.doi.org/10.1007/978-1-4899-7687-1_930

Dynamic Programming 381

D

• Demand for the product arrives throughout the
period, but all orders are filled on the last day
of the period.

• If demand exceeds the stock on hand, potential
sales are lost.

• The revenues, costs, and demand distribution
are the same each period.

• The product can only be sold in whole units.
• The warehouse has a capacity for M units.

(These assumptions are not strictly necessary but
removing them leads to a different formulation.)
Decisions epochs correspond to the start of a
period. The state, st 2 f0; : : : ;M g, represents
the inventory on hand at the start of period t

and the action, at 2 f0; 1; 2; : : : ;M � sg, is the
number of units to order that period; the action
0 corresponds to not placing an order. Let Dt

represent the random demand throughout period
t and assume that the distribution of demand is
given by pt .d/ D P.Dt D d/; d D 0; 1; 2; : : :.

The cost of ordering u units is O.u/ D K C c.u/
(a fixed cost plus variable cost) and the cost
of storing u units is h.u/, where c.u/ and h.u/
are increasing functions in u. We will assume
that leftover inventory at the end of the planning
horizon has value g.u/ and that the sale of u units
yields a revenue of f .u/. Thus, if there are u
units on hand at decision epoch t , the expected
revenue is

Ft .u/ D
u�1X

j D0

f .j /pt .j /C f .u/P.Dt 	 u/:

The expected reward is therefore

rt .s; a/ D F.s C a/ �O.a/ � h.s C a/

and the terminal rewards are rN .s; a/ D g.s/.
Finally, the transition probabilities depend on
whether or not there is enough stock on hand,
s C a, to meet the demand for that month, Dt .
Specifically,

pt .j js; a/ D

8
ˆ̂<

ˆ̂:

0 if j > s C a,
pt .j / if j D s C a �Dt ; s C a �M;

s C a > Dt ;P
1

dDsCa pt .d/ if j D 0; s C a �M; s C a � Dt .

Solving the finite-horizon version of this prob-
lem through backward induction reveals a simple
form to the optimal policy referred to as an .s; S/
policy. Specifically, if at time t , the inventory
is below some number st , then it is optimal to
order a quantity that raises the inventory level to
S t . It has been shown that a structured policy
of this type is optimal for several variants of
the inventory management problem with a fixed
ordering cost. Many variants of this problem have
been studied; these models underlie the field of
supply chain management.

The Infinite-Horizon Setting

In the infinite (or indefinite)-horizon setting, the
backward induction algorithm described above
no longer suffices as there are no terminal rewards
with which to begin the process.

In most finite-horizon problems, the optimal
policy begins to look the same at each decision
epoch as the horizon is pushed further and further
into the future. For instance, in the inventory
example above, st D stC1 and S t D S tC1 if t is
sufficiently removed from the end of the horizon.
The form of the optimal policy only changes as
the end of the time horizon approaches. Thus, if
there is no fixed time horizon, we should expect
the optimal policy to be stationary in most cases.
We call a policy stationary if the same decision
rule is applied at each decision epoch (i.e., dt D

d 8 t). One necessary assumption for this to be
true is that the rewards and transition probabilities
are independent of time (i.e., rt .s; a/ D r.s; a/

and pt .s
0js; a/ D p.s0js; a/8 s;0 s 2 S and

a 2 A.s/). For the infinite-horizon MDP, the
theory again proves that under mild assumptions,
there exists an optimal policy that is stationary,
deterministic, and Markovian. This fact greatly

382 Dynamic Programming

simplifies the process of finding the optimal pol-
icy as we can concentrate on a small subset of all
potential policies.

The setup for the infinite-horizon MDP is en-
tirely analogous to the finite-horizon setting with
the same � decision epochs, � states, � actions,
� rewards, and � transition probabilities (with the
last two assumed to be independent of time).

The most obvious objective is to extend the
finite-horizon objective to infinity and seek to find
the policy, � , that maximizes the total expected
reward:

v�.s/ D lim
N !1

(
E�

s

	 NX

tD1

r.st ; at /

)
: (3)

This, however, is problematic since

1. The sum may be infinite for some or all poli-
cies

2. The sum may not even exist, or
3. Even if the sum exists, there may be no maxi-

mizing policy

In the first case, just because all (or a subset of
all) policies lead to infinite reward in the long run
does not mean that they are all equally beneficial.
For instance, one may give a reward of $100 each
epoch and the other $1 per epoch. Alternatively,
one may give large rewards earlier on while
another gives large rewards only much later. Gen-
erally speaking, the first is more appealing but
the above objective function will not differentiate
between them. Secondly, the limit may not exist
if, for instance, the reward each decision epoch
oscillates between 1 and �1. Thirdly, there may
be no maximizing policy simply because there is
an infinite number of policies and thus there may
be an infinite sequence of policies that converges
to a maximum limit but never reaches it. Thus,
instead we look to maximize either the total
expected discounted reward or the expected long-
run average reward depending on the application.

Let � 2 .0; 1/ be a discount factor. Assuming
the rewards are bounded (i.e., there exists an M
such that jr.s; a/j < M 8.s; a/ 2 S � A.s/),
the total expected discounted reward for a given
policy � is defined as

v�
� .s/ D lim

N !1
E�

s

(
NX

tD1

�t�1r.st ; dt .st //

)

D E�
s

(
1X

tD1

�t�1r.st ; dt .st //

)
:

Since � < 1 and the rewards are bounded,
this limit always exists. The second objective is
the expected average reward which, for a given
policy � , is defined as

g�.s/ D lim
N !1

1

N
E�

s

� NX

tD1

r.st ; dt .st //

�
:

Once again, we are dealing with a limit that may
or may not exist. As we will see later, whether the
above limit exists depends on the structure of the
Markov chain induced by the policy.

Let us, at this point, formalize what we mean
by an optimal policy. Clearly, that will depend on
which objective function we choose to use. We
say that

• �� is total reward optimal if v��

.s/ 	 v�.s/

8s 2 Sand 8� .
• �� is discount optimal if v��

�
.s/ 	 v�

�
.s/

8s 2 Sand 8� .
• �� is average optimal if g��

.s/ 	 g�.s/

8s 2 S and 8� .

For simplicity, we introduce matrix and vector
notation. Let rd .s/ D r.s; d.s// and pd .j js/ D

p.j js; d.s//. Thus rd is the vector of rewards
for each state under decision rule d , and Pd is
the transition matrix of states under decision rule
d . We will now take a more in-depth look at
the infinite-horizon model with the total expected
discounted reward as the optimality criterion.

Solving the Discounted Infinite-Horizon
MDP
Given a Markovian, deterministic policy
� D .d1; d2; d3; : : :/ and defining �k D

.dk ; dkC1; : : :/, we can compute

http://dx.doi.org/10.1007/978-1-4899-7687-1_198
http://dx.doi.org/10.1007/978-1-4899-7687-1_781
http://dx.doi.org/10.1007/978-1-4899-7687-1_5
http://dx.doi.org/10.1007/978-1-4899-7687-1_729
http://dx.doi.org/10.1007/978-1-4899-7687-1_849

Dynamic Programming 383

D

v�
� .s/ D E

�1
s

	 1X

tD1

�t�1r.st ; dt .st //

D E�1
s

	
r.s; d1.s//C �

1X

tD2

�t�2r.st ; dt .st //

D r.s; d1.s//C �
X

j 2S

pd1.j js/E
�2
j

	 1X

tD1

�t�1r.st ; dt .st //

D r.s; d1.s//C �
X

j 2S

pd1.j js/v
�2
�
.j /:

In matrix notation,

v
�1
�
D rd1 C �Pd1v

�2
�
:

If we follow our supposition that we need to only
consider stationary policies (so that the same
decision rule is applied to every decision epoch),
� D d1 D .d; d; : : :/, then this results in

vd1

� D rd C �Pdv
d1

� :

This implies that the value function generated by
a stationary policy satisfies the equation:

v D rd C �Pdv

) v D .I � �Pd /
�1rd :

The inverse above always exists since Pd is a
probability matrix (so that its spectral radius is
less than or equal to 1) and � 2 .0; 1/. Moving to
the maximization problem of finding the optimal
policy, we get the recursion formula

v.s/ D max
a2A.s/

�
r.s; a/C �

X

j 2S

p.sjs; a/v.j /

�
:

(4)

Note that the right-hand side can be viewed as a
function of a vector v (given r; p; �). We define a
vector-valued function

Lv D max
d2DMD

�
rd C �Pdv

�
;

where DMD is the set of all Markovian,
� deterministic decision rules. There are three
methods for solving the above optimization
problem in order to determine the optimal policy.
The first method, called value iteration, creates a
sequence of approximations to the value function
that eventually converges to the value function
associated with the optimal policy.

Value Iteration
1. Start with an arbitrary jS j-vector v0. Let n D

0 and choose � > 0 to be small.
2. For every s 2 S , compute vnC1.s/ as

vnC1.s/

D max
a2A.s/

�
r.s; a/C

X

j 2S

�p.j js; a/vn.j /

�
:

3. If maxs2S jv
nC1.s/ � vn.s/j 	 �.1 � �/=2�

let n! nC 1 and return to step 2.
4. For each s 2 S , choose

d�.s/ 2 argmaxa2A.s/

�
r.s; a/C

X

j 2S

�p.j js; a/vnC1.j /

�
:

http://dx.doi.org/10.1007/978-1-4899-7687-1_201

384 Dynamic Programming

It has been shown that value iteration identifies
a policy with expected total discounted reward
within � of optimality in a finite number of
iterations. Many variants of value iteration are
available such as using different stopping criteria
to accelerate convergence or combining value
iteration with the policy iteration algorithm de-
scribed below.

A second algorithm, called policy iteration,
iterates through a sequence of policies eventually
converging to the optimal policy.

Policy Iteration
1. Set d0 2 D to be an arbitrary policy. Let
n D 0.

2. (Policy evaluation) Obtain vn by solving

vn D .I � �Pdn
/�1rdn

:

3. (Policy improvement) Choose dnC1 to satisfy

dnC1 2 argmaxd2Dfrd C �Pdv
ng

componentwise. If dn is in this set, then
choose dnC1 D dn.

4. If dnC1 D dn, set d� D dn and stop.
Otherwise, let n! nC 1 and return to (2).

Note that value iteration and policy iteration
have different conceptual underpinnings. Value
iteration seeks a fixed point of the operator L
using successive approximations, while policy it-
eration can be viewed as using Newton’s method
to solve Lv � v D 0.

Finally, a third method for solving the dis-
counted infinite-horizon MDP takes advantage of
the fact that, because L is monotone, if Lv � v,
then L2v � Lv and more generally, Lkv � v.
Thus, induction implies that the value function
of the optimal policy, v�

�
, is less than or equal

to v for any v, where Lv � v. We define the
set U WD fv 2 V jLv � vg. Then, not only is
v�

�
in the set U , it is also the smallest element of

U . Therefore, we can solve for v�
�

by solving the
following linear program:

min
v

X

s2S

˛.s/v.s/

subject to

v.s/ 	 r.s; a/

C �
X

j 2S

p.j js; a/v.j / 8s 2 S; a 2 As :

(Note that the above set of constraints is equiv-
alent to Lv � v.) We call this the primal LP.
The coefficients ˛.s/ are arbitrarily chosen. The
surprising fact is that the solution to the above LP
will be v�

�
for any strictly positive ˛.

We can construct the dual to the above primal
to get

max
X

X

s2S

X

a2As

r.s; a/X.s; a/

subject to

X

a2Aj

X.j; a/

�
X

s2S

X

a2As

�p.j js; a/X.s; a/ D ˛.j / 8j 2 S

X.s; a/ 	 0 8s 2 S; a 2 As :

Let .X.s; a/ W s 2 S; a 2 As/ be a feasible
solution for the dual (i.e., satisfies the constraints
but not necessarily optimal). Every such feasible
solution corresponds to a randomized Markov
policy d1 and vice versa. Furthermore, for a
given feasible solution, X , and the corresponding
policy d1; X.s; a/ represents the expected total
number of times you will be in state s and take ac-
tion a following policy d1 before stopping in the
indefinite-horizon problem. Thus, the objective in
the dual can be interpreted as the total expected
reward over the length of the indefinite horizon.
The strong law of duality states that at the optimal
solution, the objective functions in the primal and
dual will be equal. But we already know that at
the optimal, the primal objective will correspond
to a weighted sum of v�

�
.s/; s 2 S , which is the

total expected discounted reward over the infinite
(or indefinite) horizon given you start in state s.
Thus our interpretations for the primal and dual
variables coincide.

Dynamic Programming 385

D

Solving the Infinite-Horizon
Average-Reward MDP
Recall that in the average-reward model, the ob-
jective is to find the policy that has the maximum
average reward, often called the gain. The gain of
a policy can be written as

g�.s/ D lim
n!1

1

N
v�

N C1

D lim
n!1

1

N

NX

nD1

ŒP n�1
� rds

�.s/: (5)

As mentioned earlier, the major drawback is
that for a given policy � , the gain may not even
exist. An important result, however, states that if
we confine ourselves to stationary policies, we
can in fact be assured that the gain is well defined.
Our ability to solve a given infinite- horizon
average-reward problem depends on the form of
the Markov chains induced by the deterministic,
stationary policies available in the problem. Thus,
we divide the set of average-reward MDPs ac-
cording to the structure of the underlying Markov
chains. We say that an MDP is

• Unichain if the transition matrix correspond-
ing to every deterministic stationary policy
is unichain, that is, it consists of a single
recurrent class plus a possibly empty set of
transient states, or

• Multichain if the transition matrix correspond-
ing to at least one stationary policy con-
tains two or more closed irreducible recurrent
classes

If an MDP is unichain, then the gain for
any given stationary, deterministic policy can
be defined by a single number (independent of
starting state). This makes intuitive sense since
if we assume that it is possible to visit every state
from every other one (possibly minus some set
of transient states that may be visited initially
but will eventually be abandoned), then it would
seem reasonable to assume that over the infinite
horizon, the initial starting state would not impact
the average reward. However, if the initial state
impacts what set of states can be visited in the

future (i.e., the MDP is multichain), then clearly
it is likely that the expected average reward will
be dependent on the initial state.

If the average-reward MDP is unichain, then
the gain can be uniquely determined by solving

v.s/ D max
a2A.s/

�
r.s; a/�gC

X

s02S

p.s0js; a/v.s0/

�
:

(6)
Notice that the above equation has jS j C 1 un-
knowns but only jS j equations. Thus, v is not
uniquely determined. To specify v uniquely, it
is sufficient to set v.s0/ D 0 for some s0 2 S .
If this is done, then v.s/ is called the relative
value function and v.j / � v.k/ is the difference
in expected total reward obtained in using an
optimal policy and starting in state j as opposed
to state k. It is also often represented by the letter
h and called the bias.

As in the discounted infinite-horizon MDP,
there are three potential methods for solving
the average-reward case. We present only policy
iteration here and refer the reader to the recom-
mended readings for value iteration and linear
programming.

Policy Iteration
1. Set n D 0, and choose an arbitrary decision
dn.

2. (Policy evaluation) Solve for gn; vn:

0 D rdn
� ge C .Pdn

� I /v:

3. Choose dnC1 to satisfy

dnC1 2 argmaxd2Dfrd C Pdvng:

Setting dnC1 D dn if possible.
4. If dnC1 D dn, stop, set d� D dn. Else,

increment n by 1 and return to step 2.

As mentioned earlier, the equation in step 2
fails to provide a unique vn since we have jS jC1
unknowns and only jS j equations. We therefore
need an additional equation. Any one of the
following three will suffice:

386 Dynamic Programming

1. Set vn.s0/ D 0 for some fixed s0 2 S .
2. Choose vn to satisfy P �

dn
vn D 0.

3. Choose vn to satisfy �vn C .Pd � I /w D 0
for some w 2 V .

Continuous-Time Models

So far, we have assumed that decision epochs
occur at regular intervals but clearly in many
applications this is not the case. Consider, for
instance, a queueing control model where the
service rate can be adjusted in response to the size
of the queue. It is reasonable to assume, however,
that changing the service rate is only possible
following the completion of a service. Thus, if
the service time is random, then the decision
epochs will occur at random time intervals. We
will therefore turn our attention now to systems
in which the state changes and decision epochs
occur at random times. At the most general level,
decisions can be made at any point in time, but
we will focus on the subset of models for which
decision epochs only occur at state transitions. It
turns out that this is usually sufficient as the added
benefit of being able to change decisions apart
from state changes does not generally improve
performance. Thus, the models we study gener-
alize the discrete-time MDP models by:

1. Allowing, or requiring, the decision-maker to
choose actions whenever the system changes
state

2. Modeling the evolution of the system in con-
tinuous time, and

3. Allowing the time spent in a particular state to
follow an arbitrary probability distribution

Semi-Markov decision processes (SMDP) are
continuous-time models where decisions are
made at some but not necessarily all state
transitions. The most common subset of these,
called exponential SMDPs, are SMDPs where
the intertransition times are exponentially
distributed.

We distinguish between two processes:

1. The natural process that monitors the state of
the system as if it were observed continually
through time and

2. The embedded Markov chain that monitors the
evolution of the system at the decision epochs
only

For instance, in a queueing control model, one
may decide only to change the rate of service
every time there is an arrival. Then the embed-
ded Markov chain would only keep track of the
system at each arrival while the natural process
would keep track of all state changes – including
both arrivals and departures.

While the actions are generally only going to
depend on the state of the system at each decision
epoch, it is possible that the rewards/costs to the
system may depend on the natural process. Cer-
tainly, in the queueing control model, the cost to
the system would go down as soon as a departure
occurs. In discrete models, it was sufficient to
let the reward depend on the current state s and
the current action a and possibly the next state
s0. However, in an SMDP, the natural process
may change between now and the next decision
epoch, and moreover, the time the process stays
in a given state is no longer fixed. Thus we need
to consider two types of rewards/costs. First, a
lump-sum reward, k.s; a/, for taking action a

when in state s. Second, a reward rate, c.j; s; a/,
paid out for each time unit that the natural process
spends in state j until the next decision epoch
when the state at the last decision epoch was s and
the action taken was a. Note that if we insist that
every state transition triggers a decision epoch,
we can reduce this to c.s; a/ since the system
remains in s until the next decision epoch.

Before we can state our objective, we need to
determine what we mean by discounting. Again,
because we are dealing with continuous time so
that decision epochs are not evenly spaced, it is
not sufficient to have a fixed discount factor �.
Instead, we will discount future rewards at rate
e�˛t , for some ˛ > 0. If we let � D e�˛ (the
discount rate for one time unit) then ˛ D 0:11
corresponds to � D 0:9. Thus an ˛ around 0.1 is
commonly used.

Dynamic Programming 387

D

We can now state our objective. We look to
find a policy that maximizes the total expected
discounted reward over the infinite horizon.
There is an average-reward model for continuous-
time models as well but we will not discuss that
here. Given a policy � , we can write its total
expected discounted reward as

v�
˛ .s/ D E

�
s

"
1X

nD0

e�˛�n .K.Xn; Yn/

C

Z �nC1

�n

e�˛.t��n/c.Wt ; Xn; Yn/ dt

�

;

(7)

where Xn and Yn are the random variables that
represent the state and action at time n, respec-
tively, Wt is the random variable that represents
the state of the natural process at time t , and �n is
the random time of the nth decision epoch. Again,
if we assume that each state transition triggers a
decision epoch, Xn D Wt for all t 2 Œ�n; �nC1/.
We seek to find a policy � such that

v�
˛ .s/ D v

�
˛.s/ D max

�2˘HR
v�

˛ .s/ (8)

for all s 2 S . Perhaps surprisingly, (7) can
be reduced to one that has the same form as
in the discrete-time case for any SMDP. As a
consequence, all the theory and the algorithms
that worked in the discrete version can be trans-
ferred to the continuous model! Again, we refer
the reader to the recommended readings for the
details.

Extensions

Partially Observed MDPs
In some instances, the state of the system may not
be directly observable, but instead, the decision-
maker receives a signal from the system that
provides information about the state. For exam-
ple, in medical decision-making, the health-care
provider will not know the patient’s true health
status but will have on hand some diagnostic

information that may be related to the patient’s
true health. These problems are modeled from a
Bayesian perspective. The decision-maker uses
the signal to update his estimate of the proba-
bility distribution of the system state. He then
bases his decision on this probability distribution.
The computational methods for solving partially
observed MDPs are significantly more complex
than in the fully observable case and only small
problems have been solved numerically.

Parameter-Adaptive Dynamic
Programming
Often the transition probabilities in an MDP are
derived from a system model, which is deter-
mined by a few parameters. Examples include
demand distributions in inventory control and
arrival and/or service distributions in queueing
systems. In these cases, the forms of the distribu-
tions are known (e.g., Poisson for demand mod-
els and exponential for arrival or service mod-
els) but their parameter values are not. Herein,
the decision-maker seeks a policy that combines
learning with control. A Bayesian approach is
used. The parameter is related to the system state
through a likelihood function, and after observing
the system state, the probability distribution on
the parameter is updated. This updated probabil-
ity distribution provides the basis for choosing a
policy.

Approximate Dynamic Programming
Arguably the greatest challenge to implementing
MDP theory in practice is “the curse of dimen-
sionality.” As the complexity of a problem grows,
the amount of information that needs to be stored
in the state space quickly reaches a point where
the MDP is no longer computationally tractable.
There now exist several methods for dealing with
this problem, all of which are grouped under
the title of approximate dynamic programming
or neuro-dynamic programming. These potential
methods begin by restricting the value function
to a certain class of functions and then seeking to
find the optimal value function within this class.
A typical approximation scheme is based on the
linear architecture:

388 Dynamic Programming for Relational Domains

v�.s/
 Qv.s; r/ D

kX

iD1

ri	i .s/;

where 	i .s/; i D 1; : : : ; k are predefined basis
functions that attempt to characterize the state
space and r is a set of weights applied to the basis
functions. This reduces the problem from one
with jS j-dimensions to one with jkj-dimensions.
The questions are (1) how do you determine what
class of functions (determined by) to choose
and (2) how to find the best approximate value
function within the chosen class (i.e., the best
values for r). The first question is still very much
wide open.

Answers to the second question fall into two
main camps. On the one hand, there are a number
of methods that seek to iteratively improve the
approximation through the simulation of sam-
ple paths of the decision process. The second
method uses linear programming but restricts the
value function to the approximate form. This
reduces the number of variables in the primal
to a reasonable number (equal to the number of
basis functions chosen). One can then determine
the optimal set of weights, r , through column
generation. One of the major challenges facing
approximate dynamic programming is that it is
difficult to determine how close the approxi-
mate value function is to its true value. In other
words, how much more reward might have been
accumulated had the original MDP been solved
directly? Though there are some attempts in the
literature to answer this question, it remains a
significant challenge.

Cross-References

�Markov Decision Processes
� Partially Observable Markov Decision

Processes

Recommended Reading

Bertsekas D (2000) Dynamic programming and opti-
mal control. Athena Scientific, Belmont

Bertsekas D, Tsitsiklis J (1996) Neuro-dynamic pro-
gramming. Athena Scientific, Belmont

Feinberg E, Shwartz A (2002) Handbook of Markov
decision processes. Kluwer Academic, Boston

Puterman M (1994) Markov decision processes. Wiley,
New York

Sutton R, Barto A (1998) Reinforcement learning.
MIT, Cambridge

Dynamic Programming for
Relational Domains

� Symbolic Dynamic Programming

Dynamic Selection of Bias

�Metalearning

Dynamic Systems

The dynamic systems approach emphasizes the
human, and animal, interaction with the envi-
ronment. Interactions are described by partial
differential equations. Attractors and limit cycles
represent stable states which may be analogous to
attribute-values.

http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_543

E

EBL

�Explanation-Based Learning

Echo State Network

�Reservoir Computing

ECOC

�Error Correcting Output Codes

Edge Prediction

�Link Prediction

Efficient Exploration in
Reinforcement Learning

John Langford
Microsoft Research, New York, NY, USA

Synonyms

PAC-MDP learning

Definition

An agent acting in a world makes observations,
takes actions, and receives rewards for the actions
taken. Given a history of such interactions, the
agent must make the next choice of action so as
to maximize the long-term sum of rewards. To do
this well, an agent may take suboptimal actions
which allow it to gather the information neces-
sary to later take optimal or near-optimal actions
with respect to maximizing the long-term sum of
rewards. These information gathering actions are
generally considered exploration actions.

Motivation

Since gathering information about the world
generally involves taking suboptimal actions
compared with a later learned policy, minimizing
the number of information gathering actions
helps optimize the standard goal in reinforcement
learning. In addition, understanding exploration
well is key to understanding reinforcement
learning well, since exploration is a key aspect
of reinforcement learning which is missing from
standard supervised learning settings (Fig. 1).

Efficient Exploration in Markov
Decision Processes

One simplification of reinforcement learning is
the �Markov decision process setting. In this

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_731
http://dx.doi.org/10.1007/978-1-4899-7687-1_260
http://dx.doi.org/10.1007/978-1-4899-7687-1_486
http://dx.doi.org/10.1007/978-1-4899-7687-1_100355
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

390 Efficient Exploration in Reinforcement Learning

A Key Lock Structure MDP

Efficient Exploration in Reinforcement Learning,
Fig. 1 An example of a keylock MDP. The state are
arranged in a chain. In each state, one of the two actions
leads to the next state while the other leads back to the
beginning. The only reward is in the transition to the last
state in the chain. Keylock MDPs defeat simple greedy
strategies, because the probability of randomly reaching
the last transition is exponentially small in the length of
the chain

setting, an agent repeatedly takes an action a, re-
sulting in a transition to a state according to a con-
ditional probability transition matrix P.s0js; a/,
and a (possibly probabilistic) reward R.s0; a; s/ 2

Œ0; 1�. The goal is to efficiently output a policy �

which is "-optimal over T timesteps. The value
of policy � in a start state s is defined as

�.�; s/ D E.a;s;r/T �.�;P;R/T

TX

tD1

rt ;

which should be read as the expectation over T -
length sequences drawn from the interaction of
the policy � with the world as represented by P

and R. An "-optimal policy � therefore satisfies:

max
� 0

�.� 0; s/ � �.�; s/ � ":

There are several notable results in this setting,
typically expressed in terms of the dependence
on the number of actions A, and the number
of states S . The first is for the ˇ-greedy strat-
egy commonly applied when using �Q-learning
(Watkins and Dayan 1992) which explores ran-
domly with probability ˇ.

Theorem 1 There exists MDPs such that with
probability at least 1=2; ˇ-greedy requires Θ.AS)
explorations to find an "-optimal policy.

This is essentially a negative result, saying
that a greedy exploration strategy cannot quickly
discover a good policy in some settings. The
proof uses an MDP with a key-lock like structure
where for each state all actions but one take the
agent back to the beginning state, and the reward
is at the end of a chain of states.

It turns out that there exists algorithms capable
of finding a near-optimal policy in an MDP with
only a polynomial number of exploratory transi-
tions.

Theorem 2 For all MDPs, for any ı > 0, with
probability 1 � ı, the algorithm Explicit-Explore-
or-Exploit finds an "-optimal policy after Õ(S2A)
explorations.

In other words, E3 (Kearns and Singh 1998)
requires exploration steps at most proportional
to the size of the probability table driving the
dynamics of the agent’s world. The algorithm
works in precisely the manner which might be
expected: it builds a model of the world based
on its observations and solves the model to de-
termine whether to explore or exploit. The basic
approach was generalized to stochastic games
and reformulated as an “optimistic initialization”
style algorithm named R-MAX (Brafman and
Tennenholtz 2002).

It turns out that an even better dependence
is possible using the delayed Q-learning (Strehl
et al. 2006) algorithm.

Theorem 3 For all MDPs, for any ı > 0,
with probability 1 � ı, the algorithm delayed Q-
learning finds an "-optimal policy after Õ(SA)
explorations.

The delayed Q-learning algorithm requires ex-
plorations proportional to the size of the solution
policy rather than proportional to the size of
world dynamics. At a high level, delayed Q-
learning operates by keeping values for explo-
ration and exploitation of observed state-actions,
uses these values to decide between exploration
and exploitation, and carefully updates these val-
ues. Delayed Q-learning does not obsolete E3,
because the (nonvisible) dependence on " and T

are worse (Strehl 2007).

http://dx.doi.org/10.1007/978-1-4899-7687-1_689

Efficient Exploration in Reinforcement Learning 391

E

This is a best possible result in terms of the
dependence on S and A (up to log factors), as the
following theorem (Kakade 2003) states:

Theorem 4 For all algorithms, there exists an
MDP such that with Ω(SA) explorations are re-
quired to find an " optimal policy with probability
at least 1

2 .

Since even representing a policy requires
a lookup table of size SA, this algorithm-
independent lower bound is relatively unsur-
prising.

Variations on MDP Learning

There are several minor variations in the setting
and goal definitions which do not qualitatively
impact the set of provable results. For example,
if rewards are in a bounded range, they can be
offset and rescaled to the interval [0, 1].

It’s also common to use a soft horizon (or dis-
counting) where the policy evaluation is changed
to:

�� .�; s/ D E
.a;s;r/1�.�;P;R/1

1P
tD1

� t rt

for some value � < 1. This setting is not precisely
equivalent to the hard horizon, but since

sum1
tD.1n.1=�/C1n.1=1��//=1�� � t rt � "

similar results are provable with 1=.1 � �/ taking
the role of T and slightly altered algorithms.

One last variation changes the goal. Instead
of outputting an "-optimal policy for the next T

timesteps, we could have an algorithm to handle
both the exploration and exploitation, then ret-
rospectively go back over a trace of experience
and mark a subset of the actions as “exploration
actions,” with a guarantee that the remainder of
the actions are according to an "-optimal pol-
icy (Kakade 2003). Again, minor alterations to
known algorithms in the above setting appear to
work here.

Alternative Settings

There are several known analyzed variants of
the basic setting formed by making additional
assumptions about the world. This includes
Factored MDPs (Kearns and Koller 1999), Metric
MDPs (Kakade et al. 2003), Continuous MDPs
(Brunskill et al. 2008), MDPs with a Bayesian
prior (Poupart et al. 2006), and apprenticeship
learning where there is access to a teacher for
an MDP (Abbeel and Ng 2005). The structure
of these results are all similar at a high level:
with some additional information, it is possible
to greatly ease the difficulty of exploration
allowing tractable application to much larger
problems.

Cross-References

� k-Armed Bandit
�Reinforcement Learning

Recommended Reading

Abbeel P, Ng A (2005) Exploration and apprenticeship
learning in reinforcement learning. In: ICML 2005,
Bonn

Brafman RI, Tennenholtz M (2002) R-MAX – a gen-
eral polynomial time algorithm for near-optimal
reinforcement learning. J Mach Learn Res 3:213–
231

Brunskill E, Leffler BR, Li L, Littman ML, Roy N
(2008) CORL: a continuous-state offset-dynamics
reinforcement learner. In: UAI-08, Helsinki July
2008

Kakade S (2003) Thesis at gatsby computational neu-
roscience unit

Kakade S, Kearns M, Langford J (2003) Exploration
in metric state spaces. In: ICML 2003, Washington,
DC

Kearns M, Koller D (1999) Efficient reinforcement
learning in factored MDPs. In: Proceedings of the
16th international joint conference on artificial intel-
ligence. Morgan Kaufmann, San Francisco, pp 740–
747

Kearns M, Singh S (1998) Near-optimal reinforcement
learning in polynomial time. In: ICML 1998. Mor-
gan Kaufmann, San Francisco, pp 260–268

Poupart P, Vlassis N, Hoey J, Regan K (2006) An
analytic solution to discrete Bayesian reinforcement

http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

392 EFSC

learning. In: ICML 2006. ACM Press, New York,
pp 697–704

Strehl A (2007) Thesis at Rutgers University
Strehl AL, Li L, Wiewiora E, Langford J, Littman ML

(2006) PAC model-free reinforcement learning. In:
Proceedings of the 23rd international conference on
machine learning (ICML 2006), Pittsburgh, pp 881–
888

Watkins C, Dayan P (1992) Q-learning. Mach Learn J
8:279–292

EFSC

�Evolutionary Feature Selection and Construc-
tion

Eigenvector

�K-Way Spectral Clustering

Elman Network

� Simple Recurrent Network

Embodied Evolutionary Learning

�Evolutionary Robotics

Emerging Patterns

Definition

Emerging pattern mining is an area of
� supervised descriptive rule induction. Emerg-
ing patterns are defined as itemsets whose
support increases significantly from one data
set to another (Dong 1999). Emerging patterns
are said to capture emerging trends in time-
stamped databases, or to capture differentiating
characteristics between classes of data.

Recommended Reading

Dong G, Li J (1999) Efficient mining of emerging
patterns: discovering trends and differences. In: Pro-
ceedings of the 5th ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD-99), San Diego, pp 43–52

Empirical Risk Minimization

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Definition

The goal of learning is usually to find a model
which delivers good generalization performance
over an underlying distribution of the data. Con-
sider an input space X and output space Y .
Assume the pairs .X � Y / 2 X � Y are random
variables whose (unknown) joint distribution is
PXY . It is our goal to find a predictor f W X 7! Y
which minimizes the expected risk:

P.f .X/ ¤ Y / D E.X;Y /�PXY
Œı.f .X/ ¤ Y /� ;

where ı.´/ D 1 if ´ is true, and 0 otherwise.
However, in practice we only have n pairs

of training examples .Xi ; Yi / drawn identically
and independently from PXY . Since PXY is un-
known, we often use the risk on the training
set (called empirical risk) as a surrogate of the
expected risk on the underlying distribution:

1

n

nX

iD1

ı.f .Xi / ¤ Yi /:

Empirical Risk Minimization (ERM) refers to the
idea of choosing a function f by minimizing
the empirical risk. Although it is often effective

http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_433
http://dx.doi.org/10.1007/978-1-4899-7687-1_768
http://dx.doi.org/10.1007/978-1-4899-7687-1_94
http://dx.doi.org/10.1007/978-1-4899-7687-1_808

Ensemble Learning 393

E

and efficient, ERM is subject to � overfitting, i.e.
finding a model which fits the training data well
but predicts poorly on unseen data. Therefore,
� regularization is often required.

More details about ERM can be found in
Vapnik (1998).

Recommended Reading

Vapnik V (1998) Statistical learning theory. John Wiley
and Sons, New York

Ensemble Learning

Gavin Brown
The University of Manchester, Manchester, UK

Synonyms

Committee machines; Multiple classifier systems

Definition

Ensemble learning refers to the procedures em-
ployed to train multiple learning machines and
combine their outputs, treating them as a “com-
mittee” of decision makers. The principle is that
the decision of the committee, with individual
predictions combined appropriately, should have
better overall � accuracy, on average, than any
individual committee member. Numerous empir-
ical and theoretical studies have demonstrated
that ensemble models very often attain higher
accuracy than single models.

The members of the ensemble might be pre-
dicting real-valued numbers, class labels, poste-
rior probabilities, rankings, clusterings, or any
other quantity. Therefore, their decisions can be
combined by many methods, including averag-
ing, voting, and probabilistic methods. The ma-
jority of ensemble learning methods are generic,
applicable across broad classes of model types
and learning tasks.

Motivation and Background

If we could build the “perfect” machine learning
device, one which would give us the best possible
answer every time, there would be no need for
ensemble learning methods – indeed, there would
be no need for this encyclopedia either. The
underlying principle of ensemble learning is a
recognition that in real-world situations, every
model has limitations and will make errors. Given
that each model has these “limitations,” the aim
of ensemble learning is to manage their strengths
and weaknesses, leading to the best possible de-
cision being taken overall. Several theoretical and
empirical results have shown that the accuracy
of an ensemble can significantly exceed that of
a single model.

The principle of combining predictions has
been of interest to several fields over many years.
Over 200 years ago, a controversial question had
arisen, on how best to estimate the mean of
a probability distribution given a small number
of sample observations. Laplace (1818) demon-
strated that the sample mean was not always
optimal: under a simple condition, the sample
median was a better combined predictor of the
population mean. The financial forecasting com-
munity has analyzed model combination for sev-
eral decades, in the context of stock portfolios.
The contribution of the machine learning (ML)
community emerged in the 1990s – automatic
construction (from data) of both the models and
the method to combine them. While the majority
of the ML literature on this topic is from 1990
onward, the principle has been explored briefly
by several independent authors since the 1960s.
See Kuncheva (2004b) for historical accounts.

The study of ensemble methods, with model
outputs considered for their abstract properties
rather than the specifics of the algorithm which
produced them, allows for a wide impact across
many fields of study. If we can understand pre-
cisely why, when, and how particular ensemble
methods can be applied successfully, we would
have made progress toward a powerful new tool
for Machine Learning: the ability to automat-
ically exploit the strengths and weaknesses of
different learning systems.

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_100071
http://dx.doi.org/10.1007/978-1-4899-7687-1_100318
http://dx.doi.org/10.1007/978-1-4899-7687-1_3

394 Ensemble Learning

Methods and Algorithms

An ensemble consists of a set of models and
a method to combine them. We begin this sec-
tion by assuming that we have a set of models,
generated by any of the learning algorithms in
this encyclopedia; we explore popular methods
of combining their outputs, for classification and
regression problems. Following this, we review
some of the most popular ensemble algorithms,
for learning a set of models given the knowledge
that they will be combined, including extensive
pointers for further reading. Finally, we take a
theoretical perspective, and review the concept
of ensemble diversity, the fundamental property
which governs how well an ensemble can per-
form.

Methods for Combining a Set of Models
There exist numerous methods for model com-
bination, far too many to fully detail here. The
linear combiner, the product combiner, and the
voting combiner are by far the most commonly
used in practice. Though a combiner could be
specifically chosen to optimize performance in
a particular application, these three rules have
shown consistently good behavior across many
problems, and are simple enough that they are
amenable to theoretical analysis.

The linear combiner is used for models that
output real-valued numbers, so is applicable for
� regression ensembles, or for � classification
ensembles producing class probability estimates.
Here, notation for the latter case is only shown.
We have a model ft .yjx/, an estimate of the
probability of class y given input x. For a set of
these, t D f1; : : : ; Tg, the ensemble probability
estimate is,

Nf .yjx/ D

TX

tD1

wt ft .yjx/: (1)

If the weights wt D 1=T , 8t , this is a simple
uniform averaging of the probability estimates.
The notation clearly allows for the possibility of
a nonuniformly weighted average. If the clas-
sifiers have different accuracies on the data, a

nonuniform combination could in theory give a
lower error than a uniform combination. How-
ever, in practice, the difficulty of estimating the w
parameters without overfitting, and the relatively
small gain that is available (see Kuncheva 2004b,
p. 282), have meant that in practice the uniformly
weighted average is by far the most commonly
used. A notable exception, to be discussed later in
this article, is the mixture of experts paradigm – in
MoE, weights are nonuniform, but are learnt and
dependent on the input value x. An alternative
combiner is the product rule:

Nf .yjx/ D
1

Z

TY

tD1

ft .yjx/wt ; (2)

where Z is a normalization factor to ensure
Nf is a valid distribution. Note that Z is not

required to make a valid decision, as the or-
der of posterior estimates remain unchanged be-
fore/after normalization. Under the assumption
that the class-conditional probability estimates
are independent, this is the theoretically optimal
combination strategy. However, this assumption
is highly unlikely to hold in practice, and again
the weights w are difficult to reliably determine.
Interestingly, the linear and product combiners
are in fact special cases of the generalized mean
(Kuncheva 2004b) allowing for a continuum of
possible combining strategies.

The linear and product combiners are applica-
ble when our models output real-valued numbers.
When the models instead output class labels, a
majority (or plurality) vote can be used. Here,
each classifier votes for a particular class, and
the class with the most votes is chosen as the
ensemble output. For a two-class problem the
models produce labels, ht .x/ 2 f�1; C1g. In this
case, the ensemble output for the voting combiner
can be written as

H.x/ D sign

TX

tD1

wt ht .x/

!
: (3)

The weights w can be uniform for a simple
majority vote, or nonuniform for a weighted vote.

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055

Ensemble Learning 395

E

We have discussed only a small fraction of the
possible combiner rules. Numerous other rules
exist, including methods for combining rankings
of classes, and unsupervised methods to combine
clustering results. For details of the wider litera-
ture, see Kuncheva (2004b) or Polikar (2006).

Algorithms for Learning a Set of Models
If we had a committee of people taking decisions,
it is self-evident that we would not want them
all to make the same bad judgments at the same
time. With a committee of learning models, the
same intuition applies: we will have no gain from
combining a set of identical models. We wish the
models to exhibit a certain element of “diversity”
in their group behavior, though still retaining
good performance individually.

We therefore make a distinction between two
types of ensemble learning algorithms, those
which encourage diversity implicitly, and those
which encourage it explicitly. The vast majority
of ensemble methods are implicit, in that they
provide different random subsets of the training
data to each learner. Diversity is encouraged
“implicitly” by random sampling of the data
space: at no point is a measurement taken
to ensure diversity will emerge. The random
differences between the datasets might be in the
selection of examples (the �Bagging algorithm),
the selection of features (�Random Subspace
Method, Ho (1998) or �Rotation Forests,
Rodriguez et al. 2006), or combinations of the
two (the Random Forests algorithm, Breiman
2001). Many other “randomization” schemes are
of course possible.

An alternative is to explicitly encourage
diversity, constructing each ensemble member
with some measurement ensuring that it is
substantially different from the other members.
�Boosting algorithms achieve this by altering
the distribution of training examples for each
learner such that it is encouraged to make more
accurate predictions where previous predictors
have made errors. The DECORATE algorithm
(Melville and Mooney 2005) explicitly alters the
distribution of class labels, such that successive
models are forced to learn different answers to the
same problem. �Negative correlation learning

(see Brown 2004; Brown et al. 2005), includes
a penalty term when learning each ensemble
member, explicitly managing the accuracy-
diversity trade-off.

In general, ensemble methods constitute a
large class of algorithms – some based on
heuristics, and some on sound learning-theoretic
principles. The three algorithms that have
received the most attention in the literature are
reviewed here. It should be noted that we present
only the most basic form of each; numerous
modifications have been proposed for a variety
of learning scenarios. As further study the reader
is referred to the many comprehensive surveys of
the field (Brown et al. 2005; Kuncheva 2004b;
Polikar 2006).

Bagging
In the Bagging algorithm (Breiman 1996) each
member of the ensemble is constructed from
a different training dataset, and the predictions
combined either by uniform averaging or vot-
ing over class labels. Each dataset is generated
by sampling from the total N data examples,
choosing N items uniformly at random with re-
placement. Each sample is known as a bootstrap;
the name Bagging is an acronym derived from
Bootstrap AGGregatING. Since a bootstrap sam-
ples N items uniformly at random with replace-
ment, the probability of any individual data item
not being selected is p D .1�1=N /N . Therefore
with large N , a single bootstrap is expected to
contain approximately 63. 2 % of the original set,
while 36. 8 % of the originals are not selected.

Like many ensemble methods, Bagging works
best with unstable models, that is those that
produce differing generalization behavior with
small changes to the training data. These are
also known as high variance models, examples of
which are � decision trees and � neural networks.
Bagging therefore tends not to work well with
very simple models. In effect, Bagging samples
randomly from the space of possible models to
make up the ensemble – with very simple mod-
els the sampling produces almost identical (low
diversity) predictions.

Despite its apparent capability for variance re-
duction, situations have been demonstrated where

http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_736
http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_956
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586

396 Ensemble Learning

Algorithm 1 Bagging
Input: Required ensemble size T
Input: Training set S D f.x1; y1/; .x2; y2/; : : :

.xN ; yN /g
for t D 1 to T do

Build a dataset St , by sampling N items, randomly
with replacement from S .

Train a model ht using St , and add it to the ensemble
end for
For a new testing point (x0; y0),
If model outputs are continuous, combine them by

voting.

Bagging can converge without affecting variance
(see Brown et al. 2005). Several other explana-
tions have been proposed for Bagging’s success,
including links to Bayesian model averaging.
In summary, it seems that several years from
its introduction, despite its apparent simplicity,
Bagging is still not fully understood.

Adaboost

Adaboost (Freund and Schapire 1996) is the most
well known of the Boosting family of algorithms
(Schapire 2003). The algorithm trains models
sequentially, with a new model trained at each
round. At the end of each round, mis-classified
examples are identified and have their emphasis
increased in a new training set which is then
fed back into the start of the next round, and a
new model is trained. The idea is that subsequent
models should be able to compensate for errors
made by earlier models.

Adaboost occupies somewhat of a special
place in the history of ensemble methods. Though
the procedure seems heuristic, the algorithm
is in fact grounded in a rich learning-theoretic
body of literature. (Schapire 1990) addressed a
question posed by Kearns and Valiant (1988) on
the nature of two complexity classes of learning
problems. The two classes are strongly learnable
and weakly learnable problems. Schapire showed
that these classes were equivalent; this had the
corollary that a weak model, performing only
slightly better than random guessing, could be
“boosted” into an arbitrarily accurate strong

Algorithm 2 Adaboost
Input: Required ensemble size T
Input: Training set S D f.x1; y1/, .x2; y2/; : : : ;

.xN ; yN /g, where yj 2 f�1; C1g
Define a uniform distribution D1.i/ over elements of

S .
for t D 1 to T do

Train a model ht using distribution Dt .
Calculate et D PDt

.ht .x/ ¤ y/
If �t � 0:5 break

Set ˛t D 1
2 ln

�
1��t

�t

�

Update DtC1.i/ D
Dt .i/ exp.�˛t yi ht .xi //

Zt

where Zt is a normalization factor so that DtC1 is a
valid distribution.

end for
For a new testing point .x0; y0/ ,
H.x0/ D sign.ΣT

tD1˛t ht .x0//

model. The original Boosting algorithm was
a proof by construction of this equivalence,
though had a number of impractical assumptions
built-in. The Adaboost algorithm (Freund and
Schapire 1996) was the first practical Boosting
method. The authoritative historical account of
the development can be found in Schapire (1999),
including discussion of numerous variants and
interpretations of the algorithm. The procedure
is shown in Algorithm 2. Some similarities with
Bagging are evident; a key differences is that at
each round t , Bagging has a uniform distribution
Dt , while Adaboost adapts a nonuniform
distribution.

The ensemble is constructed by iteratively
adding models. Each time a model is learnt, it is
checked to ensure it has at least "t < 0:5, that is,
it has performance better than random guessing
on the data it was supplied with. If it does not,
either an alternative model is constructed, or the
loop is terminated.

After each round, the distribution Dt is up-
dated to emphasize incorrectly classified exam-
ples. The update causes half the distribution mass
of DtC1 to be over the examples incorrectly
classified by the previous model. More precisely,P

ht .x1/¤yi
DtC1.i/ D 0:5. Thus, if ht has an

error rate of 10 %, then examples from that small
10 % will be allocated 50 % of the next model’s
training “effort,” while the remaining examples

Ensemble Learning 397

E

(those correctly classified) are underemphasized.
An equivalent (and simpler) writing of the dis-
tribution update scheme is to multiply Dt .i/ by
1=2.1 � "t / if ht .xi / is correct, and by 1=2"t

otherwise.
The updates cause the models to sequentially

minimize an exponential bound on the error rate.
The training error rate on a data sample S drawn
from the true distribution D obeys the bound,

Px;y�S .yH.x/ < 0/ �

TY

tD1

2
p

"t .1 � "t /: (4)

This upper bound on the training error (though
not the actual training error) is guaranteed to
decrease monotonically with T , given "t < 0:5.

In an attempt to further explain the perfor-
mance of Boosting algorithms, Schapire also de-
veloped bounds on the generalization error of
voting systems, in terms of the voting margin,
the definition of which was given in (10). Note
that, this is not the same as the geometric margin,
optimized by � support vector machines. The dif-
ference is that the voting margin is defined using
the one-norm jjwjj1 in the denominator, while
the geometric margin uses the two-norm jjwjj2.
While this is a subtle difference, it is an important
one, forming links between SVMs and Boosting
algorithms – see Rätsch et al. (2002) for details.
The following bound holds with probability 1�ı,

P x; y � D.H.x/ ¤ y/

� Px;y�S.yH.x/ < �/ C QO

 r
d

N�2
� lnı

!
;

(5)

where the QO notation hides constants and log-
arithmic terms, and d is the �VC-dimension
of the model used. Roughly, this states that the
generalization error is less than or equal to the
training error plus a term dependent on the voting
margin. The larger the minimum margin in the
training data, the lower the testing error. The
original bounds have since been significantly im-
proved, see Koltchinskii and Panchenko (2005)
as a comprehensive recent work. We note that this

bound holds generally for any voting system, and
is not specific to the Boosting framework.

The margin-based theory is only one expla-
nation of the success of Boosting algorithms.
Mease and Wyner (2008) present a discussion
of several questions on why and how Adaboost
succeeds. The subsequent 70 pages of discussion
demonstrate that the story is by no means simple.
The conclusion is, while no single theory can
fully explain Boosting, each provides a different
part of the still unfolding story.

Mixtures of Experts
The mixtures of experts architecture is a widely
investigated paradigm for creating a combination
of models (Jacobs et al. 1991). The principle
underlying the architecture is that certain models
will be able to “specialize” to particular parts
of the input space. It is commonly implemented
with a neural network as the base model, or some
other model capable of estimating probabilities.
A Gating network receives the same inputs as
the component models, but its outputs are used
as the weights for a linear combiner. The Gating
network is responsible for learning the appro-
priate weighted combination of the specialized
models (“experts”) for any given input. Thus, the
input space is “carved-up” between the experts,
increasing and decreasing their weights for par-
ticular examples. In effect, a mixture of experts
explicitly learns how to create expert ensemble
members in different portions of the input space,
and select the most appropriate subset for a new
testing example (Fig. 1).

The architecture has received wide at-
tention, and has a strong following in the
probabilistic modeling community, where it
may go under the pseudonym of a “mixture
model.” A common training method is the
� expectation-maximization algorithm.

Theoretical Perspectives: Ensemble
Diversity

We have seen that all ensemble algorithms in
some way attempt to encourage “diversity.” In

http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_344

398 Ensemble Learning

Ensemble Learning,
Fig. 1 The mixtures of
experts architecture

Expert 1

Expert 2

Expert 3

Input
Output

Gating net

this section, we take a more formalized perspec-
tive, to understand what is meant by this term.

What Is Diversity?
The optimal “diversity” is fundamentally a credit
assignment problem. If the committee as a whole
makes an erroneous prediction, how much of this
error should be attributed to each member? More
precisely, how much of the committee prediction
is due to the accuracies of the individual models,
and how much is due to their interactions when
they were combined? We would ideally like to
reexpress the ensemble error as two distinct com-
ponents: a term for the accuracies of the individ-
ual models, plus a term for their interactions, i.e.,
their diversity.

It turns out that this so-called accuracy-
diversity breakdown of the ensemble error is not
always possible, depending on the type of error
function, and choice of combiner rule. It should
be noted that when “diversity” is referred to in
the literature, it is most often meant to indicate
classification with a majority vote combiner,
but for completeness we address the general
case here. In the following sections, the existing
work to understand diversity in three distinct
cases is described: for regression tasks (a linear

combiner), and classification tasks, with either a
linear combiner or a voting combiner.

Regression Error with a Linear
Combination Rule
In a regression problem, it is common to use the
squared error criterion. The accuracy-diversity
breakdown for this case (using a linear combiner)
is called the ambiguity decomposition (Krogh and
Vedelsby 1995). The result states that the squared
error of the linearly combined ensemble, Nf .x/,
can be broken into a sum of two components:

. Nf .x/ � d/2 D
1

T

TX

tD1

.ft .x/ � d/2

�
1

T

TX

tD1

.ft .x/ � Nf .x//2: (6)

The first term on the right hand side is the average
squared error of the individual models, while the
second term quantifies the interactions between
the predictions. Note that this second term, the
“ambiguity,” is always positive. This guarantees
that, for an arbitrary data point, the ensemble
squared error is always less than or equal to the
average of the individual squared errors.

Ensemble Learning 399

E

The intuition here can be understood as fol-
lows. Imagine five friends, playing “guess the
weight of the cake” (an old English fairground
game): if a player’s guess is close enough to the
true weight, they win the cake. Just as they are
about to play, the fairground manager states that
they can only submit one guess. The dilemma
seems to be in whose guess they should submit –
however, the ambiguity decomposition shows us
that taking the average of their guesses, and sub-
mitting that, will always be closer (on average)
than choosing a person at random and submitting
their guess. Note that this is qualified with “on
average” – it may well be that one of the pre-
dictions will in fact be closer than the average
prediction, but we presume that we have no way
of identifying which prediction to choose, other
than random. It can be seen that greater diversity
in the predictions (i.e., a larger ambiguity term)
results in a larger gain over the average individual
performance. However, it is also clear that there
is a trade-off to be had: too much diversity and
the average error is extremely large.

The idea of a trade-off between these two
terms is reminiscent of the � bias-variance de-
composition (Geman et al. 1992); in fact, there
is a deep connection between these results. Tak-
ing the expected value of (6) over all possi-
ble training sets gives us the ensemble analogy
to the bias-variance decomposition, called the
� bias-variance-covariance decomposition (Ueda
and Nakano 1996). This shows that the expected
squared error of an ensemble Nf .x/ from a target
d is:

EDf. Nf .x/ � d/2g D bias
2

C
1

T
var C

�
1 �

1

T

�
covar; (7)

where the expectation is with respect to all
possible training datasets D. While the bias and
variance terms are constrained to be positive,
the covariance between models can become
negative – thus the definition of diversity
emerges as an extra degree of freedom in the
bias-variance dilemma. This extra degree of
freedom allows an ensemble to approximate

functions that are difficult (if not impossible)
to find with a single model. See Brown et al.
(2005) for extensive further discussion of this
concept.

Classification Error with a Linear
Combination Rule
In a classification problem, our error criterion
is the misclassification rate, also known as the
zero-one loss function. For this type of loss, it is
well known there is no unique definition of bias-
variance; instead there exist multiple decompo-
sitions each with advantages and disadvantages
(see Kuncheva 2004b, p. 224). This gives us a
clue as to the situation with an ensemble – there
is also no simple accuracy-diversity separation of
the ensemble classification error. Classification
problems can of course be addressed either by
a model producing class probabilities (where we
linearly combine), or directly producing class la-
bels (where we use majority vote). Partial theory
has been developed for each case.

For linear combiners, there exist theoretical
results that relate the correlation of the probabil-
ity estimates to the ensemble classification error.
Tumer and Ghosh (1996) showed that the re-
ducible classification error (i.e., above the Bayes
rate) of a simple averaging ensemble, eave, can be
written as

eave D eadd

�
1 C ı.T � 1/

T

�
; (8)

where eadd is the classification error of an indi-
vidual model. The ı is a correlation coefficient
between the model outputs. When the individual
models are identical, the correlation is ı D 1.
In this case, the ensemble error is equal to the
individual error, eave D eadd. When the models
are statistically independent, ı D 0, and the
ensemble error is a fraction 1 =T of the individual
error, eave D 1=T � eadd. When ı is negative,
the models are negatively correlated, and the en-
semble error is lower than the average individual
error. However, (8) is derived under quite strict
assumptions, holding only for a local area around
the decision boundary, and ultimately resting on

http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_932

400 Ensemble Learning

the bias-variance-covariance theory from regres-
sion problems. Further details, including recent
work to lift some of the assumptions (Kuncheva
2004b).

Classification Error with a Voting
Combination Rule
The case of a classification problem with a major-
ity vote combiner is the most challenging of all.
In general, there is no known breakdown of the
ensemble classification error into neat accuracy
and diversity components. The simplest intuition
to show that correlation between models does
affect performance is given by the Binomial the-
orem. If we have T models each with identical
error probability p D P.ht .x/ ¤ y/, assuming
they make statistically independent errors, the
following error probability of the majority voting
committee holds,

P.H.x/ ¤ y/ D

TX

k>T=2

�
T

k

�
pk.1 � p/T �k :

(9)

For example, in the case of T D 21 ensemble
members, each with error p D 0:3, the majority
voting error will be 0. 026, an order of magnitude
improvement over the individual error. However,
this only holds for statistically independent
errors. The correlated case is an open problem.
Instead, various authors have proposed their
own heuristic definitions of diversity in majority
voting ensembles. Kuncheva (2004b) conducted
extensive studies of several suggested diversity
measures; the conclusion was that “no measure
consistently correlates well with the majority
vote accuracy.” In spite of this, some were found
useful as an approximate guide to characterize
performance of ensemble methods, though
should not be relied upon as the “final word”
on diversity. Kuncheva’s recommendation in
this case is the Q-statistic (Kuncheva 2004b,
p. 299), due to its simplicity and ease of
computation.

Breiman (2001) took an alternative approach,
deriving not a separation of error components,
but a bound on the generalization error of a voting

ensemble, expressed in terms of the correlations
of the models. To understand this, we must in-
troduce concept of voting margin. The voting
margin for a two-class problem, with y 2 f �

1; C1g, is defined,

m D
yt

PT
tD1 wt ht .x/

PT
tD1 jwt j

D yH.x/: (10)

If the margin is positive, the example is correctly
classified, if it is negative, the example is in-
correctly classified. The expected margin s D

EDfmg measures the extent to which the average
number of votes for the correct class exceeds the
average vote for any other class, with respect
to the data distribution D. The larger the voting
margin, the more confidence in the classification.
Breiman’s bound shows,

PD.H.x/ ¤ y/DPD.yH.x/ < 0/ ¤
N�.1 � s2/

s2
:

(11)

Here N� is the average pairwise correlation
between the errors of the individual models.
Thus, the generalization error is minimized by
a small N�, and an s as close to 1 as possible.
The balance between a high accuracy (large s/

and a high diversity (low N�) constitutes the
tradeoff in this case, although the bound is quite
loose.

Summary
In summary, the definition of diversity depends
on the problem. In a regression problem, the
optimal diversity is the trade-off between the
bias, variance and covariance components of the
squared error. In a classification problem, with
a linear combiner, there exists partial theory to
relate the classifier correlations to the ensemble
error rate. In a classification problem with a vot-
ing combiner, there is no single theoretical frame-
work or definition of diversity. However, the
lack of an agreed definition of diversity has not
discouraged researchers from trying to achieve
it, nor has it stalled the progress of effective
algorithms in the field.

Ensemble Learning 401

E

Conclusions and Current Directions
in the Field

Ensemble methods constitute some of the most
robust and accurate learning algorithms of the
past decade (Caruana and Niculescu-Mizil 2006).
A multitude of heuristics have been developed for
randomizing the ensemble parameters, to gener-
ate diverse models. It is arguable that this line of
investigation is nowadays rather oversubscribed,
and the more interesting research is now in meth-
ods for nonstandard data. �Cluster ensembles
(Strehl and Ghosh 2003) are ensemble techniques
applied to unsupervised learning problems. Prob-
lems with nonstationary data, also known as
concept drift, are receiving much recent attention
(Kuncheva 2004a). The most up to date innova-
tions are to be found in the biennial International
Workshop on Multiple Classifier Systems (Roli
et al. 2000).

Recommended Reading

Kuncheva (2004b) is the standard reference in the
field, which includes references to many further
recommended readings. In addition, Brown et al.
(2005) and Polikar (2006) provide extensive liter-
ature surveys. Roli et al. (2000) is an international
workshop series dedicated to ensemble learning.

Breiman L (1996) Bagging predictors. Mach Learn
24(2):123–140

Breiman L (2001) Random forests. Mach Learn
45(1):5–32

Brown G (2004) Diversity in neural network ensem-
bles. PhD thesis, University of Birmingham

Brown G, Wyatt JL, Harris R, Yao X (2005) Diversity
creation methods: a survey and categorisation. J Inf
Fusion 6(1):5–20

Caruana R, Niculescu-Mizil A (2006) An empirical
comparison of supervised learning algorithms. In:
Proceedings of the 23rd international conference on
machine learning. ACM, New York, pp 161–168

Freund Y, Schapire R (1996) Experiments with a new
boosting algorithm. In: Proceedings of the thir-
teenth international conference on machine learn-
ing (ICML’96). Morgan Kauffman Publishers, San
Francisco, pp 148–156

Geman S, Bienenstock E, Doursat R (1992) Neural
networks and the bias/variance dilemma. Neural
Comput 4(1):1–58

Ho TK (1998) The random subspace method for con-
structing decision forests. IEEE Trans Pattern Anal
Mach Intell 20(8):832–844

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991)
Adaptive mixtures of local experts. Neural Comput
3(1):79–87

Kearns M, Valiant LG (1988) Learning Boolean for-
mulae or finite automata is as hard as factor-
ing. Technical report TR-14-88, Harvard University
Aiken Computation Laboratory

Koltchinskii V, Panchenko D (2005) Complexities of
convex combinations and bounding the generaliza-
tion error in classification. Ann Stat 33(4):1455

Krogh A, Vedelsby J (1995) Neural network ensem-
bles, crossvalidation and active learning. In: Ad-
vances in neural information processing systems.
MIT Press, Cambridge, pp 231–238

Kuncheva LI (2004a) Classifier ensembles for chang-
ing environments. In: International workshop on
multiple classifier systems. Lecture notes in com-
puter science, vol 3007. Springer, Berlin

Kuncheva LI (2004b) Combining pattern classifiers:
methods and algorithms. Wiley, New York

Laplace PS (1818) Deuxieme supplement a la theorie
analytique des probabilites. Gauthier-Villars, Paris

Mease D, Wyner A (2008) Evidence contrary to the
statistical view of Boosting. J Mach Learn Res
9:131–156

Melville P, Mooney RJ (2005) Creating diversity in
ensembles using artificial data. Inf Fusion 6(1):99–
111

Polikar R (2006) Ensemble based systems in decision
making. IEEE Circ Syst Mag 6(3):21–45

Rätsch G, Mika S, Schölkopf B, Müller KR (2002)
Constructing Boosting algorithms from SVMs: an
application to one-class classification. IEEE Trans
Pattern Anal Mach Intell 24(9):1184–1199

Rodriguez J, Kuncheva L, Alonso C (2006) Rotation
forest: a new classifier ensemble method. IEEE
Trans Pattern Anal Mach Intell 28(10):1619–1630

Roli F, Kittler J, Windridge D, Oza N, Polikar R,
Haindl M et al (eds) Proceedings of the international
workshop on multiple classifier systems 2000–2009.
Lecture notes in computer science. Springer, Berlin.
Available at: http://www.informatik.uni-trier.de/ley/
db/conf/mcs/index.html

Schapire RE (1990) The strength of weak learnability.
Mach Learn 5:197–227

Schapire RE (1999) A brief introduction to boost-
ing. In: Proceedings of the 16th international joint
conference on artificial intelligence. Morgan Kauf-
mann, San Francisco, pp 1401–1406

Schapire RE (2003) The boosting approach to machine
learning: an overview. In: Denison DD, Hansen MH,
Holmes C, Mallick B, Yu B (eds) Nonlinear esti-
mation & classification Lecture notes in statistics.
Springer, Berlin, pp 149–172

Strehl A, Ghosh J (2003) Cluster ensembles – a
knowledge reuse framework for combining multiple
partitions. J Mach Learn Res 3:583–617

http://dx.doi.org/10.1007/978-1-4899-7687-1_122
http://www.informatik.uni-trier.de/ley/db/conf/mcs/index.html
http://www.informatik.uni-trier.de/ley/db/conf/mcs/index.html

402 Entailment

Tumer K, Ghosh J (1996) Error correlation and er-
ror reduction in ensemble classifiers. Connect Sci
8(3–4):385–403

Ueda N, Nakano R (1996) Generalization error of
ensemble estimators. In: Proceedings of IEEE in-
ternational conference on neural networks, vol 1,
pp 90–95. ISBN:0-7803-3210-5

Entailment

Synonyms

Implication; Logical consequence

Definition

The term entailment is used in the context of
logical reasoning. Formally, a logical formula T

entails a formula c if and only if all models of T

are also a model of c. This is usually denoted as
T � c and means that c is a logical consequence
of T or that c is implied by T .

Let us elaborate this definition for proposi-
tional clausal logic, where the formulae T could
be the following expression:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

Here, the first clause or rule can be read as flies
if normal and bird, that is, normal birds fly, the
second and third one as stating that blackbirds,
resp. ostriches, are birds. An interpretation is then
an assignment of truth-values to the propositional
variables. For instance, for the above domain

fostrich, birdg

fblackbird, bird, normalg

are interpretations, specified through the set of
propositional variables that are true. This means
that in the first interpretation, the only true propo-
sitions are ostrich and bird. An interpre-
tation specifies a kind of possible world. An
interpretation I is then a model for a clause h :
�b1; : : : bn if and only if fb1; : : : ; bng � I !

h 2 I and it is model for a clausal theory if
and only if it is a model for all clauses in the

theory. Therefore, the first interpretation above
is a model for the theory, but the second one is
not because the interpretation is not a model for
the first clause (as fbird, normalg � I but
flies … I /. Using these notions, it can now be
verified that the clausal theory T above logically
entails the clause

flies :- ostrich, normal.

because all models of the theory are also a model
for this clause.

In machine learning, the notion of entailment
is used as a covers relation in � inductive logic
programming, where hypotheses are clausal the-
ories, instances are clauses, and an example is
covered by the hypothesis when it is entailed by
the hypothesis.

Cross-References

� Inverse Entailment
�Logic of Generality

Recommended Reading

Russell S, Norvig P (1995) Artificial intelligence: a
modern approach, 2nd edn. Prentice Hall, Engle-
wood Cliffs

Entity Resolution

Indrajit Bhattacharya1 and Lise Getoor2

1IBM India Research Laboratory, New Delhi,
India
2University of Maryland, College Park, MD,
USA

Abstract

References to real-world entities are often am-
biguous, more commonly across data sources
but frequently within a single data source
as well. Ambiguities occur due to multiple
reasons, such as incorrect data entry, or mul-
tiple possible representations of the entities.
Given such a collection of ambiguous en-
tity references, the goal of entity resolution

http://dx.doi.org/10.1007/978-1-4899-7687-1_100209
http://dx.doi.org/10.1007/978-1-4899-7687-1_100274
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_415
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Entity Resolution 403

E

is to discover the unique set of underlying
entities, and map each reference to its cor-
responding entity. Resolving such entity am-
biguities is necessary for removing redun-
dancy and also for accurate entity-level anal-
ysis. This is a common problem that comes
up in many different applications and has
been studied in different branches of computer
science. As evidences for entity resolution,
traditional approaches consider pair-wise sim-
ilarity between references, and many sophisti-
cated similarity measures have been proposed
to compare attributes of references. The sim-
plest solution classifies reference pairs with
similarity above a threshold as referring to the
same entity. More sophisticated solutions use a
probabilistic framework for reasoning with the
pair-wise probabilities. Recently proposed re-
lational approaches for entity resolution make
use of relationships between references when
available as additional evidences. Instead of
reasoning independently for each pair of ref-
erences, these approaches reason collectively
over related pair-wise decisions over refer-
ences. One line of work within the relational
family uses supervised or unsupervised prob-
abilistic learning using probabilistic graphi-
cal models, while another uses more scalable
greedy techniques for merging references in
a hyper-graph. Beyond improving entity res-
olution accuracy, such relational approaches
yield additional knowledge in the form of
relationships between the underlying entities.

Synonyms

Co-reference resolution; Deduplication; Dupli-
cate detection; Identity uncertainty; Merge-purge;
Object consolidation; Record linkage; Reference
reconciliation

Definition

A fundamental problem in data cleaning and
integration (see �Data Preparation) is dealing
with uncertain and imprecise references to real-

world entities. The goal of entity resolution is to
take a collection of uncertain entity references (or
references, in short) from a single data source or
multiple data sources, discover the unique set of
underlying entities, and map each reference to its
corresponding entity. This typically involves two
subproblems – identification of references with
different attributes to the same entity and disam-
biguation of references with identical attributes
by assigning them to different entities.

Motivation and Background

Entity resolution is a common problem that
comes up in different guises (and is given
different names) in many computer science
domains. Examples include computer vision,
where we need to figure out when regions in two
different images refer to the same underlying
object (the correspondence problem), natural
language processing when we would like to
determine which noun phrases refer to the same
underlying entity (co-reference resolution), and
databases, where, when merging two databases or
cleaning a database, we would like to determine
when two tuple records are referring to the
same real-world object (deduplication and
data integration). Deduplication is important
for removing redundancy and for accurate
analysis. In information integration, determining
approximate joins is important for consolidating
information from multiple sources; most often
there will not be a unique key that can be used to
join tables across databases.

Such ambiguities in entity references can oc-
cur due to multiple reasons. Often times, data
may have data entry errors, such as typographical
errors. Multiple representations, such as abbrevi-
ations, are also possible. Different databases typ-
ically have different keys – one person database
may use social security numbers, while another
uses name and address.

Traditional entity resolution approaches focus
on matching attributes of different references for
resolving entities. However, many data sources
have explicit or implicit relationships present
among the entity references. These relations

http://dx.doi.org/10.1007/978-1-4899-7687-1_100087
http://dx.doi.org/10.1007/978-1-4899-7687-1_100105
http://dx.doi.org/10.1007/978-1-4899-7687-1_100124
http://dx.doi.org/10.1007/978-1-4899-7687-1_100203
http://dx.doi.org/10.1007/978-1-4899-7687-1_100299
http://dx.doi.org/10.1007/978-1-4899-7687-1_100341
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_100402
http://dx.doi.org/10.1007/978-1-4899-7687-1_62

404 Entity Resolution

are indicative of relationships between the
underlying entities themselves. For example,
person records in census data are linked by family
relationships such as sibling, parent, and spouse.
Researchers collaborate mostly within their
organization, or their research community, as
a result of which references to related researchers
tend to occur closely together. Recent entity
resolution approaches in statistical relational
learning make use of relationships between
references to improve entity resolution accuracy
and additionally to discover relationships
between the underlying entities.

Theory/Solution

As an illustration of the entity resolution prob-
lem, consider the task of resolving the author
references in a database of academic publications
similar to DBLP, CiteSeer, or PubMed. Let us
take as an example the following set of four
papers:

1. W. Wang, C. Chen, and A. Ansari, “A mouse
immunity model”

2. W. Wang and A. Ansari, “A better mouse
immunity model”

3. L. Li, C. Chen, and W. Wang, “Measuring
protein-bound fluoxetin”

4. W. W. Wang and A. Ansari, “Autoimmunity in
biliary cirrhosis”

Now imagine that we would like to find out,
given these four papers, which of these author
names refer to the same author entities. This
process involves determining whether paper 1
and paper 2 are written by the same author named
Wang, or whether they are different authors. We
need to answer similar questions about all such
similar author names in the database.

In this example, it turns out there are six under-
lying author entities, which we will call Wang1
and Wang2, Chen1 and Chen2, Ansari, and Li.
The three references with the name “A. Ansari”
correspond to author Ansari and the reference
with name “L. Li” to author Li. However, the
two references with name “C. Chen” map to two

different authors Chen1 and Chen2. Similarly,
the four references with name “W. Wang” or
“W. W. Wang” map to two different authors.
The “Wang” references from the first, second,
and fourth papers correspond to author Wang1,
while that from the third paper maps to a different
author Wang2. This inference illustrates the twin
problems of identifying “W. Wang” and “W. W.
Wang” as the same author and disambiguating
two references with name “W. Wang” as different
authors. This is shown pictorially in Fig. 1, where
references that correspond to the same authors are
shaded identically. In the entity resolution pro-
cess, all those and only those author references
that are shaded identically should be resolved as
corresponding to the same underlying entity.

Formally, in the entity resolution problem,
we are given a set of references R D

fri g, where each reference r has attributes
r:A1; r:A2; : : : ; r:Ak , such as observed names
and affiliations for author references, as in
our example above. The references correspond
to some set of unknown entities E D fei g.
We introduce the notation r:E to refer to the
entity to which reference r corresponds. The
goal is to recover the hidden set of entities
E D fei g and the entity labels r:E for individual
references given the observed attributes of the
references. In addition to the attributes, in some
data sources we have information in the form
of relationships between the references, such as
coauthor relationships between author references
in publication databases. We can capture the
relationships with a set of hyper-edges H D fhi g.
Each hyper-edge h may have attributes as well to
capture the attributes of relationships, which we
denote h:A1; h:A2; : : : ; h:Al , and we use h:R to
denote the set of references that it connects. In
our example, each rectangle denotes one hyper-
edge corresponding to one paper in the database.
The first hyper-edge corresponding to P aper1
has as its attribute the title “A mouse immunity
model” and connects the three references having
name attributes “W. Wang,” “C. Chen,” and “A.
Ansari.” A reference r can belong to zero or more
hyper-edges, and we use r:H to denote the set of
hyper-edges in which r participates. For example,
if we have paper, author, and venue references,

Entity Resolution 405

E

W Wang A Ansari W Wang A Ansari

A AnsariW W Wang

A Mouse Immunity Model A Better Mouse Immunity Model

Autoimmunity in Biliary CirrhosisMeasuring Protien−bound Fluoxetin

C Chen

C Chen

Paper 2

Paper 4Paper 3

Paper 1

L LiL Li W WangW WangL Li W WangW Wang

Entity Resolution, Fig. 1 The references in different papers in the bibliographic example. References to the same
entity are identically shaded

then a paper reference may be connected to
multiple author references and also to a venue
reference. In general, the underlying references
can refer to entities of different types, as in a
publication database or in newspaper articles,
which contain references to people, places,
organizations, etc. When the type information
is known for each reference, resolution decisions
are restricted within references of the same type.
Otherwise, the types may need to be discovered
as well as part of the entity resolution process.

Traditional entity resolution approaches pose
entity resolution as a pairwise decision problem
over references based on their attribute similarity.
It can also be posed as a � graph clustering
problem, where references are clustered together
based on their attribute similarities and each clus-
ter is taken to represent one underlying entity.
Entity resolution approaches differ in how the
similarities between references are defined and
computed and how the resolution decisions are
made based on these similarities. Traditionally,
each pairwise decision is made independently of
the others. For example, the decision to resolve
the two Wang references from papers 1 and 3
would be made independently of the decision to
resolve the two Chen references from the same
papers.

The first improvement is to account for the
similarity of the coauthor names when such re-
lationships are available. However, this still does
not consider the “entities” of the related ref-

erences. For the two “Wang” references in the
earlier example, the two “C. Chen” coauthors
match regardless of whether they refer to Chen1
or Chen2. The correct evidence to use here is that
the “Chens” are not co-referent. In such a setting,
in order to resolve the “W. Wang” references, it is
necessary to resolve the “C Chen” references as
well and not just consider their name similarity.
In the collective relational entity resolution ap-
proach, resolutions are not made independently,
but instead one resolution decision affects other
resolutions via hyper-edges.

Below, we discuss the different entity resolu-
tion approaches in greater detail.

Attribute-Based Entity Resolution

As discussed earlier, exact matching of attributes
does not suffice for entity resolution. Several
sophisticated similarity measures have been de-
veloped for textual strings (Cohen et al. 2003;
Chaudhuri et al. 2003) that may be used for un-
supervised entity resolution. Finally, a weighted
combination of the similarities over the different
attributes for each reference is used to compute
the attribute similarity between two references.
An alternative is to use adaptive supervised algo-
rithms that learn string � similarity metrics from
labeled data (Bilenko and Mooney 2003). In the
traditional entity resolution approach (Fellegi and
Sunter 1969; Cohen et al. 2003), similarity is

http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_766

406 Entity Resolution

computed for each pair of references ri ; rj based
on their attributes, and only those pairs that have
similarity above some threshold are considered
co-referent.

Efficiency

Even the attribute-only approach to entity reso-
lution is known to be a hard problem compu-
tationally, since it is infeasible to compare all
pairs of references using expensive similarity
measures. Therefore, efficiency issues have long
been a focus for data cleaning, the goal being the
development of inexpensive algorithms for find-
ing approximate solutions. The key mechanisms
for doing this involve computing the matches
efficiently and employing techniques commonly
called “blocking” to quickly find potential dupli-
cates (Hernández and Stolfo 1995; Monge and
Elkan 1997), using cheap and index-based sim-
ilarity computations to rule out non-duplicate
pairs. Sampling approaches can quickly compute
cosine similarity between tuples for fast text-joins
within an SQL framework (Gravano et al. 2003).
Error-tolerant indexes can also be used in data
warehousing applications to efficiently look up a
small but “probabilistically safe” set of reference
tuples as candidates for matching for an incoming
tuple (Chaudhuri et al. 2003). Generic entity res-
olution frameworks also exist for resolving and
merging duplicates as a database operator and
minimize the number of record-level and feature-
level operations (Menestrina et al. 2006).

Probabilistic Models for Pairwise
Resolution

The groundwork for posing entity resolution as
a probabilistic � classification problem was done
by Fellegi and Sunter (1969), who studied the
problem of labeling pairs of records from two
different files to be merged as “match” (M) or
“non-match” (U) on the basis of agreement �

among their different fields or attributes. Given
an agreement pattern � , the conditional probabil-
ities P.� jM/ and P.� jU / of � given matches
and non-matches are computed and compared

to decide whether the two references are dupli-
cates or not. Fellegi and Sunter showed that the
probabilities P.� jM/ and P.� jU / of field agree-
ments can be estimated without requiring labeled
training data if the different field agreements are
assumed to be independent. Winkler (2002) used
the EM algorithm to estimate the probabilities
without making the independence assumption.

Probabilistic Models for Relational
Entity Resolution

Probabilistic models that take into account in-
teraction between different entity resolution de-
cisions through hyper-edges have been proposed
for named-entity recognition in natural language
processing and for citation matching (McCallum
and Wellner 2004; Singla and Domingos 2004).
Such � relational learning approaches introduce
a decision variable yij for every pair of references
ri and rj , but instead of inferring the yij’s inde-
pendently, use conditional random fields for joint
reasoning. For example, the decision variables for
the “Wang” references and the “Chen” references
in papers 1 and 3 would be connected to each
other; features and functions would be defined
to ensure that they are more likely to take up
identical values.

Such relational models are supervised and
require labeled data to train the parameters. One
of the difficulties in using a supervised method
for resolution is constructing a good training
set that includes a representative collection of
positive and negative examples. Accordingly, un-
supervised relational models have also been de-
veloped (Li et al. 2005; Pasula et al. 2003; Bhat-
tacharya and Getoor 2006). Instead of introduc-
ing pairwise decision variables, this category of
approaches uses generative models for references
using latent entity labels. Note that, here, the
number of entities is unknown and needs to be
discovered automatically from the available refer-
ences. Relationships between the references, such
as co-mentions or co-occurrences, are captured
using joint distributions over the entity labels.

All of these probabilistic models have been
shown to perform well in practice and have the

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_719

Entity Resolution 407

E

advantage that the match/non-match decisions
do not depend on any user-specified similar-
ity measures and thresholds but are learned di-
rectly from data. However, this benefit comes
at a price. Inference in relational probabilistic
models is an expensive process. Exact inference
is mostly intractable and approximate strategies
such as loopy belief propagation and Monte Carlo
sampling strategies are employed. Even these
approximate strategies take several iterations to
converge, and extending such approaches to large
datasets is still an open problem.

Other Approaches for Relational
Entity Resolution

Alternative approaches (Bhattacharya and Getoor
2007; Kalashnikov et al. 2005; Dong et al. 2005)
consider relational structure of the entities for
data integration but avoid the complexity of
probabilistic inference. By avoiding a formal
probabilistic model, these approaches can handle
complex and longer-range relationships between
different entity references, and the resolution
process is significantly faster as well. Such
approaches also create pairwise decision nodes
between references and create a dependency
graph over them to capture the relationships in
the data. But instead of performing probabilistic
inference, they keep updating the value asso-
ciated with each decision node by propagating
relational evidence from one decision node to
another over the dependency graph.

When the relationships between the references
and the entities can be captured in a single graph,
the matching entity for a specific reference may
be identified using path-based similarities be-
tween their corresponding nodes in the graph.
The connection strength associated with each
edge in the graph can be determined in the un-
supervised fashion given all the references, their
candidate entity choices, and the relationships
between them, by solving a set of nonlinear equa-
tions (Kalashnikov et al. 2005). This approach is
useful for incremental data cleaning when the set
of entities currently in the database is known and

an incoming reference needs to be matched with
one of these entities.

An alternative approach to performing collec-
tive entity resolution using relational evidence is
to perform collective relational clustering (Bhat-
tacharya and Getoor 2007). The goal here is to
cluster the references into entities by taking into
account the relationships between the references.
This is achieved by defining a similarity measure
between two clusters of references that take into
account not only the attribute similarity of the
references in the two clusters but also the neigh-
boring clusters of each cluster. The neighboring
clusters of any reference cluster c are defined
by considering the references r 0 connected to
references r belonging to c via hyper-edges and
the clusters to which these related references be-
long. If the r:C represents the current cluster for
reference c, then N.c/ D

S
r 0:C , where r:H D

r 0:H and r:C D c. For instance, the neighbor-
ing clusters for a W ang cluster in our example
containing the W ang references from papers 1,
2, and 4 are the Ansari cluster and the C hen

clusters containing the other references from the
same papers. The relational similarity between
two clusters is then computed by comparing their
neighborhoods. This relational similarity comple-
ments attribute similarity in the combined simi-
larity between two clusters. Intuitively, two enti-
ties are likely to be the same if they are similar
in attributes and are additionally connected to the
same other entities. Collective relational cluster-
ing can be efficiently implemented by maintain-
ing a priority queue for merge-able cluster pairs
and updating the “neighboring” queue elements
with every merge operation.

Applications

Data cleaning and reference disambiguation ap-
proaches have been applied and evaluated in
a number of domains. The earliest applications
were on medical data. Census data is an area
where detection of duplicates poses a significant
challenge and Winkler (2002) has successfully
applied his research and other baselines to this
domain. A great deal of work has been done

408 EP

making use of bibliographic data (Pasula et al.
2003; Singla and Domingos 2004; Bhattacharya
and Getoor 2007). Almost without exception, the
focus has been on the matching of citations. Work
in co-reference resolution and disambiguating
entity mentions in natural language processing
(McCallum and Wellner 2004) has been applied
to text corpora and newswire articles like the
TREC corpus. There have also been significant
applications in information integration in data
warehouses (Chaudhuri et al. 2003).

Cross-References

�Classification
�Data Preparation
�Graph Clustering
�Record Linkage
� Similarity Measures
� Statistical Relational Learning

Recommended Reading

Bhattacharya I, Getoor L (2006) A latent dirich-
let model for unsupervised entity resolution. In:
The SIAM international conference on data mining
(SIAM-SDM), Bethesda

Bhattacharya I, Getoor L (2007) Collective entity
resolution in relational data. ACM Trans Knowl
Discov Data 1(1):5

Bilenko M, Mooney RJ (2003) Adaptive duplicate
detection using learnable string similarity measures.
In: Proceedings of the ninth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining (KDD-2003), Washington, DC

Chaudhuri S, Ganjam K, Ganti V, Motwani R (2003)
Robust and efficient fuzzy match for online data
cleaning. In: Proceedings of the 2003 ACM SIG-
MOD international conference on management of
data, San Diego, pp 313–324

Cohen WW, Ravikumar P, Fienberg SE (2003) A
comparison of string distance metrics for name-
matching tasks. In: Proceedings of the IJCAI-2003
workshop on information integration on the web,
Acapulco, pp 73–78

Dong X, Halevy A, Madhavan J (2005) Reference
reconciliation in complex information spaces. In:
The ACM international conference on management
of data (SIGMOD), Baltimore

Fellegi IP, Sunter AB (1969) A theory for record
linkage. J Am Stat Assoc 64:1183–1210

Gravano L, Ipeirotis P, Koudas N, Srivastava D (2003)
Text joins for data cleansing and integration in an

rdbms. In: 19th IEEE international conference on
data engineering, Bangalore

Hernández MA, Stolfo SJ (1995) The merge/purge
problem for large databases. In: Proceedings of
the 1995 ACM SIGMOD international conference
on management of data (SIGMOD-95), San Jose,
pp 127–138

Kalashnikov DV, Mehrotra S, Chen Z (2005) Ex-
ploiting relationships for domain-independent data
cleaning. In: SIAM international conference on data
mining (SIAM SDM), Newport Beach, 21–23 Apr
2005

Li X, Morie P, Roth D (2005) Semantic integration in
text: from ambiguous names to identifiable entities.
AI Mag Spec Issue Semant Integr 26(1):45–58

McCallum A, Wellner B (2004) Conditional models
of identity uncertainty with application to noun
coreference. In: NIPS, Vancouver

Menestrina D, Benjelloun O, Garcia-Molina H (2006)
Generic entity resolution with data confidences. In:
First Int’l VLDB workshop on clean databases,
Seoul

Monge AE, Elkan CP (1997) An efficient domain-
independent algorithm for detecting approximately
duplicate database records. In: Proceedings of the
SIGMOD 1997 workshop on research issues on data
mining and knowledge discovery, Tuscon, pp 23–29

Pasula H, Marthi B, Milch B, Russell S, Shpitser I
(2003) Identity uncertainty and citation matching.
In: Advances in neural information processing sys-
tems 15, Vancouver. MIT, Cambridge

Singla P, Domingos P (2004) Multi-relational record
linkage. In: Proceedings of 3rd workshop on multi-
relational data mining at ACM SI GKDD, Seattle

Winkler WE (2002) Methods for record linkage and
Bayesian networks. Technical report, Statistical Re-
search Division, U.S. Census Bureau, Washington,
DC

EP

�Expectation Propagation

Epsilon Cover

Thomas Zeugmann
Hokkaido University, Sapparo, Japan

Motivation and Background

Epsilon covers were introduced in calculus. So
we provide here a very general definition.

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_95

Epsilon Nets 409

E

Definition

Let .M; %/ be a metric space, let S � M , and
let " > 0. A set E � M is an "-cover for S ,
if for every s 2 S there is an e 2 E such that
%.s; e/ � ".

An "-cover E is said to be proper, if E � S .

Application

The notion of an "-cover is frequently used in
kernel-based learning methods.

For further information, we refer the reader to
Herbrich (2002).

Cross-References

� Statistical Machine Translation
� Support Vector Machines

Recommended Reading

Herbrich R (2002) Learning kernel classifiers: theory
and algorithms. MIT, Cambridge

Epsilon Nets

Thomas Zeugmann
Hokkaido University, Sapparo, Japan

Motivation and Background

Epsilon nets were introduced by Haussler and
Welz (1987), and their usefulness for compu-
tational learning theory has been discovered
by Blumer et al. (1989).

Let X ¤ ; be any learning domain and
let C � }.X/ be any nonempty concept class.
For the sake of simplicity, we also use C here
as hypothesis space. In order to guarantee that
all probabilities considered below do exist, we

restrict ourselves to well-behaved concept classes
(see � PAC Learning).

Furthermore, let D be any arbitrarily
fixed probability distribution over the learning
domain X and let c 2 C be any fixed
concept.

A hypothesis h 2 C is said to be bad for c

iff

d.c; h/ D
X

x2c4h

D.x/ > ":

Furthermore, we use

Δ.c/ Ddf fh 4 c j h 2 Cg

to denote the set of all possible error regions of c

with respect to C and D. Moreover, let

Δ".c/ Ddf fh 4 c j h 2 C; d.c; h/ > "g

denote the set of all bad error regions of c with
respect to C and D.

Now we are ready to formally define the no-
tion of an "-net.

Definition

Let " 2 .0; 1/, and let S � X . The set S is said
to be an "-net for Δ.c/ iff S \ r ¤ ; for all r 2

Δ".c/.

Remarks
Conceptually, a set S constitutes an "-net for
Δ.c/ iff every bad error region is hit by at least
one point in S .

Example

Consider the one-dimensional Euclidean space E,
and let X D Œ0; 1� � E. Furthermore, let C
be the set of all closed intervals Œa; b� � Œ0; 1�.
Consider any fixed c 2 C, and let D be the
uniform distribution, i.e., D.Œa; b�/ D 1=.b � a/

for all Œa; b� 2 C. Furthermore, let h 2 C; then we

http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_631

410 Equation Discovery

may write c 4 h D I1 [I2, where I1; I2 2 C. Let
" 2 .0; 1/ be arbitrarily fixed, and let

S D fk"=2 j 0 � k � d2="e; k 2 Ng :

Then, S forms an "-net for Δ.c/. This can be seen
as follows. Assume r 2 Δ".c/. Then, D.I1/ >

"=2 or D.I2/ > "=2. Now, by the definition of S ,
it is obvious that D.Ii / > "=2 implies Ii \S ¤ ;,
i D 1; 2.

Application

Recall that in � PAC Learning, the general strat-
egy to design a learner has been to draw a suf-
ficiently large finite sample and then to find a
hypothesis that is consistent with it. For showing
that this strategy is always successful, the notion
of an "-net plays an important role. This can be
expressed by the following observation.

Observation. Let S D fx1; : : : ; xmg be an "-net
for Δ.c/, and let h 2 C be any hypothesis such
that h.xi / D c.xi / for all 1 � i � m, i.e., h is
consistent. Then we have d.c; h/ � ".

It then remains to show that the �VC Dimen-
sion of C and of Δ.c/ are the same and to apply
Sauer’s lemma to complete the proof.

For further information, we refer the reader
to Blumer et al. (1989) as well as to Kearns and
Vazirani (1994).

Cross-References

� PAC Learning
�VC Dimension

Recommended Reading

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Haussler D, Welz E (1987) Epsilon nets and simplex
range queries. Discret & Comput Geom 2:127–151
(1987)

Kearns MJ, Vazirani UV (1994) An introduction to
computational learning theory. MIT, Cambridge

Equation Discovery

LjupLco Todorovski
University of Ljubljana, Ljubljana, Slovenia

Synonyms

Computational discovery of quantitative laws;
Symbolic regression

Definition

Equation discovery is a machine learning task
that deals with the problem of learning quanti-
tative laws and models, expressed in the form
of equations, in collections of measured numeric
data. Equation discovery methods take at input
a � data set consisting of measured values of a
set of numeric variables of an observed system
or phenomenon. At output, equation discovery
methods provide a set of equations, such that,
when used to calculate the values of system
variables, the calculated values closely match the
measured ones.

Motivation and Background

Equation discovery methods can be used to solve
complex modeling tasks, i.e., establishing a math-
ematical model of an observed system. Modeling
tasks are omnipresent in many scientific and
engineering domains.

Equation discovery is strongly related to sys-
tem identification, another approach to mathe-
matical modeling. System identification methods
work under the assumption that the structure of
the model (the form of the model equations) is
known or comes from a well-defined class of
model structures, such as polynomials or neural
networks. Therefore, they are mainly concerned
with the parameter estimation task, that is, the
task of determining the values of the model pa-
rameters that minimize the discrepancy between
measured data and data obtained by simulating

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_100077
http://dx.doi.org/10.1007/978-1-4899-7687-1_100458
http://dx.doi.org/10.1007/978-1-4899-7687-1_196

Equation Discovery 411

E

the model. Equation discovery methods, on the
other hand, aim at identifying both, an adequate
structure of the model equations and appropriate
values of the model parameters.

�Regression also deals with building pre-
dictive models from numeric data. The focus
of regression methods is on building descrip-
tive black-box models that can reconstruct the
training data with high accuracy. In contrast,
equation discovery methods focus on establishing
explanatory models that, beside accurate predic-
tions, provide explanations of the mechanisms
that govern the behavior of the modeled system.

Early equation discovery methods dealt with
rediscovering empirical laws from the history
of science (this is where the synonym “compu-
tational discovery of quantitative laws” comes
from). Through the years, the focus of the equa-
tion discovery methods has shifted from discov-
ering quantitative laws to modeling real-world
systems.

Structure of the Learning System
The task of equation discovery can be decom-
posed into two closely coupled subtasks of struc-
tural identification and parameter estimation. The
first task of structural identification deals with the
problem of finding the optimal structure of an
equation. The second task of parameter estima-
tion deals with the problem of finding the optimal
values of the constant parameters in the equation.
General approaches to and specific methods for
equation discovery use different techniques to
solve these two subtasks.

Approaches and Methods
There are two general and fundamentally differ-
ent approaches to equation discovery. The first
approach relies on a definition of a space of can-
didate equation structures. Following this defini-
tion, a generate-and-test (or � learning as search)
approach is used to generate different equation
structures, solve the parameter estimation task
for each of them, and report those equations that
most closely approximate the data. The second
approach relies on heuristics, used by scientists
and engineers in the discovery or modeling pro-

cesses, to establish an appropriate equation struc-
ture.

The first equation discovery system, Bacon
(Langley 1981), follows the second approach
described above. It incorporates a set of data-
driven heuristics for detecting regularities (con-
stancies and trends) in measured data and for
formulating hypotheses based on them. An exam-
ple heuristic would, when faced with a situation
where the values of two observed variables in-
crease/decrease simultaneously, introduce a new
equation term by multiplying them. Furthermore,
Bacon builds equation structure at different levels
of description. At each level of description, all
but two variables are held constant and hypothe-
ses connecting the two changing variables are
considered. Using a relatively small set of data-
driven heuristics, Bacon is able to rediscover a
number of physical laws including the ideal gas
law, the law of gravitation, the law of refraction,
and Black’s specific heat law.

An alternative set of heuristics for equation
discovery can be derived from dimensional
analysis that is routinely used to check the
plausibility of equations by using rules that
specify the proper ways to combine variables
and terms with different measurements units,
different measurement scales, or types thereof.
Following these rules, equation discovery method
Coper (Kokar 1986) considers only equation
structures that properly combine variables and
constants, given the knowledge about their exact
measurement units. Equation discovery method
SDS (Takashi and Hiroshi 1998) extends Coper to
cases, where the exact measurement units of the
variables and constants involved in the equation
are not known, but only knowledge about the
types of the �measurement scales is available.

Finally, the heuristics and design of the equa-
tion discovery method E* (Schaffer 1993) is
based on a systematic survey of more than a hun-
dred laws and models published in the Physical
Review journal. The review shows that many of
the published laws and models follow one of
five different equation structures. By including
only these five structures as its main heuristic for
solving the structure identification task (imple-
menting it as a � language bias), E* was able to

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_440

412 Equation Discovery

reconstruct the correct laws and models in about
a third of the test cases collected from the same
journal.

Abacus (Falkenhainer and Michalski 1990)
was the first equation discovery method that
followed the generate-and-test (or � learning
as search) approach, mentioned above. Abacus
experimented with different search strategies
within a fixed space of candidate equation
structures. Other methods that follow the
generate-and-test approach differ in the ways
they define the space of candidate equation
structures and solve the parameter estimation
task.

Equation discovery methods EF (Zembowitz
and Zytkow 1992) and Lagrange (Džeroski and
Todorovski 1995) explore the space of polyno-
mial equation structures that are linear in the con-
stant parameters, so they apply � linear regres-
sion to estimate parameters. The user can shape
the space of candidate structures by specifying
parameters, such as, the maximal polynomial de-
gree, the maximal number of multiplicative terms
included in a polynomial, and a set of functions
that can be used to transform the original vari-
ables before combining them into multiplicative
terms.

While all of the above methods assume a
fixed predefined � language bias (via specifica-
tion of the class of candidate equation struc-
tures or via heuristics for establishing appropriate
structure), equation discovery method Lagramge
(Todorovski and Džeroski 1997) employs dy-
namic declarative � language bias, that is, let the
user of the equation discovery method choose
or specify the space of candidate equation struc-
tures. In its first version, Lagramge uses the for-
malism of context-free grammars for specifying
the space of equation structures. The formalism
has been shown to be general enough to allow
users to build their specification upon many dif-
ferent types of modeling knowledge, from mea-
surement units to very specific knowledge about
building models in a particular domain of interest
(Todorovski and Džeroski 2007). For solving
the structure identification task, Lagramge de-
fines a refinement operator that orders the search
space of candidate equation structures, defined

by the user-specified grammar, from the simplest
ones to more complex. Exhaustive and � beam
search strategies are then being employed to
the search space and for each structure consid-
ered during the search, Lagramge uses gradient-
descent methods for nonlinear optimization to
solve the parameter estimation task. The heuristic
function that guides the search is based on the
�mean squared error that measures the discrep-
ancy between the measured and simulated values
of the observed system variables. Alternatively,
Lagramge can use heuristic function that takes
into account the complexity of the equation and
is based on the �minimum description length
principle.

Successors of Lagramge, equation discovery
methods, Lagramge 2 (Todorovski and Džeroski
2007), IPM (Bridewell et al. 2008), and HIPM
(Todorovski et al. 2005), primarily focus on the
improvement of the knowledge representation
formalism used to formalize the modeling knowl-
edge and transform it to � language bias for equa-
tion discovery. All of them follow the paradigm
of � inductive process modeling.

Types of Equations
At first, equation discovery methods dealt with
the problem of learning algebraic equations
from data. Equation discovery method Lagrange
(Džeroski and Todorovski 1995) extended
the scope of equation discovery to modeling
dynamics from � time series data with ordinary
differential equations. It took a naı̈ve approach
based on transforming the task of discovering
ordinary differential equations to the simpler
task of discovering algebraic equations, by
extending the set of observed system variables
with numerically calculated time derivatives
thereof. By doing so, any of the existing
equation discovery methods could be, in
principle, used to discover differential equations.
However, the naı̈ve approach has a major
drawback of introducing large numerical errors,
due to instability of methods for numerical
differentiation. Equation discovery method
GoldHorn (Križman et al. 1995) replaced the
instable numerical differentiation with the stable
numerical methods for the inverse problem of

http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_68
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_397
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

Equation Discovery 413

E

integration. Goldhorn also upgrades Lagrange
with filtering methods to cope with measurement
errors and noisy data.

While ordinary differential equations can
model systems that change their state along
a single dimension, time, partial differential
equations can be used to model systems that
change along many (temporal and spatial)
dimensions. The naı̈ve approach of introducing
numerically calculated partial derivatives
has been used in the Paddles (Todorovski
et al. 2000) method for discovery of partial
differential equations. The method first slices the
measurement data into narrow spatial subsets,
induces ordinary differential equations in each of
them, and uses most frequently obtained equation
structures to extend them with partial derivatives
and to obtain a relatively small class of partial
differential equation structures to explore. All the
equation discovery tasks in Paddles are solved
using Lagramge (Todorovski and Džeroski
1997).

Applications

Equation discovery methods have been applied
to various tasks of discovering equation-
based laws and models from measured and/or
simulation data. Application domains range from
physics (mechanical and electrical engineering,
fluid dynamics) (Takashi and Hiroshi 1998;
Todorovski and Džeroski 1997, 2007), through
ecology (population dynamics) (Todorovski
and Džeroski 2007; Todorovski et al. 2005) to
biochemistry (chemical kinetics) (Džeroski and
Todorovski 2008; Langley et al. 2006).

Cross-References

� Identification
� Inductive Process Modeling
�Language Bias
�Learning as Search
�Linear Regression
�Measurement Scales
�Regression

Recommended Reading

Bridewell W, Langley P, Todorovski L, Džeroski S
(2008) Inductive process modeling. Mach Learn
71(1):1–32

Džeroski S, Todorovski L (1995) Discovering
dynamics: from inductive logic programming
to machine discovery. J Intell Inf Syst 4(1):
89–108

Džeroski S, Todorovski L (2008) Equation discovery
for systems biology: finding the structure and dy-
namics of biological networks from time course
data. Curr Opin Biotechnol 19:1–9

Falkenhainer B, Michalski R (1990) Integrating quan-
titative and qualitative discovery in the ABACUS
system. In: Kodratoff Y, Michalski R (eds) Machine
learning: an artificial intelligence approach. Morgan
Kaufmann, San Mateo

Kokar MM (1986) Determining arguments of in-
variant functional descriptions. Mach Learn 1(4):
403–422

Križman V, Džeroski S, Kompare B (1995) Discover-
ing dynamics from measured data. Electrotech Rev
62(3–4):191–198

Langley P (1981) Data-driven discovery of physical
laws. Cogn Sci 5(1):31–54

Langley P, Shiran O, Shrager J, Todorovski L, Po-
horille A (2006) Constructing explanatory process
models from biological data and knowledge. Artif
Intell Med 37(3):191–201

Schaffer C (1993) Bivariate scientific function finding
in a sampled, real-data testbed. Mach Learn 12(1–
3):167–183

Takashi W, Hiroshi M (1998) Discovery of first-
principle equations based on scale-type-based
and data-driven reasoning. Knowl-Based Syst
10(7):403–411

Todorovski L, Bridewell W, Shiran O, Langley
P (2005) Inducing hierarchical process models
in dynamic domains. In: Veloso MM, Kamb-
hampati S (eds) Proceedings of the twenti-
eth national conference on artificial intelligence,
Pittsburgh

Todorovski L, Džeroski S (1997) Declarative bias in
equation discovery. In: Fisher DH (ed) Proceedings
of the fourteenth international conference on ma-
chine learning, Nashville

Todorovski L, Džeroski S (2007) Integrating domain
knowledge in equation discovery. In Džeroski S,
Todorovski L (eds) Computational discovery of
scientific knowledge. LNCS, vol 4660. Springer,
Berlin

Todorovski L, Džeroski S, Srinivasan A, Whiteley
J, Gavaghan D (2000) Discovering the structure
of partial differential equations from example be-
haviour. In: Langley P (ed) Proceedings of the
seventeenth international conference on machine
learning, Stanford

http://dx.doi.org/10.1007/978-1-4899-7687-1_100201
http://dx.doi.org/10.1007/978-1-4899-7687-1_397
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_716

414 Error

Zembowitz R, Zytkow J (1992) Discovery of
equations: experimental evaluation of conver-
gence. In: Swartout WR (ed) Proceedings of the
tenth national conference on artificial intelligence,
San Jose

Error

�Error Rate

Error Correcting Output Codes

Synonyms

�ECOC

Definition

Error correcting output codes are an � ensemble
learning technique. It is applied to a problem
with multiple classes, decomposing it into several
binary problems. Each class is first encoded as a
binary string of length T , assuming we have T

models in the ensemble. Each model then tries
to separate a subset of the original classes from
all the others. For example, one model might
learn to distinguish “class A” from “not class A.”
After the predictions, with T models we have a
binary string of length T . The class encoding that
is closest to this binary string (using Hamming
distance) is the final decision of the ensemble.

Recommended Reading

Kong EB, Dietterich TG (1995) Error-correcting out-
put coding corrects bias and variance. In: Interna-
tional conference on machine learning, Tahoe City

Error Curve

�Learning Curves in Machine Learning

Error Rate

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Synonyms

Error

Definition

Error rate refers to a measure of the degree of
prediction error of a model made with respect to
the true model.

The term error rate is often applied in the
context of � classification models. In this context,
error rate D P(�.X/ ¤ Y), where XY is a joint
distribution and the classification model � is a
function X ! Y . Sometimes this quantity is
expressed as a percentage rather than a value
between 0.0 and 1.0.

The error rate of a model is often assessed or
estimated by applying it to � test data for which
the class labels (Y values) are known. The error
rate of a classifier on test data may be calculated
as number of incorrectly classified objects/total
number of objects. Alternatively, a smoothing
function may be applied, such as a �Laplace
estimate or an m-estimate.

Error rate is directly related to � accuracy,
such that error rate D 1:0 � accuracy (or when
expressed as a percentage, error rate D 100 �

accuracy).
Two common measures of error rate for

� regression models are �mean squared error
and �mean absolute error.

Cross-References

�Accuracy
�Confusion Matrix
�Mean Absolute Error
�Mean Squared Error

http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_100131
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_452
http://dx.doi.org/10.1007/978-1-4899-7687-1_100139
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_100240
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_528

Evaluation of Learning Algorithms 415

E

Error Squared

Synonyms

� Squared error

Definition

Error squared is a common � loss function used
with � regression. This is the square of the differ-
ence between the predicted and true values.

Error-Correcting Output Codes
(ECOC)

�Class Binarization

Estimation of Density Level Sets

�Density-Based Clustering

Evaluation

Evaluation is a process that assesses some prop-
erty of an artifact. In machine learning, two
types ofnbreak artifacts are most commonly eval-
uated, models and falgorithmsg. �Model eval-
uation often focuses on the predictive efficacy
of the model, but may also assess factors such
as its complexity, the ease with which it can be
understood, or the computational requirements
for its application. �Algorithm evaluation often
focuses on evaluation of the models an algorithm
produces, but may also appraise its computational
efficiency.

Evaluation Data

�Test Data
�Test Set

Evaluation of Learning Algorithms

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Abstract

It is often desirable to assess the properties of
a learning algorithm. Frequently such evalu-
ation take the form of comparing the relative
suitability of a set of algorithms for a spe-
cific task or class of tasks. Learning algorithm
evaluation is the process of performing such
assessment of a learning algorithm.

Synonyms

Algorithm Evaluation; Learning Algorithm Eval-
uation

Definition

Learning algorithm evaluation is the process of
assessing a property or properties of a learning
algorithm.

Motivation and Background

It is often valuable to assess the efficacy of
a learning algorithm. In many cases, such
assessment is relative, that is, evaluating which
of several alternative algorithms is best suited to
a specific application.

Processes and Techniques

Many learning algorithms have been proposed. In
order to understand the relative merits of these
alternatives, it is necessary to evaluate them. The
primary approaches to evaluation can be char-
acterized as either theoretical or experimental.
Theoretical evaluation uses formal methods to

http://dx.doi.org/10.1007/978-1-4899-7687-1_100441
http://dx.doi.org/10.1007/978-1-4899-7687-1_500
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_70
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_100244

416 Evaluation of Model Performance

infer properties of the algorithm, such as its com-
putational complexity (Papadimitriou 1994), and
also employs the tools of computational learning
theory to assess learning theoretic properties.
Experimental evaluation applies the algorithm to
learning tasks in order to study its performance in
practice.

There are many different types of property
that may be relevant to assess depending upon
the intended application. These include algorith-
mic properties, such a time and space complex-
ity. These algorithmic properties are often as-
sessed separately with respect to performance
when learning a model, that is, at training time,
and performance when applying a learned model,
that is, at test time.

Other types of property that are often studied
are the properties of the models that are learned
(see �model evaluation). Strictly speaking, such
properties should be assessed with respect to
a specific application or class of applications.
However, much machine learning research in-
cludes experimental studies in which algorithms
are compared using a set of data sets with lit-
tle or no consideration given to what class of
applications those data sets might represent. It
is dangerous to draw general conclusions about
relative performance on any application from
relative performance on such a sample of some
unknown class of applications. Such experimen-
tal evaluation has become known disparagingly
as a bake-off.

An approach to experimental evaluation that
may be less subject to the limitations of bake-
offs is the use of experimental evaluation to
assess a learning algorithm’s bias and variance
profile. Bias and variance measure properties of
an algorithm’s propensities in learning models
rather than being directly properties of the models
that are learned. Hence they may provide more
general insights into the relative characteristics of
alternative algorithms than do assessments of the
performance of learned models on a finite number
of applications. One example of such use of bias-
variance analysis is found in Webb (2000).

Techniques for experimental algorithm eval-
uation include bootstrap sampling, cross valida-
tion, and holdout evaluation.

Cross-References

�Model Evaluation

Recommended Reading

Hastie T, Tibshirani R, Friedman J (2001) The ele-
ments of statistical learning. Springer, New York

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Papadimitriou CH (1994) Computational complexity.
Addison-Wesley, Reading

Webb GI (2000) MultiBoosting: a technique for
combining boosting and wagging. Mach Learn
40(2):159–196

Witten IH, Frank E (2005) Data mining: practical
machine learning tools and techniques,
2nd edn. Morgan Kaufmann, Amsterdam/
Boston

Evaluation of Model Performance

�Model Evaluation

Evaluation Set

�Test Set

Event Extraction from Media Texts

Gregor Leban1, Blaž Fortuna1, and
Marko Grobelnik2

1Jozef Stefan Institute, Ljubljana, Slovenia
2Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia

Abstract

The chapter describes the topic of using news
content to automatically detect world events
mentioned in the news. Various tasks required
for identifying events are presented, such as
semantic annotation, article clustering and

http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_820

Event Extraction from Media Texts 417

E

cross-lingual cluster matching. Given the
identified events we also describe how date,
location, relevant entities and other core event
details can be determined automatically.

Definition

Event extraction from text is an area of research
that involves identifying mentions of significant
world events described in media documents, such
as news articles. The goal is to identify the
world events and extract as much information as
possible about them in a structured form. Ideally,
the extracted information should contain details
about what happened, when, where, and who was
involved in the event. Since relevant events are
reported in numerous articles, the methods for de-
tection of events can exploit this fact when iden-
tifying events and extracting event properties.

Motivation and Background

News outlets produce large amounts of news
content every day. Most of the news articles
describe recent happenings in the world, such as
meetings of important politicians, natural disas-
ters, societal issues, sports events, or pastimes
of celebrities. The importance of the generated
news content varies significantly – news about
an approaching hurricane can be considered as
much more important and relevant than a news
article about a party held by a local politician. For
the purposes of this paper, we will call important
happenings events. There is no objective way to
distinguish between important and non-important
news stories, but a practical approach that can be
used is to treat news as important if it is being
reported by several news publishers. For practical
purposes we can therefore define an event as a
happening that is being covered in news articles
by several news publishers.

News articles are written in a natural lan-
guage which makes them easy to understand
by humans, but hard to process by computers.
Understanding information being described in
an article requires the use of common sense,

common knowledge, implicit information, and
knowledge on how to disambiguate. Since it’s
hard to extract knowledge from the articles, it
is also difficult to perform accurate information
retrieval. Imagine, for example, that you would
like to learn from the news about the events that
happened in Washington state in the last month.
The word “Washington” is for the computer just
a sequence of letters. One can use it to perform
a keyword search, which will however return
various articles – from the ones about the state
of Washington, about any of the 40 cities names
Washington, as well as numerous people who
are also named Washington. Even if all articles
would be relevant, they are not grouped – there
would be tens or hundreds of articles describing
the same event, and it would be up to the reader
to find if an article describes some event you have
already seen or not. Additionally, there would
also be no summary of what the event was about –
the reader would have to read the articles and
learn about that himself.

To make learning about the events a more
pleasant experience, we would like to convert
the unstructured information expressed in news
articles into a structured form that can be stored
in a machine-readable way. This is not a trivial
task and requires several steps of processing.
These steps include syntactic analysis, semantic
enrichment, entity linking, document clustering,
and information extraction. The final result of
the processing is a structured database of world
events. Due to the extensive metadata, it is pos-
sible to find events based on the date, location,
or relevant entities. Articles about an event are
grouped together which helps significantly to
reduce the information overload. A summary of
an event can also be obtained by aggregating
common information from multiple news articles.

To our knowledge, there are at least three sys-
tems that are identifying world events by analyz-
ing news media. GDELT project (Gao et al. 2013;
Leetaru et al. 2013) performs event detection
by extracting information from individual sen-
tences in the news articles. Since several events
are potentially extracted from a single article, it
contains a huge collection of events (over 200
million) that were extracted from 1979 to the

418 Event Extraction from Media Texts

present. European media monitor (Steinberger
et al. 2005; Pouliquen et al. 2008) focuses on the
identification of current political events by com-
bining and processing news articles in multiple
languages. Event Registry (Leban et al. 2014a,b)
similarly extracts world events with the additional
metadata from articles in several languages. In
the next sections, we will describe some of the
core components that are needed by these sys-
tems.

Structure of Learning System

The identification of events from news articles
requires a pipeline of services or components that
provide specific functionalities. These services
are shown in the Fig. 1 and will be described next.

News Collection
The first step in identification of events from news
is to obtain the news content from a large set of
news publishers. The content can be collected by
either crawling the website of the news publishers
or by identifying their RSS feeds and extracting
article information from them. The use of RSS
feeds, which are almost always available, is a
better approach since they are significantly less

data and time intensive compared to repeatedly
crawling the whole websites. The RSS feeds
do however often contain only article excerpts
and crawling of the article page is therefore still
needed. The main technical challenge with crawl-
ing the page is the identification of the article
content and removal of the rest of the page. It is
also important to extract as much metadata about
the article as possible. This metadata can include
the title of the article, publisher’s name, date of
publishing, author, etc.

Text Annotation
The collected news articles contain just plain
text – there is no semantic information avail-
able about its content. In order to be able to
extract semantic information about the described
event, the text first needs to be annotated with
semantic information that can be detected in
the text. Common types of annotations are the
named entities (people, locations, organizations)
mentioned in the text and article topics. The
challenge in annotation is twofold: first, the token
or phrase that represents a named entity (such
as “Paris”) has to be identified, and second, it
needs to be linked to a resource identifier that
semantically represents the entity (such as a URI
in a knowledge base). The first task is called

Event Extraction from Media Texts, Fig. 1 Various components required in the process of extracting events from
news articles

Event Extraction from Media Texts 419

E

named entity recognition and can be best solved
using conditional random fields or more recently
with convolutional neural networks. The second
task is called entity linking and requires the use of
a knowledge base containing an extensive set of
relevant entities. Systems for entity linking such
as Wikipedia Miner (Milne and Witten 2013)
rely on the use of open knowledge bases such as
DBpedia, Freebase, or YAGO.

An important type of data annotations are also
temporal expressions mentioned in the text. Their
detection is crucial in order to determine the date
of the event that is being described in the news.
Dates can be expressed in an absolute (“July 15th,
2015”, “2015-07-12”) or relative form (“yester-
day morning,” “last week”). The detection of
absolute temporal expressions can be efficiently
performed using a set of regular expressions. The
relative expressions can either be identified using
rule-based or sequence labeling approaches. The
detected relative expressions can then be normal-
ized into the absolute form using the article’s
publish date.

Clustering Approach to Event
Identification
In order to identify events, a clustering approach
can then be applied in order to group similar arti-
cles that describe the same event. The reasoning
behind using clustering is the reasonable assump-
tion that if articles are describing the same event,
they will share similar vocabulary and mention
similar entities. The most valuable features for
the clustering algorithm are therefore the article
text itself as well as the detected named entities
and topics. The article text can be transformed
into the bag-of-words form where each term
in the document is normalized according to a
chosen weighting scheme, such as TF-IDF. A
feature vector can be generated for each article
by concatenating the weights of the article terms
and the mentioned named entities. A similarity
measure, such as cosine similarity, can then be
used to compute the similarity between individual
articles.

Given the article feature vectors and the sim-
ilarity measure, the clusters representing events
can be identified using various clustering meth-

ods. European media monitor, for example, uses
an agglomerative bottom-up clustering algorithm
to group all articles published in a 24-h time win-
dow. Articles are grouped into the same cluster
as long as their similarity is above the selected
threshold. Centroid vectors of the obtained clus-
ters are also compared with clusters identified
on a previous day. The clusters that are found
to be similar enough are merged and therefore
represented as a single event. This allows the
method to identify events that span across several
days.

Event registry, on the other hand, uses an
online approach to clustering. Each new article
is clustered immediately after being added to
the system. The clustering approach works as
follows. The feature vector of the article is first
being compared to the feature vectors of the
centroids of all existing clusters. If the cosine
similarity to the most similar centroid is above the
selected threshold, the article is simply assigned
to the cluster. Otherwise, a new, so-called micro-
cluster is created containing only the single ar-
ticle. As new articles are added to the system,
the micro-clusters can grow in size as articles
are being added to them. Once they reach a
certain size (depending on the language, this can
be between three and ten articles), they are no
longer considered as micro-clusters but instead as
proper events. Micro-clusters that never reach the
necessary size are not considered as events and
are eventually removed. There are also different
validation methods that are being called regularly
in order to ensure the highest quality of the clus-
ters. As clusters grow, for example, it can occur
that the centroids of two clusters become more
and more similar. One of the validation methods
therefore checks different pairs of clusters and
merges them in case their similarity, as measured
by the cosine similarity of their centroid vectors,
is above the threshold. Additionally, a separate
method also checks each cluster if it is still
sufficiently coherent or should instead be split
into two separate clusters. The main idea behind
splitting is to project all articles in the cluster onto
a line and divide them into two groups depending
on whether their projection was left or right of
the centroid. This is repeated several times. In

420 Event Extraction from Media Texts

the first iteration the first principal component of
the original cluster is used as the projection line.
In the following steps, the articles are projected
onto the line that passes the centroids of the two
groups obtained in the previous iteration. Once
the two groups become stable, the method com-
pares the original cluster and the two identified
groups using the Bayesian information criterion
in order to determine whether the cluster should
be split or not. The last maintenance method is
responsible for removing obsolete clusters. An
event is reported in the media only for a limited
number of days. To avoid assigning new articles
to obsolete clusters, the method removes (micro-)
clusters once the oldest member articles reach a
certain age. In case of Event Registry, clusters are
removed after they become 5 days old.

Both described approaches for identifying
events using clustering have their advantages and
disadvantages. The approach used in European
media monitor works in batch mode which makes
the identified events more stable. The downside
is however that it is not suitable for real-time
monitoring and detection of breaking events.
On the other hand, the approach used by Event
Registry can identify new events as soon as the
sufficient number of articles about it has been
written. However, because of the online mode
of the algorithm, the identified clusters can be
merged or split during their lifetime which makes
them more volatile.

Cross Lingual Event Detection
Until this point we have not considered the
fact that news articles are written in different
languages. Since the described clustering
approaches rely on the article text, the methods
are evidently language dependent. It is not
sensible, for example, to compute cosine
similarity between an English and German
article; therefore content from each language
has to be clustered separately. As a result, events
represented by the clusters will contain only
articles in a single language. Since most events
are reported in multiple languages, we want to
find methods for identifying clusters in different
languages that describe the same event. This will
allow us to see how the same news is reported in

different languages, what topics are more or less
likely to break the language barrier, how fast does
the information spreads through the languages,
etc.

In order to link the appropriate clusters, we
can represent the problem as a binary classifi-
cation problem. Given a cluster pair c1 and c2

in languages l1 and l2, we need to compute a
set of discriminative features that will help us to
determine if both clusters describe the same event
or not. A machine learning model can then be
trained to classify the cluster pairs based on the
values of the computed features.

One set of learning features can be computed
by inspecting individual articles assigned to the
clusters. Using a method such as canonical cor-
relation analysis (CCA), it is possible to compute
an estimated score of relatedness of two articles
in different languages. The method is trained on
a comparable corpus, which is a collection of
documents in multiple languages, with alignment
between documents that are on the same topic or
even rough translations of each other. An example
of such corpus is Wikipedia, where each entry
can be described in multiple languages. Using
the CCA, we can compare pairs of documents
in the tested clusters c1 and c2 and compute
features such as the maximum or the average
score of similarity between the documents in the
two clusters.

Additional set of important learning features
can be computed by aggregating the annotated
entities mentioned in the articles. Given the ar-
ticles in each cluster, we can analyze how often
do individual entities appear in the articles in
order to estimate their relevance for the event –
entities that appear more frequently can be con-
sidered as more important to the event compared
to entities that are mentioned fewer times. One
way to score an entity in a cluster is simply to
compute the ratio of articles in the cluster that
mention it. A more advance approach can also
take into account the number of times the entity
is mentioned in each article and its mentioned
location – an entity is likely more relevant if
it is mentioned at the beginning of the article
than if at the end. Since entities are language
independent (same entity, although mentioned in

Event Extraction from Media Texts 421

E

different languages, is represented with the same
identifier), we can construct for each cluster a
weighted vector of relevant entities. For a pair of
clusters, a similarity measure can again be used
to compute similarity of the clusters according to
the mentioned entities. Since events are mostly
centered around entities, the similarity score can
be an important feature when deciding if two
clusters are about the same event or not.

Additionally, time similarity is also an im-
portant feature. If articles in one cluster were
published in a similar time period as articles in
another cluster, they are more likely about the
same event as if they were published several days
apart. If dates mentioned in the articles are being
extracted, the ratio of common dates mentioned
in the two clusters can also be a relevant feature.

In order to train the classification model, we
first need the learning data. A human expert
should therefore provide a set of positive and
negative examples – cluster pairs that are about
the same events as well as pairs that are not. For
each cluster pair, values of the mentioned features
can be computed and concatenated into a single
feature vector. A machine learning classifier, such
as SVM, can then be trained to best distinguish
between the positive and negative examples based
on the learning features. An experiment using the
described approach (Rupnik et al. 2016) reports
the cluster linking accuracy of 0.893 as measured
using F1 score.

Extraction of Event Properties
Based on the described approach, an event con-
sists of one or more clusters, where each cluster
contains articles from a single language. As the
final step, we wish to extract from the articles
in the clusters as much structured information as
possible about the event.

To determine the date of the event, we can
analyze the publishing date of the articles in the
clusters. The simplest method can be to use the
date of the first article as the date of the event.
This approach can generate erroneous results
for events that are reported in advance (such
as various meetings of politicians, product an-
nouncements, etc.) as well as when the collected
publishing dates of the articles are potentially

inaccurate. A more error-prone approach is to
analyze the density of reporting and use the time
point where the reporting intensified as the date
of the event. Additional input can be provided by
the mentioned date references – a particular date
that is consistently mentioned across the articles
is likely the correct date of the event.

In order to determine who is involved in the
event, we can analyze and aggregate the entities
mentioned in the articles. A list of relevant enti-
ties and their score of relevance can be obtained
by analyzing the frequency of their occurrence
in the articles as well as the locations of the
mentions in text. Entities that appear in event’s
articles more frequently and early in the text
are more important than entities that are just
rarely mentioned and appear late. Entities can
be scored and ranked according to this criterion
which provides an accurate aggregated view on
what and who is the event about.

Another core property of the event is also
the location where the event occurred. Since
the event location is commonly mentioned in
the articles, we can identify it by analyzing the
frequently mentioned entities that are of type
location – knowledge about the entity type can be
retrieved from the knowledge base used in entity
linking. Additional signal for determining the lo-
cation can be obtained by inspecting the datelines
of the articles. A dateline is a brief piece of text
at the beginning of the news article that describes
where and when the described story happened.
The problem with datelines is that they are not
present in all news articles, and even when they
are, they sometimes represent the location where
the story was written and not the actual location
of the event. To determine the event location,
one can simply use the city that is mentioned the
most in the articles. A more advanced approach
can again rely on machine learning. Each city
that is mentioned in the articles about an event
can be considered as a candidate for the event
location. For each city we therefore generate a
set of features based on which a classification
model can compute the probability that it is the
location of the event. The features can be the
number or ratio of times the city is mentioned in
the articles, the number of times it is mentioned in

422 Evolution of Agent Behaviors

the dateline, how commonly the city is mentioned
in all the articles, etc. To train the classification
model, we again need the experts to manually
provide information about the correct location
of various events. Using the training data, we
can then train a model that will classify each
candidate city independently. Because they are
evaluated independently, it is possible that the
model finds several locations to be the event
location. To choose the most likely city, it is
important to use a probabilistic classifier that
can also return a degree of certainty – in such
cases, one can simply choose the location with
the highest probability.

There are many other properties that could
be extracted which are specific for individual
event types. In case of an earthquake, for ex-
ample, important properties would include the
number of casualties and the strength of the
earthquake. Similarly, for a football game, the
relevant information would be the names of the
teams that played and the final score. Identifying
such properties and their values is a cumbersome
task. It first requires that each event is classified
into an event type (such as earthquake, football
game, meeting, etc.). To perform classification, a
taxonomy of event types is first needed together
with a model that can perform classification into
the taxonomy. Next, for each event type, a set of
properties/slots need to be identified that are rel-
evant for the event type. A pattern or rule-based
approach can then be used to determine the values
for these properties.

Cross-References

�Classification
�Clustering
�Cross-Lingual Text Mining
�Entity Resolution
�Text Mining

Recommended Reading

Gao J, Leetaru KH, Hu J, Cioffi-Revilla C, Schrodt
P (2013) Massive media event data analysis to
assess world-wide political conflict and instability.

In: Social computing, behavioral-cultural modeling
and prediction. Springer, Berlin/New York, pp 284–
292

Leban G, Fortuna B, Brank J, Grobelnik M (2014a)
Event registry: learning about world events from
news. In: Proceedings of the companion publication
of the 23rd international conference on World wide
web companion, Seoul, pp 107–110

Leban G, Fortuna B, Brank J, Grobelnik M (2014b)
Cross-lingual detection of world events from news
articles. In: Proceedings of the 13th international
semantic web conference, Trentino

Leetaru K, Schrodt PA (2013) GDELT: global data on
events, location, and tone, 1979–2012. ISA Annu
Conv 2:4

Milne D, Witten IH (2013) An open-source toolkit for
mining Wikipedia. Artif Intell 194:222–239

Pouliquen B, Steinberger R, Deguernel O (2008)
Story tracking: linking similar news over time and
across languages. In: Proceedings of the workshop
on multi-source multilingual information extraction
and summarization, Manchester, pp 49–56

Rupnik J, Muhic A, Leban G, Škraba P, For-
tuna B, Grobelnik M (2016) News Across Lan-
guages - Cross-Lingual Document Similarity and
Event Tracking. J. Artif. Intell. Res., Special Track
on Cross-language Algorithms and Applications 55,
283–316

Steinberger R, Pouliquen B, Ignat C (2005) Navigating
multilingual news collections using automatically
extracted information in: Proc. of the 27th Interna-
tional Conference on Information Technology Inter-
faces, pp. 25–32

Evolution of Agent Behaviors

�Evolutionary Robotics

Evolution of Robot Control

�Evolutionary Robotics

Evolutionary Algorithms

Synonyms

Evolutionary computation; Evolutionary comput-
ing; Genetic and evolutionary algorithms

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_94
http://dx.doi.org/10.1007/978-1-4899-7687-1_94
http://dx.doi.org/10.1007/978-1-4899-7687-1_100149
http://dx.doi.org/10.1007/978-1-4899-7687-1_100150
http://dx.doi.org/10.1007/978-1-4899-7687-1_334

Evolutionary Clustering 423

E

Definition

Generic term subsuming all machine learning and
optimization methods inspired by neo-Darwinian
evolution theory.

Cross-References

�Coevolutionary Learning
�Compositional Coevolution
�Evolutionary Clustering
�Evolutionary Computation in Economics
�Evolutionary Computation in Finance
�Evolutionary Computational Techniques in

Marketing
�Evolutionary Feature Selection and Construc-

tion
�Evolutionary Fuzzy Systems
�Evolutionary Games
�Evolutionary Kernel Learning
�Evolutionary Robotics
�Neuroevolution
�Nonstandard Criteria in Evolutionary Learning
�Test-Based Coevolution

Evolutionary Clustering

David Corne1, Julia Handl2, and
Joshua Knowles2

1Herriot-Watt University, Edinburgh, UK
2University of Manchester, Manchester, UK

Synonyms

Cluster optimization; Evolutionary grouping; Ge-
netic clustering; Genetic grouping

Definition

Evolutionary clustering refers to the application
of evolutionary algorithms (also known as ge-

netic algorithms) to data clustering (or cluster
analysis), a general class of problems in machine
learning with numerous applications throughout
science and industry. Different definitions of data
clustering exist, but it generally concerns the
identification of homogeneous groups of data
(clusters) within a given data set. That is, data
items that are similar to each other should be
grouped together in the same cluster or group,
while (usually) dissimilar items should be placed
in separate clusters. The output of any cluster-
ing method is therefore a specific collection of
clusters. If we have an objective way to evaluate
(calculate the quality of) a given grouping into
clusters, then we can consider the clustering task
as an optimization problem. In general, this opti-
mization problem is NP hard, and it is common
to address it with advanced heuristic or meta-
heuristic methods. Evolutionary algorithms are
prominent among such methods and have led to
a variety of promising and successful techniques
for cluster optimization.

Motivation and Background

In many problem-solving scenarios, we have
large amounts of data. We need to cluster those
data sensibly into groups in order to help us
understand the problem and decide how to
proceed further (see clustering). It is common,
in fact, for this initial “cluster analysis” stage
to be the most important (or only) stage in the
investigation. In bioinformatics, for example,
a frequent activity is the clustering of gene
expression data (data that indicate, for a specific
cell, how active each of several thousands of
genes are at different points in time or under
different experimental conditions). A very
important current challenge is to understand
the role of each gene; by clustering such data,
which means arranging genes into groups such
that genes in the same group have similar patterns
of activity, we find important clues about genes
whose role is currently unknown, simply by
assigning their putative role as being related to
that of genes (whose role is known) that are in the
same cluster. Meanwhile, a ubiquitous situation

http://dx.doi.org/10.1007/978-1-4899-7687-1_944
http://dx.doi.org/10.1007/978-1-4899-7687-1_150
http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_87
http://dx.doi.org/10.1007/978-1-4899-7687-1_88
http://dx.doi.org/10.1007/978-1-4899-7687-1_89
http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_281
http://dx.doi.org/10.1007/978-1-4899-7687-1_92
http://dx.doi.org/10.1007/978-1-4899-7687-1_93
http://dx.doi.org/10.1007/978-1-4899-7687-1_94
http://dx.doi.org/10.1007/978-1-4899-7687-1_594
http://dx.doi.org/10.1007/978-1-4899-7687-1_599
http://dx.doi.org/10.1007/978-1-4899-7687-1_822
http://dx.doi.org/10.1007/978-1-4899-7687-1_100059
http://dx.doi.org/10.1007/978-1-4899-7687-1_100154
http://dx.doi.org/10.1007/978-1-4899-7687-1_100184
http://dx.doi.org/10.1007/978-1-4899-7687-1_100186

424 Evolutionary Clustering

in industry and commerce is the clustering of
data about customers or clients. Here, the role
of clustering is all about identifying what types
of clients (e.g., based on age, income, postcode,
and many other attributes that may make up a
customer’s profile) buy or use certain kinds of
products and services. Effective ways to identify
groups enable companies to better target their
products and their direct marketing campaigns
and/or make more effective decisions about
loans, credit, and overdrafts. Many machine
learning techniques can be used to predict things
about customers, predict things about genes, and
so forth. However, the value of clustering (in a
similar way to visualization of the data) is that
it can lead to a much deeper understanding of
the data, which in turn informs the continuing
process of applying machine learning methods to
it. In this general context, there are many well-
known and well-used clustering methods, such as
k-means, hierarchical agglomerative clustering,
neighbor joining, and so forth. However, there are
also well-known difficulties with these methods;
in particular, there is often a need to choose
in advance the number of clusters to find in
the data, and they tend to be strongly biased
toward finding certain types of groupings. For
these reasons, methods that are more flexible
have been recently investigated, and evolutionary
clustering techniques are prominent among these.
They are flexible in that (e.g., unlike k-means) the
choice of the number of clusters does not have
to be made a priori, and the method is not tied
to any particular way of identifying the distance
between two items of data, nor is there any a
priori inductive bias concerning what counts as
a good clustering. That is, in broad terms, an
evolutionary clustering algorithm allows a user
to flexibly make these decisions in view of the
actual problem at hand; these decisions are then
“plugged into” the algorithm which proceeds to
search for good clusterings.

Given a data set to be clustered, the concept of
evolutionary clustering covers two distinct ways
in which we can address the problem of finding
the best clustering. Each of these approaches is
under continuing research and has proven suc-
cessful under different conditions. The first ap-

proach is to use an evolutionary algorithm to
search the space of candidate groupings of the
data; this is the most straightforward approach
and perhaps the most flexible in the sense dis-
cussed above. The second approach is to “wrap”
an evolutionary algorithm around a simpler clus-
tering algorithm (such as k-means) and either use
the evolutionary algorithm to search the space
of features for input to the clustering algorithm
(i.e., the evolutionary algorithm is doing fea-
ture selection in this case) or to search a space
of parameters, such as the number of clusters,
feature weights, and/or other parameters of the
clustering algorithm in use. Central in all of these
approaches is a way to measure the quality of
a clustering, which in turn depends on some
given metric that provides a distance between any
pair of data items. Although some applications
come with pre-identified ways to measure dis-
tance and cluster quality, in the following we will
assume the most common approach, in which
distance is the Euclidean distance between the
data items, and the measure of quality for a given
clustering is some ratio of within-cluster and
between-cluster similarities.

We illustrate the two main approaches to evo-
lutionary clustering in Fig. 1.

There are several examples of the first type
of approach, called “indirect” evolutionary clus-
tering in Fig. 1 (left). This approach is often
used where the “internal” clustering method (“C”
in the figure) is very sensitive to initialization
conditions and/or parameters of the metric in use
to measure distance between items. For example,
if C is the k-means algorithm, then, for each ap-
plication of C, we need choices for the parameter
k and for each of k initial cluster center positions
in the data space. The parameter vectors referred
to in the figure would be precisely these; the
evolutionary algorithm searches this parameter
space, finding those that lead to an optimized
clustering from k-means. Figure 2 illustrates why
this will often be a more effective approach than
k-means alone. In this case, it is entirely unclear
whether these data form two, four, or even five
clusters. There are two widely separated groups
of points, and this two-cluster solution may be
easily found by a 2-means algorithm. However,

Evolutionary Clustering 425

E

Initialise a population of
parameter vectors for a specific
clustering algorithm C

Evaluate the quality of each
vector, by running C on the data,
and evaluating the quality of the
resulting clustering

Has a termination condition
been reached?

Via selection and generation,
generate a new population of
parameter vectors

Evaluate the quality of each
clustering in the population

No

Has a termination condition
been reached?

Initialize a population of
clusterings

Start

No

Stop

Yes

Yes

Via selection and generation,
generate a new population of
clusterings

Evolutionary Clustering, Fig. 1 Evolutionary clustering. The two main approaches to evolutionary clustering:
indirect (left) and direct (right)

Evolutionary Clustering,
Fig. 2 An example data
set with many potential
interpretations of the
number of clusters

to the human eye, there is also a clear four-
cluster solution, further analysis of which may
lead to better understanding of these data. This
four-cluster solution is difficult for a 4-means
algorithm to find, depending on very fortunate
initial settings for the cluster centers. The embed-
ding of k-means within an evolutionary algorithm
allows for the iterative optimization of parameters
and starting conditions to arrive at this optimal
solution.

On the right in Fig. 1, we see the direct
approach, in which the evolutionary algorithm

searches the space of clusterings of the data. The
key features in this approach are the encoding
and genetic operators. After evaluating the
quality of each of a population of clusterings,
a new population is generated from the old one
via selection and variation. Essentially, some
individuals from the current population are
treated as “parents,” and new ones are produced
from these by using genetic operators. The
encoding dictates precisely how a specific data
clustering is represented, while the operators
determine how new clusterings are derived from

426 Evolutionary Clustering

the old ones. To take a simple example, suppose
we needed to cluster ten items (A, B, C,: : :, J)
into an arbitrary number of groups. In a simple
encoding, we might represent a clustering as
a vector of ten labels, independently chosen
from 1 to 10, in which the i th element gives the
group label of the i th item. Hence, the following
individual in our population of clusterings 2 3
5 5 1 5 7 3 2 7 would represent the following
grouping: (A, I) (B, H) (C, D, F) (E) (G, I). Given
such a representation, a typical genetic operator
might be to randomly change a single label in a
single parent. For example, we may choose the
fifth element in the above vector and change it
randomly to 7, effectively placing item E in the
same group as items G and I. Further notes about
operators for this and other encodings are given
in a special subsection below. Going back to the
example in Fig. 2, meanwhile, it is worth noting
that there are potentially five clusters, as the
group on the right can be perceived as a central
group of two items, surrounded by a single
backward-C-shaped group. The “backward-C”
cluster is an example that cannot be reliably
detected (as a distinct cluster from the group of
two items contained within it) with most standard
cluster analysis methods. Traditional approaches
typically incorporate the assumption that clusters
will be centered around a particular position, with
the likelihood of a point belonging to that cluster
falling monotonically with its distance from that
position. One of the strengths of evolutionary
clustering is that it provides the flexibility to work
effectively with arbitrary definitions of what may
constitute a valid cluster.

Objective Functions for Evolutionary
Clustering

It can be strongly argued that the clustering prob-
lem is inherently multiobjective, yet most meth-
ods employ only a single performance criterion
to optimize. In fact, there are at least three groups
of criteria commonly used (but usually one at
a time) in clustering (both evolutionary cluster-
ing and other methods). These are compactness,
connectedness, and spatial separation. When an

algorithm optimizes for compactness, the idea is
that clusters should consist of highly homoge-
neous data items only – that is, the distance (or
other measure of variation) between items in the
same cluster should be small. In contrast, if we
optimize the degree of connectedness, then we
are increasing the extent to which neighboring
data items should share the same cluster. This can
deal with arbitrarily shaped clusters, but can lack
robustness when there is little spatial separation
between clusters. Finally, spatial separation is
usually used as a criterion in combination with
compactness or with a measure of the balance of
cluster sizes.

In multiobjective clustering, the idea is to
explicitly explore the solutions that are trade-offs
between the conflicting criteria, exploiting the
fact that these trade-off solutions are often the
ones that most appeal as intuitively “correct”
solutions to a clustering problem. Handl and
Knowles (2007) introduced a multiobjective
evolutionary algorithm, MOCK, which treats
a clustering problem as a two-objective
problem, using measures of compactness and
connectedness for the two objectives. MOCK’s
multiobjective search process is based on the
PESA-II evolutionary multiobjective optimizer
(Corne et al. 2001). Following the use of
MOCK for a clustering problem, an intermediate
result (inherent in multiobjective optimization
methods) is a (possibly large) collection of
different clusterings. These will range from
clusterings that score very well on compactness
but poorly on connectedness through clusterings
that achieve excellent connectedness at the
expense of poor compactness. It is useful to note
that the number of clusters tends to increase
as we go from poor connectedness to high-
connectedness clusters. Arguably, in many
applications, such a collection of alternative
solutions is useful for the decision-maker.
Nevertheless, the MOCK approach incorporates
an automated model selection process that
attempts to choose an ideal clustering from
the discovered approximate Pareto front. This
process is oriented around the notion of
determining the “right” number of clusters and
makes use of Tibshirani et al. (2001) gap statistic

Evolutionary Clustering 427

E

(full details are in Handl and Knowles 2007).
Extensive comparison studies, using a wide
variety of clustering problems and comparing
with many alternative clustering methods,
show consistent performance advantages for
the MOCK’s approach. Recent work has
explored different objectives, encodings, and
model selection mechanisms for multiobjective
clustering, including the interpretation of the
approximation set as a clustering ensemble
(Handl and Knowles 2013).

Encodings and Operators for
Evolutionary Clustering

The encoding methods used in indirect
approaches to evolutionary clustering are
fairly straightforward, as they only require the
specification of the parameters (and, potentially,
initialization points) for the clustering method(s)
used. Arguably, the development of direct
approaches to evolutionary clustering is more
involved, as the choice of a suitable encoding
method is nontrivial and has been shown
to have significant impact on optimization
performance.

Encodings range from the straightforward rep-
resentation noted above (with the i th gene cod-
ing for the cluster membership of the i th data
item) to more complex representations, such as
matrix-based or permutation-based representa-
tions. Before providing a brief description of
other encodings, it is worth briefly examining a
well-known disadvantage of the simple encod-
ing. Given that they have a population, evolu-
tionary algorithms offer the opportunity to use
multi-parent genetic operators – that is, we can
design operators that produce a new candidate
clustering given two or more “parent” cluster-
ings. Such operators are neither mandatory nor
necessarily beneficial in evolutionary algorithms,
and there is much literature discussing their mer-
its and how this depends on the problem at
hand. However, they are often found helpful,
especially in cases where we can see some in-
tuitive merit in combining different aspects of
parent solutions, resulting in a new solution that

seems to have a chance at being good, but which
we would have been immensely unlikely to ob-
tain from single-parent operators given the cur-
rent population. In this context, we can see,
as follows, that the opposite seems to be the
case when we use standard multi-parent opera-
tors with the simple encoding. Suppose the fol-
lowing are both very good clusterings of ten
items:

Clustering 1: 1111122222
Clustering 2: 2222211111

Clearly, a good clustering of these items places
items 1–5 together, and items 6–10 together, in
separate groups. It is also clear, however, that
using a standard crossover operator between
these two parents (e.g., producing a child by
randomly choosing between clusterings for
each item in turn) will lead to a clustering that
mixes items from these two groups, perhaps
even combining them all into one group. The
main point is that a crossover operation destroys
the very relationships between the items that
underpinned the fitness of the parents. One of the
more prominent and influential representations
for clustering, incorporating a design for far
more effective multi-parent operators, was that
of Falkenauer’s “Grouping Genetic Algorithm,”
which also provides a general template for
the implementation of evolutionary algorithms
for grouping problems. The essential element
of Falkenauer’s method is that multi-parent
operators recombine entire groups rather than
item labels. For example, suppose we encode two
clusterings explicitly as follows:

Clustering 3: (A,I,B,H)(C,G)(D,E,F,J)
Clustering 4: (A,I,B,H)(C,D,J)(E,F,G)

A Falkenauer-style crossover operator works as
follows. First, we randomly choose some entire
groups from the first parent and some entire
groups from the second parent; the child in this
case might then be:

(A,I,B,H)(C,G)(E,F,G)

428 Evolutionary Clustering

in which the groups that come from the first
parent are underlined. Typically, we will now
have some repeated items; we remove the entire
groups that contain these items and came from
the first parent, in this case leaving us with:

(A,I,B,H)(E,F,G)

The final step is to add back the missing items,
placing them one by one into one of the existing
groups or perhaps forming one or more new
groups. The application in hand will often sug-
gest heuristics to use for this step. In clustering,
for example, we could make use of the mean
Euclidean distance from items in the groups so
far. Whatever the end result in this case, note
that the fact that A, I, B, and H were grouped
together in both parents will be preserved in the
child. Similarly, the E, F, G grouping is inherited
directly from a parent.

A more recent and effective approach to en-
coding a clustering is one first proposed in Park
and Song (1998) called a link-based encoding.
In this approach, the encoding is simply a list
of item indices and is interpreted as follows.
If the ith element in the permutation is j, then
items i and j are in the same group. So, for
example,

B C E E A E G C B G

represents the following grouping:

(A,B,C,D,E,H,I)(F,G,J)

Standard crossover operators may be used with
this encoding, causing (intuitively) a reasonable
degree of exploration of the space of possible
clusterings, yet preserving much of the essen-
tial “same-group” relationships between items
that were present in the parents. In Handl and
Knowles (2007) it is shown why this encod-
ing is effective compared with some alternatives.
We also briefly note other encodings that have
been prominent in the history of this subfield.

An early approach was that of Jones and Bel-
tramo, who introduced a “permutation with sep-
arators” encoding. In this approach, a cluster-
ing is encoded by a permutation of the items
to be clustered, with a number of separators
indicating cluster boundaries. For example, if
we have ten items to cluster (A–J) and use S
as the separator, the following is a candidate
clustering:

A I B H S C G S D E F J

representing the same grouping as that of “Clus-
tering 3” above. Jones and Beltramo offered a
variant of this encoding that is a cross between
the direct and indirect approaches. In their greedy
permutation encoding, a clustering is represented
by a permutation (with no separator characters),
with the following interpretation: the first k items
in the permutation become the centers of the first
k clusters. The remaining items, in the order they
appear, are added to whichever cluster is best
for that item according to the objective function
(clustering quality metric) in use.

Applications for Evolutionary
Clustering

Recent work on evolutionary clustering has
focused on applications of evolu- tionary
clustering to data-mining problems in a variety of
disciplines, including market segmentation (by
Ying, Sudha, Lusch, and Brusco) and social
network analysis (by Pizutti). As mentioned
above, evolutionary clustering brings key
advantages in terms of its accuracy, but,
possibly, its most important benefit lies in the
flexibility of the approach. The capability to
consider and explore trade-offs with respect
to multiple clustering objectives opens up
new opportu- nities for data integration,
particularly in the context of exploratory
analytics in applications that involve diverse,
noisy (and sometimes poorly understood) data
sources.

Evolutionary Computation in Economics 429

E

Cross-References

�Clustering
� Feature Selection
� Semi-supervised Learning
� Supervised Learning
�Unsupervised Learning

Recommended Reading

Cole RM (1998) Clustering with genetic algorithms.
Masters dissertation, Department of Computer Sci-
ence, University of Western Australia

Corne DW, Jerram NR, Knowles JD, Oates MJ (2001)
PESA-II: region-based selection in evolutionary
multiobjective optimization. In: Proceedings of the
GECCO, pp 283–290

Delattre M, Hansen P (1980) Bicriterion cluster analy-
sis. IEEE Trans Pattern Anal Mach Intell 2(4):277–
291

Falkenauer E (1998) Genetic algorithms and grouping
problems. Wiley, New York

Handl J, Knowles J (2005) Exploiting the trade-off –
the benefits of multiple objectives in data cluster-
ing. In: Evolutionary multi-criterion optimization.
Springer, Berlin/Heidelberg, pp 547–560

Handl J, Knowles J (2007) An evolutionary approach
to multiobjective clustering. IEEE Trans Evol Com-
put 11(1):56–76

Handl J, Knowles J (2013) Evidence accumula-
tion in multiobjective data clustering. In: Evo-
lutionary multi-criterion optimization. Springer,
Berlin/Heidelberg, pp 543–557

Jain AK, Murty MN, Flynn PJ (1999) Data clus-
tering: a review. ACM Comput Surv 31(3):
264–323

Jones DR, Beltramo MA (1991) Solving partitioning
problems with genetic algorithms. In: Belew RK,
Booker LB (eds) Proceedings of the fourth inter-
national conference on genetic algorithms. Morgan
Kaufmann, pp 442–449

Liu Y, Ram S, Lusch RF, Brusco M (2010) Mul-
ticriterion market segmentation: a new model,
implementation and evaluation. Mark Sci 29(5):
880–894

Park Y-J, Song M-S (1998) A genetic algorithm for
clustering problems. In: Proceedings of the third an-
nual conference on genetic programming. Morgan
Kaufman, pp 568–575

Pizzuti C (2012) A multiobjective algorithm to find
communities in complex networks. IEEE Trans Evol
Comput 16(3):418–430

Tibshirani R, Walther G, Hastie T (2001) Estimating
the number of clusters in a dataset via the Gap
statistic. J R Stat Soc: Ser B (Stat Methodol) 63(2):
411–423

Evolutionary Computation

�Evolutionary Algorithms

Evolutionary Computation in
Economics

Biliana Alexandrova-Kabadjova1, Alma Lilia
Garcı́a-Almanza2, and Serafı́n
Martı́nez-Jaramillo3

1Banco de México, Mexico City, Mexico
2Directorate of Regulation and Supervision,
Banco de México, Mexico City, Mexico
3Directorate of Financial System Risk Analysis,
Banco de México, Mexico City, Mexico

Definition

Evolutionary computation (EC) is a field in com-
putational intelligence that takes its inspiration
from nature to develop methods that resolve
continuous optimization and combinatorial
optimization problems. When it comes to
economics, it is the area of research that involves
the use of EC techniques, also subclassified
as evolutionary algorithms (EAs), cultural
algorithms, and self-organization algorithms,
among others, in order to approach topics in
economic science. The algorithms, defined
as generic population-based metaheuristic
optimization algorithms, are developed on the
basis of the concept of biological evolution and
use iterative processes such as reproduction,
mutation, recombination, and selection. Some
of these methods, such as genetic algorithms
(GAs), genetic programming (GP), evolutionary
programming (EP), estimation of distribution
algorithms (EDA), evolutionary strategies (ESs),
memetic algorithms, harmony search, and
artificial life, have been studied and applied in
computer science for more than 50 years. In
mainstream economics, even though we can track
the early application of GAs in game theory to
as long ago as 30 years, the adoption of these

http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_270

430 Evolutionary Computation in Economics

methods has been slow. This area of knowledge
is different from the field of evolutionary
economics, which does not necessarily apply
EC techniques to the study of economic
problems. The use of EC in economics pursues
different aims. One is to overcome some of the
limitations of classical economic models and
to loosen some of the strong assumptions such
models make.

Motivation and Background

EC techniques, among many other machine-
learning techniques, have proven to be quite
flexible and powerful tools in many fields and
disciplines, such as computational linguistics,
computational chemistry, and computational
biology. Economics-affiliated fields are by no
means the exception for the widespread use
of these evolutionary-inspired methods. In
addition to the undeniable necessity of computing
in almost every aspect of our modern lives,
numerous problems in economics possess an
algorithmic nature. Economists should consider
computational complexity to be an important
analytical tool due to the fact that some of such
problems belong to the class of NP-complete
(The NP-complete computational complexity
class is a subset of harder problems within the
NP computational class, which is the set of all the
decision problems which can be solved using a
nondeterministic Turing machine in polynomial
time (Papadimitriou 1994).) problems. This
having been said, EC has been intensively
used as an alternative approach to analytical
methods used to tackle numerous NP-complete
problems with considerable success, mainly
in the areas of game theory, econometrics,
and agent-based economic modeling. Game
theory is a branch of applied mathematics that
attempts to model an individual’s strategic
behavior. The first study considered to establish
the fundamentals of the field is the book
Theory of Games and Economic Behavior (John
von and Oskar 1944). The idea behind this
theory is that the success of an individual’s
decisions depends on the decisions of others.

Whereas originally, the aim of the theory was
to study competition, in which one agent does
better at another expense (zero-sum games),
now it has been extended to the study of a
wider class of interactions among individuals.
Furthermore, it is used extensively in economics,
biology, and political science, among other
disciplines.

The first work in economics (The first
such work approached a classic game known
as the prisoner’s dilemma.) that involved the
use of EC dates to the 1980s. In Robert
and Hamilton (1981) and Robert (1987) the
authors used GAs to derive strategies for the
Iterated Prisoner’s Dilemma (IPD). From then
on, EC techniques in economics were used in
areas such as macroeconomics, econometrics,
game theory, auctions, learning, and agent-
based models. There is even a school of
thought in economics known as evolutionary
economics (See, for example, Ulrich (2008)
for an introduction.) in which the approach to
the study of economics involves concepts in
evolution but does not necessarily rely on EC
techniques.

Econometrics is a field within the wider area
of economics which involves the use of statistics
and its tools to measure relationships postulated
by economic theory (William 2003). In particular,
it is applied to macroeconomic analysis to make
out the relationships between the aggregated vari-
ables that explain broad sectors of an economy.
One of the first applications of GP to economet-
rics was made by the creator of GP himself in
John (1992).

Regarding agent-based computational eco-
nomics, this field can be thought of as a branch of
a wider-area, agent-based modeling (Wooldridge
2002). The field of agent-based modeling is not
restricted to economics. It has been applied
to social sciences in general (Robert 2003), to
some classical and not so classical problems in
computer science, and in some other disciplines.
Axelrod provides an account of his experience
using agent-based methodology for several
problems, and he suggests that agent-based
modeling can be seen as a bridge between
disciplines. Axelrod and Tesfatsion provide a

Evolutionary Computation in Economics 431

E

good guide to the literature relevant to agent-
based modeling in Robert and Leigh (2006). In
Shu-Heng (2007) there is a thorough introduction
to agents in economics and finance. In this
work, Chen conceives of the agents not just
as economic agents but also as computational
intelligent units.

Structure of the Evolutionary
Computation in Economics

The main areas addressed by EC in economics
are game theory, econometrics and economic
models, and agent-based economic modeling. In
game theory, a well-defined mathematical object,
the game, consists of a set of players and a
set of strategies (decisions) available to those
players. In addition, for each combination of
strategies, specification of payoffs is provided.
The aim of traditional applications of game the-
ory was to find a Nash equilibrium, a solution
concept, in which each player of the game adopts
a strategy that is unlikely to be changed. This
solution concept was named after John Nash,
whose work was published in the early 1950s
(John 1950). Nevertheless, it took almost 20 years
to fully realize what a powerful tool Nash had
created. Nowadays, game theory is one of the
best established theories in economics, and it
has been used extensively to model interactions
among economic agents. However, games typi-
cally have many Nash equilibria, and one key
assumption is that the agents behave in a rational
way. In more realistic games, the equilibrium
selection problem does not have an easy solution.
Human behavior observed in real life, indeed,
is frequently irrational. Given these constraints,
evolutionary game theory was proposed as an
application of the mathematical theory of games
to biological contexts. In this field, Maynard
Smith is considered to be the first to define
the concept of an evolutionary stable strategy in
John Maynard (1972). Furthermore, the possibil-
ity of using computer modeling as an extension
of game theory was first explored in Robert
and Hamilton (1981). Since then, computer sci-
ence has been used in traditional game theory

problems, like the strategic behavior of agents
in auctions, auction mechanism design, etc. By
providing approximate solutions to such complex
problems, this approach can be useful where
analytical solutions have not been found. For
instance, the iterative prisoner’s dilemma is one
of the games most studied by researchers from
computer science (Robert 1987). The prisoner’s
dilemma is a classic game that consists of the
decision-making process for two prisoners who
can choose to cooperate or defect from a group.
In the case that the two prisoners choose to
cooperate, they get a payoff of three each. In the
case that both choose to defect, they get a payoff
of one each, and in the case that one decides
to defect and the other to cooperate, the former
gets a payoff of five and the later a payoff of
zero. In equilibrium, both players decide to defect
despite the fact that it would be better for them to
cooperate.

Game theory is one of the most important
areas of economics because it has applications to
many other fields, such as corporate decision-
making, microeconomics, market modeling,
public policy analysis, and environmental
systems. We can find more applications of
EC to game theory than IPD. For example,
other work related to game theory and EC is
that done by John and Engle-Warnick (2001),
which deals with the well-known two-player,
repeated ultimatum game. In this work they
used GP as a means of inferring the strategies
that were played by subjects in economic
decision-making experiments. Other research
related to game theory includes the duopoly
and oligopoly games (Shu-Heng and Ni 2000).
References regarding cooperation, coalition,
and coordination are also frequent and usually
driven by EC techniques (Vriend 1995). In 2006,
the authors applied GP to find strategies for
sequential bargaining procedure and confirmed
that equilibria can be approximated by GP. This
provides an opportunity to find approximate
solutions to more complex situations for
which theoretical solutions have yet to be
found.

Regarding econometrics, in Adriana and
Alexandr (2001) the authors use GAs and

432 Evolutionary Computation in Economics

simulated annealing (SA) for econometric
modeling; they found that the performance
of the evolutionary algorithms (EAs) is better
than the performance of traditional gradient
techniques on the specific models in which
they performed the comparison. Finally,
Ralf Östermark (1999) uses a hybrid GA
in several ill-conditioned econometric and
mathematical optimization problems with good
results.

In addition to the use of EC in econometrics,
some classical economic models like the cobweb
model and exchange-rate models have been ap-
proached with EC techniques. For instance, in
Jasmina (1994) and Shu-Heng and Chia-Hsuan
(1996), in the former work, the author uses GAs
to approach the cobweb model, whereas in the
latter the authors use GP. Furthermore, Arifovic
explores the use of GAs in foreign exchange mar-
kets in Jasmina (1996). The GA mechanism elab-
orated in such works developed decision rules
that were used to determine the composition of
agents’ portfolios in a foreign exchange market.
Arifovic made two observations rarely seen in the
standard overlapping generations (OLG) model
with two currencies. First, she noted that the re-
turns and exchange rates were generated endoge-
nously and, second, that the models’ equilibrium
dynamics were not stable and showed bounded
oscillations (the theoretical model implies a con-
stant exchange rate).

The use of GAs in economic modeling is not
restricted to the abovementioned works. In James
et al. (1995), the authors studied a version of the
growth model in which physical capital is accu-
mulated in a standard form, but human capital
accumulation is subject to increasing returns. In
their model, the agents make two decisions when
they are young: how much to save by renting
physical capital to the companies and how much
to invest in training. Returns on training depend
on the average level of human capital in the
economy. The authors introduce agents’ learning
by means of GAs. In 1990, Marimon develops
an economic model in which the agents adapt by
means of a GA.

The final approach is agent-based computa-
tional models built with EAs for applications in

economics (ACEs). In ACEs, one of the main
goals is to explain the macro-dynamics of an
economy by means of the micro-interactions of
the economic agents. This approach to the study
of an economy has been called a bottom-up ap-
proach in contrast to more traditional approaches.
An additional purpose of ACEs is to handle real-
world issues, something now possible due to
technological advances in computational tools.

Nevertheless, to achieve a realistic represen-
tation of the agent in a model allows us to start
with a critical revision of the assumptions behind
classical economic theory. One of the most im-
portant concepts in this context is rationality. It
is at the core of most economic models. It is fre-
quently assumed that economic agents behave in
a fully rational way. Unfortunately, it is not clear
what this assumption holds, especially in view
of irrational behavior observed during recurrent
financial crises.

Herbert A. Simon is probably the best known
scientist to claim that “decision-making” under
uncertainty is not a fully rational process. He
developed his theory based on the concept of
bounded rationality (Herbert 1957). He was one
of the pioneers in the field of artificial intelligence
(AI), as well as a highly respected psychologist
and economist. Later, in Brian (1991), the author
made important contributions to the development
of agents with bounded rationality using com-
putational tools. Some more recent ideas about
rationality from a computer scientist’s point of
view are found in Edward (2008).

Some other common assumptions behind
classical economic theory are that the participants
of the model have homogeneous preferences and
they interact globally (Robert 2000). Departing
from the assumption of full rationality and
homogeneous expectations, the horizon and
the design issues vary widely. The modeling
of the learning behavior of the agents is a central
part of the research agenda in computational
economics. Regarding the agents’ learning
process, Lucas’ definition for adaptive behavior
from the economic point of view is of extreme
importance (Robert 1986). There are many
useful techniques to implement this adaptive
learning. The application of genetic algorithms

Evolutionary Computation in Economics 433

E

(GAs) in James and John (1999) and genetic
programming (GP) in Serafin and Edward (2009)
are good examples. GP has been previously
described as a suitable way to model economic
learning in Bruce (1999). In Thomas (2006), the
author provides us a summary of the available
options to model agent behavior and learning in
economics.

With the use of programming languages, the
agent-based approach allows us to represent ex-
plicitly agents with bounded rationality and het-
erogeneous preferences. Given a specific social
structure, the simulation of the interaction among
agents is the strength and heart of agent-based
modeling (ABM). Nowadays ABM is a promis-
ing area of research, which has opened the way to
social scientists to look for new insights in resolv-
ing important real-world issues. Considered the
third way of doing science (Robert 2003), mod-
eling the behavior of the autonomous decision-
making entities allows researchers to simulate
the emergence of certain phenomena in order
to gain better understanding of the object of
study (Robert 2000). In this sense ACE, de-
fined as the computational study of economic
processes modeled as dynamic systems of inter-
acting agents (Leigh 2006), is a growing area
inside the field of agent-based modeling. ACE
research is developing rapidly. By using machine-
learning techniques, researchers model the agents
as software programs able to make autonomous
decisions. Consequently, the interactions among
the individuals at the microlevel give rise to
regularities at the macrolevel (globally). The in-
tention is to observe the emerging self-organizing
process for a certain period of time, in order
to study the presence of patterns or the lack of
them. Currently, the study of this self-organizing
capability is one of the most active areas of ACE
research. EAs have been used for the modeling
of the agents’ learning in multi-agent simula-
tions. In economics, it is possible to find very
different approaches and topics. The following
is a small selection from a large body of litera-
ture:

Electricity Markets (Massoud 2002) (Learning
Classifier System)

Foreign Exchange Markets (Jasmina 1994;
Kiyoshi and Kazuhiro 2001) Genetic Algorithms

Payment Card Markets (Biliana et al. 2011)
(Population Based Incremental Learning)

Retail Petrol Markets (Heppenstall et al. 2007)
(Genetic Algorithms)

Stock Markets (Brian et al. 1997) (Learning
Classifier Systems) and;

(Serafin and Edward 2009) (GP)

Cross-References

�Evolutionary Algorithms
�Evolutionary Computation in Finance
�Evolutionary Computational Techniques in

Marketing
�Genetic and Evolutionary Algorithms
�Genetic Programming

Recommended Reading

Agapie A, Agapie A (2001) Evolutionary computation
for econometric modeling. Adv Model Optim 3(1):
1–5

Alexandrova-Kabadjova B, Tsang E, Krause A (2011)
Competition is bad for consumers: analysis of an
artificial payment card market. J Adv Comput Intell
Intell Inform 15:188–196

Amin M (2002) Restructuring the electric enterprise:
simulating the evolution of the electric power indus-
try with intelligent adaptive agents. In: Faruqui A,
Eakin K (eds) Market analysis and resource man-
agement, chapter 3. Kluwer Academic Publishers,
Boston/Dordetch/London

Arifovic J (1994) Genetic algorithm learning and the
cobweb model. J Econ Dyn Control 18:3–28

Arifovic J (1996) The behavior of the exchange rate in
the genetic algorithm and experimental economics.
J Political Econ 104:510–541

Arthur WB (1991) Learning and adaptive economic
behavior. Designing economic agents that act like
human agents: a behavioral approach to bounded
rationality. Am Econ Rev 81:353–359

Arthur WB, Holland JH, LeBaron B, Palmer RG,
Talyer P (1997) Asset pricing under endogenous
expectations in an artificial stock market. In: Brian
Arthur W, Durlauf S, Lane D (eds) The economy
as an evolving complex system II. Addison-Wesley,
Reading

Axelrod R (1987) The evolution of strategies in the
iterated prisoner’s dilemma. Genetic algorithms and
simulated annealing of research notes in AI, chap-

http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_88
http://dx.doi.org/10.1007/978-1-4899-7687-1_89
http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_376

434 Evolutionary Computation in Economics

ter 3. Pitman/Morgan Kaufmann, London/Los Al-
tos, pp 32–41

Axelrod R (2003) Advancing the art of simulation in
the social sciences. Jpn J Manag Inf Syst, Spec Issue
Agent-Based Model 12(3):16–22

Axelrod R, Hamilton WD (1981) The evolution of
cooperation. Science 211:1390–1396

Axelrod R, Tesfatsion L (2006) A guide for newcomers
to agent-based modeling in the social sciences. In:
Judd KL, Tesfatsion L (eds) Handbook of computa-
tional economics, volume 2: agent-based computa-
tional economics. Handbooks in economics, chapter
Appendix A. North-Holland Amsterdam, pp 1647–
1656

Axtell R (2000) Why agents? On the varied motiva-
tions for agent computing in the social sciences.
Working paper 17, Center on Social and Economic
Dynamics

Brenner T (2006) Agent learning representation ad-
vice in modelling economic learning. In: Judd
KL, Tesfatsion L (eds) Handbook of computational
economics, volume 2: agent-based computational
economics. Handbooks in economics, chapter 18.
North-Holland, pp 895–948

Bullard J, Arifovic J, Duffy J (1995) Learning in a
model of economic growth and development. Work-
ing paper 1995-017A, Federal Reserve Bank Of St.
Louis

Bullard J, Duffy J (1999) Using genetic algorithms
to model the evolution of heterogeneous beliefs.
Comput Econ 13:41–60

Chen S-H (2007) Editorial: computationally intel-
ligent agents in economics and finance. Inf Sci
177(5):1153–1168

Chen S-H, Ni CC (2000) Simulating the ecology of
oligopolistic competition with genetic algorithms.
Knowl Inf Syst 2(2):285–309

Chen S-H, Yeh C-H (1996) Genetic programming
learning in the cobweb model with speculators.
In: International computer symposium (ICS’96).
Proceedings of international conference on artifi-
cial intelligence. National Sun Yat-Sen University,
Kaohsiung, R.O.C., 19–21, pp 39–46

Duffy J, Engle-Warnick J (2001) Using symbolic re-
gression to infer strategies from experimental data.
In: Chen S-H (ed) Evolutionary computation in
economics and finance. Physica-Verlag, New York,
pp 61–82

Edmonds B (1999) Modelling bounded rationality
in agent-based simulations using the evolution of
mental models. In: Brenner T (ed) Computational
techniques for modelling learning in economics.
Kluwer, Boston, pp 305–332

Greene WH (2003) Econometric analysis, 5th edn.
Prentice Hall, Upper Saddle River, 07456

Heppenstall A, Evans A, Birkin M (2006) Using hybrid
agent-based systems to model spatially-influenced
retail markets. J Artif Soc Soc Simul 9(3): 2

Izumi K, Ueda K (2001) Phase transition in a foreign
exchange market-analysis based on an artificial mar-

ket approach. IEEE Trans Evol Comput 5(5):456–
470

Jin N, Tsang EPK (2006) Co-adaptive strategies for se-
quential bargaining problems with discount factors
and outside options. In: Proceedings of the IEEE
congress on evolutionary computation, Vancouver.
IEEE Press, pp 7913–7920

Koza J (1992) A genetic approach to econometric mod-
elling. In: Bourgine P, Walliser B (eds) Economics
and cognitive science. Pergamon Press, Oxford/New
York, pp 57–75

Lucas RE (1986) Adaptive behavior and economic
theory. In: Hogarth RM, Reder MW (eds) Ra-
tional choice: the contrast between economics
and psychology. University of Chicago Press,
Chicago/London, pp 217–242

Marimon R, McGrattan E, Sargent TJ (1990) Money
as a medium of exchange in an economy with
artificially intelligent agents. J Econ Dyn Control
14:329–373

Martinez-Jaramillo S, Tsang EPK (2009) An hetero-
geneous, endogenous and coevolutionary gp-based
financial market. IEEE Trans Evol Comput 13:33–
55

Nash J (1950) The barganing problem. Econometrica
18:155–162

Östermark R (1999) Solving irregular econometric
and mathematical optimization problems with a
genetic hybrid algorithm. Comput Econ 13(2):
103–115

Papadimitriou C (1994) Computational complexity.
Addison-Wesley, Reading

Simon HA (1957) Models of man: social and rational.
John Wiley and Sons, Inc., New York

Smith JM (1972) Game theory and the evolution of
fighting. Edinburgh University Press, Edinburgh,
pp 8–28

Tesfatsion L (2006) Agent-based computational eco-
nomics: a constructive approach to economic theory.
In: Judd KL, Tesfatsion L (eds) Handbook of com-
putational economics, volume 2: agent-based com-
putational economics. Volume 2 of handbooks in
economics, chapter 16. North-Holland Amsterdam,
pp 831–880

Tsang EPK (2008) Computational intelligence deter-
mines effective rationality. Int J Autom Comput
5:63–66

von Neumann J, Morgenstern O (1944) Theory of
games and economic behavior. Princeton University
Press, Princeton

Vriend NJ (1995) Self-organization of markets: an ex-
ample of a computational approach. Comput Econ
8: 205–231

Witt U (2008) Evolutionary economics. In The New
Palgrave Dictionary of Economics. Second Edition.
Eds. Steven N. Durlauf and Lawrence E. Blume.
Palgrave Macmillan, London

Wooldridge M (2002) An introduction to multiAgent
systems. Wiley, Chichester

Evolutionary Computation in Finance 435

E

Evolutionary Computation in
Finance

Serafı́n Martı́nez-Jaramillo1, Tonatiuh Peña
Centeno2, Biliana Alexandrova-Kabadjova3, and
Alma Lilia Garcı́a-Almanza4

1Directorate of Financial System Risk Analysis,
Banco de México, Mexico City, Mexico
2German Center for Neurodegenerative
Diseases, Banco de México, Mexico City,
Mexico
3Banco de México, Mexico City, Mexico
4Directorate of Regulation and Supervision,
Banco de México, Mexico City, Mexico

Definition

Evolutionary computation (EC) in finance is an
area of research and knowledge which involves
the use of EC techniques in order to approach top-
ics in finance. This area of knowledge is similar
to EC in economics; in fact, the areas frequently
overlap in some of the topics they approach.
The application of EC in finance pursues two
main purposes: first, to overcome the limitations
of some theoretical models, also departing from
some of the assumptions made in those mod-
els, and, second, to innovate in this extremely
competitive area of research, given the powerful
economic incentives to do so.

EC techniques have been widely used in a
variety of topics in finance. Among the most rel-
evant we find: financial forecasting, algorithmic
and automatic trading, option pricing, portfolio
optimization, artificial financial markets, credit
rating, credit scoring, bankruptcy prediction, and
filtering techniques.

The views expressed here are those of the authors and
do not represent the views of the Mexican central bank.
The authors are grateful with Alberto Romero Aranda
and Dorothy Walton for their valuable comments on
this entry.

Motivation and Background

Evolutionary computation (EC) is a field in ma-
chine learning (ML) in which the techniques
developed apply the principle of evolution in dif-
ferent ways. Among the many techniques which
have been used in financial applications, one can
find genetic algorithms (GAs), genetic program-
ming (GP), learning classifier systems (LCSs),
population-based incremental learning (PBIL),
grammatical evolution (GE), evolutionary strate-
gies (ESs), memetic algorithms (MAs), and evo-
lutionary nearest neighbor classifier algorithm
(ENPC), among many others. In addition, many
of the above mentioned techniques are used in
combination or as meta-techniques on top of
other machine-learning tools. In many financial
markets, competition is at the center of everyday
activities undertaken by individuals and compa-
nies. As a consequence, given this fierce com-
petition and the necessity for innovation, it is
natural to find numerous problems in finance
being approached by existing EC techniques. For
example, in stock markets, individual and institu-
tional investors try to beat the market in order to
make more profits than other market participants.
Coming up with novel algorithms or techniques
is crucial to maintaining their performance and
status in relation to competitors.

This area of research has been given many
different names, including computational finance
and computational intelligence in finance, among
others. Research in this area is still evolving.
Therefore, it is difficult to define the field clearly
or to establish its limits. Moreover, nowadays it
is almost impossible to provide a full account of
all the relevant work that involves any form of
EC in finance. It is also hard to organize the vast
amount of human knowledge implicit in the field.
The number of specialized journals, meetings,
and books is indeed very large and getting larger.
Chen (2002a), Chen and Wang (2004), and Chen
et al. (2007) exemplify important research in this
dynamic field.

Computing in finance is an almost unavoid-
able tool, from Monte Carlo simulation to com-
puter intensive methods used to price complex
derivatives. Furthermore, some of the most crit-

436 Evolutionary Computation in Finance

ical processes in finance make heavy use of
computers. Computational finance is a frequently
mentioned term, sometimes associated with fi-
nancial engineering. However, in this context we
refer to computational finance as the use of non-
conventional computational techniques, like EC
or other machine-learning techniques, to tackle
problems in finance. See, for example, Tsang
and Martinez-Jaramillo (2004) for a good intro-
duction to the field. Additionally, Chen (2002b),
Brabazon and O’Neill (2008), and Brabazon and
O’Neill (2009) illustrate relevant works in the
field.

Financial Forecasting and
Algorithmic and Automatic Trading

In recent years, computers have shown them-
selves to be a powerful tool in financial appli-
cations. For that reason, many machine-learning
techniques have been applied to financial prob-
lems. Financial forecasting is one of the most
important fields in the area of computational
finance (Tsang and Martinez-Jaramillo 2004). EC
has been used to solve a great variety of financial
forecasting problems, such as prediction of stock
prices changes and their volatility, forecasting in
foreign exchange markets, and more. Let us intro-
duce some of the most important research in the
financial forecasting area. This does not pretend
to be either an extensive or detailed survey of
literature in the field. The objective is just to
illustrate the use of EC in financial forecasting
applications.

Machine-learning classifiers, like other fore-
casting techniques, extend past experiences into
the future. The aim is to analyze past data in order
to identify patterns in the interest of creating a
model or a set of rules to predict future events.
In particular, EC techniques have some charac-
teristics that make them useful for financial fore-
casting. For example, evolutionary techniques are
able to produce interpretable solutions. This char-
acteristic is especially important for predictions,
since the main goals of classification are to (1)
generate an accurate classification model that
should be able to predict unseen cases and (2)

discover the predictive structure of a problem
(Breiman et al. 1984).

Models which help to understand the struc-
tural patterns in data provide information that can
be useful for recognizing the variables’ interac-
tions. There are classification models that have
good predictive power. However, these models
provide a poor representation of the solution
(take, e.g., the artificial neural networks). Since
EC techniques provide not just good predictions
but interpretable solutions, they have been used
in financial problems to acquire knowledge of the
event to predict. For example, Tsang et al. (2004)
trained a GP using past data from the financial
stock markets to predict price movements of at
least r % within a period of at most n time units.
The attributes used to train the GP were indicators
from technical analysis. Due to the possibility of
interpreting the solution, the authors were able
to analyze the most successful indicators in the
result. In fact, some researchers have used EC in
order to discover new financial indicators. This
include Allen and Karjalainen (1999), who made
use of a GP system to infer technical trading rules
from past prices. The algorithm was applied to
the S&P 500. Bhattacharyya et al. (2002) used
GP to discover trading decision models from
high-frequency foreign exchange (FX) market
data.

In other related works, Bhattacharyya et al.
(2002) used GA for mining financial time
series to identify patterns, with the aim of
discovering trading decision models. Potvin
et al. (2004) applied GP to automatically
generate short-term trading rules on the stock
markets. The authors used historical pricing and
transaction volume data reported for 14 Canadian
companies from the Toronto Stock Exchange
market. Another approach called grammatical
evolution (GE) (Brabazon and O’Neill 2004)
was applied to discover new technical trading
rules, which can be used to trade on foreign
exchange markets. In that approach, each of the
evolved programs represents a market trading
system.

Additionally, EC techniques are able to gen-
erate a set of solutions for a single problem.
This characteristic has been used to obtain a set

Evolutionary Computation in Finance 437

E

of results with the aim of applying the most
suitable solution to the particular problem. For in-
stance, Lipinski (2004) analyzed high-frequency
data. The independent variables were composed
by 350 expert rules and observations of stock
price quotations and order books recorded from
the Paris Stock Exchange. In that model, stock
market trading rules were combined into stock
market trading experts, which defined the trad-
ing expertise. The author used a simple GA, a
population-based incremental learning (PBIL), a
compact genetic algorithm (CGA), and an ex-
tended compact genetic algorithm (ECGA) to
discover optimal trading experts in a specific situ-
ation. The author argues that the optimal solution
depends on the specific situation in the stock mar-
ket, which varies with time. Thus, optimal trading
experts must be rebuilt. EC plays an important
role in learning and continual adaptation to the
changing environment.

Taking advantage of the EC’s ability to
generate multiple solutions, Garcia-Almanza
and Tsang (2008) proposed an approach, called
Evolving Comprehensible Rules (ECR), to
discover patterns in financial data sets to detect
investment opportunities. ECR was designed
to classify the minority class in unbalanced
environments, which is particularly useful in
financial forecasting given that very often the
number of profitable opportunities is scarce.
That approach offers a range of solutions to
suit an investor’s risk guidelines. Thus, the
user can choose the best trade-off between
misclassification and false alarm costs according
to the investor’s requirements. The approach
proposed by Ghandar et al. (2008) was designed
to generate trading rules. The authors imple-
mented an adaptive computational intelligent
system by using an evolutionary algorithm and
a fuzzy logic rule-based representation. The
data used to train the system was composed
just of volume and price. The authors’ objective
was to create a system to generate rules to buy
recommendations in dynamic market conditions.
An analysis of the results was provided by
applying the system for portfolio construction
to historical data for companies listed on the
MSCI Europe Index from 1990 to 2005. The

results showed that their approach was able to
generate trading rules that beat traditional fixed
rule-based strategies, such as price momentum
and alpha portfolios, and the approach also beat
the market index.

Given that EC can be used as an optimiza-
tion technique, EC techniques have been com-
bined with other approaches. For example, Chen
et al. (1999) used a genetic algorithm to de-
termine the number of input variables and the
number of hidden layers in an NN for forecasting
Dollar/Deutsche mark foreign exchange rates.
Chen and Lu (1999) used GP to optimize a NN.
That approach is called evolutionary neural trees
(ENTs). The objective was to forecast the high-
frequency stock returns of the Heng Seng stock
index. Schoreels et al. (2004) investigated the
effectiveness of an agent-based trading system.
The system employs a simple GA to optimize
the trading decisions for every agent; the knowl-
edge is based on a range of technical indicators
generating trading signals. In Dempster et al.
(2001) the authors aim to detect buy and sell
signals in the FX markets. The authors analyze
and compare the performance of a GP combined
with a reinforcement learning (RL) system to
a simple linear program (LP) characterizing a
Markov decision process (MDP) and a heuristic
in high-frequency (intraday) FX trading. The au-
thors consider eight popular technical indicators
used by intraday FX traders based on simple
trend indicators such as moving averages as well
as more complex rules. From experimental re-
sults, the authors found that all methods were
able to create significant in-sample and out-of-
sample profits when transaction costs are zero.
The GP approach generated profits for nonzero
transaction costs, although none of the methods
produce significant profits at realistic transaction
costs.

As is evident, EC techniques allow the repre-
sentation of solutions using different structures,
such as decision trees (Potvin et al. 2004), finite-
state automata, graphs, grammar (Brabazon and
O’Neill 2004), networks, and binary vectors (Lip-
inski 2004), among many others. This character-
istic lets us choose the best representation for the
problem.

438 Evolutionary Computation in Finance

Portfolio Optimization
Portfolio optimization is an all-important field
in finance. The portfolio selection problem can
be described in a simple way as the problem of
choosing the assets and the proportion of such
assets in an investor’s wealth in an effort to
maximize profits and minimize risk.

As the name suggests, portfolio optimization
is an optimization problem and EC has proven to
be very useful in difficult (sometimes intractable)
optimization problems. In Maringer (2005), the
author explains extensively the portfolio opti-
mization problem and the possible heuristic ap-
proaches, including Ant Systems (AS), memetic
algorithms (MAs), genetic algorithms (GAs), and
evolutionary strategies (ESs). For an extensive
review from a financial economic perspective, see
Brandt (2009).

Being a multi-objective optimization problem,
EC provides plenty of opportunities to approach
the portfolio optimization problem. For example,
Hassan and Clack (2008) uses a multi-objective
GP to approach this problem. In Diosan (2005),
the author compares different multi-objective
evolutionary algorithms for the portfolio
optimization problem.

The number of papers on portfolio optimiza-
tion using machine-learning techniques is large.
Streichert et al. (2004), Doerner et al. (2004), and
Maringer (2006) are some significant works on
portfolio optimization that use some form of evo-
lutionary computation or artificial intelligence.

Multi-objective evolutionary optimization is
an important field within EC, and the portfolio
optimization problem is not the only application
in finance which can be approached. In Coello
(2006), the author surveys the literature on multi-
objective optimization in economics and finance.

Financial Markets
This section introduces the applications of EC in
artificial financial markets. Due to the extensive-
ness of the literature, only a general overview will
be provided. For a more complete and detailed
guide to the applications of EC techniques in ar-
tificial financial markets, see Martinez-Jaramillo
and Tsang (2009a).

Financial markets are essential for financial
systems. Such markets represent one of the most
efficient ways to allocate financial resources
to companies. However, bubbles and crashes
are recurrent phenomena which have enormous
repercussions for the global economy. Indeed,
nowadays we can see as never before that
one single crash in one market can lead to a
worldwide slump on most of the other stock
markets. Moreover, crisis in financial markets
can affect other aspects of the (real) economy, for
example, interest rates, inflation, unemployment,
etc. This, in turn, can cause even more instability
on the financial markets.

Financial markets are very important in our
lives, whether we like it or not. For example,
everyone suffers the consequences of a stock
market crash such as the international market
crash in 1987. Moreover, this phenomena (mar-
ket crashes) occurs with an unpleasantly higher
frequency than predicted by standard economic
theory. Important references on rare disasters and
asset markets are Barro (2009), Gabaix (2012),
and Gourio (2008). One of the most important
research issues in financial markets is an ex-
planation for the process that determines asset
prices and, as a result, rates of return. There are
many models that can be used to explain such
processes, such as the capital asset pricing model
(CAPM) (Sharpe 1964), arbitrage pricing theory
(APT) (Ross 1976), or Black-Scholes option pric-
ing (Black and Scholes 1973).

Nevertheless, financial markets are very
complex to analyze due to the wide variety
of participants and their ever-changing nature.
The most common approach to study them is
by means of analytical models. However, such
models have some limitations which, in turn,
have led to the search for alternative methods
to approach them. Agent-based computational
economics (ACE) (Tesfatsion 2002) and
computational finance (Tsang and Martinez-
Jaramillo 2004) have risen as alternative ways to
overcome some of the problems of the analytical
models.

Agent-based financial markets with varying
characteristics have been developed for the study
of such markets in the last decade, since the

Evolutionary Computation in Finance 439

E

influential Santa Fe Artificial Market (The Santa
Fe Artificial Stock Market is a simulated stock
market developed at the Santa Fe Institute. The
market was developed by a team of highly
regarded researchers, among them is John
Holland, the inventor of genetic algorithms
Holland 1975.) (Arthur et al. 1997). Some of
them differ from the original Santa Fe market in
the type of agents used, such as Chen and Yeh
(2001), Gode and Sunder (1992), Yang (2002),
and Martinez-Jaramillo and Tsang (2009b), and
in market mechanisms, such as Bak et al. (1997),
Gode and Sunder (1992), and Yang (2002). Other
markets borrow ideas from statistical mechanics,
such as Levy et al. (1994) and Lux (1998). Some
important research has been done modeling stock
markets inspired by the minority game (The
minority game was first proposed by Yi-Cheng
Zhang and Damien Challet (1997) inspired by
the El Farol bar problem introduced by Brian
Arthur 1994.) like Challet et al. (2000). There are
financially simulated markets in which several
stocks are traded, such as in Cincotti et al. (2005).
However, criticism of this approach centers
on the problem of calibration, the numerous
parameters needed for the simulation program,
and the complexity of simulation, among other
problems. The contradictions between existing
theory and the empirical properties of stock
market returns are the main driving force for
some researchers to develop and use different
approaches to study financial markets. An
additional aspect of the study of financial markets
is the complexity of the analytical models
of such markets. Prior to the development of
some new simulation techniques, very important
simplifying (unrealistic) assumptions had to be
made in order to allow for the tractability of the
theoretical models.

Artificial intelligence and, in particular, EC
have been used in the past to study financial and
economic problems. However, the development
of a well-established community known as the
agent-based computational economics commu-
nity facilitates the study of phenomena in finan-
cial markets that was not previously possible.
Within this community, a vast number of studies
and approaches are being produced in order to

solve or gain more understanding of economic
problems.

The influential study (Arthur et al. 1997) and
previously the development of the concept of
bounded rationality in Simon (1982) and Arthur
(1991) changed the way in which we conceive
and model economic agents. This change in
conception dramatically altered the possibilities
for studying some economic phenomena and, in
particular, financial markets. The new models
of economic agents have changed. There is no
longer any need for fully rational representative
agents or for homogeneous expectations
and information symmetry. Furthermore, the
development of artificially adapted agents
(Holland and Miller 1991) provides a way
forward for economic science to study economic
systems.

Although they all differ in the sorts of as-
sumptions made, methodology, and tools, these
markets share the same essence: the macrobe-
havior of such markets (usually the price) should
emerge endogenously as a result of the micro-
interactions of the (heterogeneous) market par-
ticipants. This approach is in opposition to tradi-
tional techniques used in economics and finance.
Moreover, in Lux and Ausloos (2002) the authors
declare:

Unfortunately, standard modelling practices in eco-
nomics have rather tried to avoid heterogeneity and
interaction of agents as far as possible. Instead, one
often restricted attention to the thorough theoretical
analysis of the decisions of one (or few) represen-
tative agents.

The representative agent is a common, yet
very strong, assumption in the modeling of finan-
cial markets. This concept has been the source of
controversy and strong criticism. For example, in
Kirman (1992), the author criticizes the represen-
tative individual approach in economics.

In order to understand the approaches in ar-
tificial (simulated) financial markets, it is useful
to describe the different types of markets on
the basis of the framework proposed in LeBaron
(2001). In this study, LeBaron identifies the key
design issues present in every artificial financial
market and describes some of the most important

440 Evolutionary Computation in Finance

studies up to then. In LeBaron (2006), LeBaron
surveys again the literature existing until then.
The main design issues identified in LeBaron
(2001) are:

• Agents
• Market mechanisms
• Assets
• Learning
• Calibration
• Time

In addition to describing the different
approaches in artificial financial markets by using
the above-described framework, there is a fairly
detailed extension of it in Grothmann (2002) that
is worth looking at. In this study, the basic design
issues proposed in LeBaron (2001) are extended
and given more detail.

Option Pricing
Derivatives (See Hull (2008) for an introduction
to derivatives.) are financial instruments whose
main purpose is to hedge risk. However, deriva-
tives can also be used to speculate with very
negative effects on the financial health of com-
panies, as we all know now. Derivative markets
have seen significant expansion in recent years.
Futures, forwards, swaps, and options are the
best known types of derivatives. Option pricing
is an extremely important task in finance. The
Black-Scholes model for option pricing is the
reference analytical model since it has an impor-
tant theoretical framework behind it. However, in
practice, prices deviate from the prices obtained
with this model. One possible reason for the
departure is the assumptions being made in the
model (the assumption of constant volatility and
the assumption that prices follow a geometric
Brownian motion). This is why GP was used as
an alternative to perform option pricing in Chen
et al. (1998), Chidambaran et al. (2002), Fan et al.
(2007), and Yin et al. (2007). Interestingly, not
only has GP been used to perform option pricing,
but also ant colony optimization (ACO) has been
explored to approach this important problem in
finance (Kumar et al. 2008).

Credit Rating, Credit Scoring, and
Bankruptcy Prediction
Credit rating and credit scoring are two examples
of financial problems that have been traditionally
approached through statistical analysis. A credit
rating is an estimate of a corporation’s worthiness
to be given a credit and is generally expressed
in terms of an ordinal value. Credit scoring is
a technique used to express the potential risk of
lending money to a given consumer in terms of a
probability measure. Both techniques are similar
in their ends but applied to different domains.

The seminal work in the field of credit scoring
is that of Altman (1968), who proposed the ap-
plication of linear discriminant analysis (Fisher
1936) to a set of measurements known as fi-
nancial ratios, i.e., indicators of a corporation’s
financial health obtained from the corporation’s
financial statements. One of the main applications
of Altman’s method, also known as the Z-score, is
bankruptcy prediction. Understandably, a series
of improvements have been achieved by means
of applying more powerful classifiers, such as
decision trees, genetic programming, neural net-
works, and support vector machines, among oth-
ers. References that apply such techniques or con-
duct a review of the literature on their application
are Atiya (2001), Sung et al. (1999), West (2000),
Ong et al. (2005), Shin and Lee (2002), Martens
et al. (2007), and Huang et al. (2007).

Another method to evaluate credit worthiness
is that provided by specialized agencies. The so-
called credit ratings are nothing more than ordinal
values expressing the financial history, current as-
sets, and liabilities of entities such as individuals,
organizations, or even sovereign countries, such
that they represent the likelihood of default on
any type of debt. Although each rating agency
uses its own methodology and scale and these
are usually not disclosed, in the academic realm,
nevertheless, several superseding techniques to
ordinal regression have been applied. For ex-
ample, Huang et al. (2004), Dutta and Shekhar
(1988), Paleologo et al. (2009), and Zhou et al.
(2006) have proposed computationally oriented
methods to solve this problem.

Related to bankruptcy prediction, NNs have
been the standard selection apart from the tradi-

Evolutionary Computation in Finance 441

E

tional statistical methods (discriminant analysis,
logit and probit models). Quintana et al. (2008)
explore the feasibility of using the evolution-
ary nearest neighbor classifier (ENPC) algorithm
suggested by Fernández and Isasi (2004) in the
domain of early bankruptcy prediction. They as-
sess its performance comparing it to six alter-
natives; their results suggest that this algorithm
might be considered as a good choice. Another
relevant study is Turku et al. (1996) in which
the authors compare discriminant analysis, logit
analysis, and GAs for the selection of the inde-
pendent variables used for the prediction model.

Filtering Techniques
Many real-life problems involve the estimation
of unknown data from observed (probably
noisy) values. Direct estimation methods like
the Markov chain Monte Carlo (Andrieu et al.
2003), the sequential Monte Carlo (Doucet et al.
2001), and the particle filter (Gordon et al. 1993)
methods are very useful for this task. In addition
to the many applications of filtering techniques,
filters are also very important tools in finance
and economics. Their applications in the fields of
macroeconomics, microeconomics, and finance
are numerous. To enumerate them all is beyond
the scope of this entry.

Among the many variations of filtering
techniques, the Kalman filter (Kalman 1960),
the extended Kalman filter (Jazwinski 1970), the
unscented Kalman filter (Julier and Uhlmann
1997), the particle filter (Gordon et al. 1993),
and the hidden Markov model (Baum et al. 1970)
are some of those which practitioners use most
widely in finance. In economics the Hodrick-
Prescott filter (Hodrick and Prescott 1997) is one
of the most widely used.

These methods have benefited from the ap-
plication of EC techniques to optimize over the
parameter space and to improve the performance
of the methods in particular applications. For
example, in O’Sullivan (2007), the authors op-
timize over the parameter space by using an
evolutionary optimizer known as differential evo-
lution (DE) for a Cox, Ingersoll, and Ross term-
structure model. The authors in Rezaei et al.
(2008) make use of EC techniques to improve

the performance of a Kalman filter by means of
GAs. In Kumar et al. (2010) the authors tune an
extended Kalman filter using different EAs.

In an interesting application of EC techniques
in the tuning of Kalman filters, (Huo et al.
2014) determines the initial parameterization
of a Kalman filter with a GA, and the
parameterization is adaptively updated by means
of a Fuzzy Inference System (FIS).

Cross-References

�Evolutionary Algorithms
�Evolutionary Computation in Economics
�Evolutionary Computational Techniques in

Marketing
�Genetic Programming

Recommended Reading

Allen F, Karjalainen R (1999) Using genetic algo-
rithms to find technical trading rules. J Financ Econ
51:245–271

Altman EI (1968) Financial ratios, discriminant anal-
ysis and the prediction of corporate bankruptcy.
J Financ 23(4):589–609

Andrieu C, de Freitas N, Doucet A, Jordan MI (2003)
An introduction to MCMC for machine learning.
Mach Learn 50:5–43

Arthur WB (1991) Learning and adaptive economic
behavior. Designing economic agents that act like
human agents: a behavioral approach to bounded
rationality. Am Econ Rev 81:353–359

Arthur WB (1994) Inductive reasoning and bounded
rationality: the El Farol problem. Am Econ Rev
84:406–411

Arthur WB, Holland JH, LeBaron B, Palmer RG,
Talyer P (1997) Asset pricing under endogenous
expectations in an artificial stock market. In: Arthur
WB, Durlauf S, Lane D (eds) The economy as
an evolving complex system II. Addison-Wesley,
Reading

Atiya AF (2001) Bankruptcy prediction for credit risk
using neural networks: a survey and new results.
IEEE Trans Neural Netw 12(4):929–935

Bak P, Paczuski M, Shubik M (1997) Price variations
in a stock market with many agents. Physica A
246:430–453

Barro RJ (2009) Rare disasters, asset prices, and wel-
fare costs. Am Econ Rev 99(1):243–264

Baum LE, Petrie T, Soules G, Weiss N (1970) A
maximization technique occurring in the statistical

http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_87
http://dx.doi.org/10.1007/978-1-4899-7687-1_89
http://dx.doi.org/10.1007/978-1-4899-7687-1_376

442 Evolutionary Computation in Finance

analysis of probabilistic functions of Markov chains.
Ann Math Stat 41:164–171

Bhattacharyya S, Pictet OV, Zumbach G (2002)
Knowledge-intensive genetic discovery in for-
eign exchange markets. IEEE Trans Evol Comput
6(2):169–181

Black F, Scholes M (1973) The pricing of op-
tions and corporate liabilities. J Political Econ 81:
637–654

Brabazon A, O’Neill M (2004) Evolving technical
trading rules for spot foreign-exchange markets
using grammatical evolution. Comput Manag Sci
1(3):311–327

Brabazon A, O’Neill M (eds) (2008) Natural com-
puting in computational finance. Volume 100 of
studies in computational intelligence. Springer,
Berlin

Brabazon A, O’Neill M (eds) (2009) Natural comput-
ing in computational finance, vol 2. Volume 185
of studies in computational intelligence. Springer,
Berlin

Brandt MW (2009) Portfolio choice problems. Handb
Financ Econom 1:269–336

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees. Wadsworth In-
ternational Group, Belmont

Challet D, Marsili M, Zhang Y-C (2000) Modeling
market mechanism with minority game. Physica A
276:284–315

Challet D, Zhang Y-C (1997) Emergence of coop-
eration and organization in an evolutionary game.
Physica A 246:407

Chen S-H (ed) (2002a) Evolutionary computation in
economics and finance. Volume 100 of studies
in fuzziness and soft computing. Springer, New
York/Secaucus

Chen S-H (ed) (2002b) Genetic algorithms and genetic
programming in computational finance. Kluwer
Academic Publishers, Norwell

Chen S-H, Lu C-F (1999) Would evolutionary compu-
tation help in designs of artificial neural nets in fore-
casting financial time series? In: Proceeding of 1999
congress on evolutionary computation, Washington,
DC. IEEE Press, pp 275–280

Chen S-H, Wang H-S, Zhang B-T (1999) Forecasting
high-frequency financial time series with evolution-
ary neural trees: the case of hang-seng stock index.
In: Arabnia HR (ed) Proceedings of the international
conference on artificial intelligence, IC-AI’99, Las
Vegas, vol 2, 28 June–1 July 1999. CSREA Press,
pp 437–443

Chen S-H, Wang PP (eds) (2004) Computational intel-
ligence in economics and finance. Advanced infor-
mation processing. Springer, Berlin/New York

Chen S-H, Wang PP, Kuo T-W (eds) (2007) Compu-
tational intelligence in economics and finance, vol-
ume II. Advanced information processing. Springer,
Berlin/Heidelberg

Chen S-H, Yeh C-H (2001) Evolving traders and the
business school with genetic programming: a new

architecture of the agent-based artificial stock mar-
ket. J Econ Dyn Control 25(3–4):363–393

Chen S-H, Yeh C-H, Lee W-C (1998) Option pricing
with genetic programming. In: Koza JR, Banzhaf W,
Chellapilla K, Deb K, Dorigo M, Fogel DB, Garzon
MH, Goldberg DE, Iba H, Riolo R (eds) Genetic
programming 1998: proceedings of the third annual
conference, University of Wisconsin, Madison, 22–
25 July 1998. Morgan Kaufmann, pp 32–37

Chidambaran NK, Triqueros J, Jevons Lee C-W (2002)
Option pricing via genetic programming. In: Chen
S-H (ed) Evolutionary computation in economics
and finance. Volume 100 of studies in fuzziness and
soft computing, chapter 20. Physica Verlag, New
York, pp 383–398

Cincotti S, Ponta L, Raberto M (2005) A multi-assets
artificial stock market with zero-intelligence traders.
In: WEHIA 2005 (13–15 June 2005), Essex

Coello CA (2006) Evolutionary multi-objective op-
timization and its use in finance. MIMEO,
CINVESTAV-IPN, Mexico

Dempster MAH, Payne TW, Romahi Y, Thompson
GWP (2001) Computational learning techniques for
intraday FX trading using popular technical indica-
tors. IEEE Trans Neural Netw 12:744–754

Diosan L (2005) A multi-objective evolutionary ap-
proach to the portfolio optimization problem. In:
CIMCA’05: proceedings of the international confer-
ence on computational intelligence for modelling,
control and automation and international conference
on intelligent agents, web technologies and inter-
net commerce vol-2 (CIMCA-IAWTIC’06), Wash-
ington, DC. IEEE Computer Society, pp 183–
187

Doerner K, Gutjahr WJ, Hart RF, Strauss C, Stum-
mer C (2004) Pareto ant colony optimization: a
metaheuristic approach to multiobjective portfolio
selection. Ann Oper Res 131:79–99

Doucet A, de Freitas N, Gordon NJ (2001) An in-
troduction to sequential Monte Carlo methods. In:
Doucet A, de Freitas N, Gordon NJ (eds) Sequential
Monte Carlo methods in practice. Springer, New
York, pp 1–13

Dutta S, Shekhar S (1988) Bond rating: a nonconserva-
tive application of neural networks. IEEE Int Conf
Neural Netw 2:443–450

Fan K, Brabazon A, O’Sullivan C, O’Neill M (2007)
Option pricing model calibration using a real-
valued quantum-inspired evolutionary algorithm.
In: GECCO’07: proceedings of the 9th annual con-
ference on genetic and evolutionary computation.
ACM, New York, pp 1983–1990

Fernández F, Isasi P (2004) Evolutionary design of
nearest prototype classifiers. J Heuristics 10(4):
431–454

Fisher RA (1936) The use of multiple measurements in
taxonomic problems. Ann Eugen 7:179

Gabaix X (2012) Variable rare disasters: an exactly
solved framework for ten puzzles in macro-finance.
Q J Econ 127(2):645–700

Evolutionary Computation in Finance 443

E

Garcia-Almanza AL, Tsang EPK (2008) Evolving de-
cision rules to predict investment opportunities. Int
J Autom Comput 5(1):22–31

Ghandar A, Michalewicz Z, Schmidt M, To TD,
Zurbrugg R (2008) Computational intelligence for
evolving trading rules. IEEE Trans Evol Comput
13(1):71–86

Gode DK, Sunder S (1992) Allocative efficiency of
markets with zero intelligence (z1) traders: mar-
ket as a partial substitute for individual rationality.
GSIA working papers 1992-16, Tepper School of
Business, Carnegie Mellon University

Gordon NJ, Salmond DJ, Smith AFM (1993) Novel
approach to nonlinear/non-Gaussian Bayesian state
estimation. In: IEE Proceedings F (Radar and Signal
Processing), vol 140, IET, pp 107–113

Gourio F (2008) Disasters and recoveries. Am Econ
Rev 98:68–73

Grothmann R (2002) Multi-agent market modeling
based on neural networks. PhD thesis, Faculty of
Economics, University of Bremen

Hassan G, Clack CD (2008) Multiobjective robustness
for portfolio optimization in volatile environments.
In: GECCO’08: proceedings of the 10th annual con-
ference on Genetic and evolutionary computation.
ACM, New York, pp 1507–1514

Hodrick RJ, Prescott EC (1997) Postwar us business
cycles: an empirical investigation. J Money Credit
Bank 29:1–16

Holland JH (1975) Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor

Holland JH, Miller JH (1991) Artificial adaptive agents
in economic theory. Am Econ Rev 81:365–370

Huang C-L, Chen M-C, Wang C-J (2007) Credit
scoring with a data mining approach based on
support vector machines. Expert Syst Appl 33(4):
847–856

Huang Z, Chen H, Hsu C-J, Chen W-H, Wu S (2004)
Credit rating analysis with support vector machines
and neural networks: a market comparative study.
Decis Support Syst 37(4):543–558

Hull J (2008) Options, futures and other derivatives.
Prentice Hall series in finance. Prentice Hall, Upper
Saddle River

Huo Y, Cai Z, Gong W, Liu Q (2014) A new adap-
tive Kalman filter by combining evolutionary algo-
rithm and fuzzy inference system. In: 2014 IEEE
congress on evolutionary computation (CEC), Bei-
jing, pp 2893–2900

Jazwinski AH (1970) Stochastic processes and filtering
theory. Academic Press, New York

Julier SJ, Uhlmann JK (1997) A new extension of the
Kalman filter to nonlinear systems. In: International
symposium on aerospace/defense sensing, simula-
tion and controls, Orlando, vol 3, pp 182–193

Kalman RE (1960) A new approach to linear filtering
and prediction problems. J Fluids Eng 82(1):35–45

Kirman AP (1992) Whom or what does the representa-
tive individual represents? J Econ Perspect 6: 117–
136

Kumar KS, Dustakar NR, Jatoth RK (2010) Evolution-
ary computational tools aided extended Kalman fil-
ter for ballistic target tracking. In: 2010 3rd interna-
tional conference on emerging trends in engineering
and technology (ICETET), Goa, pp 588–593

Kumar S, Thulasiram RK, Thulasiraman P (2008)
A bioinspired algorithm to price options. In:
C3S2E’08: proceedings of the 2008 C3S2E confer-
ence. ACM, New York, pp 11–22

LeBaron B (2001) A builder’s guide to agent based
financial markets. Quant Financ 1:254–261

LeBaron B (2006) Agent-based computational finance.
In: Judd KL, Tesfatsion L (eds) Handbook of com-
putational economics, volume 2: agent-based com-
putational economics. Handbooks in economics,
chapter 24. North-Holland, pp 1187–1234

Levy M, Levy H, Solomon S (1994) A microscopic
model of the stock market: cycles, booms and
crashes. Econ Lett 45:103–111

Lipinski P (2004) Evolutionary data-mining methods
in discovering stock market expertise from financial
time series. PhD thesis, University of Wroclaw,
Wroclaw

Lux T (1998) The socio-economic dynamics of spec-
ulative markets: interacting agents, chaos, and the
fat tails of return distributions. J Econ Behav Organ
33:143–165

Lux T, Ausloos M (2002) Market fluctuations I: scal-
ing, multiscaling and their possible origins. In:
Bunde A, Kropp J, Schellnhuber HJ (eds) Theories
of disaster – scaling laws governing weather, body,
and stock market dynamics. Springer, Berlin Hei-
delberg pp 373–409

Maringer D (2005) Portfolio management with heuris-
tic optimization. Volume 8 of advances in compu-
tational management science. Springer Dordrecht,
The Netherlands

Maringer D (2006) Small is beautiful: diversification
with a limited number of assets. Working paper
WP005-06, Centre for Computational Finance and
Economic Agents, University of Essex

Martens D, Baesens B, Gestel TV, Vanthienen J (2007)
Comprehensible credit scoring models using rule
extraction from support vector machines. Eur J Oper
Res 183(3):1466–1476

Martinez-Jaramillo S, Tsang EPK (2009a) Evolution-
ary computation and artificial financial markets. In:
Natural computing in computational finance. Vol-
ume 185 of studies in computational intelligence.
Springer, Berlin/Heidelberg, pp 137–179

Martinez-Jaramillo S, Tsang EPK (2009b) An hetero-
geneous, endogenous and coevolutionary gp-based
financial market. IEEE Trans Evol Comput 13:33–
55

Ong C-S, Huang J-J, Tzeng G-H (2005) Building credit
scoring models using genetic programming. Expert
Syst Appl 29(1):41–47

O’Sullivan C (2007) Parameter uncertainty in Kalman
filter estimation of the cir term structure model.
Centre for Financial Markets working paper series

444 Evolutionary Computational Techniques in Marketing

WP-07-18, Centre for Financial Markets, School of
Business, University College Dublin

Paleologo G, Elisseeff A, Antonini G (2010) Subag-
ging for credit scoring models. Eur J Oper Res.
201(2):490–499

Potvin J-Y, Soriano P, Vallée M (2004) Generating
trading rules on the stock markets with genetic
programming. Comput Oper Res 31(7):1033–1047

Quintana D, Saez Y, Mochon A, Isasi P (2008)
Early bankruptcy prediction using enpc. Appl Intell
29(2):157–161

Rezaei N, Kordabadi H, Elkamel A, Jahanmiri A
(2008) An optimal extended Kalman filter de-
signed by genetic algorithms. Chem Eng Commun
196(5):602–615

Ross SA (1976) The arbitrage theory of capital asset
pricing. J Econ Theory 13(3):341–360

Schoreels C, Logan B, Garibaldi JM (2004) Agent
based genetic algorithm employing financial
technical analysis for making trading decisions
using historical equity market data. In: IAT’04:
proceedings of the intelligent agent technology,
IEEE/WIC/ACM international conference,
Washington, DC. IEEE Computer Society,
pp 421–424

Sharpe WF Capital asset prices: a theory of market
equilibrium under conditions of risk*. J Financ
19(3):425–442 (1964)

Shin K-S, Lee Y-J (2002) A genetic algorithm applica-
tion in bankruptcy prediction modeling. Expert Syst
Appl 23(3):321–328

Simon HA (1982) Models of bounded rationality,
vol 2. MIT Press, Cambridge, MA

Streichert F, Ulmer H, Zell A (2004) Evaluating a
hybrid encoding and three crossover operators on
the constrained portfolio selection problem. In: Pro-
ceedings of the 2004 congress on evolutionary com-
putation. IEEE Press, pp 932–939

Sung TK, Chang N, Lee G (1999) Dynamics of
modeling in data mining: interpretive approach to
bankruptcy prediction. J Manag Inf Syst 16(1):
63–85

Tesfatsion L (2002) Agent-based computational eco-
nomics: growing economies from the bottom up.
Artif Life 8:55–82

Tsang EPK, Martinez-Jaramillo S (2004) Computa-
tional finance. In: IEEE computational intelligence
society newsletter. 3(8):8–13

Tsang EPK, Yung P, Li J (2004) Eddie-automation,
a decision support tool for financial forecasting. J
Decis Support Syst Spec Issue Data Min Financ
Decis Mak 37(4):559–565

Turku BB, Back B, Laitinen T, Sere K, Wezel MV
(1996) Choosing bankruptcy predictors using dis-
criminant analysis, logit analysis, and genetic al-
gorithms. In: Proceedings of the first international
meeting on artificial intelligence in accounting, fi-
nance and tax, p 337356

West D (2000) Neural network credit scoring models.
Comput Oper Res 27(11–12):1131–1152

Yang J (2002) The efficiency of an artificial double
auction stock market with neural learning agents. In
Evol Comput Econ Financ 85–106, Physica-Verlag
Heidelbergh New York

Yin Z, Brabazon A, O’Sullivan C (2007) Adap-
tive genetic programming for option pricing. In:
GECCO’07: proceedings of the 2007 GECCO con-
ference companion on genetic and evolutionary
computation. ACM, New York, pp 2588–2594

Zhou Q, Lin C, Yang W (2006) Multi-classifier com-
bination for banks credit risk assessment. In: 1st
IEEE conference on industrial electronics and ap-
plications, pp 1–4

Evolutionary Computational
Techniques in Marketing

Alma Lilia Garcı́a-Almanza1, Biliana
Alexandrova-Kabadjova2, and Serafı́n
Martı́nez-Jaramillo3

1Directorate of Regulation and Supervision,
Banco de México, Mexico City, Mexico
2Banco de México, Mexico City, Mexico
3Directorate of Financial System Risk Analysis,
Banco de México, Mexico City, Mexico

Motivation and Background

The Internet and social networks are key factors
that have strongly affected market competition,
as they provide customers with more choice in
products, services, and prices. For instance, well-
established electronic commerce companies such
as Amazon, Booking, TripAdvisor, and others
provide rankings of their products based on past
customer reviews. In the same vein, social net-
works are a powerful tool to spread good or
bad comments about products or services, and
they can directly influence potential clients, since
the members of the same social network usually
share interests and have similar economic levels.
For those reasons, marketing teams have focused
efforts on creating intelligent business strategies.
New artificial intelligence approaches to mar-
keting have emerged, especially evolutionary al-
gorithms used to solve a variety of marketing
problems such as the design of attractive prod-
ucts and services for consumers, the analysis of

Evolutionary Computational Techniques in Marketing 445

E

populations or social networks to target potential
clients, the design of new marketing strategies,
and more. Nowadays, a huge amount of data on
almost any kind of human activity has been stored
in structured and unstructured forms. The data is
a gold mine, the analysis of which can provide
useful information for competing more efficiently
in the market. For that reason, machine learning
techniques have been used to discover useful
patterns for creating user-friendly interfaces and
new market segments, among other aims. Many
evolutionary computational techniques have been
applied to marketing problems in order to obtain
a commercial advantage over competitors.

Applications

Marketing is a very dynamic area, as it evolves
alongside technology and aims to keep promoted
products alive in the market.

The Design of New Products
One of the goals of marketing is to discover
products of superior value and quality. To achieve
this goal in Fruchter et al. (2006), the authors
propose to design a product line rather than a
single product. The authors argue that by offering
a product line, the manufacturer can customize
products according to the needs of different mar-
ket niches, which would result in higher customer
satisfaction and more buyers. Nevertheless, as
the time required by the amount of data on
customer preferences increases, the optimization
process of the product line becomes very hard
to manage. For that reason, the authors applied
the use of genetic algorithms (GAs) to solve
the problem heuristically, and the performance
of each solution was valued according to the
manufacturer’s profits. In a similar way, Liu and
Ong (2008) used a GA to solve a marketing
segmentation problem. In this case, the evolution-
ary algorithm was applied to reach all customers
effectively.

In the approach proposed by Sundar Balakr-
ishnan and Jacob (1996), a GA was used to opti-
mize for customer preference in product design.
The authors followed a three-step methodology

in order to create a new product. First, the set of
attributes subject to adjustment, such as color or
shape, was determined. Second, customer prefer-
ences were collected. Finally, a GA was applied
to select those attributes that satisfy a larger
number of customers.

Targeting Potential Clients
Bhattacharyya (2000) proposed a GA in combi-
nation with a case-based reasoning (CBR) system
to predict customer purchasing behavior. The
objective was to identify potential customers for
a specific product or service. This approach was
developed and tested with real cases by direct
marketing from a worldwide insurance company.
An optimization mechanism was integrated into
the classification system in order to select those
customers most likely to acquire an insurance.

Advertisement
Advertisement is an important area of market-
ing. It is defined as the activity of attracting
public attention to a product or business. Since
personalized advertisement improves marketing
efficiency, Kwon and Moon (2001) proposed a
personalized prediction model to be used in email
marketing. A circuit model combined with ge-
netic programs (GPs) was proposed to analyze
customer information. The result was a set of
recommended rules. It was tested over a general
mass marketing. According to the authors, the
model showed a significant improvement in sales.
In another approach, Naik et al. (1998) used a
GA combined with a Kalman filter procedure to
determine the best media schedule for advertise-
ment, which at the time was constrained by a
budget. This approach evaluated a large number
of alternative media schedules to decide upon
an optimal media planning solution. The Internet
has become very popular and convenient for of-
fering and purchasing, since many products and
services can be found easily in a very short time,
increasing competition among providers. Since
these kinds of sales do not directly involve human
interaction, it is essential to design new and better
strategies to personalize Web pages. For instance,
Abraham and Ramos (2003) proposed an ant
clustering algorithm to discover Web usage pat-

446 Evolutionary Computing

terns and a linear genetic programming to analyze
visitor behavior. The objective was to discover
useful knowledge from user interactions with the
Web. The knowledge was used to design adaptive
Web sites, business and support services, person-
alization, network traffic flow analysis, and more.

According to Scanlon (2008), the company
Staples used a software called Affinnova to re-
design and relaunch its paper brand. Affinnova
was designed by Waltham, and it uses a GA
to simulate the evolution of consumer markets
where strong products survive and weak ones die
out. The strongest possible design emerges after
several generations. A panel of 750 consumers
selected their favorite options from each gener-
ation. The software analyzed customer choices
over multiple generations to identify preference
patterns. Surveys included consumer profiles that
contain basic demographic information, customer
beliefs, and consumer habits. Clients can also
segment results and understand how different de-
signs appeal to different consumers. Affinnova’s
research also helped to identify the imagery and
messaging that would most appeal to consumers.

To summarize, EC has been used to solve a
wide variety of marketing problems. Given that
ECs are global optimization methods, they can
be applied to forecasting and data mining. In
this respect, they have great potential for use in
the field of marketing. EC techniques allow for
the extraction and analysis of customer patterns
among large amounts of data, and forecasts of
purchasing tendencies, among many other aims.

Cross-References

�Evolutionary Algorithms
�Evolutionary Computation in Economics
�Evolutionary Computation in Finance
�Genetic and Evolutionary Algorithms
�Genetic Programming

Recommended Reading

Abraham A, Ramos V (2003) Web usage mining
using artificial ant colony clustering and linear
genetic programming. In: Congress on evolution-

ary computation (CEC), Canberra, vol 2. IEEE,
pp 1384–1391

Bhattacharyya S (2000) Evolutionary algorithms in
data mining: multi-objective performance modeling
for direct marketing. In KDD’00: proceedings of the
sixth ACM SIGKDD international conference on
knowledge discovery and data mining, New York.
ACM, pp 465–473

Fruchter G, Fligler A, Winer R (2006) Optimal product
line design: a genetic algorithm approach to mitigate
cannibalization. J Optim Theory Appl 131(2):227–
244

Kwon Y-K, Moon B-R (2001) Personalized email mar-
keting with a genetic programming circuit model.
In: Spector L, Goodman ED, Wu A, Langdon WB,
Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk
S, Garzon MH, Burke E (eds) Proceedings of the
genetic and evolutionary computation conference
(GECCO-2001), San Francisco. Morgan Kaufmann,
pp 1352–1358

Liu H-H, Ong C-S (2008) Variable selection in clus-
tering for marketing segmentation using genetic
algorithms. Expert Syst Appl 34(1):502–510

Naik PA, Mantrala MK, Sawyer AG (1998) Planning
media schedules in the presence of dynamic adver-
tising quality. Mark Sci 17(3):214–235

Scanlon J, (2008) “Staples’ Evolution”, Bloomberg.
com, Bloomberg, <http://www.bloomberg.com/
news/articles/2008-12-29/staples-evolutionbusiness
week-business-news-stock-market-and-financial-
advice>.

Sundar Balakrishnan PV, Jacob VS (1996) Ge-
netic algorithms for product design. Manag Sci
42(8):1105–1117

Evolutionary Computing

�Evolutionary Algorithms

Evolutionary Constructive Induction

�Evolutionary Feature Selection and Construc-
tion

Evolutionary Feature Selection

�Evolutionary Feature Selection and Construc-
tion

http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_87
http://dx.doi.org/10.1007/978-1-4899-7687-1_88
http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_376
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_90

Evolutionary Feature Selection and Construction 447

E

Evolutionary Feature Selection and
Construction

Krzysztof Krawiec
Poznan University of Technology, Poznan,
Poland

Abstract

Representation of input data has an essen-
tial influence on the performance of machine
learning systems. Evolutionary algorithms can
be used to transform data representation by
selecting some of the existing features (evolu-
tionary feature selection) or constructing new
features from the existing ones (evolutionary
feature construction). This entry provides the
rationale for both these approaches and sys-
tematizes the research and applications in this
area.

Synonyms

EFSC; Evolutionary constructive induction; Evo-
lutionary feature selection; Evolutionary feature
synthesis; Genetic attribute construction; Genetic
feature selection

Definition

Evolutionary feature selection and construction
(EFSC) is a bio-inspired methodology for explicit
modification of input data of a learning system.
It uses evolutionary computation (EC) to con-
struct a mapping from the original data repre-
sentation space onto a secondary representation
space. In evolutionary feature selection (EFS),
that mapping consists in dropping off some of the
features (� attributes) from the original represen-
tation so that the dimensionality of the resulting
representation space is not greater than that of the
original space. In evolutionary feature construc-
tion (EFC), an evolutionary algorithm creates
(synthesizes) new features (derived attributes)
that complement and/or replace the original ones.

Therefore, EFS may be considered as a special
case of EFC.

A typical EFSC algorithm maintains a pop-
ulation of solutions, each of them encoding a
specific mapping. The best mapping found in
evolutionary search becomes the data preproces-
sor for the classifier. Usually, EFSC takes place in
the training phase only, and the evolved mapping
does not undergo further changes in the testing
phase.

Though EFSC is technically a form of data
preprocessing (see �Data Preparation), some of
its variants may as well involve an internal in-
ductive process in the fitness function. Also, EFS
and EFC may be considered as special cases of
� Feature Selection and �Feature Construction,
respectively. EFC is also partially inspired by
�Constructive Induction.

Motivation and Background

Real-world machine-learning problems often in-
volve a multitude of attributes, which individ-
ually have low informative content and cannot
provide satisfactory performance of the learn-
ing system. This applies in particular to data-
abundant domains like image analysis and signal
processing. When faced with many low-quality
attributes, induction algorithms tend to build clas-
sifiers that perform poorly in terms of classifica-
tion accuracy. This problem may be alleviated by
removing some features from the original repre-
sentation space (feature selection) or introducing
new features defined as informative expressions
(arithmetic, logical, etc.) built of multiple at-
tributes (feature construction).

Many learning algorithms lack the ability
of discovering intricate dependencies between
attributes, which is a necessary precondition for
successful feature selection and construction.
This gap is filled out by EFSC, which uses
EC to get rid of superfluous attributes and
to construct new features. Benefits of EFSC
are similar to those of general � Feature
Selection and � Feature Construction and include
reduced dimensionality of the input space, better
predictive accuracy of the learning system, faster

http://dx.doi.org/10.1007/978-1-4899-7687-1_100133
http://dx.doi.org/10.1007/978-1-4899-7687-1_100151
http://dx.doi.org/10.1007/978-1-4899-7687-1_100152
http://dx.doi.org/10.1007/978-1-4899-7687-1_280
http://dx.doi.org/10.1007/978-1-4899-7687-1_100183
http://dx.doi.org/10.1007/978-1-4899-7687-1_100185
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_165
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100

448 Evolutionary Feature Selection and Construction

training and querying, and better readability of
the acquired knowledge.

Feature selection and feature construction may
be conveniently formulated as an optimization
problem with each solution corresponding to a
particular feature subset (for feature selection) or
to a particular definition of new features (for fea-
ture construction). The number of such solutions
grows exponentially with the number of orig-
inal features, rendering the exact search meth-
ods infeasible. EC techniques are particularly
well-suited to heuristically search these solution
spaces. They do not make any assumptions about
the optimized function (in contrast to, e.g., the
branch-and-bound algorithm) and perform global
heuristic search, typically finding high-quality
solutions in acceptable time. These virtues are
important in EFSC, where the objective function
depends on the training data, and it is difficult to
predict its properties.

Another strength of EC is easy tailoring to a
given task. For instance, a subset of features in
EFS is usually encoded as a bit-string solution in
genetic algorithm (GA), where a bit at a particular
position determines the selection or exclusion
of the corresponding feature (Vafaie and Imam
1994; Yang and Honavar 1998). In EFC, def-
initions of constructed features may be conve-
niently represented as genetic programming (GP)
expressions (Rizki et al. 2002; Teller and Veloso

1997). Also, an evolutionary algorithm naturally
produces many solutions. This makes it a conve-
nient tool for, e.g., parallel construction of multi-
ple representations (feature subsets) that may be
subsequently used in a compound classifier.

Structure of Learning System

Typically, EFSC uses a variant of evolutionary
algorithm (usually GA for EFS or genetic pro-
gramming for EFC) to maintain a population of
solutions (individuals), each of them encoding a
particular subset of features (for EFS) or defi-
nition of new features (for EFC). Solutions un-
dergo mutations, recombinations, and selection.
Selective pressure is exerted by a fitness function
that estimates a solution’s quality by analyzing
selected properties of the secondary representa-
tion space (see Fig. 1). This usually involves three
steps:

1. Decoding of solution (retrieving the mapping
from the encoded solution).

2. Transforming the training set into the sec-
ondary representation space according to the
mapping.

3. Estimating the quality of the secondary rep-
resentation space, which becomes a solution’s
fitness.

Evolutionary Feature Selection and Construction, Fig. 1 Evolutionary feature selection and construction

Evolutionary Feature Selection and Construction 449

E

The quality measures employed in step 3 may
be grouped into two categories. Filter approach
relies on the measures that characterize the de-
sired properties of training data in the secondary
space (e.g., class separability), abstracting from
any particular induction algorithm. Wrapper ap-
proach estimates the predictive ability in the
secondary representation space by a specific in-
duction algorithm, usually by partitioning the
training set into several subsets and performing
multiple train-and-test experiments (e.g., cross-
validation). The wrapper approach, though com-
putationally more expensive, takes into account
the inductive and representational biases of the
employed induction algorithm and thanks to that
often proves superior in terms of classification
accuracy.

The result of a typical EFSC procedure is
the best solution found in an evolutionary run,
i.e., the most fit representation mapping. This
mapping serves as a preprocessor of input data
and is subsequently used to induce the final clas-
sifier from the training set. The trained classi-
fier together with the preprocessing provided by
the mapping is the final outcome of the EFSC-
enriched training process and may be used for
classification of new examples.

EFS is the simplest variant of EFSC. In this
case, a solution encodes the indices of attributes
that should remain in the resulting secondary
representation. This leads to straightforward en-
coding characteristic for GA, with each solution
being a bit string as long as the number of
original attributes. EFS may be thus easily im-
plemented using off-shelf EA software packages.
More sophisticated EFS approaches have been
also considered, like evolving GP individuals that
rank or score features (Zhang and Rockett 2011).

Evolutionary feature weighting (EFW) is a
direct generalization of EFS, where the evolu-
tionary search weighs the features instead of
selecting them. Solutions in EFW are real-valued
vectors. EFW requires a wrapper fitness function
that can take attribute weights into account. In
Komosiński and Krawiec (2000), EFW has been
used with a nearest neighbor-based wrapper fit-
ness function to weigh features for a medical
diagnosing problem.

EFC usually employs genetic programming
to represent feature transformation. Each
GP solution encodes an expression tree that
uses the original attributes and numeric
constants as leaves (terminals) and functions
from a predefined vocabulary as internal tree
nodes (nonterminals). The value returned
by such an expression when applied to an
example is interpreted as the new feature.
Function set usually encompasses simple
arithmetics and elementary functions. The
evolved features replace or extend the original
ones. If a single new feature is insufficient
to provide satisfactory discriminative ability,
several GP trees can be encoded within each
solution.

EFC is particularly useful in image analy-
sis and computer vision tasks, which naturally
tend to involve large numbers of attributes. In
such contexts, an EFC algorithm evolves GP
solutions that construct higher-level features from
low-level image attributes (Krawiec and Bhanu
2005) or implement advanced feature detectors
(Howard et al. 2006; Puente et al. 2009). Alterna-
tively, solutions encode chains of operations that
process the entire image globally according to the
goal specified by the fitness function. Other rep-
resentations of EFC solutions have been studied
as well in GP, including, e.g., graphs (Teller and
Veloso 1997) or sequences of operations (Bhanu
et al. 2005).

It has been demonstrated that an EFC task may
be decomposed into several semi-independent
subtasks using cooperative coevolution, a variant
of evolutionary algorithm that maintains several
populations hosting individuals that encode
partial solutions (Krawiec and Bhanu 2005).
Other work demonstrates that fragments of
GP expressions encoding feature definitions
may help to discover good features in other
learning tasks (Jaśkowski, Krawiec, and Wieloch
2007).

Applications

Real-world applications of EFSC are numerous
and include medical and technical diagnosing,

450 Evolutionary Feature Selection and Construction

genetics, detection of intrusions in computer net-
works, air quality forecasting, brain-computer
interfaces, seismography, robotics, face recogni-
tion, handwriting recognition, vehicle detection
in visual, infrared, and radar modality, image
segmentation, satellite imaging, and stereovision.
EFS has been built into several machine learn-
ing and neural network software packages (e.g.,
WEKA, Statistica). A ready-to-use implementa-
tion of EFC is available in RapidMiner; alterna-
tively, it can be facilitated with the existing EC
frameworks like ECJ (http://cs.gmu.edu/�eclab/
projects/ecj/). More examples of real-world ap-
plications of EFSC may be found in Langdon
et al. (2009).

Future Directions

Nowadays, EFC becomes more and more uni-
fied with GP-based classification and regression,
where solutions are expected to perform the com-
plete classification or regression task rather than
to implement only feature definitions. Recently,
EFSC has also witnessed the growing popularity
of the multiobjective evolutionary techniques. In
EFC, it is now common to include the complexity
of feature definition (reflected by program size
in GP) as an additional objective alongside the
accuracy of classification (Neshatian and Zhang
2011). This is intended to reduce the so-called
program bloat (the excessive growth of programs
that often pesters GP systems) and so curtail over-
fitting, because complex features are less likely
to generalize well. Other studies involve more
“helper objectives,” like Bayes error estimate
(Olague and Trujillo 2012) or Fisher criterion.
Domain-specific measures are also occasionally
employed in this character. For instance, in a
computer vision study (Arnaldo et al. 2014),
interest point detectors are evolved using three
objectives that capture detector’s stability, spatial
dispersion of detected points, and their informa-
tion content.

The online genetic programming bibliography
(Langdon et al. 2009) covers most of the
works in evolutionary feature selection and
construction. A concise review of contemporary

GP research involving feature construction for
image analysis and object detection may be
found in Krawiec et al. (2007). A systematization
of different evolutionary approaches to feature
construction is also presented in Bhanu et al.
(2005).

Cross-References

�Constructive Induction
�Data Preparation
� Feature Selection

Recommended Reading

Arnaldo I, Krawiec K, O’Reilly U-M (2014) Mul-
tiple regression genetic programming. In: Igel C,
Arnold DV, Gagne C, Popovici E, Auger A, Bac-
ardit J, Brockhoff D, Cagnoni S, Deb K, Doerr
B, Foster J, Glasmachers T, Hart E, Heywood
MI,Iba H, Jacob C, Jansen T, Jin Y, Kessentini
M, Knowles JD, Langdon WB, Larranaga P, Luke
S, Luque G, McCall JAW, Montes de Oca MA,
Motsinger-Reif A, Ong YS, Palmer M, Parsopoulos
KE, Raidl G, Risi S, Ruhe G, Schaul T, Schmickl
T, Sendhoff B, Stanley KO, Stuetzle T, Thierens
D, Togelius J, Witt C, Zarges C (eds) GECCO
’14: proceedings of the 2014 conference on ge-
netic and evolutionary computation, SIGEVO, Van-
couver, 12–16 July. ACM, New York, pp 879–
886. doi:10.1145/2576768.2598291, ISBN 978-1-
4503-2662-9, http://doi.acm.org/10.1145/2576768.
2598291

Bhanu B, Lin Y, Krawiec K (2005) Evolutionary syn-
thesis of pattern recognition systems. Springer, New
York

Howard D, Roberts SC, Ryan C (2006) Pragmatic
genetic programming strategy for the problem of ve-
hicle detection in airborne reconnaissance. Pattern
Recognit Lett 27(11):1275–1288

Jaśkowski W, Krawiec K, Wieloch B (2007) Knowl-
edge reuse in genetic programming applied to visual
learning. In: Thierens D et al (eds) GECCO’07:
proceedings of the 9th annual conference on genetic
and evolutionary computation, vol 2. ACM Press,
London, pp 1790–1797

Komosiński M, Krawiec K (2000) Evolutionary
weighting of image features for diagnosing of CNS
tumors. Artif Intell Med 19(1):25–38

Krawiec K, Bhanu B (2005) Visual learning by coevo-
lutionary feature synthesis. IEEE Trans Syst Man
Cybern Part B 35(3):409–425

Krawiec K, Howard D, Zhang M (2007) Overview of
object detection and image analysis by means of

http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
http://dx.doi.org/10.1007/978-1-4899-7687-1_165
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
10.1145/2576768.2598291
http://doi.acm.org/10.1145/2576768.2598291
http://doi.acm.org/10.1145/2576768.2598291

Evolutionary Fuzzy Systems 451

E

genetic programming techniques. In: Proceedings
of frontiers in the convergence of bioscience and
information technologies 2007 (fbit2007), Jeju, 11–
13 oct 2007. IEEE CS Press, pp 779–784

Langdon W, Gustafson S, Koza J (2009) The genetic
programming bibliography. http://www.cs.bham.ac.
uk/�wbl/biblio/ [online]

Neshatian K, Zhang M (2011) Using genetic
programming for context-sensitive feature scoring
in classification problems. Connect Sci 23(3):183–
207. doi:10.1080/09540091.2011.630065, http://
www.tandfonline.com/doi /abs /10.1080/09540091.
2011.630065, http://www.tandfonline.com/doi/pdf/
10.1080/09540091.2011.630065

Olague G, Trujillo L (2012) Interest point detection
through multiobjective genetic programming.
Appl Soft Comput 12(8):2566–2582. doi:10.
1016/j.asoc.2012.03.058, ISSN 1568-4946,
http://www.sciencedirect.com/science/article/pii/S1
568494612001706

Puente C, Olague G, Smith SV, Bullock SH, González-
Botello MA, Hinojosa-Corona A (2009) A novel GP
approach to synthesize vegetation indices for soil
eros ion assessment. In: Giacobini M et al (eds)
Applications of evolutionary computing. Springer,
Berlin/New York, pp 375–384

Rizki MM, Zmuda MA, Tamburino LA (2002) Evolv-
ing pattern recognition systems. IEEE Trans Evolut
Comput 6(6):594–609

Teller A, Veloso M (1997) PADO: a new learning
architecture for object recognition. In: Ikeuchi K,
Veloso M (eds) Symbolic visual learning. Oxford
Press, New York, pp 77–112

Vafaie H, Imam IF (1994) Feature selection meth-
ods: genetic algorithms vs. greedy-like search.
In: Proceedings of international conference on
fuzzy and intelligent control systems, Louisville,
Mar 1994

Yang J, Honavar V (1998) Feature subset selection
using a genetic algorithm. IEEE Trans Intell Syst
13(2):44–49

Zhang Y, Rockett PI (2011) A generic optimising
feature extraction method using multiobjective
genetic programming. Appl Soft Comput
11(1):1087–1097. doi:10.1016/j.asoc.2010.02.
008, ISSN 1568-4946, http://www.sciencedirect.
com/science/article/B6W86-4YGHGKT-2/2/3c6f14
d2e029af14747957a5a2ccfd11

Evolutionary Feature Synthesis

�Evolutionary Feature Selection and Construc-
tion

Evolutionary Fuzzy Systems

Carlos Kavka
University of Trieste, Trieste, Italy

Definition

An evolutionary fuzzy system is a hybrid au-
tomatic learning approximation that integrates
� fuzzy systems with � evolutionary algorithms,
with the objective of combining the optimization
and learning abilities of evolutionary algorithms
together with the capabilities of fuzzy systems
to deal with approximate knowledge. Evolution-
ary fuzzy systems allow the optimization of the
knowledge provided by the expert in terms of
linguistic variables and fuzzy rules, the genera-
tion of some of the components of fuzzy systems
based on the partial information provided by the
expert, and in some cases even the generation of
fuzzy systems without expert information. Since
many evolutionary fuzzy systems are based on
the use of genetic algorithms, they are also known
as genetic fuzzy systems. However, many models
presented in the scientific literature also use ge-
netic programming, evolutionary programming,
or evolution strategies, making the term evo-
lutionary fuzzy systems more adequate. Highly
related is the concept of evolutionary neuro-fuzzy
systems, where the main difference is that the rep-
resentation is based on neural networks. Recently,
the related concept of evolving fuzzy systems has
been introduced, where the main objective is to
apply evolutionary techniques to the design of
fuzzy systems that are adequate to the control
of nonstationary processes, mainly on real-time
applications.

Motivation and Background

One of the most interesting properties of a fuzzy
system is its ability to represent expert knowl-
edge by using linguistic terms of everyday com-
mon use, allowing the description of uncertainty,
vagueness, and imprecision in the expert knowl-

http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.cs.bham.ac.uk/~wbl/biblio/
10.1080/09540091.2011.630065
http://www.tandfonline.com/doi/abs/10.1080/09540091.2011.630065
http://www.tandfonline.com/doi/pdf/10.1080/09540091.2011.630065
http://www.tandfonline.com/doi/pdf/10.1080/09540091.2011.630065
10.1016/j.asoc.2012.03.058
10.1016/j.asoc.2012.03.058
http://www.sciencedirect.com/science/article/pii/S1568494612001706
10.1016/j.asoc.2010.02.008
10.1016/j.asoc.2010.02.008
http://www.sciencedirect.com/science/article/B6W86-4YGHGKT-2/2/3c6f14d2e029af14747957a5a2ccfd11
http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_322
http://dx.doi.org/10.1007/978-1-4899-7687-1_270

452 Evolutionary Fuzzy Systems

edge. The linguistic terms, which are imprecise
by their own nature, are, however, defined very
precisely by using fuzzy theory concepts.

The usual approach to build a fuzzy system
consists in the definition of the membership
functions and the rule base in terms of expert
knowledge. Compared with other rule-based
approaches, the process of extracting knowledge
from experts and representing it formally is
simpler, since linguistic terms can be defined
to match the terms used by the experts. In this
way, rules are defined establishing relations
between the input and output variables using
these linguistic terms. However, even if there is
a clear advantage of using the terms defined as
� fuzzy sets, the knowledge extraction process
is still difficult and time consuming, usually
requiring a very difficult manual fine tuning
process. It should be noted that no automatic
framework to determine the parameters of the
components of the fuzzy system exists yet,
generating the need for methods that provide
adaptability and learning ability for the design of
fuzzy systems.

Since it is very easy to map a fuzzy system
into a feedforward neural network structure, it is
not surprising that many methods based on neural
network learning have been proposed to automate
the fuzzy system building process (Hoffmann
2001; Karr and Gentry 1993). The combined
approach provides advantages from both worlds:
the low level learning and computational power
of neural networks is joined together with the
high level human-like thinking and reasoning of
fuzzy systems. However, this approach can still
face some problems, such as the potential risk
of its learning algorithms to get trapped in local
minimum, the possible need for restriction of
the membership functions to follow some mathe-
matical properties (like differentiability), and the
difficulties of inserting or extracting knowledge
in some approaches, where the obtained linguistic
terms can exhibit a poor semantic due to the usual
black-box processing of many neural networks
models.

Evolutionary algorithms provide a set of
properties that make them ideal candidates for
the optimization and design of fuzzy systems,

and in fact, there are many methods that
have been proposed in the literature to design
or tune the different components of fuzzy
systems. Evolutionary systems exhibit robust
performance and global search characteristics,
while requiring only a simple quality measure
from the environment. There is no need for
gradient information or input/output patterns.
Other strengths come from its parallel nature:
instead of selecting a single solution and refining
it, in most evolutionary methods, a set of
alternative solutions is considered and evolved
in parallel.

Structure of the Learning System

The learning process defined by an evolutionary
fuzzy system starts from the knowledge provided
by the expert, which can include all or just some
of the components of the knowledge base of a
fuzzy system. The evolutionary algorithm that
is behind this learning approach can perform
the optimization of all the parameters that are
provided by the expert, plus the generation of the
missing components of the fuzzy system based on
the partial specifications provided by the expert.

The model shown in Fig. 1 presents a gen-
eral architecture of the learning and optimization
process in evolutionary fuzzy systems. An ini-
tial knowledge base KBi is built based on the
knowledge provided by the expert. Note that KBi

could be (and usually is) a incompletely speci-
fied knowledge base. Based on this initial expert
knowledge, the evolutionary algorithm creates a
population of individuals, which can represent
complete fuzzy systems or just a few components
of them. The evaluation of the individuals is
performed by creating a temporary knowledge
base KBt , which can also be complete or not. By
using the information in KBt , combined with the
initial knowledge base KBi , the individuals are
evaluated by determining the error in the approx-
imation of patterns if there are examples avail-
able, computing the reinforcement signal (typical
situation in control problems), or in any other
way depending on the problem characteristics
(Babuska 1998; Cordon et al. 2004). The result

http://dx.doi.org/10.1007/978-1-4899-7687-1_321

Evolutionary Fuzzy Systems 453

E

Evolutionary Fuzzy
Systems, Fig. 1 The
general model of the
evolutionary fuzzy systems
learning and optimization

evolutionary algorithm

Expert
knowledge

Operators

Population

Fitness Evaluation

FS

final product

KBi

KBt

of the evaluation is typically a single fitness mea-
sure, which provides the necessary information
for the selection and the variational operators
of the evolutionary algorithm. These operators,
which can be standard or defined specifically for
the problem, combine and mute the individuals
based on the fitness value and their specific pa-
rameters. The process is repeated till a predefined
criterion is fulfilled, obtaining as a final result the
fuzzy system FS.

Depending on the information provided by
the expert, the learning or optimization process
performed by the evolutionary fuzzy system can
be applied to the database, the fuzzy rule base
or both of them. These three approaches are
described below.

Optimization and Learning of the Fuzzy
Database
In this case, it is assumed that the fuzzy rule
base is known and provided by the expert. The
initial knowledge base KBi contains the fuzzy
rule base, and if provided, the initial approxi-
mation of the parameters of antecedents and/or
consequents. Since the expert has to define the
rule base, and in order to do that, he/she needs to
know the labels of the linguistic terms used for
the antecedents and consequents, it is usual that
the number of fuzzy sets is predefined and kept
constant during the evolution.

The representation of the individuals contains
only the parameters of the fuzzy sets associated
to the input linguistic variables, and the fuzzy sets
associated to the output variables in the case of a
Mamdani fuzzy system, or the associated lineal
approximators in the case of a Takagi-Sugeno

fuzzy system. Other parameters could also be
specified if necessary (scale factors, etc.). Usu-
ally, individuals are represented as a fixed length
string that is defined as the concatenation of all
parameters of the input and output fuzzy sets or
approximators. Of course, the representation for
the fuzzy sets depends on their particular class:
for example, three values are required to repre-
sent triangular fuzzy sets, four values to represent
trapezoidal fuzzy sets, and two for sigmoidal
fuzzy sets. As an example, Fig. 2 shows that three
values are necessary to represent a triangular
fuzzy set: the center, the left width, and the right
width, labeled as c, ol, and od, respectively. From
this example, it can be seen that 15 values are
required in order to represent the 5 fuzzy sets
associated to this single linguistic variable.

However, it is usual to apply fuzzy logic con-
cepts (Zadeh 1988) to simplify the representa-
tion, with the implied reduction in the search
space, and also, to en- hance the interpretabil-
ity (Casillas et al. 2003) of the resulting fuzzy
system. As an example, it is desirable that the
partition associated to a linguistic variable fulfills
the completeness property, which establishes that
for each point in the input domain, the summation
of the membership values of all membership
functions must be equal to 1. It is also desirable
that the position of the fuzzy sets remains always
the same during the evolution, for example in
Fig. 2, it means that it is expected that the fuzzy
set L1 will be always at the left of L2, L2 always
at the left of L3, and so on. A representation that
considers these two requirements can be defined
by representing the whole partition specifying the
distance from the center of a fuzzy set to the

454 Evolutionary Fuzzy Systems

Evolutionary Fuzzy
Systems, Fig. 2 A
linguistic variable
represented with five fuzzy
sets

0

1

L1 L2 L3

C
oroI

L4 L5

Δ1 Δ2 Δ3 Δ4 Δ5

Evolutionary Fuzzy
Systems, Fig. 3 The
evaluation of individuals in
the (a) Michigan and (b)
Pittsburgh approaches

Population

KBi

ba

Population

KBi

center of the next one (Hoffmann 2001). The rep-
resentation of five fuzzy sets then requires only
five values (labeled in the figure as 	i /, which re-
duces largely the search space and keeps the order
of fuzzy sets, while fulfilling the completeness
property. Most implementations use real values
to represent the parameters.

The operators of the evolutionary algorithm
can be standard operators or can be defined
specifically based on the selected representation.
As an example, operators that modify the width
of fuzzy sets, shift the centers, or perform other
operations on the fuzzy set representations, linear
approximators, or other parameters have been
defined in the scientific literature.

Optimization and Learning of the Fuzzy
Rule Base
In this case, the fuzzy rule base is not known,
or only an initial approximation to it is provided.
The other parameters of the knowledge base are
known and provided by the expert. The three
most usual approximations are

1. Michigan approximation: Each individual of
the population codifies a single rule (Bonarini
1996), which means that each individual by
itself cannot represent a complete solution to

the problem. The knowledge base for evalu-
ation KBt is built based on the information
defined in KBi and the rules defined by all
the individuals from the population combined
together (see Fig. 3a). Rules are penalized or
rewarded based on its performance during the
evaluation. The fuzzy system is then built
through the competition of a set of indepen-
dent rules that have to be learned to collabo-
rate during the evolution.

2. Pittsburgh approximation: Each individual
represents the complete rule base. If dynamic
creation and removal of rules is allowed,
it is necessary to define special variational
operators to deal with variable length
individuals. Compared with the Michigan
approach the evaluation is simpler, since by
just combining each individual with KBi it
is possible to build KBt for evaluation (see
Fig. 3b). However, usually, the search space
is larger when compared with the Michigan
approach.

3. Iterative approximation: Each individual cod-
ifies a single rule (Cordon et al. 2001) like
in the Michigan approach. However, in each
iteration of the algorithm, only the best rule
is selected discarding all the others. This se-
lection is based by considering the properties
of the rule, such as for example, its covering

Evolutionary Fuzzy Systems 455

E

degree on a set of examples. The algorithm
is then competitive and not cooperative. It
is usually necessary to apply algorithms to
refine the fuzzy rule set obtained at the end
of the evolutionary process, which can include
operations, such as for example, the removal
of similar rules.

The representation in all of these approxima-
tions usually consists of individuals that contain
references to the fuzzy sets already defined in
KBi . The representation of each individual can
be a sequence of integers where each one is an
index to the fuzzy sets associated to the corre-
sponding linguistic variable. As an example, the
fuzzy rule base could be represented as a matrix
where each cell corresponds to the intersection
of the input fuzzy sets, containing the index of
the output fuzzy set associated to the rule. It is
also possible to represent the fuzzy rule base as
a decision table or simply as a list of rules. In
these last two cases, the representation can have
variable length, allowing to represent fuzzy rule
sets with variable size.

The fitness calculation depends on the se-
lected approximation. On a Pittsburgh approxi-
mation, the fitness corresponds to the evaluation
of the complete fuzzy system on the correspond-
ing problem. It is also possible to include in the
fitness calculation other factors, such as for ex-
ample, penalization for fuzzy rule bases that con-
tains many rules or fuzzy rules with superposed
application areas, etc. On a Michigan or Iterative
model, the fitness indicates the degree of ade-
quacy of the rule measured independently, con-
sidering also in the Michigan model its degree of
cooperation with the other rules in the population.

The definition of the variational operators de-
pends of course on the selected approximation.
If the representation allows it, standard operators
of crossover and mutation can be used. However,
it can be convenient (or necessary) to define
specific operators. As an example, variational
operators can consider factors such as the time
period since the rule has been used for the last
time, its overall contribution to the final result,
its performance when evaluated on the set of
examples, etc.

Optimization and Learning of the
Complete Knowledge Base
This case is a combination of the two models
described before. The knowledge base KBi con-
tains the initial approximation to the definition of
the antecedents and consequents, and the initial
approximation to the fuzzy rule base as provided
by the expert. Note that KBi can also be empty
if it is expected that the algorithm must gener-
ate all the parameters of the fuzzy system by
itself.

The representation of the individuals contains
all the parameters that define a knowledge base
in order to allow its learning or optimization.
The three most used representation schemes are
shown in Fig. 4. In the first scheme, each indi-
vidual contains the representation of all fuzzy
sets, and the representation of all fuzzy rules
using indexes to refer to the corresponding fuzzy
sets. In the second scheme, each individual is
structured as a set of rules, where each one spec-
ifies its own input and output fuzzy sets by di-
rectly including the parameters that define them.
The representation (a) is adequate for descriptive
fuzzy systems, since the rules contain references

cba

ant con

DB RB

Rules

KB

ant con ant con

Rule Rule

ant

Rule

con

Evolutionary Fuzzy Systems, Fig. 4 Representations
for the complete knowledge base adequate for (a) de-
scriptive and (b) approximative fuzzy systems in the

Pittsburgh approximation, and (c) representation of a sin-
gle independent rule adequate for Michigan and Iterative
approximations

456 Evolutionary Fuzzy Systems

to the fuzzy sets used in their definition and can
be shared by all of them. The representation (b) is
adequate for approximative fuzzy systems, where
each rule defines its own fuzzy sets. These two
representations are adequate for the Pittsburgh
approximation, while the third one (c) is adequate
for the Michigan and the Iterative approximation.
Of course, there can be many variations of this
representations. For example, the input space
partition can be predefined or obtained through
fuzzy clustering algorithms, and if this partition
is not expected to go under optimization, then it
is not necessary to include the parameters of the
input fuzzy sets in the representation.

Since this model is a combination of the two
previous models, everything that was mentioned
before concerning the fitness function and the
variational operators also applies in this con-
text. However, the fact that all parameters of the
knowledge base are included in the representa-
tion allows to define more powerful variational
operators. As an example, it is possible to define
operators that decide the creation of new fuzzy
sets, the elimination of some of them, and at
the same time, the adaptation of the associated
fuzzy rules, when for example, it is detected
that there are areas in the input space that are
not well covered, many rules with superimposed
areas, etc. It is also possible to apply genetic
programming techniques (Pedrycz 2003), which
are usually used to modify the structure of the
fuzzy system, adding, removing, or combining
sections of the fuzzy system with the objective
of generating the most adequate structure.

Final Remarks
Clearly, the integration of fuzzy systems with
evolutionary algorithms allows to overcome the
limitations of each model considered indepen-
dently, obtaining a powerful hybrid approach,
which allows to learn and optimize fuzzy systems
based on expert knowledge. Previous sections
have discussed in general terms the evolutionary
learning model. However, in order to get more
details about particular implementations, it is
recommended to read the publications referenced
in the next section. The presentation from Karr
and Gentry (1993) is interesting, not only because

it provides a nice introduction and application of
evolutionary fuzzy systems, but it has the addi-
tional value of being one of the first publications
in the area. The presentation of Hoffmann (2001)
is an excellent introduction to evolutionary fuzzy
systems used for control applications. The other
publications present details on evolutionary fuzzy
systems (Babuska 1998; Bonarini 1996; Cordon
et al. 2001; Juang et al. 2000; Lee and Takagi
1993), including representations based on neu-
ral networks (Hoffmann 2001; Karr and Gen-
try 1993), evolution strategies (Alpaydtn et al.
2002), genetic programming (Pedrycz 2003) and
applications of evolutionary fuzzy systems to the
domain of recurrent fuzzy systems (Kavka et al.
2005). The paper by Cordon et al. (2004) pro-
vides a very comprehensive reference list about
the main developments on evolutionary fuzzy
systems.

It should be stressed that a very important
aspect to consider in the definition of evolution-
ary fuzzy systems is the interpretability of the
resulting fuzzy systems (Casillas et al. 2003).
Even if it has been mentioned that it is possible
to design an evolutionary fuzzy system without
expert information, by allowing the evolution-
ary algorithm to define all the components of
the knowledge base by itself, it must always be
considered that the interpretability of the results
is essential. Designing a system that solves the
problem, but that works as a black box, can be ad-
equate in other contexts, but it is not desirable at
all in the context of evolutionary fuzzy systems.
An evolutionary fuzzy system algorithm must
provide the means so that the expert knowledge
defined in fuzzy terms can be considered and
used appropriately during the evolution, and also,
it must guarantee an adequate interpretability
degree of the resulting fuzzy system.

Recommended Reading

Alpaydtn G, Dundar G, Balktr S (2002) Evolution-
based design of neural fuzzy networks using self-
adapting genetic parameters. IEEE Trans Fuzzy Syst
10(2):211–221

Babuska R (1998) Fuzzy modeling for control. Kluwer
Academic Press, Norwell

Evolutionary Games 457

E

Bonarini A (1996) Evolutionary learning of fuzzy
rules: competition and cooperation. In: Pedrycz
W (ed) Fuzzy modeling: paradigms and practice.
Kluwer Academic Press, Norwell

Casillas J, Cordon O, Herrera F, Magdalena L (eds)
(2003) Interpretability issues in fuzzy modeling.
Studies in fuzziness and soft computing, vol 128.
Springer, Berlin/New York

Cordon O, Gomide F, Herrera F, Hoffmann F, Mag-
dalena L (2004) Ten years of genetic fuzzy systems:
current framework and new trends. Fuzzy Sets Syst
141:5–31

Cordon O, Herrera F, Hoffmann F (2001) Genetic
fuzzy systems. World Scientific Publishing, Singa-
pore

Hoffmann F (2001) Evolutionary algorithms for fuzzy
control system design. Proc IEEE 89(9):1318–
1333

Juang CF, Lin JY, Lin CT (2000) Genetic reinforce-
ment learning through symbiotic evolution for fuzzy
controller design. IEEE Trans Syst Man Cybern
30(2):290–302

Karr CL, Gentry EJ (1993) Fuzzy control of PH using
genetic algorithms. IEEE Trans Fuzzy Syst 1(1):
46–53

Kavka C, Roggero P, Schoenauer M (2005) Evolution
of Voronoi based fuzzy recurrent controllers. In:
Proceedings of GECCO. ACM Press, NeW York,
pp 1385–1392

Lee M, Takagi H (1993) Integrating design stages of
fuzzy systems using genetic algorithms. In: Pro-
ceedings of the second IEEE international confer-
ence on fuzzy systems, San Francisco, pp 612–617

Pedrycz W (2003) Evolutionary fuzzy modeling. IEEE
Trans Fuzzy Syst 11(5):652–665

Zadeh L (1988) Fuzzy logic. IEEE Comput 21(4):
83–93

Evolutionary Games

Moshe Sipper
Ben-Gurion University, Beer-Sheva, Israel

Definition

Evolutionary algorithms are a family of algo-
rithms inspired by the workings of evolution by
natural selection, whose basic structure is to:

1. Produce an initial population of individuals,
these latter being candidate solutions to the
problem at hand.

2. Evaluate the fitness of each individual in ac-
cordance with the problem whose solution is
sought.

3. While termination condition not met do:
(a) Select fitter individuals for reproduction
(b) Recombine (crossover) individuals
(c) Mutate individuals
(d) Evaluate fitness of modified individuals

4. End while

Evolutionary games is the application of evo-
lutionary algorithms to the evolution of game-
playing strategies for various games, including
chess, backgammon, and Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in
the 1950s, games have been part and parcel of this
lively field. In 1957, a year after the Dartmouth
Conference that marked the official birth of AI,
Alex Bernstein designed a program for the IBM
704 that played two amateur games of chess.
In 1958, Allen Newell, J.C. Shaw, and Herbert
Simon introduced a more sophisticated chess
program (beaten in 35 moves by a 10-year-old
beginner in its last official game played in 1960).
Arthur L. Samuel of IBM spent much of the
1950s working on game-playing AI programs,
and by 1961, he had a checkers program that
could play at the master’s level. In 1961 and 1963,
Donald Michie described a simple trial-and-error
learning system for learning how to play tic-tac-
toe (or Noughts and Crosses) called MENACE
(for Matchbox Educable Noughts and Crosses
Engine). These are but examples of highly pop-
ular games that have been treated by AI re-
searchers since the field’s inception.

Why study games? This question was an-
swered by Susan L. Epstein, who wrote:

There are two principal reasons to continue to
do research on games: : : First, human fascination
with game playing is long-standing and pervasive.
Anthropologists have cataloged popular games in
almost every culture: : : Games intrigue us because
they address important cognitive functions: : : The
second reason to continue game-playing research

458 Evolutionary Games

is that some difficult games remain to be won,
games that people play very well but computers do
not. These games clarify what our current approach
lacks. They set challenges for us to meet, and they
promise ample rewards (Epstein 1999).

Studying games may thus advance our knowl-
edge in both cognition and artificial intelligence,
and, last but not least, games possess a compet-
itive angle which coincides with our human na-
ture, thus motivating both researcher and student
alike.

Even more strongly, Laird and van Lent pro-
claimed that:

: : : interactive computer games are the killer appli-
cation for human-level AI. They are the application
that will soon need human-level AI, and they can
provide the environments for research on the right
kinds of problems that lead to the type of the incre-
mental and integrative research needed to achieve
human-level AI (Laird and van Lent 2000).

Recently, evolutionary algorithms have proven
a powerful tool that can automatically “design”
successful game-playing strategies for complex
games (Azaria and Sipper 2005a,b; Hauptman
and Sipper 2005b, 2007a,b; Shichel et al. 2005;
Sipper et al. 2007).

Structure of the Learning System

Genetic Programming
Genetic programming is a subclass of evolu-
tionary algorithms, wherein a population of
individual programs is evolved, each program
comprising functions and terminals. The
functions are usually arithmetic and logic
operators that receive a number of arguments
as input and compute a result as output; the
terminals are zero-argument functions that serve
both as constants and as sensors, the latter being
a special type of function that queries the domain
environment.

The main mechanism behind genetic
programming is precisely that of a generic
evolutionary algorithm (Sipper 2002; Tettamanzi
and Tomassini 2001), namely, the repeated
cycling through four operations applied to the
entire population: evaluate-select-crossover-

mutate. Starting with an initial population of
randomly generated programs, each individual
is evaluated in the domain environment and
assigned a fitness value representing how well
the individual solves the problem at hand.
Being randomly generated, the first-generation
individuals usually exhibit poor performance.
However, some individuals are better than others,
that is, (as in nature) variability exists, and
through the mechanism of natural (or, in our
case, artificial) selection, these have a higher
probability of being selected to parent the next
generation. The size of the population is finite
and usually constant.

Specifically, first a genetic operator is chosen
at random; then, depending on the operator, one
or two individuals are selected from the current
population using a selection operator, one exam-
ple of which is tournament selection: Randomly
choose a small subset of individuals, and then
select the one with the best fitness. After the prob-
abilistic selection of better individuals, the cho-
sen genetic operator is used to construct the next
generation. The most common operators are:

• Reproduction (unary): Copy one individual to
the next generation with no modifications. The
main purpose of this operator is to preserve a
small number of good individuals.

• Crossover (binary): Randomly select an inter-
nal node in each of the two individuals and
swap the subtrees rooted at these nodes. An
example is shown in Fig. 1.

• Mutation (unary): Randomly select a node
from the tree, delete the subtree rooted at
that node, and then “grow” a new subtree
in its stead. An example is shown in Fig. 1
(the growth operator as well as crossover and
mutation are described in detail in Koza 1992).

The generic genetic programming flowchart
is shown in Fig. 2. When one wishes to employ
genetic programming, one needs to define the
following six desiderata:

1. Program architecture
2. Set of terminals

Evolutionary Games 459

E

Before After

Crossover

Mutation

Evolutionary Games, Fig. 1 Genetic operators in gen-
etic programming. LISP programs are depicted as trees.
Crossover (top): Two subtrees (marked in bold) are
selected from the parents and swapped. Mutation (bot-

tom): A subtree (marked in bold) is selected from the
parent individual and removed. A new subtree is grown
instead

3. Set of functions
4. Fitness measure
5. Control parameters
6. Manner of designating result and terminating

run

Evolving Game-Playing Strategies
Recently, we have shown that complex and suc-
cessful game-playing strategies can be attained
via genetic programming. We focused on three
games (Azaria and Sipper 2005a,b; Hauptman
and Sipper 2005b, 2007a,b; Shichel et al. 2005;
Sipper et al. 2007):

1. Backgammon. Evolves a full-fledged player
for the nondoubling-cube version of the
game (Azaria and Sipper 2005a,b; Sipper
et al. 2007).

2. Chess (endgames). Evolves a player able to
play endgames (Hauptman and Sipper 2005b,
2007a,b; Sipper et al. 2007). While endgames
typically contain but a few pieces, the problem
of evaluation is still hard, as the pieces are usu-
ally free to move all over the board, resulting
in complex game trees – both deep and with
high branching factors. Indeed, in the chess
lore, much has been said and written about
endgames.

3. Robocode. A simulation-based game in which
robotic tanks fight to destruction in a closed
arena (robocode.alphaworks.ibm.com). The
programmers implement their robots in the
Java programming language and can test
their creations either by using a graphical
environment in which battles are held or by
submitting them to a central Web site where

robocode.alphaworks.ibm.com

460 Evolutionary Games

END

Select genetic
operation

probabilistically

Select two
individuals based

on fitness

Perform crossover Perform mutation

Insert mutant into
new population

Perform reproduction

Copy into new
population

Individuals =
individuals + 1

Individuals =
individuals + 1

Insert two offspring
into new population

Individuals =
individuals + 2

Crossover

MutationReproduction

Gen=0

Termination
criterion

satisfied?

Individuals
=

M?

Yes

No

Yes

No

Designate
results

Create initial
random population

Evaluate fitness of
each individual
in population

Individuals = 0

Gen = Gen + 1

Select one
individuals based

on fitness

Select one
individuals based

on fitness

Evolutionary Games, Fig. 2 Generic genetic program-
ming flowchart (based on Koza 1992). M is the population
size, and Gen is the generation counter. The termination

criterion can be the completion of a fixed number of
generations or the discovery of a good-enough individual

online tournaments regularly take place.
Our goal here has been to evolve Robocode
players able to rank high in the international
league (Shichel et al. 2005; Sipper et al.
2007).

A strategy for a given player in a game is a
way of specifying which choice the player is to
make at every point in the game from the set
of allowable choices at that point, given all the
information that is available to the player at that

Evolutionary Games 461

E

point (Koza 1992). The problem of discovering a
strategy for playing a game can be viewed as one
of seeking a computer program. Depending on
the game, the program might take as input the en-
tire history of past moves or just the current state
of the game. The desired program then produces
the next move as output. For some games, one
might evolve a complete strategy that addresses
every situation tackled. This proved to work well
with Robocode, which is a dynamic game, with
relatively few parameters and little need for past
history.

In a two-player game, such as chess or
backgammon, players move in turn, each trying
to win against the opponent according to specific
rules (Hong et al. 2001). The course of the game
may be modeled using a structure known as an
adversarial game tree (or simply game tree), in
which nodes are the positions in the game and
edges are the moves. By convention, the two
players are denoted as MAX and MIN, where
MAX is the player who moves first. Thus, all
nodes at odd-numbered tree levels are game
positions where MAX moves next (labeled MAX
nodes). Similarly, nodes on even levels are called
MIN nodes and represent positions in which MIN
(opponent) moves next.

The complete game tree for a given game
is the tree starting at the initial position (the
root) and containing all possible moves (edges)
from each position. Terminal nodes represent
positions where the rules of the game determine
whether the result is a win, a draw, or a loss.
Although the game tree for the initial position
is an explicit representation of all possible paths
of the game, therefore theoretically containing
all the information needed to play perfectly, for
most (nontrivial) games, it is extremely large,
and constructing it is not feasible. For example,
the complete chess game tree consists of roughly
1043 nodes (Shannon 1950).

When the game tree is too large to be gen-
erated completely, only a partial tree (called a
search tree) is generated instead. This is accom-
plished by invoking a search algorithm, deciding
which nodes are to be developed at any given
time and when to terminate the search (typically
at nonterminal nodes due to time constraints).

During the search, some nodes are evaluated by
means of an evaluation function according to
given heuristics. This is done mostly at the leaves
of the tree. Furthermore, search can start from
any position and not just at the beginning of the
game.

Because we are searching for a winning strat-
egy, we need to find a good next move for the cur-
rent player, such that no matter what the opponent
does thereafter, the player’s chances of winning
the game are as high as possible. A well-known
method called the minimax search (Campbell and
Marsland 1983; Kaindl 1988) has traditionally
been used, and it forms the basis for most meth-
ods still in use today. This algorithm performs a
depth-first search (the depth is usually predeter-
mined), applying the evaluation function to the
leaves of the tree and propagating these values
upward according to the minimax principal: at
MAX nodes, select the maximal value and at
MIN nodes – the minimal value. The value is
ultimately propagated to the position from which
the search had started.

With games such as backgammon and chess,
one can couple a current-state evaluator (e.g.,
board evaluator) with a next-move generator.
One can then go on to create a minimax tree,
which consists of all possible moves, counter
moves, counter counter-moves, and so on;
for real-life games, such a tree’s size quickly
becomes prohibitive. The approach we used
with backgammon and chess is to derive a very
shallow, single-level tree and evolve “smart”
evaluation functions. Our artificial player is thus
created by combining an evolved board evaluator
with a simple program that generates all next-
move boards (such programs can easily be written
for backgammon and chess).

In what follows, we describe the definition of
the six items necessary in order to employ genetic
programming, as delineated in the previous sec-
tion: program architecture, set of terminals, set
of functions, fitness measure, control parameters,
and manner of designating result and terminating
run. Due to lack of space, we shall elaborate
upon one game – Robocode – and only sum-
marize the major results for backgammon and
chess.

462 Evolutionary Games

Example: Robocode

Program Architecture
A Robocode player is written as an event-driven
Java program. A main loop controls the tank
activities, which can be interrupted on various
occasions, called events. The program is limited
to four lines of code, as we were aiming for
the HaikuBot category, one of the divisions
of the international league with a four-line
code limit. The main loop contains one line
of code that directs the robot to start turning the
gun (and the mounted radar) to the right. This
insures that within the first gun cycle, an enemy
tank will be spotted by the radar, triggering a
ScannedRobotEvent. Within the code for this
event, three additional lines of code were added,
each controlling a single actuator and using a
single numerical input that was supplied by
a genetic programming-evolved subprogram.
The first line instructs the tank to move to a
distance specified by the first evolved argument.
The second line instructs the tank to turn to
an azimuth specified by the second evolved
argument. The third line instructs the gun (and
radar) to turn to an azimuth specified by the third
evolved argument (Fig. 3).

Terminal and Function Sets
We divided the terminals into three groups ac-
cording to their functionality (Shichel et al. 2005)
(Fig. 4):

1. Game-status indicators: A set of terminals that
provide real-time information on the game
status, such as last enemy azimuth, current
tank position, and energy levels.

2. Numerical constants: Two terminals, one pro-
viding the constant 0 and the other being
an ephemeral random constant (ERC). This
latter terminal is initialized to a random real
numerical value in the range [�1, 1] and does
not change during evolution.

3. Fire command: This special function is used to
curtail one line of code by not implementing
the fire actuator in a dedicated line.

Fitness Measure
We explored two different modes of learning:
using a fixed external opponent as teacher and
coevolution – letting the individuals play against
each other; the former proved better. However,
not just one but three external opponents were
used to measure performance; these adversaries
were downloaded from the HaikuBot league
(robocode.yajags.com). The fitness value of an
individual equals its average fractional score
(over three battles).

Control Parameters and Run Termination
The major evolutionary parameters (Koza
1992) were population size (256), generation
count (between 100 and 200), selection
method (tournament), reproduction proba-
bility (0), crossover probability (0.95), and
mutation probability (0.05). An evolutionary
run terminates when fitness is observed to level
off. Since the game is highly nondeterministic, a
“lucky” individual might attain a higher fitness
value than better overall individuals. In order to
obtain a more accurate measure for the evolved
players, we let each of them do battle for 100
rounds against 12 different adversaries (one at
a time). The results were used to extract the

Evolutionary Games,
Fig. 3 Robocode player’s
code layout (HaikuBot
division)

robocode.yajags.com

Evolutionary Games 463

E

Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the range [–1,1]
Random() Returns a random real number in the range [–1,1]
Zero() Returns the constant 0

a

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero, otherwise

return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return value of third argument,

else return value of fourth argument
IfPositive(F, F, F) If first argument is positive, return value of second argument, else return

value of third argument
Fire(F) If argument is positive, execute fire command with argument as fire-

power and return 1; otherwise, do nothing and return 0

b

Evolutionary Games, Fig. 4 Robocode representation. (a) Terminal set (b) Function set (F: Float)

top player – to be submitted to the international
league.

Results
We submitted our top player to the HaikuBot
division of the international league. At its
very first tournament, it came in third, later
climbing to first place of 28 (robocode.yajags.
com/20050625/haiku-1v1.html). All other 27
programs, defeated by our evolved strategy, were
written by humans. For more details on GP-

Robocode see Shichel et al. (2005) and Sipper et
al. (2007).

Backgammon and Chess: Major Results

Backgammon
We pitted our top evolved backgammon play-
ers against Pubeval, a free, public-domain board
evaluation function written by Tesauro. The pro-
gram – which plays well – has become the de
facto yardstick used by the growing commu-

robocode.yajags.com/20050625/haiku-1v1.html
robocode.yajags.com/20050625/haiku-1v1.html

464 Evolutionary Games

Evolutionary Games, Table 1 Percent of wins, advantages, and draws for the best GP-EndChess player in the
tournament against two top competitors

%Wins %Advs %Draws

Master 6.00 2.00 68.00

CRAFTY 2.00 4.00 72.00

nity of backgammon-playing program develop-
ers. Our top evolved player was able to attain a
win percentage of 62.4 % in a tournament against
Pubeval, about 10 % higher (!) than the previous
top method. Moreover, several evolved strategies
were able to surpass the 60 % mark, and most of
them outdid all previous works. For more details
on GP-Gammon, see Azaria and Sipper (2005a)
and Sipper et al. (2007).

Chess (Endgames)
We pitted our top evolved chess-endgame players
against two very strong external opponents: (1)
a program we wrote (“Master”) based upon con-
sultation with several high-ranking chess players
(the highest being Boris Gutkin, ELO 2400, In-
ternational Master) and (2) CRAFTY – a world-
class chess program, which finished second in
the 2004 World Computer Speed Chess Cham-
pionship (www.cs.biu.ac.il/games/). Speed chess
(“blitz”) involves a time limit per move, which
we imposed both on CRAFTY and on our play-
ers. Not only did we thus seek to evolve good
players, but ones who play well and fast. Results
are shown in Table 1. As can be seen, GP-
EndChess manages to hold its own, and even
wins, against these top players. For more details
on GP-EndChess, see Sipper et al. (2007) and
Hauptman and Sipper (2005b).

Deeper analysis of the strategies developed
(Hauptman and Sipper 2005a) revealed several
important shortcomings, most of which stemmed
from the fact that they used deep knowledge and
little search (typically, they developed only one
level of the search tree). Simply increasing the
search depth would not solve the problem, since
the evolved programs examine each board very
thoroughly, and scanning many boards would
increase time requirements prohibitively. And so
we turned to evolution to find an optimal way
to overcome this problem: How to add more

search at the expense of less knowledgeable (and
thus less time-consuming) node evaluators, while
attaining better performance. In Hauptman and
Sipper (2007b) we evolved the search algorithm
itself, focusing on the Mate-In-N problem: find a
key move such that even with the best possible
counterplays, the opponent cannot avoid being
mated in (or before) move N . We showed that
our evolved search algorithms successfully solve
several instances of the Mate-In-N problem, for
the hardest ones developing 47 % less game-tree
nodes than CRAFTY. Improvement is thus not
over the basic alpha-beta algorithm, but over a
world-class program using all standard enhance-
ments (Hauptman and Sipper 2007b).

Finally, in Hauptman and Sipper (2007a),
we examined a strong evolved chess-endgame
player, focusing on the player’s emergent
capabilities and tactics in the context of a chess
match. Using a number of methods, we analyzed
the evolved player’s building blocks and their
effect on play level. We concluded that evolution
has found combinations of building blocks that
are far from trivial and cannot be explained
through simple combination – thereby indicating
the possible emergence of complex strategies.

Cross-References

�Evolutionary Algorithms
�Evolutionary Computation
�Evolutionary Computing
�Genetic Programming

Recommended Reading

Azaria Y, Sipper M (2005a) GP-Gammon: genetically
programming backgammon players. Genet Program
Evolvable Mach 6(3):283–300

Azaria Y, Sipper M (2005b) GP-Gammon: using ge-
netic programming to evolve backgammon players.

www.cs.biu.ac.il/games/
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_100149
http://dx.doi.org/10.1007/978-1-4899-7687-1_100150
http://dx.doi.org/10.1007/978-1-4899-7687-1_376

Evolutionary Kernel Learning 465

E

In: Keijzer M, Tettamanzi A, Collet P, van Hemert
J, Tomassini M (eds) Proceedings of 8th European
conference on genetic programming (EuroGP2005),
Lausanne. LNCS, vol 3447. Springer, Heidelberg,
pp 132–142

Campbell MS, Marsland TA (1983) A comparison of
minimax tree search algorithms. Artif Intell 20:347–
367

Epstein SL (1999) Game playing: the next moves. In:
Proceedings of the sixteenth national conference on
artificial intelligence, Orland. AAAI, Menlo Park,
pp 987–993

Hauptman A, Sipper M (2005a) Analyzing the intelli-
gence of a genetically programmed chess player. In:
Late breaking papers at the 2005 genetic and evo-
lutionary computation conference (GECCO 2005),
Washington, DC

Hauptman A, Sipper M (2005b) GP-EndChess: us-
ing genetic programming to evolve chess endgame
players. In: Keijzer M, Tettamanzi A, Collet P, van
Hemert J, Tomassini M (eds) Proceedings of 8th
European conference on genetic programming (Eu-
roGP2005), Lausanne. LNCS, vol 3447. Springer,
Heidelberg, pp 120–131

Hauptman A, Sipper M (2007a) Emergence of com-
plex strategies in the evolution of chess endgame
players. Adv Complex Syst 10(Suppl 1):35–59

Hauptman A, Sipper M (2007b) Evolution of an effi-
cient search algorithm for the mate-in-N problem in
chess. In: Ebner M, O’Neill M, Ekárt A, Vanneschi
L, Esparcia-Alcázar AI (eds) Proceedings of 10th
European conference on genetic programming (Eu-
roGP2007), Valencia. LNCS, vol 4445. Springer,
Heidelberg, pp 78–89

Hong T-P, Huang K-Y, Lin W-Y (2001) Adversarial
search by evolutionary computation. Evol Comput
9(3):371–385

Kaindl H (1988) Minimaxing: theory and practice. AI-
Mag 9(3):69–76

Koza JR (1992) Genetic programming: on the pro-
gramming of computers by means of natural selec-
tion. MIT, Cambridge

Laird JE, van Lent M (2000) Human-level AI’s killer
application: interactive computer games. In: AAAI-
00: proceedings of the 17th national conference
on artificial intelligence, Austin. MIT, Cambridge,
pp 1171–1178

Shannon CE (1950) Automatic chess player. Sci Am
48:182

Shichel Y, Ziserman E, Sipper M (2005) GP-
Robocode: using genetic programming to evolve
robocode players. In: Keijzer M, Tettamanzi A, Col-
let P, van Hemert J, Tomassini M (eds) Proceedings
of 8th European conference on genetic program-
ming (EuroGP2005), Lausanne. LNCS, vol 3447.
Springer, Heidelberg, pp 143–154

Sipper M (2002) Machine nature: the coming age of
bio-inspired computing. McGraw-Hill, New York

Sipper M, Azaria Y, Hauptman A, Shichel Y (2007)
Designing an evolutionary strategizing machine for

game playing and beyond. IEEE Trans Syst Man
Cybern Part C Appl Rev 37(4):583–593

Tettamanzi A, Tomassini M (2001) Soft computing:
integrating evolutionary, neural, and fuzzy systems.
Springer, Berlin

Evolutionary Grouping

�Evolutionary Clustering

Evolutionary Kernel Learning

Christian Igel
Department of Computer Science, University of
Copenhagen, Copenhagen, Denmark

Definition

Evolutionary kernel learning stands for using
� evolutionary algorithms to design the � kernel
function for a � kernel method.

Motivation and Background

In kernel-based learning algorithms, the kernel
function implicitly defines the feature space in
which the algorithm operates. The kernel deter-
mines the scalar product and thereby the metric
in the feature space. Choosing the right kernel
function is crucial for the training accuracy and
generalization performance of the learning ma-
chine. The choice may also influence the runtime
and storage complexity during and after training.

The kernel is usually not adapted by the
kernel method itself; choosing it is a �model
selection problem. In practice, the kernel function
is selected from an a priori fixed class. When
a parameterized family of kernel functions is
considered, kernel adaptation reduces to finding
appropriate parameters. The most frequently used
method to determine these values is grid search.
In simple grid search, the parameters are varied
with a fixed step-size through a range of values,
and the performance of each combination is mea-
sured. Because of its computational complexity,

http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_551

466 Evolutionary Kernel Learning

grid search is only suitable for the adjustment
of a few parameters. Furthermore, the choice of
the discretization of the search space may be
crucial. Gradient-based approaches are perhaps
the most elaborate techniques for adapting real-
valued kernel parameters, see the articles by
Chapelle et al. (2002) and Glasmachers and
Igel (2005) and references therein. To use
these methods, however, the class of kernel
functions must have a differentiable structure.
Furthermore, score functions for assessing the
parameter performance that are not differentiable
and/or piecewise constant may cause problems.
Evolutionary kernel learning does not suffer
from these limitations. Additionally, it allows for
�multi-objective optimization (MOO) to address
several kernel design criteria.

Structure of Learning System

Canonical evolutionary kernel learning can be
described as an evolutionary algorithm (EA) in
which the individuals encode kernel functions,
see Fig. 1. These individuals are evaluated by
determining the task-specific performance of the
kernel they represent. Two special aspects must
be considered when designing an EA for kernel
learning. First, one must decide how to assess
the performance (i.e., the fitness) of a particular
kernel. That is, model selection criteria have to
be defined depending on the problem at hand.
Second, one must also specify the subset of pos-
sible kernel functions to be searched by the EA.
This leads to the questions of how to encode the
kernels and which variation operators to employ.

Assessing Fitness: Model Selection Criteria
The following presents some performance in-
dices that have been considered for evolutionary

kernel learning. They can be used individually
or in linear combination for single-objective opti-
mization. In MOO several of these criteria can be
used as different objectives.

It is important to note that, although many
of these measures are designed to improve
� generalization, kernel learning can lead to
� overfitting if only limited data are used in
the model selection process (e.g., if in every
generation, the same small data sets are used
to assess performance). Regularization (e.g., in
a Bayesian framework) can be used to prevent
overfitting. If enough data are available, it is
advisable to monitor the generalization behavior
of kernel learning using independent data. For
example, external data can be used for the early
stopping of evolutionary kernel learning (Igel
2013).

Accuracy on Sample Data
The most straightforward way to evaluate a
model is to consider its performance on sample
data. The empirical risk given by the error
on the training data can be considered, but it
does not measure generalization. To estimate
the generalization performance, the accuracy
on data not used for training is evaluated. In
the simplest case, the available data are split
into a training and validation set, with the first
used for learning and the second for subsequent
performance assessment. A theoretically sound
and simple method is � cross-validation (CV).
Cross-validation makes better use of the available
data, but it is more computationally demanding.

Using holdout validation sets alone does not
prevent overfitting if the validation sets are small
and are reused in every generation. If sufficient
data are available, it is advisable to resample the
data used for fitness evaluation in each generation
to prevent overfitting (Igel 2013).

Evolutionary Kernel
Learning, Fig. 1
Canonical evolutionary
kernel learning algorithm

initialize parent population of individuals,
each encoding kernel and perhaps additional parameters
while termination criterion is not met

create offspring individuals from parents
using variation operators
train and evaluate kernel machine encoded by individuals
using sample data
select new parent population based on evaluation

http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_190

Evolutionary Kernel Learning 467

E

If � classification is considered, it may be
reasonable to split the classification error into
false negative and false positive rates and to view
� sensitivity and � specificity as two separate
objectives (Suttorp and Igel 2006).

Measures Derived from Bounds on the
Generalization Performance
Statistical learning theory provides estimates of
and bounds on the expected generalization error
of learning machines. These results can be uti-
lized as criteria for model selection. One has to
keep in mind that the model selection process
may lead to violations of the assumptions under-
lying the corresponding theorems from statistical
learning theory, in which case the computed per-
formance indicators can not be strictly interpreted
as bounds and unbiased estimates.

An example drawing inspiration from radius-
margin bounds for evolving kernels for � support
vector machines (SVMs) for classification is
given by Igel (2005). Furthermore, the number
of support vectors (SVs) was optimized in
combination with the empirical risk (Igel 2005).
For hard-margin SVMs, the fraction of SVs is
an upper bound on the leave-one-out error (e.g.,
Chapelle et al. 2002).

Number of Input Variables
Variable selection refers to the � feature selection
problem of choosing input variables that are best
suited for the learning task. Masking a subset of
variables can be viewed as modifying the kernel.
Considering only a subset of feature dimensions
decreases the computational complexity of the
learning machine. When deteriorating feature di-
mensions are removed, the overall performance
may increase. Reducing the number of input
variables is therefore a common objective, which
can be achieved by using single-objective (Eads
et al. 2002; Fröhlich et al. 2004; Jong et al.
2004; Miller et al. 2003) or multi-objective (Pang
and Kasabov 2004; Shi et al. 2004) evolutionary
kernel learning.

Space and Time Complexity of the Classifier
Sometimes it can be very important to have fast
kernel methods (e.g., for meeting real-time con-

straints). Thus, the execution time may be con-
sidered in the performance assessment during
evolutionary kernel learning.

Reducing the number of input variables speeds
up kernel methods. The space and time complex-
ity of SVMs also scales with the number of SVs.
This is an additional reason to consider mini-
mization of the number of SVs as an objective
in evolutionary model selection for SVMs (Igel
2005; Suttorp and Igel 2006).

Multi-objective Optimization
The design of a learning machine can be con-
sidered as a MOO problem. For example, accu-
racy and complexity can be viewed as different,
and probably conflicting, objectives. The goal of
MOO is to approximate a diverse set of Pareto-
optimal solutions (i.e., solutions that cannot be
improved in one objective without getting worse
in another one), which provide insights into the
trade-offs between the objectives. Evolutionary
multi-objective algorithms have become popular
for MOO. Applications of multi-objective evo-
lutionary kernel learning combining some of the
performance measures listed above can be found
in the work of Igel (2005), Pang and Kasabov
(2004), Shi et al. (2004), and Suttorp and Igel
(2006).

Coevolution
�Coevolutionary learning also finds application
in evolutionary kernel design. For instance,
Gagné et al. (2006) suggest coevolution to speed
up the evaluation and optimization of kernel
nearest neighbor classifiers. They evolve three
different species. The first encodes the kernels,
the second a subset of the training examples used
for building the classifier, and the third a subset
of examples used for fitness evaluation. Kernels
and training examples cooperate, while the third
species competes with the kernels.

Encoding and Variation Operators
The sheer complexity of the space of possible
kernel functions makes it necessary to restrict the
search to a particular class of kernel functions.
This restriction essentially determines the repre-

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_944

468 Evolutionary Kernel Learning

sentation and the operators used in evolutionary
kernel learning.

When a parameterized family of mappings is
considered, the kernel parameters can be encoded
more or less directly in a real-valued EA. This is
a frequently used representation, for example, for
Gaussian kernel functions.

For variable selection, a binary encoding can
be appropriate. For choosing a subset out of d

variables, bitstrings of length d can be consid-
ered, where each bit indicates whether a partic-
ular input variable is considered in the kernel
computation or not (Pang and Kasabov 2004; Shi
et al. 2004).

Kernels can be built from other kernels.
For example, if k1 and k2 are kernel functions
on X , then ak1.x; ´/ C bk2.x; ´/ and
a exp.�bk1.x; ´// for x; ´ 2 X; a; b 2 R

C are
also kernels on X . This suggests a variable-length
representation in which the individuals encode
expressions that evaluate to kernel functions.

Given these different search spaces, it is not
surprising that the aspects of all major branches
of evolutionary computation have been used in
evolutionary kernel learning: genetic algorithms
(Fröhlich et al. 2004), genetic programming
(Howley and Madden 2005; Gagné et al. 2006),
evolution strategies (Igel 2005; Friedrichs and
Igel 2005), and evolutionary programming
(Runarsson and Sigurdsson 2004).

In general, kernel methods assume that the
kernel (or at least the �Gram matrix in the
training process) is � positive semidefinite (psd).
Therefore, it is advisable to restrict the search
space such that only psd functions evolve. Other
ways of dealing with the problem of ensuring
positive semidefiniteness are to assign lethal fit-
ness values to individuals not encoding proper
kernels or to construct a psd Gram matrix from
the matrix M induced by the training data and
a non-psd “kernel” function. The latter can be
achieved by subtracting the smallest eigenvalue
of M from its diagonal entries.

Gaussian Kernels
Gaussian kernel functions are prevalent. Their
general form is k.x; ´/ D exp

�
�.x � ´/T

A.x � ´/
�

for x; ´ 2 R
n and symmetric

positive definite (pd) matrix A 2 R
n�n.

When adapting A, the issue of ensuring that
the optimization algorithm only generates pd
matrices A arises. This can be achieved by an
appropriate parametrization of A. Often the
search is restricted to matrices of the form �I ,
where I is the unit matrix and � 2 R

C is the
only adjustable parameter. However, allowing
more flexibility has proven to be beneficial in
certain applications (e.g., see Chapelle et al.
2002; Friedrichs and Igel 2005; Glasmachers
and Igel 2005). It is straightforward to consider
diagonal matrices with positive elements to allow
for independent scaling factors weighting the
input components. However, only by dropping
this restriction one can achieve invariance against
both rotation and scaling of the input space. A
real-valued encoding that maps onto the set of all
symmetric pd matrices can be used such that all
modifications of the parameters result in feasible
kernels, see the articles by Friedrichs and Igel
(2005), Glasmachers and Igel (2005), and Suttorp
and Igel (2006) for different parametrizations.

Optimizing Additional Hyperparameters
One of the advantages of evolutionary kernel
learning is that it can be easily combined with
an optimization of additional hyperparameters of
the kernel method. The most prominent example
is to encode not only the kernel but also the
regularization parameter in evolutionary model
selection for SVMs.

Application Example

Notable applications of evolutionary kernel learn-
ing include the design of classifiers in bioinfor-
matics (Mersch et al. 2007; Pang and Kasabov
2004; Shi et al. 2004). Let us consider the work
by Mersch et al. (2007) as an instructive exam-
ple. Here, the parameters of a sequence kernel
are evolved to improve the prediction of gene
starts in DNA sequences. The kernel can be
viewed as a weighted sum of 64 kernels, each
measuring similarity with respect to a particular
trinucleotide sequence (codon). The 64 weights
w1; : : : ; w64 are optimized together with an addi-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100189
http://dx.doi.org/10.1007/978-1-4899-7687-1_961

Evolutionary Robotics 469

E

tional global kernel parameter
 and a regulariza-
tion parameter C for the SVM. Each individual
stores x 2 R

66, where .w1; : : : ; w64;
; C /T D

.exp.x1/; : : : ; exp.x64/; jx65j; jx66j/T. An evolu-
tion strategy is applied, using additive multi-
variate Gaussian mutation and weighted global
recombination for variation and rank-based selec-
tion. The fitness is determined by five fold cross-
validation. The evolved kernels lead to higher
classification rates, and the adapted weights re-
veal the importance of particular codons for the
task at hand.

Cross-References

�Neuroevolution

Recommended Reading

Chapelle O, Vapnik V, Bousquet O, Mukherjee S
(2002) Choosing multiple parameters for support
vector machines. Mach Learn 46(1):131–159

Eads DR, Hill D, Davis S, Perkins SJ, Ma J, Porter
RB et al (2002) Genetic algorithms and support
vector machines for time series classification. In:
Bosacchi B, Fogel DB, Bezdek JC (eds) Applica-
tions and science of neural networks, fuzzy systems,
and evolutionary computation V. Proceedings of the
SPIE, vol 4787. SPIE–The International Society for
Optical Engineering, Bellington, pp 74–85

Friedrichs F, Igel C (2005) Evolutionary tuning
of multiple SVM parameters. Neurocomputing
64(C):107–117

Fröhlich H, Chapelle O, Schölkopf B (2004) Feature
selection for support vector machines using genetic
algorithms. Int J Artif Intell Tools 13(4):791–800

Gagné C, Schoenauer M, Sebag M, Tomassini
M (2006) Genetic programming for kernel-based
learning with co-evolving subsets selection. In:
Runarsson TP, Beyer H-G, Burke E, Merelo-
Guervós JJ, Whitley LD, Yao X (eds) Parallel
problem solving from nature (PPSN IX). LNCS,
vol 4193. Springer, Berlin, pp 1008–1017

Glasmachers T, Igel C (2005) Gradient-based adapta-
tion of general Gaussian kernels. Neural Comput
17(10):2099–2105

Howley T, Madden M (2005) The genetic kernel
support vector machine: description and evaluation.
Artif Intell Rev 24(3):379–395

Igel C (2005) Multi-objective model selection for
support vector machines. In: Coello Coello CA,
Zitzler E, Hernandez Aguirre A (eds) Proceedings
of the third international conference on evolutionary

multi-criterion optimization (EMO 2005). LNCS,
vol 3410. Springer, Berlin, pp 534–546

Igel C (2013) A note on generalization loss when
evolving adaptive pattern recognition systems. IEEE
Transact Evol Comput 17(3):345–352

Jong K, Marchiori E, van der Vaart A (2004) Analysis
of proteomic pattern data for cancer detection. In:
Raidl GR, Cagnoni S, Branke J, Corne DW, Drech-
sler R, Jin Y et al (eds) Applications of evolution-
ary computing. LNCS, vol 3005. Springer, Berlin,
pp 41–51

Mersch B, Glasmachers T, Meinicke P, Igel C (2007)
Evolutionary optimization of sequence kernels for
detection of bacterial gene starts. Int J Neural Syst
17(5):369–381

Miller MT, Jerebko AK, Malley JD, Summers RM
(2003) Feature selection for computer-aided polyp
detection using genetic algorithms. In: Clough AV,
Amini AA (eds) Medical imaging 2003: physiology
and function: methods, systems, and applications.
Proceedings of the SPIE, Santa Clara, vol 5031,
pp 102–110

Pang S, Kasabov N (2004) Inductive vs. transductive
inference, global vs. local models: SVM, TSVM,
and SVMT for gene expression classification prob-
lems. In: International joint conference on neural
networks (IJCNN 2004), vol 2. IEEE Press, Wash-
ington, DC, pp 1197–1202

Runarsson TP, Sigurdsson S (2004) Asynchronous par-
allel evolutionary model selection for support vector
machines. Neural Inf Process – Lett Rev 3(3):59–68

Shi SYM, Suganthan PN, Deb K (2004) Multi-
class protein fold recognition using multi-objective
evolutionary algorithms. In: IEEE symposium on
computational intelligence in bioinformatics and
computational biology. IEEE Press, Washington,
DC, pp 61–66

Suttorp T, Igel C (2006) Multi-objective optimiza-
tion of support vector machines. In: Jin Y
(ed) Multi-objective machine learning. Studies in
computational intelligence, vol 16. Springer, Berlin,
pp 199–220

Evolutionary Robotics

Phil Husbands
Department of Informatics, Centre for
Computational Neuroscience and Robotics,
University of Sussex, Brighton, UK

Abstract

Evolutionary robotics uses evolutionary
search methods to fully or partially design
robotic systems, including their control

http://dx.doi.org/10.1007/978-1-4899-7687-1_594

470 Evolutionary Robotics

systems and sometimes their morphologies
and sensor/actuator properties. Such methods
are used in a range of ways from the
fine-tuning or optimization of established
designs to the creation of completely novel
designs. There are many applications of
evolutionary robotics from wheeled to legged
to swimming to flying robots. A particularly
active area is the use of evolutionary robotics
to synthesize embodied models of complete
agent behaviors in order to help explore and
generate hypotheses in neurobiology and
cognitive science.

Synonyms

Embodied evolutionary learning; Evolution of
agent behaviors; Evolution of robot control

Definition

Evolutionary robotics involves the use of
� evolutionary computing techniques to auto-
matically develop some or all of the following
properties of a robot: the control system, the body
morphology, and the sensor and motor properties
and layout. Populations of artificial genomes
(usually lists of characters and numbers) encode
properties of autonomous mobile robots required
to carry out a particular task or to exhibit some
set of behaviors. The genomes are mutated
and interbred creating new generations of
robots according to a Darwinian scheme in
which the fittest individuals are most likely to
produce offspring. Fitness is measured in terms
of how good a robot’s behavior is according
to some evaluation criteria; this is usually
automatically measured but may, in the manner
of eighteenth-century pig breeders, be based on
the experimenters’ judgment.

Motivation and Background

Turing’s (1950) paper, Computing Machinery
and Intelligence, is widely regarded as one of

the seminal works in artificial intelligence. It
is best known for what came to be called the
Turing test – a proposal for deciding whether
or not a machine is intelligent. However, tucked
away toward the end of Turing’s wide-ranging
discussion of issues arising from the test is
a far more interesting proposal. He suggests
that worthwhile intelligent machines should
be adaptive and should learn and develop
but concedes that designing, building, and
programming such machines by hand is probably
completely infeasible. He goes on to sketch
an alternative way of creating machines based
on an artificial analog of biological evolution.
Each machine would have hereditary material
encoding its structure, mutated copies of which
would form offspring machines. A selection
mechanism would be used to favor better adapted
machines – in this case, those that learned to
behave most intelligently. Turing proposed that
the selection mechanism should largely consist
of the experimenter’s judgment.

It was not until more than 40 years after their
publication that Turing’s long forgotten sugges-
tions became reality. Building on the develop-
ment of principled evolutionary search algorithm
by, among others, Holland (1975), researchers
at CNR, Rome, Case Western University, the
University of Sussex, EPFL, and elsewhere inde-
pendently demonstrated methodologies and prac-
tical techniques to evolve, rather than design, the
control systems for primitive autonomous intel-
ligent machines (Beer and Gallagher 1992; Cliff
et al. 1993; de Garis 1990; Floreano and Mon-
dada 1994; Husbands and Harvey 1992; Parisi
and Nolfi 1993). Thus, the field of Evolutionary
Robotics was born in the early 1990s. Initial
motivations were similar to Turing’s: the hand de-
sign of intelligent adaptive machines intended for
operation in natural environments is extremely
difficult, would it be possible to wholly or partly
automate the process?

Today, the field of evolutionary robotics has
expanded in scope to take in a wide range of ap-
plications, including promising new work on au-
tonomous flying machines (Floreano et al. 2008;
Vargas et al. 2014; Shim and Husbands 2007), as
well as research aimed at exploring specific sci-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100136
http://dx.doi.org/10.1007/978-1-4899-7687-1_100147
http://dx.doi.org/10.1007/978-1-4899-7687-1_100148
http://dx.doi.org/10.1007/978-1-4899-7687-1_100150

Evolutionary Robotics 471

E

entific issues – for instance, principles from neu-
roscience or questions in cognitive science (Har-
vey et al. 2005; Philippides et al. 2005; Floreano
et al. 2008; Husbands et al. 2014). Such work is
able to exploit the fact that evolutionary robotics
operates with fewer assumptions about neural ar-
chitectures and behavior-generating mechanisms
than other methods; this means that whole gen-
eral classes of designs and processes can be
explored.

Structure of the Learning System

The key elements of the evolutionary robotics
approach are the following:

• An artificial genetic encoding specifying the
robot control systems, body plan, sensor prop-
erties, etc., along with a mapping to the target
system

• A method for measuring the fitness of the
robot behaviors generated from these geno-
types

• A way of applying selection and a set of
“genetic” operators to produce the next gen-
eration from the current

The structure of the overall evolutionary pro-
cess is captured in Fig. 1. The general scheme
is like that of any application of an evolutionary
search algorithm. However, many details of spe-
cific parts of the process, particularly the evalua-
tion step, are peculiar to evolutionary robotics.

The more general parts of the evolutionary
process (selection, breeding, genetic operators
such as mutation and crossover, replacement,
and population structure) are also found in most
other applications of evolutionary computing,
and, just as in those other applications, there are
many well-documented ways of implementing
each (De Jong 2006; Eiben and Smith 2003).
Hence, this section focuses on genetic encoding
and evaluation as a route to more evolutionary
robotics-specific issues. For a much fuller
treatment of the subject, see Vargas et al. (2014),
Doncieux et al. (2011), Floreano et al. (2008),
and Nolfi and Floreano (2000).

Genetic Encoding
While, as already mentioned, many aspects of
the robot design can potentially be under genetic
control, at least the control system always is.
By far the most popular form of controller is
some sort of neural network. These range from
straightforward feedforward networks of simple
elements (Floreano and Mondada 1994) to rel-
atively complex, dynamic, and plastic recurrent
networks (Beer and Gallagher 1992; Floreano
and Urzelai 2000; Philippides et al. 2005), as
illustrated in Fig. 2. In the simplest case, a fixed
architecture network is used to control a robot
whose sensors feed into the network which in turn
feeds out to the robot motors. In this scenario, the
parameters of the network (connection weights
and relevant properties of the units such as thresh-
olds or biases) are coded as a fixed length string
of numerical values.

A more complex case, which has been ex-
plored since the very early days of evolutionary
robotics (Cliff et al. 1993), involves the evolu-
tion of the network architecture as well as the
properties of the connections and units. Typi-
cally, the size of the network (number of units
and connections) and its architecture (wiring di-
agram) are unconstrained and free to evolve.
This involves more complex encodings which
can grow and shrink, as units and connections
are added or lost, while allowing a coherent
decoding of connections between units. These
range from relatively simple strings employing
blocks of symbols that encode a unit’s properties
and connections relative to other units (Cliff et
al.) to more indirect schemes that make use of
developmental, growth processes in some geo-
metric or topological space (Philippides et al.
2005; Stanley et al. 2009) or employ genetic
programming-like tree representations in which
whole subbranches can be added, deleted, or
swapped over (Gruau 1995).

The most general case involves the encoding
of control network and body and sensor prop-
erties. Various kinds of developmental schemes
have been used to encode the construction of
body morphologies from basic building blocks,
both in simulation and in the real world. The
position and properties of sensors can also be

472 Evolutionary Robotics

Evolutionary Robotics,
Fig. 1 General scheme
employed in evolutionary
robotics

Create initial population
of robot genotypes;

evaluate their fitnesses

Population of
robot genotypes

Breed

Create mutated offspring

Evaluate new
offspring

Select parents
according to fitnessReplace members

of population

0
12

13

14

4

5 6

3 11

1

1

2

Visual morphology

V1

V2

Left motor

+ve

-ve

+ve

Right motor

Visual
inputs

Evolutionary Robotics, Fig. 2 Evolved neurocon-
trollers. On the left a simple fixed architecture feedforward
network is illustrated. The connection weights, and some-
times the neuron properties, are put under evolutionary
control. On the right a more complex architecture is

illustrated. In this case, the whole architecture, including
the number of neurons and connections, is under
evolutionary control, along with connection and neuron
properties and the morphology of a visual sensor that
feeds into the network

put under evolutionary control. Sometimes one
complex encoding scheme is used for all as-
pects of the robot under evolutionary control,
and sometimes the different aspects are put on
separate genotypes.

Fitness Evaluation
The fitness of members of the population is mea-
sured, via an evaluation mechanism, in terms
of the robot behaviors produced by the control
system or control system plus robot morphol-

Evolutionary Robotics 473

E

ogy that it encodes. Fitness evaluation, therefore,
consists of translating the genome in question
into a robot instantiation and then measuring the
aspects of the resulting behavior. In the earliest
work aimed at using evolutionary techniques to
develop neurocontrollers for particular physical
robots, members of a population were down-
loaded in turn onto the robot and their behavior
was monitored and measured either automati-
cally by clever experimental setups (Floreano and
Mondada 1994; Harvey et al. 1994) or manually
by an observer (Gruau and Quatramaran 1997).
The machinery of the evolutionary search algo-
rithm was managed on a host computer, while the
fitness evaluations were undertaken on the target
robot.

One drawback of evaluating fitness on the
robot is that this cannot be done any quicker
than in real time, making the whole evolution-
ary process rather slow. However, in the early
work in the field, this approach was taken be-
cause it was felt that it was unlikely that sim-
ulations could be made accurate enough to al-
low proper transfer of evolved behavior onto the
real robot. However, a careful study of accurate
physics-based simulations of a Khepera robot,
with various degrees of noise added, proved this
assumption false (Jakobi et al. 1995). This led
to the development of Jakobi’s minimal simula-
tion methodology (Jakobi 1998a), whereby com-
putationally very efficient simulations are built
by modeling only those aspects of the robot–
environment interaction deemed important to the
desired behavior and masking everything else
with carefully structured noise (so that evolu-
tion could not come to rely on any of those
features). These ultrafast, ultralean simulations
have successfully been used with many different
forms of robot and sensing, with very accurate
transfer of behavior from simulation to reality.
An alternative approach uses plastic controllers
that further adapt through self-organization to
help smooth out the differences between an in-
accurate simulation and the real world (Urzelai
and Floreano 2001). Instead of evolving connec-
tion weights, in this approach “learning rules”
for adapting connection strengths are evolved –
this results in controllers that continually adapt

to changes in their environment. For details of
further approaches, see Floreano et al. (2008).
Much evolutionary robotics work now makes
use of simulations; without them it would be
impossible to do the most ambitious work on the
concurrent evolution of controllers and body mor-
phology (Lipson and Pollack 2000) (to be briefly
described later). However, although simulation
packages and techniques have developed rapidly
in the past few years, there will still inevitably
be discrepancies between simulation and reality,
and the lessons and insights of the work outlined
above should not be forgotten.

An interesting distinction can be made be-
tween implicit and explicit fitness functions in
evolutionary robotics (Nolfi and Floreano 2000).
In this context, an explicit fitness function re-
wards specific behavioral elements – such as
traveling in a straight line – and hence shapes the
overall behavior from a set of specific behavioral
primitives. Implicit fitness functions operate at
a more indirect, abstract level – fitness points
are given for completing some task but they
are not tied to specific behavioral elements. Im-
plicit fitness functions might involve components
such as maintaining energy levels or covering as
much ground as possible, components that can be
achieved in many different ways. In practice, it is
quite possible to define a fitness function that has
both explicit and implicit elements. Often fitness
entails multiple and potentially conflicting ele-
ments, so methods from multi-objective optimi-
sation have been introduced by some researchers,
which can also encourage diversity in robot be-
havior (Mouret and Doncieux 2012).

Advantages
Potential advantages of this methodology
include:

• The ability to explore potentially uncon-
strained designs that have large numbers of
free variables. A class of robot systems (to
be searched) is defined rather than specific,
fully defined robot designs. This means fewer
assumptions and constraints are necessary in
specifying a viable solution.

474 Evolutionary Robotics

• The ability to use the methodology to fine-
tune the parameters of an already successful
design.

• The ability, through the careful design of fit-
ness criteria and selection techniques, to take
into account multiple, and potentially con-
flicting, design criteria and constraints (e.g.,
efficiency, cost, weight, power consumption,
etc.).

• The possibility of developing highly uncon-
ventional and minimal designs.

• The ability to explicitly take into account ro-
bustness and reliability as major driving force
behind the fitness measure, factors that are
particularly important for certain applications.

Applications

For a detailed survey of applications of evolution-
ary robotics, see Floreano et al. (2008) and Vargas
et al. (2014); this section gives a brief overview of
some areas covered by the methodology to give
a better idea of the techniques involved and to
indicate the scope of the field.

Prominent early centers for research in this
area were EPFL and Sussex University, both of
which are still very active in the field. Much of
the early EPFL work used the miniature Khepera
robot (Mondada et al. 1993), which became a
popular tool in many areas of robotics research.
In its simplest form, it is a two-wheeled cylin-
drical robot with a ring of IR sensors around its
body. The first successful evolutionary robotics
experiments at EPFL employed the setup illus-
trated in Figs. 3 and 4. A population of bit strings
encoded the connection weights and node thresh-
olds for a simple fixed architecture feedforward
neural network. Each member of the population
was decoded into a particular instantiation of a
neural network controller which was then down-
loaded onto the robot (Floreano and Mondada
1994). This controlled the robot for a fixed period
of time as it moved around the environment
shown in Fig. 4.

The following simple fitness function was
used to evolve obstacle avoidance behaviors:

Population manager

Mutation

Crossover

Selective reproduction

Evaluation

Evolutionary Robotics, Fig. 3 Setup for early EPFL
evolutionary robotics experiments with the Khepera robot
(see text for details). Used with permission

Evolutionary Robotics, Fig. 4 The simple environment
used for evolving obstacle avoidance behaviors with a
Khepera robot. Used with permission

F D V C .1 �
p

DV / C .1 � I /

where V is the average rotation speed of oppos-
ing wheels, DV is the difference between signed
speed values of opposing wheels, and I is the
activation value of the IR sensor with the highest
input (readings are high if an obstacle is close to
a sensor). Maximizing this function ensures high
speed, a tendency to move in straight lines, and
avoidance of walls and obstacles in the environ-
ment. After about 36 h of real-world evolution
using this setup, controllers were evolved that
successfully generated efficient motion around
the course, avoiding collisions with the walls.

At the same time as this work was going
on at EPFL, a series of pioneering experiments
on evolving visually guided behaviors were be-
ing performed at Sussex University (Cliff et al.
1993; Harvey et al. 1994) in which discrete-

Evolutionary Robotics 475

E

Evolutionary Robotics, Fig. 5 An early version of the
Sussex gantry robot (right) was a “hardware simulation”
of a robot such as that shown on the left. It allowed

real-world evolution of visually guided behaviors in an
easily controllable experimental setup (see text for further
details)

time dynamical recurrent neural networks and
visual sampling morphologies were concurrently
evolved to allow a gantry robot (as well as other
more standard mobile robots) to perform various
visually guided tasks. An early instantiation of
the Sussex gantry robot is shown in Fig. 5.

A CCD camera points down toward a mirror
angled at 45ı. The mirror can rotate around an
axis perpendicular to the camera’s image plane.
The camera is suspended from the gantry allow-
ing motion in the X , Y , and Z dimensions. This
effectively provides an equivalent to a wheeled
robot with a forward facing camera when only
the X and Y dimensions of translation are used
(see Fig. 5).

The apparatus was initially used in a man-
ner similar to the real-world EPFL evolutionary
robots setup illustrated in Fig. 3. A population
of strings encoding robot controllers and visual
sensing morphologies are stored on a computer
to be downloaded one at a time onto the robot.
The exact position and orientation of the cam-
era head can be accurately tracked and used
in the fitness evaluations. A number of visually
guided navigation behaviors were successfully
achieved, including navigating around obstacles
and discriminating between different objects. In
the experiment illustrated in Fig. 5, starting from
a random position and orientation, the robot has
to move to the triangle rather than the rect-
angle. This has to be achieved irrespective of

the relative positions of the shapes and under
very noisy lighting conditions. The architecture
and all parameters of recurrent neural network
controllers were evolved in conjunction with vi-
sual sampling morphologies – only genetically
specified patches from the camera image were
used (by being fed to input neurons according to
a genetic specification), the rest of the image is
thrown away. This resulted in extremely minimal
systems only using two or three pixels of visual
information yet still able to very robustly perform
the task under highly variable lighting conditions.
Behaviors were evolved in an incremental way,
with more complex capabilities being evolved
from populations of robots that were successful
at some simpler task (for details see Harvey et al.
1994 and Harvey et al. 1997). The highly minimal
yet very robust systems developed highlighted
the potential for evolutionary robotics techniques
in areas such as space exploration where there
is a great pressure to minimize resources while
maintaining reliability (Hobbs et al. 1996).

Since this early work, many different behav-
iors have been successfully evolved on a wide
range of robots (Floreano et al. 2008; Nolfi and
Floreano 2000; Vargas et al. 2014; Doncieux
et al. 2011). There is not enough room to give
an adequate summary of the whole field, so a few
interesting subareas are highlighted below.

Over the past 15 years or so, there has been
a growing body of work on evolving controllers

476 Evolutionary Robotics

for various kinds of walking robots – a nontriv-
ial sensorimotor coordination task. Early work
in this area concentrated on evolving dynami-
cal network controllers for simple simulated in-
sects (often inspired by cockroach studies), which
were required to walk in uncomplicated environ-
ments (e.g., de Garis 1990; Beer and Gallagher
1992). The promise of this work soon led to
versions of this methodology being used on real
robots. Probably, the first success in this direction
was by Lewis et al. (1992) who evolved a neu-
ral controller for a simple hexapod robot, using
coupled oscillators built from continuous-time,
leaky-integrator, artificial neurons. The robot was
able to execute an efficient tripod gait on flat
surfaces. All evaluations were done on the actual
robot with each leg connected to its own pair of
coupled neurons, leg swing being driven by one
neuron, and leg elevation by the other. These pairs
of neurons were cross-connected, in a manner
similar to that used in the neural architecture
shown in Fig. 6, to allow coordination between
the legs. This architecture for locomotion, in-
troduced by Beer et al. (1989), was based on
the studies of cockroaches and has been much
used ever since. Gallagher et al. (1996) used
a generalization of it to evolve controllers for
generating locomotion in a hexapod robot. This
machine was more complex than Lewis et al.’s,
with a greater number of degrees of freedom
per leg. In this work, each leg was controlled
by a fully connected network of five continuous-
time, leaky-integrator neurons, each receiving a
weighted sensory input from that leg’s angle
sensor. The connection weights and neuron time
constants and biases were under genetic control.
This produced efficient tripod gaits for walking
on flat surfaces. In order to produce a wider range
of gaits operating at a number of speeds such that
rougher terrain could be successfully negotiated,
a slightly different distributed architecture, more
inspired by stick insect studies, was found to be
more effective (Beer et al. 1997).

Jakobi (1998b) successfully used his minimal
simulation techniques to evolve controllers for
an eight-legged robot. Evolution in simulation
took less than 2 h on what would today be
regarded as a very slow computer and then

C

P

P P

P

P

BS

BS

BS

BAS

BAS

FAS

BAS

BAS

BAS

BAS

FT

FS FS

FS

FS

FAS

FAS

FASFAS

FAS

FS

FS

BS

BS

BS

FT

FT

FT

FTFT P

Evolutionary Robotics, Fig. 6 Schematic diagram of a
distributed neural network for the control of locomotion as
used by Beer et al. Excitatory connections are denoted by
open triangles, and inhibitory connections are denoted by
filled circles. C, command neuron; P, pacemaker neuron;
FT, foot motor neuron; FS and BS, forward swing and
backward swing motor neurons; FAS and BAS, forward
and backward angle sensors. Reproduced with permission

transferred successfully to the real robot. Jakobi
evolved modular controllers based on Beer’s
continuous recurrent network architecture to
control the robot as it engaged in walking about
its environment, avoiding obstacles and seeking
out goals. The robot could smoothly change gait,
move backward and forward, and even turn on
the spot. More recently, related approaches have
been successfully used to evolve controllers for
more mechanically sophisticated robots such
as the Sony Aibo (Tllez et al. 2006). In the
last few years, there has also been successful
work on evolving coupled oscillator style neural

Evolutionary Robotics 477

E

controllers for the highly unstable dynamic
problem of biped walking. Reil and Husbands
(2002) showed that accurate physics-based
simulations using physics engine software could
be used to develop controllers able to generate
successful bipedal gaits. Reil and colleagues
have now significantly developed this technology
to exploit its commercial possibilities in the
animation and games industries (see www.
naturalmotion.com for further details). Vaughan
has taken related work in another direction. He
has successfully applied evolutionary robotics
techniques to evolve a simulation of a 3D ten
degree of freedom bipedal robot. This machine
demonstrates many of the properties of human
locomotion. By using passive dynamics and
compliant tendons, it conserves energy while
walking on a flat surface. Its speed and gait can
be dynamically adjusted and it is capable of
adapting to discrepancies in both its environment
and its body’s construction (Vaughan et al. 2004).
In general, the evolutionary development of
neural network walking controllers, with their
intricate dynamics, produces a wider range of
gaits and generates smoother, more adaptive
locomotion than the more standard use of
finite state machine-based systems employing
parameterized rules governing the timing and
coordination of individual leg movements.

Early single robot research was soon expanded
to handle interactions between multiple robots.
Floreano and Nolfi did pioneering work on the
coevolution of predator–prey behaviors in phys-
ical robots (Floreano et al. 2007). The fitness
of the prey robot was measured by how quickly
it could catch the prey; the fitness of the prey
was determined by how long it could escape the
predator. Two Khepera robots were used in this
experiment, each had the standard set of prox-
imity sensors but the predator also has a vision
system, and the prey was able to move twice
as fast as the predator. A series of interesting
chasing and evasion strategies emerged. Later
Quinn et al. (2003) demonstrated the evolution
of coordinated cooperative behavior in a group of
robots. A group of robots equipped only with IR
proximity sensors were required to move as far
as possible as a coordinated group starting from

a random configuration. The task was solved
by the robots adopting and then maintaining a
specific formation. Analysis of the best evolved
solution showed that it involved the robots adopt-
ing different roles, with the identical robots col-
lectively “deciding” which robot would perform
each role. Given the minimal sensing constraints,
the evolved system would have proved extremely
difficult to have designed by hand. For discussion
of other multiple robot behaviors, see Floreano
et al. (2008) and Vargas et al. (2014).

In the work described so far, control systems
have been evolved for preexisting robots: the
brain is constrained to fit a particular body and
set of sensors. Of course in nature, the nervous
system evolved simultaneously with the rest of
the organism. As a result, the nervous system
is highly integrated with the sensory apparatus
and the rest of the body: the whole operates in
a harmonious and balanced way – there are no
distinct boundaries between the control system,
the sensors, and the body.

Karl Sims started to explore the concurrent
evolution of the brain and the body in his highly
imaginative work involving simulated 3D “crea-
tures” (Sims 1994). In this work, the creatures
coevolved under a competitive scenario in which
they were required to try and gain control of
a resource (a cube) placed in the center of an
arena. Both the morphology of the creatures and
the neural system controlling their actuators were
under evolutionary control.

Lipson and Pollack (2000), working at Bran-
deis University, pushed the idea of fully evolvable
robot hardware about as far as was reasonably
technologically feasible at the time. In an impor-
tant piece of research, directly inspired by Sims’
earlier simulation work, autonomous “creatures”
were evolved in simulation out of basic building
blocks (neurons, plastic bars, and actuators). The
bars could connect together to form arbitrary
truss structures with the possibility of both rigid
and articulated substructures. Neurons could be
connected to each other and to the bars whose
length they would then control via a linear actu-
ator. Machines defined in this way were required
to move as far as possible in a limited time. The
fittest individuals were then fabricated robotically

www.naturalmotion.com
www.naturalmotion.com

478 Evolutionary Robotics

Evolutionary Robotics, Fig. 7 A fully automatically
evolved robot developed on the Golem project (see text
for details). Used with permission

using rapid manufacturing technology (plastic
extrusion 3D printing) to produce results such as
that shown in Fig. 7. They thus achieved auton-
omy of design and construction using evolution in
a “limited universe” physical simulation coupled
to automatic fabrication. The highly unconven-
tional designs thus realized performed as well in
reality as in simulation. The success of this work
points the way to new possibilities in developing
energy-efficient fault-tolerant machines.

Pfeifer and colleagues at Zurich University
have explored issues central to the key motivation
for fully evolvable robot hardware: the balanced
interplay between body morphology, neural pro-
cessing, and environment in the generation of
adaptive behavior, and have developed a set of
design principles for intelligent systems in which
these issues take center stage (Pfeifer and Bon-
gard 2007). Examples of interesting current work
in this direction includes (Bongard 2011; Johnson
et al. 2014).

Future Directions

Major ongoing challenges – methodological, the-
oretical, and technological – include finding the
best way to incorporate development and lifetime
plasticity within the evolutionary framework (this
involves trends coming from the emerging field
of epigenetic robotics), understanding better what
the most useful building blocks are for evolved
neurocontrollers, and finding efficient ways to

scale work on concurrently evolving bodies and
brains, especially in an open-ended way in the
real world. For some grand challenges in the field,
see (Eiben 2014).

There are very interesting developments in the
evolution of group behaviors and the emergence
of communication (Di Paolo 1998; Floreano et al.
2007; Quinn 2001; Vargas et al. 2014), the use
of evolutionary robotics as a tool to illuminate
problems in cognitive science (Beer 2003; Har-
vey et al. 2005) and neuroscience (Di Paolo 2003;
Philippides et al. 2005; Seth 2005; Husbands
et al. 2014), in developing flying behaviors (Flo-
reano et al. 2007; Shim and Husbands 2007;
Vargas et al. 2014), and in robots that have some
form of self-model (Bongard et al. 2006), to name
but a few.

Cross-References

�Neuroevolution

Recommended Reading

Beer RD (2003) The dynamics of active categorical
perception in an evolved model agent (with com-
mentary and response). Adapt Behav 11(4): 209–
243

Beer RD, Chiel HJ, Sterling LS (1989) Heterogeneous
neural networks for adaptive behavior in dynamic
environments. In: Touretzky D (ed) Neural informa-
tion processing systems, vol 1. Morgan Kauffman,
San Francisco, pp 577–585

Beer RD, Gallagher JC (1992) Evolving dynamical
neural networks for adaptive behaviour. Adapt Be-
hav 1:94–110

Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997)
Biologically-inspired approaches to robotics. Com-
mun ACM 40(3):30–38

Bongard J (2011) Morphological change in machines
accelerates the evolution of robust behavior. Proc
Natl Acad Sci 108(4):1234–1239

Bongard J, Zykov V, Lipson H (2006) Resilient ma-
chines through continuous self-modeling. Science
314:1118–1121

Cliff D, Harvey I, Husbands P (1993) Explorations in
evolutionary robotics. Adapt Behav 2:73–110

de Garis H (1990) Genetic programming: evolution
of time dependent neural network modules which
teach a pair of stick legs to walk. In: Proceedings
of the 9th European conference on artificial intelli-
gence, Stockholm, pp 204–206

http://dx.doi.org/10.1007/978-1-4899-7687-1_594

Evolutionary Robotics 479

E

De Jong KA (2006) Evolutionary computation: a uni-
fied approach. MIT Press, Cambridge

Di Paolo E (1998) An investigation into the evolution
of communication. Adapt Behav 6(2):285–324

Di Paolo EA (2003) Evolving spike-timing dependent
plasticity for single-trial learning in robots. Philos
Trans R Soc A 361:2299–2319

Doncieux S, Bredeche N, Mouret J-B (eds) (2011)
New Horizons in evolutionary robotics: extended
contributions from the 2009 EvoDeRob workshop.
Studies in computational intelligence, vol 341.
Springer, Berlin

Eiben AE (2014) Grand challenges for
evolutionary robotics. Front Robot AI 1(4).
doi:10.3389/frobt.2014.00004

Eiben AE, Smith JE (2003) Introduction to evolution-
ary computing. Springer, Berlin

Floreano D, Hauert S, Leven S, Zufferey JC (2007)
Evolutionary swarms of flying robots. In: Floreano
D (ed) Proceedings of the international symposium
on flying insects and robots. EPFL, Monte Verita,
pp 35–36

Floreano D, Husbands P, Nolfi S (2008) Evolutionary
robotics. In: Siciliano B, Khatib O (eds) Springer
handbook of robotics (Chap. 61). Springer, Berlin,
pp 1423–1451

Floreano D, Mitri S, Magnenat S, Keller L (2007)
Evolutionary conditions for the emergence of com-
munication in robots. Curr Biol 17:514–519

Floreano D, Mondada F (1994) Automatic creation
of an autonomous agent: genetic evolution of a
neural-network driven robot. In: Cliff D, Husbands
P, Meyer J, Wilson SW (eds) From animals to
animats III: proceedings of the third international
conference on simulation of adaptive behavior. MIT
Press-Bradford Books, Cambridge, pp 402–410

Floreano D, Nolfi S (1997) Adaptive behavior in com-
peting co-evolving species. In: Husbands P, Harvey
I (eds) Proceedings of the 4th European conference
on artificial life. MIT Press, Cambridge, pp 378–387

Floreano D, Urzelai J (2000) Evolutionary robots
with on-line self-organization and behavioral fit-
ness. Neural Netw 13(4–5):431–443

Gallagher J, Beer R, Espenschiel M, Quinn R (1996)
Application of evolved locomotion controllers to a
hexapod robot. Robot Auton Syst 19(1):95–103

Gruau F (1995) Automatic definition of modular neural
networks. Adapt Behav 3(2):151–183

Gruau F, Quatramaran K (1997) Cellular encoding for
interactive evolutionary robotics. In: Husbands P,
Harvey I (eds) Proceedings of the 4th European con-
ference on artificial life. The MIT Press/Bradford
Books, Cambridge

Harvey I, Di Paolo E, Wood R, Quinn M, Tuci E
(2005) Evolutionary robotics: a new scientific tool
for studying cognition. Artif Life 11(1–2):79–98

Harvey I, Husbands P, Cliff DT (1994) Seeing the light:
artificial evolution, real vision. In: Cliff DT, Hus-
bands P, Meyer JA, Wilson S (eds) From animals
to animats 3: proceedings of the third international

conference on simulation of adaptive behaviour,
SAB94. MIT Press, Cambridge, pp 392–401

Harvey I, Husbands P, Cliff D, Thompson A, Jakobi N
(1997) Evolutionary robotics: the Sussex approach.
Robot Auton Syst 20:205–224

Hobbs J, Husbands P, Harvey I (1996) Achieving im-
proved mission robustness. In: 4th European Space
Agency workshop on advanced space technologies
for robot applications – ASTRA’96, Noordwijk, The
Netherlands ESTEC

Holland JH (1975) Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor

Husbands P, Harvey I (1992) Evolution versus design:
controlling autonomous mobile robots. In: Proceed-
ings of 3rd annual conference on artificial intelli-
gence, simulation and planning in high autonomy
systems. Computer Society Press, Los Alimitos,
pp 139–146

Husbands P, Moioli R, Shim Y, Philippides A, Var-
gas P, O’Shea M (2014) Evolutionary robotics and
neuroscience. In: Vargas P, Di Paolo E, Harvey I,
Husbands P (eds.) The horizons of evolutionary
robotics. MIT Press, Cambridge, pp 17–63

Jakobi N (1998a) Evolutionary robotics and the radical
envelope of noise hypothesis. Adapt Behav 6:325–
368

Jakobi N (1998b) Running across the reality gap: octo-
pod locomotion evolved in a minimal simulation. In:
Husbands P, Meyer JA (eds) Evolutionary robotics:
first European workshop, EvoRobot98. Springer,
Berlin, pp 39–58

Jakobi N, Husbands P, Harvey I (1995) Noise and the
reality gap: the use of simulations in evolutionary
robotics. In: Moran F et al (eds) Proceedings of
3rd European conference on artificial life. Springer,
Berlin, pp 704–720

Johnson C, Philippides A, Husbands P (2014) Active
shape discrimination with physical reservoir com-
puters. In: Proceedings of Alife 14. MIT Press,
Cambridge, pp 178–185

Lewis MA, Fagg AH, Solidum A (1992) Genetic pro-
gramming approach to the construction of a neural
network for a walking robot. In: Proceedings of
IEEE international conference on robotics and au-
tomation. IEEE Press, Washington, pp 2618–2623

Lipson H, Pollack J (2000) Automatic design and
manufacture of robotic lifeforms. Nature 406:974–
978

Mondada F, Franzi E, Ienne P (1993) Mobile robot
miniaturization: a tool for investigation in control
algorithms. In: Yoshikawa T, Miyazaki F (eds) Pro-
ceedings of the third international symposium on
experimental robotics. Springer, Berlin, pp 501–513

Mouret J-B, Doncieux S (2012) Encouraging behav-
ioral diversity in evolutionary robotics: an empirical
study. Evol Comput 20(1):91–133

Nolfi S, Floreano D (2000) Evolutionary robotics: the
biology. In: Intelligence, and technology of self-
organizing machines. MIT Press/Bradford Books,
Cambridge

480 Evolving Neural Networks

Parisi D, Nolfi S (1993) Neural network learning in an
ecological and evolutionary context. In: Roberto V
(ed) Intelligent perceptual systems. Springer, Berlin,
pp 20–40

Pfeifer R, Bongard J (2007) How the body shapes
the way we think: a new view of intelligence. MIT
Press, Cambridge

Philippides A, Husbands P, Smith T, O’Shea M (2005)
Flexible couplings: diffusing neuromodulators and
adaptive robotics. Artif Life 11(1&2):139–160

Quinn M (2001) Evolving communication without
dedicated communication channels. In: Kelemen J,
Sosik P (eds) Proceedings of the 6th European con-
ference on artificial life, ECAL’01. Springer, Berlin,
pp 357–366

Quinn M, Smith L, Mayley G, Husbands P (2003)
Evolving controllers for a homogeneous system of
physical robots: structured cooperation with mini-
mal sensors. Philos Trans R Soc Lond Ser A: Math
Phys Eng Sci 361:2321–2344

Reil T, Husbands P (2002) Evolution of central pattern
generators for bipedal walking in real-time physics
environments. IEEE Trans Evol Comput 6(2):
10–21

Seth AK (2005) Causal connectivity analysis of
evolved neural networks during behavior. Netw
Comput Neural Syst 16(1):35–54

Shim YS, Husbands P (2007) Feathered flyer: integrat-
ing morphological computation and sensory reflexes
into a physically simulated flapping-wing robot for
robust flight Manoeuvre. In: Proceedings of ECAL.
LNCS, vol 4648. Springer, Berlin, pp 756–765

Sims K (1994) Evolving 3D morphology and behavior
by competition. In: Brooks R, Maes P (eds) Pro-
ceedings of artificial life IV. MIT Press, Cambridge,
pp 28–39

Stanley K, D’Ambrosio D, Gauci J (2009) A
hypercube-based encoding for evolving large-scale
neural networks. Artif Life 15(2):185–212

Tllez R, Angulo C, Pardo D (2006) Evolving the
walking behaviour of a 12 DOF quadruped using a
distributed neural architecture. In: 2nd international
workshop on biologically inspired approaches to ad-
vanced information technology (Bio-ADIT’2006).
LNCS, vol 385. Springer, Berlin, pp 5–19

Turing AM (1950) Computing machinery and intelli-
gence. Mind 59:433–460

Urzelai J, Floreano D (2001) Evolution of adaptive
synapses: robots with fast adaptive behavior in new
environments. Evol Comput 9:495–524

Vargas P, Di Paolo E, Harvey I, Husbands P (2014)
The horizons of evolutionary robotics. MIT Press,
Cambridge

Vaughan E, Di Paolo EA, Harvey I (2004) The evo-
lution of control and adaptation in a 3D powered
passive dynamic walker. In: Pollack J, Bedau M,
Husbands P, Ikegami T, Watson R (eds) Proceedings
of the ninth international conference on the simula-
tion and synthesis of living systems artificial life IX.
MIT Press, Cambridge, pp 139–145

Evolving Neural Networks

�Neuroevolution

Example

� Instance

Example Space

� Instance Space

Example-Based Programming

� Inductive Programming

Expectation Maximization
Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinios at Urbana-Champaign,
Urbana, IL, USA

Abstract

The expectation maximization (EM) based
clustering is a probabilistic method to partition
data into clusters represented by model
parameters. Extensions to the basic EM
algorithm include but not limited to the
stochastic EM algorithm (SEM), the simulated
annealing EM algorithm (SAEM), and the
Monte Carlo EM algorithm (MCEM).

Synonyms

Mixture model

http://dx.doi.org/10.1007/978-1-4899-7687-1_594
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_552

Expectation Maximization Clustering 481

E

Definition

The expectation maximization (EM) algorithm
(Dempster et al. 1977; Fraley and Raftery 1998)
finds maximum likelihood estimates of parame-
ters in probabilistic models. EM is an iterative
method which alternates between two steps, ex-
pectation (E) and maximization (M). For clus-
tering, EM makes use of the finite Gaussian
mixtures model and estimates a set of parameters
iteratively until a desired convergence value is
achieved. The mixture is defined as a set of
K probability distributions and each distribution
corresponds to one cluster. An instance is as-
signed with a membership probability for each
cluster.

The EM algorithm for partitional clustering
works as follows:

1. Guess initial parameters of the models: mean
and standard deviation (if using normal distri-
bution model).

2. Iteratively refine the parameters with E and
M steps. In the E step: compute the mem-
bership possibility for each instance based on
the initial parameter values. In the M step:
recompute the parameters based on the new
membership possibilities.

3. Assign each instance to the cluster with which
it has highest membership possibility.

Refer to Celeux and Govaert (1995) for details
about the E and M steps for multivariate normal
mixture models parameterized via the eigenvalue
decomposition.

The EM algorithm for clustering becomes
time consuming to compute for models with
very large numbers of components, because the
number of conditional probabilities associated
with each instance is the same as the number of
components in the mixture.

Extensions

There are many extensions to the EM-based clus-
tering algorithm. Celeux et al. (1996) compared
three different stochastic versions of the EM

algorithm: the stochastic EM algorithm (SEM),
the simulated annealing EM algorithm (SAEM),
and the Monte Carlo EM algorithm (MCEM).
SEM was shown to be efficient for locating sig-
nificant maxima of the likelihood function. The
classification EM (CEM) algorithm (Celeux and
Govaert 1992) incorporates a classification step
between the E-step and the M -step using a
maximum a posteriori (MAP) principle. The K-
means algorithm becomes a particular version of
the CEM algorithm corresponding to the uniform
spherical Gaussian model. Yang et al. (2012)
proposed an EM clustering algorithm for Gaus-
sian mixture models, which is robust to initial-
ization and different cluster sizes with a schema
to automatically obtain an optimal number of
clusters.

Softwares

The following softwares have implementations of
the EM clustering algorithm:

• Weka. Open Source Data Mining Software in
Java (Hall et al. 2009), from Machine Learn-
ing Group at the University of Waikato:

http://www.cs.waikato.ac.nz/ml/weka/
index.html

• LNKnet Software. Written in C. A public do-
main software from MIT Lincoln Laboratory:

http://www.ll.mit.edu/mission/communica
tions/cyber/softwaretools/lnknet/lnknet.html

• EMCluster (Chen et al. 2012). R package.
It provides EM algorithms and several effi-
cient initialization methods for clustering of
finite mixture Gaussian distribution with un-
structured dispersion in both unsupervised and
semi-supervised learning.

http://cran.r-project.org/web/packages/EM
Cluster/

Recommended Reading

Celeux G, Govaert G (1992) A classification em
algorithm for clustering and two stochastic versions.
Comput Stat Data Anal 14(3):315–332

http://www.cs.waikato.ac.nz/ml/weka/index.html
http://www.ll.mit.edu/mission/communications/cyber/softwaretools/lnknet/lnknet.html
http://cran.r-project.org/web/packages/EMCluster/

482 Expectation Propagation

Celeux G, Govaert G (1995) Gaussian parsimonious
clustering models. Pattern Recognit 28(5):781–793

Celeux G, Chauveau D, Diebolt J (1996) Stochastic
versions of the em algorithm: an experimental study
in the mixture case. J Stat Comput Simul 55(4):287–
314

Chen W-C, Maitra R, Melnykov V (2012) EMCluster:
EM algorithm for model-based clustering of finite
mixture Gaussian distribution. R Package, http://
cran.r-project.org/package=EMCluster

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

Fraley C, Raftery AE (1998) How many clusters?
Which clustering method? Answers via model-
based cluster analysis. Comput J 41(8):578–588

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann
P, Witten IH (2009) The weka data mining software:
an update. ACM SIGKDD Explor Newsl 11(1):10–
18

Yang M-S, Lai C-Y, Lin C-Y (2012) A robust em
clustering algorithm for Gaussian mixture models.
Pattern Recognit 45(11):3950–3961

Expectation Propagation

Tom Heskes
Institute for Computing and Information
Sciences, Radboud University Nijmegen,
Nijmegen, The Netherlands

Synonyms

EP

Definition

Expectation propagation is an algorithm for
Bayesian machine learning. It tunes the
parameters of a simpler approximate distribution
(e.g., a Gaussian) to match the exact posterior
distribution of the model parameters given
the data. Expectation propagation operates by
propagating messages, similar to the messages in
(loopy) � belief propagation. Whereas messages
in belief propagation correspond to exact belief
states, messages in expectation propagation
correspond to approximations of the belief states
in terms of expectations, such as means and

variances. It is a deterministic method especially
well suited to large databases and dynamic
systems, where exact methods for Bayesian
inference fail and �Monte Carlo methods are
far too slow.

Motivation and Background

One of the main problems for �Bayesian meth-
ods is their computational expense: computation
of the exact posterior given the observed data typ-
ically requires the solution of high-dimensional
integrals that have no analytical expressions. Ap-
proximation algorithms are needed to approx-
imate this posterior as accurately as possible.
These techniques for approximate inference can
be subdivided in two categories: deterministic ap-
proaches and stochastic sampling (Monte Carlo)
methods. Having the important advantage that
(under certain conditions) they give exact re-
sults in the limit of an infinite number of sam-
ples, �Monte Carlo methods are the method of
choice in Bayesian statistics. However, in par-
ticular, when dealing with large databases, the
time needed for stochastic sampling to obtain a
reasonably accurate approximation of the exact
posterior can be prohibitive. This explains the
need for faster, deterministic approaches, such as
the Laplace approximation, � variational approx-
imations, and expectation propagation.

Expectation propagation was first described by
Thomas Minka in his thesis Minka (2001). It can
be viewed as a generalization and reformulation
of the earlier ADATAP algorithm of Manfred
Opper and Ole Winther (2001). Expectation prop-
agation quickly became one of the most pop-
ular deterministic approaches for approximate
Bayesian inference. Expectation propagation im-
proves upon assumed density filtering, a classical
method from stochastic control, by iteratively
refining local approximations instead of comput-
ing them just once. Furthermore, it encompasses
loopy belief propagation, a popular method for
approximate inference in probabilistic graphical
models, as a special case. Where loopy belief
propagation is restricted to models of discrete
variables only, expectation propagation applies to

http://cran.r-project.org/package=EMCluster
http://cran.r-project.org/package=EMCluster
http://dx.doi.org/10.1007/978-1-4899-7687-1_100138
http://dx.doi.org/10.1007/978-1-4899-7687-1_498
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_876

Expectation Propagation 483

E

Ψ0 Ψ1 · · · Ψn

w

Ψ̃0 Ψ̃1 · · · Ψ̃n

w

Expectation Propagation, Fig. 1 (left-hand side) A so-
called factor graph corresponding to the i.i.d. assumption
in Bayesian machine learning. Each box corresponds to a
factor or term. A circle corresponds to a variable. Factors
are connected to the variables that they contain. ‰0 corre-

sponds to the prior, and ‰1 : : : ‰n are the likelihood terms
for the n data points. The right-hand side is a factor graph
of the approximating distribution. The original terms have
been replaced by term approximations

a much wider class of probabilistic � graphical
models with discrete and continuous variables
and complex interactions between them.

Structure of Learning System

Bayesian Machine Learning
In the Bayesian framework for machine learning,
you should enumerate all reasonable models of
the data and assign a prior belief P.w/ to each
of these models w. Then, upon observing the
data D, you compute the likelihood P.Djw/ to
evaluate how probable the data was under each
of these models. The product of the prior and
the likelihood gives you, up to a normalization
constant, the posterior probability P.wjD/ over
models given the data:

P.wjD/ D
P.Djw/P.w/

P.D/
;

where the normalization term P.D/ is called
the probability of the data or “evidence.” This
posterior probability incorporates all you have
learned from the data D regarding the models
w under consideration. As indicated above, exact
calculation of this posterior probability is often
infeasible, because the normalization term re-
quires the solution of intractable sums or inte-
grals.

In its simplest setting, the data D consists of
n observations, x1; : : : ; xn, which are assumed to
be i.i.d. (independent and identically distributed).
The posterior probability then factorizes into n C

1 terms, one for each observation and one for

the prior. With definitions ‰0.w/ � P.w/ and
‰i .w/ � P.xi jw/, we can rewrite

P.wjD/D
P.w/

Qn
iD1 P.xi jw/

P.D/
�

Qn
iD0 ‰i .w/

P.D/
:

This factorization is visualized in the so-called
factor graph in Fig. 1. We will use it as a running
example in the following.

Assumed Density Filtering
Expectation propagation can be interpreted by an
iterative refinement of assumed density filtering.
In assumed density filtering, we add terms one
by one and project in each step back to the
“assumed density.” For example, suppose that our
prior probability P.w/ D ‰0.w/ is a (known)
Gaussian distribution over model parameters w,
the terms corresponding to the data points are
non-Gaussian, and we aim to find an appropri-
ate Gaussian approximation Q.w/ to the exact
(non-Gaussian) posterior P.wjD/. Our first ap-
proximation is the prior itself. Assumed-density
filtering now proceeds by adding terms one at
a time, where at each step we approximate the
resulting distribution as closely as possible by
a Gaussian. The pseudo-code is given in Algo-
rithm 1, where Q0Wi .w/ denotes the approxima-
tion obtained after incorporating the prior and the
first i observations.

If we use the Kullback-Leibler divergence as
the distance measure from the non-Gaussian (but
normalized) product of Q0Wi�1.w/ and ‰i .w/ and
the Gaussian approximation, projection becomes
“moment matching”: the result of the projection

http://dx.doi.org/10.1007/978-1-4899-7687-1_119

484 Expectation Propagation

Ψ̃0 Ψ̃1 · · · Ψ̃i · · · Ψ̃n

w

substitute
=⇒
⇐=
project

Ψ̃0 Ψ̃1 · · · Ψi · · · Ψ̃n

w

Expectation Propagation, Fig. 2 Visualization of expectation propagation when recomputing the term approxima-
tion for observation i

is the Gaussian that has the same mean and
covariance matrix as the non-Gaussian product.

Expectation Propagation
When in assumed density filtering we add the
term ‰i .w/, the Gaussian approximation changes
from Q0Wi�1.w/ to Q0Wi .w/. We will call the
quotient of the two the term approximation (here
and in the following we ignore normalization
constants):

Q‰i .w/ D
Q0Wi .w/

Q0Wi�1.w/
:

In our running example, term approximations
are quotients between two different Gaussian
densities and therefore have a Gaussian form
themselves. Since the prior ‰0.w/ is a Gaussian
density, Q‰0.w/ D ‰0.w/. The approximation
Q0Wn.w/ is equal to the product of all term ap-
proximations and is visualized on the right-hand
side of Fig. 1. In assumed density filtering, the
resulting approximation depends on the ordering
in which the terms have been added. For example,
if the terms had been added in reverse order, their
term approximations might have been (slightly)
different.

Expectation propagation now generalizes as-
sumed density filtering by iteratively refining
these term approximations. When successful, the
final approximation will be independent of the or-
dering. Pseudo-code of expectation propagation
is given in Algorithm 2. In step 1 through 5,
the term approximations are initialized; in step 6
through 12, these term approximations are itera-
tively refined until they no longer change. In step
8, we take out the previous term approximation
from the current approximation. In step 9, we
put back in the exact term and project back to
a Gaussian, like we did in assumed density fil-

tering. It is easy to check that the approximation
Q.w/ after the first loop equals the approximation
Q0Wn.w/ obtained with assumed density filtering.
The recalculation of the term approximation cor-
responding to observation i is visualized in Fig. 2.

Computational Aspects
With expectation propagation, we have to do
a little more bookkeeping than with assumed
density filtering: we have to keep track of the
term approximations. One loop of expectation
propagation is about as expensive as running
assumed density filtering. Typically, about five
iterations are sufficient for convergence.

The crucial operation is in step 3 of Algo-
rithm 1 and step 9 of Algorithm 2. Here we have
to compute the moments of the (non-Gaussian)
probability distribution on the right-hand side. In
most cases, we do not have analytical expressions
for these moments and have to compute them
numerically, e.g., using Gaussian quadrature. We
then obtain the moments (mean and covariance
matrix) of the new approximation Q.w/. Divi-
sions and multiplications correspond to a simple
subtraction and addition of so-called canonical
parameters. For the Gaussian these canonical pa-
rameters are the inverse of the covariance matrix
(precision matrix) and the product of the preci-
sion matrix and the mean. The bottom line is
that we go back and forth between distributions
in terms of moments and in terms of canonical
parameters. For a Gaussian, this requires comput-
ing the inverse of the covariance matrix, which
is roughly on the order of d 3, where d is the
dimension of w. A practical point of concern is
that matrix inversion is numerically instable, in
particular, for matrices that are close to singular,
which can lead to serious roundoff errors.

Expectation Propagation 485

E

Algorithm 1 Assumed density filtering

1: Q0.w/ D ‰0.w/

2: for i D 1 to n do

3: Q0Wi .w/ D Project to Gaussian.Q0Wi�1.w/‰i .w//

4: end for

Algorithm 2 Expectation propagation

1: Q‰0.w/ D ‰0.w/

2: for i D 1 to n do

3: Q‰i .w/ D 1

4: end for

5: Q.w/ D

nY

iD0

Q‰i .w/

6: while not converged do

7: for i D 1 to n do

8: Q�i .w/ D
Q.w/

Q‰i .w/

9: Q.w/ D Project to Gaussian.Q�i .w/‰i .w//

10: Q‰i .w/ D
Q.w/

Q�i .w/

11: end for

12: end while

Convergence Issues
Sadly enough, expectation propagation is not
guaranteed to converge to a fixed point. If it does,
this fixed point can be shown to correspond to
an extremum of the so-called Bethe free energy,
an approximation of the “evidence” log P.D/,
under particular consistency and normalization
constraints (Minka 2001; Herbrich and Graepel
2006; Heskes and Zoeter 2002; Heskes et al.
2005). These constraints relate to the projec-
tion step in Algorithm 2: after convergence, the
moments of Q.w/ should be equal to the mo-
ments of the distribution obtained by taking out
a term approximation and putting back the corre-
sponding exact term. This should hold for all i.i.d.
observations i D 1; : : : ; n in the factor graph of
Fig. 1: so we conclude that, after convergence,
the moments (“expectations”) of all distributions
constructed in this way should be the same.
Expectation consistent approximations are based
on the exact same idea and indeed turn out to
be equivalent to expectation propagation (Heskes
et al. 2005).

When expectation propagation does not con-
verge, we can try “damping”: instead of replacing
the old term approximation by the new one, we
replace it by a logconvex combination of the old
and the new one. In many cases, damping with a
step size 0.1 makes expectation propagation con-
verge, at the expense of requiring more iterations.
However, even damping with an infinitesimally
small step size is not guaranteed to lead to conver-
gence. In those cases, we can try to minimize the
Bethe free energy more explicitly with a so-called
double-loop algorithm (Heskes and Zoeter 2002):
in the outer loop we compute a convex bound on
the Bethe free energy, which we then minimize
in the inner loop with an algorithm very similar
to standard expectation propagation. Double-loop
algorithms are an order of magnitude slower
than standard expectation propagation. Recent
approaches such as Seeger and Nickisch (2010)
provide guaranteed convergence at a much faster
rate, but only for specific models.

Generalizations
The running example above serves to illustrate
the main idea, but is of course rather restrictive.
Expectation propagation can be applied with any
member of the exponential family as approximat-
ing distribution (Minka 2001; Seeger 2008). The
crucial operations are the projection step and the
transformation from moment to canonical form:
if these can be performed efficiently and robustly,
expectation propagation is into play.

In many interesting cases, the model to be
learned (here represented as a single variable w)
contains a lot of structure. This structure can be
exploited by expectation propagation to make it
more efficient. For example, when a term only
contains a subset of the elements of w, so does
its term approximation. Also, we might take as
the approximating distribution a distribution that
factorizes over the elements of w, instead of
a “full” distribution coupling all elements. For
a Gaussian, this would amount to a diagonal
instead of a full covariance matrix. Such a factor-
ization will lead to lower memory requirements
and faster computation, perhaps at the expense
of reduced accuracy. More advanced approxima-
tions include Tree-EP, where the approximating

486 Expectation Propagation

structure is a tree, and generalized expectation
propagation, which generalizes expectation prop-
agation to include higher-order interactions in the
same way as generalized belief propagation gen-
eralizes loopy belief propagation (Welling et al.
2005). Systematic higher-order corrections on top
of standard expectation propagation lead to im-
proved approximate inference in Gaussian latent
variable models (Cseke and Heskes 2011; Opper
et al. 2013).

Power expectation propagation (Minka
2005) generalizes expectation propagation by
considering a different distance measure in the
projection step. Instead of taking the Kullback-
Leibler divergence, we can take any so-called ˛-
divergence. ˛ D 1 corresponds to the Kullback-
Leibler divergence and ˛ D �1 to the Kullback-
Leibler divergence with the two probabilities
interchanged. In the latter case, we obtain a
variational method called variational Bayes.

Programs and Data
Code for expectation propagation applied to
Gaussian process classification can be found
at http://www.gaussianprocess.org/gpml/code/
matlab/doc/ or http://becs.aalto.fi/en/research/
bayes/gpstuff/. Kevin Murphy’s Bayes Net
toolbox (https://code.google.com/p/bnt/) can
provide a good starting point to write your own
code for expectation propagation. Expectation
propagation is one of the approximate inference
methods implemented in Infer.NET, Microsoft’s
framework for running Bayesian inference in
graphical models (http://research.microsoft.com/
en-us/um/cambridge/projects/infernet/).

Applications

Expectation propagation has been applied
for, among others, Gaussian process clas-
sification (Csato et al. 2002), inference in
Bayesian networks and Markov random fields,
text classification with Dirichlet models and
processes (Minka and Lafferty 2002), logistic
regression models for rating players (Herbrich
and Graepel 2006), and inference and learning

in hybrid and nonlinear dynamic Bayesian
networks (Heskes and Zoeter 2002).

Future Directions

From an application point of view, expectation
propagation will probably become one of the
standard techniques for approximate Bayesian
machine learning, much like the Laplace ap-
proximation and Monte Carlo methods. Future
research may involve questions like

• When does expectation propagation con-
verge? Can we design variants that are
guaranteed to converge for any type of
model?

• What “power” to use in power expectation
propagation for what kind of purposes?

• Can we adapt expectation propagation to
handle approximating distributions that are
not part of the exponential family? Recent
progress in this direction includes Barthelme
and Chopin (2014).

Cross-References

�Gaussian Process

Recommended Reading

Barthelmé S, Chopin N (2014) Expectation propaga-
tion for likelihood-free inference. J Am Stat Assoc
109(505):315–333

Csató L (2002) Gaussian processes – iterative
sparse approximations. Ph.D. thesis, Aston Uni-
versity

Cseke B, Heskes TT (2011) Approximate marginals in
latent Gaussian models. J Mach Learn Res 12:417–
454

Herbrich R, Graepel T (2006) TrueSkill: a Bayesian
skill rating system. Technical report (MSR-TR-
2006-80), Microsoft Research, Cambridge

Heskes T, Zoeter O (2002) Expectation propagation
for approximate inference in dynamic Bayesian
networks. In: Darwiche A, Friedman N (eds) Pro-
ceedings of the 18th conference on uncertainty in
artificial intelligence, Alberta, pp 216–223

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://becs.aalto.fi/en/research/bayes/gpstuff/
http://becs.aalto.fi/en/research/bayes/gpstuff/
https://code.google.com/p/bnt/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://dx.doi.org/10.1007/978-1-4899-7687-1_108

Explanation-Based Learning 487

E

Heskes T, Opper M, Wiegerinck W, Winther O, Zoeter
O (2005) Approximate inference with expectation
constraints. J Stat Mech Theory Exp P11015

Minka T (2001) A family of algorithms for approxi-
mate Bayesian inference. Ph.D. thesis, MIT

Minka T (2005) Divergence measures and message
passing. Technical report (MSR-TR-2005-173), Mi-
crosoft Research, Cambridge

Minka T, Lafferty J (2002) Expectation-propagation
for the generative aspect model. In: Darwiche A,
Friedman N (eds) Proceedings of the 18th confer-
ence on uncertainty in artificial intelligence, Al-
berta, pp 352–359

Opper M, Paquet U, Winther O (2013) Perturba-
tive corrections for approximate inference in Gaus-
sian latent variable models. J Mach Learn Res
14(1):2857–2898

Opper M, Winther O (2001) Tractable approximations
for probabilistic models: the adaptive Thouless-
Anderson-Palmer mean field approach. Phys Rev
Lett 86:3695–3699

Seeger M (2008) Bayesian inference and optimal de-
sign for the sparse linear model. J Mach Learn Res
9: 759–813

Seeger M, Nickisch H (2010) Fast convergent al-
gorithms for expectation propagation approxi-
mate Bayesian inference. arXiv preprint arXiv:
1012.3584

Welling M, Minka T, Teh Y (2005) Structured region
graphs: morphing EP into GBP. In: Bacchus F,
Jaakkola T (eds) Proceedings of the 21st conference
on uncertainty in artificial intelligence (UAI), Edin-
burgh, pp 609

Experience Curve

�Learning Curves in Machine Learning

Experience-Based Reasoning

�Case-Based Reasoning

Explanation

In �Minimum Message Length, an explanation
is a code with two parts, where the first part is
an assertion code and the second part is a detail
code.

Explanation-Based Generalization
for Planning

�Explanation-Based Learning for Planning

Explanation-Based Learning

Gerald DeJong1 and Shiau Hong Lim2

1University of Illinois at Urbana, Urbana, IL,
USA
2University of Illinois, Champaign, IL, USA

Synonyms

Analytical learning; Deductive learning; EBL;
Utility problem

Definition

Explanation-based learning (EBL) is a principled
method for exploiting available domain knowl-
edge to improve � supervised learning. Improve-
ment can be in speed of learning, confidence of
learning, accuracy of the learned concept, or a
combination of these. In modern EBL the domain
theory represents an expert’s approximate knowl-
edge of complex systematic world behavior. It
may be imperfect and incomplete. Inference over
the domain knowledge provides analytic evi-
dence that compliments the empirical evidence of
the training data. By contrast, in original EBL, the
domain theory is required to be much stronger;
inferred properties are guaranteed. Another im-
portant aspect of modern EBL is the interaction
between domain knowledge and labeled training
examples afforded by explanations. Interaction
allows the nonlinear combination of evidence so
that the resulting information about the target
concept can be much greater than the sum of
the information from each evidence source taken
independently.

http://dx.doi.org/10.1007/978-1-4899-7687-1_452
http://dx.doi.org/10.1007/978-1-4899-7687-1_34
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_97
http://dx.doi.org/10.1007/978-1-4899-7687-1_100015
http://dx.doi.org/10.1007/978-1-4899-7687-1_206
http://dx.doi.org/10.1007/978-1-4899-7687-1_100129
http://dx.doi.org/10.1007/978-1-4899-7687-1_100499
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

488 Explanation-Based Learning

Hypothesis
Space H

Training
Set Z

Learning
System

Explanation-Based Learning, Fig. 1 Conventional
learner

Motivation and Background

A conventional machine learning system is illus-
trated in Fig. 1. A hypothesis Oh is selected from
a space of candidates H using a training set of
labeled examples Z as evidence. It is common to
assume that the examples are drawn from some
space of well-formed inputs X according to some
fixed but unknown distribution D. The quality
of Oh is to be judged against different examples
similarly selected and labeled. The correct label
for an example is specified by some ideal tar-
get concept, c�. This is typically some complex
world process whose outcome is of interest. The
target concept, c�, will generally not be a member
of space of acceptable candidates, H . Rather, the
learner tries to find some Oh which is acceptably
similar to c� over XD and can serve as a compu-
tationally tractable stand-in.

Of course, good performance of Oh on Z (its
training performance) alone is insufficient. The
learner must achieve some statistical guarantee of
good performance on the underlying distribution
(test performance). If H is too rich and diverse
or if Z is too impoverished, a learner is likely
to � overfit the data; it may find a pattern in the
training data that does not hold in the underlying
distribution XD. Test performance will be poor
despite good training performance.

An explanation-based learner employs its do-
main theory, � (Fig. 2), as an additional source
of information. This domain theory must not be
confused with � learning bias, which is present in
all learners. Determinations (Russell and Grosof
1987) provide an extreme illustration. These are

Hypothesis
Space H

Training
Set Z

Domain
Knowledge D

Learning
System

Explanation-Based Learning, Fig. 2 EBL learner

logical expressions that make strong claims about
the world but only after seeing a training ex-
ample. EBL domain theories are used only to
explain. An inferred expression is not guaranteed
to hold but only provides analytic evidence.

An explanation for some ´ 2 Z is immedi-
ately and easily generalized: The structure of the
explanation accounts for why ´s assigned classi-
fication label should follow from its features. All
other examples that meet these conditions are as-
signed the same classification by the generalized
explanation for the same reasons.

Early approaches to EBL (e.g., DeJong and
Mooney 1986; Mitchell et al. 1986; Mitchell
1997; Russell and Norvig 2003) were undone
by two difficult problems: (1) unavoidable im-
perfections in the domain theory and (2) the
utility problem. The former stems from assuming
a conventional semantics for the domain theory.
It results in a brittleness and an under-reliance
on the training data. Modern EBL is largely a
reaction to this difficulty. The utility problem is
a consequence of an ill-defined hypothesis space
and, as will be discussed later, can be avoided in
a straightforward manner.

Structure of Learning System

Explanations and Their Generalization
An explanation for a training example is any
causal structure, derivable from �, which justifies
why this training example might merit its teacher-
assigned classification label. A generalized ex-
planation is the structure of an explanation with-

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_100246

Explanation-Based Learning 489

E

out the commitment to any particular example.
The explanation and generalization processes are
relatively straightforward and not significantly
different from the original EBL algorithms.

The weakness of early EBL is in viewing
the components of � as constraints. This leads
to a view of explanations and their generaliza-
tions as proofs. Real-world brittleness due to
the qualification problem (McCarthy 1980) fol-
lows inevitably. In modern EBL, � is seen as
approximating the underlying world constraints
(DeJong 2006; Kimmig et al. 2007). The domain
theory is fundamentally a statistical device. Its
analytic evidence and the empirical evidence of
the training examples both provide a bridge to the
real world.

The domain theory introduces new predicates
and specifies their significant potential interac-
tions. From a statistical point of view, these
are named latent (hidden) features together with
a kind of grammar for constructing alternative
estimators for them. In short, the domain theory
compactly specifies a large set of conceptual
structures that an expert believes may be useful
in making sense of the domain. If the expert
is correct, then patterns of interest will become
computationally much more accessible via ana-
lytic inference.

One flexible and useful form of a domain
theory is sound inference over a set of first-
order symbolic logic sentences. In such domain
theories, the explanation mechanism can be iden-
tical to logical deduction although using a para-
consistent inference mechanism; inference must
be well behaved despite inconsistencies in the
theory. Generalized explanations are simply “the-
orems” of � that relate a classification label to
the values of observable example features. But
since the sentences of the theory only approx-
imate world constraints, derivation alone, even
via sound inference, is not sufficient evidence to
believe a conclusion. Thus, a generalized expla-
nation is only a conjecture. Additional training
examples beyond those used to generate each
explanation help to estimate the utility of these
generalizations.

But analytic mechanisms need not be limited
to symbolic logic-like inference. For example,

X Example Space

–

–
–

–

+

+

+

+

+

+

+ +

+

+

–
–

–

–

Explanation-Based Learning, Fig. 3 An example
space with two designated positive training items

one EBL approach is to distinguish handwritten
Chinese characters (Lim et al. 2007) employing a
Hough transform as a component of the domain
theory. There, an explanation conjectures (hid-
den) glyph “strokes” to explain how the observed
pixels of the training images may realize the
image’s character label.

Whatever the form of the analytic inferential
mechanism, multiple, quite incompatible expla-
nations can be generated; the same training label
can be explained using different input features
and postulating different interactions. Such ex-
planations will generalize to cover quite different
subsets of X . Figure 3 shows a small training set
with two positive examples highlighted. While
the explanation process can be applied to all
examples both positive and negative, these two
will be used to illustrate. In this illustration, just
two explanations are constructed for each of the
highlighted training examples. Figure 4 shows the
generalized extensions of these four explanations
in the example space. The region enclosed by
each contour is meant to denote the subset of
X conjectured to merit the same classification
as the explained example. Explanations make no
claim about the labels for examples outside their
extension.

Evaluation and Hypothesis Selection
Additional training examples that fall within the
extension of a generalized explanation help to
evaluate it empirically. This is shown in Fig. 5.
The estimated utility of a generalized explanation

490 Explanation-Based Learning

Explanation-Based Learning, Fig. 4 Four constructed
explanations are sufficient to cover the positive examples

Explanation-Based Learning, Fig. 5 Explanations are
evaluated with other training examples

reflects (1) the generalized explanation’s empiri-
cal accuracy on these training examples, (2) the
inferential effort required to derive the explana-
tion (see DeJong 2006), and (3) the redundancies
and interactions with other generalized explana-
tions (higher utility is estimated if its correct
predictions are less commonly shared by other
generalized explanations).

The estimated utilities define an EBL classifier
as a mixture of the generalized explanations each
weighted by its estimated utility:

OcEBL.x/ D
X

g2GE.Z;�/

ug � g.x/;

where GE.Z; �/ denotes the generalized expla-
nations for Z from � and ug is the estimated
utility for g. This corresponds to a voting scheme
where each generalized explanation that claims
to apply to an example casts a vote in proportion
to its estimated utility. The votes are normalized

Explanation-Based Learning, Fig. 6 An element from
H that approximates the weighted explanations

over the utilities of voting generalized explana-
tions. The mixture scheme is similar to that of
sleeping experts (Freund et al. 1997). This EBL
classifier approximates the target concept c�. But
unlike the approximation chosen by a conven-
tional learner, OcEBL reflects the information of �

in addition to Z.
The final step is to select a hypothesis Oh from

H . The EBL concept OcEBL is used to guide this
choice. Figure 6 illustrates the selection of a
Oh 2 H , which is a good approximation to a
utility-blended mixture of Fig. 5. This final step,
selecting a hypothesis from H , is important but
was omitted in original EBL. These systems em-
ployed generalized explanations directly. Unfor-
tunately, such classifiers suffer from a difficulty
known as the utility problem (Minton 1990). Note
this is a slightly different use of the term utility,
referring to the performance of an application
system. This system can be harmed more than
helped by concepts such as OcEBL, even if these
concepts provide highly accurate classification.
Essentially, the average cost of evaluating an EBL
concept may outweigh the average benefit that
it provides to the application system. It is now
clear that this utility problem is simply the mani-
festation of a poorly structured hypothesis space.
Note that, in general, an EBL classifier itself will
not be an element of the space of acceptable
hypotheses H . Previous approaches to the utility
problem (Minton 1990; Gratch and DeJong 1992;
Greiner and Jurisica 1992; Etzioni 1993) identify
and disallow offending EBL concepts. However,
the root cause is addressed by employing the EBL
concept as a guidance in selecting a Oh 2 H

Explanation-Based Learning 491

E

rather than using OcEBL directly. Without this last
step, H is completely ignored. But H embodies
all of the information in the learning problem
about what makes an acceptable hypothesis. The
“utility problem” is simply the manifestation of
leaving out this important information.

Literature
The roots and motivation for EBL extend at
least to the MACROPs of STRIPS (Fikes et al.
1972). The importance of explanations of training
examples was first suggested in DeJong (1981).
The standard references for the early EBL work
are Mitchell et al. (1986) and DeJong and
Mooney (1986). When covering EBL, current
textbooks give somewhat refined versions of
this early approach (Mitchell 1997; Russell and
Norvig 2003). Important related ideas include
determinations (Russell and Grosof 1987),
chunking (Laird et al. 1986), and knowledge
compilation (Anderson 1986). EBL’s ability to
employ first-order theories make it an attractive
compliment to learning Horn theories with
� Inductive Logic Programming (Hirsh 1987;
Bruynooghe et al. 1989; Pazzani and Kibler
1992; Zelle and Mooney 1993). The problem of
imperfect domain theories was recognized early,
and there have been many approaches (Flann and
Dietterich 1989; Genest et al. 1990; Towell et al.
1991; Cohen 1992; Thrun and Mitchell 1993;
Ourston and Mooney 1994). But with modern
statistical learning ascending to the dominant
paradigm of the field, interest in analytic
approaches waned. The current resurgence of
interest is largely driven by placing EBL in a
modern statistically sophisticated framework that
nonetheless is still able to exploit a first-order
expressiveness (DeJong 2006; Kimmig et al.
2007; Lim et al. 2007; Sun and DeJong 2005).

Cross-References

�Deductive Learning
�Explanation-Based Learning for Planning
� Speedup Learning

Recommended Reading

Anderson J (1986) Knowledge compilation: the gen-
eral learning mechanism. In: Michalski R, Carbonell
J, Mitchell T (eds) Machine learning II. Morgan
Kaufmann, San Mateo, pp 289–310

Bruynooghe M, De Raedt L, De Schreye D (1989)
Explanation based program transformation. In: IJ-
CAI’89: proceedings of the eleventh international
joint conference on artificial intelligence, Detroit,
pp 407–412

Cohen WW (1992) Abductive explanation-based
learning: a solution to the multiple inconsistent
explanation problem. Mach Learn 8:167–219

DeJong G (1981) Generalizations based on explana-
tions. In: IJCAI’81: proceedings of the seventh in-
ternational joint conference on artificial intelligence,
Vancouver, pp 67–69

DeJong G (2006) Toward robust real-world inference:
a new perspective on explanation-based learning. In:
ECML06: proceedings of the seventeenth European
conference on machine learning, Berlin. Springer,
Heidelberg, pp 102–113

DeJong G, Mooney R (1986) Explanation-based learn-
ing: an alternative view. Mach Learn 1(2):145–176

Etzioni O (1993) A structural theory of explanation-
based learning. Artif Intell 60(1):93–139

Fikes R, Hart PE, Nilsson NJ (1972) Learning and
executing generalized robot plans. Artif Intell 3(1–
3):251–288

Flann NS, Dietterich TG (1989) A study of
explanation-based methods for inductive learning.
Mach Learn 4:187–226

Freund Y, Schapire RE, Singer Y, Warmuth MK (1997)
Using and combining predictors that specialize. In:
Twenty-ninth annual ACM symposium on the the-
ory of computing, El Paso, pp 334–343

Genest J, Matwin S, Plante B (1990) Explanation-
based learning with incomplete theories: a
three-step approach. In: Proceedings of the seventh
international conference on machine learning,
Austin, pp 286–294

Gratch J, DeJong G (1992) Composer: a probabilistic
solution to the utility problem in speed-up learning.
In: AAAI, San Jose, pp 235–240

Greiner R, Jurisica I (1992) A statistical approach to
solving the EBL utility problem. In: National con-
ference on artificial intelligence, San Jose, pp 241–
248

Hirsh H (1987) Explanation-based generalization in a
logic-programming environment. In: IJCAI’87: pro-
ceedings of the tenth international joint conference
on artificial intelligence, Milan, pp 221–227

Kimmig A, De Raedt L, Toivonen H (2007) Proba-
bilistic explanation based learning. In: ECML’07:
proceedings of the eighteenth European conference
on machine learning, Warsaw, pp 176–187

Laird JE, Rosenbloom PS, Newell A (1986) Chunking
in soar: the anatomy of a general learning mecha-
nism. Mach Learn 1(1):11–46

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_206
http://dx.doi.org/10.1007/978-1-4899-7687-1_97
http://dx.doi.org/10.1007/978-1-4899-7687-1_778

492 Explanation-Based Learning for Planning

Lim SH, Wang L-L, DeJong G (2007) Explanation-
based feature construction. In: IJCAI’07: proceed-
ings of the twentieth international joint conference
on artificial intelligence, Hyderabad, pp 931–936

McCarthy J (1980) Circumscription – a form of non-
monotonic reasoning. Artif Intell 13:27–39

Minton S (1990) Quantitative results concerning the
utility of explanation-based learning. Artif Intell
42(2–3):363–391

Mitchell T (1997) Machine learning. McGraw-Hill,
New York

Mitchell T, Keller R, Kedar-Cabelli S (1986)
Explanation-based generalization: a unifying view.
Mach Learn 1(1):47–80

Ourston D, Mooney RJ (1994) Theory refinement
combining analytical and empirical methods. Artif
Intell 66(2):273–309

Pazzani MJ, Kibler DF (1992) The utility of knowledge
in inductive learning. Mach Learn 9:57–94

Russell SJ, Grosof BN (1987) A declarative approach
to bias in concept learning. In: AAAI, Seattle,
pp 505–510

Russell S, Norvig P (2003) Artificial intelligence: a
modern approach, 2nd edn. Prentice-Hall, Engle-
wood Cliffs

Sun Q, DeJong G (2005) Feature kernel functions:
improving SVMs using high-level knowledge. In:
CVPR (2), San Diego, pp 177–183

Thrun S, Mitchell TM (1993) Integrating induc-
tive neural network learning and explanation-based
learning. In: IJCAI’93: proceedings of the thirteenth
international joint conference on artificial intelli-
gence, Chambery, pp 930–936

Towell GG, Craven M, Shavlik JW (1991) Construc-
tive induction in knowledge-based neural networks.
In: proceedings of the eighth international confer-
ence on machine learning, Evanston, pp 213–217

Zelle JM, Mooney RJ (1993) Combining Foil and EBG
to speed-up logic programs. In: IJCAI’93: proceed-
ings of the thirteenth international joint conference
on artificial intelligence, Chambery, pp 1106–1113

Explanation-Based Learning for
Planning

Subbarao Kambhampati1 and Sungwook Yoon2

1Arizona State University, Tempe, AZ, USA
2MapR, San Jose, CA, USA

Synonyms

Explanation-based generalization for planning;
Speedup learning for planning

Definition

�Explanation-based learning (EBL) involves us-
ing prior knowledge to explain (“prove”) why
the training example has the label it is given and
using this explanation to guide the learning. Since
the explanations are often able to pinpoint the
features of the example that justify its label, EBL
techniques are able to get by with much fewer
number of training examples. On the flip side, un-
like general classification learners, EBL requires
prior knowledge (aka “domain theory/model”) in
addition to labeled training examples – a require-
ment that is not easily met in some scenarios.
Since many planning and problem-solving agents
do start with declarative domain theories (consist-
ing at least of descriptions of actions along with
their preconditions and effects), EBL has been a
popular learning technique for planning.

Dimensions of Variation

The application of EBL in planning varies along
several dimensions: whether the learning was for
improving the speed and quality of the underly-
ing planner (Etzioni 1993; Kambhampati 1994;
Kambhampati et al. 1996; Minton et al. 1989;
Yoon et al. 2008) or acquire the domain model
(Levine and DeJong 2006), whether it was done
from successes (Kambhampati 1994; Yoon et al.
2008) or failures (Minton et al. 1989; Ihrig and
Kambhampati 1997), whether the explanations
were based on complete/correct (Minton et al.
1989; Kambhampati et al. 1996) or partial do-
main theories (Yoon et al.), whether learning is
based on single (Kambhampati 1994; Kambham-
pati et al. 1996; Minton et al. 1989) or multi-
ple examples (Flann and Dietterich 1989; Estlin
and Mooney 1997) (where, in the latter case,
inductive learning is used in conjunction with
EBL), and finally whether the planner whose
performance EBL aims to improve is a means-
ends analysis one (Minton et al. 1989), partial-
order planner (Estlin and Mooney 1997), or a
heuristic search planner (Yoon et al.).

EBL techniques have been used in planning
both to improve search and to reduce domain

http://dx.doi.org/10.1007/978-1-4899-7687-1_100162
http://dx.doi.org/10.1007/978-1-4899-7687-1_100438
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

Explanation-Based Learning for Planning 493

E

modeling burden (although the former has re-
ceived more attention by far). In the former case,
EBL is used to learn “control knowledge” to
speed up the search process (Minton et al. 1989;
Kambhampati et al. 1996) or to improve the qual-
ity of the solutions found by the search process
(Estlin and Mooney 1997). In the latter case, EBL
is used to develop domain models (e.g., action
models) (Levine and DeJong 2006).

EBL for search improvement involves either
remembering and reusing successful plans or
learning search control rules to avoid failing
search branches. Other variations include
learning effective indexing of stored cases
from retrieval failures (Ihrig and Kambhampati
1997) and learning “adjustments” to the default
heuristic used by the underlying search.

Another important issue is the degree of
completeness/correctness of the underlying
background theory used to explain examples. If
the theory is complete and correct, then learning
is possible from a single example. This type of
EBL has been called “analytical learning.” When
the theory is partial, EBL still is effective in
narrowing down the set of potentially relevant
features of the training example. These features
can then be used within an inductive learner.
Within planning, EBL has been used in the
context of complete/correct as well as partial
domain models.

A final dimension of variation that differen-
tiated a large number of research efforts is the
type of underlying planner. Initially, EBL was
used on top of means-ends analysis planners
(cf. PRODIGY, Minton et al. 1989). Later work
focused on partial-order planners (e.g., Kamb-
hampati et al. 1996; Estlin and Mooney 1997).
More recently, the focus has been on forward
search state-space planners (Yoon et al. 2008).

Learning from Success:
Explanation-Based Generalization

When learning from successful cases (plans), the
training examples comprise of successful plans,
and the explanations involve proofs showing that
the plan, as it is given, is able to support the goals.

Only the parts of the plan that take part in this
proof are relevant for justifying the success of the
plan. The plan is thus “generalized” by removing
extraneous actions that do not take part in the
proof. Object identifiers and action orderings are
also generalized as long as the generalization
does not affect the proof of correctness (Kamb-
hampati 1994). The output of the learning phase
is thus a variablized plan containing a subset of
the constraints (actions, orderings, object identity
constraints) of the original plan. This is then
typically indexed and used as a macro-operator
to speed up later search.

For example, given a planning problem of
starting with an initial state where five blocks, A,
B, C, D, and E, are on the table, and the problem
requires that in the goal state A must be on B and
C must be on D and a plan P that is a sequence of
actions pickup A, stack A on B, pickup E, putdown
E, Pickup C, stack C on D, the explanation-based
learner might output the generalization do in any
order f pickup x, stack x on yg f pick up z, stack z
on wg for the generalized goals on .x; y/ and on
.w; ´/, starting from a state where x, y, ´, and w
are all on the table and clear, and each of them
denotes a distinct block.

One general class of such proof schema in-
volves showing that every top-level goal of the
planning problem as well as the precondition
of every action is established and protected. Es-
tablishment requires that there is an action in
the plan that gives that condition, and protection
requires that once established, the condition is not
deleted by any intervening action.

A crucial point is that the extent of
generalization depends on the flexibility of the
proof strategy used. Kambhampati and Kedar
(1994) discuss a spectrum of generalization
strategies associated with a spectrum of proof
strategies, while Shavlik (1990) discusses how
the number of actions in the plan can also be
generalized.

Learning from Failure

When learning from the failure of a search
branch, EBL starts by analyzing the plans at

494 Explanation-Based Learning for Planning

the failing nodes and constructing an explanation
of failure. The failure explanation is just a subset
of constraints in the plan at the current search
node, which, in conjunction with domain theory,
ensures that no successful solution can be reached
by further refining this plan. The explanations can
range from direct constraint inconsistencies (e.g.,
ordering cycles) to indirect violation of domain
axioms (e.g., the plan requiring both clear(B) and
On(A,B) to be satisfied at the same time point).
The explanations at the leaf nodes are “regressed”
over the decisions in the search tree to higher-
level nodes to get explanations of (implicit)
failures in these higher-level nodes. The search
control rules can then essentially recommend
pruning any search node which satisfies a failure
explanation.

The deep affinity between EBL from
search failures and the idea of � nogood learning
and dependency-directed backtracking in CSP
is explored in Kambhampati (1998). As in
dependency-directed backtracking, the more
succinct the explanation, the higher the chance
of learning effective control rules. Note that
effectiveness here is defined in terms of the match
costs involved in checking whether the rule is
applicable and the search reductions provided
when it is applicable. Significant work has been
done to identify classes of failure explanation
that are expected to lead to ineffective rules
(Etzioni 1993). In contrast to CSP that has
a finite depth search tree, one challenge in
planning is that often an unpromising search
node might not exhibit any direct failure with
a succinct explanation and is abandoned by the
search for heuristic reasons (such as the fact
that the node crosses a depth limit threshold).
Strategies for finding implicit explanations of
failure (using domain axioms), as well as getting
by with incomplete explanations of failure, are
discussed in Kambhampati et al. (1996). EBL
from failures has also been applied to retrieval
(rather than search) failures. In this case, the
failure of extending a plan retrieved from the
library to solve a new problem is used to learn
new indexing schemes that inhibit that case
from being retrieved in such situations (Ihrig
and Kambhampati 1997).

Learning Adjustments to Heuristics

Most recent work in planning has been in the con-
text of heuristic search planners, where learning
from failures does not work as well (since the
heuristic search may change directions much be-
fore a given search branch ends in an explainable
failure). One way of helping such planners is to
improve their default heuristic (Yoon et al. 2008).
Given a heuristic h.s/ that gives the heuristic
estimate of state s, the aim in Yoon et al. is to
learn an adjustment ı.s/ that is added to h.s/

to get a better estimate of h�.s/ – the true cost
of state s. The system has access to actual plan
traces (which can be obtained by having the
underlying planner solve some problems from
scratch). For each state s on the trace, we know
the true distance of state s from the goal state,
and we can also compute the h.s/ value with
respect to the default heuristic. This gives the
learner a set of training examples which are pairs
of states and the adjustments they needed to make
the default heuristic meet the true distance. In
order to learn the ı.s/ from this training data,
we need to enumerate the features of state s that
are relevant to it needing the specific adjustment.
This is where EBL comes in. Specifically, one
way of enumerating the relevant features is to
explain why s has the default heuristic value.
This, in turn, is done by taking the features of the
relaxed plan for state s. Since the relaxed plan is
a plan that assumes away all negative interactions
between the actions, relaxed plan features can be
seen as features of the explanation of the label for
state s in terms of a partial domain theory (one
which ignores all the deletes of all actions).

EBL from Incomplete Domain
Theories

While most early efforts for speedup focused
on complete and correct theories, several efforts
also looked at speedup learning from incomplete
theories. The so-called Lazy EBL approaches
(Tadepalli 1989; Chien 1989) work by first con-
structing partial explanations and subsequently
refining the over-general rules learned. Other ap-

http://dx.doi.org/10.1007/978-1-4899-7687-1_593

Explanation-Based Learning for Planning 495

E

proaches that use similar ideas outside planning
include Flann and Dietterich (1989) and Cohen
(1992). As we noted above, the work by Yoon
et al. (2008) can also be seen as basing learning
(in their case of adjustments to a default heuristic
function) w.r.t. a partial domain theory.

EBL to Learn Domain Knowledge

Although most work in EBL for planning has
been focused on speedup, there has also been
some work aimed at learning domain knowledge
(rather than control knowledge). Of particular in-
terest is “operationalizing” a complex, if opaque,
domain model by learning from it a simplified
domain model that is adequate to efficiently solve
an expected distribution of problems. The recent
work by Levine and DeJong (2006) is an example
of such an effort.

EBL and Knowledge-Level Learning

Although the focus of this article is on EBL
as applied to planning, we need to foreground
one general issue: whether EBL is capable of
knowledge-level learning or not. A popular
misconception of EBL is that since it depends
on a complete and correct domain theory,
no knowledge-level learning is possible, and
speedup learning is the only possibility. (The
origins of this misconception can be traced back
to the very beginning. The two seminal articles
on EBL in the very first issue of the Machine
Learning journal differed profoundly in their
interpretations of EBL. While Mitchell et al.
(1986) assumed that EBL by default works with
complete and correct theories (thus precluding
any knowledge-level learning), Levine and
DeJong (2006) provides a more general view of
EBL that uses background knowledge – whether
or not it is complete – to focus the generalization
(and as such can be seen as a knowledge-based
feature-selection step for a subsequent inductive
learner).) As we noted at the outset however,
EBL is not required to depend on complete and

correct domain theories, and when it does not,
knowledge-level learning is indeed possible.

Utility Problem and Its Nonexclusive
Relation to EBL

As we saw above, much early work in EBL for
planning focused on speedup for the underlying
planner. Some of the knowledge learned for
speedup – especially control rules and macro-
operators – can also adversely affect the search
by increasing either the search space size
(macros) or per-node cost (matching control
rules). Clearly, in order for the net effect to be
positive, care needs to be exercised as to which
control rules and/or macros are stored. This has
been called the “utility problem” (Minton 1990),
and significant attention has been paid to develop
strategies that either dynamically evaluate the
utility of the learned control knowledge (and
forget useless rules) (Markovitch and Scott 1988;
Minton 1990) or select the set of rules that best
serve a given distribution of problem instances
(Gratch et al. 1994).

Despite the prominent attention given to
the utility problem, it is important to note the
nonexclusive connection between EBL and
utility problem. We note that any strategy that
aims to provide/acquire control knowledge will
suffer from the utility problem. For example,
utility problem also holds for inductive learning
techniques that were used to learn control
knowledge (cf. Leckie and Zukerman 1993).
In other words, it is not special to EBL but rather
to the specific application task. We note that it
is both possible to do speedup learning that is
less susceptible to the utility problem (e.g., learn
adjustments to heuristics, Yoon et al. 2008) and
possible to use EBL for knowledge-level learning
(Levine and DeJong 2006).

Current Status

EBL for planning was very much in vogue in the
late 1980s and early 1990s. However, as the speed
of the underlying planners increased drastically,

496 Explanation-Based Learning for Planning

the need for learning as a crutch to improve
search efficiency reduced. There has however
been a recent resurgence of interest, both in
further speeding up the planners and in learning
domain models. Starting 2008, there is a new
track in the International Planning Competition
devoted to learning methods for planning. In the
first year, the emphasis was on speedup learning.
ObtuseWedge, a system that uses EBL analysis
to learn adjustments to the default heuristic, was
among the winners of the track. The DARPA in-
tegrated learning initiative, and interest in model-
lite planning have also brought focus back to
EBL for planning – this time with partial domain
theories.

Additional Reading

The tutorial (Yoon and Kambhampati 2007)
provides an up-to-date and broader overview of
learning techniques applied to planning and con-
tains significant discussion of EBL techniques.
The paper Zimmerman and Kambhampati
(2003) provides a survey of machine learning
techniques used in planning and includes a more
comprehensive listing of research efforts that
applied EBL in planning.

Cross-References

�Explanation-Based Learning
� Speedup Learning

Recommanded Reading

Bhatnagar N, Mostow J (1994) On-line learning from
search failures. Mach Learn 15(1):69–117

Borrajo D, Veloso MM (1997) Lazy incremental learn-
ing of control knowledge for efficiently obtaining
quality plans. Artif Intell Rev 11(1–5):371–405

Chien SA (1989) Using and refining simplifications:
explanation-based learning of plans in intractable
domains. In: IJCAI 1989, Detroit, pp 590–595

Cohen WW (1992) Abductive explanation-based
learning: a solution to the multiple inconsistent
explanation problem. Mach Learn 8:167–219

DeJong G, Mooney RJ (1986) Explanation-based
learning: an alternative view. Mach Learn 1(2):145–
176

Estlin TA, Mooney RJ (1997) Learning to improve
both efficiency and quality of planning. In: IJCAI
1997, Nagoya, pp 1227–1233

Etzioni O (1993) A structural theory of explanation-
based learning. Artif Intell 60(1):93–139

Flann NS, Dietterich TG (1989) A study of
explanation-based methods for inductive learning.
Mach Learn 4:187–226

Gratch J, Chien SA, DeJong G (1994) Improving
learning performance through rational resource al-
location. In: AAAI 1994, Seattle, pp 576–581

Ihrig LH, Kambhampati S (1997) Storing and indexing
plan derivations through explanation-based analysis
of retrieval failures. J Artif Intell Res 7:161–198

Kambhampati S (1994) A unified framework for
explanation-based generalization of partially or-
dered and partially instantiated plans. Artif Intell
67(1):29–70

Kambhampati S (1998) On the relations between intel-
ligent backtracking and failure-driven explanation-
based learning in constraint satisfaction and
planning. Artif Intell 105(1–2): 161–208

Kambhampati S, Katukam S, Qu Y (1996) Failure
driven dynamic search control for partial order plan-
ners: an explanation based approach. Artif Intell
88(1–2):253–315

Leckie C, Zukerman I (1993) An inductive approach to
learning search control rules for planning. In: IJCAI
1993, Chambéry, pp 1100–1105

Levine G, DeJong G (2006) Explanation-based ac-
quisition of planning operators. In: ICAPS 2006,
Cumbria, pp 152–161

Markovitch S, Scott PD (1988) The role of forgetting
in learning. In: ML 1988, Ann Arbor, pp 459–
465

Minton S (1990) Quantitative results concerning the
utility of explanation-based learning. Artif Intell
42(2–3):363–391

Minton S, Carbonell JG, Knoblock CA, Kuokka D,
Etzioni O, Gil Y (1989) Explanation-based learning:
a problem solving perspective. Artif Intell 40(1–
3):63–118

Mitchell TM, Keller RM, Kedar-Cabelli ST (1986)
Explanation-based generalization: a unifying view.
Mach Learn 1(1):47–80

Shavlik JW (1990) Acquiring recursive and iterative
concepts with explanation-based learning. Mach
Learn 5:39–40

Tadepalli P (1989) Lazy explanation based learning: a
solution to the intractable theory problem. In: IJCAI
1989, Detroit, pp 694–700

Yoon S, Fern A, Givan R (2008) Learning control
knowledge for forward search planning. J Mach
Learn Res 9:683–718

Yoon S, Kambhampati S (2007) Learning for planning.
Tutorial delivered at ICAPS 2007. http://rakaposhi.
eas.asu.edu/learn-plan.html

Zimmerman T, Kambhampati S (2003) Learning-
assisted automated planning: looking back, taking
stock, going forward. AI Mag 24(2):73–96

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_778
http://rakaposhi.eas.asu.edu/learn-plan.html
http://rakaposhi.eas.asu.edu/learn-plan.html

F

F1-Measure

The F1-measure is used to evaluate the
accuracy of predictions in two-class (binary)
� classification problems. It originates in the
field of information retrieval and is often used
to evaluate � document classification models and
algorithms. It is defined as the harmonic mean of
� precision (i.e., the ratio of � true positives to all
instances predicted as positive) and � recall (i.e.,
the ratio of true positives to all instances that
are actually positive). As such, it lies between
precision and recall, but is closer to the smaller
of these two values. Therefore a system with high
F1 has both good precision and good recall. The
F1-measure is a special case of the more general
family of evaluation measures:

Fˇ D.ˇ2 C 1/precisionrecal l=

.ˇ2precisionC recal l/

Thus using ˇ > increases the influence of
precision on the overall measure, while using
ˇ < 1 increases the influence of recall.
Some authors use an alternative parameteri-
zation,

F˛ D 1=.˛=precisionC .1t˛/=recal l/

which, however, leads to the same family of mea-
sures; conversion is possible via the relationship
˛ D 1=.ˇ2 C 1).

False Negative

In a two-class problem, a � classification model
makes two types of error: � false positives and
false negatives. A false negative is an example of
positive class that has been incorrectly classified
as negative. See � confusion matrix for a com-
plete range of related terms.

False Positive

In a two-class problem, a � classification model
makes two types of error: false positives and
� false negatives. A false positive is an exam-
ple of a negative class that has been incorrectly
classified as positive. See � confusion matrix for
a complete range of related terms.

Feature

�Attribute

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_299
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_923

498 Feature Construction in Text Mining

Feature Construction in Text Mining

Janez Brank1, Dunja Mladenić2, and
Marko Grobelnik2

1Jožef Stefan Insitute, Ljubljana, Slovenia
2Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia

Synonyms

Feature generation in text mining

Definition

Feature construction in text mining consists of
various techniques and approaches which convert
textual data into a feature-based representation.
Since traditional machine learning and data min-
ing techniques are generally not designed to deal
directly with textual data, feature construction
is an important preliminary step in text mining,
converting source documents into a representa-
tion that a data mining algorithm can then work
with. Various kinds of feature construction ap-
proaches are used in text mining depending on
the task that is being addressed, the data mining
algorithms used, and the nature of the dataset in
question.

Motivation and Background

Text mining is the use of machine learning and
data mining techniques on textual data. This
data consists of natural language documents that
can be more or less structured, ranging from
completely unstructured plain text to documents
with various kinds of tags containing machine-
readable semantic information. Furthermore,
documents may sometimes contain hyperlinks
that connect them into a graph. Since most
traditional machine learning and data mining
techniques are not directly equipped to deal
with this kind of data, an important first step
in text mining is to extract or construct features

from the input documents, thereby obtaining a
feature-based representation which is suitable for
handling with machine learning and data mining
algorithms. Thus, the task of feature construction
in text mining is inextricably connected with
text mining itself and has evolved alongside it.
An important trend over the years has been the
development of techniques that do not process
each document in isolation but make use of a
corpus of documents as a whole, possibly even
involving external data or background knowledge
in the process.

Documents and text data provide for valuable
sources of information, and their growing avail-
ability in electronic form naturally led to appli-
cation of different analytic methods. One of the
common ways is to take a whole vocabulary of
the natural language in which the text is written as
a feature set, resulting in several tens of thousands
of features. In a simple setting, each feature gives
a count of the word occurrences in a document.
In this way text of a document is represented
as a vector of numbers. The representation of
a particular document contains many zeros, as
most of the words from the vocabulary do not
occur in a particular document. In addition to the
already mentioned two common specifics of text
data, having a large number of features and a
sparse data representation, it was observed that
frequency of words in text in general follows
Zipf’s law – a small subset of words occur very
frequently in texts, while a large number of words
occur only rarely. Document classification takes
these and some other data specifics into account
when developing the appropriate classification
methods.

Structure of Learning System

In a learning or mining system that deals with
textual data, feature construction is usually one
of the first steps that is often performed alongside
typical preprocessing tasks such as data cleaning.
A typical output of feature construction is feature
vector representing the input documents; these
vectors themselves then form the input for a
machine learning or data mining algorithm. On

http://dx.doi.org/10.1007/978-1-4899-7687-1_100165

Feature Construction in Text Mining 499

F

the other hand, sometimes feature construction
is more closely integrated into the learning algo-
rithm itself, and sometimes it can be argued that
the features themselves are the desired output that
is the goal of the text mining task.

Solutions
At the lowest level, text is represented as a se-
quence of bytes or other elementary units of
information. How these bytes are to be converted
into a sequence of characters depends on the
character encoding of the text. Many standard
encodings exist, such as UTF-8, the ISO-8859
family, and so on. Often, all the texts that appear
as input for a specific text mining task are in the
same encoding, or if various encodings are used,
they are specified clearly and explicitly (e.g.,
via the Content-Type header in the HTTP proto-
col), in which case the problem of conversion is
straightforward. In the case of missing or faulty
encoding information, various heuristics can be
used to detect the encoding and convert the data
to characters; it is best to think of this as a data
cleaning and preprocessing step.

Word-Based Features
When we have our text represented as a se-
quence of characters, the usual next step is to
convert it into a sequence of words. This is
usually performed with heuristics which depend
to some extent on the language and underlying
character set; for the purposes of segmentation
of text into words, a word is thought of as a
sequence of alphabetic characters delimited by
whitespace and/or punctuation. Some efforts to
standardize word boundary detection in a way
that would work reasonably well with a large
set of natural languages have also been made
(see, e.g., the Unicode Standard Annex #29, Uni-
code Text Segmentation). For many (but not all)
text mining tasks, the distinction between upper-
and lowercase (if it is present in the underlying
natural language) is largely or entirely irrele-
vant; hence, all texts are often converted into
lowercase at this point. Another frequently used
preprocessing step is stemming, whereby each
word is replaced by its stem (e.g., walking !
walk). The details of stemming depend on the

natural language involved; for English, a rela-
tively simple set of heuristics such as Porter’s
stemmer is sufficient. Instead of stemming, where
the ending is chopped off the word, one can apply
a more sophisticated transformation referred to
as lemmatization that replaces the word by its
normalized form (lemma). Lemmatization is es-
pecially relevant for natural languages that have
many different forms of the same word (e.g.,
several cases, gender influence on verb form,
etc.). Efforts have also been made to discover
stemming rules or lemmatization rules automati-
cally using machine learning techniques (Plisson
et al. 2008).

The individual words can themselves be
thought of as features of the document. In the
feature vector representation of a document d ,
the feature corresponding to the word w would
tell something about the presence of the word w
in this document: either the frequency (number
of occurrences) of w in d , or a simple binary
value (1 if present, 0 if absent), or it can further
be modified by, e.g., the TF-IDF weighting.
In this kind of representation, all information
about the word order in the original document
is lost; hence, it is referred to as the “bag-of-
words” model. For many tasks, the loss of word
order information is not critical, and the bag-of-
words model is a staple of information retrieval,
document classification, and many other text-
related tasks. A downside of this approach (and
many other word-based feature construction
techniques) is that the resulting number of
features can be very large (there are easily tens
of thousands of different words in a mid-sized
document corpus); see Feature Selection in Text
Mining.

Clearly, ignoring the word order completely
can sometimes lead to the loss of valuable in-
formation. Multi-word phrases sometimes have a
meaning that is not adequately covered by the in-
dividual words of the phrase (e.g., proper names,
technical terms, etc.). Various ways of creating
multi-word features have been considered. Let
d be a document consisting of the sequence of
words (w1; w2; : : :; wm) (note that this sequence
might already be an output of some preprocessing
operations, e.g., the removal of stopwords and

500 Feature Construction in Text Mining

of very infrequent words). Then an n-gram is
defined as a sequence of n adjacent words from
the document, i.e., .wi ; wiC1; : : : ; wiCn�1/. We
can use n-grams as features in the same way as
individual words, and indeed a typical approach
is to use n-grams for all values of n from 1 to a
certain upper limit (e.g., 5). Many of the resulting
n-grams will be incidental and irrelevant, but
some of them may be valuable and informative
phrases; whether the text mining algorithm will
be able to profit from them depends a lot on the
algorithm used, and feature selection might be
even more necessary than in the case of individual
words. A related problem is the explosion of the
number of features; if the number of different
words in a corpus grows approximately with the
square root of the length of the corpus (Heaps’
law), the number of different n-grams is more
likely to grow nearly linearly with the length
of the corpus. The use of n-grams as features
has been found to be beneficial, e.g., for the
classification of very short documents (Mladenić
and Grobelnik 2003).

Further generalization of n-grams is possible
by removing the requirement that the words of
the n-gram must appear adjacently; we can allow
them to be separated by other words. The weight
of an occurrence of the n-gram is often defined
as decreasing exponentially with the number of
intervening separator words. Another direction
of generalizing n-gram is to ignore the order of
words within the n-gram; in effect one treats n-
grams as bags (multisets) instead of sequences.
This results in features sometimes called loose
phrases or proximity features (i.e., every bag of
words up to a certain size, occurring in suffi-
ciently close proximity to each other, is con-
sidered to be a feature). These generalizations
greatly increase the feature space as well as the
number of features present in any individual doc-
ument, so the risk of computational intractability
is greatly increased; this can sometimes be allevi-
ated through the use of kernels (see below).

Character-Based Features
Instead of treating the text as a sequences of
words, we might choose to treat it as a sequence
of characters. A sequence of n characters is also

known as an n-graph. We can use n-graphs as
features in the representation of text in a way
analogous to the use of n-grams in the previous
subsection. The weight of the feature correspond-
ing to a particular n-graph in the feature vector
of a particular document d will typically depend
on the number of occurrences of that n-graph
in the text of d . Sometimes noncontiguous oc-
currences of the n-graph are also counted (i.e.,
occurrences where characters from the n-graph
are separated by one or more other characters),
although with a lower weight; this is can be done
very elegantly with kernel methods (see below).
Feature selection and TF-IDF style weighting
schemes can also be used as in the case of n-
grams. Whether an n-graph-based representation
offers any benefits compared to an n-gram-based
one depends largely on the dataset and task in
question. For example, the classification of En-
glish documents and the usefulness of n-graphs
have been found to be dubious, but they can
be beneficial in highly agglutinative languages
where an individual word can consist of many
morphemes, and it is not really useful to treat a
whole word as an individual unit of information
(as would be the case in a word-based feature
representation). In effect, the use of n-graphs
provides the learner with cheap access to the sort
of information that would otherwise require more
sophisticated NLP technologies (stemming, pars-
ing, morpheme analysis, etc.); the downside is
that a lot of the n-graph features are merely noise
(Lodhi et al. 2002). For some application, word
suffixes can be particularly useful features, e.g.,
to learn lemmatization rules (Mladenić 2002;
Plisson et al. 2008).

Kernel Methods
Let ' be a function which assigns, to a given doc-
ument d , a feature vector '.d/ from some feature
space F . Assume furthermore that a dot product
(a.k.a. inner product) is defined over F , denoted
by h � ; � iF . Then the function K defined by
K.d1; d2/ D h'.d1/, '.d2/iF is called a kernel
function. It turns out that many machine learning
and data mining methods can be described in a
way such that the only operation they need to do
with the data is to compute dot products of their

Feature Construction in Text Mining 501

F

feature vectors; in other words, they only require
us to be able to compute the kernel function over
our documents. These approaches are collectively
known as kernel methods; a well-known example
of this is the support vector machine (SVM)
method for supervised learning, but the same
principle can be used in clustering as well. An
important advantage of this approach is that it
is often possible to compute the kernel func-
tion K directly from the documents d1;2 without
explicitly generating the feature vectors '.d1;2/.
This is especially valuable if the feature space
is untractably large. Several families of kernel
functions for textual data have been described in
the literature, corresponding to various kinds of
n-graph and n-gram-based features (Brank 2006;
Lodhi et al. 2002).

Linear Algebra Methods
Assume that a corpus of n documents have al-
ready been represented by d -dimensional real
feature vectors x1; : : :; xn 2 Rd . If we select
some direction y 2 Rd and project a vector xi

in this direction, the resulting value yT xi =jjyjj is
in effect a new feature describing the document
i . In other words, we have constructed a new
feature as a linear combination of the existing
features. This leads to the question of how to
select one or more suitable directions y; various
techniques from linear algebra and statistics have
been proposed for this.

A well-known example of this is principal
component analysis (PCA) in which one or more
new coordinate axes y are selected in such a way
that the variance of the original vectors x1; : : :; xn

in the directions of the new coordinate axes is
maximized. As it turns out, this problem is equiv-
alent to computing the principal eigenvectors of
the covariance matrix of the original dataset.

Another technique of this sort is latent se-
mantic indexing (LSI) (Deerwester et al. 1990).
Let X be a d � n matrix with x1; : : :; xn as
its columns (a.k.a. the term-document matrix).
LSI uses singular value decomposition (SVD)
to express X as the product of three matrices,
T �S �D, where T is a d � r orthonormal matrix,
D is a r � n orthonormal matrix, and S is a r � r

diagonal matrix containing the singular values

of X . Here, r denotes the rank of the original
matrix X . Let T .m/ be the matrix consisting of
the left m columns of T , let D.m/ be the matrix
consisting of the top m rows of D, and let S .m/

be the top left m � m submatrix of S . Then it
turns out that X .m/ D T .m/S .m/D.m/ is the best
rank-m approximation of the original X (best in
the sense of minimizing the Frobenius norm of
X �X .m//. Thus, the i -th column of D.m/ can be
seen as a vector of m new features representing
the i -th document of our original dataset, and
the product T .m/S .m/ can be seen as a set of
m new coordinate axes. The new feature vectors
(columns of D.m// can be used instead of the
original vectors xi .

Canonical correlation analysis (CCA): Some-
times several vector representations are available
for the same document di , for example, we might
have the same text in two different languages,
giving rise to two feature vectors, e.g., xi 2 Rd

and yi 2 Rd 0. Given such a “parallel corpus”
of pairs .xi ; yi /; i D 1: : :n, it is sometimes
desirable to convert both types of representations
to a “common denominator.” In other words, we
want to find a set of r new coordinate axes in
x-space (say the columns of U 2 Rd�r) and a
set of r new coordinate axes in y-space (say the
columns of V 2 Rd 0�r) such that the j -th column
of U has a similar role in x-space as the j -th
column of V has in y-space, for all j . This can
be formulated as an optimization problem: find
U and V such that the correlation between U T

xi and V T yi (i.e., the projections of xi and yi

onto the new sets of axes) is maximized. Once we
have suitable matrices U and V , we can convert
any feature vector from the original x-space or y-
space into a common new r-dimensional space.
This makes it easier to deal with multilingual cor-
pora, allowing us, e.g., to retrieve documents in
language x as a response to a query in language y
or vice versa. The same techniques are applicable
in multimodal scenarios (i.e., xi and yi can be
any two representations of the same instance di

from two substantially different perspectives, not
necessarily textual). This method is often used
in combination with kernels, in which case it is
known as kernel canonical correlation analysis
(KCCA) (Hardoon et al. 2004).

502 Feature Construction in Text Mining

Nonlinear Methods
Powerful feature representations can also be ob-
tained by statistical methods. For example, prob-
abilistic latent semantic analysis (PLSA) (Hoff-
mann 1999) is an unsupervised approach that
models a corpus of documents as if it was gener-
ated by a mixture of latent topics, with each topic
being represented as a probability distribution
over words. The model consists of topic proba-
bilities P.´jd/ for each latent topic ´ and each
document d and of word probabilities P.wj´/

for each word and topic. One of the downsides
of PLSA is that it cannot be readily extended to
model probabilities of documents that were not
seen during training; this problem is addressed
by approaches such as latent Dirichlet allocation
(LDA) (Blei et al. 2003), in which the mixture of
topics in each document is modeled as a random
variable sampled from a Dirichlet distribution.
In both cases, the mixture of topics hP.´jd/i´
can be interpreted as a new feature vector rep-
resentation of the document d , and likewise the
conditional probabilities .hP.wj´/i´ can be inter-
preted as a new feature vector representation of
the term w.

Another important family of nonlinear feature
construction methods are deep learning methods,
which are based on training a multilevel neural
network model that includes at least one hidden
layer. Traditionally one would be interested in
the outputs of the final output layer of the net-
work, which is supposed to be solving whatever
learning task the network was originally trained
for. However, in deep learning, one discards the
output layers and instead uses the outputs of the
hidden layer as a new feature vector representa-
tion of the input document (or a word, n-gram,
etc.). A recent example of such a representation
is word2vec (Mikolov et al. 2013).

Miscellaneous
There are many other ways to extract or construct
features from text, depending on the use that the
features are intended for. For example, a dual
representation of a corpus may be considered, in
which features are used to represent terms and not
documents. The feature vector for a term t con-
tains one feature for each document, and its value

is related to the frequency of t in that document.
This representation can be used to analyze which
words co-occur frequently and may therefore be
related in meaning. Feature construction can also
utilize methods from information extraction, such
as identifying various kinds of named entities
(names of persons, places, organizations, etc.) or
other interesting bits of information and intro-
ducing features which indicate the presence of
particular names or other tagged entities in the
document.

Cross-References

�Deep Learning
�Document Classification
� Feature Selection in Text Mining
�Kernel Methods
� Support Vector Machines
�Text Mining

Recommended Reading

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet
allocation. J Mach Learn Res 3:993–1022

Brank J (2006) Loose phrase string kernels. In: Pro-
ceedings of SiKDD, Jozef Stefan Institute, Ljubl-
jana

Deerwester S, Dumais ST, Furnas GW, Landauer TK,
Harshman R (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41:391–407

Hardoon DR, Szedmak SR, Shawe-Taylor JR (2004)
Canonical correlation analysis: an overview with
application to learning methods. Neural Comput
16(12):2639–2664

Hoffmann T (1999) Probabilistic latent semantic in-
dexing. In: Proceedings of the 22nd SIGIR confer-
ence, Berkeley, pp 50–57

Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N,
Watkins C (2002) Text classification using string
kernels. J Mach Learn Res 2:419–444

Mikolov T, Chen K, Corrado G, Dean J (2013) Effi-
cient estimation of word representations in vector
space. In: International conference on learning rep-
resentations, Scottsdale

Mladenić D (2002) Learning word normalization using
word suffix and context from unlabeled data. In:
Proceedings of the 19th ICML, Sydney, vol 1(8),
pp 427–434

Mladenić D, Grobelnik M (2003) Feature selection on
hierarchy of web documents. Decis Support Syst
35(1):45–87

http://dx.doi.org/10.1007/978-1-4899-7687-1_909
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_102
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

Feature Selection 503

F

Plisson J, Lavrač N, Mladenić D, Erjavec T (2008)
Ripple down rule learning for automated word
lemmatization. AI Commun 21(1):15–26

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge

Feature Generation in Text Mining

� Feature Construction in Text Mining

Feature Projection

�Dimensionality Reduction

Feature Selection

Suhang Wang1, Jiliang Tang2, and Huan Liu1

1Arizona State University, Tempe, AZ, USA
2Michigan State University, East Lansing, MI,
USA

Abstract

Data dimensionality is growing rapidly, which
poses challenges to the vast majority of
existing mining and learning algorithms,
such as the curse of dimensionality, large
storage requirement, and high computational
cost. Feature selection has been proven to
be an effective and efficient way to prepare
high-dimensional data for data mining and
machine learning. The recent emergence of
novel techniques and new types of data and
features not only advances existing feature
selection research but also evolves feature
selection continually, becoming applicable to
a broader range of applications. In this entry,
we aim to provide a basic introduction to
feature selection including basic concepts,
classifications of existing systems, recent
development, and applications.

Synonyms

Attribute selection; Feature subset selection; Fea-
ture weighting

Definition (or Synopsis)

Feature selection, as a dimensionality reduction
technique, aims to choose a small subset of the
relevant features from the original ones by re-
moving irrelevant, redundant, or noisy features.
Feature selection usually leads to better learn-
ing performance, i.e., higher learning accuracy,
lower computational cost, and better model inter-
pretability.

Generally speaking, irrelevant features
are features that cannot help discriminate
samples from different classes(supervised) or
clusters(unsupervised). Removing irrelevant
features will not affect learning performance. In
fact, the removal of irrelevant features may help
learn a better model, as irrelevant features may
confuse the learning system and cause memory
and computation inefficiency. For example, in
Fig. 1a, f1 is a relevant feature because f1 can
discriminate class1 and class2. In Fig. 1b, f2 is a
redundant feature because f2 cannot distinguish
points from class1 and class2. Removal of f2

doesn’t affect the ability of f1 to distinguish
samples from class1 and class2.

A redundant feature is a feature that implies
the copresence of another feature. Individually,
each redundant feature is relevant, but removal
of one of them will not affect the learning per-
formance. For example, in Fig. 1c, f1 and f6

are strongly correlated. f6 is a relevant feature
itself. However, when f1 is selected first, the
later appearance of f6 doesn’t provide additional
information. Instead, it adds more memory and
computational requirement to learn the classifi-
cation model.

A noisy feature is a type of relevant feature.
However, due to the noise introduced during
the data collection process or because of the
nature of this feature, a noisy feature may not
be so relevant to the learning or mining task. As
shown in Fig. 1d, f4 is a noisy feature. It can

http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_100506
http://dx.doi.org/10.1007/978-1-4899-7687-1_100169
http://dx.doi.org/10.1007/978-1-4899-7687-1_100170

504 Feature Selection

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

f1

class1
class2

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

f1

f2

class1
class2

1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

f1

f6

class1
class2

1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

4

5

f1

f4

class1
class2

a b

c d

Feature Selection, Fig. 1 A toy example to illustrate
the concept of irrelevant, redundant, and noisy features.
f 1 is a relevant feature and can discriminate class1
and class2. f 2 is an irrelevant feature. Removal of f 2
will not affect the learning performance. f 4 is a noisy

feature. The presence of noisy features may degenerate
the learning performance. f 6 is a redundant feature when
f 1 is present. If f 1 is selected, removal of f 6 will not
affect the learning performance. (a) Relevant feature. (b)
Irrelevant feature. (c) Redundant feature. (d) Noisy feature

discriminate a part of the points from the two
classes and may confuse the learning model for
the overlapping points (Noisy features are very
subtle. One feature may be a noisy feature itself.
However, in some cases, when two or more noisy
features can complement each other to distin-
guish samples from different classes, they may be
selected together to benefit the learning model.)

Motivation and Background

In many real-world applications, such as data
mining, machine learning, computer vision,
and bioinformatics, we need to deal with high-
dimensional data. In the past 30 years, the dimen-
sionality of the data involved in these areas has
increased explosively. The growth of the number
of attributes in the UCI machine learning reposi-

tory is shown in Fig. 2a. In addition, the number
of samples also increases explosively. The growth
of the number of samples in the UCI machine
learning repository is shown in Fig. 2b. The huge
number of high-dimensional data has presented
serious challenges to existing learning methods.
First, due to the large number of features and rel-
atively small number of training samples, a learn-
ing model tends to overfit, and their learning per-
formance degenerates. Data with high dimension-
ality not only degenerates many algorithms’ per-
formance due to the curse of dimensionality and
the existence of irrelevant, redundant, and noisy
dimensions, it also significantly increases the
time and memory requirement of the algorithms.
Second, storing and processing such amounts of
high-dimensional data become a challenge.

Dimensionality reduction is one of the most
popular techniques to reduce dimensionality

Feature Selection 505

F

1985
2

4

6

8

10

S
am

pl
e

S
iz

e
(L

og
) 12

14

16

1990 1995 2000
Year

2005 2010

1985
0

5#
A

ttr
ib

ut
es

 (
Lo

g) 10

15

1990 1995 2000
Year

2005 2010

a

b

Feature Selection, Fig. 2 Growth of the number of features and the number of samples in the UCI ML repository. (a)
UCI ML repository number of attribute growth. (b) UCI ML repository number of sample growth

and can be categorized into feature extraction
and feature selection. Both feature extraction
and feature selection are capable of improving
performance, lowering computational complex-
ity, building better generalization models, and
decreasing required storage. Feature extraction
maps the original feature space to a new feature
space with lower dimensionality by combining
the original feature space. Therefore, further
analysis of new features is problematic since
there is no physical meaning for the transformed
features obtained from feature extraction. In

contrast, feature selection selects a subset of
features from the original feature set. Therefore,
feature selection keeps the actual meaning of
each selected feature, which makes it superior in
terms of feature readability and interpretability.

Structure of the Learning System

From the perspective of label availability, feature
selection methods can be broadly classified into
supervised, unsupervised, and semi-supervised

506 Feature Selection

Feature Selection, Fig. 3
Feature selection
categories

Feature Selection, Fig. 4
General frameworks of
supervised and
unsupervised feature
selection. (a) A general
framework of supervised
feature selection. (b) A
general framework of
unsupervised feature
selection

methods. In terms of different selection strate-
gies, feature selection can be categorized as filter,
wrapper, and embedded models. Figure 3 shows
the classification of feature selection methods.
Supervised feature selection is usually used for
classification tasks. The availability of the class
labels allows supervised feature selection algo-
rithms to effectively select discriminative features
to distinguish samples from different classes. A
general framework of supervised feature selec-
tion is shown in Fig. 4a. Features are first gen-
erated from training data. Instead of using all
the data to train the supervised learning model,
supervised feature selection will first select a
subset of features and then process the data with
the selected features to the learning model. The
feature selection phase will use the label infor-
mation and the characteristics of the data, such as

information gain or Gini index, to select relevant
features. The final selected features, as well as
with the label information, are used to train a
classifier, which can be used for prediction.
Unsupervised feature selection is usually used
for clustering tasks. A general framework of
unsupervised feature selection is described in
Fig. 4b, which is very similar to supervised fea-
ture selection, except that there’s no label infor-
mation involved in the feature selection phase and
the model learning phase. Without label infor-
mation to define feature relevance, unsupervised
feature selection relies on another alternative cri-
terion during the feature selection phase. One
commonly used criterion chooses features that
can best preserve the manifold structure of the
original data. Another frequently used method
is to seek cluster indicators through clustering

Feature Selection 507

F

algorithms and then transform the unsupervised
feature selection into a supervised framework.
There are two different ways to use this method.
One way is to seek cluster indicators and simulta-
neously perform the supervised feature selection
within one unified framework. The other way is to
first seek cluster indicators, then to perform fea-
ture selection to remove or select certain features,
and finally to repeat these two steps iteratively
until certain criterion is met. In addition, certain
supervised feature selection criterion can still be
used with some modification.
Semi-supervised feature selection is usually
used when a small portion of the data is labeled.
When such data is given to perform feature
selection, both supervised and unsupervised
feature selection might not be the best choice.
Supervised feature selection might not be able to
select relevant features because the labeled data
is insufficient to represent the distribution of the
features. Unsupervised feature selection will not
use the label information, while label information
can give some discriminative information to
select relevant features. Semi-supervised feature
selection, which takes advantage of both labeled
data and unlabeled data, is a better choice
to handle partially labeled data. The general
framework of semi-supervised feature selection
is the same as that of supervised feature
selection, except that data is partially labeled.
Most of the existing semi-supervised feature
selection algorithms rely on the construction of
the similarity matrix and select features that
best fit the similarity matrix. Both the label
information and the similarity measure of the
labeled and unlabeled data are used to construct
the similarity matrix so that label information
can provide discriminative information to select
relevant features, while unlabeled data provide
complementary information.
Filter Models For filter models, features are
selected based on the characteristics of the data
without utilizing learning algorithms. This ap-
proach is very efficient. However, it doesn’t con-
sider the bias and heuristics of the learning al-
gorithms. Thus, it may miss features that are
relevant for the target learning algorithm. A filter
algorithm usually consists of two steps. In the

first step, features are ranked based on certain cri-
terion. In the second step, features with the high-
est rankings are chosen. A lot of ranking criteria,
which measures different characteristics of the
features, are proposed: the ability to effectively
separate samples from different classes by con-
sidering between class variance and within class
variance, the dependence between the feature and
the class label, the correlation between feature-
class and feature-feature, the ability to preserve
the manifold structure, the mutual information
between the features, and so on.
Wrapper Models The major disadvantage of
the filter approach is that it totally ignores the
effects of the selected feature subset on the per-
formance of the clustering or classification al-
gorithm. The optimal feature subset should de-
pend on the specific biases and heuristics of the
learning algorithms. Based on this assumption,
wrapper models use a specific learning algorithm
to evaluate the quality of the selected features.
Given a predefined learning algorithm, a general
framework of the wrapper model is shown in
Fig. 5. The feature search component will pro-
duce a set of features based on certain search
strategies. The feature evaluation component will
then use the predefined learning algorithm to
evaluate the performance, which will be returned
to the feature search component for the next
iteration of feature subset selection. The feature
set with the best performance will be chosen as
the final set. The search space for m features
is O.2m/. To avoid exhaustive search, a wide
range of search strategies can be used, including
hill-climbing, best-first, branch-and-bound, and
genetic algorithms.
Embedded Models Filter models are compu-
tationally efficient, but totally ignore the biases
of the learning algorithm. Compared with fil-
ter models, wrapper models obtain better pre-
dictive accuracy estimates, since they take into
account the biases of the learning algorithms.
However, wrapper models are very computation-
ally expensive. Embedded models are a trade-
off between the two models by embedding the
feature selection into the model construction.
Thus, embedded models take advantage of both
filter models and wrapper models: (1) they are

508 Feature Selection

Feature Selection, Fig. 5
A general framework of
wrapper models

Feature Selection, Fig. 6
Classification of recent
development of feature
selection from feature
perspective and data
perspective

far less computationally intensive than wrapper
methods, since they don’t need to run the learning
models many times to evaluate the features, and
(2) they include the interaction with the learning
model. The biggest difference between wrapper
models and embedded models is that wrapper
models first train learning models using the can-
didate features and then perform feature selection
by evaluating features using the learning model,
while embedded models select features during
the process of model construction to perform
feature selection without further evaluation of the
features.

Recent Developments

The recent emergence of new machine learning
algorithms, such as sparse learning, and new
types of data, such as social media data, has
accelerated the evolution of feature selection. In
this section, we will discuss recent developments
of feature selection from both feature and data
perspectives.

From the feature perspective, features can
be categorized as static and streaming features,
as shown in Fig. 6a. Static features can be further
categorized as flat features and structured fea-
tures. The recent development of feature selection
from the feature perspective mainly focuses on
streaming and structure features.

Usually we assume that all features are known
in advance. These features are designated as static
features. In some scenarios, new features are
sequentially presented to the learning algorithm.
For example, Twitter produces more than 250
millions tweets per day, and many new words
(features) are generated, such as abbreviations.
In these scenarios, the candidate features are
generated dynamically, and the size of features
is unknown. These features are usually named
as streaming features, and feature selection for
streaming features is called streaming feature
selection. For flat features, we assume that fea-
tures are independent. However, in many real-
world applications, features may exhibit certain
intrinsic structures, such as overlapping groups,
trees, and graph structures. For example, in speed

Feature Selection 509

F

and signal processing, different frequency bands
can be represented by groups. Figure 6a shows
the classification of structured features. Incorpo-
rating knowledge about feature structures may
significantly improve the performance of learn-
ing models and help select important features.
Feature selection algorithms for the structured
features usually use the recently developed sparse
learning techniques such as group lasso and tree-
guided lasso.

From the data perspective, data can be cate-
gorized as streaming data and static data as shown
in Fig. 6b. Static data can be further categorized
as independent identically distributed (i.i.d.) data
and heterogeneous data. The recent development
of feature selection from the data perspective is
mainly concentrated on streaming and heteroge-
neous data.

Similar to streaming features, streaming data
comes sequentially. Online streaming feature
selection is proposed to deal with streaming
data. When new data instances come, an online
feature selection algorithm needs to determine
(1) whether adding the newly generated features
from the coming data to the currently selected
features and (2) whether removing features
from the set of currently selected features
ID. Traditional data is usually assumed to
be i.i.d. data, such as text and gene data.
However, heterogeneous data, such as linked
data, apparently contradicts this assumption.
For example, linked data is inherently not i.i.d.,
since instances are linked and correlated. New
types of data cultivate new types of feature
selection algorithms correspondingly, such as
feature selection for linked data and multi-view
and multisource feature selection.

Applications

High-dimensional data is very ubiquitous in the
real world, which makes feature selection a very
popular and practical preprocessing technique
for various real-world applications, such as text
categorization, remote sensing, image retrieval,
microarray analysis, mass spectrum analysis, se-
quence analysis, and so on.

Text Clustering The task of text clustering is to
group similar documents together. In text cluster-
ing, a text or document is always represented as
a bag of words, which causes high-dimensional
feature space and sparse representation. Obvi-
ously, a single document has a sparse vector over
the set of all terms. The performance of clus-
tering algorithms degrades dramatically due to
high dimensionality and data sparseness. There-
fore, in practice, feature selection is a very im-
portant step to reduce the feature space in text
clustering.
Genomic Microarray Data Microarray data is
usually short and fat data – high dimensionality
with a small sample size, which poses a great
challenge for computational techniques. Their
dimensionality can be up to tens of thousands
of genes, while their sample sizes can only be
several hundreds. Furthermore, additional exper-
imental complications like noise and variability
render the analysis of microarray data an exciting
domain. Because of these issues, various feature
selection algorithms are adopted to reduce the
dimensionality and remove noise in microarray
data analysis.
Hyperspectral Image Classification Hyper-
spectral sensors record the reflectance from
the Earth’s surface over the full range of solar
wavelengths with high spectral resolution, which
results in high-dimensional data that contains
rich information for a wide range of applications.
However, this high-dimensional data contains
many irrelevant, noisy, and redundant features
that are not important, useful, or desirable for
specific tasks. Feature selection is a critical
preprocessing step to reduce computational cost
for hyperspectral data classification by selecting
relevant features.
Sequence Analysis In bioinformatics, sequence
analysis is a very important process to under-
stand a sequence’s features, functions, structure,
or evolution. In addition to basic features that
represent nucleotide or amino acids at each po-
sition in a sequence, many other features, such
as k-mer patterns, can be derived. By varying the
pattern length k, the number of features grows
exponentially. However, many of these features
are irrelevant or redundant; thus, feature selection

510 Feature Selection

techniques are applied to select a relevant feature
subset and essential for sequence analysis.

Open Problems

Scalability With the rapid growth of dataset
size, the scalability of current feature selection
algorithms may be a big issue, especially for
online classifiers. Large data cannot be loaded
to the memory with a single scan. However, full
dimensionality data must be scanned for some
feature selection. Usually, they require a suffi-
cient number of samples to obtain statistically
significant result. It is very difficult to observe the
feature relevance score without considering the
density around each sample. Therefore, scalabil-
ity is a big issue.
Stability Feature selection algorithms are often
evaluated through classification accuracy or clus-
tering accuracy. However, the stability of algo-
rithms is also an important consideration when
developing feature selection methods. For exam-
ple, when feature selection is applied on gene
data, the domain experts would like to see the
same or at least similar sets of genes selected after
each time they obtain new samples with a small
amount of perturbation. Otherwise, they will not
trust the algorithm. However, well-known fea-
ture selection methods, especially unsupervised
feature selection algorithms, can select features
with low stability after perturbation is introduced
to the training data. Developing algorithms of
feature selection with high accuracy and stability
is still an open problem.
Parameter Selection In feature selection, we
usually need to specify the number of features to
select. However, the optimal number of features
for the dataset is unknown. If the number of
selected features is too few, the performance will
be degenerated, since some relevant features are
eliminated. If the number of selected features
is too large, the performance may also not be
very good since some noisy, irrelevant, or redun-
dant features are selected to confuse the learning
model. In practice, we would grid search the
number of features in a range and pick the one
that has relatively better performance on learning

models, which is computationally expensive. In
particular, for supervised feature selection, cross
validation can be used to search the number of
features to select. How to automatically deter-
mine the best number of selected features remains
an open problem.

For many unsupervised feature selection
methods, in addition to choosing the optimal
number of features, we also need to specify
the number of clusters. Since there is no label
information and we have limited knowledge
about each domain, the actual number of clusters
in the data is usually unknown and not well
defined. The number of clusters specified by
users will result in selecting different feature
subsets by the unsupervised feature selection
algorithm. How to choose the number of clusters
for unsupervised feature selection is an open
problem.

Cross-References

�Classification
�Clustering
�Dimensionality Reduction
�Evolutionary Feature Selection

Recommended Reading

Alelyani S, Tang J, Liu H (2013) Feature selection
for clustering: a review. In: Aggarwal CC (ed) Data
clustering: algorithms and applications, vol 29. CRC
Press, Hoboken

Dy JG, Brodley CE (2004) Feature selection for
unsupervised learning. J Mach Learn Res 5:845–
889

Guyon I, Elisseeff A (2003) An introduction to
variable and feature selection. J Mach Learn Res 3:
1157–1182

Jain A, Zongker D (1997) Feature selection: evalu-
ation, application, and small sample performance.
IEEE Trans Pattern Anal Mach Intell 19(2):153–158

Kohavi R, John GH (1997) Wrappers for feature subset
selection. Artif Intell 97(1):273–324

Koller D, Sahami M (1996) Toward optimal feature
selection. Technical report, Stanford InfoLab

Li, J, Cheng K, Wang S, Morstatter F, Trevino R P,
Tang J, Liu H (2016) Feature Selection: A Data
Perspective. arXiv preprint 1601.07996

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_90

Feature Selection in Text Mining 511

F

Liu H, Motoda H (2007) Computational methods of
feature selection. CRC Press, New York

Liu H, Yu L (2005) Toward integrating feature se-
lection algorithms for classification and clustering.
IEEE Trans Knowl Data Eng 17(4):491–502

Liu H, Motoda H, Setiono R, Zhao Z (2010) Feature
selection: an ever evolving frontier in data mining.
In: FSDM, Hyderabad, pp 4–13

Saeys Y, Inza I, Larrañaga P (2007) A review of feature
selection techniques in bioinformatics. Bioinfor-
matics 23(19):2507–2517

Tang J, Liu H (2012) Feature selection with linked
data in social media. In: SDM, Anaheim. SIAM,
pp 118–128

Tang J, Alelyani S, Liu H (2014) Feature selection for
classification: a review. In: Aggarwal CC (ed) Data
classification: algorithms and applications. Chap-
man & Hall/CRC, Boca Raton, p 37

Wu X, Yu K, Ding W, Wang H, Zhu X (2013) Online
feature selection with streaming features. IEEE
Trans Pattern Anal Mach Intell 35(5):1178–1192

Zhao ZA, Liu H (2011) Spectral feature selection
for data mining. Chapman & Hall/CRC, Boca
Raton

Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A,
Liu H (2010) Advancing feature selection research.
ASU feature selection repository, 1–28

Feature Selection in Text Mining

Dunja Mladenić
Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia

Abstract

Feature selection is commonly used when we
are dealing with a large number of features
or potentially noisy or redundant features. By
selecting only some of the available features
we hope to simplify the data representation,
reduce the needed time and/or space for data
processing, in some cases decrease the cost
of collecting the feature values and, in some
situations also to improve performance of the
data modeling. Even though some approaches
to feature selection are commonly applicable
also in text mining, there are some specifics
worth checking in tuning the existing methods
or proposing some new methods for feature
selection.

Synonyms

Dimensionality reduction on text via feature se-
lection

Definition

The term feature selection is used in machine
learning for the process of selecting a subset of
features (dimensions) used to represent the data
(see �Feature Selection and �Dimensionality
Reduction). Feature selection can be seen as a
part of data pre-processing potentially followed
or coupled with � feature construction (see
� Feature Construction in Text Mining), but
can also be coupled with the learning phase
if embedded in the learning algorithm. An
assumption of feature selection is that we have
defined an original feature space that can be
used to represent the data, and our goal is to
reduce its dimensionality by selecting a subset
of original features. The original feature space of
the data is then mapped onto a new feature space.
Feature selection in text mining is addressed here
separately due to the specificity of textual data
compared to the data commonly addressed in
machine learning.

Motivation and Background

Tasks addressed in machine learning on text are
often characterized by a high number of features
used to represent the data. However, these fea-
tures are not necessarily all relevant and pbenefi-
cial for the task and may slow down the applied
methods giving similar results as a much smaller
feature set. The main reasons for using feature se-
lection in machine learning are Mladenić (2006)
to improve performance, to improve learning effi-
ciency, to provide faster models possibly request-
ing less information on the original data, and
to reduce the complexity of the learned results
and enable better understanding of the underlying
process.

Feature selection in text mining was applied in
a simple form from the start of applying machine

http://dx.doi.org/10.1007/978-1-4899-7687-1_100112
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_100

512 Feature Selection in Text Mining

learning methods on text data, for instance, fea-
ture selection by keeping the most frequent fea-
tures and learning decision rules �Rule Learning
proposed in Apte et al. (1994) or keeping the
most informative features for learning decision
trees �Decision Trees or � naı̈ve Bayes Bayes
Rule proposed in Lewis and Ringuette (1994).
The reason is that the number of features used
to represent text data for machine learning tasks
is high, as the basic approach of learning on text
defines a feature for each word that occurs in the
given text. This can easily result in several tens of
thousands of features, compared to several tens
or hundreds of features, as commonly observed
on most machine learning tasks at the time.

Most methods for � feature subset selection
that are used on text are very simple compared
to the feature selection methods developed in
machine learning (Liu et al. 2010). They per-
form a filtering of features assuming feature in-
dependence, so that a score is assigned to each
feature independently, and the features with high
scores are selected. However, there are also more
sophisticated methods for feature selection on
text data that take into account interactions be-
tween the features. Embedded feature selection
methods were successfully used on text data,
either by applying a learning algorithm that has
feature selection embedded (pre-processing step)
or by inspecting a model generated by such an
algorithm to extract feature scores. On the other
hand, approaches to feature selection that search a
space of all possible feature subsets can be rather
time-consuming when dealing with a high num-
ber of features and are rarely used on text data.

Structure of Learning System

Feature selection in text mining is mainly used in
connection with applying known machine learn-
ing and statistical methods on text when ad-
dressing tasks such as �Document Clustering or
�Document Classification. This is also the focus
of this chapter. However, we may need to perform
some kind of feature selection on different text
mining tasks where features are not necessary
words or phrases, in which case we should recon-

sider the appropriate feature selection methods
in the light of the task properties, including the
number and type of features.

As already pointed out, the common way of
document text representation is by defining a
feature for each word in the document collec-
tion and feature selection by assuming feature
independence, assigning score to the features,
and selecting features with high scores. Scor-
ing of individual features is performed either
in an unsupervised way, ignoring the class in-
formation, or in a supervised way, taking into
account the class information. Surprisingly both
kind of approaches have been shown to perform
comparably on � document classification tasks,
even though supervised scoring uses more infor-
mation. Here we discuss several feature scoring
measures and their performance on document
classification, as reported in different researcher
papers.

One of the first scoring measures used on
text data is scoring by the number of documents
that contain a particular word. This was applied
after removing very frequent words, as given in a
standard “stop-list” for English. An alternative is
scoring by frequency – that is, by the number of
times a feature occurs in a document collection.
Both were shown to work well in document clas-
sification (Mladenić and Grobelnik 2003; Yang
and Pedersen 1997).

� Information gain is commonly used in de-
cision tree induction (Quinlan 1993). It was re-
ported to work well as a feature scoring measure
on text data (Yang and Pedersen 1997) in some
domains (news articles of in a collection named
Reuters-22173, abstracts of medical articles in a
subset of the �MEDLINE collection), where a
multiclass problem was addressed using the near-
est neighbor algorithm �Nearest Neighbor. The
same feature scoring almost completely failed
when using � naı̈ve Bayes �Bayes Rule on a
binary classification problem on a hierarchical
topic taxonomy of Web pages (Mladenić and
Grobelnik 2003). This difference in performance
can be partially attributed to the classification
algorithm and domain characteristics.

It is interesting to notice that information gain
takes into account all values for each feature. In

http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_21
http://dx.doi.org/10.1007/978-1-4899-7687-1_100169
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_30
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_21

Feature Selection in Text Mining 513

F

the case of document classification, these are two
values: occurs or does not occur in a document.
On the other hand, expected cross entropy as used
on text data (Koller and Sahami 1997; Mladenić
and Grobelnik 2003) is similar in nature to
information gain, but only uses the situation when
the feature occurred in a document. Experiments
on classifying document into a hierarchical
topic taxonomy (Mladenić and Grobelnik
2003) have shown that this significantly
improves performance. Expected cross entropy
is related to information gain as follows: Inf-
Gain(F) D CrossEntropyTxt(F) C CrossEntropy
Txt(F), where F is a binary feature (usually
representing a word’s occurrence).

The � odds ratio was reported to outperform
many other measures (Mladenić and Grobelnik
2003) in combination with naı̈ve Bayes, used
for document classification on data with highly
imbalanced class distribution. A characteristic
of naı̈ve Bayes used for � text classification is
that, once the model has been generated, the
classification is based on the features that occur
in a document to be classified. This means that
an empty document will be classified into the
majority class. Consequently, having a highly
imbalanced class distribution, if we want to iden-
tify documents from the underrepresented class
value, we need to have a model sensitive to the
features that occur in such documents. If most
of the selected features are representative for the
majority class value, the documents from other
classes will be almost empty when represented
using the selected features.

Experimental comparison of different feature
selection measures in combination with the
� support vector machines �Support Vector
Machines classification algorithm � (SVM)
on news articles from the Reuters-2000
collection (Brank et al. 2002) has shown that
using all or almost all the features yields
the best performance. The same finding was
confirmed in experimental evaluation of different
feature selection measures on a number of
text classification problems (Forman 2003).
In addition, in Forman (2003) a new feature
selection measure was introduced: binormal
separation, which was reported to improve the

performance of SVM, especially with problems
where the class distribution is highly imbalanced.
Interestingly, they also report that information
gain is outperforming the other tested measures
in the situation when using only a small number
of selected features (20–50 features).

Another feature scoring measure for text data,
called the Fisher index, was proposed as part of
a � document retrieval system based on organiz-
ing large text databases into hierarchical topic
� taxonomies (Chakrabarti et al. 1998). Similar
to Mladenić (1998), for each internal node in
the topic taxonomy, a separate feature subset is
used to build a � naı̈ve Bayes model for that
node. This is sometimes referred to as � local fea-
ture selection or, alternatively, context-sensitive
feature selection. The feature set used in each
node is relatively small and tuned to the node
context.

What follows are formulas of the described
scoring measures as given in Mladenić and
Grobelnik (2003).

InfGain.F / D P.F /
X

i
P.Ci jF /

� log.P.Ci jF /=P.Ci //C P.F /
X

i
P.Ci jF /

� logP.Ci jF /=P.Ci //

CrossEntropyTxt.F / DP.F /
X

i
P.Ci jF /

log.P.Ci jF /=P.Ci //

MutualInfoTxt.F /

D
X

i
P.Ci /log.P.F jCi /=P.F //

OddsRatio.F /D log.P.F jCpos/.1�P.F jCneg///

� log..1�P.F jCpos//P.F jCneg//

Bi-NormalSeparation.F / DZ�1.P.F jCpos//

�Z�1.P.F jCneg//

FisherIndexTxt.F / D
�X

pos;neg
.P.F jCpos

�

� P.F jCneg//2/=
X

Ci"pos;neg
jCi j

�1

�
X

d"Ci
.n.F; d/ � P.F jCi //2

http://dx.doi.org/10.1007/978-1-4899-7687-1_700
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_30
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_100272

514 Feature Selection in Text Mining

where P.F / is the probability that feature F

occurred, F means that the feature does not
occur, P.Ci) is the probability of the i th class
value, P.Ci jF / is the conditional probability
of the i th class value given that feature F oc-
curred, P.F jCi) is the conditional probability
of feature occurrence given the i th class value,
P.F jCpos/ is the conditional probability of fea-
ture F occurring given the class value “posi-
tive,” P.F jCneg/ is the conditional probability of
feature F occurring given the class value “neg-
ative,” Z�1.x/ is the standard normal distribu-
tion’s inverse � cumulative probability function
(´-score), jCi j is the number of documents in
class Ci , and n.F; d/ is 1 if the document d

contains feature F and 0 otherwise.
As already highlighted in � text classification,

most of the feature selection methods evaluate
each feature independently. A more sophisticated
approach is proposed in Brank et al. (2002),
where a linear SVM is first trained using all
the features, and the induced model is then used
to score the features (weight assigned to each
feature in the normal to the induced hyperplane
is used as a feature score). Experimental eval-
uation using that feature selection in combina-
tion with �SVM, Perceptron, and naı̈ve Bayes
has shown that the best performance is achieved
by SVM when using almost all the features.
The experiments have confirmed the previous
findings on � feature subset selection improving
the performance of naı̈ve Bayes, but the overall
performance is lower than using SVM on all the
features.

Much the same as in Brank et al. (2002),
feature selection was performed using a linear
SVM to rank the features in Bi et al. (2003).
However, the experiments in Bi et al. (2003)
were performed on a regression problem, and
the final model was induced using a nonlinear
SVM. The feature selection was shown to im-
prove performance. Feature selection on text was
also performed in a two-stage way, first using
information gain to score the features and then
applying genetic algorithms and principal com-
ponent analysis (Uguz 2011) .

Distributional clustering of words with an ag-
glomerative approach (words are viewed as dis-

tributions over document categories) is used for
dimensionality reduction via � feature construc-
tion (Bekkerman et al. 2003) that preserves the
mutual information between the features as much
as possible. This representation was shown to
achieve comparable or better results than the bag-
of-words document representation using feature
selection based on mutual information for text; a
linear SVM was used as the classifier. A related
approach, also based on preserving the mutual
information between the features (Globerson and
Tishby 2003), finds new dimensions by using an
iterative projection algorithm instead of cluster-
ing. It was shown to achieve performance com-
parable to the bag-of-words representation with
all the original features, using significantly less
features (e.g., on one dataset, four constructed
features achieved 98 % of performance of 500
original features) using the linear SVM classifier.

Divisive clustering for feature construction
(Dhillon et al. 2003) was shown to outper-
form distributional clustering when used for
dimensionality reduction on text data. The
approach uses the Kullback-Leibler divergence as
a distance function and minimizes within-cluster
divergence while maximizing between-cluster
divergence. Experiments on two datasets have
shown that this dimensionality reduction slightly
improves the performance of � naı̈ve Bayes
(compared to using all the original features), out-
performing the agglomerative clustering of words
combined with naı̈ve Bayes and achieving con-
siderably higher classification accuracy for the
same number of features than feature subset se-
lection using information gain or mutual informa-
tion (in combination with naı̈ve Bayes or SVM).

Recommended Reading

Apte C, Damerau F, Weiss SM (1994) Toward lan-
guage independent automated learning of text cat-
egorization models. In: Proceedings of the 17th
annual international ACM SIGIR conference on
research and development in information retrieval,
Dublin, pp 23–30

Bekkerman R, El-Yaniv R, Tishby N, Winter Y (2003)
Distributional word clusters vs. words for text cate-
gorization. J Mach Learn Res 3:1183–1208

http://dx.doi.org/10.1007/978-1-4899-7687-1_191
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_100169
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_581

First-Order Logic 515

F

Bi J, Bennett KP, Embrechts M, Breneman CM,
Song M (2003) Dimensionality reduction via sparse
support vector machines. J Mach Learn Res 3:
1229–1243

Brank J, Grobelnik M, Milič-Frayling N,
Mladenić D (2002) Feature selection using
support vector machines. In: Zanasi A (ed) Data
mining III, Southampton, pp 261–273

Chakrabarti S, Dom B, Agrawal R, Raghavan P (1998)
Scalable feature selection, classification and signa-
ture generation for organizing large text databases
into hierarchical topic taxonomies. VLDB J 7:
163–178

Dhillon I, Mallela S, Kumar R (2003) A divi-
sive information-theoretic feature clustering algo-
rithm for text classification. J Mach Learn Res 3:
1265–1287

Forman G (2003) An extensive empirical study of
feature selection metrics for text classification. J
Mach Learn Res 3:1289–1305

Globerson A, Tishby N (2003) Sufficient dimensional-
ity reduction. J Mach Learn Res 3:1307–1331

Koller D, Sahami M (1997) Hierarchically classifying
documents using very few words. In: Proceedings
of the 14th international conference on machine
learning ICML’97, Nashrille, pp 170–178

Lewis DD, Ringuette M (1994) Comparison of two
learning algorithms for text categorization. In: Pro-
ceedings of the 3rd annual symposium on document
analysis and information retrieval SDAIR-1994, Las
Vegas

Liu H, Motodo H, Setiono R, Zhao Z (2010) Feature
selection: an ever evolving frontier in data mining.
In: Proceedings of the fourth workshop on feature
selection in data mining, pp 4–13

Mladenić D (1998) Feature subset selection in text-
learning. In: Proceedings of the 10th European con-
ference on machine learning ECML’98, Chemnitz

Mladenić D (2006) Feature selection for dimen-
sionality reduction. In: Saunders C, Gunn S,
Shawe-Taylor J, Grobelink M (eds) Subspace,
latent structure and feature selection: statistical
and optimization perspectives workshop. Lecture
notes in computer science, vol 3940. Springer,
Berlin/Heidelberg, pp 84–102

Mladenić D, Grobelnik M (2003) Feature selection on
hierarchy of web documents. J Decis Support Syst
35:45–87

Quinlan JR (1993) Constructing decision tree. In:
Quinlan JR (ed) C4.5: programs for machine
learning. Morgan Kaufmann Publishers, San
Francisco

Uguz H (2011) A two-stage feature selection method
for text categorization by using information gain,
principal component analysis and genetic algorithm.
Knowl-Based Syst 24(7):1024–1032

Yang Y, Pedersen JO (1997) A comparative study on
feature selection in text categorization. In: Proceed-
ings of the 14th international conference on machine
learning ICML’97, Las Vegas, pp 412–420

Feature Subset Selection

� Feature Selection

Feature Weighting

� Feature Selection

Feedforward Recurrent Network

� Simple Recurrent Network

Field Scrubbing

�Record Linkage

Finite Mixture Model

�Mixture Model

First-Order Logic

Peter A. Flach
Department of Computer Science, University of
Bristol, Bristol, UK

Synonyms

Predicate logic; Predicate calculus; First-order
predicate logic; First-order predicate calculus

Definition

First-order predicate logic – first-order logic for
short – is the logic of properties of, and relations
between, objects and their parts. Like any logic, it

http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_768
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_100370
http://dx.doi.org/10.1007/978-1-4899-7687-1_100369
http://dx.doi.org/10.1007/978-1-4899-7687-1_100175
http://dx.doi.org/10.1007/978-1-4899-7687-1_100174

516 First-Order Logic

consists of three parts: syntax governs the forma-
tion of well-formed formulae, semantics ascribes
meaning to well-formed formulae and formal-
izes the notion of deductive consequence, and
proof procedures allow the inference of deductive
consequences by syntactic means. A number of
variants of first-order logic exist, mainly differ-
ing in their syntax and proof systems. In ma-
chine learning, the main use of first-order logic is
in �Learning from Structured Data, � Inductive
Logic Programming, and �Relational Data Min-
ing.

Motivation and Background

The interest in logic arises from a desire to
formalize human, mathematical, and scientific
reasoning and goes back to at least the Greek
philosophers. Aristotle devised a form of propo-
sitional reasoning called syllogisms in the fourth
century BC. Aristotle was held in very high
esteem by medieval scholars, and so further sig-
nificant advances were not made until after the
Middle Ages. Leibniz wrote of an “algebra of
thought” and linked reasoning to calculation in
the late seventeenth century. Boole and De Mor-
gan developed the algebraic point of view in the
mid-nineteenth century.

Universally quantified variables, which form
the main innovation in first-order logic as com-
pared to � Propositional Logic, were invented
by Gottlob Frege in his Begriffsschrift (“con-
cept notation”) from 1879 and independently
by Charles Sanders Peirce in 1885, who intro-
duced the notation

Q
x and

P
x for universal

and existential quantification. Frege’s work went
largely unnoticed until it was developed further
by Alfred North Whitehead and Bertrand Russell
in their Principia Mathematica (1903). Seminal
contributions were made, among many others:
by Giuseppe Peano, who axiomatized number
theory and introduced the notation .x/ and 9x;
by Kurt Gödel, who established the completeness
of first-order logic as well as the incomplete-
ness of any system incorporating Peano arith-
metic; by Alonzo Church, who proved that first-
order logic is undecidable and who introduced

œ-calculus, a form of �Higher-Order Logic that
allows quantification over predicates and func-
tions (as opposed to first-order logic, which only
allows quantification over objects); and by Alfred
Tarski, who pioneered logical semantics through
model theory and the notion of logical conse-
quence. The now universally accepted notation
8x was introduced by Gerhard Gentzen.

Logic plays an important role in any approach
to symbolic AI that employs a formal language
for knowledge representation and inference. A
significant, relatively recent development was
the introduction of logic programming languages
such as � Prolog, which turn logical inference
into computation. In machine learning, the use
of a first-order language is essential in order to
handle domains in which objects have inherent
structure; the availability of Prolog as a common
language and programming platform gave rise to
the field of � Inductive Logic Programming.

Theory

Syntax
A first-order logical language is built from con-
stant symbols, variable symbols, predicate sym-
bols, and function symbols; the latter two kinds
of symbols have an associated arity, which is the
number of arguments they take. Terms are either
constant symbols, variable symbols, or of the
form f .t1; : : : ; tn/ where f is a function symbol
with arity n and t1; : : : ; tn is a sequence of n

terms. Using the logical connectives : (nega-
tion), ^ (conjunction), _ (disjunction), and !
(material implication) and the quantifiers 8 (uni-
versal quantifier) and 9 (existential quantifier),
well-formed formulae or wffs are defined recur-
sively as follows: (1) if P is a predicate symbol
with arity n, and t1; : : : ; tn is a sequence of n

terms, then P.t1; : : : ; tn/ is a wff, also referred
to as an atomic formula or atom; (2) if ¥1 and ¥2

are wffs, then .:¥1/, .¥1 ^ ¥2/, .¥1 _ ¥2/, and
.¥1 ! ¥2/ are wffs; (3) if x is a variable and ¥

is a wff, then .8x W ¥/ and .9x W ¥/ are wffs;
(4) and nothing else is a wff. Brackets are usually
dropped as much as it is possible without causing
confusion.

http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_100405
http://dx.doi.org/10.1007/978-1-4899-7687-1_963
http://dx.doi.org/10.1007/978-1-4899-7687-1_126
http://dx.doi.org/10.1007/978-1-4899-7687-1_677
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

First-Order Logic 517

F

Example 1 Let “man,” “single,” and “partner”
be two unary and one binary predicate symbol,
respectively, and let “x” and “y” be variable
symbols, then the following is a wff ¥

expressing that men who are not single have a
partner:

.8x W .man.x/ ^ .:single.x///

! .9y W partner.x; y///

Assuming that: binds strongest, then^, then!,
the brackets can be dropped:

8x W man.x/ ^ :single.x/

! 9y W partner.x; y/

A propositional language is a special case of a
predicate-logical language, built only from pred-
icate symbols with arity 0, referred to as proposi-
tion symbols or propositional atoms, and connec-
tives. So, for instance, assuming the proposition
symbols “man,” “single,” and “has partner ,”
the following is a propositional wff: man ^

:single ! has partner . The main difference
is that in propositional logic, references to objects
cannot be expressed and therefore have to be
understood implicitly.

Semantics
First-order wffs express statements that can be
true or false, and so a first-order semantics con-
sists in constructing a mapping from wffs to
truth values, given an interpretation, which is a
possible state of affairs in the domain of dis-
course, mapping constant, predicate, and function
symbols to elements, relations, and functions in
and over the domain. To deal with variables, a
valuation function is employed. Once this map-
ping is defined, the meaning of a wff consists in
the set of interpretations in which the wff maps
to true, also called its models. The intuition is
that the more “knowledge” a wff contains, the
fewer models it has. The key notion of logical
consequence is then defined in terms of models:
one wff is a logical consequence of another if
the set of models of the first contains the set

of models of the second; hence, the second wff
contains at least the same, if not more, knowledge
than the first.

Formally, a predicate-logical interpretation,
or interpretation for short, is a pair .D; i/, where
D is a nonempty domain of individuals and i

is a function assigning to every constant symbol
an element of D, to every function symbol with
arity n a mapping from Dn to D, and to every
predicate symbol with arity n a subset of Dn,
called the extension of the predicate. A valuation
is a function v assigning to every variable symbol
an element of D.

Given an interpretation I D .D; i/ and a
valuation v, a mapping iv from terms to individ-
uals is defined as follows: (1) if t is a constant
symbol, iv.t/ D i.t/; (2) if t is a variable
symbol, iv.t/ D v.t/; (3) and if t is a term
f .t1; : : : ; tn/, iv.t/ D i.f /.iv.t1/; : : : ; iv.tn//.
The mapping is extended to a mapping from wffs
to truth values as follows: (4) if ¥ is an atom
P.t1; : : : ; tn/, iv.¥/ D i.P /.iv.t1/; : : : ; iv.tn//;
(5) iv.:¥/ D T if iv.¥/ D F and F otherwise;
(6) iv.¥1 ^ ¥2/ D T if iv.¥1/ D T and
iv.¥2/ D T and F otherwise; (7) and iv.8x W

¥/ D T if ivx!d
.¥/ D T for all d 2 D

and F otherwise, where vx!d is v except that
x is assigned d . The remaining connectives and
quantifier are evaluated by rewriting: (8) iv.¥1 _

¥2/ D iv.:.:¥1 ^ :¥2//; (9) iv.¥1 ! ¥2/ D

iv.:¥1 _ ¥2/; (10) iv.9x W ¥/ D iv.:8x W :¥/.

An interpretation I satisfies a wff ¥, notation
I ˆ ¥, if iv.¥/ D T for all valuations v;
we say that I is a model of ¥ and that ¥ is
satisfiable. If all models of a set of wffs † are
also models of ¥, we say that † logically entails
¥ or ¥ is a logical consequence of † and write
† ˆ ¥. If † D ;, ¥ is called a tautology and
we write ˆ ¥. A wff § is a contradiction if :§

is a tautology. Contradictions do not have any
models, and consequently § ˆ ˛ for any wff ˛.
The deduction theorem says that † ˆ ˛ ! ˇ

if and only if † [f˛g ˆ ˇ. Another useful fact
is that, if † [f:”g is a contradiction, † ˆ ”;
this gives rise to a proof technique known as
Reductio ad absurdum or proof by contradiction
(see below).

518 First-Order Logic

Example 2 We continue the previous exam-
ple. Let D D fP eter; P aul; Maryg, and
let the function i be defined as follows:
i.man/ D fP eter; P aulg; i.single/ D

fP aulg; i.partner/ D f.P eter; Mary/g. We
then have that the interpretation I D .D; i/ is a
model for the wff ¥ above. On the other hand, I

does not satisfy § D 8x W 9y W partner.x; y/,
and therefore ¥ 6ˆ §. However, the reverse does
hold: there is no interpretation that satisfies §

and not ¥, and therefore § ˆ ¥.

In case of a propositional logic, this semantics
can be considerably simplified. Since there are no
terms, the domain D plays no role, and an inter-
pretation simply assigns truth values to proposi-
tion symbols. Wffs can then be evaluated using
rules (5–6) and (8–9). For example, if i.man/ D

T , i.single/ D T , and i.has partner/ D T ,
then i.man ^ :single ! has partner/ D T .
(If this seems counterintuitive, this is probably
because the reader’s knowledge of the domain
suggests another wff :.single^has partner/,
which is false in this particular interpretation.)

Proofs
A proof procedure consists of a set of axioms and
a set of inference rules. Given a proof procedure
P , we say that ¥ is provable from † and write
† `P ¥ if there exists a finite sequence of
wffs ¥1; ¥2; : : : ; ¥n�1; ¥ which is obtained by
successive applications of inference rules to ax-
ioms, premisses in †, and/or previous wffs in the
sequence. Such a sequence of wffs, if it exists,
is called a proof of ¥ from †. A proof proce-
dure P is sound, with respect to the semantics
established by predicate-logical interpretations, if
† ˆ ¥ whenever † `P ¥; it is complete if
† `P ¥ whenever † ˆ ¥. For a sound and
complete proof procedure for first-order predicate
logic, see, e.g., Turner (1984, p.15).

A set of wffs † is consistent, with respect to a
proof procedure P , if not both † `P ¥ and † `P

:¥ for some wff ¥. Given a sound and complete
proof procedure, the proof-theoretic notion of
consistency coincides with the semantic notion
of satisfiability. In particular, if we can prove
that † [f:”g is inconsistent, then we know that

†[f:”g is not satisfiable, hence a contradiction,
and thus † ˆ ”. This still holds if the proof
procedure is only complete in the weaker sense
of being able to demonstrate the inconsistency of
arbitrary sets of wffs (see the resolution inference
rule, below).

Example 3 One useful inference rule for predi-
cate logic replaces a universally quantified vari-
able with an arbitrary term, which is called Uni-
versal Elimination. So, if “c” is a constant symbol
in our language, then we can infer

man.c/ ^ :single.c/! 9y W partner.c; y/

from ¥ above by Universal Elimination. Another
inference rule, which was called Modus Ponens
by Aristotle, allows us to infer ˇ from ˛ and
˛ ! ˇ. So, if we additionally have man.c/ ^

:single.c/, then we can conclude

9y W partner.c; y/

by Modus Ponens. This rule is also applicable
to propositional logic. An example of an axiom
is c D c for any constant symbol c. (Strictly
speaking this is an axiom schema, giving rise
to an axiom for every constant symbol in the
language.)

Programming in Logic
Syntax, semantics, and proof procedures for first-
order logic can be simplified and made more
amenable to computation if we limit the num-
ber of ways of expressing the same thing. This
can be achieved by restricting wffs to a nor-
mal form called prenex conjunctive normal form
(PCNF). This means that all quantifiers occur
at the start of the wff and are followed by a
conjunction of disjunctions of atoms and negated
atoms, jointly called literals. An example of a
formula in PCNF is

8x W 9y W :man.x/_single.x/_partner.x; y/

This formula is equivalent to the wff ¥ in Exam-
ple 1, in the sense that it has the same set of mod-
els, and so either one logically entails the other.

First-Order Logic 519

F

Every first-order wff can be transformed into a
logically equivalent formula in PCNF, which is
unique up to the order of conjuncts and disjuncts.
A transformation procedure can be found in Flach
(1994).

PCNF can be further simplified if we use func-
tion symbols instead of existential quantifiers.
For instance, instead of 9y W partner.x; y/,
we can say partner.x; partner of .x//, where
partner of is a unary function symbol called a
Skolem function, after the Norwegian logician
Thoralf Skolem. The two statements are not logi-
cally equivalent, as the second entails the first but
not vice versa, but this difference is of little prac-
tical consequence. Since all variables are now
universally quantified, the quantifiers are usually
omitted, leading to clausal form:

:man.x/ _ single.x/

_ partner.x; partner of .x//

To sum up, a wff in clausal form is a conjunction
of disjunctions of literals, of which the variables
are implicitly universally quantified. The individ-
ual disjunctions are called clauses.

Further simplifications include dispensing
with equality, which means that terms involving
function symbols, such as partner of .c/, are
not evaluated and in effect treated as names of
objects (in this case, the function symbols are
called functors or data constructors). Under this
assumption each ground term (a term without
variables) denotes a different object, which
means that we can take the set of ground terms
as the domain D of an interpretation; this is
called a Herbrand interpretation, after the French
logician Jacques Herbrand.

The main advantage of clausal logic is the
existence of a proof procedure consisting of a sin-
gle inference rule and no axioms. This inference
rule, which is called resolution, was introduced
by Alan Robinson in 1965 (Robinson 1965). In
propositional logic, given two clauses P _ Q

and :Q _ R containing complementary literals
Q and :Q, resolution infers the resolvent P _

R (P and/or R may themselves contain several
disjuncts). For instance, given :man_ single _

has partner and man _ woman, we can infer
woman_ single _ has partner by resolution.
In first-order logic, Q and :Q0 are complemen-
tary if Q and Q0 are unifiable, i.e., there exists
a substitution ™ of terms for variables such that
Q™ D Q0™, where Q™ denotes the application of
substitution ™ to Q; in this case, the resolvent of
P _Q and :Q0 _ R is P ™ _ R™. For instance,
from the following two clauses:

:man.x/ _ single.x/

_ partner.x; partner of .x//

:single.father of .c//

we can infer

:man.father of .c// _ partner.father of .c/;

partner of .father of .c///

The resolution inference rule is sound but not
complete: for instance, it is unable to produce
tautologies such as man.c/ _ :man.c/ if no
clauses involving the predicate man are given.
However, it is refutation-complete, which means
it can demonstrate the unsatisfiability of any set
of clauses by deriving the empty clause, indicated
by �. For instance, man.c/ ^ :man.c/ is a wff
consisting of two clauses which are complemen-
tary literals, so by resolution we infer the empty
clause in one step.

Refutation by resolution is the way in which
queries are answered in the logic programming
language �Prolog. Prolog works with a subset
of clausal logic called Horn logic, named after
the logician Alfred Horn. A Horn clause is a
disjunction of literals with at most one positive
(un-negated) literal; Horn clauses can be further
divided into definite clauses, which have one pos-
itive literal, and goal clauses which have none. A
Prolog program consists of definite clauses, and a
goal clause functions as a procedure call. Notice
that resolving a goal clause with a definite clause
results in another goal clause, because the pos-
itive literal in the definite clause (also called its
head) must be one of the complementary literals.
The idea is that the resolution step reformulates

http://dx.doi.org/10.1007/978-1-4899-7687-1_677

520 First-Order Logic

the original goal into a new goal that is one
step closer to the solution. A refutation is then
a sequence of goals G; G1; G2; : : : ; Gn such that
G is the original goal, each Gi is obtained by
resolving Gi�1 with a clause from the program P ,
and Gn D �. Such a refutation demonstrates that
P [fGg is inconsistent, and therefore P ˆ :G.

Finding a refutation amounts to a search prob-
lem, because there are typically several program
clauses that could be resolved against the current
goal. Virtually all Prolog interpreters apply a
depth-first search procedure, searching the goal
literals left to right and the program clauses
top-down. Once a refutation is found, the sub-
stitutions collected in all resolution steps are
composed to obtain an answer substitution. One
unique feature of logic programming is that a goal
may have more than one (or, indeed, less than
one) refutation and answer substitution from a
given program.

Example 4 Consider the following Prolog pro-
gram:

peano_sum(0,Y,Y).
peano_sum(s(X),Y,s(Z)):
-peano_sum(X,Y,Z).

This program defines addition in Peano arith-
metic. We follow Prolog syntax: variables start
with an uppercase letter, and :- stands for re-
versed implication or “if.” The unary functor s
represents the successor function. So the first rule
reads “the sum of 0 and an arbitrary number y is
y,” and the second rule reads “the sum of x C 1
and y is ´C 1 if the sum of x and y is ´.”

The goal :-peano sum(s(0),s(s(0)),
Q) states, “there are no numbers q such
that 1 C 2 D q.” We first resolve this goal
with the second program clause to obtain
:-peano sum(0,s(s(0)),Z) under the
substitution fQ = s(Z)g. This new goal states,
“there are no numbers ´ such that 0C 2 D ´.” It
is resolved with the first clause to yield the empty
clause under the substitution fY = s(s(0)), Z =

s(s(0))g. The resulting answer substitution is
fQ = s(s(s(0)))g, i.e., q D 3.

As another example, goal :-peano sum
(A,B,s(s(0))) states “there are no numbers

a and b such that a C b D 2.” This goal has
three refutations: one involving the first clause
only, yielding the answer substitution fA = 0, B
= s(s(0))g; one involving the second clause
then the first, resulting in fA = s(0), B = s(0)g;
and the third applying the second clause twice
followed by the first, yielding fA = s(s(0)),
B = 0g. Prolog will return these three answers in
this order.

Induction in first-order logic amount to
reconstructing a logical theory from some of
its logical consequences. For techniques to
induce a Prolog program given examples such
as peano sum(s(0),s(0),s(s(0))), see
� Inductive Logic Programming.

Cross-References

�Abduction
�Entailment
�Higher-Order Logic
�Hypothesis Language
� Inductive Logic Programming
�Learning from Structured Data
� Propositionalization
�Relational Data Mining

Recommended Reading

For general introductions to logic and its use
in Artificial Intelligence, see Turner (1984)
and Genesereth and Nilsson (1987). Kowalski’s
classic text Logic for problem solving focusses
on clausal logic and resolution theorem proving
(Kowalski 1979). For introductions to Prolog
programming, see Flach (1994) and Bratko
(2001).

Bratko I (2001) Prolog programming for artificial
intelligence, 3rd edn. Addison Wesley, Harlow/New
York

Flach P (1994) Simply logical: intelligent reasoning by
example. Wiley, Chichester/New York

Genesereth MR, Nilsson NJ (1987) Logical founda-
tions of artificial intelligence. Morgan Kaufmann,
Los Altos

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_1
http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_126
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_100405

First-Order Regression Tree 521

F

Kowalski RA (1979) Logic for problem solving.
North-Holland, New York

Robinson JA (1965) A machine-oriented logic based
on the resolution principle. J ACM 12(1):23–41

Turner R (1984) Logics for artificial intelligence. Ellis
Horwood, Chichester

First-Order Predicate Calculus

� First-Order Logic

First-Order Predicate Logic

� First-Order Logic

First-Order Regression Tree

Synonyms

Logical regression tree; Relational regression tree

Definition

A first-order regression tree can be defined as
follows:

Definition 1 (First-Order Regression Tree)
A first-order regression tree is a binary tree in
which

• Every internal node contains a test which is a
conjunction of first-order literals.

• Every leaf (terminal node) of the tree contains
a real valued prediction.

An extra constraint placed on the first-order
literals that are used as tests in internal nodes is
that a variable that is introduced in a node (i.e., it
does not occur in higher nodes) does not occur in
the right subtree of the node.

Figure 1 gives an example of a first-order
regression tree. The test in a node should be
read as the existentially quantified conjunction

On(BlockA, floor)

On(BlockB, BlockA)

Clear(BlockA) Qvalue = 0.1

Qvalue = 0.4

Qvalue = 0.9 Qvalue = 0.3

yes

yes

yes

no

no

no

First-Order Regression Tree, Fig. 1 A relational re-
gression tree

First-Order Regression Tree, Fig. 2 State description

of all literals in the nodes in the path from the
root of the tree to that node. In the left subtree
of a node, the test of the node is added to the
conjunction, for the right subtree, the negation of
the test should be added. For the example state
description of Fig. 2, the tree would predict a
Qvalue D 0:9, since there exists no block that
is both on the floor and clear, but there is a block
which is on the floor and has another block on
top of it. To see this, substitute BlockA in the tree
with 2 (or 4) and BlockB with 1 (or 4).

The constraint on the use of variables stems
from the fact that variables in the tests of internal
nodes are existentially quantified. Suppose a node
introduces a new variable X . Where the left
subtree of a node corresponds to the fact that a
substitution for X has been found to make the
conjunction true, the right side corresponds to the
situation where no substitution for X exists, i.e.,
there is no such X . Therefore, it makes no sense
to refer to X in the right subtree.

Cross-References

� First-Order Logic
� Inductive Logic Programming

�Relational Reinforcement Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_100275
http://dx.doi.org/10.1007/978-1-4899-7687-1_100409
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_726

522 Formal Concept Analysis

Formal Concept Analysis

Gemma C. Garriga
Universite Pierre et Marie Curie, Paris, France

Definition

Formal concept analysis is a mathematical theory
of concept hierarchies that builds on order theory;
it can be seen as an unsupervised machine learn-
ing technique and is typically used as a method of
knowledge representation. The approach takes an
input binary relation (binary matrix) specifying
a set of objects (rows) and a set of attributes
for those objects (columns), finds the natural
concepts described in the data, and then organizes
the concepts in a partial order structure or Hasse
diagram. Each concept in the final diagram is
a pair of sets of objects and attributes that are
maximally contained one in each other.

Theory

The above intuition can be formalized through
a Galois connection as follows. Let R be the
binary relation between a set of objects and a
set of attributes, that is, R � O � A. Two
mappings ˛: O 7! A and ˇ: A 7! O are defined
so that the operator ˛.O/, for some O � O,
returns the maximal set of attributes common to
all objects in O; dually, the operator ˇ.A/, for
some A � A, returns the maximal set of objects
containing all attributes in A. there two mappings
induce a Galois connection between the powerset
of objects and the powerset of attributes, that is,
they satisfy O � ˇ.A/, A � ˛.0/ for a set of
objects O and a set of attributes A.

From here, a formal concept is a pair of sets
of objects and attributes (O , A/ from the binary
relation that satisfy ˛(O/ D A and ˇ(A/ D O .
Typically, O is called the extent of the concept
and A the intent of the concept. Note that con-
cepts can be interpreted from the geometrical
point of view, they are maximal rectangles of
ones (not necessarily consecutive) in the input
binary table R. The organization of all the formal

1

2

3

a b c d

1 0 1 1

1 1 1 0

1 1 0 0

Formal Concept Analysis, Fig. 1 A binary relation
R � f1; 2; 3g � fa; b; c; dg

{a, b, c, d}
{}

{a, b, c}
{2}

{a, c, d}
{1}

{a, c}
{1, 2}

{a}
{1, 2, 3}

{a, b}
{2, 3}

Formal Concept Analysis, Fig. 2 Concepts of the rela-
tion R organized in a Hasse diagram

concepts in a Hasse diagram is called the concept
lattice. This lattice corresponds to a partial order
structure of concepts where edges between con-
cepts correspond to the standard inclusion of the
sets.

A small toy example in Figs. 1 and 2 illustrates
the formal concepts and their organization in a
Hasse diagram.

Motivation and Background

Formal concept analysis has been applied to a
variety of disciplines, from psychology, sociol-
ogy, biology, medicine, linguistics, or industrial
engineering, to cite some, for the interactive ex-
ploration of implicit and explicit structures in the
data.

From the point of view of machine learning
and data mining, the connection between the

Frequent Itemset 523

F

formal concepts of the lattice and the so-called,
closed sets of items is remarkable. Closed sets of
items appear in the context of � constraint-based
mining, in which the user provides restraints that
guide a search of patterns in the data. They are
maximal sets of attributes occuring frequently
in the data; they correspond to a compacted
representation of the frequent sets from frequent
itemset mining. It is well known that closed sets
correspond exactly to the intents of the concepts
derived via formal concept analysis, and there-
fore, from the formal concepts it is possible to
construct bases of minimal nonredundant sets
of association rules from which all other rules
holding in the data can be derived.

Also, formal concept analysis has been typi-
cally seen as a type of conceptual � clustering.
Each concept or groups of concepts form a clus-
ter of objects sharing similar properties. The
diagrams obtained from this sort of clustering
can then be used in class discovery and class
prediction. Although a diagram of concepts can
become large and complex, different approaches
have worked toward reducing the complexity of
concept lattices via conceptual scaling.

We refer the reader to Ganter and Wille (1998)
for a general reference on formal concept analy-
sis, and to Davey and Priestly (2002) for the basic
concepts on order theory. For more thorough
descriptions of different applications of formal
concept analysis in the computer science field,
see Carpineto and Romano (2004).

Cross-References

�Clustering
�Constraint-Based Mining
� Frequent Itemset

Recommended Reading

Carpineto C, Romano G (2004) Concept data analysis.
Theory and applications. Wiley, New York

Davey BA, Priestly HA (2002) Introduction to lattices
and order. Cambridge University Press, Cambridge

Ganter B, Wille R (1998) Formal concept analysis.
Mathematical foundations. Springer, Heidelberg

Frequent Itemset

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Synonyms

Frequent set

Definition

Frequent itemsets (Agrawal et al. 1993, 1996) are
a form of � frequent pattern. Given examples that
are sets of items and a minimum frequency, any
set of items that occurs at least in the minimum
number of examples is a frequent itemset.

For instance, customers of an on-line
bookstore could be considered examples,
each represented by the set of books he or
she has purchased. A set of books, such
as f“Machine Learning,” “The Elements of
Statistical Learning,” “Pattern Classification,”g
is a frequent itemset if it has been bought by
sufficiently many customers. Given a frequency
threshold, perhaps only 0.1 or 0.01 % for an
on-line store, all sets of books that have been
bought by at least that many customers are called
frequent. Discovery of all frequent itemsets is
a typical data mining task. The original use has
been as part of � association rule discovery.
�Apriori is a classical algorithm for finding
frequent itemsets.

The idea generalizes far beyond examples con-
sisting of sets. The pattern class can be re-defined,
e.g., to be (frequent) subsequences rather than
itemsets; or original data can often be trans-
formed to a suitable representation, e.g., by con-
sidering each discrete attribute-value pair or an
interval of a continuous attribute as an individual
item. In such more general settings, the term
� frequent pattern is often used. Another direc-
tion to generalize frequent itemsets is to consider
other conditions than frequency on the patterns to
be discovered; see � constraint-based mining for
more details.

http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_100176
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_164

524 Frequent Pattern

Cross-References

�Apriori Algorithm
�Association Rule
�Constraint-Based Mining
� Frequent Pattern

Recommended Reading

Agrawal R, Imieliski T, Swami A (1993) Mining
association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIG-
MOD international conference on management of
data, Washington, DC. ACM, New York, pp 207–
216

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge dis-
covery and data mining. AAAI Press, Menlo Park,
pp 307–328

Frequent Pattern

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Definition

Given a set D of examples, a language L possible
patterns, and a minimum frequency min f r , every
pattern � 2 L that occurs at least in the minimum
number of examples, i.e., jf e 2 Dj� occurs in
egj � min f r , is a frequent pattern. Discovery
of all frequent patterns is a common data mining
task. In its most typical form, the patterns are
� frequent itemsets. A more general formulation
of the problem is � constraint-based mining.

Motivation and Background

Frequent patterns can be used to characterize a
given set of examples: they are the most typical
feature combinations in the data.

Frequent patterns are often used as compo-
nents in larger data mining or machine learning
tasks. In particular, discovery of � frequent item-

sets was actually first introduced as an interme-
diate step in � association rule mining (Agrawal
et al. 1993) (“frequent itemsets” were then called
“large”). The frequency and confidence of every
valid association rule X ! Y are obtained
simply as the frequency of X [Y and the ratio
of frequencies of X [Y and X , respectively.

Frequent patterns can be useful as � features
for further learning tasks. They may capture
shared properties of examples better than
individual original features, while the frequency
threshold gives some guarantee that the
constructed features are not so likely just noise.
However, other criteria besides frequency are
often used to choose a good set of candidate
patterns.

Structure of Problem

A frequent pattern often is essentially a set of
binary � features. Given a set I of all available
features, the pattern language L then is the power
set of I. An example in data D covers a pattern
� 2 L if it has all the features of � . In such
cases, the frequent pattern discovery task reduces
to the task of discovering � frequent itemsets.
Therefore, the structure of the frequent pattern
discovery problem is best described using the
elementary case of frequent itemsets.

Let I be the set of all items (or binary fea-
tures); sub-sets of I are called itemsets (or exam-
ples or patterns, depending on the context). The
input to the frequent itemset mining problem is
a multiset D of itemsets (examples described by
their features), and a frequency threshold. The
task is to output all frequent itemsets (patterns)
and their frequencies, i.e., all subsets of I that
exceed the given frequency threshold in the given
data D.

Example 1 Assume the following problem spec-
ification:

• Set of all items I D fA; B; C; Dg.
• Data D D ffA; B; C gfA; Dg; fB; C; Dg; fA;

B; C g; fC; Dg; fB; C gg.
• Frequency threshold is 2.

http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_100164
http://dx.doi.org/10.1007/978-1-4899-7687-1_100164
http://dx.doi.org/10.1007/978-1-4899-7687-1_317

Frequent Pattern 525

F

All possible itemsets and their frequencies:

Itemset Frequency

fAg 3

fBg 4

fC g 5

fDg 3

fA, Bg 2

fA, C g 2

fA, Dg 1

fB , C g 4

Itemset Frequency

fB , Dg 1

fC , Dg 2

fA, B , C g 2

fA, B , Dg 0

fA, C , Dg 0

fB , C , Dg 1

fA, B , C , Dg 0

The frequent itemsets are fAg, fBg, fC g, fDg,
fA, Bg, fA, C g, fB , C g, fC , Dg, fA, B , C g.

The � hypothesis space for itemsets obviously
is the power set of I, and it has an exponential
size (2jIj) in the number of items. Since all fre-
quent itemsets are output, this is also the size of
the output in the worst case (e.g., if the frequency
threshold is zero, or if all examples in D equal I),
as well as the worst case time complexity.

In practical applications of frequent itemset
mining, the size of the output as well as the
running times are much smaller, but they strongly
depend on the properties of the data and the
frequency threshold. The useful range of thresh-
olds varies enormously among different datasets.
In many applications – such as � basket analy-
sis – the number jIj of different items can be
in thousands, even millions, while the typical
sizes of examples are at most in dozens. In
such sparse datasets a relatively small number of
frequent itemsets can reveal the most outstanding
co-occurrences; e.g., there are not likely to be
very large sets of books typically bought by the
same customers. In dense datasets, in turn, the
number of frequent patterns can be overwhelming
and also relatively uninformative. E.g., consider
the dense dataset of books that have not been
purchased by a customer: there are a huge number
of sets of books that have not been bought by the
same customers.

Theory/Solutions

The most widely known solution for finding
all frequent itemsets is the �Apriori algorithm

(Agrawal et al. 1996). It is based on the mono-
tonicity of itemset frequencies (a � generalization
relation): the frequency of a set is at most as high
as the frequency of any of its subsets. Conversely,
if a set is known to be infrequent, then none of its
supersets can be frequent.

Apriori views the � hypothesis space of item-
sets as a (refinement) lattice defined by set con-
tainment, and performs a � general-to-specific
search using breadth-first search. In other words,
it starts with singleton itemsets, the most general
and frequent sets, and proceeds to larger and less
frequent sets. The search is pruned whenever a
set does not reach the frequency threshold: all
supersets of such sets are excluded from further
search. Apriori deviates from standard breadth-
first search by evaluating all sets of equal size
in a single batch, i.e., it proceeds in a levelwise
manner. This has no effect on the search structure
or results, but can reduce disk access consider-
ably for large databases. See the entry �Apriori
Algorithm for an outline of the method.

Example 2 Figure 1 illustrates the search space
for the data D of Example 1. Dark nodes repre-
sent frequent itemsets, i.e., the answer to the fre-
quent itemset mining problem. Apriori traverses
the space a level at a time. For instance, on the
second level, it finds out that fA, Dg and fB ,
Dg are not frequent. It therefore prunes all their
supersets, i.e., does not evaluate sets fA, B , Dg,
fA, C , Dg, and fB , C , Dg on the third level.

Other search strategies have also been applied.
A depth-first search without the subset check
allows faster identification of candidates, at the
expense of having more candidates to evaluate
and doing that without natural batches (e.g. Zaki
2000). FP-growth (Han et al. 2004) uses a tree
structure to store the information in the dataset,
and uses it to recursively search for frequent
itemsets.

The search strategy of Apriori is optimal in a
certain sense. Consider the number of sets eval-
uated, and assume that for any already evaluated
set we know whether it was frequent or not but do
not consider its frequency. Apriori evaluates the
frequencies of all frequent itemsets plus a number
of candidates that turn out to be infrequent. It

http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_331
http://dx.doi.org/10.1007/978-1-4899-7687-1_27

526 Frequent Pattern

Frequent Pattern, Fig. 1
The search space of
frequent itemsets for data
D of the running example.
Dark nodes: frequent
itemsets; white nodes:
infrequent itemsets

{A,B,C,D}

{A}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C } {A,B,D} {A,C,D} {B,C,D}

{B} {C} {D}

Frequent Pattern, Fig. 2
The positive border (fA,
B , C g, fC , Dg) and
negative border (fA, Dg,
fB , Dg) of frequent
itemsets

{A,B,C,D}

{A,B} {A,C } {A,D} {B,C} {B,D} {C,D}

{A,B,C } {A,B,D} {A,C,D} {B,C,D}

{B} {C} {D}{A}

turns out that every infrequent candidate must
actually be evaluated under the given assump-
tions: knowing which other sets are frequent
and which are not does not help, regardless of
the search order. This observation leads to the
concept of border: the border consists of all those
itemsets whose all proper subsets are frequent
and whose all proper supersets are infrequent
(Gunopulos et al. 2003; Mannila and Toivonen
1997). The border can further be divided into
two: the positive border contains those itemsets in
the border that are frequent, the negative border
contains those that are not. The positive border
thus consists of the most specific patterns that
are frequent, and corresponds to the “S” set of
� version spaces.

Example 3 Continuing our running example,
Fig. 2 illustrates the border between the frequent
and infrequent sets. Either the positive or the
negative border can alone be used to specify the
collection of frequent itemsets: every frequent
itemset is a subset of a set in the positive border
(fA, B , C g, fC , Dg), while every infrequent
itemset is a superset of a set in the negative
border (fA, Dg, fB , Dg).

One variant of frequent itemset mining is to
output the positive border only, i.e., to find the

maximal frequent itemsets (Bayardo 1998). This
can be implemented with search strategies that do
not need to evaluate the whole space of frequent
patterns. This can be useful especially if the
number of frequent itemsets is very large, or if
the maximal frequent itemsets are large (in which
case the number of frequent itemsets is large, too,
since the number of subsets is exponential in the
length of the maximal set). As a trade-off, the
result does not directly indicate frequencies of
itemsets.

Condensed Representations: Closed Sets
and Nonderivable Sets
Closed sets and nonderivable sets are a powerful
concept for working with frequent itemsets, es-
pecially if the data is relatively dense or there are
strong dependencies. Unlike the aforementioned
simple model for borders, here also the known
frequencies of sets are used to make inferences
about frequencies of other sets.

As a motivation for closed sets (Pasquier et al.
1999), consider a situation where the frequency
of itemset fi , j g equals the frequency of item j .
This implies that whenever j occurs, so does i .
Thus, any set A[fj g that contains item j also
contains item i , and the frequencies of sets A[

fj g and A[fi , j g must be equal. As a result,

http://dx.doi.org/10.1007/978-1-4899-7687-1_877

Frequent Pattern 527

F

Frequent Pattern, Fig. 3
Frequencies and
equivalence classes of
frequent itemsets in data D
of the running example,
and the corresponding
closed sets and generators

{A }: 3 { B }: 4 {C }: 5 { D }: 3

{A,B }: 2 {A,C }: 2 {B,C }: 4 {C,D }: 2

{A,B,C }: 2

{A,D } {B,D }

{A,B,D } {A,C,D } {B,C,D }

{A,B,C,D }

it sufficies to evaluate sets A[fj g to obtain the
frequencies of sets A[fi , j g, too.

More formally, the closure of set A is its
largest superset with identical frequency. A is
closed iff it is its own closure, i.e., if every proper
superset of A has a smaller frequency than A. The
utility of closed sets comes from the fact that fre-
quent closed sets and their frequencies are a suffi-
cient representation of all frequent sets. Namely,
if B is a frequent set then its closure is a frequent
closed set in Cl , where Cl denotes the collection
of all frequent closed itemsets. B’s frequency is
obtained as fr.B/Dmaxffr.A/jA–Cl and B�Ag.
If B is not a frequent set, then it has no superset
in Cl . � Formal concept analysis studies and uses
closed sets and other related concepts.

Generators are a complementary concept, and
also constitute a sufficient representation of fre-
quent itemsets. (To be more exact, in addition to
frequent generators, generators in the border are
also needed). Set A is a generator (also known as
a key pattern or a free set) if all its proper subsets
have a larger frequency than A has. Thus, in an
equivalence class of itemsets, defined by the set
of examples in which they occur, the maximal
element is unique and is the closed set, and the
minimal elements are generators. The property
of being a generator is monotone in the same
way that being frequent is, and generators can
be found with simple modifications to the Apriori
algorithm.

Example 4 Figure 3 illustrates the equivalence
classes of itemsets by circles. For instance, the
closure of itemset fA, Bg is fA, B , C g, i.e., when-
ever fA, Bg occurs in the data, C also occurs,
but no other items. Given just the frequent closed
sets and their frequencies, the frequency of, say,

fBg is obtained by finding its smallest frequent
closed superset. It is fB , C g, with frequency 4,
which is also B’s frequency. Alternatively, using
generators as the condensed representation, the
frequency of itemset fB , C g can be obtained by
finding its maximal generator subset, i.e., fBg,
with which it shares the same frequency.

Nonderivability of an itemset (Calders and
Goethals 2002) is a more complex but often also
a more powerful concept than closed sets. Given
the frequencies of (some) subsets of itemset A,
the frequency of A may actually be uniquely
determined, i.e., there is only one possible con-
sistent value. A practical method of trying to
determine the frequency is based on deriving
upper and lower bounds with inclusion–exclusion
formula from the known frequencies of some
subsets, and checking if these coincide. An item-
set is derivable if this is indeed the case, otherwise
it is nonderivable. Obviously, the collection of
nonderivable frequent sets is a sufficient repre-
sentation for all frequent sets.

Bounds for the absolute frequency of set I

are obtained from its subsets as follows, for any
X � I :

fr.I / �
X

J WX�J �I

.�1/jInJ jC1fr.J /

ifjInX jis odd; (1)

fr.I / �;
X

J WX�J �I

.�1/jInJ jC1 fr.J /

if jInX j is even: (2)

Using all subsets X of I , one can obtain a
number of upper and lower bounds. If the least

http://dx.doi.org/10.1007/978-1-4899-7687-1_316

528 Frequent Pattern

upper bound equals the greatest lower bound,
then set I is derivable. The conceptual elegance
of this solution lies in the fact that derivable
sets follow logically from the nonderivable ones
– the aforementioned formula is one way of
finding (some) such situations – whereas with
closed sets the user must know the closure
properties.

Generalizations of Frequent Patterns
The concept of frequent patterns has been
extended in two largely orthogonal directions.
One is to more complex patterns and data,
such as frequent sequences, trees (see � tree
mining), graphs (see � graph mining), and first-
order logic (Dehaspe and Toivonen 1999). The
other direction to generalize the concept is to
� constraint-based mining, where other and
more complex conditions are considered beyond
frequency. We encourage the interested reader to
continue at the entry for � constraint-based min-
ing, which also gives further insight into many of
the more theoretical aspects of frequent pattern
mining.

Programs and Data

Frequent itemset mining implementations repos-
itory: http://fimi.cs.helsinki.fi/
Weka: http://www.cs.waikato.ac.nz/ml/weka/
Christian Borgelt’s implementations: http://www.
borgelt.net/software.html
Data mining template library: http://dmtl.
sourceforge.net/

Applications

Frequent patterns are a general purpose tool for
data exploration, with applications virtually ev-
erywhere. Market � basket analysis was the first
application, telecom alarm correlation and gene
mapping are examples of quite different applica-
tion fields.

Future Directions

Work on frequent pattern mining is being ex-
panded in several directions. New types of pattern
languages are being developed, either to meet
some specific needs or to increase the expressive
power. Many of these developments are moti-
vated by different types of data and applications.
Within machine learning, frequent patterns are
increasingly being used as a tool for feature con-
struction in complex domains. For an end-user
application, methods for choosing and ranking
the most interesting patterns among thousands
or millions of them is a crucial problem, for
which there are no perfect solutions (cf. Geng
and Hamilton 2006). At the same time, theoret-
ical understanding of the problem and solutions
of frequent pattern discovery still has room for
improvement.

Cross-References

�Apriori Algorithm
�Association Rule
�Basket Analysis
�Constraint-Based Mining
� Frequent Itemset
�Graph Mining
�Tree Mining

Recommended Reading

Agrawal R, Imielinski T, Swami A (1993) Mining
association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIG-
MOD international conference on management of
data, Washington, DC. ACM, New York, pp 207–
216

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge
discovery and data mining. AVAAI Press, Menlo
Park, pp 307–328

Bayardo RJ Jr (1998) Efficiently mining long patterns
from databases. In: Proceedings of the 1998 ACM
SIGMOD international conference on management
of data, Seatle, Washington, DC. ACM, New York,
pp 85–93

http://dx.doi.org/10.1007/978-1-4899-7687-1_851
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://fimi.cs.helsinki.fi/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.borgelt.net/software.html
http://www.borgelt.net/software.html
http://dmtl.sourceforge.net/
http://dmtl.sourceforge.net/
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_851

Fuzzy Systems 529

F

Calders T, Goethals B (2002) Mining all non-derivable
frequent itemsets. In: Proceedings of the 6th Eu-
ropean conference on principles of data mining
and knowledge discovery, Helsinki. Lecture Notes
in Computer Science, vol 2431. Springer, London,
pp 74–85

Ceglar A, Roddick JF (2006) Association mining.
ACM Comput Surv 38(2):5

Dehaspe L, Toivonen H (1999) Discovery of frequent
datalog patterns. Data Min Knowl Discov 3(1):7–36

Geng L, Hamilton HJ (2006) Interestingness measures
for data mining: a survey. ACM Comput Surv
38(3):9

Gunopulos D, Khardon R, Mannila H, Saluja S,
Toivonen H, Sharma RS (2003) Discovering all
most specific sentences. ACM Trans Database Syst
28(2):140–174

Han J, Pei J, Yin Y, Mao R (2004) Mining frequent
patterns without candidate generation: a frequent-
pattern tree approach. Data Min Knowl Discov
8(1):53–87

Mannila H, Toivonen H (1997) Levelwise search and
borders of theories in knowledge discovery. Data
Min Knowl Discov 1(3):241–258

Pasquier N, Bastide Y, Taouil R, Lakhal L (1999)
Discovering frequent closed itemsets for association
rules. In: Proceedings of 7th international confer-
ence on database theory, Jerusalem. Lecture notes in
computer science, vol 1540, pp 398–416. Springer,
London

Zaki MJ (2000) Scalable algorithms for association
mining. IEEE Trans Knowl Data Eng 12(3):372–
390

Frequent Set

� Frequent Itemset

Functional Trees

�Model Trees

Fuzzy Sets

Fuzzy sets were introduced by Lofti Zadeh as
a generalization of the concept of a regular set.
A fuzzy set is characterized by a membership
function that assigns a degree (or grade) of mem-

bership to all the elements in the universe of dis-
course. The membership value is a real number
in the range [0, 1], where 0 denotes no definite
membership, 1 denotes definite membership, and
intermediate values denote partial membership to
the set. In this way, the transition from nonmem-
bership to membership in a fuzzy set is gradual
and not abrupt like in a regular set, allowing the
representation of imprecise concepts like “small,”
“cold,” “large,” or “very” for example.

A variable with its values defined by fuzzy
sets is called a linguistic variable. For example,
a linguistic variable used to represent a tempera-
ture can be defined as taking the values “cold,”
“comfortable,” and “warm,” each one of them
defined as a fuzzy set. These linguistic labels,
which are imprecise by their own nature, are,
however, defined very precisely by using fuzzy
set concepts.

Based on the concepts of fuzzy sets and
linguistic variables, it is possible to define a
complete fuzzy logic, which is an extension
of the classical logic but appropriate to deal
with approximate knowledge, uncertainty, and
imprecision.

Recommended Reading

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

Fuzzy Systems

A fuzzy system is a computing framework based
on the concepts of the theory of � fuzzy sets,
fuzzy rules, and fuzzy inference. It is structured
in four main components: a knowledge base, a
fuzzification interface, an inference engine, and
a defuzzification interface. The knowledge base
consists of a rule base defined in terms of fuzzy
rules, and a database that contains the defini-
tions of the linguistic terms for each input and
output linguistic variable. The fuzzification in-
terface transforms the (crisp) input values into
fuzzy values, by computing their membership to
all linguistic terms defined in the corresponding

http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_321

530 Fuzzy Systems

input domain. The inference engine performs
the fuzzy inference process, by computing the
activation degree and the output of each rule.
The defuzzification interface computes the (crisp)
output values by combining the output of the
rules and performing a specific transformation.

Fuzzy systems can be classified in different
categories. The most widely used are the Mam-
dani and the Takagi-Sugeno models. In a Mam-
dani fuzzy system the output variables are defined
as linguistic variables while in a Takagi-Sugeno
fuzzy system they are defined as a linear combi-
nation of the input variables.

Fuzzy systems can model nonlinear functions
of arbitrary complexity, however, their main
strength comes from their ability to represent
imprecise concepts and to establish relations
between them.

Recommended Reading

Mamdani EH, Assilian S (1975) An experiment in
linguistic synthesis with a fuzzy logic controller. Int
J Man-Mach Stud 7(1):1–13

Sugeno M (1985) Industrial applications of fuzzy con-
trol. Elsevier Science Publishers, New York

G

Gaussian Distribution

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Gaussian distributions are one of the most
important distributions in statistics. It is a con-
tinuous probability distribution that approxi-
mately describes some mass of objects that
concentrate about their mean. The probability
density function is bell shaped, peaking at the
mean. Its popularity also arises partly from
the central limit theorem, which says the av-
erage of a large number of independent and
identically distributed random variables is ap-
proximately Gaussian distributed. Moreover,
under some reasonable conditions, posterior
distributions become approximately Gaussian
in the large data limit. Therefore, the Gaussian
distribution has been used as a simple model
for many theoretical and practical problems in
statistics, natural science, and social science.

Synonyms

Normal distribution

Definition

The simplest form of Gaussian distribution is the
one-dimensional standard Gaussian distribution,
which can be described by the probability density
function (pdf):

p.x/ D �.x/ D
1
p

2�
e�x2=2;

where 1p
2�

ensures the normalization, i.e.,
R
R
p.x/dx D 1. This distribution centers around

x D 0, and the rate of decay or “width” of the
curve is 1.

More generally, we can apply translation and
scaling to obtain a Gaussian distribution that
centers on arbitrary � 2 R and with arbitrary
width � > 0. The pdf is

p.x/ D
1

�
�
�x � �

�

�

D
1

p
2��

exp

�

�
.x � �/2

2�2

�

:

Technically, � is called the mean and �2 is called
the variance. Obviously, � is the peak/mode of
the density and is also the mean and median of the
distribution due to the symmetry of the density
around �. If a random variableX has this density,
then we write

X � N .�; �2/:

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_100339

532 Gaussian Distribution

x

p(
x)

−5 0 5
0

0.2

0.4

0.6

0.8

1
μ=0, σ=1
μ=0, σ = 0.5
μ=0, σ=2
μ=1, σ=1

−2
0

2
−2

0
2

0

0.1

0.2

x1
x2

p(
x)

a b

Gaussian Distribution, Fig. 1 Gaussian probability density functions. (a) One dimension. (b) Two dimension

Example density functions are plotted in Fig. 1a.
As an extension to multivariate random vari-

ables, the multivariate Gaussian distribution is a
distribution on d -dimensional column vector x
with mean column vector � and positive definite
variance matrix †. This gives

p.xj�;†/ D
1

.2�/d=2 det1=2†
exp

�

�
1

2
.x � �/>†�1.x � �/

�

;

and is denoted byX � N .�; †/. An example pdf
for the two-dimensional case is plotted in Fig. 1b.

Motivation and Background

In history, Abraham de Moivre first introduced
this distribution in 1733 under the name “normal
distribution” (of course, he did not call it Gaus-
sian distribution since Gauss had not yet been
born). Then Laplace used it to analyze experi-
ment errors, based on which Legendre invented
the least squares in 1805. Carl Friedrich Gauss
rigorously justified it in 1809 and determined
the formula of its probability density function.
Finally this distribution is named the Gaussian
distribution after Gauss. The name “normal dis-
tribution” is also widely used, meaning it is a typ-
ical, common, or usual distribution. It was coined
by Peirce, Galton, and Lexis around 1875 and

made popular by Karl Pearson near the inception
of the twentieth century.

Theory/Solution

Canonical Form
The standard definition allows one to easily read
off the moments from the pdf. Another useful
parameterization is called canonical parameteri-
zation:

p.xj�;Λ/D exp

�

�>x�
1

2
x>Λx�

1

2
.d log.2�/

� log detΛC �>Λ�
�
�

;

where � D †�1� and Λ D †�1. Λ is often
called precision. This parameterization is useful
when posing the distribution as a member of the
exponential family.

Cumulative Distribution Function
For one-dimensional Gaussian distribution, the
cumulative distribution function (cdf) is defined
by

Φ.x/ D

Z x

�1

�.t/dt:

Formally, it can be conveniently represented by
the error function and its complement:

Gaussian Distribution 533

G

erf.x/ D
2
p
�

Z x

0
e�t2 dt;

erfc.x/ D 1 � erf.x/ D
2
p
�

Z 1

x

e�t2 dt:

So

Φ.x/D
1

2

�

1C erf

�
x
p

2

��

D
1

2
erfc

�

�
x
p

2

�

:

The inverse of the cdf, called quantile function,
can be written as

Φ�1.s/ D
p

2erf�1.2s � 1/; for s 2 .0; 1/:

The cdf error function erf./ and its inverse
erf�1./ do not usually have a closed form and
can be computed numerically by functions like
ERF in Fortran and double erf(double
x) in C/C++. For the multivariate case, the
corresponding cdf is highly challenging to
compute numerically.

Moments
The first order moment is EŒX� D �, the variance
is VarŒX� D †, and all higher order cumulants
are 0. Any central moments with odd terms are 0,
i.e., EŒΠdiD1.xi ��i /

pi � D 0 when
P
i pi is odd.

Entropy and Kullback-Leibler Divergence
The differential entropy of multivariate Gaussian
is

h.p/ D �

Z

Rd

p.x/ lnp.x/dx

D
1

2
ln
�
.2�e/d det†

�
:

The Kullback-Leibler divergence from N .�1;

†1/ to N .�2; †2/ is

KL.N .�1; †1/jjN .�2; †2//

D
1

2

�

ln
det†2

det†1
C tr†�1

2 †1

C .�2 � �1/
>†�1

2 .�2 � �1/ � d

�

:

Properties Under Affine Transform
Let X � N .�; †/. Suppose A is a linear trans-
form from R

d to R
s and c 2 R

s , then

AxC c � N .A� C c; A†A>/

EŒ.x � �/>A.x � �/� D trA†

VarŒ.x � �/>A.x � �/� D 2trA†A†

where the last two relations require s D d .

Conjugate Priors
Conjugate priors where discussed in
<the entry on Prior Probabilities>
(Springer formatters, we want to reference this
entry in-line, please format appropriately.). With
known variance, the conjugate prior for the mean
is again a multivariate Gaussian. With known
mean, the conjugate prior for the variance matrix
is the Wishart distribution, while the conjugate
prior for the precision matrix is the Gamma
distribution.

Parameter Estimation
Given n iid observations X1; : : : ; Xn, the maxi-
mum likelihood estimator of the mean is simply
the sample mean

Q� D NX D
1

n

nX

iD1

Xi :

The maximum likelihood estimator of the covari-
ance matrix is

Q† D
1

n

nX

iD1

.Xi � NX/.Xi � NX/
>:

This estimator is biased, and its expectation is
EŒ Q†� D n�1

n
†. An unbiased estimator is

Q† D S D
1

n � 1

nX

iD1

.Xi � NX/.Xi � NX/
>:

Distributions Induced by the Gaussian
If X � N .0; †/, then X>†�1X has a Gamma
distribution Gamma.d=2; 2/.

534 Gaussian Distribution

Let X1; X2 � N .0; 1/ and they are indepen-
dent. Their ratio is the standard Cauchy distribu-
tion, X1=X2 � Cauchy.0; 1/.

Given n independent univariate random vari-
ables Xi � N .0; 1/, the random variable Z WDqP

i X
2
i has a � distribution with degree of

freedom n. And Z2 has a �2 distribution with
degree of freedom n.

Using Basu’s theorem or Cochran’s theorem,
one can show that the sample mean ofX1; : : : ; Xn
and the sample standard deviation are indepen-
dent. Their ratio

t WD
NX

S
D

1
n
.X1 C : : :CXn/

q
1
n�1

�
.X1 � NX/2 C : : :C .Xn � NX/2

�

has the student’s t -distribution with degree of
freedom n � 1.

Applications

This section discusses some applications and
properties of the Gaussian.

Central Limit Theorem
Given n independent and identically distributed
observations drawn from a distribution whose
variance is finite, the average of the observations
is asymptotically Gaussian distributed when n

tends to infinity. Under certain conditions, the
requirement for identical distribution can be re-
laxed, and asymptotic normality still holds.

Approximate Gaussian Posterior
Consider n independent and identically dis-
tributed observations drawn from a distribution
p.Xi j�/, so the data set is X D .X1; : : : ; Xn/

>.
Under certain conditions, saying roughly that
the posterior on � converges in probability to a
single interior point in its domain as n ! 1,
the posterior for � is approximately Gaussian for

large n, �jX � N
�
b�; I

�
b�
��

, where b� is the

maximum likelihood or aposterior value for �

and I .�/ is the observed (Fisher) information,

the negative of the second derivative (Hessian) of
the likelihood w.r.t. the parameters � .

The Gaussian approximation to the posterior,
while a poor approximation in many cases, serves
as a useful insight into the nature of asymptotic
reasoning. It is justified based on the multidimen-
sional Taylor expansion of the log likelihood at
the maximum likelihood or a posterior value, to-
gether with its asymptotic convergence property.

3-� Rule
For standard Gaussian distribution, 99.7 % of the
probability mass lie within the three standard
deviations Œ�3�; 3��, i.e.,

R 3�
�3� �.x/dx > 0:997.

About 95 % mass lies within two standard devia-
tions and about 68 % within one standard devia-
tion. This empirical rule is called 3-� rule and can
be easily extended to general one-dimensional
Gaussian distributions.

Combination of Random Variables
Let d -dimensional random variables Xi �

N .�i ; †i /. If they are independent, then for any
set of linear transforms Ai from R

d to R
s , we

have
P
i AiXi � N .

P
i Ai�i ;

P
i Ai†iA

>
i /.

The converse is also true by the Cramer’s
theorem: if Xi are independent and their sumP
i Xi is Gaussian distributed, then all Xi must

be Gaussian.

Correlations and Independence
In general, independent random variables must
be uncorrelated but not vice versa. However, if
a multivariate random variable is jointly Gaus-
sian, then any uncorrelated subset of the random
variables must be independent. Notice the pre-
condition of joint Gaussian. It is possible for two
Gaussian random variables to be uncorrelated but
not independent, for the reason that they are not
jointly Gaussian. For example, let X � N .0; 1/
and Y D �X if jX j < c, and Y D X if jX j > c.
By properly setting c, Y and X can be made
uncorrelated but obviously not independent.

Marginalization, Conditioning, and
Agglomeration
Suppose the vector x can be written as .x>

1 ; x
>
2 /

>

and correspondingly the mean and covariance

Gaussian Process 535

G

matrix can be written as

� D

�
�1

�2

�

; † D

�
†11 †12

†21 †22

�

Then the marginal distribution of x1 is Gaussian
N .�1; †11/, and the conditional distribution of
x1 conditioned on x2 is N .�1j2; †1j2/, where

�1j2 D �1 C†12†
�1
22 .x2 � �2/;

†1j2 D †11 �†12†
�1
22 †21:

Suppose the multivariate Gaussian vector x1 �

N .�1; †11/ and a vector x2 is a linear func-
tion of x1 with Gaussian noise, i.e., x2jx1 �

N .Ax1 C �12; †12/. Then the joint distribution
of .x>

1 ; x
>
2 /

> is also Gaussian:

�
x1

x2

�

�N
��

�1

A�1 C �12

�

;

�
†11 C A

>†12A �A
>†12

�†12A †12

��

:

Cross-References

�Gaussian Processes

Recommended Reading

For a complete treatment of Gaussian dis-
tributions from a statistical perspective, see
Casella and Berger (2002), and Mardia et al.
(1979) provides details for the multivariate case.
Bernardo and Smith (2000) shows how Gaussian
distributions can be used in the Bayesian theory.
Bishop (2006) introduces Gaussian distributions
in Chap. 2 and shows how it is extensively used in
machine learning. Finally, some historical notes
on Gaussian distributions can be found at Miller
et al., especially under the entries “NORMAL”
and “GAUSS.”

Bernardo JM, Smith AFM (2000) Bayesian theory.
Wiley, Chichester/New York

Bishop C (2006) Pattern recognition and machine
learning. Springer, New York

Casella G, Berger R (2002) Statistical inference, 2nd
edn. Duxbury, Pacific Grove

Mardia KV, Kent JT, Bibby JM (1979) Multivariate
analysis. Academic Press, London/New York

Miller J, Aldrich J et al. Earliest known uses of some
of the words of mathematics. http://jeff560.tripod.
com/mathword.html

Gaussian Process

Novi Quadrianto1, Kristian Kersting2;3, and
Zhao Xu4

1Department of Informatics, SMiLe CLiNiC,
University of Sussex, Brighton, UK
2Technische Universität Dortmund, Dortmund,
Germany
3Knowledge Discovery, Fraunhofer IAIS, Sankt
Augustin, Germany
4Fraunhofer IAIS, Sankt Augustin, Germany

Synonyms

Expectation propagation; Kernels; Laplace esti-
mate; Nonparametric Bayesian

Definition

Gaussian processes generalize multivariate
Gaussian distributions over finite-dimensional
vectors to infinite dimensionality. Specifically, a
Gaussian process is a stochastic process that has
Gaussian-distributed finite-dimensional marginal
distributions, hence the name. In doing so, it
defines a distribution over functions, i.e., each
draw from a Gaussian process is a function.
Gaussian processes provide a principled,
practical, and probabilistic approach to inference
and learning in kernel machines.

Motivation and Background

Bayesian probabilistic approaches have many
virtues, including their ability to incorporate
prior knowledge and their ability to link related

http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://jeff560.tripod.com/mathword.html
http://jeff560.tripod.com/mathword.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_95
http://dx.doi.org/10.1007/978-1-4899-7687-1_100236
http://dx.doi.org/10.1007/978-1-4899-7687-1_100240
http://dx.doi.org/10.1007/978-1-4899-7687-1_100334

536 Gaussian Process

−10 −5 0 5 10
−30

−20

−10

0

10

20

30a

X

Y

c

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

w 1

w
 2

d

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

X

Y

b

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

w 1

w
 2

Gaussian Process, Fig. 1 (a) Ten observations (one-
dimensional input x and output y variables) generated
from a �Linear Regression model yD � 3x C 2 C �
with Gaussian noise �. The task is to learn the functional
relationship between x and y. Assuming the parametric
model yD!1x C !2 C �, i.e., !D .!1; !2/, is the
vector of parameters, and the prior distribution over ! is
a two-dimensional Gaussian as shown in (b), the posterior
distribution over ! can be estimated as shown in (c). Its

mean .�2:9716; 1:9981/ is close to the true parameters
.�3; 2/. The inference, however, was performed in an
ideal situation where in the relationship between x and y
was indeed linear. If the true relationship is not known in
advances and/or cannot easily be described using a finite
set of parameters, this approach may fail. For example,
in (d), infinite number of parameters might be required to
recover the functional relationship

sources of information. Typically, we are given
a set of data points sampled from an underlying
but unknown distribution, each of which includes
input x and output y, such as the ones shown
in Fig. 1a. The task is to learn a functional
relationship between x and y. Traditionally, in
a parametric approach, an assumption on the
mathematical form of the relationship such as
linear, polynomial, exponential, or a combination
of them needs to be chosen a priori. Subsequently,
weights (or parameters) are placed on each
of the chosen forms, and a prior distribution

is then defined over parameters. Thus, the
learning task is now reduced to the Bayesian
estimation over the parameters, cf. Fig. 1a–c.
This approach, however, may not always be
practical, as illustrated in Fig. 1d. To discover
the latent input–output relationship in Fig. 1d, we
might need infinitely many functional forms, and
this translates to infinite number of parameters.
Instead of working over a parameter space,
Gaussian processes place a prior directly on
the space of functions without parameterizing the
function, hence nonparametric. As will be shown,

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Gaussian Process 537

G

the computational complexity of inference now
scales as the number of data points instead of the
number of parameters.

Several nonparametric Bayesian models have
been developed for different tasks such as den-
sity estimation, regression, classification, survival
time analysis, topic modeling, etc. Among the
most popular ones are �Dirichlet Processes and
Gaussian processes. Just as the Gaussian pro-
cess, a Dirichlet process has Dirichlet-distributed
finite-dimensional marginal distributions, hence
the name.

Gaussian processes were first formalized for
machine-learning tasks by Williams and Ras-
mussen (1996) and Neal (1996).

Theory

Formally, a Gaussian process is a stochastic pro-
cess (i.e., a collection of random variables) in
which all the finite-dimensional distributions are
multivariate Gaussian distributions for any finite
choice of variables. In general, Gaussian pro-
cesses are used to define a probability distribution
over functions f W X ! R such that the set of
values of f evaluated at an arbitrary set of points
fxig

N
iD1 2 X will have an N -variate Gaussian

distribution. Note that, for xi 2 R
2, this may also

be known as a Gaussian random field.

Gaussian Process
A Gaussian distribution is completely specified
by its mean and covariance matrix. Similarly, a
Gaussian process is characterized by its mean
function m.x/ WD EŒ f .x/� and covariance
function

C.x; x0/ WD EŒ.f .x/ �m.x//.f .x0/ �m.x0//� :

We say a real process f .x/ is a Gaussian
process distributed with a mean function m.x/
and a covariance function C.x; x0/, written as
f � GP.m.x/; C.x; x0//.

The mean function can be arbitrarily chosen
(for convenience, it is often taken to be a zero
function since we can always center our observed

outputs to have a zero mean), but the covari-
ance function must be a positive-definite function
to ensure the existence of all finite-dimensional
distributions. That is, the positive definiteness
of C.:; :/ ensures the positive (semi-)definiteness
of all covariance matrices, ˙ , appearing in the
exponent of the finite-dimensional multivariate
Gaussian distribution.

The attractiveness of Gaussian processes is
that they admit the marginalization property
(�Gaussian Distribution), i.e., if the Gaussian
process specifies .f .x1/, f .x2//�N .�;˙/,
then it must also specify f .x1/�N .�1; ˙11/,
where ˙11 is the relevant submatrix of ˙ .
This means addition of novel points will not
influence the distribution of existing points.
The marginalization property allows us to
concentrate on distribution of only observed
data points with the rest of unobserved points
considered to be marginalized out; thus, a finite
amount of computation for inference can be
achieved.

Covariance Functions
A covariance function bears an essential role
in a Gaussian process model as its continuity
properties determine the continuity properties of
samples (functions) from the Gaussian process.
In the literature, covariance functions are also
known as positive (semi-)definite kernels or
Mercer’s kernels.

There are generally two types of covariance
functions: stationary and nonstationary. A
stationary covariance function is a function that
is translation invariant, i.e., C.x; x0/DD.x�x0/

for some function D. The typical examples
include squared exponential, Matérn class, 	 -
exponential, exponential, and rational quadratic,
while examples of nonstationary covariance
functions are dot product and polynomial.

Squared exponential (SE) is a popular form of
stationary covariance function, and it corresponds
to the class of sums of infinitely many Gaussian-
shaped basis functions placed everywhere,
f .x/ WD limn!1

s
n

Pn
i 	i exp .�..x � xi /=2`/2/

with 	i � N .0; 1/ 8i . This covariance function
is in the form of

http://dx.doi.org/10.1007/978-1-4899-7687-1_219
http://dx.doi.org/10.1007/978-1-4899-7687-1_107

538 Gaussian Process

Gaussian Process, Fig. 2
(a) Three functions drawn
at random from a Gaussian
process prior. (b) Three
random functions drawn
from the posterior, i.e., the
distribution learned with
the prior from Fig. 2a and
the ten observations from
Fig. 1d. In both plots, the
shaded area within two
solid lines shows the
pointwise mean plus and
minus two times the
standard deviation for each
input value, i.e., the 95 %
confidence region.
Animations, if they are
visible, are generated using
the method described in
Hennig (2013)

C.x; x0/ D EŒf .x/f .x0/�

D s2 exp

�

�
1

2`2

	
	x � x0

	
	2

2

�

:

Typical functions sampled from this covariance
function can be seen in Fig. 2a. This covariance
function has the characteristic length scale ` and
the signal variance s2 as free parameters (hyper-
parameters). The longer the characteristic length
scale, the more slowly varying the typical sam-
ple function is. The signal variance defines the
vertical scale of variations of a sample function.
Figure 3 illustrates prediction with SE covariance
function with varying characteristic length scale.
Several other covariance functions are listed in
Table 1.

For a comprehensive review on the field of co-
variance functions, we refer interested readers to
Abrahamsen (1992).

Applications

For Gaussian processes, there are two main
classes of applications: regression and classifi-
cation. We will discuss each of them in turn.

Regression
In a �Regression problem, we are interested
to recover a functional dependency yi D

f .xi /C
i from N observed training data points
f.xi ; yi /g

N
iD1, where yi 2R is the noisy observed

output at input location xi 2R
d . Traditionally,

in the Bayesian �Linear Regression model,
this regression problem is tackled by requiring
us to parameterize the latent function f by
a parameter w2RH , f .x/ WD h�.x/;wi for
H fixed basis functions f�h.x/gHhD1. A prior
distribution is then defined over parameter w. The
idea of the Gaussian process regression (in the

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Gaussian Process 539

G

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4a b

c

X

f X

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

X

f X

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

X

f X

Gaussian Process, Fig. 3 The Gaussian process predic-
tion with the SE kernel. (a) Mean of the prediction distri-
bution with length scale 1.0 and signal variance 1.0 (the
hyperparameters of the original process used to generate

the data in Fig. 1). The other two plots show the prediction
setting of the length scale: (b) longer (3:0) and (c) shorter
(0:1). In all plots, the 95 % confidence region is shown

Gaussian Process, Table 1 Examples of covariance functions. �cov denotes the set of hyperparameters

Name C.x; x0/ �cov Remark

Squared exp. (SE) s2 exp
�
� 1

2`2 kx � x0k
2
2

�
fs; `g Strong smoothness assumption

Matérn class 21��

� .�/

�p

2�jx�x0
j

`

��

K�.
p

2�r

`
/ f�; `g Less smooth than SE

�-exponential exp.�.jx � x0j=`/� /; with 0 < � <D 2 f`g Includes both Exp. and SE

Exponential exp
�

�jx�x0
j

`

�
f`g � D 1=2 in the Matérn class

Rational quadratic
�

1 C
kx�x0

k
2
2

2˛`2

��˛

f˛; `g An infinite sum of SE

Dot product �2
w hx; x0i C �2

c f�w; �cg

Polynomial .hx; x0i C �2
c/

p f�cg Effective for high-dimensional
classification with binary or
grayscale input

540 Gaussian Process

geostatistical literature, this is also called kriging;
see, e.g., Krige 1951; Matheron 1963) is to place
a prior directly on the space of functions without
parameterizing the function (vide Motivation and
Background).

Likelihood Function and Posterior Distribution
Assuming independent and normally distributed

noise terms,
i
i:i:d:
� N .0; �2

noise/, the likelihood
model on an output vector Y 2 R

N and an input
matrix X 2 R

N�d will be

p.Y jfX / D

NY

iD1

p.yi jxi ; f /

D N .Y jfX ; �2
noiseI /;

with fX D .f .x1/; : : : ; f .xN //
> be an N -

dimensional vector of function values at N input
locations xi . That is, the data likelihood is dis-
tributed according to a Gaussian distribution with
the function values evaluated at training input
locations as its mean and the variance of the noise
terms as its variance.

Placing a (zero mean) Gaussian process prior
over functions

f � GP.m.x/ � 0; k.x; x0//; (1)

will lead us to a Gaussian process posterior (this
form of posterior process is described in the next
section):

f jX; Y � GP.mpost.x/

D k.x;X/ŒK C �2
noiseI �

�1Y; kpost.x; x
0/

D k.x; x0/ � k.x;X/ŒK C �2
noiseI �

�1k.x0; X//:

(2)

In the above equations, K 2 R
N�N denotes the

Gram matrix with elements Kij D k.xi ; xj /, and
k.x; x0/ is the kernel function. The term k.x;X/

denotes a kernel function with one of the inputs
fixed at training points.

Predictive Distribution
The final goal in regression is to make an output
prediction for a novel input x�, given a set of
input–output training points. By the marginaliza-
tion property, instead of working with a prior over
infinite-dimensional function spaces as in (1), we
can concentrate on the marginal distribution over
the training inputs:

fX � N .0; K/: (3)

Subsequently, the marginal distribution over
training outputs (conditioned on inputs) can be
computed via

p.Y jX/ D

Z
p.Y jfX /p.fX /dfX

D N .0; K C �2
noiseI /: (4)

The above integration is computed by using the
standard result for the convolution of two Gaus-
sian distributions (�Gaussian Distribution).

Therefore, given inputs X , the joint distribu-
tion over outputs Y and the latent function fX is
given by

p.Y; fX jX/ D N .0; C /; (5)

where C 2 R
.2N/�.2N/ is the joint covariance

matrix. We can partition this joint covariance
matrix as follows:

C D

K C �2

noiseI K

K K

�

;

The noise variance appears only at the diagonal
elements of the covariance matrix C ; this is
due to the independence assumption about the
noise. Using a standard Gaussian property on
computing conditional distribution from a joint
Gaussian distribution (�Gaussian Distribution),
the Gaussian posterior distribution can be seen
to admit the following form: p.fX jX; Y / D
N .�fX

; ˙fX
/ with the mean �fX

D K.K C

�2
noiseI /

�1Y and the covariance ˙fX
D K �

K.K C �2
noiseI /

�1K.
From the posterior distribution, we can com-

pute the predictive distribution on the new output

http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_107

Gaussian Process 541

G

y� at an input location x�, as follows:

p.y�jx�; X; Y / D

Z
p.y�jf�; x�/

�

Z
p.f�jfX /p.fX jX; Y /dfXdf�: (6)

The p.f�jfX / is a conditional multivariate
Gaussian with mean�f�jfX

D k>
X;x�

K�1fX and

variance �2
f�jfX

D k.x�; x�/ � k
>
X;x�

K�1kX;x�

due to the GP marginalization property, where
the vector kX;x�

2 R
N has elements k.xi ; x�/

for i D 1; : : : ; N and > denotes a transpose
operation. Equation (6) is a general equation
for computing the predictive distribution
in a Gaussian process framework and is
applicable, among others, for both regression
and classification settings. For regression,
since all the terms are Gaussians, the inner
integration

R
p.f�jfX /p.fX jX; Y /dfX is a

Gaussian with mean �f�
D k>

X;x�

K�1�fX
and

variance �2
f�

D k.x�; x�/ � k
>
X;x�

K�1kX;x�
C

k>
X;x�

K�1˙fX
K�1kX;x�

. Subsequently, the
outer integration

R
N .f�; �

2
noise/N .�f�

; �2
f�

/df�

is also a Gaussian, and therefore the above
p.y�jx�; X; Y / is a Gaussian distribution, and
it is in the form of

p.y�jx�; X; Y / D N .��; �
2
�/; (7)

with

�� D k
>
X;x�

.K C �2
noiseI /

�1Y; (8)

�2
� D k.x�; x�/

� k>
X;x�

.K C �2
noiseI /

�1kX;x�
C �2

noise: (9)

Note that (8) and (9) are the mean function and
the covariance function of the posterior process
in (2) for any novel inputs. The only difference
is the additional term �2

noise, since there exists
observation noise
� such that y� D f� C
�.

Point Prediction
The previous section has shown how to
compute a predictive distribution for outputs
y� associated with the novel test inputs x�. To

convert this predictive distribution into a point
prediction, we need the notion of a loss function,
L.ytrue; yprediction/. This function specifies the loss
incurred for predicting the value yprediction, while
the true value is ytrue. Thus, the optimal point
prediction can be computed by minimizing the
expected loss as follows:

yoptimaljx� D argmin
yprediction2R

Z
L.y�; yprediction/

�p.y�jx�; X; Y /dy�: (10)

For a squared loss function (or any other
symmetric loss functions) and predictive distribu-
tion (7), the solution to the above equation is the
mean of the predictive distribution, i.e.,

yoptimaljx� D Ey��p.y�jx�;X;Y /Œy�� D ��:

The above Gaussian process regression de-
scription is known as a function space view in
the literature (Rasmussen and Williams 2006).
Equivalently, a Gaussian process regression can
also be viewed from the traditional Bayesian
linear regression with a possibly infinite num-
ber of basis functions �.x/ and with a zero
mean and arbitrary positive-definite covariance
matrix Gaussian prior on the parameter w; see,
e.g., Rasmussen and Williams (2006).

Classification
Gaussian process models can also be applied
to classification problems. In a probabilistic ap-
proach to classification, the goal is to model
posterior probabilities of an input point xi be-
longing to one of � classes, yi 2 f1; : : : ; �g.
These probabilities must lie in the interval Œ0; 1�;
however, a Gaussian process model draws func-
tions that lie on .�1;1/. For the binary clas-
sification (� D 2), we can turn the output of a
Gaussian process into a class probability using
an appropriate nonlinear activation function. In
the following, we will show this for the case of
binary classification. For the more general cases,
see, e.g., Rasmussen and Williams (2006).

542 Gaussian Process

Likelihood Function and Posterior Distribution
In a regression problem, a Gaussian likelihood
is chosen and combined with a Gaussian process
prior, which leads to a Gaussian posterior process
over functions where in all required integrations
remain analytically tractable. For classification,
however, Gaussian likelihood is not the most
suitable owing to the discreteness nature of the
class labels. The most commonly used likelihood
functions are

p.yi jf; xi / D
1

1C exp.�yifxi
/

or

p.yi jf; xi / D

Z yifxi

�1

N .0; 1/dt

D ˚0;1.yifxi
/; (11)

known as logistic and cumulative Gaussian like-
lihood functions, respectively. Assuming that the
class labels (conditioned on f) are generated
independent and identically distributed, the joint
likelihood overN data points can be expressed as
p.Y jfX / D

QN
iD1 p.yi jf; xi /. By Bayes’ rule,

the posterior distribution over latent functions
is given by p.fX jX; Y / D

p.Y jfX /p.fX /R
p.Y jfX /p.fX /dfX

.
This posterior is no longer analytically tractable
(due to intractable integration in the denomina-
tor), and an approximation is needed.

There are several approximation methods to
handle intractability of the inference stage in the
Gaussian process classification such as Laplace
approximation, expectation propagation, varia-
tional bounding, and MCMC, among others (see
Nickisch and Rasmussen (2008) for a compre-
hensive overview of approximate inference in
binary Gaussian process classification). Most of
the methods (if not all) approximate the non-
Gaussian posterior with a tractable Gaussian dis-
tribution. We describe in detail the straightfor-
ward Laplace approximation method, but note
that the more complicated expectation propaga-
tion (�Expectation Propagation) is almost al-
ways the method of choice unless the compu-
tational budget is very tight (Nickisch and Ras-
mussen 2008).

Laplace method approximates the non-
Gaussian posterior with a Gaussian one by

performing a second-order Taylor expansion
of the log posterior, logp.fX jX; Y / at the
maximum point of the posterior

p.fX jX; Y / � Op.fX jX; Y / D N . OfX ;H�1/;

(12)

where OfX D argmaxfX
logp.fX jX; Y / and

H WD �rr logp .fX jX; Y /jfX D OfX
is the

Hessian of the negative log posterior at the
maxima. Since the denominator of the Bayes’
theorem is independent of the latent function, the
mode of the posterior can be computed instead
from the log un-normalized posterior:

‰.fX / WD logp.Y jfX /C logp.fX /; (13)

with the expression for p.fX / given in (3). Com-
putation of the mode requires us to evaluate the
gradient of ‰.fX / which is given as

r‰.fX / D r logp.Y jfX / �K
�1fX : (14)

To find the stationary point, however, we cannot
simply set this gradient to zero as r logp.Y jf /
depends nonlinearly on fX . We need to resort
to an iterative scheme based on the Newton–
Raphson’s method with the updated equation
given by

f new
X f old

X � .rr‰.fX //
�1r‰.fX /; (15)

and the Hessian given by

rr‰.fX / D �W �K
�1; (16)

and W WD �rr logp.Y jfX / is a diagonal
matrix. It is important to note that if the likelihood
function p.Y jfX / is log-concave, the diagonal
elements of W are nonnegative, and the Hessian
in (16) is negative definite (since �K and its
inverse are negative definite by construction and
the sum of two negative-definite matrices is also
negative definite). Thus, ‰.fX / is concave and
has a unique maxima point.

http://dx.doi.org/10.1007/978-1-4899-7687-1_95

Gaussian Process 543

G

Predictive Distribution
The latent function fX plays the role of a nui-
sance function, i.e., we do not observe values
of fX itself, and more importantly, we are not
particularly interested in the values of fX . What
we are interested in is a class conditional pos-
terior probability, p.y� D C1jx�; X; Y /, for a
novel input x�. We note that a class conditional
probability of a class label of not 1 is p.y� D

�1jx�; X; Y / D 1 � p.y� D C1jx�; X; Y /.
We use Equation (6) to compute the predictive

distribution on the new output y� at an input loca-
tion x�, restated here for the sake of readability:

p.y�jx�; X; Y / D

Z
p.y�jf�; x�/

�

Z
p.f�jfX /p.fX jX; Y /dfXdf�:

As in regression, the term p.f�jfX / is a
conditional multivariate Gaussian with the
assumption that the underlying Gaussian process
model is a noise-free process. Another approach
would be assuming an independent Gaussian
noise in combination with a step function
likelihood function. However, this is equivalent
to the noise-free latent process with a cumulative
Gaussian likelihood function (Rasmussen and
Williams 2006). With Laplace approximation
of posterior distribution p.fX jX; Y / �

N . OfX ; .K�1 C W /�1/, we can now compute
the inner integration of the predictive distri-
bution,

R
N .�f�jfX

; �2
f �jfX

/N . OfX ; .K�1 C

W /�1/dfX , by using the standard result for the
convolution of two Gaussian distributions. It is
again a Gaussian with mean�f�

D k>
X;x�

K�1 OfX

and variance �2
f�

D k.x�; x�/ � k
>
X;x�

.K C

W �1/�1kX;x�
.

The predictive distribution can now be com-
puted as follows:

�� WD p.y� D C1jx�; X; Y /

D

Z
p.y� D C1jf�; x�/N .�f�

; �2
f�

/df�:

The above integral can be solved analytically for
a cumulative Gaussian likelihood function,

�� D

Z �f�

.y�2
�

C�2
f�

/1=2

�1

N .t j0; 1/dt

D ˚0;1

�f�

.y�2
� C �

2
f�

/1=2

!

;

and can be approximated for a logistic likelihood
function (MacKay 1992),

�� D
1

1C exp.��f�
�.�2

f�

//
;

with �.c/ D .1C c�=8/�1=2.

Point Prediction
Similar to the regression case, we might need
to make a point prediction from the predictive
distribution described in the section above. For a
zero-one loss function, i.e., a loss of one unit is
suffered for a wrong classification and 0 for not
making a classification mistake, the optimal point
prediction (in the sense of expected loss) is

yoptimaljx
� D argmax

y�2f1;:::;�g

p.y�jx�; X; Y /: (17)

It is worth noting that the probabilistic approach
to classification allows the same inference stage
to be reused with different loss functions. In some
situations, a cost-sensitive loss function, i.e.,
different classification mistakes incur different
losses, is more desirable. The optimal point
prediction is now taken by minimizing expected
cost-sensitive loss with respect to the same
p.y�jx�; X; Y /.

Extension of binary classification to multiclass
Gaussian process classification (� > 2) can
be achieved via the softmax activation function,
i.e., a generalization of logistic activation func-
tion (refer to Williams and Barber (1998) for
the Laplace approximation of the posterior dis-
tribution). Recently, Bratières, Quadrianto, and
Ghahramani (to appear) propose a Gaussian pro-
cess classification approach to structured out-
put problems (� � 2) using a generalization
of softmax function called a structured softmax
function. Examples of structured outputs are a

544 Gaussian Process

tree, a grid, or a sequence, where the output
consists of interdependent categorical atoms.

Practical Issues

We have seen how to do regression and classifica-
tion using Gaussian processes. Like other kernel-
based methods such as support vector machines,
they are very flexible in that all operations are
kernelized, i.e., the operations are performed in
the (possibly infinite dimensional) feature space.
However, this feature space is only defined im-
plicitly via positive-definite kernels (covariance
functions), which only require computation in the
(lower dimensional) input space. Compared to
other non-Bayesian kernel approaches, Gaussian
processes provide an explicit probabilistic formu-
lation of the model. This directly provides us with
confidence intervals (for regression) or posterior
class probabilities (for classification).

So far, however, we have assumed a covari-
ance function with the known functional form
and hyperparameters. In many practical applica-
tions, it may not be easy to specify all aspects
of the covariance function by hand. Furthermore,
inverting the corresponding N �N Gram matrix
is the main computational cost, and it may be
prohibitive as it scales as O.N 3/. We will now
discuss approaches to overcome both limitations
in turn.

Model Selection
In many practical applications, the functional
form of the covariance function needs to be cho-
sen, and any values of hyperparameters associ-
ated with the chosen covariance function and pos-
sible free parameters of the likelihood function
need to be optimally determined. This is called
model selection.

Ideally, we would like to define a prior distri-
bution over the hyperparameters , and predic-
tions are made by integrating over different pos-
sible choices of hyperparameters. More formally,

p.y�jx�; X; Y /

D

Z
p.y�jx�; X; Y; /p. jX; Y /d: (18)

The evaluation of the above integral, however,
may be difficult, and an approximation is
needed either by using the most likely
value of hyperparameters, p.y�jx�; X; Y / �

p.y�jx�; X; Y; ML/, or by performing the
integration numerically via Monte Carlo meth-
ods. We will focus here on the approximation
approach and show how to use it for regression
and classification problems.

Marginal Likelihood for Regression
The posterior probability of the hyperparameters
 in (18) is

p. jX; Y / / p.Y jX; /p./; (19)

where the first term is known as marginal likeli-
hood or evidence for the hyperparameters and it
is in the form of (as in (4) but with an explicit
conditioning on)

p.Y jX; / D

Z
p.Y jfX ; /p.fX j/dfX

D N .0; K C �2
noiseI /;

where the set of free parameters includes both
parameters of the kernel function and the noise
term �2

noise. We can then set the hyperparameters
by maximizing the logarithm of this marginal
likelihood, and its partial derivative with respect
to hyperparameters is

@

@�j

logp.Y jX; /

D
1

2
Y > NK�1 @

NK

@�j

NK�1Y �
1

2
tr

NK�1 @
NK

@�j

!

;

with NK WD KC�2
noiseI . This is known as a type II

maximum likelihood approximation, ML-II. We
can also maximize the un-normalized posterior
instead, assuming finding the derivatives of the
priors is straightforward.

Marginal Likelihood for Classification
The Laplace approximation of the marginal like-
lihood, p.Y jX; /� Op.Y jX; /

Gaussian Process 545

G

D

Z
exp.‰.fX //dfX

D exp.‰. OfX //
Z

exp.�
1

2
.fX � OfX /

>

H.fX � OfX //dfX ;

which is achieved via a Taylor expansion
of (13) locally around OfX to obtain ‰.fX / �
‰. OfX /�

1
2 .fX �

OfX /
>H.fX � OfX /. Computing

the integral analytically gives us the approximate
marginal likelihood

log Op.Y jX; / / �
1

2
OfXK

�1 OfX �
1

2
log jKj

C logp.Y j OfX / �
1

2
log jK�1 CW j:

Subsequently, the partial derivatives with respect
to hyperparameters is given by

@

@�j

log Op.Y jX; / D
1

2
Of >
X K

�1 @K

@�j

K�1 OfX

�
1

2
tr

.K CW �1/�1 @K

@�j

!

C

NX

iD1

@ log Op.Y jX; /

@ Ofxi

@ Ofxi

@j
:

The familiar multiple local optima problem is
also present in the marginal likelihood maximiza-
tion. However, practical experiences suggest that
local optima are not a devastating problem espe-
cially with simple functional forms of covariance
function.

Sparse Approximation
A significant problem with the Gaussian process
model is associated with the computation cost
of inverting the N � N Gram matrix. A num-
ber of sparse approximation methods have been
proposed to overcome this high computational
demand. Common to all these methods is that
only a subset of the latent function values of size
M < N are treated exactly, and the remaining
latent values are approximated with cheaper com-

putational demand. Quiñonero-Candela and Ras-
mussen (2005) describe a unifying view of sparse
approximation. Several existing sparse methods
are shown to be an instance of it. The framework
is described for regression problems; however, it
should also be applicable for classification learn-
ing settings, albeit with complicacy associated
with the non-Gaussian likelihood.

In this unifying treatment, an additional set of
M latent variables fU 2 R

M , called inducing
variables, is introduced. These latent variables are
latent function values corresponding to a set of
input locations XU 2 R

M�d , called inducing
inputs. The choice of inducing inputs is not re-
stricted to only form the training or test inputs.
Due to the marginalization property, introducing
more latent variables will not change the distri-
bution of the original variables. Consider (5) but
as a joint distribution over latent training and test
function values, p.fX ; f�jX; x�/

D

Z
p.fX ; f�; fU jX;XU ; x�/dfU

D

Z
p.fX ; f�jX; x�; fU /p.fU /dfU ; (20)

with p.fU /DN .0; KXU ;XU
/. So far, no approx-

imations have been introduced. Introducing the
key assumption which is fX is conditionally
independent of f� given fU , f�??fX jfU , allow
us to approximate (20) as

p.fX ; f�jX; x�/

�

Z
p.f�jx�; fU /p.fX jX; fU /p.fU /dfU ;

(21)

where p.f�jx�; fU / and p.fX jX; fU / are again
conditional multivariate Gaussians due to the GP
marginalization property. Different computation-
ally efficient algorithms in the literature corre-
spond to different assumptions made on those two
conditional distributions. Table 2 shows various
sparse approximation methods with their corre-
sponding approximated conditional distributions.
For all sparse approximation methods, the com-

546 Gaussian Process

Gaussian Process, Table 2 Sparse approximation methods

Method p̂.fX jX;fU / p̂.f�jx�; fU / Ref.

SR N .KX;XU
K�1

XU ;XU
fU ; 0/ N .Kx�;XU

K�1
XU ;XU

fU ; 0/ Silverman (1985)
PP N .KX;XU

K�1
XU ;XU

fU ; 0/ p.f�jx�; fU / Seeger et al. (2003)

SPGPs
N .KX;XU

K�1
XU ;XU

fU ;	1/

	1 D diagŒKX;X �

KX;XU
K�1

XU ;XU
KXU ;X

p.f�jx�; fU / Snelson and Ghahra-
mani (2006)

BCM N .KX;XU
K�1

XU ;XU
fU ;	2/ p.f�jx�; fU / Tresp (2000a)

	2 D blockdiagŒKX;X �KX;XU
K�1

XU ;XU
KXU ;X

SR subset of regressors, PP projected process, SPGPs sparse pseudo-input Gaussian processes, BCM Bayesian
committee machine

putational complexity is reduced from O.N 3/ to
O.NM 2/.

Current and Future Directions

Gaussian processes are an active area of re-
search both within the machine learning and
the Bayesian statistics community. First, there
is the issue of efficient inference and learning
as already discussed in the text above. Some of
the recent approaches include converting Gaus-
sian processes with stationary covariance func-
tions to state-space models (Särkkä et al. 2013)
and using stochastic variational inference (Hens-
man et al. 2013). Second, there is interest in
adapting Gaussian processes to other learning
settings. They have been used for ordinal re-
gression (Chu and Ghahramani 2005a; Yu et al.
2006b), preference learning (Chu and Ghahra-
mani 2005b), ranking (Guiver and Snelson 2008),
mixtures of experts (Tresp 2000b), transductive
learning (Schwaighofer and Tresp 2003), mul-
titask learning (Yu et al. 2005), dimensional-
ity reduction (Lawrence 2005), matrix factor-
ization (Lawrence and Urtasun 2009), and rein-
forcement learning (Engel et al. 2005; Deisen-
roth and Rasmussen 2009), among other settings.
They have also been extended to handle relational
data (Chu et al. 2006; Yu et al. 2006a; Silva
et al. 2007; Xu et al. 2009; Kersting and Xu
2009). Standard Gaussian processes only exploit
the available information about attributes of in-
stances and typically ignore any relations among
the instances. Intuitively, however, we would like

to use our information about one instance to
help us reach conclusions about other related
instances.

There is the issue of relaxing the assumption
of the standard Gaussian process model that the
noise on the output is uniform throughout the
domain. If we assume that the noise is a smooth
function of the inputs, the noise variance can
be modeled using a second Gaussian process,
in addition to the process governing the noise-
free output values. The resulting heteroscedastic,
i.e., input-dependent noise regression model, has
been shown to outperform state-of-the-art meth-
ods for mobile robot localization (Plagemann
et al. 2007). Heteroscedastic classification has
also been explored by Hernández-Lobato et al.
(2014) in the context of �Learning Using Priv-
ileged Information.

Finally, Gaussian processes are also of
great interest for practical applications because
they naturally deal with noisy measurements,
unevenly distributed observations, and fill
small gaps in the data with high confidence
while assigning higher predictive uncertainty in
sparsely sampled areas. Two recent applications
areas are Bayesian optimization for automatically
tuning hyperparameters of machine-learning
models (see, e.g., Snoek et al. 2012) and an
automated Bayesian statistician for automating
the process of statistical modeling (see, e.g.,
Lloyd et al. 2014).

In addition to the references embedded in
the text above, we also recommend http://www.
gaussian-process.org/. A highly recommended
textbook is Rasmussen and Williams (2006).

http://dx.doi.org/10.1007/978-1-4899-7687-1_892
http://www.gaussian-process.org/
http://www.gaussian-process.org/

Gaussian Process 547

G

Cross-References

�Dirichlet Process

Recommended Reading

Abrahamsen P (1992) A review of Gaussian ran-
dom fields and correlation functions. Rapport 917,
Norwegian Computing Center, Oslo. www.nr.no/
publications/917 Rapport.ps

Bratières S, Quadrianto N, Ghahramani Z (to ap-
pear) GPstruct: Bayesian structured prediction using
Gaussian processes. IEEE Trans Pattern Anal Mach
Intell

Chu W, Ghahramani Z (2005a) Gaussian processes for
ordinal regression. J Mach Learn Res 6:1019–1041

Chu W, Ghahramani Z (2005b) Preference learning
with Gaussian processes. In: Proceedings of inter-
national conference on machine learning (ICML),
Bonn

Chu W, Sindhwani V, Ghahramani Z, Keerthi S (2006)
Relational learning with Gaussian processes. In:
Proceedings of advances in neural information pro-
cessing systems (NIPS), Vancouver

Deisenroth MP, Rasmussen CE, Peters J (2009) Gaus-
sian process dynamic programming. Neurocomput-
ing 72(7–9):1508–1524

Engel Y, Mannor S, Meir R (2005) Reinforcement
learning with Gaussian processes. In: Proceedings
of international conference on machine learning
(ICML), Bonn

Guiver J, Snelson E (2008) Learning to rank with
softrank and Gaussian processes. In: Proceedings
of special interest group on information retrieval
(SIGIR), Singapore

Hensman J, Fusi N, Lawrence N (2013) Gaussian pro-
cesses for big data. In: Proceedings of uncertainty in
artificial intelligence (UAI), Bellvue

Kersting K, Xu Z (2009) Learning preferences with
hidden common cause relations. In: Proceedings
of European conference on machine learning and
principles and practice of knowledge discovery in
databases (ECML PKDD), Bled

Krige DG (1951) A statistical approach to some basic
mine valuation problems on the witwatersrand. J
Chem Metall Mining Soc S Afr 52(6):119–139

Lawrence N (2005) Probabilistic non-linear principal
component analysis with Gaussian process latent
variable models. J Mach Learn Res 6:1783–1816

Lawrence N, Urtasun R (2009) Non-linear matrix fac-
torization with Gaussian processes. In: Proceedings
of international conference on machine learning
(ICML), Montreal

Lloyd JR, Duvenaud D, Grosse R, Tenenbaum JB,
Ghahramani Z (2014) Automatic construction and

natural-language description of nonparametric re-
gression models. In: Proceedings of association for
the advancement of artificial intelligence (AAAI),
Québec City

Hennig P (2013) Animating samples from Gaussian
distributions. Technical report, 8. Max Planck Insti-
tute for Intelligent Systems

Hernández-Lobato D, Sharmanska V, Kersting K,
Lampert C, Quadrianto N (2014) Mind the Nui-
sance: Gaussian process classification using privi-
leged noise. In: Proceedings of advances in neural
information processing systems (NIPS), Montreal

MacKay DJC (1992) The evidence framework ap-
plied to classification networks. Neural Comput
4(5):720–736

Matheron G (1963) Principles of geostatistics. Econ
Geol 58:1246–1266

Neal R (1996) Bayesian learning in neural networks.
Springer, New York

Nickisch H, Rasmussen CE (2008) Approximations
for binary Gaussian process classification. J Mach
Learn Res 9:2035–2078

Plagemann C, Kersting K, Pfaff P, Burgard W
(2007) Gaussian beam processes: a nonparametric
Bayesian measurement model for range finders. In:
Proceedings of robotics: science and systems (RSS),
Atlanta

Quiñonero-Candela J, Rasmussen CE (2005) A uni-
fying view of sparse approximate Gaussian process
regression. J Mach Learn Res 6:1939–1959

Rasmussen CE, Williams CKI (2006) Gaussian pro-
cesses for machine learning. MIT Press, Cambridge

Särkkä S, Solin A, Hartikainen J (2013) Spatiotem-
poral learning via infinite-dimensional Bayesian fil-
tering and smoothing. IEEE Signal Process Mag
30:51–61

Schwaighofer A, Tresp V (2003) Transductive and
inductive methods for approximate guassian process
regression. In: Proceedings of advances in neural
information processing systems (NIPS), Vancouver

Seeger M, Williams CKI, Lawrence N (2003) Fast for-
ward selection to speed up sparse Gaussian process
regression. In: Proceedings of artificial intelligence
and statistics (AISTATS), Key West

Silva R, Chu W, Ghahramani Z (2007) Hidden com-
mon cause relations in relational learning. In: Pro-
ceedings of advances in neural information process-
ing systems (NIPS), Vancouver

Silverman BW (1985) Some aspects of the spline
smoothing approach to non-parametric regression
curve fitting. J R Stat Soc B 47(1):1–52

Snelson E, Ghahramani Z (2006) Sparse Gaussian
processes using pseudo-inputs. In: Proceedings of
advances in neural information processing systems
(NIPS), Vancouver

Snoek J, Larochelle H, Adams RP (2012) Practical
Bayesian optimization of machine learning algo-
rithms. In: Proceedings of advances in neural infor-
mation processing systems (NIPS), Lake Tahoe

http://dx.doi.org/10.1007/978-1-4899-7687-1_219
www.nr.no/publications/917_Rapport.ps
www.nr.no/publications/917_Rapport.ps

548 Gaussian Process Reinforcement Learning

Tresp V (2000a) A Bayesian committee machine. Neu-
ral Comput 12(11):2719–2741

Tresp V (2000b) Mixtures of Gaussian processes. In:
Proceedings of advances in neural information pro-
cessing systems (NIPS), Denver

Williams C, Barber D (1998) Bayesian classification
with Gaussian processes. IEEE Trans Pattern Anal
Mach Intell PAMI 20(12):1342–1351

Williams C, Rasmussen C (1996) Gaussian processes
for regression. In: Proceedings of advances in neural
information processing systems (NIPS), Denver

Xu Z, Kersting K, Tresp V (2009) Multi-relational
learning with Gaussian processes. In: Proceedings
of the international joint conference on artificial
intelligence (IJCAI), Pasadena

Yu K, Tresp V, Schwaighofer A (2005) Learning Gaus-
sian processes from multiple tasks. In: Proceedings
of international conference on machine learning
(ICML), Bonn

Yu K, Chu W, Yu S, Tresp V, Xu Z (2006a) Stochastic
relational models for discriminative link prediction.
In: Proceedings of advances in neural information
processing systems (NIPS), Vancouver

Yu S, Yu K, Tresp V, Kriegel HP (2006b) Collaborative
ordinal regression. In: Proceedings of international
conference on machine learning (ICML), Pittsburgh

Gaussian Process Reinforcement
Learning

Yaakov Engel
University of Alberta, Edmonton, AB, Canada

Definition

Gaussian process reinforcement learning gener-
ically refers to a class of � reinforcement learn-
ing (RL) algorithms that use Gaussian processes
(GPs) to model and learn some aspect of the
problem.

Such methods may be divided roughly into
two groups:

1. Model-based methods: Here, GPs are used to
learn the transition and reward model of the
�Markov decision process (MDP) underlying
the RL problem. The estimated MDP model is
then used to compute an approximate solution
to the true MDP.

2. Model-free methods: Here, no explicit repre-
sentation of the MDP is maintained. Rather,
GPs are used to learn either the MDP’s value
function, state–action value function, or some
other quantity that may be used to solve the
MDP.

This entry is concerned with the latter class
of methods, as these constitute the majority of
published research in this area.

Motivation and Background

�Reinforcement learning is a class of learning
problems concerned with achieving long-term
goals in unfamiliar, uncertain, and dynamic envi-
ronments. Such tasks are conventionally formu-
lated by modeling the environment as �MDPs
(or more generally as partially observable MDPs
(�POMDPs)) and modeling the agent as an adap-
tive controller implementing an action-selection
policy.

Markov Decision Processes
Let us denote by P.S/ the set of probability
distributions over (Borel) subsets of a set S . A
discrete time MDP is a tuple .X ;U ; p0; p; q; 	/,
where X and U are the state and action spaces, re-
spectively; p0. � / 2 P.X / is a probability density
over initial states; p. � jx;u/ 2 P.X / is a proba-
bility density over successor states, conditioned
on the current state x and action u; q. � jx;u/ 2
P.R/ is a probability distribution over immediate
single-step rewards, conditioned on the current
state and action. We denote by R.x;u/ the ran-
dom variable distributed according to q. � jx;u/.
Finally, 	 2 Œ0; 1� is a discount factor. We assume
that both p and q are stationary, that is, they
do not depend explicitly on time. To maintain
generality, we use z to denote either a state x or a
state–action pair .x;u/. This overloaded notation
will allow us to present models and algorithms in
a concise and unified form.

In the context of control, it is useful to make
several additional definitions. A stationary policy
�. � jx/ 2 P.U/ is a time-independent map-
ping from states to action-selection probabili-

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_100365

Gaussian Process Reinforcement Learning 549

G

ties. A stationary policy � induces a Markov re-
ward process (MRP) (Puterman 1994) via policy-
dependent state-transition probability density, de-
fined as (Here and in the sequel, whenever in-
tegration is performed over a finite or discrete
space, the integral should be understood as a
summation.)

p�x .x
0jx/ D

Z

U
du�.ujx/p.x0ju; x/:

Similarly, the policy � may also be used to de-
fine a state–action transition probability density,
defined as

p�x;u.x
0;u0jx;u/ D p.x0ju; x/�.u0jx0/:

Using our overloaded notational convention, we
refer to either of these as p�z . Let us denote by
�.z/ a path that starts at z. Hence, for a fixed
policy � and a fixed initial state or state–action
pair z0, the probability (density) of observing the
path �.z0/ D .z0; z1; : : : ; zt / of length t is (we
take z0 as given) P.�.z0// D

Qt
iD1 p

�
z .zi jzi�1/.

The discounted return D�.�.z// of a path �.z/
is a random process, defined (with some abuse of
notation) as

D�.z/ D D�.�.z// D
1X

iD0

	 iR.zi /j.z0 D z/;

(1)
where 	 2 Œ0; 1� is the discount factor. (When
	 D 1, the policy must be proper; see Bertsekas
and Tsitsiklis (1996).) The randomness inD�.z/,
for any given z, is due both to �.z/ being a ran-
dom process and to the randomness, or noise, in
the rewards R.z0/; R.z1/; : : :, etc., both of which
jointly constitute the intrinsic randomness of the
MDP. Equation (1) together with the stationarity
of the MDP yields the recursive formula

D�.z/ D R.z/C	D�.z0/ where z0 � p�z . � jz/:
(2)

Let us define the expectation operator E� as
the expectation over all possible trajectories and
all possible rewards collected in them. This al-
lows us to define the value function V �.z/ as the
result of applying this expectation operator to the

discounted return D�.z/, i.e.,

V �.z/ D E�D
�.z/: (3)

Applying the law of total expectation to this
equation results in the MRP (fixed policy) version
of the Bellman equation:

V �.z/ D R.z/C 	Ez0jzŒV
�.z0/�: (4)

A policy that maximizes the expected discounted
return from each state is called an optimal policy
and is denoted by ��. In the case of stationary
MDPs, there exists a deterministic optimal policy
(this is no longer the case for POMDPs and
Markov games; see Kaelbling et al. (1998) and
Littman (1994)). The value function correspond-
ing to an optimal policy is called the optimal
value and is denoted by V � D V �

�

. While
there may exist more than one optimal policy,
the optimal value function is unique (Bertsekas
1995).

Reinforcement Learning
Many of the algorithms developed for solving RL
problems may be traced back to the � dynamic
programming value iteration and policy itera-
tion algorithms (Bellman 1957; Bertsekas 1995;
Bertsekas and Tsitsiklis 1996; Howard 1960).
However, there are two major features distin-
guishing RL from the traditional planning frame-
work. First, while in planning it is assumed that
the environment is fully known, in RL no such
assumption is made. Second, the learning process
in RL is usually assumed to take place online,
namely, concurrently with the acquirement of
data by the learning agent as it interacts with its
environment. These two features make solving
RL problems a significantly more challenging
undertaking.

An important algorithmic component of
policy iteration-based RL algorithms is the
estimation of either state or state–action values
of a fixed policy controlling an MDP, a task
known as policy evaluation. Sutton’s TD(�)
algorithm (Sutton 1984) is an early RL algorithm
that performs policy evaluation based on
observed sample trajectories from the MDP,

http://dx.doi.org/10.1007/978-1-4899-7687-1_77

550 Gaussian Process Reinforcement Learning

while it is being controlled by the policy
being evaluated (see �Temporal Difference
Learning). In its original formulation, TD(�) as
well as many other algorithms (e.g., Watkins’
�Q-Learning 1989) employs a lookup table
to store values corresponding to the MDP’s
states or state–action pairs. This approach clearly
becomes infeasible when the size of the MDP’s
joint state–action space exceeds the memory
capacity of modern workstations. One solution to
this problem is to represent the value function
using a parametric function approximation
architecture and allow these algorithms to
estimate the parameters of approximate value
functions. Unfortunately, with few exceptions,
this seemingly benign modification turns
out to have ruinous consequences to the
convergence properties of these algorithms. One
notable exception is TD(�), when it is used
in conjunction with a function approximator
OV .z/D

PN
iD1 wi�i .z/, which is linear in its

tunable parameters wD .w1; : : : ;wN /
>. Under

certain technical conditions, it has been shown
that in this case, TD(�) converges almost surely,
and the limit of convergence is “close” (in a
well-defined manner) to a projection ˘V �

of the true value function V � onto the finite-
dimensional space H of functions spanned
by f�i ji D 1; : : : ; N g (Tsitsiklis and Van Roy
1996). Note that this projection is the best one
may hope for, as long as one is restricted to
a fixed function approximation architecture. In
fact, when � D 1, the bound of Tsitsiklis and
Van Roy (1996) implies that TD(1) converges to
˘V � (assuming it is unique). However, as � is
reduced toward 0, the quality of TD(�)’s solution
may deteriorate significantly. If V � happens
to belong to H , then V � D ˘V � and TD(�)
converges almost surely to V �, for any � 2 Œ0; 1�.

As noted in Bertsekas and Tsitsiklis (1996),
TD(�) is a stochastic approximation algorithm
(Kushner and Yin 1997). As such, to ensure con-
vergence to a meaningful result, it relies on mak-
ing small and diminishing updates to its value
function estimates. Moreover, in the typical on-
line mode of operation of TD(�), a sample is
observed, is acted upon (by updating the pa-
rameters of OV), and is then discarded, never to

be seen again. A negative consequence of these
two properties is that online TD(�) is inherently
wasteful in its use of the observed data. The least-
squares TD(�), or LSTD(�) algorithm (Boyan
1999; Bradtke and Barto 1996), was put forward
as an alternative to TD(�) that makes better use
of data, by directly solving a set of equations
characterizing the fixed point of the TD(�) up-
dates. LSTD(�) is amenable to a recursive imple-
mentation, at a time and memory cost of O.N 2/

per sample. A more fundamental shortcoming,
shared by both TD(�) and LSTD(�), is that they
do not supply the user with a measure of the
accuracy of their value predictions.

The discussion above motivates the search
for:

1. Nonparametric estimators for V �, since these
are not generally restricted to searching in any
finite-dimensional hypothesis space, such as
H .

2. Estimators that make efficient use of the data.
3. Estimators that, in addition to value predic-

tions, deliver a measure of the uncertainty in
their predictions.

Structure of Learning System

We first describe the structure and operation of
the basic GP temporal difference (GPTD) algo-
rithm for policy evaluation. We then build on
this algorithm to describe policy-improving algo-
rithms, in the spirit of Howard’s policy iteration
(Howard 1960).

In the preceding section, we showed that the
value V is the result of taking the expectation
of the discounted return D with respect to the
randomness in the trajectories and in the rewards
collected therein. In the classic or frequentist
approach, V is no longer random, since it is the
true, albeit unknown value function induced by
the policy �. Adopting the Bayesian approach,
we may still view the value V as a random
entity by assigning it additional randomness, that
is due to our subjective uncertainty regarding
the MDP’s transition model .p; q/. We do not
know what the true distributions p and q are,

http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_689

Gaussian Process Reinforcement Learning 551

G
xt+1xt

xt

rt

ut ut

lag(1)

Bayesian−RL
Prior

learning data
le

ar
ni

ng
 d

at
a

MDP

Policy: µ(u|x)

GPTD Prior

MRP

Frequentist RL:
No Prior

Value Estimator: Vμ(x) or Qμ(x,u)^ ^

Gaussian Process Reinforcement Learning, Fig. 1
An illustration of the frequentist as well as the two
different Bayesian approaches to value function-based
reinforcement learning. In the traditional Bayesian RL
approach, a prior is placed on the MDP’s model, whereas
in our GPTD approach, the prior is placed directly on
the value function. x, u, and r denote state, action, and

reward, respectively. The data required to learn value
estimators typically consists of a temporal stream of state–
action–reward triplets. Another stream of data is used to
update the policy based on the current estimate of the
value function. An MDP and a stationary policy control-
ling it jointly constitute an MRP. lag(1) denotes the 1-step
time-lag operator

which means that we are also uncertain about the
true value function. Previous attempts to apply
Bayesian reasoning to RL modeled this uncer-
tainty by placing priors over the MDP’s transition
and reward model .p; q/ and applying Bayes’
rule to update a posterior based on observed
transitions. This line of work may be traced
back to the pioneering works of Bellman (1956)
and Howard (1960) followed by more recent
contributions in the machine learning literature
(Dearden et al. 1999, 1998; Duff 2002; Mannor
et al. 2004; Poupart et al. 2006; Strens 2000;
Wang et al. 2005). A fundamental shortcoming of
this approach is that the resulting algorithms are
limited to solving MDPs with finite (and typically
rather small) state and action spaces, due to the
need to maintain a probability distribution over
the MDP’s transition model. In this work, we
pursue a different path – we choose to model our

uncertainty about the MDP by placing a prior
(and updating a posterior) directly on V . We
achieve this by modeling V as a random process
or, more specifically, as a Gaussian process. This
mirrors the traditional classification of classical
RL algorithms to either model-based or model-
free (direct) methods; see Chapter 9 in Sutton and
Barto (1998). Figure 1 illustrates these different
approaches.

Gaussian Process Temporal Difference
Learning
GPTD should be viewed as a family of statistical
generative models (see �Generative Learning)
for value functions, rather than as a family of
algorithms. As such, GPTD models specify the
statistical relation between the unobserved value
function and the observable quantities, namely,
the observed trajectories and the rewards col-

http://dx.doi.org/10.1007/978-1-4899-7687-1_333

552 Gaussian Process Reinforcement Learning

lected in them. The set of equations prescribing
the GPTD model for a path � D .z0; z1; : : : ; zt /
is (Here and in the sequel, to simplify notation,
we omit the superscript�, with the understanding
that quantities such as D, V , or � generally
depend on the policy � being evaluated.)

R.zi / D V.zi / � 	V.ziC1/CN.zi ; ziC1/

for i D 0; 1; : : : ; t � 1.

N.zi ; ziC1/ is a zero-mean noise term that must
account for the statistics of R.zi /C 	V.ziC1/ �

V.zi /. If V is a priori distributed according to
a GP prior and the noise term N.zi ; ziC1/ is
also normally distributed, then R.zi / is also nor-
mally distributed and so is the posterior distri-
bution of V conditioned on the observed re-
wards. To fully specify the GPTD model, we
need to specify the GP prior over V in terms
of prior mean and covariance as well as the
covariance of the noise process N . In Engel
et al. (2003), it was shown that modeling N

as a white noise process is a suitable choice
for MRPs with deterministic transition dynamics.
In Engel et al. (2005a), a different, correlated
noise model was shown to be useful for general
MRPs. Let us define Rt D .R.z0/; : : : ; R.zt //,
Vt D .V .z0/; : : : ; V .zt //, and Nt D .N.z0; z1/;

: : : ; N.zt�1; zt // and also define the t � .t C 1/
matrix

Ht D

2

6
6
6
6
4

1 �	 0 : : : 0

0 1 �	
:::

:::
: : :

: : : 0
0 : : : 0 1 �	

3

7
7
7
7
5
:

In the white noise and correlated noise GPTD
models, the noise covariance matrices ˙ t D

CovŒNt � are given, respectively, by

2

6
6
6
6
4

�2
R.z0/ 0 : : : 0

0 �2
R.z1/

:::
:::

: : : 0
0 : : : 0 �2

R.zt�1/

3

7
7
7
7
5

and Ht

2

6
6
6
6
4

�2
0 0 : : : 0

0 �2
1

:::
:::

: : : 0
0 : : : 0 �2

t

3

7
7
7
7
5

H>
t :

The final component of the GPTD model remain-
ing to be specified is the prior distribution of
the GP V . This distribution is specified by prior
mean and covariance functions v0.z/ and k.z; z0/,
respectively.

Let us define vt D .v0.z0/; : : : ; v0.zt //
>. Em-

ploying �Bayes’ rule, the posterior distribution
of V.z/ – the value function at some arbitrary
query point z – is now given by

.V .z/jRt�1 D rt�1/ � N f OVt .z/; Pt .z; z/;

where

OVt .z/ D v0.z/C kt .z/>˛t ; Pt .z; z0/

D k.z; z0/ � kt .z/>Ctkt .z0/;

˛t D H>
t .HtKtH>

t C˙ t /
�1.rt�1 �Htvt /;

Ct D H>
t .HtKtH>

t C˙ t /
�1Ht :

It is seen here that in order to compute the
posterior distribution of V for arbitrary sets of
query points, one only needs the vector ˛t and the
matrix Ct . Consequently, ˛t and Ct are sufficient
statistics for the posterior of V .

Algorithms 1 and 2 provide pseudocode for re-
cursive computations of these sufficient statistics,
in the deterministic transitions and general MDP
models, respectively.

It can be seen that after observing t sample
transitions, both the algorithms require storage
quadratic in t (due to the matrix Ct). The up-
dates also require time quadratic in t due to
matrix-vector products involving Ct . These prop-
erties are unsatisfying from a practical point of
view, since realistic RL problems typically re-
quire large amounts of data to learn. There are
two general approaches for reducing the memory
and time footprints of GPTD. One approach is to
define parametric counterparts of the two GPTD
models described earlier and derive the corre-

http://dx.doi.org/10.1007/978-1-4899-7687-1_21

Gaussian Process Reinforcement Learning 553

G

Algorithm 1 Recursive nonparametric GPTD for
deterministic MDPs
Initialize ˛0 D 0, C0 D 0, D0 D fz0g
for t D 1; 2; : : :

observe zt�1, rt�1, zt

ht D .0; : : : ; 1;��/>

�kt D kt�1.zt�1/� �kt�1.zt /
�ktt D k.zt�1; zt�1/ � 2�k.zt�1; zt / C

�2k.zt ; zt /

ct D ht �

�
Ct�1�kt

0

�

dt D rt�1 � �kt
>˛t�1

st D �2
t�1 C�ktt � �kt

>Ct�1�kt

˛t D

�
˛t�1

0

�

C ct

st
dt

Ct D

Ct�1 0
0> 0

�

C 1
st

ct c>

t

Dt D Dt�1 [fzt g
end for
return ˛t ; Ct ; Dt

Algorithm 2 Recursive nonparametric GPTD for
general MDPs
Initialize ˛0 D 0, C0 D 0, D0 D fz0g, c0 D 0, d0 D 0,
1=s0 D 0
for t D 1; 2; : : :

observe zt�1, rt�1, zt

ht D .0; : : : ; 1;��/>

�kt D kt�1.zt�1/� �kt�1.zt /
�ktt D k.zt�1; zt�1/ � 2�k.zt�1; zt / C

�2k.zt ; zt /

ct D
��2

t�1
st�1

�
ct�1

0

�

C ht �

�
Ct�1�kt

0

�

dt D
��2

t�1
st�1

dt�1 C rt�1 � �kt
>˛t�1

st D �2
t�1 C �2�2

t �
�2�4

t�1
st�1

C �ktt �

�kt
>Ct�1�kt C

2��2
t�1

st�1
c>

t�1�kt

˛t D

�
˛t�1

0

�

C ct

st
dt

Ct D

Ct�1 0
0> 0

�

C 1
st

ct c>

t

Dt D Dt�1 [fzt g
end for
return ˛t ; Ct ; Dt

sponding recursive algorithms. If the number of
independent parameters (i.e., the dimensionality
of the hypothesis space H) used to represent
the value function is m, the memory and time
costs of the algorithms become quadratic in m,
rather than t . Another approach, which is based
on an efficient sequential kernel sparsification
method, allows us to selectively exclude terms

from Dt , while controlling the error incurred as
a result. Here again (bounds on m in this case
may be derived using arguments based on the
finiteness of packing numbers of the hypothesis
space; see Engel (2005) for details), if the size
of Dt saturates at m, the memory and time costs
of the resulting algorithms are quadratic in m.
For the complete derivations, as well as detailed
pseudocode of the corresponding algorithms, we
refer the reader to Engel (2005).

Theory

In this section, we derive the two GPTD models
mentioned above, explicitly stating the assump-
tions underlying each model.

MRPs with Deterministic Transitions
In the deterministic case, the Bellman equa-
tion (4) degenerates into

NR.z/ D V.z/ � 	V.z0/; (5)

where z0 is the state or state–action pair succeed-
ing z, under the deterministic policy �. We also
assume that the noise in the rewards is indepen-
dent and Gaussian, but not necessarily identically
distributed. We denote the reward variance by
�2
R.z/ D Var ŒR.z/�. Formally, this means that

the reward R.z/, at some z, satisfies R.z/ D
NR.z/C N.z/ where NR.z/ is the mean reward for

that state. Assume we have a sequence of rewards
sampled along a sampled path �. Then, at the i th
time step, we haveR.zi / D NR.zi /CN.zi /. Using
the random vectorsRt , Vt , andNt defined earlier,
we have N .0;˙ t /, where

˙ t D diag.�2
R.z0/; : : : ; �

2
R.zt�1//; (6)

and diag. � / denotes a diagonal matrix whose
diagonal elements are the components of the ar-
gument vector. Writing the Bellman equations (5)
for the points belonging to the sample path and
substituting R.zi / D NR.zi / C N.zi /, we obtain
the following set of t equations

R.zi / D V.zi / � 	V.ziC1/CN.zi /;

i D 0; 1; : : : ; t � 1:

554 Gaussian Process Reinforcement Learning

This set of linear equations may be concisely
written as

Rt�1 D HtVt CNt : (7)

General MRPs
Let us consider a decomposition of the
discounted return D into its mean V and a zero-
mean residual �V :

D.z/ D E�D.z/C .D.z/

�E�D.z/
� def
DV.z/C�V .z/: (8)

This decomposition is useful, since it separates
the two sources of uncertainty inherent in the
discounted return process D: For a known MDP
model, V is a (deterministic) function, and the
randomness inD is fully attributed to the intrinsic
randomness in the trajectories generated by the
MDP and policy pair, modeled by �V . On the
other hand, in an MDP in which both transitions
and rewards are deterministic but otherwise un-
known, �V is deterministic (identically zero),
and the randomness in D is due solely to the
extrinsic Bayesian uncertainty, modeled by the
random process V .

Substituting (8) into (2) and Rearranging, we
get

R.z/ D V.z/ � 	V.z0/CN.z; z0/;

where z0 � p�. � jz/ and

N.z; z0/
def
D�V .z/ � 	�V .z0/: (9)

As before, we are provided with a sample path
�, and we may write the model Eqs. (9) for
these samples, resulting in the following set of t
equations:

R.zi /DV.zi / � 	V.ziC1/CN.zi ; ziC1/

for i D 0; : : : ; t � 1:

Using our standard definitions for Rt , Vt , Ht ,
and with Nt D .N.z0; z1/; : : : ; N.zt�1; zt //>,
we again have

Rt�1 D HtVt CNt : (10)

In order to fully define a complete probabilistic
generative model, we also need to specify the
distribution of the noise process Nt . We model
the residuals �V t D .�V .z0/; : : : ; �V .zt //

>

as random Gaussian noise. (This may not be a
correct assumption in general; however, in the
absence of any prior information concerning the
distribution of the residuals, it is the simplest
assumption we can make, since the Gaussian
distribution possesses the highest entropy among
all distributions with the same covariance. It is
also possible to relax the Gaussianity requirement
on both the prior and the noise. The resulting
estimator may then be shown to be the linear
minimum mean-squared error estimator for
the value.) In particular, this means that the
distribution of the vector �V t is completely
specified by its mean and covariance. Another
assumption we make is that each of the residuals
�V .zi / is independently distributed. Denoting
�2
i D VarŒD.zi /�, the distribution of �V t is

given by

�V t � N .0; diag.� t //;

where � t D
�
�2

0 ; �
2
1 ; : : : ; �

2
t

�>
. Since Nt D

Ht�V t , we have Nt � N .0;˙ t / with

˙ t D Htdiag.� t /H>
t

D

2

6
6
6
6
6
6
6
6
6
6
4

�2
0 C 	

2�2
1 �	�2

1 0 : : : 0 0
�	�2

1 �2
1 C 	

2�2
2 �	�2

2 0 : : : 0

0 �	�2
2 �2

2 C 	
2�2

3

: : :
:::

::: 0
: : :

: : :
: : : 0

0
:::

: : :
: : : �	�2

t�1

0 0 : : : 0 �	�2
t�1 �2

t�1 C 	
2�2
t

3

7
7
7
7
7
7
7
7
7
7
5

: (11)

Gaussian Process Reinforcement Learning 555

G

Applications

Any RL algorithm that requires policy evaluation
as an algorithmic component can potentially use
a GPTD algorithm for this task. In particular, this
is true of algorithms based on Howard’s policy it-
eration. In Engel et al. (2005a) and Engel (2005),
it is shown how GPTD may be used to construct a
SARSA-type algorithm (Rummery and Niranjan
1994; Sutton and Barto 1998), called GPSARSA.
In Engel et al. (2005b), GPSARSA was used to
learn control policies for a simulated Octopus
arm. In Ghavamzadeh and Engel (2007), GPTD
was used within a Bayesian actor–critic learning
algorithm.

Future Directions

By virtue of the posterior covariance, GPTD
algorithms compute a confidence measure (or,
more precisely, Bayesian credible intervals) for
their value estimates. So far, little use has been
made of this additional information. Several po-
tential uses of the posterior covariance may be
envisaged:

1. It may be used to construct stopping rules for
value estimation.

2. It may be used to guide exploration.
3. In the context of Bayesian actor–critic algo-

rithms (Ghavamzadeh and Engel 2007), it may
be used to control the size and direction of
policy updates.

Further Reading

Yaakov Engel’s doctoral thesis (Engel 2005) is
currently the most complete reference to GPTD
methods. Two conference papers (Engel et al.
2003, 2005a) provide a more concise view. The
first of these introduces the GPTD model for
deterministic MRPs, while the second introduces
the general MDP model, as well as the GP-
SARSA algorithm. A forthcoming journal arti-
cle will subsume these two papers and include
some additional results, concerning the connec-

tion between GPTD and the popular TD(�) and
LSTD(�) algorithms.

Recommended Reading

Bellman RE (1956) A problem in the sequential design
of experiments. Sankhya 16:221–229

Bellman RE (1957) Dynamic programming. Princeton
University Press, Princeton

Bertsekas DP (1995) Dynamic programming and opti-
mal control. Athena Scientific, Belmont

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic
programming. Athena Scientific, Belmont

Boyan JA (1999) Least-squares temporal difference
learning.
In: Proceedings of the 16th international conference
on machine learning, Bled. Morgan Kaufmann, San
Francisco, pp 49–56

Bradtke SJ, Barto AG (1996) Linear least-squares
algorithms for temporal difference learning. Mach
Learn 22:33–57

Dearden R, Friedman N, Andre D (1999) Model based
Bayesian exploration. In: Proceedings of the fif-
teenth conference on uncertainty in artificial intel-
ligence, Stockholm. Morgan Kaufmann, San Fran-
cisco, pp 150–159

Dearden R, Friedman N, Russell S (1998) Bayesian
Q-learning. In: Proceedings of the fifteenth na-
tional conference on artificial intelligence, Madison.
AAAI, Menlo Park, pp 761–768

Duff M (2002) Optimal learning: computational pro-
cedures for Bayes-adaptive Markov decision pro-
cesses. PhD thesis, University of Massachusetts,
Amherst

Engel Y (2005) Algorithms and representations for
reinforcement learning. PhD thesis, The Hebrew
University of Jerusalem

Engel Y, Mannor S, Meir R (2003) Bayes meets
Bellman: the Gaussian process approach to tem-
poral difference learning. In: Proceedings of the
20th international conference on machine learning,
Washington, DC. Morgan Kaufmann, San Francisco

Engel Y, Mannor S, Meir R (2005) Reinforcement
learning with Gaussian processes. In: Proceedings
of the 22nd international conference on machine
learning, Bonn

Engel Y, Szabo P, Volkinshtein D (2005) Learning to
control an Octopus arm with Gaussian process tem-
poral difference methods. Technical report, Tech-
nion Institute of Technology. www.cs.ualberta.ca/�
yaki/reports/octopus.pdf

Ghavamzadeh M, Engel Y (2007) Bayesian actor-critic
algorithms. In: Ghahramani Z (ed) 24th interna-
tional conference on machine learning, Corvalis.
Omnipress, Corvallis

Howard R (1960) Dynamic programming and Markov
processes. MIT, Cambridge

www.cs.ualberta.ca/~yaki/reports/octopus.pdf
www.cs.ualberta.ca/~yaki/reports/octopus.pdf

556 Gaussian Processes

Kaelbling LP, Littman ML, Cassandra AR (1998) Plan-
ning and acting in partially observable stochastic
domains. Artif Intell 101:99–134

Kushner HJ, Yin CJ (1997) Stochastic approximation
algorithms and applications. Springer, Berlin

Littman ML (1994) Markov games as a framework
for multi-agent reinforcement learning. In: Proceed-
ings of the 11th international conference on ma-
chine learning (ICML-94), New Brunswick. Mor-
gan Kaufmann, New Brunswick, pp 157–163

Mannor S, Simester D, Sun P, Tsitsiklis JN (2004)
Bias and variance in value function estimation. In:
Proceedings of the 21st international conference on
machine learning, Banff

Poupart P, Vlassis NA, Hoey J, Regan K (2006) An
analytic solution to discrete Bayesian reinforcement
learning. In: Proceedings of the twenty-third in-
ternational conference on machine learning, Pitts-
burgh, pp 697–704

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley, New
York

Rummery G, Niranjan M (1994) On-line Q-learning
using connectionist systems. Technical report
CUED/F-INFENG/TR 166, Cambridge University
Engineering Department

Strens M (2000) A Bayesian framework for reinforce-
ment learning. In: Proceedings of the 17th inter-
national conference on machine learning, Stanford.
Morgan Kaufmann, San Francisco, pp 943–950

Sutton RS (1984) Temporal credit assignment in rein-
forcement learning. PhD thesis, University of Mas-
sachusetts, Amherst

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Tsitsiklis JN, Van Roy B (1996) An analysis of
temporal-difference learning with function approxi-
mation. Technical report LIDS-P-2322. MIT, Cam-
bridge

Wang T, Lizotte D, Bowling M, Schuurmans D (2005)
Bayesian sparse sampling for on-line reward opti-
mization. In: Proceedings of the 22nd international
conference on machine learning, Bonn. ACM, New
York, pp 956–963

Watkins CJCH (1989) Learning from delayed rewards.
PhD thesis, King’s College, Cambridge

Gaussian Processes

�Bayesian Nonparametric Models

Generality and Logic

�Logic of Generality

Generalization

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

A hypothesis, h, is a predicate that maps an
instance to true or false. That is, if h.x/ is true,
then x is hypothesized to belong to the concept
being learned, the target. Hypothesis, h1, is more
general than or equal to h2, if h1 covers at least as
many examples as h2 (Mitchell, 1997). That is,
h1 	 h2 if and only if

.8x/Œh1.x/! h2.x/�

A hypothesis, h1, is strictly more general than h2,
if h1 	 h2 and h2 — h1.

Note that the more general than ordering is
strongly related to subsumption.

Cross-References

�Classification
� Induction
�Learning as Search
�Logic of Generality
� Specialization
� Subsumption

Recommended Reading

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Generalization Bounds

Mark Reid
The Australian National University, Canberra,
ACT, Australia

Synonyms

Inequalities; Sample complexity

http://dx.doi.org/10.1007/978-1-4899-7687-1_928
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_769
http://dx.doi.org/10.1007/978-1-4899-7687-1_800
http://dx.doi.org/10.1007/978-1-4899-7687-1_100218
http://dx.doi.org/10.1007/978-1-4899-7687-1_100415

Generalization Bounds 557

G

Definition

In the theory of statistical machine learning, a
generalization bound – or, more precisely, a gen-
eralization error bound – is a statement about the
predictive performance of a learning algorithm or
class of algorithms. Here, a learning algorithm
is viewed as a procedure that takes some finite
training sample of labeled instances as input and
returns a hypothesis regarding the labels of all in-
stances, including those which may not have ap-
peared in the training sample. Assuming labeled
instances are drawn from some fixed distribution,
the quality of a hypothesis can be measured
in terms of its risk – its incompatibility with
the distribution. The performance of a learning
algorithm can then be expressed in terms of the
expected risk of its hypotheses given randomly
generated training samples.

Under these assumptions, a generalization
bound is a theorem, which holds for any
distribution and states that, with high probability,
applying the learning algorithm to a randomly
drawn sample will result in a hypothesis with
risk no greater than some value. This bounding
value typically depends on the size of the training
sample, an empirical assessment of the risk of the
hypothesis on the training sample as well as the
“richness” or “capacity” of the class of predictors
that can be output by the learning algorithm.

Motivation and Background

Suppose we have built an e-mail classifier and
then collected a random sample of e-mail labeled
as “spam” or “not spam” to test it on. We notice
that the classifier incorrectly labels 5 % of the
sample. What can be said about the accuracy of
this classifier when it is applied to new, previ-
ously unseen e-mail? If we make the reasonable
assumption that the mistakes made on future e-
mails are independent of mistakes made on the
sample, basic results from statistics tell us that the
classifier’s true error rate will also be around 5 %.

Now suppose that instead of building a classi-
fier by hand we use a learning algorithm to infer
one from the sample. What can be said about

the future error rate of the inferred classifier if it
also misclassifies 5 % of the training sample? In
general, the answer is “nothing” since we can no
longer assume future mistakes are independent of
those made on the training sample. As an extreme
case, consider a learning algorithm that outputs
a classifier that just “memorizes” the training
sample – predicts labels for e-mail in the sample
according to what appears in the sample – and
predicts randomly otherwise. Such a classifier
will have a 0 % error rate on the sample, however,
if most future e-mail does not appear in the
training sample the classifier will have a true error
rate around 50 %.

To avoid the problem of memorizing or over-
fitting the training data it is necessary to restrict
the “flexibility” of the hypotheses a learning al-
gorithm can output. Doing so forces predictions
made off the training set to be related to those
made on the training set so that some form of
generalization takes place. However, doing this
can limit the ability of the learning algorithm to
output a hypothesis with small risk. Thus, there
is a classic and trade-off: the bias being the limits
placed on how flexible the hypotheses can be
versus the variance between the training and the
true error rates (see bias variance decomposition).

By quantifying the notion of hypothesis flex-
ibility in various ways, generalization bounds
provide inequalities that show how the flexibility
and empirical error rate can be traded off to con-
trol the true error rate. Importantly, these state-
ments are typically probabilistic but distribution-
independent – they hold for nearly all sets of
training data drawn from a fixed but unknown dis-
tribution. When such a bound holds for a learning
algorithm it means that, unless the choice of train-
ing sample was very unlucky, we can be confident
that some form of generalization will take place.
The first results of this kind were established by
Vapnik and Chervonenkis (1971) about 40 years
ago and the measure of hypothesis flexibility they
introduced – the �VC dimension (see below) –
now bears their initials. A similar style of results
were obtained independently by Valiant in 1984
in the Probably Approximately Correct, or � PAC
learning framework (Valiant 1984). These two
lines of work were drawn together by Blumer

http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_631

558 Generalization Bounds

et al. (1989) and now form the basis of what is
known today as statistical learning theory.

Details

For simplicity, we restrict our attention to gener-
alization bounds for binary � classification prob-
lems such as the spam classification example
above. In this setting instances (e.g., e-mail) from
a set X are associated with labels from a set
Y D f�1; 1g (e.g., indicating not spam/spam)
and an example ´ D .x; y/ is a labeled instance
from Z WD X � Y . The association of instances
to labels is assumed to be governed by some
unknown distribution P over Z .

A hypothesis h is a function that assigns la-
bels h.x/ 2 Y to instances. The quality of a
hypothesis is assessed via a loss function ` W Y �
Y ! Œ0;1, which assigns penalty `.y; y0) when
h predicts the label y0 D h.x/ for the example
(x; y). For convenience, we will often combine
the loss and hypothesis evaluation on an example
´ D .x; y/ by defining `h.´/ D `.y; h.x//.
When examples are sampled fromP the expected
penalty, or risk

Lp.h/ WD EP Œ`h.´/�

can be interpreted as a measure of how well h
models the distribution P . A loss that is prevalent
in classification is the 0–1 loss `0�1.y; y0/ D

Œy ¤ y0� where Œp� is the indicator function
for the predicate p. This loss simply assigns a
penalty of 1 for an incorrect prediction and 0
otherwise. The associated 0–1 risk for h is the
probability the prediction h.x/ disagrees with a
randomly drawn sample (x, y) from P . Unless
stated otherwise, the bounds discussed below are
for the 0–1 loss only but, with care, can usually
be made to hold with more general losses also.

Once a loss is specified, the goal of a learning
algorithm is to produce a low-risk hypothesis
based on a finite number of examples. Formally,
a learning algorithm A is a procedure that takes
a training sample z D .´1; : : : ; ´n/ 2 Zn as
input and returns a hypothesis h D A.z/ with an
associated empirical risk

OLz.h/ WD
1

n

nX

iD1

`h.´i /:

In order to relate the empirical and true risks,
a common assumption made in statistical learn-
ing theory is that the examples are drawn inde-
pendently from P . In this case, a sample z =
(´1; : : : ; ´n) is a random variable from the prod-
uct distributionP n over Zn. Since the sample can
be of arbitrary but finite size a learning algorithm
can be viewed as a function A W

S1
nD1 Zn ! H

where H is the algorithm’s � hypothesis space.
A generalization bound typically comprises

several quantities: an empirical estimate of a
hypothesis’s performance OLz.h/; the actual (and
unknown) risk of the hypothesis LP .h/; a con-
fidence term ı 2 [0, 1]; and some measure of
the flexibility or complexity C of the hypotheses
that can be output by learning algorithm. The
majority of the bounds found in the literature fit
the following template.

�A generic generalization bound: Let A be
a learning algorithm, P some unknown dis-
tribution over X � Y , and ı > 0. Then,
with probability at least 1 � ı over randomly
drawn samples z from P n, the hypothesis
h D A.z/ has risk LP .h/ no greater than
OLz.h/C
.ı; C /.

Of course, there are many variations, refine-
ments, and improvements of the bounds pre-
sented below and not all fit this template. The
bounds discussed below are only intended to
provide a survey of some of the key ideas and
main results.

Basic bounds: The penalties `h.´i / WD

`.yi ; h.xi // made by a fixed hypothesis h

on a sample z D .´1; : : : ; ´n/ drawn from
P n are independent random variables. The
law of large numbers guarantees (under some
mild conditions) that their mean OLz.h/ D
1
n

Pn
iD1 `h.´i / converges to the true risk

LP .h/ D EP Œ`h.´/� for h as the sample
size increases and several inequalities from
probability theory can be used to quantify this
convergence. A key result is �McDiarmid’s
inequality, which can be used to bound the

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_328
http://dx.doi.org/10.1007/978-1-4899-7687-1_521

Generalization Bounds 559

G

deviation of a function of independent random
variables from its mean. Since the 0–1 loss takes
values in [0, 1], applying this result to the random
variables `h.Zi / gives

P n.LP .h/ > OLz.h/C "/
 exp.�2n"2/: (1)

We can invert this and obtain an upper bound for
the true risk that will hold on a given proportion
of samples. That is, if we wantLP .h/> OLz.h/C

to hold on at least 1 � ı of the time on randomly
drawn samples we can solve ı D exp.�2n"2/ for

" and obtain " D
q

ln 1
ı

2n so that

P n

0

@LP .h/
 OLz.h/C

s
ln 1
ı

2n

1

A 	 1 � ı: (2)

This simple bound lays the foundation for many
of the subsequent bounds discussed below and

is the reason for the ubiquity of the
q

ln 1
ı

n
-like

terms.
A crucial observation to make about the above

bound is that while it holds for any hypothesis h it
does not hold for all h 2 H simultaneously. That
is, the samples for which the bounds hold for h1

may be completely different to those which make
the bound hold for h2. Since a generalization
bound must hold for all possible hypotheses out-
put by a learning algorithm we need to extend the
above analysis by exploiting additional properties
of the hypothesis space H.

In the simple case when there are only finitely
many hypothesis, we use the union bound. This
states that for any distribution P and any finite or
countably infinite sequence of events A1, A2 : : :

we have P.
S
i Ai /

P
i P.Ai /. For H D

fh1; : : : ; hmg we consider the events Zh D fz 2
Zn W LP .h/ > OLz.h/C
g when samples of size
n give empirical risks for h that are least " smaller
than its true risk. Using the union bound and (1)
on these events gives

P n

[

h2H
Zh.n; "/

!

mX

iD1

P n.Zh.n; "//

D m � exp.�2n"2/:

This is a bound on the probability of draw-
ing a training sample from P n such that every
hypothesis has a true risk that is " larger than its
empirical risk. Inverting this inequality by setting
ı D m exp.�2n"2/ yields the following bound.

Finite class bound: Suppose A has finite hy-
pothesis class H D fh1; : : : ; hmg. Then with
probability at least 1 � ı over draws of z from
P n the hypothesis h D A.z/ satisfies

LP .h/
 OLz.h/C

s
ln jHj C ln 1

ı

2n
: (3)

It is instructive to compare this to the single
hypothesis bound in (2) and note the bound is
weakened by the additional term jHj.

Since the union bound also holds for countable
sets of events this style of bound can be extended
from finite hypothesis classes to countable ones.
To do this requires a slight modification of the
above argument and the introduction of a distri-
bution � over a countable hypothesis space H D
fh1; h2; : : :g, which is chosen before any samples
are seen. This distribution can be interpreted as
a prior belief or preference over the hypotheses
in H. Letting ı.h/ D ı ��.h/ in the bound (2)
implies that for each H we have

P n

0

@LP .h/ < OLz.h/C

s
ln 1
ı ��.h/

2n

1

A < ı ��.h/:

Thus, applying the countable union bound to the
union of these events over all of H, and noting
that

P
h2H ı. �.h/ D ı since � is a distribution

over H, gives use the following bound:

Countable class bound: Suppose � is a probabil-
ity distribution over a finite or countably infinite
hypothesis space H. Then with probability at least
1�ı over draws of z fromP n the following bound
holds for all h 2 H

LP .h/ � OLz.h/C

s
ln 1

�.h/
C ln 1

ı

2n
: (4)

Although the finite and countable class bounds
are proved using very similar techniques (indeed,

560 Generalization Bounds

the former can be derived from the latter by
choosing �.h/ D 1

jHj
), they differ in the type

of penalty they introduce for simultaneously
bounding all the hypotheses in H. In (3), the
penalty ln jHj is purely a function of the size of
the class whereas in (4) the penalty ln 1

�.h/
varies

with h. These two different styles of bound can
be seen as templates for the two main classes
of bounds discussed below: the hypothesis-
independent bounds of the next section and the
hypothesis-dependent bounds in the section on
PAC-Bayesian bounds. The main conceptual leap
from here is the extension of the arguments above
to non-countable hypothesis classes.

Class complexity bounds: A key result in extending
the notion of size or complexity in the above
bounds to more general classes of hypotheses is
the symmetrization lemma. Intuitively, it is based
on the observation that if the empirical risks for
different samples are frequently near the true risk
then they will also be near each other. Formally, it
states that for any " > 0 such that n"2 � 2 we
have

P n

sup
h2H

jLP .h/� OLz.h/j > "

!

� 2P 2n

sup
h2H

j OLz0.h/� OLz.h/j >
"

2

!

: (5)

Thus, to obtain a bound on the difference between
empirical and true risk it suffices to bound the
difference in empirical risks on two indepen-
dent samples z and z0, both drawn from P n.
This is useful since the maximum difference
suph2H j OLz0.h/� OLz.h/j is much easier to handle
than the difference involvingLP .h/ as the former
term only evaluates losses on the points in z and
z0 while the latter takes into account the entire
space Z .

To study these restricted evaluations, we de-
fine the restriction of a function class F to the
sample z by Fz D f.f .´1/; : : : ; f .´n// W

f 2 Fg. Since the empirical risk OLz.h/ D
1
n
†niD1`h.´i / only depends on the values of the

loss functions `h on samples from z we define
the loss class L D `H D f`h W h 2 Hg and
consider its restriction Lz as well as the restriction
Hz of the hypothesis class it is built upon. As we

will see, the measures of complexity of these two
classes are closely related.

One such complexity measure is arrived at by
examining the size of a restricted function class
Fz as the size of the sample z increases. The
growth function or � shattering coefficient for
the function class F is defined as the maximum
number of distinct values the vectors in Fz can
take given a sample of size n W Sn.F/ D
supz2Zn jFzj. In the case of binary classification
with a 0–1 loss, it is not hard to see that the
growth functions for both L and F are equal,
that is, Sn.L/ D Sn.H/, and so they can be
used interchangeably. Applying a union bound
argument to (1) as in the previous bounds guar-
antees that P n.suph2H jLP .h/ � OLz.h/j > "/

2Sn.H/ exp.�n"2=8/ and by inversion we obtain
the following generalization bound for arbitrary
hypothesis classes H:

Growth function bound: For all ı > 0, a draw of
z from P n will, with probability at least 1 � ı ,
satisfy for all h 2 H

LP .h/ � OLz.h/C2

s
2 lnSn.H/C 2 ln 2

ı

n
:

(6)

One conclusion that can be immediately drawn
from this bound is that the shattering coefficient
must grow sub-exponentially for the bound to
provide any meaningful guarantee. If the class H
is so rich that hypotheses from it can fit all 2n

possible label combinations – if Sn.H/ D 2n for
all n – then the term

p
2 lnSn.H/=n > 1 and

so (6) just states LP .h/
 1. Therefore, to get
nontrivial bounds from (6) there needs to exist
some value d for which Sn.H/ < 2n whenever
n > d .

VC dimension: This desired property of the
growth function is exactly what is captured by the
�VC dimension VC.H/ of a hypothesis class H.
Formally, it is defined as VC.H/ D maxfn 2 N W

Sn.H/ D 2ng and is infinite if no finite maxi-
mum exists. Whether or not the VC dimension
is finite plays a central role in the consistency of
empirical risk minimization techniques. Indeed,
it is possible to show that using ERM on a
hypothesis class H is consistent if and only if

http://dx.doi.org/10.1007/978-1-4899-7687-1_759
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

Generalization Bounds 561

G

VC.H/ < 1. This is partly due to Sauer’s
lemma, which shows that when a hypothesis class
H has finite VC dimension VC.H/ D dH < 1

its growth function is eventually polynomial in
the sample size. Specifically, for all n 	 dH the

growth function satisfies Sn.H/

�
en
dH

�dH
. By

substituting this result into the Growth Function
Bound (6) we obtain the following bound, which
shows how the VC dimension plays a role that
is analogous to the size a hypothesis class in the
finite case.

�VC dimension bound: Suppose A has hypothesis
class H with finite VC dimension dH. Then with
probability at least 1 � ı over draws of z from P n

the hypothesis h D A.z/ satisfies

LP .h/ � OLz.h/C 2

vu
u
t2dH ln

�
2en
dH

�
C 2 ln 2

ı

n
:

(7)

There are many other bounds in the literature
that are based on the VC dimension. See the
Recommended Reading for pointers to these.

Rademacher averages: Rademacher averages
are a second kind of measure of complexity for
uncountable function classes and can be used to
derive more refined bounds than those above.
These averages arise naturally by treating as a
random variable the sample-dependent quantity
MF .z/ D supf 2F ŒEP Œf � � EzŒf ��. This is just
the largest difference taken over all f 2 F
between its true mean EP Œf � and its empirical
mean EzŒf � WD

1
jzj

Pjzj
iD1 f .´i /. For a loss class

L D `H a bound on this maximum difference –
ML.z/
 B – immediately gives a generaliza-
tion bound of the form LP .h/
 OLz.h/ C B .
Since MF .z/ is a random variable, McDiarmid’s
inequality can be used to bound its value in terms

of its expected value plus the usual
q

ln 1
ı

2n term.
Applying symmetrization it can then be shown
that this expected value satisfies

EPnŒMF .z/�
E

"

sup
f 2F

1

n

nX

iD1

�i .f .´
0
i /�f .´i //

#

 2Rn.F/

where the right-hand expectation is taken over
two independent samples z, z0 � P n and the
Rademacher variables �1; : : : ; �n. These are in-
dependent random variables, each with equal
probability of taking the values �1 or 1, that give
their name to the Rademacher average

Rn.F/ D E

"

sup
f 2F

1

n

nX

iD1

�lf .´i /

#

:

Intuitively, this quantity measures how well the
functions in F can be chosen to align with ran-
domly chosen labels �i . The Rademacher aver-
ages for the loss class L and the hypothesis class
H are closely related. For 0–1 loss, it can be
shown they satisfy Rn.L/ D 1

2Rn.H/.
Putting all the above steps together gives the

following bounds.

Rademacher bound: Suppose A has hypothesis
class H. Then with probability at least 1 � ı over
draws of z from P n the hypothesis h D A.Z/
satisfies

LP .h/ � OLz.h/CRn.H/C

s
ln 1

ı

2n
: (8)

This bound is qualitatively different to the
Growth Function and VC bounds above as
the Rademacher average term is distribution-
dependent whereas the other complexity terms
are purely a function of the hypothesis space.
Indeed, it is possible to bound the Rademacher
average in terms of the VC dimension and
obtain the VC bound (7) from (8). Furthermore,
the Rademacher average is closely related to
the minimum empirical risk via Rn.H/ D
1 � 2EŒinfh2H OLx;�.h/� where OLx;�.h/ is the
empirical risk of h for the randomly labeled
sample z D ..x1; �1/; : : : ; .xn; �n//. Thus, in
principle, Rn.H/ could be estimated for a given
learning problem using standard ERM methods.

The Rademacher bound can be further refined
so that the complexity term is data-dependent
rather than distribution-dependent. This is
done by noting that the Rademacher average
RnF D EŒ ORz.F/� where ORz.F/ is the empirical
Rademacher average for F conditioned on the
sample z. Applying McDiarmid’s inequality to

http://dx.doi.org/10.1007/978-1-4899-7687-1_881

562 Generalization Bounds

the difference between ORz.F/ and its mean gives
a sample-dependent bound:

Empirical Rademacher bound: Under the same
conditions as the Rademacher bound, the following
holds with probability 1 � ı:

LP .h/ � OLz.h/C ORz.H/C 3

s
ln 2

ı

2n
: (9)

PAC-Bayesian bounds: All the bounds in the
previous section provide bounds on determinis-
tic hypotheses, which include complexity terms
that are functions of the entire hypothesis space.
PAC-Bayesian bounds differ from these in two
ways: they provide bounds on nondeterministic
hypotheses – labels may be predicted for in-
stances stochastically; and their complexity terms
are hypothesis-dependent. The term “Bayesian”
given to these bounds refers to the use of a
distribution over hypotheses that is used to define
the complexity term. This distribution can be
interpreted as a prior belief over the efficacy
of each hypothesis before any observations are
made.

Nondeterministic hypotheses are modeled by
assuming that a distribution � over H is used to
randomly draw a deterministic hypothesis h 2
H to predict h.x/ each time a new instance
x is seen. Such a strategy is called a Gibbs
hypothesis for �. Since its behavior is defined
by the distribution �, we will abuse our notation
slightly and define its loss on the example ´ to
be `�.´/ WD Eh��Œ`h.´/�. Similarly, the true
risk and empirical risk for a Gibbs hypothe-
sis are, respectively, defined to be LP .�/ WD
Eh��ŒLP .h/� and OLz.�/ WD Eh��Œ OLz.h/�. As
with the earlier generalization bounds, the aim
is to provide guarantees about the difference
between LP .�/ and OLz.�/. In the case of 0–1
loss, p WD LP .�/ 2 Œ0; 1� is just the probability
of the Gibbs hypothesis for � misclassifying
an example and q WD OLz.�/ 2 Œ0; 1� can be
thought of as an estimate of p. However, unlike
the earlier bounds on the difference between the
true and estimated risk, PAC-Bayesian bounds
are expressed in terms the Kullback–Leibler (KL)
divergence. For the values p; q 2 [0, 1] this is
defined as kl.qkp/ WD q ln q

p
C .1 � q/ ln 1�q

1�p

and for distributions � and � over the hypothesis
space H we write KL.� k �/ WD

R
H ln d�

d�
d�.

Using these definitions, the most common PAC-
Bayesian bound states the following.

Theorem (PAC-Bayesian bound): For all choices
of the distribution � over H made prior to seeing
any examples, the Gibbs hypothesis defined by �
satisfies

kl.LP .�/; OLz.�// �
KL.� k �/C ln nC1

ı

n
(10)

with probability at least 1 – ı over draws of z from
P n.

This says that the difference (as measured by
kl) between the true and empirical risk for the
Gibbs hypothesis based on � is controlled by two
terms: a complexity term KL.�k�/

n
and a sampling

term
ln nC1

ı

n
, both of which converge to zero as n

increases. To make connections with the previous
bounds more apparent, we can weaken (10) using
the inequality kl.q k p/ 	 2.p � q/2 to get
the following bound that holds under the same
assumptions:

LP .�/
 OLz.�/C

s
KL.� k �/C ln nC1

ı

2n
:

The sampling term is similar to the ubiquitous es-
timation penalty in the earlier bounds but with an
additional ln.nC1/=n . The complexity term is a
measure of the complexity of the Gibbs hypothe-
sis for � relative to the distribution � . Intuitively,
KL. � k�/ can be thought of as a parametrized
family of complexity measures where hypotheses
from a region where � is large are “cheap” and
those where � is small are “expensive”. Infor-
mation theoretically, it is the expected number
of extra bits required to code hypotheses drawn
from � using a code based on � instead of a code
based on �. It is for these reasons the PAC-Bayes
bound is said to demonstrate the importance of
choosing a good prior. If the Gibbs hypothesis �,
which minimizes OLz.�/ is also “close” to � then
the bound will be tight.

Generalization Bounds 563

G

Unlike the other bounds discussed above,
PAC-Bayesian bounds are in terms of the
complexity of single meta-classifiers rather
than the complexity of classes. Furthermore, for
specific base hypothesis classes such as margin
classifiers used by SVMs it is possible to get
hypothesis-specific bounds via the PAC-Bayesian
bounds. These are typically much tighter than the
VC or Rademacher bounds.

Other bounds: While the above bounds are
landmarks in statistical learning theory there is
obviously much more territory that has not been
covered here. For starters, the VC bounds for
classification can be refined by using more so-
phisticated results from empirical process theory
such as the Bernstein and Variance-based bounds.
These are discussed in Sect. 5 of Boucheron et al.
(2005). There are also other distribution- and
sample-dependent complexity measures that are
motivated differently to Rademacher averages.
For example, the VC entropy (see Sect. 4.5 of
Bousquet et al. 2004) is a distribution-dependent
measure obtained by averaging jFzj with re-
spect to the sample distribution rather than tak-
ing supremum in the definition of the shattering
coefficient.

Moving beyond classification, bounds for re-
gression problems have been studied in depth and
have similar properties to those for classification.
These bounds are obtained by essentially dis-
cretizing the function spaces. The growth func-
tion is replaced by what is known as a covering
number but the essence of the bounds remain
the same. The reader is referred to Herbrich and
Williamson (2002) for a brief discussion and
Anthony and Bartlett (1999) for more detail.

There are a variety of bounds that, unlike
those above, are algorithm-specific. For exam-
ple, the regularized empirical risk minimization
performed by SVMs has been analyzed within
an algorithmic stability framework. As discussed
in Boucheron et al. (2005) and Herbrich and
Williamson (2002), hypotheses are considered
stable if their predictions are not varied too much
when a single training example is perturbed. Two
other algorithm-dependent frameworks include
the luckiness and compression frameworks, both
summarized in Herbrich and Williamson (2002).

The former gives bounds in terms of an a priori
measure of luckiness – how well a training sam-
ple aligns with biases encoded in an algorithm –
while the latter considers algorithms, like SVMs,
which base hypotheses on key examples within a
training sample.

Recently, there has been work on a type of
algorithm-dependent, relative bound called re-
ductions (see Beygelzimer et al. 2008 for an
overview). By transforming inputs and outputs
for one type of problem (e.g., probability estima-
tion) into a different type of problem (e.g., clas-
sification), bounds for the former can be given
in terms of bounds for the latter while making
very few assumptions. This opens up a variety
of avenues for applying existing results to new
learning tasks.

Cross-References

�Classification
�Empirical Risk Minimization
�Hypothesis Space
�Loss
� PAC Learning
�Regression
�Regularization
� Structural Risk Minimization
�VC Dimension

Recommended Reading

As mentioned above, the uniform convergence
bounds by Vapnik and Chervonenkis (1971)
and the PAC framework of Valiant (1984) were
the first generalization bounds for statistical
learning. Ideas from both were synthesized and
extended by Blumer et al. (1989). The book
by Kearns and Vazirani (1994) provides a good
overview of the early PAC-style bounds while
Vapnik’s comprehensive book (Vapnik 1998),
and Anthony and Bartlett’s book (1999) cover
classification and regression bounds involving the
VC dimension. Rademacher averages were first
considered as an alternative to VC dimension in
the context of learning theory by Koltchinskii and

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_79
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_499
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_799
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

564 Generalization Performance

Panchenko (2001) and were refined and extended
by Bartlett and Mendelson (2003) who provide
a readable overview. Early PAC-Bayesian
bounds were established by McAllester (1999)
based on an earlier PAC analysis of Bayesian
estimators by Shawe-Taylor and Williamson
(1997). Applications of the PAC-Bayesian bound
to SVMs are discussed in Langford’s tutorial
on prediction theory (Langford 2005) and
recent paper by Banerjee (2006) provides an
information theoretic motivation, a simple proof
of the bound in (11), as well as connections with
similar bounds in online learning.

There are several well-written surveys of
generalization bounds and learning theory
in general. Herbrich and Williamson (2002)
present a unified view of VC, compression,
luckiness, PAC-Bayesian, and stability bounds.
In a very readable introduction to statistical
learning theory, Bousquet et al. (2004) provide
good intuition and concise proofs for all but
the PAC-Bayesian bounds presented above.
That introduction is a good companion for
the excellent but more technical survey by
Boucheron et al. (2005) based on tools from the
theory of empirical processes. The latter paper
also provides a wealth of further references and
a concise history of the development of main
techniques in statistical learning theory.

Anthony M, Bartlett PL (1999) Neural network learn-
ing: theoretical foundations. Cambridge University
Press, Cambridge

Banerjee A (2006) On Bayesian bounds. In: ICML’06:
proceedings of the 23rd international conference on
machine learning, Pittsburgh, pp 81–88

Bartlett PL, Mendelson S (2003) Rademacher and
Gaussian complexities: risk bounds and structural
results. J Mach Learn Res 3:463–482

Beygelzimer A, Langford J, Zadrozny B (2008) Ma-
chine learning techniques – reductions between pre-
diction quality metrics. In: Zhen L, Cathy HX (eds)
Performance modeling and engineering. Springer,
New York, pp 3–28

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM (JACM) 36(4):929–965

Boucheron S, Bousquet O, Lugosi G (2005) Theory
of classification: a survey of some recent advances.
ESAIM Probab Stat 9:323–375

Bousquet O, Boucheron S, Lugosi G (2004) Intro-
duction to statistical learning theory. Volume 3176
of lecture notes in artificial intelligence. Springer,
Berlin, pp 169–207

Herbrich R, Williamson RC (2002) Learning and gen-
eralization: theory and bounds. In: Arbib M (ed)
Handbook of brain theory and neural networks, 2nd
ed. MIT Press, Cambridge

Kearns MJ, Vazirani UV (1994) An introduction to
computational learning theory. MIT Press, Cam-
bridge

Koltchinskii V (2001) Rademacher penalties and struc-
tural risk minimization. IEEE Trans Inf Theory
47(5):1902–1914

Langford J (2005) Tutorial on practical prediction the-
ory for classification. J Mach Learn Res 6(1):273–
306

McAllester DA (1999) Some PAC-Bayesian theorems.
Mach Learn 37(3):355–363

Shawe-Taylor J, Williamson RC (1997) A PAC analy-
sis of a Bayesian estimator. In: Proceedings of the
tenth annual conference on computational learning
theory. ACM, New York, p 7

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1142

Vapnik VN (1998) Statistical learning theory. Wiley,
New York

Vapnik VN, Chervonenkis AY (1971) On the uniform
convergence of relative frequencies of events to their
probabilities. Theory Probab Appl 16(2):264–280

Generalization Performance

The generalization performance of a learning
algorithm refers to the performance on
� out-of-sample data of the models learned by
the algorithm.

Cross-References

�Algorithm Evaluation

Generalized Delta Rule

�Backpropagation

General-to-Specific Search

When searching a hypothesis space, a general-
to-specific search starts from the most general
hypothesis and expands the search by specializa-
tion. See �Learning as Search.

http://dx.doi.org/10.1007/978-1-4899-7687-1_620
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_444

Generative and Discriminative Learning 565

G

Generative and Discriminative
Learning

Bin Liu1 and Geoffrey I. Webb2

1Monash University, Clayton, VIC, Australia
2Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

Generative learning refers alternatively to any
classification learning process that classifies by
using an estimate of the joint probability P(y,x)
or to any classification learning process that clas-
sifies by using estimates of the � prior probabil-
ity P(y) and the conditional probability P(xjy/
(Jaakkola and Haussler 1999; Jaakkola et al.
1999; Ng and Jordan 2002; Lasserre et al. 2006;
Bishop 2007), where y is a class and x is a
description of an object to be classified. Given
such models or estimates, it is possible to gener-
ate synthetic objects from the joint distribution.
Generative learning contrasts to discriminative
learning in which a model or estimate of P.yjx/
is formed without reference to an explicit esti-
mate of any of P.y; x/;P.x/, or P.xjy/.

It is also common to categorize as discrimina-
tive approaches based on a decision function that
directly map from input x onto the output y (such
as � support vector machines, � neural networks,
and � decision trees), where the decision risk is
minimized without estimation of P.y; x/;P.xjy/,
or P.yjx/ (Jaakkola and Haussler 1999).

The standard exemplar of generative learn-
ing is � naı̈ve Bayes and that of discriminative
learning is � logistic regression Another impor-
tant contrasting pair is the generative � hidden
Markov model and discriminative � conditional
random field.

It is widely accepted that generative learning
works well when samples are rare, while dis-
criminative learning has better asymptotic error
performance (Ng and Jordan 2002).

Motivation and Background

Efron (1975) provides an early examination of
the generative/discriminative distinction. Efron

performs an empirical comparison of the effi-
ciency of the generative � linear discriminant
analysis (LDA) and discriminative � logistic re-
gression. His results show that logistic regression
has 30 % less efficiency than LDA, which means
the discriminative approach is 30 % slower to
reach its asymptotic error than the generative
approach.

Ng and Jordan (2002) give a theoretical dis-
cussion of the efficiency of generative � naı̈ve
Bayes and discriminative � logistic regression.
This is an interesting pair because they both form
linear models of forms that are directly equivalent
to one another, the only substantive difference
being the manner in which they parameterize
those models. Their result shows that logistic
regression converges toward its asymptotic error
in order n samples, while naı̈ve Bayes converges
in order logn samples. While logistic regression
converges much slower than naı̈ve Bayes, it has
lower asymptotic error than naı̈ve Bayes. These
results suggest that it is desirable to use a gen-
erative approach when training data is scarce
and to use a discriminative approach when there
is enough training data. However, it is worth
noting that the generative/discriminative distinc-
tion is not the only difference in how these two
algorithms parameterize their models. Whereas
logistic regression seeks to directly fit its model to
the discriminative objective, P.yjx/, naı̈ve Bayes
does not directly fit P.y; x/. Instead it fits its
model to P(y) and each P.xi jy/ (where xi is
an individual attribute), making the simplifying
attribute independence assumption.

Recent research into the generative/discrimi-
native learning distinction has concentrated on
the area of hybrids of generative and discrimina-
tive learning as well as generative learning and
discriminative learning in structured data learning
or semi-supervised learning context.

In hybrid approaches, researchers seek to
obtain the merits of both generative learning
and discriminative learning. Some examples
include the Fisher kernel for discriminative
learning (Jaakkola and Haussler 1999), max-
ent discriminative learning (Jaakkola et al.
1999), and principled hybrids of generative and
discriminative models (Lasserre et al. 2006; Zaidi
et al. 2014).

http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1007/978-1-4899-7687-1_155
http://dx.doi.org/10.1007/978-1-4899-7687-1_480
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_951

566 Generative Learning

In structured data learning, the output data
have dependent relationships As an example
of generative learning, hidden Markov models
are used in structured data problems which
need sequential decisions. The discriminative
analogue is conditional random field models.
Another example of discriminatively structured
learning is max-margin Markov networks (Taskar
et al. 2004).

In � semi-supervised learning, co-training and
multiview learning are usually applied to genera-
tive learning (Blum and Mitchell 1998). It is less
straightforward to apply semi-supervised learn-
ing in traditional discriminative learning, since
P(yjx) is estimated by ignoring P(x). Examples of
semi-supervised learning methods in discrimina-
tive learning include transductive SVM, Gaussian
processes, information regularization, and graph-
based methods (Chapelle et al. 2006).

Recommended Reading

Bishop CM (2007) Pattern recognition and machine
learning. Springer, New York

Blum A, Mitchell T (1998) Combining labeled and
unlabeled data with co-training. In: Proceedings of
the eleventh annual conference on computational
learning theory

Chapelle O, Schölkopf B, Zien A (2006) Semi-
supervised learning. The MIT Press, Cambridge

Efron B (1975) The efficiency of logistic regression
compared to normal discriminant analysis. J Am
Stat Assoc 70(352):892–898

Jaakkola TS, Haussler D (1999) Exploiting generative
models in discriminative classifiers. Adv Neural Inf
Process Syst 11:487–493

Jaakkola T, Meila M, Jebara T (1999) Maximum
entropy discrimination. Adv Neural Inf Process
Syst 12

Lasserre JA, Bishop CM, Minka TP (2006) Principled
hybrids of generative and discriminative models. In:
IEEE conference on computer vision and pattern
recognition

Ng AY, Jordan MI (2002) On discriminative vs. gen-
erative classifiers: a comparison of logistic regres-
sion and naive Bayes. Adv Neural Inf Process Syst
2(14):841–848

Taskar B, Guestrin C, Koller D (2004) Max-margin
Markov networks. Adv Neural Inf Process Syst 16

Zaidi N, Carman M, Webb GI (2014) Naive-Bayes
inspired effective pre-conditioner for speeding-up
logistic regression. In: Proceedings of the 14th IEEE
international conference on data mining, ICDM-14,
pp 1097–1102

Generative Learning

Definition

Generative learning refers alternatively to any
classification learning process that classifies by
using an estimate of the joint probability P(y; x)
or to any classification learning process that clas-
sifies by using estimates of the prior probabil-
ity P(y) and the conditional probability P.xjy/,
where y is a class and x is a description of
an object to be classified. Given such models
or estimates it is possible to generate synthetic
objects from the joint distribution. Generative
learning contrasts to discriminative learning in
which a model or estimate of P.yjx/ is formed
without reference to an explicit estimate of any
of P.x/;P.y; x/, or P.xjy/.

Cross-References

�Generative and Discriminative Learning

Genetic and Evolutionary
Algorithms

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Definitions

There are many variations of genetic algorithms
(GA). Here, wedescribe a simple scheme to in-
troduce some of the key terms in genetic and
evolutionary algorithms. See the main entry on
�Evolutionary Algorithms for references to spe-
cific methods.

In genetic learning, we assume that there is
a population of individuals, each of which rep-
resents a candidate problem solver for a given
task. GAs can be thought of as a family of

http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_113
http://dx.doi.org/10.1007/978-1-4899-7687-1_270

Genetic and Evolutionary Algorithms 567

G

general purpose search methods that are capable
of solving a broad range of problems from op-
timization and scheduling to robot control. Like
evolution, genetic algorithms test each individual
from the population and only the fittest survive
to reproduce for the next generation. The algo-
rithm creates new generations until at least one
individual is found that can solve the problem
adequately.

Each problem solver is a chromosome. A posi-
tion, or set of positions in a chromosome is called
a gene. The possible values (from a fixed set of
symbols) of a gene are known as alleles. For
example, a simple genetic algorithm may define
the set of symbols to be f0, 1g, and chromosome
lengths are fixed. The most critical problem in ap-
plying a genetic algorithm is in finding a suitable
encoding of the examples in the problem domain
to a chromosome. A good choice of representa-
tion will make the search easier by limiting the
size of the search space. A poor choice will result
in a large search space. Choosing the size of the
population can be problematic since a small pop-
ulation size provides an insufficient sample over
the space of solutions for a problem and large
population requires extensive evaluation and will
be slow.

Each iteration in a genetic algorithm is called
a generation. Each chromosome in a population
is used to solve a problem. Its performance is
evaluated and the chromosome is given a rating
of fitness. The population is also given an overall
fitness rating based on the performance of its
members. The fitness value indicates how close
a chromosome or population is to the required
solution.

New sets of chromosomes are produced from
one generation to the next. Reproduction takes
place when selected chromosomes from one gen-
eration are recombined with others to form chro-
mosomes for the next generation. The new ones
are called offspring. Selection of chromosomes
for reproduction is based on their fitness values.
The average fitness of the population may also
be calculated at the end of each generation. The
strategy must be modified if too few or too many
chromosomes survive. For example, at least 10 %
and at most 60 % must survive.

Genetic Operators

Operators that recombine the selected chromo-
somes are called genetic operators. Two common
operators are crossover and mutation. Crossover
exchanges portions of a pair of chromosomes
at a randomly chosen point called the crossover
point. Some Implementations have more than one
crossover point. For example, if there are two
chromosomes, X and Y :

X D 1001 01011; Y D 1110 10010

and the crossover point is after position 4, the
resulting offspring are:

O1 D 100110010; O2 D 1110 01011

Offspring produced by crossover cannot contain
information that is not already in the population,
so an additional operator, mutation, is required.
Mutation generates an offspring by randomly
changing the values of genes at one or more
gene positions of a selected chromosome. For
example, if the following chromosome,

Z D 100101011

is mutated at positions 2, 4, and 9, then the
resulting offspring is:

O D 110001010

The number of offspring produced for each new
generation depends on how members are intro-
duced so as to maintain a fixed population size. In
a pure replacement strategy, the whole population
is replaced by a new one. In an elitist strategy, a
proportion of the population survives to the next
generation.

Cross-References

�Evolutionary Algorithms

http://dx.doi.org/10.1007/978-1-4899-7687-1_270

568 Genetic Attribute Construction

Genetic Attribute Construction

�Evolutionary Feature Selection and Construc-
tion

Genetic Clustering

�Evolutionary Clustering

Genetic Feature Selection

�Evolutionary Feature Selection and Construc-
tion

Genetic Grouping

�Evolutionary Clustering

Genetic Neural Networks

�Neuroevolution

Genetic Programming

Moshe Sipper
Ben-Gurion University, Beer-Sheva, Israel

Abstract

Genetic programming (GP) is an evolution-
ary algorithm-based methodology inspired by
biological evolution, used to solve complex
problems.

Genetic programming is a subclass of � evolutio-
nary algorithms, wherein a population of individ-
ual programs is evolved. The main mechanism

behind genetic programming is that of a � genetic
algorithm, namely, the repeated cycling through
four operations applied to the entire population:
evaluate–select–crossover–mutate. Starting with
an initial population of randomly generated pro-
grams, each individual is evaluated in the do-
main environment and assigned a fitness value
representing how well the individual solves the
problem at hand. Being randomly generated, the
first-generation individuals usually exhibit poor
performance. However, some individuals are bet-
ter than others, that is, as in nature, variabil-
ity exists, and through the mechanism of se-
lection, these have a higher probability of be-
ing selected to parent the next generation. The
size of the population is finite and usually con-
stant.

See �Evolutionary Games for a more detailed
explanation of genetic programming.

Genetics-Based Machine Learning

�Classifier Systems

Gibbs Sampling

Gibbs Sampling is a heuristic inference algorithm
for �Bayesian networks. See �Graphical Mod-
els for details.

Gini Coefficient

The Gini coefficient is an empirical measure
of classification performance based on the area
under an ROC curve (AUC). Attributed to the
Italian statistician Corrado Gini (1884–1965), it
can be calculated as 2 � fAUCg � 1 and thus takes
values in the interval Œ�1; 1�, where 1 indicates
perfect ranking performance and �1 indicates
that all negatives are ranked before all positives.
See �ROC Analysis.

http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_594
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_92
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_739

Grammatical Inference 569

G

Gram Matrix

�Kernel Matrix

Grammar Learning

�Grammatical Inference

Grammatical Inference

Lorenza Saitta1 and Michele Sebag2

1Università del Piemonte Orientale, Alessandria,
Italy
2CNRS – INRIA – Université Paris-Sud, Orsay,
France

Synonyms

Grammar learning

Definition

Grammatical inference is concerned with infer-
ring grammars from positive (and possibly neg-
ative) examples (Angluin 1978; Korfiatis and
Paliouras 2008; Sakakibara 2005). A context-
free grammar (CFG) G (equivalent to a push-
down finite-state automaton) is described by a
four tuple .Q; E ; ı;˙/:

• ˙ is the alphabet of terminal symbols, upon
which the grammar is defined.

• The pair .Q; E/ defines a graph, where Q
is the set of nodes (states), and E is the set
of edges (production rules). Q includes one
starting node q0 and a set Qf (Qf � Q) of
final or accepting nodes.

• Every edge in E is labeled by one or several
letters in ˙ , expressed through mapping ı W
E 7! 2˙ .

• Let L.G) denote the language associated to the
grammar. Each string s in L.G) is generated

along a random walk in the graph, starting in
q0 with an initially empty s. Upon traversing
edge e, one symbol from ı.e/ is concatenated
to s. The walk ends upon reaching a final node
(e 2 Qf).

A CFG is determinist if all pairs of edges
.q; q0/ and .q; q00/ (q0 6D q00) bear different labels
(ı.q; q0/

T
ı.q; q00/ D ;).

One generalizes a given CFG by applying one
or several operators, among the following: (1) in-
troducing additional nodes and edges, (2) turning
a node into an accepting one, and (3) merging
two nodes q and q0. In the latter case, some non-
determinism can be introduced (if some edges
.q; r/ and .q0; r 0/ have label(s) in common); en-
forcing a deterministic generalization is done us-
ing the recursive determinization operator (e.g.,
merging nodes r and r 0).

In general, grammatical inference proceeds as
follows (Lang et al. 1998; Oncina and Garcia
1992). Let S be the set of positive examples,
strings on alphabet ˙ . The prefix tree acceptor
(PTA), a most specific generalization of S , is
constructed by associating to each character of
every string a distinct node and applying the de-
terminization operator. This PTA is thereafter it-
eratively generalized by merging a pair of nodes.
Well-known grammar learners are RPNI (Oncina
and Garcia 1992) and BLUE-FRINGE (Lang et al.
1998). RPNI uses a depth first search strategy
and merges the pair of nodes which are closest
to the start node, such that their deterministic
generalization does not cover any negative exam-
ple. BLUE-FRINGE uses a beam search from a
candidate list, selecting the pair of nodes to be
merged after the evidence-driven state merging
(EDSM) criterion, i.e., such that their generaliza-
tion involves a minimal number of final states.

Recommended Reading

Angluin D (1978) On the complexity of minimum
inference of regular sets. Inf Control 39:337–350

Korfiatis G, Paliouras G (2008) Modeling web naviga-
tion using grammatical inference. Appl Artif Intell
22(1–2):116–138

http://dx.doi.org/10.1007/978-1-4899-7687-1_429
http://dx.doi.org/10.1007/978-1-4899-7687-1_115
http://dx.doi.org/10.1007/978-1-4899-7687-1_100190

570 Grammatical Tagging

Lang KJ, Pearlmutter BA, Price RA (1998) Results of
the abbadingo one DFA learning competition and
a new evidence-driven state merging algorithm. In:
ICGI’98: proceedings of the 4th international collo-
quium on grammatical inference. Springer, Berlin,
pp 1–12

Oncina J, Garcia P (1992) Inferring regular languages
in polynomial update time. In: Pattern recognition
and image analysis, vol 1. World Scientific, Singa-
pore/New Jersey, pp 49–61

Sakakibara Y (2005) Grammatical inference in bioin-
formatics. IEEE Trans Pattern Anal Mach Intell
27(7):1051–1062

Grammatical Tagging

� POS Tagging

Graph Clustering

Charu C. Aggarwal
IBM T. J. Watson Research Center, Hawthorne,
NY, USA

Synonyms

Minimum cuts; Network clustering; Spectral
clustering; Structured data clustering

Definition

Graph clustering refers to � clustering of data
in the form of graphs. Two distinct forms of
clustering can be performed on graph data. Vertex
clustering seeks to cluster the nodes of the graph
into groups of densely connected regions based
on either edge weights or edge distances. The
second form of graph clustering treats the graphs
as the objects to be clustered and clusters these
objects on the basis of similarity. The second
approach is often encountered in the context of
structured or XML data.

Motivation and Background

Graph clustering is a form of � graph mining
that is useful in a number of practical applica-
tions including marketing, customer segmenta-
tion, congestion detection, facility location, and
XML data integration (Lee et al. 2002). The
graph clustering problems are typically defined
into two categories:

• Node clustering algorithms: Node clustering
algorithms are generalizations of multidimen-
sional clustering algorithms in which we use
functions of the multidimensional data points
in order to define the distances. In the case of
graph clustering algorithms, we associate nu-
merical values with the edges. These numeri-
cal values need not satisfy traditional proper-
ties of distance functions such as the triangle
inequality. We use these distance values in
order to create clusters of nodes. We note
that the numerical value associated with a
given node may either be a distance value or
a similarity value. Correspondingly, the ob-
jective function associated with the partition-
ing may either be minimized or maximized.
We note that the problem of minimizing the
intercluster similarity for a fixed number of
clusters essentially reduces to the problem
of graph partitioning or the minimum multi-
way cut problem. This is also referred to the
problem of mining dense graphs and pseudo-
cliques. Recently, the problem has also been
studied in the database literature as that of
quasi-clique determination. In this problem,
we determine groups of nodes which are “al-
most cliques.” In other words, an edge exists
between any pair of nodes in the set with a
high probability. A closely related problem
is that of determining shingles (Gibson et al.
2005). Shingles are defined as those subgraphs
which have a large number of common links.
This is particularly useful for massive graphs
which contain a large number of nodes. In
such cases, a min-hash approach (Gibson et al.
2005) can be used in order to summarize the
structural behavior of the underlying graph.

http://dx.doi.org/10.1007/978-1-4899-7687-1_643
http://dx.doi.org/10.1007/978-1-4899-7687-1_100300
http://dx.doi.org/10.1007/978-1-4899-7687-1_100328
http://dx.doi.org/10.1007/978-1-4899-7687-1_100437
http://dx.doi.org/10.1007/978-1-4899-7687-1_100452
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_350

Graph Clustering 571

G

• Graph clustering algorithms: In this case,
we have a (possibly large) number of graphs
which need to be clustered based on their
underlying structural behavior. This problem
is challenging because of the need to match
the structures of the underlying graphs and
use these structures for clustering purposes.
Such algorithms are discussed both in the
context of classical graph data sets as
well as semistructured data. In the case of
semistructured data, the problem arises in
the context of a large number of documents
which need to be clustered on the basis of the
underlying structure and attributes. It has been
shown by Aggarwal et al. (2007) that the use
of the underlying document structure leads to
significantly more effective algorithms.

This chapter will discuss the different kinds of
clustering algorithms and their applications. Each
section will discuss a particular class of clustering
algorithms and the different approaches which
are commonly used for this class.

Graph Clustering as Minimum Cut

The graph clustering problem can be related to
the minimum-cut and graph partitioning prob-
lems. In this case, it is assumed that the under-
lying graphs have weights on the edges. It is
desired to partition the graphs in such a way so as
to minimize the weights of the edges across the
partitions. In general, we would like to partition
the graphs into k groups of nodes. However, since
the special case k D 2 is efficiently solvable, we
would like to first provide a special discussion for
this case. This version is polynomially solvable,
since it is the mathematical dual of the maximum-
flow problem. This problem is also referred to as
the minimum-cut problem.

The minimum-cut problem is defined as fol-
lows. Consider a graphG D .N;A/with node set
N and edge set A. The node set N contains the
source s and sink t . Each edge .i; j / 2 A has a
weight associated with it which is denoted by uij .
We note that the edges may be either undirected

or directed, though the undirected case is often
much more relevant for connectivity applications.
We would like to partition the node set N into
two groups S and N � S . The set of edges
such that one end lies in S and the other lies in
N � S is denoted by C.S;N � S/. We would
like to partition the node set N into two sets S
and N � S , such that the sum of the weights in
C.S;N � S/ is minimized. In other words, we
would like to minimize

P
.i;j / 2 C.S;N�S/uij .

This is the unrestricted version of the minimum-
cut problem. We will examine two variations of
the minimum-cut problem:

• We wish to determine the global minimum
s � t cut with no restrictions on the member-
ship of nodes to different partitions.

• We wish to determine the minimum s � t

cut, in which one partition contains the source
node s and the other partition contains the sink
node t .

It is easy to see that the former problem can be
solved by using repeated applications of the latter
algorithm. By fixing s and choosing different val-
ues of the sink t , it can be shown that the global
minimum cut may be effectively determined.

It turns out that the maximum-flow problem is
the mathematical dual of the minimum-cut prob-
lem. In the maximum-flow problem, we assume
that the weight uij is a capacity of the edge .i; j /.
Each edge is allowed to have a flowxij which is at
most equal to the capacity uij . Each node other
than the source s and sink t is assumed to satisfy
the flow conservation property. In other words,
for each node i 2 N we have

X

j W.i;j /2A

xij D
X

j W.j;i/2A

xj i :

We would like to maximize the total flow orig-
inating from the source and reaching the sink t ,
subject to the above constraints. The maximum-
flow problem is solved with the use of a variety
of augmenting path and preflow push algorithms.
Details of different kinds of algorithms may be
found in the work by Ahuja et al. (1992).

572 Graph Clustering

A closely related problem to the minimum
s � t cut problem is that of determining a global
minimum cut in an undirected graph. This par-
ticular case is more efficient than that of finding
the s � t minimum cut. One way of determin-
ing a minimum cut is by using a contraction-
based edge-sampling approach. While the pre-
vious technique is applicable to both the di-
rected and undirected versions of the problem,
the contraction-based approach is applicable only
to the undirected version of the problem. Fur-
thermore, the contraction-based approach is ap-
plicable only for the case in which the weight
of each edge is uij D 1. While the method
can easily be extended to the weighted version
by varying the edge-sampling probability, the
polynomial running time bounds discussed by
Tsay et al. (1999) do not apply to this case. The
contraction approach is a probabilistic technique
in which we successively sample the edges in
order to collapse nodes into larger sets of nodes.
By successively sampling different sequences of
edges and picking the optimum value (Tsay et al.
1999), it is possible to determine a global min-
imum cut. The broad idea of the contraction-
based approach is as follows. We pick an edge
randomly in the graph and contract its two end
points into a single node. We remove all the
self-loops which are created as a result of the
contraction. We may also create some parallel
edges, which are allowed to remain, since they
influence the sampling probability (Alternatively,
we may replace parallel edges by a single edge of
weight which is equal to the number of parallel
edges. We use this weight in order to bias the
sampling process.) of contractions. The process
of contraction is repeated until we are left with
two nodes. We note that each of this pair of
“super-nodes” corresponds to a set of nodes in the
original data. These two sets of nodes provide us
with the final minimum cut. We note that the min-
imum cut will survive in this approach, if none of
the edges in the minimum cut are sampled during
the contraction. It has been shown by Tsay et al.
that by using repeated contraction of the graph
to a size of

p
n nodes, it is possible to obtain a

correct solution with high probability in O.n2/

time.

Graph Clustering as Multiway Graph
Partitioning

The multiway graph partitioning problem is
significantly more difficult, and is NP-hard
(Kernighan and Lin 1970). In this case, we wish
to partition a graph into k > 2 components,
so that the total weight of the edges whose
ends lie in different partitions is minimized. A
well-known technique for graph partitioning is
the Kerninghan-Lin algorithm (Kernighan and
Lin 1970). This classical algorithm is based on
hill climbing (or more generally neighborhood-
search technique) for determining the optimal
graph partitioning. Initially, we start off with a
random cut of the graph. In each iteration, we
exchange a pair of vertices in two partitions to
see if the overall cut value is reduced. In the
event that the cut value is reduced, then the
interchange is performed. Otherwise, we pick
another pair of vertices in order to perform the
interchange. This process is repeated until we
converge to a optimal solution. We note that this
optimum may not be a global optimum, but may
only be a local optimum of the underlying data.
The main variation in different versions of the
Kerninghan-Lin algorithm is the policy which
is used for performing the interchanges on the
vertices. Some examples of strategies which may
be used in order to perform the interchange are
as follows:

• We randomly pick a pair of vertices and per-
form the interchange, if it improves the under-
lying solution quality.

• We test all possible vertex-pair interchanges
(or a sample of possible interchanges), and
pick the interchange which improves the so-
lution by the greatest amount.

• A k-interchange is one in which a sequence of
k interchanges are performed at one time. We
can test any k-interchange and perform it, if it
improves the underlying solution quality.

• We can pick the optimal k-interchange from a
sample of possibilities.

We note that the use of more sophisticated
strategies allows a better improvement in the

Graph Clustering 573

G

objective function for each interchange, but
also requires more time for each interchange.
For example, the determination of an optimal
k-interchange requires much more time than a
straightforward interchange. This is a natural
trade-off which may work out differently
depending upon the nature of the application
at hand. Furthermore, the choice of the policy
also affects the likelihood of getting stuck at
a local optimum. For example, the use of k-
interchange techniques are far less likely to
result in local optimum for larger values of k.
In fact, by choosing the best interchange across
all possible values of k it is possible to ensure that
a global optimum is always reached. On the other
hand, it is increasingly difficult to implement
the algorithm efficiently with increasing value
of k. This is because the time complexity of
the interchange increases exponentially with the
value of k.

Graph Clustering with k-Means

Two well-known (and related) techniques for
clustering in the context of multidimensional data
(Jain and Dubes 1998) are the k-medoid and
k-means algorithms. In the k-medoid algorithm
(for multidimensional data), we sample a small
number of points from the original data as seeds
and assign every other data point from the clus-
ters to the closest of these seeds. The closeness
may be defined based on a user-defined objective
function. The objective function for the clustering
is defined as the sum of the corresponding dis-
tances of data points to the corresponding seeds.
In the next iteration, the algorithm interchanges
one of the seeds for another randomly selected
seed from the data, and checks if the quality of
the objective function improves upon performing
the interchange. If this is indeed the case, then
the interchange is accepted. Otherwise, we do
not accept the interchange and try another sam-
ple interchange. This process is repeated, until
the objective function does not improve over a
predefined number of interchanges. A closely
related method is the k-means method. The main
difference with the k-medoid method is that we

do not use representative points from the original
data after the first iteration of picking the original
seeds. In subsequent iterations, we use the cen-
troid of each cluster as the seed set for the next
iteration. This process is repeated until the cluster
membership stabilizes.

A method has been proposed by Rattigan et al.
(2007), which uses the characteristics of both the
k-means and k-medoids algorithms. As in the
case of the conventional partitioning algorithms,
it picks k graph nodes as seeds. The main dif-
ferences from the conventional algorithms are in
terms of computation of distances (for assign-
ment purposes), and in determination of sub-
sequent seeds. A natural distance function for
graphs is the geodesic distance, or the smallest
number of hops between a pair of nodes. In order
to determine the seed set for the next iteration,
we compute the local closeness centrality for
each cluster, and use the corresponding node
as the sample seed. Thus, while this algorithm
continues to use seeds from the original data set
(as in the k-medoids algorithm), it uses intuitive
ideas from the k-means algorithms in order to
determine the identity of these seeds.

Graph Clustering with the Spectral
Method

Eigenvector techniques are often used in multidi-
mensional data in order to determine the underly-
ing correlation structure in the data. It is natural
to question as to whether such techniques can also
be used for the more general case of graph data. It
turns out that this is indeed possible with the use
of a method called spectral clustering.

In the spectral clustering method, we make
use of the node-node adjacency matrix of the
graph. For a graph containing n nodes, let us
assume that we have an n � n adjacency matrix,
in which the entry .i; j / correspond to the weight
of the edge between the nodes i and j . This
essentially corresponds to the similarity between
nodes i and j . This entry is denoted by wij , and
the corresponding matrix is denoted by W . This
matrix is assumed to be symmetric, since we are
working with undirected graphs. Therefore, we

574 Graph Clustering

assume that wij D wj i for any pair .i; j /. All
diagonal entries of the matrix W are assumed to
be 0. As discussed earlier, the aim of any node
partitioning algorithm is to minimize (a function
of) the weights across the partitions. The spectral
clustering method constructs this minimization
function in terms of the matrix structure of the
adjacency matrix and another matrix which is
referred to as the degree matrix.

The degree matrix D is simply a diagonal
matrix in which all entries are zero except for the
diagonal values. The diagonal entry di i is equal
to the sum of the weights of the incident edges. In
other words, the entry dij is defined as follows:

dij D

nX

jD1

wij ; i D j;

0; i ¤ j:

We formally define the Laplacian matrix as
follows: (Laplacian matrix): The Laplacian ma-
trix L is defined by subtracting the weighted
adjacency matrix from the degree matrix. In other
words, we have

L D D �W:

This matrix encodes the structural behavior of
the graph effectively and its eigenvector behavior
can be used in order to determine the important
clusters in the underlying graph structure. It can
be shown that the Laplacian matrix L is positive
semidefinite i.e., for any n-dimensional row vec-
tor f D Œf1 : : : f n�we have f �L � f T 	 0. This
can be easily shown by expressing L in terms
of its constituent entries which are a function of
the corresponding weights wij . Upon expansion,
it can be shown that

f �L � f T D .1=2/ �
nX

iD1

nX

jD1

wij � .fi � fJ /
2:

The Laplacian matrix L is positive semidef-
inite. Specifically, for any n-dimensional row
vector f D Œf1 : : : fn�, we have

f �L � f T D .1=2/ �
nX

iD1

nX

jD1

wij � .fi � fJ /
2:

At this point, let us examine some interpreta-
tions of the vector f in terms of the underlying
graph partitioning. Let us consider the case in
which each fi is drawn from the set f0, 1g,
and this determines a two-way partition by la-
beling each node either 0 or 1. The particular
partition to which the node i belongs is defined
by the corresponding label. Note that the ex-
pansion of the expression f �L �f T from the
above relationship simply represents the sum of
the weights of the edges across the partition
defined by f . Thus, the determination of an
appropriate value of f for which the function
f �L � f T is minimized also provides us with a
good node partitioning. Unfortunately, it is not
easy to determine the discrete values of f which
determine this optimum partitioning. Neverthe-
less, we will see later in this section that even
when we restrict f to real values, this provides us
with the intuition necessary to create an effective
partitioning.

An immediate observation is that the indicator
vector f D Œ1 : : : 1� is an eigenvector with
a corresponding eigenvalue of 0. We note that
f D Œ1 : : : 1� must be an eigenvector, since L
is positive semidefinite and f �L � f T can be 0
only for eigenvectors with 0 eigenvalues. This
observation can be generalized further in order to
determine the number of connected components
in the graph. We make the following observation.

The number of (linearly independent) eigen-
vectors with zero eigenvalues for the Laplacian
matrix L is equal to the number of connected
components in the underlying graph.

We observe that connected components are the
most obvious examples of clusters in the graph.
Therefore, the determination of eigenvectors cor-
responding to zero eigenvalues provides us the
information about (relatively rudimentary set of)
clusters. Broadly speaking, it may not be possible
to glean such clean membership behavior from
the other eigenvectors. One of the problems is
that other than this particular rudimentary set of
eigenvectors (which correspond to the connected

Graph Clustering 575

G

components), the vector components of the other
eigenvectors are drawn from the real domain
rather than the discrete f0, 1g domain. Neverthe-
less, because of the nature of the natural interpre-
tation of f �L �f T in terms of the weights of the
edges across nodes with very differing values of
fi , it is natural to cluster together the nodes for
which the values of fi are as similar as possible
across any particular eigenvector on an average.
This provides us with the intuition necessary to
define an effective spectral clustering algorithm,
which partitions the data set into k clusters for
any arbitrary value of k. The algorithm is as
follows:

• Determine the k eigenvectors with the small-
est eigenvalues. Note that each eigenvector has
as many components as the number of nodes.
Let the component of the j th eigenvector for
the i th node be denoted by pij .

• Create a new data set with as many records
as the number of nodes. The i th record in
this data set corresponds to the i th node and
has k components. The record for this node
is simply the eigenvector components for that
node, which are denoted by pi1 : : : pik .

• Since we would like to cluster nodes with sim-
ilar eigenvector components, we use any con-
ventional clustering algorithm (e.g., k-means)
in order to create k clusters from this data
set. Note that the main focus of the approach
was to create a transformation of a struc-
tural clustering algorithm into a more con-
ventional multidimensional clustering algo-
rithm, which is easy to solve. The particu-
lar choice of the multidimensional clustering
algorithm is orthogonal to the broad spectral
approach.

The above algorithm provides a broad frame-
work for the spectral clustering algorithm. The
input parameter for the above algorithm is the
number of clusters k. In practice, a number of
variations are possible in order to tune the quality
of the clusters which are found. More details
on the different methods which can be used for
effective spectral graph clustering may be found
in Chung (1997).

Graph Clustering as Quasi-clique
Detection

A different way of determining massive graphs in
the underlying data is that of determining quasi-
cliques. This technique is different from many
other partitioning algorithms, in that it focuses
on definitions which maximize the edge densities
within a partition, rather than minimizing the
edge densities across partitions. A clique is a
graph in which every pair of nodes are connected
by an edge. A quasi-clique is a relaxation on
this concept, and is defined by imposing a lower
bound on the degree of each vertex in the given
set of nodes. Specifically, we define a 	 -quasi-
clique is as follows:

A k-graph (k 	 1) G is a 	 -quasi-clique
if the degree of each node in the corresponding
subgraph of vertices is at least 	 � k.

The value of 	 always lies in the range (0, 1].
We note that by choosing 	 D 1, this defini-
tion reverts to that of standard cliques. Choosing
lower values of 	 allows for the relaxations which
are more true in the case of real applications.
This is because we rarely encounter complete
cliques in real applications, and at least some
edges within a dense subgraph would always be
missing. A vertex is said to be critical if its degree
in the corresponding subgraph is the smallest
integer which is at least equal to 	 � k.

The earliest piece of work on this problem is
from Abello et al. (2002). The work of Abello
et al. (2002) uses a greedy randomized adap-
tive search algorithm, GRASP, to find a quasi-
clique with the maximum size. A closely related
problem is that of finding frequently occurring
cliques in multiple data sets. In other words,
when multiple graphs are obtained from different
data sets, some dense subgraphs occur frequently
together in the different data sets. Such graphs
help in determining important dense patterns of
behavior in different data sources. Such tech-
niques find applicability in mining important pat-
terns in graphical representations of customers.
The techniques are also helpful in mining cross-
graph quasi-cliques in gene expression data. An
efficient algorithm for determining cross graph
quasi-cliques was proposed by Pei et al. (2005).

576 Graph Clustering

The main restriction of the work proposed by
Pei et al. (2005) is that the support threshold
for the algorithms is assumed to be 100 %. This
restriction has been relaxed in subsequent work
(Zeng et al. 2007). The work by Zeng et al.
(2007) examines the problem of mining frequent,
closed quasi-cliques from a graph database with
arbitrary support thresholds.

Graph Clustering as Dense Subgraph
Determination

A closely related problem is that of dense
subgraph determination in massive graphs. This
problem is frequently encountered in large
graph data sets. For example, the problem of
determining large subgraphs of web graphs was
studied by Gibson et al. (2005). The broad idea in
the min-hash approach is to represent the outlinks
of a particular node as sets. Two nodes are
considered similar if they share many outlinks.
Thus, consider a node A with an outlink set
SA, and a node B with outlink set SB . Then the
similarity between the two nodes is defined by the
Jaccard coefficient, which is defined as SA\SB

SA[SB
.

We note that explicit enumeration of all the edges
in order to compute this can be computationally
inefficient. Rather, a min-hash approach is used
in order to perform the estimation. This min-hash
approach is as follows. We sort the universe
of nodes in a random order. For any set of
nodes in random sorted order, we determine
the first node First(A/ for which an outlink
exists from A to First(A). We also determine
the first node First(B) for which an outlink exists
from B to First(B). It can be shown that the
Jaccard coefficient is an unbiased estimate of
the probability that First(A) and First(B) are
the same nodes. By repeating this process over
different permutations over the universe of nodes,
it is possible to accurately estimate the Jaccard
coefficient. This is done by using a constant
number of permutations c of the node order.
The actual permutations are implemented by
associated c different randomized hash values

with each node. This creates c sets of hash
values of size n. The sort-order for any particular
set of hash-values defines the corresponding
permutation order. For each such permutation,
we store the minimum node index of the outlink
set. Thus, for each node, there are c such
minimum indices. This means that, for each
node, a fingerprint of size c can be constructed.
By comparing the fingerprints of two nodes,
the Jaccard coefficient can be estimated. This
approach can be further generalized with the use
of every s element set contained entirely with
SA and SB . Thus, the above description is the
special case when s is set to 1. By using different
values of s and c, it is possible to design an
algorithm which distinguishes between two sets
that are above or below a certain threshold of
similarity.

The overall technique by Gibson et al. (2005)
first generates a set of c shingles of size s for each
node. The process of generating the c shingles
is extremely straightforward. Each node is pro-
cessed independently. We use the min-wise hash
function approach in order to generate subsets
of size s from the outlinks at each node. This
results in c subsets for each node. Thus, for
each node, we have a set of c shingles. Thus, if
the graph contains a total of n nodes, the total
size of this shingle fingerprint is n � c � sp,
where sp is the space required for each shingle.
Typically, sp will be O.s/, since each shingle
contains s nodes. For each distinct shingle thus
created, we can create a list of nodes which
contain it. In general, we would like to determine
groups of shingles which contain a large number
of common nodes. In order to do so, the method
by Gibson et al. performs a second-order shin-
gling in which the meta-shingles are created from
the shingles. Thus, this further compresses the
graph in a data structure of size c � c. This is
essentially a constant-size data structure. We note
that this group of meta-shingles have the property
that they contain a large number of common
nodes. The dense subgraphs can then be extracted
from these meta-shingles. More details on this
approach may be found in the work by Gibson
et al.

Graph Clustering 577

G

Clustering Graphs as Objects

In this section, we will discuss the problem
of clustering entire graphs in a multigraph
database, rather than examining the node
clustering problem within a single graph. Such
situations are often encountered in the context
of XML data, since each XML document can
be regarded as a structural record, and it may
be necessary to create clusters from a large
number of such objects. We note that XML data
is quite similar to graph data in terms of how
the data is organized structurally. The attribute
values can be treated as graph labels and the
corresponding semistructural relationships as
the edges. In has been shown by Aggarwal et al.
(2007), Dalamagas et al. (2005), Lee et al. (2002),
and Lian et al. (2004) that this structural behavior
can be leveraged in order to create effective
clusters.

Since we are examining entire graphs in this
version of the clustering problem, the problem
simply boils down to that of clustering arbitrary
objects, where the objects in this case have struc-
tural characteristics. Many of the conventional
algorithms discussed by Jain and Dubes (1998)
(such as k-means type partitional algorithms and
hierarchical algorithms) can be extended to the
case of graph data. The main changes required in
order to extend these algorithms are as follows:

• Most of the underlying classical algorithms
typically use some form of distance function
in order to measure similarity. Therefore, we
need appropriate measures in order to define
similarity (or distances) between structural
objects.

• Many of the classical algorithms (such as k-
means) use representative objects such as cen-
troids in critical intermediate steps. While this
is straightforward in the case of multidimen-
sional objects, it is much more challenging in
the case of graph objects. Therefore, appro-
priate methods need to be designed in order
to create representative objects. Furthermore,
in some cases it may be difficult to create
representatives in terms of single objects. We

will see that it is often more robust to use
representative summaries of the underlying
objects.

There are two main classes of conventional
techniques, which have been extended to the case
of structural objects. These techniques are as
follows:

• Structural distance-based approach: This
approach computes structural distances
between documents and uses them in order
to compute clusters of documents. One of
the earliest work on clustering tree structured
data is the XClust algorithm (Lee et al. 2002),
which was designed to cluster XML schemas
in order for efficient integration of large
numbers of document type definitions (DTDs)
of XML sources. It adopts the agglomerative
hierarchical clustering method which starts
with clusters of single DTDs and gradually
merges the two most similar clusters into one
larger cluster. The similarity between two
DTDs is based on their element similarity,
which can be computed according to the
semantics, structure, and context information
of the elements in the corresponding DTDs.
One of the shortcomings of the XClust
algorithm is that it does not make full use of
the structure information of the DTDs, which
is quite important in the context of clustering
tree-like structures. The method by Chawathe
(1999) computes similarity measures based
on the structural edit-distance between
documents. This edit-distance is used in order
to compute the distances between clusters of
documents.

S-GRACE is hierarchical clustering algo-
rithm (Lian et al. 2004). In the work by Lian
et al., an XML document is converted to
a structure graph (or s-graph), and the dis-
tance between two XML documents is de-
fined according to the number of the common
element-subelement relationships, which can
capture better structural similarity relation-
ships than the tree edit-distance in some cases
(Lian et al.).

578 Graph Clustering

• Structural summary-based approach: In many
cases, it is possible to create summaries from
the underlying documents. These summaries
are used for creating groups of documents
which are similar to these summaries. The
first summary-based approach for clustering
XML documents was presented by Dalama-
gas et al. (2005). In the work by Dalamagas
et al., the XML documents are modeled as
rooted, ordered labeled trees. A framework
for clustering XML documents by using struc-
tural summaries of trees is presented. The aim
is to improve algorithmic efficiency without
compromising cluster quality.

A second approach for clustering XML
documents is presented by Aggarwal et al.
(2007). This technique is a partition-based
algorithm. The primary idea in this approach
is to use frequent-pattern mining algorithms in
order to determine the summaries of frequent
structures in the data. The technique uses a
k-means type approach in which each cluster
center comprises a set of frequent patterns
which are local to the partition for that cluster.
The frequent patterns are mined using the
documents assigned to a cluster center in the
last iteration. The documents are then further
reassigned to a cluster center based on the
average similarity between the document and
the newly created cluster centers from the
local frequent patterns. In each iteration the
document assignment and the mined frequent
patterns are iteratively reassigned until the
cluster centers and document partitions con-
verge to a final state. It has been shown by Ag-
garwal et al. that such a structural summary-
based approach is significantly superior to
a similarity function-based approach, as pre-
sented by Chawathe (1999). The method is
also superior to the structural approach by
Dalamagas et al. (2005) because of its use of
more robust representations of the underlying
structural summaries.

Conclusions and Future Research

In this chapter, we presented a review of the
commonly known algorithms for clustering graph

data. The problem of clustering graphs has been
widely studied in the literature, because of its
application to a variety of data mining and data
management problems. Graph clustering algo-
rithms are of two types:

• Node clustering algorithms: In this case, we
attempt to partition the graph into groups of
clusters so that each cluster contains groups
of nodes which are densely connected. These
densely connected groups of nodes may often
provide significant information about how the
entities in the underlying graph are intercon-
nected with one another.

• Graph clustering algorithms: In this case,
we have complete graphs available, and we
wish to determine the clusters with the use of
the structural information in the underlying
graphs. Such cases are often encountered in
the case of XML data, which are commonly
encountered in many real domains.

We provided an overview of the different clus-
tering algorithms available and the trade-offs with
the use of different methods. The major chal-
lenges that remain in the area of graph clustering
are as follows:

• Clustering massive data sets: In some cases,
the data sets containing the graphs may be so
large that they may be held only on disk. For
example, if we have a dense graph containing
107 nodes, then the number of edges may be
as high as 1013. In such cases, it may not even
be possible to store the graph effectively on
disk. In the cases in which the graph can be
stored on disk, it is critical that the algorithm
should be designed in order to take the disk-
resident behavior of the underlying data into
account. This is especially challenging in the
case of graph data sets, because the structural
behavior of the graph interferes with our abil-
ity to process the edges sequentially for many
applications. In the cases in which the graph is
too large to store on disk, it is essential to de-
sign summary structures which can effectively
store the underlying structural behavior of the
graph. This stored summary can then be used
effectively for graph clustering algorithms.

Graph Kernels 579

G

• Clustering graph streams: In this case, we
have large graphs which are received as edge
streams. Such graphs are more challenging,
since a given edge cannot be processed more
than once during the computation process.
In such cases, summary structures need to
be designed in order to facilitate an effective
clustering process. These summary structures
may be utilized in order to determine effective
clusters in the underlying data. This approach
is similar to the case discussed above in which
the size of the graph is too large to store on
disk.

In addition, techniques need to be designed for
interfacing clustering algorithms with traditional
database management techniques. In order to
achieve this goal, effective representations and
query languages need to be designed for graph
data. This is a new and emerging area of research,
and can be leveraged upon in order to further
improve the effectiveness of graph algorithms.

Cross-References

�Group Detection
� Partitional Clustering

Recommended Reading

Abello J, Resende MG, Sudarsky S (2002) Massive
quasi-clique detection. In: Proceedings of the 5th
Latin American symposium on theoretical informat-
ics (LATIN). Springer, Berlin, pp 598–612

Aggarwal C, Ta N, Feng J, Wang J, Zaki MJ (2007)
XProj: a framework for projected structural cluster-
ing of XML documents. In: KDD conference, San
Jose, pp 46–55

Ahuja R, Orlin J, Magnanti T (1992) Network flows:
theory, algorithms, and applications. Prentice-Hall,
Englewood Cliffs

Chawathe SS (1999) Comparing hierachical data in ex-
ternal memory. In: Very large data bases conference.
Morgan Kaufmann, San Francisco, pp 90–101

Chung F (1997) Spectral graph theory. Conference
Board of the Mathematical Sciences, Washington,
DC

Dalamagas T, Cheng T, Winkel K, Sellis T (2005)
Clustering XML documents using structural sum-
maries. In: Information systems. Elsevier, Jan 2005

Gibson D, Kumar R, Tomkins A (2005) Discovering
large dense subgraphs in massive graphs. In: VLDB
conference, pp 721–732. http://www.vldb2005.org/
program/paper/thu/p721-gibson.pdf

Jain A, Dubes R (1998) Algorithms for clustering data.
Prentice-Hall, Englewood

Kernighan BW, Lin S (1970) An efficient heuristic
procedure for partitioning graphs. Bell Syst Tech J
49:291–307

Lee M, Hsu W, Yang L, Yang X (2002) XClust:
clustering XML schemas for effective integration.
In: ACM conference on information and knowledge
management. http://doi.acm.org/10.1145/584792.
584841

Lian W, Cheung DW, Mamoulis N, Yiu S (2004) An
efficient and scalable algorithm for clustering XML
documents by structure. IEEE Trans Knowl Data
Eng 16(1):82–96

Pei J, Jiang D, Zhang A (2005) On mining cross-graph
quasi-cliques. In: ACM KDD conference, Chicago

Rattigan M, Maier M, Jensen D (2007) Graph cluster-
ing with network structure indices. In: Proceedings
of the international conference on machine learning.
ACM, New York, pp 783–790

Tsay AA, Lovejoy WS, Karger DR (1999) Random
sampling in cut, flow, and network design problems.
Math Oper Res 24(2):383–413

Zeng Z, Wang J, Zhou L, Karypis G (2007) Out-of-
core coherent closed quasi-clique mining from large
dense graph databases. ACM Trans Database Syst
32(2):13

Graph Kernels

Thomas Gärtner, Tamás Horváth, and
Stefan Wrobel
Fraunhofer IAIS, Schloss Birlinghoven,
University of Bonn, Sankt Augustin, Germany

Definition

The term graph kernel is used in two related
but distinct contexts: On the one hand, graph
kernels can be defined between graphs, that is,
as a kernel function k W G � G ! R where G
denotes the set of all graphs un-der consideration.
In the most common setting G is the set of all
labeled undirected graphs. On the other hand,
graph kernels can be defined between the vertices
of a single graph, that is, as a kernel function
k : V � V ! R where V is the vertex set
of the graph G under consideration. In the most
common setting G is an undirected graph.

http://dx.doi.org/10.1007/978-1-4899-7687-1_355
http://dx.doi.org/10.1007/978-1-4899-7687-1_637
http://www.vldb2005.org/program/paper/thu/p721-gibson.pdf
http://www.vldb2005.org/program/paper/thu/p721-gibson.pdf
http://doi.acm.org/10.1145/584792.584841
http://doi.acm.org/10.1145/584792.584841

580 Graph Kernels

Motivation and Background

�Kernel methods are a class of machine learning
algorithms that can be applied to any data set
on which a valid, that is, positive definite, kernel
function has been defined. Many kernel methods
are theoretically well founded in statistical learn-
ing theory and have shown good predictive per-
formance on many real–world learning problems.

Approaches for Kernels Between
Graphs

One desireable property of kernels between
graphs is that for non-isomorphic graphs
G;G0 –G the functions k.G; � / and k.G0; � /

are not equivalent. If this property does not hold,
the distance is only a pseudometric rather than
a metric, that is, non-isomorphic graphs can be
mapped to the same point in feature space and
no kernel method can ever distinguish between
the two graphs. However, it can be seen that
computing graph kernels for which the property
does hold is at least as hard as solving graph
isomorphism (Gärtner et al. 2003).

For various classes of graphs, special pur-
pose kernels have been defined such as for paths
(� string kernels) and trees (Collins and Duffy
2002). These kernels are typically defined as
the number of patterns that two objects have in
common or as the inner product in a feature space
counting the number of times a particular pattern
occurs. The problem of computing a graph kernel
where the patterns are all connected graphs, all
cycles, or all paths and occurrence is determined
by subgraph-isomorphism is, however, NP-hard
(Gärtner et al. 2003).

Techniques that have been used to cope with
the computational intractability of such graph
kernels are (1) to restrict the considered pat-
terns, for example, to bound the pattern size by
a constant; (2) to restrict the class of graphs
considered, for example, to trees or small graphs;
(3) to define occurrence of a pattern differently,
that is, not by subgraph-isomorphism; and (4)
to approximate the graph kernel. Note that these
four techniques can be combined.

While for technique (1) it is not immediately
clear if the resulting graph kernel is feasible,
technique (2) allows for fixed parameter tractable
graph kernels. (Notice that even counting paths or
cycles of length k in a graph is #W[1]-complete
while the corresponding decision problem is fixed
parameter tractable.) Though these will often
still have prohibitive runtime requirements, it has
been observed that enumerating cycles in real-
world databases of small molecules is feasible
(Horvath et al. 2004).

With respect to technique (3) it has been pro-
posed to use graph kernels where the patterns
are paths but the occurrences are determined by
homomorphism (Gärtner et al. 2003; Kashima
et al. 2003). Despite the explosion in the number
of pattern occurrences (even very simple graphs
can contain an infinite number of walks, that
is, images of paths under homomorphism), if
one downweights the influence of larger patterns
appropriately, the kernel takes a finite value and
closed form polynomial time computations exist.
To increase the practical applicability of these
graph kernels, it has been proposed to increase
the number of labels by taking neighborhoods
into account (Gärtner 2005) or to avoid “totter-
ing” walks (Mahé et al. 2004).

Various approaches to approximate compu-
tation of graph kernels (4) exist. On the one
hand, work on computing graph kernels based
on restricting the patterns to frequent subgraphs
(Deshpande et al. 2002) can be seen as approx-
imations to the intractable all-subgraphs kernel.
Computing such graph kernels is still NP-hard
and no approximation guarantees are known. On
the other hand, a recent graph kernel (Borgwardt
et al. 2007) based on sampling small subgraphs of
a graph at random is known to have a polynomial
time algorithm with approximation guarantees.

The most common application scenario for
such graph kernels is the prediction pharmaceu-
tical activity of small molecules.

Approaches for Kernels on a Graph

Learning on the vertices of a graph is inher-
ently transductive. Work on kernels between the

http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_790

Graph Mining 581

G

vertices of a graph began with the “diffusion
kernel” (Kondor and Lafferty 2002) and was later
generalized in Smola and Kondor (2003) to a
framework that contains the diffusion kernel as
a special case. Intuitively, these kernels can be
understood as comparing the neighborhoods of
two vertices in the sense that the more neighbors
two vertices have in common, the more similar
they are. For classification, this definition is re-
lated to making the “cluster assumption”, that
is, assuming that the decision boundary between
classes does not cross “high density” regions of
the input space. To compute such graph kernels
for increasing sizes of the neighborhood, one
needs to compute the limit of a matrix poser
series of the (normalized) graph Laplacian or its
adjacency matrix. Different graph kernels arise
from choosing different coefficients. In general,
the limit of such matrix power series can be
computed on the eigenvalues. For geometrically
decaying parameters, the kernel matrix can also
be computed by inverting a sparse matrix ob-
tained by adding a small value to the diagonal
of the Laplacian (in which case the kernel is
called the “regularized Laplacian kernel”) or the
adjacency matrix.

In the case of the regularized Laplacian kernel,
rather than first computing the kernel matrix and
then applying an off-the-shelf implementation of
a kernel method, it is often more effective to re-
formulate the optimization problem of the kernel
method. Several possibilities for such reformula-
tion have been proposed, including changing the
variables as in Gärtner et al. (2006).

The most common application scenario for
such graph kernels is the classification of entities
in a social network.

Recommended Reading

Borgwardt KM, Petri T, Vishwanathan SVN, Kriegel
H-P (2007) An efficient sampling scheme for com-
parison of large graphs. In: Mining and learning
with graphs (MLG 2007), Firenze

Collins M, Duffy N (2002) Convolution kernel for
natural language. In: Advances in neural informa-
tion processing systems (NIPS), Vancouver, vol 16,
pp 625–632

Deshpande M, Kuramochi M, Karypis G (2002) Au-
tomated approaches for classifying structures. In:
Proceedings of the 2nd ACM SIGKDD workshop
on data mining in bioinformatics (BIO KDD 2002),
Edmonton

Gärtner T (2005) Predictive graph mining with kernel
methods. In: Bandyopadhyay S, Maulik U, Holder
LB, Cook DJ (eds) Advanced methods for knowl-
edge discovery from complex data. Springer, Hei-
delberg, pp 95–121

Gärtner T, Flach PA, Wrobel S (2003) On graph ker-
nels: hardness results and efficient alternatives. In:
Proceedings of the 16th annual conference on com-
putational learning theory and the 7th kernel work-
shop (COLT 2003), vol. 2777 of LNCS. Springer,
Heidelberg, pp 129–143

Gärtner T, Le QV, Burton S, Smola AJ, Vishwanathan
SVN (2006) Large-scale multiclass transduction. In:
Advances in neural information processing systems,
vol 18. MIT, Cambride, pp 411–418

Horvath T, Gärtner T, Wrobel S (2004) Cyclic pattern
kernels for predictive graph mining. In: Proceedings
of the international conference on knowledge dis-
covery and data mining (KDD 2004). ACM, New
York, pp 158–167

Kashima H, Tsuda K, Inokuchi A (2003) Marginalized
kernels between labeled graphs. In: Proceedings
of the 20th international conference on machine
learning (ICML 2003). AAAI Press, Menlo Park,
pp 321–328

Kondor RI, Lafferty J (2002) Diffusion kernels on
graphs and other discrete input spaces. In: Sammut
C, Hoffmann A (eds) Proceedings of the nine-
teenth international conference on machine learning
(ICML 2002), pp. 315–322, Morgan Kaufmann, San
Fransisco

Mahé P, Ueda N, Akutsu T, Perret J-L, Vert J-P (2004)
Extensions of marginalized graph kernels. In: Pro-
ceedings of the 21st international conference on
machine learning (ICML 2004). ACM, New York,
p 70

Smola AJ, Kondor R (2003) Kernels and regularization
on graphs. In: Proceedings of the 16th annual con-
ference on computational learning theory and the
7th kernel workshop (COLT 2003). Volume 2777 of
LNCS. Springer, Heidelberg, pp 144–158

Graph Mining

Deepayan Chakrabarti
Yahoo! Research, Sunnyvale, CA, USA

Definition

Graph Mining is the set of tools and techniques
used to (a) analyze the properties of real-world

582 Graph Mining

graphs, (b) predict how the structure and prop-
erties of a given graph might affect some appli-
cation, and (c) develop models that can generate
realistic graphs that match the patterns found in
real-world graphs of interest.

Motivation and Background

A graph G D .V;E/ consists of a set of edges,
E connec-ting pairs of nodes from the set V ;
extensions allow for weights and labels on both
nodes and edges. Graphs edges can be used to
point from one node to another, in which case the
graph is called directed; in an undirected graph,
edges must point both ways: i ! j , j ! i .
A variant is the bipartite graph G D .V1; V2; E/

where only edges linking nodes in V1 to nodes in
V2 are allowed.

A graph provides a representation of the bi-
nary relationships between individual entities,
and thus is an extremely common data structure.
Examples include the graph of hyperlinks linking
HTML documents on the Web, the social network
graph of friendships between people, the bipartite
graphs connecting users to the movies they like,
and so on. As such, mining the graph can yield
useful patterns (e.g., the communities in a social
network) or help in applications (e.g., recom-
mend new movies to a user based on movies
liked by other “similar” users). Graph mining
can also yield patterns that are common in many
real-world graphs, which can then be used to
design graph “generators” (e.g., a generator that
simulates the Internet topology, for use in testing
next-generation Internet protocols).

Structure of Learning System

We split up this discussion into three parts: the
analysis of real-world graphs, realistic graph
generators, and applications on graphs. Detailed
surveys can be found in Newman (2003) and
Chakrabarti and Faloutsos (2006).

Analysis of Real-World Graphs
Four basic types of large-scale patterns have
been detected in real-world graphs. The first is

the existence of power-laws, for instance in the
degree distribution and eigenvalue distribution.
Most nodes have very low degree while a few
have huge degree. This has implications for al-
gorithms whose running times are bounded by
the highest degree. The second set of patterns
is called the “small-world phenomenon,” which
state that the diameter (or effective diameter) of
such graphs are very small with respect to their
size. Recall that the diameter of a connected
graph is the maximum number of hops needed
to travel between any pair of nodes; the effective
diameter is a more robust version that specifies
the number of hops within which a large fraction
(say, 90 %) of all pairs can reach each other. Ex-
amples include a diameter of around 4 for the In-
ternet Autonomous System graph, around 19 for
the entire US power grid, around 4 for the graph
of actors who worked together in movies, and so
on. Third, many large graphs exhibit “community
effects,” where each community consists of a
set of nodes that are more tightly connected to
other nodes in the community compared to nodes
outside. One local manifestation of this effect is
the relatively high clustering coefficient which
counts, given all pairs of edges (i , j) and (j , k),
the probability of the existence of the “transi-
tive” edge (i , k). High clustering coefficients
imply tight connections in neighborhoods, which
is the basis of strong community structure. Fi-
nally, many large graphs were shown to increase
in density as they evolve over time, that is, the
number of edges grows according to a power-
law on the number of nodes. In addition, even
while more nodes and edges are being added, the
diameter of the graph tends to decrease.

Graph Generators
Imagine designing an application that works on
the Internet graph. Collecting the entire Internet
graph in one place is hard, making the testing
process for such an application infeasible. In such
cases, a realistic graph generator can be used to
simulate a large “Internet-like” graph, which can
be used in place of the real graph. This synthetic
graph must match the patterns typically found in
the Internet, including the patterns discussed in
the previous paragraph. Apart from generating

Graph Mining 583

G

such graphs, the generators can provide insights
into the process by which large graphs came to
attain their structure.

One example of this is the preferential attach-
ment model. Starting with a small initial graph,
this model adds one new node every step. The
new node is connected to m previous nodes, with
the probability of connecting to node i being
proportional to its degree. This idea, popularly
known as “the rich get richer,” can be shown
to lead to a power-law degree distribution after
a large number of nodes and edges have been
added.

Many other models have also been proposed,
which demonstrate graph generation as a random
process, an optimization process, as a process on
nodes embedded in some geographic space, and
so on.

Applications

Some graph mining algorithms are meant to solve
some application on any graph(s) provided as
input to the algorithm. Several basic tools are
commonly used in such applications, such as
the �Greedy Search Approach to Graph Mining
the � Inductive Database Search Approach to
Graph Mining spectral methods, graph partition-
ing methods, and models based on random walks
on graphs. Tree Mining is a special case of graph
mining where the graphs are constrained to be
trees. We will discuss a few such applications
here.

Frequent subgraph mining: The aim is to
find subgraphs that occur very frequently in
the particular graph(s) in question (Kuramochi
and Karypis 2001). This is quite useful in
chemical datasets consisting of the graph
structures of many different molecules (say, all
protein molecules that have a certain chemical
property); the frequent subgraphs in such
molecules might represent basic structural units
responsible for giving the molecules their special
property. Unfortunately, the frequent subgraph
problem subsumes the problem of subgraph
isomorphism, and hence is NP-Hard. However,
clever techniques have been devised to represent

subgraphs so that checking for isomorphism can
be done quickly in many cases.

Community detection: The problem is to de-
tect tightly knit groups of nodes, where all nodes
in the group have “similar” linkage structure.
There are many algorithms, each optimizing for
a different notion of similarity. Examples in-
clude graph partitioning methods such as spectral
partitioning (Ng et al. 2002) and METIS that
try to minimize the number of edges linking
nodes across partitions, and co-clustering meth-
ods that aim for homogeneity in links across
partitions.

Information diffusion and virus propagation:
The spread of a contagious disease or a computer
virus can be modeled (somewhat crudely) as a
contact process on a graph, where the nodes
are individuals who can get infected, and the
links allow transmission of the contagion from an
infected individual to an uninfected one. Similar
models have been proposed to model the diffu-
sion of information in social networks. The topol-
ogy of the graph can be used to infer the most “in-
fluential” nodes in the graph, who are most capa-
ble of spreading the information quickly through-
out the graph (Kempe et al. 2003).

Graph kernels: While subgraph isomorphism
is a hard problem, we still need to be able to
compare graphs on the basis of some similarity
measure that can be computed in polynomial
time. In the Kernel-Based Approach to Graph
Mining graph kernels perform this task by com-
puting similarities based on numbers of walks,
paths, cyclic patterns, trees, etc.

Ranking on graphs: Given a graph (say, the
Web hyperlink graph), we often need a ranking
of the nodes in the graph. The ranking could be
static (as in Page-Rank Brin and Page 1998) or
it could depend on a user-specified query node.
Such algorithms typically use some version of
random walks on graphs (Lovász 1993), with
the probability of the walk hitting a node being
correlated with the importance of the node; such
importances in turn yield a ranking of the nodes.
Both static and query-dependent rankings can be
useful in information retrieval settings, where a
user desires information pertinent (i.e., “similar”)
to her query.

http://dx.doi.org/10.1007/978-1-4899-7687-1_354
http://dx.doi.org/10.1007/978-1-4899-7687-1_391

584 Graphical Models

Cross-References

�Graphs
�Graph Kernels
�Greedy Search Approach of Graph Mining
� Inductive Database Approach to Graphmining
�Link Mining and Link Discovery
�Tree Mining

Recommended Reading

Brin S, Page L (1998) The anatomy of a large-scale hy-
pertextual web search engine. Comput Netw ISDN
Syst 30(1–7):107–117

Chakrabarti D, Faloutsos C (2006) Graph mining:
laws, generators and algorithms. ACM Comput Surv
38(1):2

Kempe D, Kleinberg J, Tardos E (2003) Maximizing
the spread of influence through a social network. In:
KDD, Washington, DC

Kuramochi M, Karypis G (2001) Frequent subgraph
discovery. In: ICDM, San Jose, pp 313–320

Lovász L (1993) Random walks on graphs: a survey.
In: Combinatorics: Paul Erdös is eighty, vol 2,
pp 353–397

Newman MEJ (2003) The structure and function of
complex networks. SIAM Rev 45:167–256

Ng A, Jordan M, Weiss Y (2002) On spectral cluster-
ing: analysis and an algorithm. In: NIPS, Vancouver

Graphical Models

Julian McAuley1;2, Tibério Caetano2, and Wray
L. Buntine2;3

1Computer Science Department, University of
California, San Diego, CA, USA
2Statistical Machine Learning Program, NICTA,
Canberra, ACT, Australia
3Faculty of Information Technology, Monash
University, Clayton, VIC, Australia

Definition

Graphical models are a means of compactly rep-
resenting multivariate distributions, allowing for
efficient algorithms to be developed when deal-
ing with high-dimensional data. At their core,

graphical models make use of the fact that high-
dimensional distributions tend to factorize around
local interactions, meaning that they can be ex-
pressed as a product of low-dimensional terms.

The notation we shall use is defined in Table 1,
and some core definitions are presented in Ta-
ble 2.

A few examples of the types of data that can be
efficiently represented using graphical models are
shown in Fig. 1. Here we have high-dimensional
distributions (e.g., the probability of observing
the pixels of a particular image), which we model
in terms of low-dimensional interactions. In each
of the examples presented in Fig. 1, we are simply
asserting that

p.xA; xB jxC /„ ƒ‚ …
function of three variables

D p.xAjxC /p.xB jxC /„ ƒ‚ …
functions of two variables

; (1)

which arises by a straightforward application of
the product rule (Definition 1), along with the fact
that XA and XB are conditionally independent,
given XC (Definition 3). The key observation we
make is that while the left-hand side of (Eq. 1)
is a function of three variables, its conditional
independence properties allow it to be factored
into functions of two variables (note that the
name “graphical models” arises due to the fact
that such interdependencies can be represented
as a graph encoding the relationships between
variables).

In general, we shall have a series of condi-
tional independence statements about X :

˚
XAi
?XBi

ˇ
ˇ XCi

: (2)

It is precisely these statements that define the
“structure” of our multivariate distribution, which
we shall express in the form of a graphical model.

Motivation and Background

Graphical models are ubiquitous as a means
to model multivariate data, since they allow
us to represent high-dimensional distributions
compactly; they do so by exploiting the
interdependencies that typically exist in such

http://dx.doi.org/10.1007/978-1-4899-7687-1_352
http://dx.doi.org/10.1007/978-1-4899-7687-1_349
http://dx.doi.org/10.1007/978-1-4899-7687-1_354
http://dx.doi.org/10.1007/978-1-4899-7687-1_391
http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://dx.doi.org/10.1007/978-1-4899-7687-1_851

Graphical Models 585

G

Graphical Models, Table 1 Notation

Notation Description

X D .X1 : : :XN / A random variable (we shall also useX D .A;B;C : : :/ in figures to improve readability)

x D .x1 : : : xN / A realization of the random variableX

X The sample space (domain) ofX

XA X can be indexed by a set, where we assume A � f1 : : :N g

p.x/ The probability thatX D x

QA The negation of A, i.e., f1 : : :N gnA

XA ? XB XA andXB are independent

XA ? XB

ˇ
ˇXC XA andXB are conditionally independent, givenXC

Graphical
Models, Table 2
Definitions

Definition 1 (product rule) p.xA; xB/ D p.xAjxB/p.xB/

Definition 2 (marginalization) p.xA/ D
P

x QA2X QA
p.xA; x QA/

Definition 3 (conditional independence) XA and XB are said to be condition-
ally independent (given XC) iff p.xajxb; xc/ D p.xajxc/, for all xa, xb , and
xc ; the conventional definition of “independence” is obtained by settingXC D ¿

yesterday’s weather

today’s weather

tomorrow’s weather

cloudy

sprinkler raining

grass wet

the quick brown fox jumps over the lazy dog

XA XB XC

Graphical Models, Fig. 1 Some examples of condi-
tional independence; we say that XA and XB are con-
ditionally independent, given XC , or more compactly
XA ? XB

ˇ
ˇXC

data. Put simply, we can take advantage of the
fact that high-dimensional distributions can often

be decomposed into low-dimensional factors to
develop efficient algorithms by making use of the
distributive law: ab C ac D a.b C c/.

Some motivating examples are presented in
Fig. 1; similar examples are ubiquitous in fields
ranging from computer vision and pattern recog-
nition to economics and the social sciences. Al-
though we are dealing with high-dimensional
data, we can make certain statements about the
structure of the variables involved, allowing us
to express important properties about the dis-
tribution compactly. Some of the properties we
would like to compute include the probabilities
of particular outcomes and the outcomes with the
highest probability.

Theory

Directed Graphical Models
Due to the product rule (Definition 1), it is clear
that any probability distribution can be written as

p.x/ D

NY

iD1

p.x�i
jx<�i

/ (3)

for an arbitrary permutation � of the labels,
where we define <i WDf1 : : : i � 1g. For example
any four-dimensional distribution can be written

586 Graphical Models

Graphical Models, Fig. 2
A directed model (left) and
an undirected model
(right). The joint
distributions they represent
are shown

A

C

B D

E

F A

C

B D

E

F

p(a)p(b a)p(c a)p(d b)p(e b c)p(f b e)
1
Z y (a b)y (a c)y (b d)y (c e)y (b e f)

A

C

B
A C B

A

C

B

p(a,b,c) = p(c)p(a|c)p(b|c) p(a)p(c|a)p(b|c) p(a)p(b)p(c|a,b)
A B BC A C A B

Graphical Models, Fig. 3 Some simple Bayesian Networks and their implied independence statements. Note in
particular that in the rightmost example, we do not have A ? B

ˇ
ˇ C

as

p.xa; xb; xc ; xd / D p.xc/p.xbjxc/p.xd jxc ; xb/

p.xajxc ; xb; xd /: (4)

With this idea in mind, consider a model p.x/
for which we have the conditional independence
statements:

n
p.x�i

jx<�i
/ D p.x�i

jxpa�i
/
o
; (5)

where pa�i
�<�i . We now have

p.x/ D

NY

iD1

p.x�i
jxpa�i

/: (6)

We can interpret pai as referring to the “parents”
of the node i . Essentially, we are saying that
a variable is conditionally independent on its
nondescendants, given its parents.

We can represent (Eq. 6) using a directed
acyclic graph (DAG) by representing each
variable Xi as a node; an arrow is formed from
Xj to Xi if j 2 pai . An example of such a
representation is given in Fig. 2. It can easily be
shown that the resulting graph is always acyclic.

A Bayesian Network (a type of directed graph-
ical model) is simply a set of probability distri-
butions of the form p.x/ D

QN
iD1 p.xi jxpai

/.
Every Bayesian Network can be represented as

a DAG, though we often simply say that the
Bayesian Network “is” the DAG. Some trivial ex-
amples and the type of independence statements
they imply are shown in Fig. 3.

We finish this section with a simple lemma:

Lemma 1 (Topological Sort) Every DAG has at
least one permutation � that “sorts” the nodes
such that each node has a larger index than its
parents; in other words, the factorization associ-
ated to any DAG can be written in the form of
(Eq. 6) for at least one � such that �i > j for all
i , where j 2 pa�i

.

Undirected Graphical Models
Although we have shown how conditional inde-
pendence statements in the form of (Eq. 5) can
be modeled using a DAG, there exist certain
conditional independence statements that are not
satisfied by any Bayesian Network, such as those
in Fig. 4.

Markov random fields (or MRFs) allow for the
specification of a different class of conditional in-
dependence statements, which are naturally rep-
resented by undirected graphs (UGs for short).
The results associated with MRFs require a few
additional definitions:

Definition 4 (Clique) A set of nodes X in a
graph G D .V;E/ is said to form a clique if
.Xi ; Xj / 2 E for every Xi ; Xj 2 X (i.e., the
subgraph X is fully connected).

Graphical Models 587

G

A

C

B

D

A

C

B

A B {C, D}, A B
C D {A, B}⎥

⎥

Graphical Models, Fig. 4 There is no Bayesian Net-
work that captures precisely the conditional independence
properties of the Markov random field at left; there is no
Markov random field that captures precisely the condi-
tional independence properties of the Bayesian Network
at right

Definition 5 (Maximal Clique) A clique X is
said to be maximal if there is no clique Y such
that X � Y .

A Markov random field is a probability distribu-
tion of the form p.x/ D 1

Z

Q
c2C c.xc/, where

C is the set of maximal cliques of G, c is an
arbitrary nonnegative real-valued function, andZ
is simply a normalization constant ensuring thatP
x p.x/ D 1.

Conversion from Directed to Undirected
Graphical Models
It is possible to convert a directed graphical
model to an undirected graphical model via the
following simple procedure:

• For every node Xi with parents paXi
, add

undirected edges between every Xj ; Xk 2

paXi
.

• Replace all directed edges with undirected
edges.

In other words, we are replacing statements of
the form p.xAjxB/ with .xA; xB/, so that the
nodes fXig[paXi

now form a clique in the undi-
rected model. This procedure of “marrying the
parents” is referred to as moralization. Naturally,
the undirected model formed by this procedure
does not precisely capture the conditional inde-
pendence relationships in the directed version.
For example, if it is applied to the graph in Fig. 4
(right), then the nodes A, B , and C form a clique

F

EAB

DC

G F

EB

DC

G

A

Graphical Models, Fig. 5 The Markov blanket of the
nodeA consists of its parents, its children, and the parents
of its children (left). The corresponding structure for
undirected models simply consists of the neighbors of A.
Note that if we convert the directed model to an undirected
one (using the procedure described in section “Conversion
from Directed to Undirected Graphical Models”), then the
Markov blankets of the two graphs are identical

in the resulting model, which does not capture
the fact that A ? B . However, we note that
every term of the form p.xi jxpai

/ appears in
some clique of the undirected model, meaning
that it can include all of the factors implied by
the Bayesian Network.

Characterization of Directed and
Undirected Graphical Models
We can now present some theorems that char-
acterize both Bayesian Networks and Markov
random fields:

Lemma 2 (Local Markov Property) A node in
a DAG is conditionally independent of its non-
descendants, given its parents (this is referred to
as the “directed” local Markov property); a node
in a UG is conditionally independent of its non-
neighbors, given its neighbors.

Definition 6 (Markov Blanket) Given a node
A, its “Markov blanket” is the minimal set of
nodes C such that A ? B

ˇ
ˇ C for all other nodes

B in the model (in other words, the minimal
set of nodes that we must know to “predict” the
behavior of A).

Lemma 3 (Markov Blankets of Directed and
Undirected Graphs) In a directed network, the
Markov blanket of a node A (denoted MB.A/)
consists of its parents, its children, and its chil-
dren’s (other) parents. In an undirected network,
it simply consists of the node’s neighbors (see
Fig. 5).

588 Graphical Models

Definition 7 (d-separation) The notion of a
Markov blanket can be generalized to the notion
of “d-separation.” A set of nodes A is said to
be d-separated from a set B by a set C if
every (undirected) path between A and B is
“blocked” when C is in the conditioning set
(i.e., when C is observed). A path is said to
be blocked if either it contains .p1; p2; p3/

with p1 ! p2 p3 (where arrows indicate
edge directions) and neither p2 nor any of
its descendants are observed, or it contains
.p1; p2; p3/ with p1 ! p2 ! p3 and p2

is observed, or it contains .p1; p2; p3/ with
p1 p2 ! p3 and p2 is observed.

Applying (Definition 7) to the directed graphs
in Fig. 1, we would say that the aqua regions (XC)
d-separate the red regions (XA) from the white
regions (XB); all conditional independence state-
ments can simply be interpreted as d-separation
in a DAG.

The analogous notion of graph separation for
Markov random fields is simpler than that of
d-separation for Bayesian Networks. Given an
undirected graph G and disjoint subsets of nodes
A;B;C , if A is only reachable from B via C ,
this means that A is separated from B by C and
these semantics encode the probabilistic fact that
A ? B

ˇ
ˇ C . This is illustrated in Fig. 6.

In both the directed and undirected case, a
Markov blanket of a node is simply the minimal
set of nodes that d-separates/graph separates that
node from all others.

A complete characterization of the class of
probability distributions represented by Bayesian
Networks can be obtained naturally once con-
ditional independence statements are mapped to

A

C

B

E

D

F

Graphical Models, Fig. 6 The nodes fB;Eg form a
clique; the nodes fB;E;F g form a maximal clique. The
nodes fB;Eg separate the nodes fA;C g from fD;F g

d-separation statements in a DAG. The following
theorem settles this characterization.

Theorem 1 Let p be a probability distribution
that satisfies the conditional independence state-
ments implied by d-separation in a DAG. Then
p factors according to (Eq. 6). The converse also
holds.

For Markov random fields, an analogous char-
acterization exists:

Theorem 2 (Hammersley-Clifford) If a
strictly positive probability distribution p

satisfies the conditional independence statements
implied by graph separation in an undirected
graph G, then

p.x/ D
1

Z

Y

c2C
 c.xc/: (7)

The converse also holds, albeit in a more gen-
eral sense in that p need not be strictly positive.

It can be shown that

directed local
Markov property

local Markov
property

m m

d-separation in a
DAG

and (for positive
p) that

graph separation
in a UG

m m

factorization of
p by (Eq. 6)

factorization of
p by (Eq. 7)

Knowing that directed models can be con-
verted to undirected models, we shall consider
inference algorithms in undirected models only.

Applications

Inference Algorithms in Graphical Models
The key observation that we shall rely on in order
to do inference efficiently is the distributive law:

ab C ac„ ƒ‚ …
three operations

D a.b C c/
„ ƒ‚ …

two operations

: (8)

Graphical Models 589

G

By exploiting the factorization in a graphical
model, we can use this law to perform cer-
tain queries efficiently (such as computing the
marginal with respect to a certain variable).

As an example, suppose we wish to compute
the marginal p.x1/ in an MRF with the following
factorization:

p.x/ D
1

Z

N�1Y

iD1

 .xi ; xiC1/: (9)

Note that the graph representing this model is
simply a chain. Computing the sum in the naı̈ve
way requires computing

p.x1/ D
1

Z

X

x
f2:::N g

N�1Y

iD1

 .xi ; xiC1/; (10)

whose complexity is Θ.
QN
iD1 jXi j/. However,

due to the distributive law, the same result is
simply

p.x1/ D
1

Z

X

x2

h
 .x1; x2/

X

x3

h
 .x2; x3/ � � �

X

xN �1

h
 .xN�2; xN�1/

X

xN

 .xN�1; xN /
iii
; (11)

whose complexity is Θ.
PN�1
iD1 jXi jjXiC1j/. As

a more involved example, consider computing
the marginal with respect to A in the undirected
model in Fig. 2; here we wish to compute

p.a/ D
1

Z

X

b;c;d;e;f

 .a; b/ .a; c/ .b; d/

 .c; e/ .b; e; f / (12)

D
1

Z

X

b

 .a; b/
X

c

 .a; c/
X

d

 .b; d/

X

e

 .c; e/
X

f

 .b; e; f /: (13)

Exploiting the distributive law in this way is often
referred to as the Elimination Algorithm. It is
useful for computing the marginal with respect

to a single variable. However, should we wish to
compute the marginal with respect to each vari-
able, for example, it is not an efficient algorithm
as several operations shall be repeated.

Belief Propagation
In tree-structured models, the elimination algo-
rithm can be adapted to avoid repeated compu-
tations, using a message-passing scheme known
as belief propagation, or the sum-product algo-
rithm. This is presented in Algorithm 3. Here the
“cliques” in the model are simply edges. This
algorithm was invented independently by many
authors and is the most efficient among many
variations.

It can be easily demonstrated that the condi-
tion in Algorithm 3, Line 3, is always satisfied
by some pair of edges until all messages have
been passed: initially, it is satisfied by all of
the “leaves” of the model; messages are then
propagated inward until they reach the “root” of
the tree; they are then propagated outward.

Maximum a Posteriori (MAP) Estimation
Algorithm 3 allows us to compute the marginals
of the variables in a graphical model. There are
other related properties that we may also wish to
compute, such as finding which states have the

Algorithm 3 The sum-product algorithm
Input: an undirected, tree-structured graphical model X

with cliques C fthe cliques are simply edges in this
caseg

1: define mA!B.xA\B/ to be the “message” from
an edge A to an adjacent edge B ffor example
if A D .a; b/ and B D .b; c/ then we have
m.a;b/!.b;c/.xb/g

2: while there exist adjacent edges A;B 2 C for which
mA!B has not been computed do

3: find some A 2 C such that mC !A has been
computed for every neighborC 2 Γ.A/, except B
fΓ.A/ returns the edges neighboring A; initially
the condition is satisfied by all leaf-edgesg

4: mA!B.xA\B/WDP
xAnB

˚
 A.xA/

Q
C 2Γ.A/nB mC !A.xA\C /

5: end while
6: for A 2 C0 do
7: marginalA.xA/WD

 A.xA/
Q

C 2Γ.A/mC !A.xA\C /
8: end for

590 Graphical Models

A

C

B D

E

F A

C

B D

E

F

B,D

A,B,C B,C,EB,C B,E B,E,F

B

Graphical Models, Fig. 7 The graph at left is not
chordal, since the cycle .A;B;E;C/ does not contain a
chord; adding the edge .B;C/ results in a chordal (or tri-
angulated) graph (center). The graph at right is a junction
tree for the graph at center; the cliques of the triangulated

graph form the nodes (circles); their intersection sets are
shown as squares. Note that this is not the only junction
tree that we could form – the node fB;Dg could connect
to any of the other three nodes

highest probability (the maximum a posteriori, or
simply “MAP” states). To do so, we note that
the operations .C;�/ used in Algorithm 3 can
be replaced by .max;�/. This variant is usually
referred to as the max-product (as opposed to
sum-product) algorithm. Indeed, different quanti-
ties can be computed by replacing .C;�/ by any
pair of operations that form a semiring (Aji and
McEliece 2000).

The Junction Tree Algorithm
Algorithm 3 applies only for tree-structured
graphs. We can generalize this algorithm to
general graphs. We do so by working with a
different type of tree-structured graph, whose
nodes contain the cliques in our original graph.
We begin with some definitions:

Definition 8 (Chordal Graph) A graph G is
said to be chordal if every cycle .c1 : : : cn/ in G
contains a chord (i.e., an edge .ci ; cj / such that
j > .i C 1/).

Definition 9 (Clique Graph, Clique Tree) A
clique graph H of a graph G is a graph whose
nodes consist of (maximal) cliques in G and
whose edges correspond to intersecting cliques in
G. A clique tree is a clique graph without cycles.

Definition 10 (Junction Tree) A clique tree H
of G is said to form a junction tree if for every
pair of nodes A;B (i.e., maximal cliques in G),
the path between them .P1 : : : Pm/ satisfies .A\
B/ � Pi for all i 2 f1 : : : mg.

The algorithms we shall define apply only if
the graph in question is chordal, or “triangulated”
(Definition 8); this can always be achieved by

adding additional edges to the graph, as demon-
strated in Fig. 7; adding additional edges means
increasing the size of the maximal cliques in the
graph.

Finding the “optimal” triangulation (i.e., the
one that minimizes the size of the maximal
cliques) is an NP-complete problem. In practice,
triangulation algorithms vary from simple greedy
heuristics (e.g., select a node that has as few
neighbors as possible) to complex approximation
algorithms working within a factor of the optimal
solution (Amir 2001).

The problem of actually generating a junction
tree from the triangulated graph is easily solved
by a maximum spanning tree algorithm (where
we prefer edges corresponding to pairs of cliques
with large intersections).

Theorem 3 Let G be a triangulated graph and
H a corresponding clique tree. If the sum of
the cardinalities of the intersection sets of H is
maximum, then H is a junction tree. The converse
also holds.

If the nodes and edges in Algorithm 3 are
replaced by the nodes (maximal cliques in G) and
edges (intersecting cliques in G) of H, then we
recover the junction tree algorithm.

Approximate Inference
The act of triangulating the graph in the junction
tree algorithm may have the effect of increasing
the size of its maximal cliques, as in Fig. 8.
This may be a problem, as its running time is
exponential in the size of the maximal cliques
in the triangulated graph (this size minus one is
referred to as the tree-width of the graph, e.g., a
chain has a tree-width of 1).

Graphical Models 591

G

Graphical Models, Fig. 8 The graph above at left has
maximal cliques of size two; in order to triangulate it, we
must introduce maximal cliques of size four (right)

There are a variety of approximate algorithms
that allow us to perform inference more effi-
ciently:

Variational approximation. If doing inference in
a graphical model X is intractable, we might
search for a model Y for which inference is
tractable and which is “similar” to X in terms
of the KL-divergence between p.x/ and p.y/
(Wainwright and Jordan 2008).

Loopy belief propagation. We can build a clique
graph from a graph that has not been trian-
gulated, simply by connecting all cliques that
intersect (in which case, the clique graph will
contain loops). If we then propagate messages
in some random order, we can obtain good
approximations under certain conditions (Ihler
et al. 2005).

Gibbs sampling. Given an estimate xAnB of a set
of variables XAnB , we can obtain an estimate
of xB by sampling from the conditional distri-
bution p.xB jxAnB/. If we choose B D fXig,
and repeat the procedure for random choices
of i 2 f1 : : : N g, we obtain the procedure
known as Gibbs sampling (Geman and Geman
1984).

There are several excellent books and tutorial
papers on graphical models. A selection of tu-
torial papers includes Aji and McEliece (2000),
Kschischang et al. (2001), Murphy (1998), and
Wainwright and Jordan (2008); review articles in-
clude Roweis and Ghahramani (1997) and Smyth
(1998), to name but a few.

Other signicant works include Koller and
Friedman (2009), Jensen (2001) (introductory

books), Edwards (2000) (undirected models),
Pearl (1988, 2000) (directed models), Cowell
et al. (2003) (exact inference), Jordan (1998)
(learning and approximate inference), and
Lauritzen (1996, Lauritzen and Spiegelhalter
1988) (a comprehensive mathematical theory).

There is also a variety of closely related mod-
els and extensions:

Gaussian graphical models. We have assumed
throughout that our probability distributions
are discrete; however, the only condition we
require is that they are closed under multipli-
cation and marginalization. This property is
also satisfied for Gaussian random variables.

Hidden Markov models. In many applications,
the variables in our model may be hidden.
The above algorithms can be adapted to infer
properties about our hidden states, given a
sequence of observations.

Kalman filters. Kalman filters employ both of
the above ideas, in that they include hidden
state variables taking values from a continuous
space using a Gaussian noise model. They are
used to estimate the states of linear dynamic
systems under noise.

Factor graphs. Factor graphs employ an
alternate message-passing scheme, which
may be preferable for computational reasons.
Inference remains approximate in graphs with
loops, though approximate solutions may be
obtained more efficiently than by loopy belief
propagation (Kschischang et al. 2001).

Relational models. Relational models allow us to
explore the relationships between objects in
order to predict the behavior and properties
of each. Graphical models are used to predict
the properties of an object based on others that
relate to it (Getoor and Taskar 2007).

Learning. Often, we would like to learn either
the parameters or the structure of the model
from (possibly incomplete) data. There is an
extensive variety of approaches; a collection
of papers appears in Jordan (1998).

Deep learning. Deep belief networks can also
be viewed as instances of graphical models,
which impose a particular structure on the
relationships between input variables, output

592 Graphs

variables, and hidden units. In particular, deep
belief nets assume that complex relationships
can be broken down into (a massive number
of) purely pairwise interactions.

Cross-References

�Bayesian Network
�Deep Belief Nets
�Expectation Propagation
�Hidden Markov Models
�Markov Random Field

Recommended Reading

Aji SM, McEliece RJ (2000) The generalized distribu-
tive law. IEEE Trans Inf Theory 46(2):325–343

Amir E (2001) Efficient approximation for triangula-
tion of minimum treewidth. In: Proceedings of the
17th conference on uncertainty in artificial intelli-
gence. Morgan Kaufmann, San Francisco, pp 7–15

Cowell RG, Dawid PA, Lauritzen SL, Spiegelhalter DJ
(2003) Probabilistic networks and expert systems.
Springer, Berlin

Edwards D (2000) Introduction to graphical modelling.
Springer, New York

Geman S, Geman D (1984) Stochastic relaxation,
Gibbs distributions and the Bayesian restoration
of images. IEEE Trans Pattern Anal Mach Intell
6:721–741

Getoor L, Taskar B (eds) (2007) An introduction to
statistical relational learning. MIT Press, Cambridge

Ihler AT, Fischer III JW, Willsky AS (2005) Loopy
belief propagation: convergence and effects of mes-
sage errors. J Mach Learn Res 6:905–936

Jensen FV (2001) Bayesian networks and decision
graphs. Springer, Berlin

Jordan M (ed) (1998) Learning in graphical models.
MIT Press, Cambridge

Koller D, Friedman N (2009) Probabilistic graphical
models: principles and techniques. MIT Press, Cam-
bridge

Kschischang FR, Frey BJ, Loeliger HA (2001) Factor
graphs and the sum-product algorithm. IEEE Trans
Inf Theory 47(2):498–519

Lauritzen SL (1996) Graphical models. Oxford Uni-
versity Press, Oxford

Lauritzen SL, Spiegelhalter DJ (1988) Local computa-
tions with probabilities on graphical structures and
their application to expert systems. J R Stat Soc Ser
B 50:157–224

Murphy K (1998) A brief introduction to graphical
models and Bayesian networks. Morgan Kaufmann,
San Francisco

Pearl J (1988) Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann, San Francisco

Pearl J (2000) Causality. Cambridge University Press,
Cambridge

Roweis S, Ghahramani Z (1997) A unifying review
of linear Gaussian models. Neural Comput 11:305–
345

Smyth P (1998) Belief networks, hidden Markov mod-
els, and Markov random fields: a unifying view.
Pattern Recogn Lett 18:1261–1268

Wainwright MJ, Jordan MI (2008) Graphical mod-
els, exponential families, and variational inference.
Found Trends Mach Learn 1:1–305

Graphs

Tommy R. Jensen
Alpen-Adria-Universität Klagenfurt, Klagenfurt,
Austria

Definition

Graph Theory is (dyadic) relations on collections
specified objects. In its most common, a graph is
a pair G D .V;E/ of a (finite) set of vertices V
and a set of edges E (or links). Each edge e is a
2-element subset fu; vg of V , usually abbreviated
as e D uv; u and v are called the endvertices of
e, they are mutually adjacent and each is incident
to e in G. This explains the typical model of a
simple graph.

A directed graph or � digraph is a more gen-
eral structure, in which the edges are replaced by
ordered pairs of distinct elements of the vertex
set V , each such pair being referred to as an arc.
Another generalization of a graph is a hypergraph
or “set-system” on V , in which the hyperedges
may have any size. Various concepts in graph
theory extend naturally to multigraphs, in which
each pair of (possibly identical) vertices may be
adjacent via several edges (respectively loops).
Also studied are infinite graphs, for which the
vertex and edge sets are not restricted to be finite.

A graph is conveniently depicted graphically
by representing each vertex as a small circle, and
representing each edge by a curve that joins its
two endvertices. A digraph is similarly depicted

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_67
http://dx.doi.org/10.1007/978-1-4899-7687-1_95
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1007/978-1-4899-7687-1_100288
http://dx.doi.org/10.1007/978-1-4899-7687-1_215

Graphs 593

G

by adding an arrow on the curve representing
an arc showing the direction from its tail to its
(possibly identical) head.

Motivation and Background

One of the very first results in graph theory
appeared in Leonhard Euler’s paper on Seven
Bridges of Königsberg, published in 1736. The
paper contained the complete solution to the
problem whether, when given a graph, it is pos-
sible to locate an Euler tour, that is, a sequence
of adjacent edges (each edge imagined to be
traversed from one end to the other) that uses
every edge exactly once. Figure 1 illustrates the
four main parts of the city of Königsberg with the
seven bridges connecting them; since this graph
contains four vertices of odd degree, it does not
allow an Euler tour.

Applications of graphs are numerous and
widespread. Much of the success of graph theory
is due to the ease at which ideas and proofs
may be communicated pictorially in place of,
or in conjunction with, the use of purely formal
symbolism.

Theory

Isomorphism
A graph drawing should not be confused with
the graph itself (the underlying abstract structure)
as there are several ways to structure the graph
drawing. It only matters which vertices are con-
nected to which others by how many edges, the
exact layout may be suited for the particular pur-
pose at hand. It is often a problem of independent

Graphs, Fig. 1 A graph of
the city of Königsberg

interest to optimize a drawing of a given graph in
terms of aesthetic features.

In practice it is often difficult to decide if
two drawings represent the same graph (as in
Fig. 2). This decision problem has gained in-
creasing status in complexity theory, with grow-
ing suspicion that this problem may fall in a
new class of problems, which lies between the
familar classes of polynomially solvable and NP-
complete � (NP-completeness) problems (sup-
posing that these classes are indeed distinct; for
issues related to the complexities of decision and
optimization problems see Garey and Johnson
1979). Nonetheless it is customary in the treat-
ment of abstract graphs to consider two graphs
identical if they are isomorphic. A closely related
problem, the subgraph isomorphism problem, an
NP-complete problem, consists in finding a given
graph as a subgraph of another given graph.

Whereas there seems common agreement in
the graph theoretic community on what consti-
tutes a drawing of a graph, it may be considered
a weakness, and sometimes a source of confu-
sion, that even the most central general sources
on the fundamentals of graph theory, such as
the monographs (Berge 1976; Bondy and Murty
2007; Diestel 2005), do not agree on a common
formalization of the theory.

Classes of Graphs
Important special classes of graphs are bipartite
graphs, for which the vertex set is partitionable
into two classes A, B with every edge having one
end in A and one in B; in particular the complete
bipartite graph Km;n has jAj D m; jBj D n,
and every vertex in A is joined to every vertex in
B . The complete graph Kn consists of n vertices
that are all pairwise adjacent. A path of length
n consists of vertices v0; v1; : : : ; vn with edges
vi�1vi for i D 1; 2; : : : ; n; such a path joins its
two endvertices v0 and vn. A circuit of length n
consists of a path of length n � 1 together with
an additional edge between the two endvertices
of the path. A graph is connected if each pair of
its vertices is joined by at least one path within
the graph. Of central importance to the study of
efficient search procedures in computer science
is the class of trees, those connected graphs that

http://dx.doi.org/10.1007/978-1-4899-7687-1_603

594 Graphs

Graphs, Fig. 2 Two
drawings of the same graph

contain no circuits. Most definitions have various
natural counterparts for directed graphs, in par-
ticular a tournament is a directed graph in which
each pair of vertices is joined by exactly one arc.

Properties of Graphs
Finding a complete subgraph of a given order in
an input graph is called the clique problem. The
complementary problem of finding an indepen-
dent set is called the independent set problem.
The longest path problem and the longest cir-
cuit problem have as special cases the Hamilton
path problem and the Hamilton circuit problem,
the latter two problems asking to find a path,
respectively a circuit, that uses all vertices of
the given graph. Each of these problems (or a
suitable modification of it) belongs to the com-
plexity class of NP-complete problems, hence is
generally believed to be very difficult to solve
efficiently. The weighted version of the Hamilton
circuit problem, the so-called travelling salesman
problem is of central importance in combinatorial
optimization.

A graph is called planar if it may be drawn in
the Euclidian plane without any two of its edges
crossing except where they meet at a common
endvertex. This is often a convenient way of rep-
resenting a graph, whenever it is doable. A the-
orem of Kuratowski states that a graph is planar
if and only if it contains homeomorphic copies
of neither the complete bipartite graph K3;3 (the
three-houses-three-utilities-graph) nor the com-
plete graph K5. A main branch of graph theory
is concerned with investigating relationships be-
tween the topological and combinatorial proper-
ties of graphs (Mohar and Thomassen 2001).

In 1852, Francis Guthrie posed the four color
problem, asking if it is possible to color the
countries of any map, using only four colors, in
such a way that all pairs of bordering countries
receive different colors. Equivalently, by repre-
senting dually every country as a vertex of a
graph, with two vertices joined by an edge if
their countries share a stretch of common border,
the question is whether it is possible to color
the vertices of a planar graph using four colors,
so that any two adjacent vertices receive distinct
colors. This problem, was solved a century later
in 1976 by Kenneth Appel, Wolfgang Haken,
and John Koch, who invested massive amounts
of computing time to complete a graph theoretic
approach developed by various mathematicians
over a period of most of the preceding part of the
twentieth century.

The problem of coloring a possibly nonplanar
graph with a minimal number of colors, that is,
to partition its vertex set into as few independent
sets as possible, is a well-studied problem (e.g.,
see Jensen and Toft 1995), though NP-hard in
general. In fact it is already an NP-complete
problem to ask whether a given planar graph
allows a coloring using at most three colors (see
Garey et al. 1976). The recent strong perfect
graph theorem provides one of quite few known
examples of a fairly rich class of graphs, the
Berge graphs, for which the coloring problem
has a satisfactory solution (see Chudnovsky et al.
2006).

Other well-solved problems include finding
a largest matching in a given graph; a largest
set of edges no two of which share a common
endvertex (see Lovász and Plummer (1986) for
a thorough treatment of matching theory). The

Graphs 595

G

most interesting special case asks to find a perfect
matching, having the property that every vertex
is paired up with a unique vertex of the graph
adjacent to it. For the special case of bipartite
graphs (the marriage problem), the problem was
solved by Dénes König in 1931. Even when
given for every pair of vertices a measure of the
desirability of pairing up these particular vertices
(the weighted matching problem), there exists
an efficient solution to the problem of finding
an optimum matching of maximal total weight,
discovered by Jack Edmonds in 1959.

Applications

As an example of a visualization application,
Fig. 3 shows a digraph to symbolize for a collec-
tion of seven stochastic variables x1; : : : ; x7 that
their joint distribution is given by the product

p.x1/p.x2/p.x3/p.x4jx1; x2; x3/p.x5jx1; x3/

� p.x6jx4/p.x7jx4; x5/ (1)

In addition to visualization of a network, a
process, a search procedure, or any hierarchical
structure, there are many applications using
implementations of known graph algorithms on
computers, so that the graph in question will
only exist as an abstract datastructure within a
program and thus remains invisible to the user.

x1

x2 x3

x4 x5

x6 x7

Graphs, Fig. 3 Reproduced from Bishop (2006, p. 362)

There are different ways to store graphs in
a computer. Often a combination of list and
matrix structures will be preferred for storage
and dynamic manipulation of a graph by an
algorithm. List structures are often preferred for
sparse graphs as they have smaller memory re-
quirements. Matrix structures on the other hand
provide faster access but can consume a large
amount of memory if a graph contains many ver-
tices. In most cases it is convenient to represent
a graph or digraph by an array containing, for
each edge or arc, the pair of vertices that it joins,
together with additional information, such as the
weight of the edge, as appropriate. It may be an
advantage in addition to store for each vertex a
list of the vertices adjacent to it, or alternatively,
a list of the edges incident to it, depending on the
application.

The adjacency matrix of a graph, multigraph,
or digraph on n vertices is an n � n matrix in
which the ij-entry is the number of edges or arcs
that join vertex i to vertex j (or more generally,
the weight of a single such edge or arc). As a
storage device this is inferior for sparse graphs,
those with relatively few edges, but gains in
importance when an application naturally deals
with very dense graphs or multigraphs.

Future Directions

In recent years the theory of graph minors has
been an important focus of graph theoretic re-
search. A graph H is said to be a minor of a
graph G if there exists a subgraph of G from
which H can be obtained through a sequence of
edge contractions, each consisting of the identi-
fication of the two ends of an edge e followed
by the removal of e. A monumental effort by
Neil Robertson and Paul Seymour has resulted
in a proof of the Robertson–Seymour theorem
(Robertson and Seymour 2004; see also Diestel
2005), with the important consequence that for
any set G of graphs that is closed under taking
minors, there exists a finite set of obstruction
graphs, such that G is an element of G precisely
if G does not contain any minor that belongs
to the obstruction set. This theorem has several

596 Greedy Search

important algorithmic consequences, many still
waiting to be fully explored.

A particularly challenging unsolved problem
is the Hadwiger conjecture (see Jensen and Toft
1995), stating that any graph G that does not
allow a vertex coloring with as few as k colors
will have to contain the complete graph KkC1 as
a minor. The special cases of k
 5 colors have
been shown to be consequences of the four color
theorem. But the problem remains open for all
larger values of k.

Other central areas of research relate to the
notoriously hard problems of vertex- and edge-
coloring, and of Hamilton paths and circuits.
These have important applications, but it is not
expected that any satisfactory necessary and suffi-
cient conditions will be found for their existence.
Hence the study of sufficient conditions of prac-
tical value is lively pursued.

A list of open problems in graph theory can be
found in Bondy and Murty (2007).

Recommended Reading

Bang-Jensen J, Gutin G (2000) Digraphs: theory, al-
gorithms and applications. Springer monographs in
mathematics. Springer, London. http://www.imada.
sdu.dk/Research/Digraphs/

Berge C (1976) Graphs and hypergraphs. North-
Holland mathematical library, vol 6. North-Holland
Publishing Company, Amsterdam

Bishop CM (2006) Pattern recognition and machine
learning. Springer, New York

Bondy JA, Murty USR (2007) Graph theory. Springer
Chudnovsky M, Robertson N, Seymour P, Thomas R

(2006) The strong perfect graph theorem. Ann Math
164:51–229

Diestel R (2005) Graph theory, 3rd edn. Springer.
http://www.math.uni - hamburg.de / home / diestel /
books/graph.theory/GraphTheoryIII.pdf

Emden-Weinert T. Graphs: theory–algorithms–
complexity. http://people.freenet.de/Emden-
Weinert/graphs.html

Garey MR, Johnson DS (1979) Computers and
intractability: a guide to the theory of NP-
completeness. Freeman, New York

Garey MR, Johnson DS, Stockmeyer LJ (1976) Some
simplified NP-complete graph problems. Theor
Comput Sci 1:237–267

Gimbel J, Kennedy JW, Quintas LV (eds) (1993) Quo
vadis, graph theory? North-Holland, Amsterdam/
New York

Harary F (1969) Graph theory. Addison-Wesley,
Reading

Jensen TR, Toft B (1995) Graph coloring problems.
Wiley, New York

Locke SC. Graph theory. http://www.math.fau.edu/
locke/graphthe.htm

Lovász L, Plummer MD (1986) Matching theory. An-
nals of discrete mathematics, vol 29. North Holland,
Amsterdam/New York

Mohar B, Thomassen C (2001) Graphs on surfaces.
John Hopkins University Press, Baltimore

Robertson N, Seymour PD (2004) Graph minors. XX.
Wagner’s conjecture. J Comb Theory Ser B 92(2):
325–357

Weisstein EW. Books about graph theory. http://
www.ericweisstein.com/encyclopedias/books/Graph
Theory.html

Greedy Search

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

At each step in its search, a greedy algorithm
makes the best decision it can at the time and
continues without backtracking. For example, an
algorithm may perform a � general-to-specific
search and at each step, commits itself to the
specialization that best fits that training data, so
far. It continues without backtracking to change
any of its decisions. Greedy algorithms are used
in many machine-learning algorithms, including
decision tree learning (Breiman et al. 1984;
Quinlan 1993) and � rule learning algorithms,
such as sequential covering.

Cross-References

�Rule Learning
�Learning as Search

Recommended Reading

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984)
Classification and regression trees. Wadsworth In-
ternational Group, Belmont

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Mateo

http://www.imada.sdu.dk/Research/Digraphs/
http://www.imada.sdu.dk/Research/Digraphs/
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://people.freenet.de/Emden-Weinert/graphs.html
http://people.freenet.de/Emden-Weinert/graphs.html
http://www.math.fau.edu/locke/graphthe.htm
http://www.math.fau.edu/locke/graphthe.htm
http://www.ericweisstein.com/encyclopedias/books/GraphTheory.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_331
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_444

Greedy Search Approach of Graph Mining 597

G

Greedy Search Approach of Graph
Mining

Lawrence Holder
Washington State University, Pullman, WA,
USA

Definition

�Greedy search is an efficient and effective strat-
egy for searching an intractably large space when
sufficiently informed heuristics are available to
guide the search. The space of all subgraphs of
a graph is such a space. Therefore, the greedy
search approach of � graph mining uses heuris-
tics to focus the search toward subgraphs of
interest while avoiding search in less interesting
portions of the space. One such heuristic is based
on the compression afforded by a subgraph; that
is, how much is the graph compressed if each
instance of the subgraph is replaced by a single
vertex. Not only does compression focus the
search, but it has also been found to prefer sub-
graphs of interest in a variety of domains.

Motivation and Background

Many data mining and machine learning methods
focus on the attributes of entities in the domain,
but the relationships between these entities also
represents a significant source of information,
and ultimately, knowledge. Mining this relational
information is an important challenge both in
terms of representing the information and facing
the additional computational obstacles of ana-
lyzing both entity attributes and relations. One
efficient way to represent relational information
is as a graph, where vertices in the graph rep-
resent entities in the domain, and edges in the
graph represent attributes and relations among the
entities. Thus, mining graphs is an important ap-
proach to extracting relational information. The
main alternative to a graph-based representation
is first-order logic, and the methods for mining
this representation fall under the area of inductive

logic programming. Here, the focus is on the
graph representation.

Several methods have been developed for min-
ing graphs (Washio and Motoda 2003), but most
of these methods focus on finding the most fre-
quent subgraphs in a set of graph transactions
(e.g., FSG (Kuramochi and Karypis 2001), gSpan
(Yan and Han 2002), Gaston (Nijssen and Kok
2004)) and use efficient exhaustive, rather than
heuristic search. However, there are other proper-
ties besides frequency of a subgraph pattern that
are relevant to many domains. One such property
is the amount of compression afforded by the sub-
graph pattern, when each instance of the pattern
is replaced by a single vertex. Searching for the
most frequent subgraphs can be made efficient
mainly through the exploitation of the downward
closure property, which essentially says one can
prune any extension of a subgraph that does not
meet the minimum support frequency threshold.
Unfortunately, the compression of a subgraph
does not satisfy the downward closure property;
namely, while a small extension of a subgraph
may have less compression, a larger extension
may have greater compression. Therefore, one
cannot easily prune extensions and must search
a larger portion of the space of subgraphs. Thus,
one must resort to a greedy search method to
search this space efficiently.

As with any greedy search approach, the re-
sulting solution may sometimes be suboptimal,
that is, the resulting subgraph pattern is not the
pattern with maximum compression. The extent
to which optimal solutions are missed depends
on the type of greedy search and the strength
of the heuristics used to guide the search. One
approach is embodied in the graph-based induc-
tion (GBI) method (Matsuda et al. 2002; Yoshida
et al. 1994). GBI continually compresses the
input graph by identifying frequent triples of
vertices, some of which may represent previously
compressed portions of the input graph. Candi-
date triples are evaluated using a measure similar
to information gain.

A similar approach recommended here is the
use of a beam search strategy coupled with a
compression heuristic based on the �minimum
description length (MDL) principle (Rissanen

http://dx.doi.org/10.1007/978-1-4899-7687-1_353
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_894

598 Greedy Search Approach of Graph Mining

Greedy Search Approach
of Graph Mining, Fig. 1
Structure of the greedy
search approach of graph
mining

Identify small,
common

patterns in G

Input
Graph G

Stopping
condition?

no

yes

Best patterns

Evaluate
patterns in G
using MDL

Retain best
Beam patterns

Extend
patterns by
one edge

1989). The goal is to perform unsupervised
discovery of a subgraph pattern that maximizes
compression, which is essentially a tradeoff
between frequency and size. Once the capability
to find such a pattern exists, it can be used in
an iterative discovery-and-compress fashion to
perform hierarchical conceptual clustering, and it
can be used to perform supervised learning, that
is, find patterns that compress the positive graphs,
but not the negative graphs. This approach has
been well studied (Cook and Holder 2000, 2007;
Gonzalez et al. 2002; Holder and Cook 2003;
Jonyer et al. 2001; Kukluk et al. 2007) and has
proven successful in several domains (Cook et al.
2001; Eberle and Holder 2006; Holder et al.
2005; You et al. 2006).

Structure of Learning System

Figure 1 depicts the structure of the greedy search
approach of graph mining. The input data is a
labeled, directed graph G. The search begins by
identifying the set of small common patterns in
G, that is, all vertices with unique labels having a
frequency greater than one. The algorithm then
iterates by evaluating the patterns according to
the search heuristic, retaining the best patterns,
and extending the best patterns by one edge until
the stopping condition is met.

The search is guided by the minimum de-
scription length (MDL) principle, which seeks
to minimize the description length of the entire
data set. The evaluation heuristic based on the
MDL principle assumes that the best pattern is

the one that minimizes the description length of
the input graph when compressed by the pattern.
The description length of the pattern S given
the input graph G is calculated as DL.G; S/ D
DL.S/ C DL.GjS/, where DL(S) is the descrip-
tion length of the pattern, and DL.GjS/ is the
description length of the input graph compressed
by the pattern. The search seeks a pattern S that
minimizes DL(G,S).

While several greedy search strategies apply
here (e.g., hill climbing, stochastic), the strategy
that has been found to work best is the � beam
search. Of the patterns currently under consid-
eration, the system retains only the best Beam
patterns, where Beam is a user-defined parameter.
These patterns are then extended by one edge in
all possible ways according to the input graph,
the extended patterns are evaluated, and then
again, all but the best Beam patterns are dis-
carded. This process continues until the stopping
condition is met. Several stopping conditions are
applicable here, including a user-defined limit on
the number of patterns considered, the exhaus-
tion of the search space, or the case in which
all extensions of a pattern evaluate to a lesser
value than their parent pattern. Once meeting the
stopping condition, the system returns the best
patterns. Note that while the naı̈ve approach to
implementing this algorithm would require an
NP-complete subgraph isomorphism procedure
to collect the instances of each pattern, a more
efficient approach takes advantage of the fact that
new patterns are always one-edge extensions of
existing patterns, and, therefore, the instances of
the extended patterns can be identified by search-

http://dx.doi.org/10.1007/978-1-4899-7687-1_68

Greedy Search Approach of Graph Mining 599

G

Greedy Search Approach
of Graph Mining, Fig. 2
Example of the greedy
search approach of graph
mining

S1

S1

S1

S1

S1

S2

S2 S2

ing the extensions of the parent’s instances. This
process does require several isomorphism tests,
which is the computational bottleneck of the
approach, but avoids the subgraph isomorphism
problem.

Once the search terminates, the input graph
can be compressed using the best pattern. The
compression procedure replaces all instances of
the pattern in the input graph by single vertices,
which represent the pattern’s instances. Incoming
and outgoing edges to and from the replaced
instances will point to, or originate from the new
vertex that represents the instance. The algorithm
can then be invoked again on this compressed
graph.

Figure 2 illustrates the process on a simple
example. The system discovers pattern S1, which
is used to compress the data. A second iteration
on the compressed graph discovers pattern S2.
Because instances of a pattern can appear in
slightly different forms throughout the data, an
inexact graph match, based on graph edit dis-
tance, can be used to address noise by identifying
similar pattern instances.

Graph-Based Hierarchical Conceptual
Clustering
Given the ability to find a prevalent subgraph
pattern in a larger graph and then compress the
graph with this pattern, iterating over this process
until the graph can no longer be compressed will
produce a hierarchical, conceptual clustering of
the input data (Jonyer et al. 2001). On the i th
iteration, the best subgraph Si is used to com-
press the input graph, introducing new vertices
labeled Si in the graph input to the next iteration.
Therefore, any subsequently discovered subgraph

Sj can be defined in terms of one or more of Si s,
where i < j . The result is a lattice, where each
cluster can be defined in terms of more than one
parent subgraph. For example, Fig. 3 shows such
a clustering done on a DNA molecule.

Graph-Based Supervised Learning
Extending a graph-based data mining approach to
perform � supervised learning involves the need
to handle negative examples (focusing on the
two-class scenario). In the case of a graph the
negative information can come in three forms.
First, the data may be in the form of numer-
ous smaller graphs, or graph transactions, each
labeled either positive or negative. Second, data
may be composed of two large graphs: one posi-
tive and one negative. Third, the data may be one
large graph in which the positive and negative
labeling occurs throughout. The first scenario
is closest to the standard supervised learning
problem in that one has a set of clearly defined
examples (Gonzalez et al. 2002). Let GC repre-
sent the set of positive graphs, and G� represent
the set of negative graphs. Then, one approach
to supervised learning is to find a subgraph that
appears often in the positive graphs, but not in
the negative graphs. This amounts to replacing
the information-theoretic measure with simply
an error-based measure. This approach will lead
the search toward a small subgraph that dis-
criminates well. However, such a subgraph does
not necessarily compress well, nor represent a
characteristic description of the target concept.

One can bias the search toward a more char-
acteristic description by using the information-
theoretic measure to look for a subgraph that
compresses the positive examples, but not the

http://dx.doi.org/10.1007/978-1-4899-7687-1_803

600 Greedy Search Approach of Graph Mining

Greedy Search Approach of Graph Mining, Fig. 3
Iterative application of the greedy search approach of
graph mining yields the hierarchical, conceptual cluster-

ing on the right given an input graph representing the
portion of DNA structure depicted on the left

negative examples. If I.G/ represents the de-
scription length (in bits) of the graph G, and
I.GjS/ represents the description length of graph
G compressed by subgraph S , then one can look
for an S that minimizes I.GCjS/ C I.S/ C

I.G�/ � I.G�jS/, where the last two terms
represent the portion of the negative graph in-
correctly compressed by the subgraph. This ap-
proach will lead the search toward a larger sub-
graph that characterizes the positive examples,
but not the negative examples.

Finally, this process can be iterated in a set-
covering approach to learn a disjunctive hypoth-
esis. If using the error measure, then any positive
example containing the learned subgraph would
be removed from subsequent iterations. If using
the information-theoretic measure, then instances
of the learned subgraph in both the positive and
negative examples (even multiple instances per
example) are compressed to a single vertex. Note
that the compression is a lossy one, that is,
one does not keep enough information in the
compressed graph to know how the instance was
connected to the rest of the graph. This approach
is consistent with the goal of learning general
patterns, rather than mere compression.

Graph Grammar Inference
In the above algorithms the patterns are limited
to non-recursive structures. In order to learn

subgraph motifs, or patterns that can be used as
the building blocks to generate arbitrarily large
graphs, one needs the ability to learn graph gram-
mars. The key to the inference of a graph gram-
mar is the identification of overlapping structure.
One can detect the possibility of a recursive
graph-grammar production by checking if the
instances of a pattern overlap. If a set of instances
overlap by a single vertex, then one can propose
a recursive node-replacement graph grammar
production. Figure 4 shows an example of a node-
replacement graph grammar (right) learned from
a simple, repetitive input graph (left). The input
graph in Fig. 4 is composed of three overlapping
substructures. Based on how the instances over-
lap, one can also infer connection instructions
that describe how the pattern can connect to itself.
For example, the connection instructions in Fig. 4
indicate that the graph can grow by connecting
vertex 1 of one pattern instance to either vertex 3
or vertex 4 of another pattern instance.

If a set of pattern instances overlap by an
edge, then one can propose a recursive edge-
replacement graph grammar production. Figure 5
shows an example of an edge-replacement graph
grammar (right) learned from the input graph
(left). Connection instructions describe how the
motifs can connect via the edge labeled “a” or the
edge labeled “b.”

Apart from the inclusion of recursive patterns,
the greedy search approach of graph mining is

Greedy Search Approach of Graph Mining 601

G

Greedy Search Approach
of Graph Mining, Fig. 4
The node-replacement
graph grammar (right)
inferred from the input
graph (left). The
connection instructions
indicate how the pattern
can connect to itself

a

b

a a

bb

a a a a

1
x

2
y

3
x

5
y

6 7

z

z

4
x

8
y

9 10

z

(S)

(S)

(S)

S

1

x
2
zy

3 4a a a a

aa

bb

1
x

2
z

43

y

Connection
instructions

1–3
1–4

Greedy Search Approach
of Graph Mining, Fig. 5
The edge-replacement
graph grammar (right)
inferred from the input
graph (left). The
connection instructions
indicate how the pattern
can connect to itself

S3a

S3 S3b

S3a S3

S3b S3

unchanged. Both recursive and non-recursive pat-
terns are evaluated according to their ability to
compress the input graph using the MDL heuris-
tic. After several iterations of the approach, the
result is a graph grammar consisting of recursive
and non-recursive productions that both describe
the input graph and provide a mechanism for
generating graphs with similar properties.

Programs and Data

Most of the aforementioned functionality has
been implemented in the SUBDUE graph-based
pattern learning system. The SUBDUE source
code and numerous sample graph data files are
available at http://www.subdue.org.

Applications

Many relational domains, from chemical
molecules to social networks, are naturally repre-
sented as a graph, and a graph mining approach
is a natural choice for extracting knowledge from
such data. Three such applications are described
below.

A huge amount of biological data that has been
generated by long-term research encourages one
to move one’s focus to a systems-level under-

standing of bio-systems. A biological network,
containing various biomolecules and their rela-
tionships, is a fundamental way to describe bio-
systems. Multi-relational data mining finds the
relational patterns in both the entity attributes and
relations in the data. A graph consisting of ver-
tices and edges between these vertices is a natural
data structure to represent biological networks.
The greedy search approach of graph mining
has been applied to find patterns in metabolic
pathways (You et al. 2006). Graph-based super-
vised learning finds the unique substructures in a
specific type of pathway, which help one under-
stand better how pathways differ. Unsupervised
learning shows hierarchical clusters that describe
the common substructures in a specific type of
pathway, which allow one to better understand
the common features in pathways.

Social network analysis is the mapping and
measuring of relationships and flows between
people, organizations, computers, or other in-
formation processing entities. Such analysis is
naturally done using a graphical representation
of the domain. The greedy approach of graph
mining has been applied to distinguish between
criminal and legitimate groups based on their
mode of communication (Holder et al. 2005). For
example, terrorist groups tend to exhibit com-

http://www.subdue.org

602 Greedy Search Approach of Graph Mining

munications chains; whereas, legitimate groups
(e.g., families) tend to exhibit more hub-and-
spoke communications.

�Anomaly detection is an important problem
for detecting fraud or unlawful intrusions. How-
ever, anomalies are typically rare and, therefore,
present a challenge to most mining algorithms
that rely on regularity and frequency to detect pat-
terns. With the graph mining approach’s ability to
iteratively compress away regularity in the graph,
what is left can be construed as anomalous. To
distinguish this residual structure from noise, one
can compare its regularity with the probability
that such structure would appear randomly. The
presence of rare structure that is unlikely to ap-
pear by chance suggests an anomaly of interest.
Furthermore, most fraudulent activity attempts
to disguise itself by mimicking legitimate activ-
ity. Therefore, another method for finding such
anomalies in graphs is to first find the normative
pattern using the greedy search approach of graph
mining and then find unexpected deviations to
this normative pattern. This approach has been
applied to detect anomalies in cargo data (Eberle
and Holder 2006).

Future Directions

One of the main challenges in approaches to
graph mining is scalability. Since most relevant
graph operations (e.g., graph and subgraph iso-
morphism) are computationally expensive, they
can be applied to only modest-sized graphs that
can fit in the main memory. Clearly, there will
always be graphs larger than can fit in main
memory, so efficient techniques for mining in
such graphs are needed. One approach is to keep
the graph in a database and translate graph mining
operations into database queries. Another ap-
proach is to create abstraction hierarchies of large
graphs so that mining can occur at higher-level,
smaller graphs to identify interesting regions of
the graph before descending down into more spe-
cific graphs. Traditional high-performance com-
puting techniques of partitioning a problem into
subproblems, solving the subproblems, and then
recomposing a solution do not always work for

graph mining problems, because partitioning the
problem means breaking links which may later
turn out to be important. New techniques and ar-
chitectures are needed to improve the scalability
of graph mining operations.

Another challenge for graph mining tech-
niques is dynamic graphs. Most graphs represent
data that can change over time. For example,
a social network can change as people enter
and leave the network, new links are established
and old links are discarded. First, one would
like to be able to mine for static patterns in
the presence of the changing data, which will
require incremental approaches to graph mining.
Second, one would like to mine patterns that
describe the evolution of the graph over time,
which requires mining of time slice graphs or
the stream of graph transaction events. Third, the
dynamics can reside in the attributes of entities
(e.g., changing concentrations of an enzyme in
a metabolic pathway), in the relation structure
between entities (e.g., new relationships in a
social network), or both. Research is needed
on efficient and effective techniques for mining
dynamic graphs.

Cross-References

�Grammatical Inferences

Recommended Reading

Cook D, Holder L (2000) Graph-based data mining.
IEEE Intell Syst 15(2):32–41

Cook D, Holder L (eds) (2007) Mining graph data.
Wiley, New Jersey

Cook D, Holder L, Su S, Maglothin R, Jonyer I (2001)
Structural mining of molecular biology data. IEEE
Eng Med Biol Spec Issue Genomics Bioinform
20(4):67–74

Eberle W, Holder L (2006) Detecting anomalies in
cargo shipments using graph properties. In: Pro-
ceedings of the IEEE intelligence and security in-
formatics conference, San Diego, May 2006

Gonzalez J, Holder L, Cook D (2002) Graph-based
relational concept learning. In: Proceedings of the
nineteenth international conference on machine
learning, Sydney, July 2002

Holder L, Cook D (2003) Graph-based relational learn-
ing: current and future directions. ACM SIGKDD
Explor 5(1):90–93

http://dx.doi.org/10.1007/978-1-4899-7687-1_912
http://dx.doi.org/10.1007/978-1-4899-7687-1_115

Group Detection 603

G

Holder L, Cook D, Coble J, Mukherjee M (2005)
Graph-based relational learning with application to
security. Fundamenta Informaticae, Spec Issue Min
Graphs Trees Seq 66(1–2):83–101

Jonyer I, Cook D, Holder L (2001) Graph-based hi-
erarchical conceptual clustering. J Mach Learn Res
2:19–43

Kukluk J, Holder L, Cook D (2007) Inference of
node replacement graph grammars. Intell Data Anal
11(4):377–400

Kuramochi M, Karypis G (2001) Frequent subgraph
discovery. In: Proceedings of the IEEE interna-
tional conference on data mining (ICDM), San Jose,
pp 313–320

Matsuda T, Motoda H, Yoshida T, Washio T (2002)
Mining patterns from structured data by beam-
wise graph-based induction. In: Proceedings of the
fifth international conference on discovery science,
Lubeck, pp 323–338

Nijssen S, Kok JN (2004) A quickstart in frequent
structure mining can make a difference. In: Pro-
ceedings of the tenth ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD), Seattle, (pp 647–652)

Rissanen J (1989) Stochastic complexity in statistical
inquiry. World Scientific, New Jersey

Washio T, Motoda H (2003) State of the art of graph-
based data mining. ACM SIGKDD Explor 5(1):59–
68

Yan X, Han J (2002) gSpan: graph-based substruc-
ture pattern mining. In: Proceedings of the IEEE
international conference on data mining (ICDM),
Maebashi City, pp 721–724

Yoshida K, Motoda H, Indurkhya N (1994) Graph-
based induction as a unified learning framework. J
Appl Intell 4:297–328

You C, Holder L, Cook D (2006) Application of graph-
based data mining to metabolic pathways. In: Work-
shop on data mining in bioinformatics, IEEE inter-
national conference on data mining, Hong Kong,
Dec 2006

Group Detection

Hossam Sharara and Lise Getoor
University of Maryland, College Park, MD, USA

Synonyms

Community detection; Graph clustering; Modu-
larity detection

Definition

Group detection can defined as the clustering of
nodes in a graph into groups or communities.
This may be a hard partitioning of the nodes, or
may allow for overlapping group memberships.
A community can be defined as a group of nodes
that share dense connections among each other,
while being less tightly connected to nodes in
different communities in the network. The im-
portance of communities lies in the fact that they
can often be closely related to modular units in
the system that have a common function, e.g.,
groups of individuals interacting with each other
in a society (Girvan and Newman 2002), WWW
pages related to similar topics (Flake et al. 2002),
or proteins having the same biological function
within the cell (Chen and Yuan 2006).

Motivation and Background

The work done in group detection goes back
as early as the 1920s when Stuart Rice clus-
tered data by hand to investigate political blocks
(Rice 1927). Another early example is the work
of George Homans (1950) who illustrated how
simple rearrangement of the rows and columns
of data matrices helped to reveal their under-
lying structure. Since then, group detection has
attracted researchers from different areas such
as sociology, mathematics, physics, marketing,
statistics, and computer science.

Group detection techniques vary from simple
similarity-based � clustering algorithms that fol-
low the classical assumption that the data points
are independent and identically distributed, to
more advanced techniques that take into consid-
eration the existing relationships between nodes
in addition to their attributes, and try to character-
ize the different distributions present in the data.

Theory Solution

A network is defined as a graph G D .V;E/

consisting of a set of nodes v 2 V , and a set of
edges e 2 E. In the case of weighted networks,

http://dx.doi.org/10.1007/978-1-4899-7687-1_100072
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_100311
http://dx.doi.org/10.1007/978-1-4899-7687-1_943

604 Group Detection

w.vi , vj / denotes the weight of the edge connec-
tion nodes vi and vj . A community, or a group,
C is a subgraph C.V 0; E 0/ of the original graph
G.V;E/ whose nodes and edges are subsets of
the original graph’s nodes and edges; i.e., V 0 � V

and E 0 � E.
Following the definition of the community, we

can expect that all the vertices in any community
must be connected by a path within the same
community. This property is referred to in liter-
ature as connectedness, which implies that in the
case of disconnected graphs, we can analyze each
connected component separately, as communities
cannot span different components.

Another important property that follows from
the definition of a community is that the group of
vertices within a community should share denser
connections among each other, and fewer connec-
tions with the other vertices in the network. To
quantify this measure, the link density of a group
ı.C / is defined as the ratio between the number
of internal edges in that group and the maximum
number of possible internal edges:

ı.C / D
jE 0j

jV 0j � .jV 0j � 1/=2
(1)

Thus, for any community C , we require that
ı.C / > ı.G/; where ı.G/ is the average link
density of the whole network. Similarly, the aver-
age link density between different communities,
calculated using the ratio between the number of
edges emanating from a group and terminating
in another, and the maximum number possible of
such edges, should generally be low.

Approaches

Beyond the intuitive discussion above, the pre-
cise definition of what constitutes a community
involves multiple aspects. One important aspect
is whether communities form hard partitions of
the graph or nodes can belong to several commu-
nities. Overlapping communities do commonly
occur in natural settings, especially in social
networks. Currently, only a few methods are able
to handle overlapping communities (Palla et al.
2005).

Other aspects should also be taken into
consideration when defining community
structure, such as whether link weights and/or
directionalities are utilized, and whether the
definition allows for hierarchical community
structure, which means that communities may be
parts of larger ones. However, one of the most
important aspect that comes into consideration
in community detection is whether the definition
depends on global or local network properties.
The main difference between the two approaches
is whether the communities are defined in the
scope of the whole network structure, such as
methods based on centrality measures (Girvan
and Newman 2002), global optimization methods
(Newman and Girvan 2004), spectral methods
(Arenas et al. 2006), or information-theoretic
methods (Rosvall and Bergstrom 2008). Local
methods, on the other hand, define communities
based on purely local network structure, such
as detecting cliques of different sizes, clique
percolation method (Palla et al. 2005), and
subgraph fitness method (Lancichinetti et al.
2009).

Local Techniques
Local methods for community detection basically
rely on defining a set of properties that should
exist in a community, then finding maximal sub-
graphs for which these set of properties hold.
This formulation corresponds to finding maxi-
mal cliques in the network, where a clique is
a subgraph in which all its vertices are directly
connected.

However, there are some issues that rises from
the previous formulation. First, finding cliques
in a graph is an NP-Complete problem, thus
most solutions will be approximate based on
heuristic methods. Another more semantic issue
is the interpretation of communities, especially
in the context of social networks, where differ-
ent individuals have different centralities within
their corresponding groups, contradicting with
the degree symmetry of the nodes in cliques.
To overcome these drawbacks, the notion of a
clique is relaxed to n-clique, which is a maximal
subgraph where each pair of vertices are at most
n-steps apart from each other.

Group Detection 605

G

Clustering Techniques
�Data clustering is considered one of the earliest
techniques for revealing group structure, where
data points are grouped based on the similarity
between their corresponding features according
to a given similarity measure. The main objective
of traditional clustering methods is to obtain
clusters or groups of data points possessing high
intra-cluster similarity and low inter-cluster sim-
ilarity. Classical data clustering techniques can
be divided into partition-based methods such as
k-means clustering (MacQueen 1967), spectral
clustering algorithms (Alpert et al. 1999), and
hierarchical clustering methods (Hartigan 1975),
which are the most popular and the most com-
monly used in many fields.

One of the main advantages of the hierarchical
clustering techniques is their ability to provide
multiple resolutions at which the data can be
grouped. In general, hierarchical clustering can
be divided into agglomerative and divisive algo-
rithms. The agglomerative algorithm is a greedy
bottom-up one that starts with clusters including
single data points then successively merge the
pairs of clusters with the highest similarity. Di-
visive algorithms work in an opposite direction,
where initially all the data points are regarded
as one cluster, which is successively divided into
smaller ones by splitting groups of nodes having
the lowest similarity. In both algorithms, clusters
are represented as a dendrogram, whose depths
indicate the steps at which two clusters are joined.
This representation clarifies which communities
are built up from smaller modules, and how these
smaller communities are organized, which can
be particularly useful in the case of the presence
of a normal hierarchy of community structure in
the data. Hierarchical clustering techniques can
easily be used in network domains, where data
points are replaced by individual nodes in the
network, and the similarity is based on edges
between them.

Centrality-Based Techniques
One of the methods for community detection that
is based on the global network structure is the
one proposed by Girvan and Newman (2002),
where they proposed an algorithm based on the

betweenness centrality of edges to be able to
recover the group structure within the network.
Betweenness centrality is a measure of centrality
of nodes in networks, defined for each node as the
number of shortest paths between pairs of nodes
in the network that run through it. The Girvan–
Newman algorithm extended this definition for
edges in the network as well, where the between-
ness centrality of an edge is defined as the number
of shortest paths between pairs of nodes that run
along it.

The basic idea behind the algorithm is
exploiting the fact that the number of edges
connecting nodes from different communities is
sparse. Following from that, all shortest paths
between nodes from different communities
should pass along one of these edges, increasing
their edge betweenness centrality measure.
Therefore, by following a greedy approach
and removing edges with highest betweenness
centrality from the network successively, the
underlying community structure will be revealed.
One of the major drawbacks of the algorithm
is the time complexity, which is O.jEj2jV j/

generally, and O.jV j3/ for sparse networks. The
fact that the edge betweenness needs only to be
recalculated only for the edges affected by the
edge removal can be factored in, which makes
the algorithm efficient in sparse networks with
strong community structure, but not very efficient
on dense networks.

Modularity-Based Techniques
The concept of modularity was introduced by
Newman and Girvan (2004) as a measure to eval-
uate the quality of a set of extracted communities
in a network, and has become one of the most
popular quality functions used for community
detection. The basic idea is utilizing a null model:
a network having the same set of nodes as the
original one, but with random edges placed be-
tween them taking into account preserving the
original node degrees. The basic idea is that the
created random network is expected to contain
no community structure, thus by comparing the
number of edges within the extracted communi-
ties against the expected number of edges in the
same communities from the random network, we

http://dx.doi.org/10.1007/978-1-4899-7687-1_943

606 Group Detection

can judge the quality of the extracted community
structure. More specifically, the modularity Q is
defined as follows

Q D
1

2jEj

X

ij

Aij

�
deg.i/ � deg.j /

2jEj

�

ık.ci ; cj / (2)

where Aij is the element of the adjacency matrix
of the network denoting the number of edges
between nodes i and j , deg.i/ and deg.j / are
the degrees of nodes i and j respectively, ci
and cj are the communities to which nodes i
and j belong respectively, and ık refers to the
kronecker delta. The summation runs over all
pairs of nodes within the same community.

Clearly, a higher modularity value indicates
that the average link density within the extracted
community is larger than that of the random net-
work where no community structure is present.
Thus, modularity maximization can be used as
the objective for producing high-quality commu-
nity structure. However, modularity maximiza-
tion is an NP-hard problem. Nevertheless, there
have been several algorithms for finding fairly
good approximations of the modularity maxi-
mum in reasonable amount of time.

One of the first modularity maximization al-
gorithms was introduced by Newman in 2004. It
is a greedy hierarchical agglomerative clustering
algorithm, which starts with individual nodes
and merges them in the order of increasing the
overall modularity of the resulting configuration.
The time complexity of this greedy algorithm is
O.jV j.jEj C jV j// or O.jV j2/ for sparse net-
works, which enables the user to run commu-
nity detection on large networks in a reasonable
amount of time.

Issues

One of the main issues with the methods of group
detection in network setting is the focus on the
network structure, without taking into consider-
ation other properties of nodes and edges in the

network. This issue often results in a lack of cor-
respondence between the extracted communities
and the functional groups in the network (Shalizi
et al. 2007). This also leads to another common
problem which is how to validate the resulting
communities produced by any of the proposed
techniques.

Although in network settings there are often
different types of interactions between entities of
different natures, most group detection methods
work on single-mode networks, which have just
a single node and edge type. Fewer works focus
on finding groups in more complex, multimodal
settings, where nodes from different types have
multiple types of interactions with each other.
One of the most common approaches to deal with
these types of networks is projecting them into
a series of individual graphs for each node type.
However, this approach results in losing some
of the information that could have been retained
by operating collectively on the original multi-
relational network.

Another issue also gaining interest is devel-
oping methods for group detection in dynamic
network settings (Tantipathananandh and Berger-
Wolf 2009), where the underlying network struc-
ture changes over time. Most of the previous
work on group detection focused on static net-
works, and handles the dynamic case by either
analyzing a snapshot of the network at a single
point in time, or aggregating all interactions over
the whole time period. Both approaches do not
capture the dynamics of change in the network
structure, which can be an important factor in
revealing the underlying communities.

Cross-References

�Graph Clustering
�Graph Mining

Recommended Reading

Alpert C, Kahng A, Yao S (1999) Spectral partitioning:
the more eigenvectors, the better. Discret Appl Math
90:3–26

http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_350

Growth Function 607

G

Arenas A, Daz-Guilera A, Prez-Vicente CJ (2006)
Synchronization reveals topological scales in com-
plex networks. Phys Rev Lett 96(11):114102

Chen J, Yuan B (2006) Detecting functional modules
in the yeast protein–protein interaction network.
Bioinformatics 22(18):2283–2290

Flake GW, Lawrence S, Giles CL, Coetzee F (2002)
Self-organization and identification of web commu-
nities. IEEE Comput 35:66–71

Girvan M, Newman MEJ (2002) Community structure
in social and biological networks. Proc Natl Acad
Sci 99:7821–7826

Hartigan JA (1975) Clustering algorithms. Wiley, New
York

Homans GC (1950) The human group. Harcourt,
Brace, New York

Lancichinetti A, Fortunato S, Kertesz J (2009) De-
tecting the overlapping and hierarchical community
structure in complex networks. N J Phys 11:033015

MacQueen JB (1967) Some methods for classification
and analysis of multivariate observations. In: Pro-
ceedings of fifth Berkeley symposium on mathemat-
ical statistics and probability, vol 1. University of
California Press, Berkeley, pp 281–297

Newman MEJ (2004) Fast algorithm for detecting
community structure in networks. Phys Rev E
69(6):066133

Newman MEJ, Girvan M (2004) Finding and evaluat-
ing community structure in networks. Phys Rev E
69:026113

Palla G, Dernyi I, Farkas I, Vicsek T (2005) Un-
covering the overlapping community structure of
complex networks in nature and society. Nature
435(7043):814–818

Rice SA (1927) The identification of blocs in small
political bodies. Am Pol Sci Rev 21: 619–627

Rosvall M, Bergstrom CT (2008) Maps of random
walks on complex networks reveal community
structure. Proc Natl Acad Sci 105: 1118–1123

Shalizi CR, Camperi MF, Klinkner KL (2007) Dis-
covering functional communities in dynamical net-
works. In: Statistical network analysis: models, is-

sues, and new directions. Springer, Berlin, pp 140–
157

Tantipathananandh C, Berger-Wolf TY (2009) Algo-
rithms for identifying dynamic communities. In:
Proceedings of the 15th ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining, Paris. ACM, New York

Grouping

�Categorical Data Clustering

Growing Set

Definition

A growing set is a subset of a � training set
containing data that are used by a learning system
to develop models that are then evaluated against
a � pruning set.

Cross-References

�Data Set

Growth Function

� Shattering Coefficient

http://dx.doi.org/10.1007/978-1-4899-7687-1_35
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_682
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_759

H

Hebb Rule

�Biological Learning: Synaptic Plasticity, Hebb
Rule and Spike Timing Dependent Plasticity

Hebbian Learning

Synaptic weight changes depend on the joint
activity of the � presynaptic and postsynaptic
neurons.

Cross-References

�Biological Learning: Synaptic Plasticity, Hebb
Rule and Spike Timing Dependent Plasticity

Heuristic Rewards

�Reward Shaping

Hidden Markov Models

Antal van den Bosch
Centre for Language Studies, Radboud
University, Nijmegen, The Netherlands

Abstract

Starting from the concept of regular Markov
models we introduce the concept of hidden

Markov model, and the issue of estimating the
output emission and transition probabilities
between hidden states, for which the Baum-
Welch algorithm is the standard choice. We
mention typical application in which hidden
Markov models play a central role, and men-
tion a number of popular implementations.

Definition

Hidden Markov models (HMMs) form a class
of statistical models in which the system being
modeled is assumed to be a Markov process with
hidden states. From observed output sequences
generated by the Markov process, both the output
emission probabilities from the hidden states and
the transition probabilities between the hidden
states can be estimated with dynamic program-
ming methods. The estimated model parameters
can then be used for various sequence analysis
purposes.

Motivation and Background

The states of a regular Markov model, named
after Russian mathematician Andrey Markov
(1865–1922), are directly observable; hence its
only parameters are the state transition proba-
bilities. In many real-world cases, however, the
states of the system that one wants to model are
not directly observable. For instance, in speech
recognition, the audio is the observable stream,
while the goal is to discover the phonemes (the

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_664
http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_966

610 Hidden Markov Models

Hidden Markov Models,
Fig. 1 Architecture of a
hidden Markov model

categorical elements of speech) that emitted the
audio. Hidden Markov models offer one type
of architecture to estimate hidden states through
indirect means. Dynamic programming methods
have been developed that can estimate both the
output emission probabilities and the transition
probabilities between the hidden states, either
from observations of output sequences only (an
unsupervised learning setting) or from pairs
of aligned output sequences and gold-standard
hidden sequences (a supervised learning setting).

Structure of the Learning System

Figure 1 displays the general architecture of a
hidden Markov model. Each circle represents a
variable xi or yi occurring at time i ; xt is the
discrete value of the hidden variable at time t .
The variable yt is the output variable observed
at the same time t , said to be emitted by xt .
Arrows denote conditional dependencies. Any
hidden variable is only dependent on its imme-
diate predecessor; thus, the value of xt is only
dependent on that of xt�1 occurring at time t � 1.
This deliberate simplicity is referred to as the
Markov assumption. Analogously, observed vari-
ables such as yt are conditionally dependent only
on the hidden variables occurring at the same
time t, i.e., xt in this case.

Typically, a start state x0 is used as the first
hidden state (not conditioned by any previous
state), as well as an end state xnC1 that closes the
hidden state sequence of length n. Start and end
states usually emit meta-symbols signifying the
“start” and “end” of the sequence.

An important constraint on the data that can in
principle be modeled in a hidden Markov model
is that the hidden and output sequences need to be
discrete, aligned (i.e., one yt for each xt /, and of
equal length. Sequence pairs that do not conform
to these constraints need to be discretized (e.g.,
in equal-length time slices) or aligned where
necessary.

Training and Using Hidden Markov Models
Hidden Markov models can be trained both in
an unsupervised and a supervised fashion. First,
when only observed output sequences are avail-
able for training, the model’s conditional prob-
abilities from this indirect evidence can be esti-
mated through the Baum-Welch algorithm (Baum
et al. 1970), a form of unsupervised learning, and
an instantiation of the expectation-maximization
(EM) algorithm (Dempster et al. 1977).

When instead aligned sequences of gold-
standard hidden variables and output variables
are given as supervised training data, both
the output emission probabilities and the state
transition probabilities can be straightforwardly
estimated from frequencies of co-occurrence in
the training data.

Once trained, it is possible to find the most
likely sequence of hidden states that could have
generated a particular (test) output sequence by
the Viterbi algorithm (Viterbi 1967).

Applications of Hidden Markov Models
Hidden Markov models are known for their suc-
cessful application in pattern recognition tasks
such as speech recognition (Rabiner 1989) and
DNA sequencing (Kulp et al. 1996) but also in

Hierarchical Reinforcement Learning 611

H

sequential pattern analysis tasks such as in part-
of-speech tagging (Church 1988).

Their introduction in speech recognition in
the 1970s (Jelinek 1998) led the way toward the
introduction of stochastic methods in general in
the field of natural language processing in the
1980s and 1990s (Charniak 1993; Manning and
Schütze 1999) and into text mining and infor-
mation extraction in the late 1990s and onward
(Freitag and McCallum 1999). In a similar way,
hidden Markov models started to be used in
DNA pattern recognition in the mid-1980s and
have gained widespread usage throughout bioin-
formatics since (Durbin et al. 1998; Burge and
Karlin 1997).

Programs
Many implementations of hidden Markov mod-
els exist. Three noteworthy packages are the
following:

• UMDHMM by Tapas Kanungo. Implements
the forward-backward, Viterbi, and Baum-
Welch algorithms (Kanungo 1999)

• JAHMM by Jean-Marc François. A versatile
Java implementation of algorithms related to
hidden Markov models (François 2006)

• HMMER by Sean Eddy. An implementation
of profile HMM software for protein sequence
analysis (Eddy 2007)

Cross-References

�Baum-Welch Algorithm
�Bayesian Methods
�Expectation Maximization Clustering
�Markov Process
�Viterbi Algorithm

Recommended Reading

Baum LE, Petrie T, Soules G, Weiss N (1970) A
maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains.
Ann Math Stat 41(1):164–171

Burge C, Karlin S (1997) Prediction of complete gene
structures in human genomic DNA. J Mol Biol
268:78–94

Charniak E (1993) Statistical language learning. The
MIT Press, Cambridge, MA

Church KW (1988) A stochastic parts program and
noun phrase parser for unrestricted text. In: Proceed-
ings of the second conference on applied natural
language processing, Austin, pp 136–143

Dempster A, Laird N, Rubin D (1977) Maximum like-
lihood from incomplete data via the EM algorithm.
J R Stat Soc Ser B 39(1):1–38

Durbin R, Eddy S, Krogh A, Mitchison G (1998)
Biological sequence analysis: probabilistic models
of proteins and nucleic acids. Cambridge University
Press, Cambridge

Eddy S (2007) HMMER. http://hmmer.org/
François J-M (2006) JAHMM. https://code.google.

com/p/jahmm/
Freitag D, McCallum A (1999) Information extrac-

tion with HMM structures learned by stochastic
optimization. In: Proceedings of the national con-
ference on artificial intelligence. The MIT Press,
Cambridge, MA, pp 584–589

Jelinek F (1998) Statistical methods for speech recog-
nition. The MIT Press, Cambridge, MA

Kanungo T (1999) UMDHMM: hidden Markov
model toolkit. In: Kornai A (ed) Extended fi-
nite state models of language. Cambridge Uni-
versity Press, Cambridge. http://www.kanungo.us/
software/software.html

Kulp D, Haussler D, Reese MG, Eeckman FH (1996)
A generalized hidden Markov model for the recog-
nition of human genes in DNA. Proc Int Conf Intell
Syst Mol Biol 4:134–142

Manning C, Schütze H (1999) Foundations of statis-
tical natural language processing. The MIT Press,
Cambridge, MA

Rabiner LR (1989) A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proc IEEE 77(2):257–286

Viterbi AJ (1967) Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans Inf Theory 13(2):260–269

Hierarchical Reinforcement Learning

Bernhard Hengst
University of New South Wales, Sydney, NSW,
Australia

Definition

Hierarchical reinforcement learning (HRL) de-
composes a � reinforcement learning problem
into a hierarchy of subproblems or subtasks such

http://dx.doi.org/10.1007/978-1-4899-7687-1_59
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_516
http://dx.doi.org/10.1007/978-1-4899-7687-1_878
http://hmmer.org/
https://code.google.com/p/jahmm/
https://code.google.com/p/jahmm/
http://www.kanungo.us/software/software.html
http://www.kanungo.us/software/software.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

612 Hierarchical Reinforcement Learning

that higher-level parent-tasks invoke lower-level
child tasks as if they were primitive actions.
A decomposition may have multiple levels of
hierarchy. Some or all of the subproblems can
themselves be reinforcement learning problems.
When a parent-task is formulated as a reinforce-
ment learning problem it is commonly formalized
as a semi-Markov decision problem because its
actions are child-tasks that persist for an extended
period of time. The advantage of hierarchical de-
composition is a reduction in computational com-
plexity if the overall problem can be represented
more compactly and reusable subtasks learned
or provided independently. While the solution to
a HRL problem is optimal given the constraints
of the hierarchy there are no guarantees in gen-
eral that the decomposed solution is an optimal
solution to the original reinforcement learning
problem.

Motivation and Background

Bellman’s “curse of dimensionality” beleaguers
reinforcement learning because the problem rep-
resentation grows exponentially in the number
of state and action variables. The complexity we
encounter in natural environments has a property,
near decomposability, that may be exploited us-
ing hierarchical models to greatly simplify our
understanding and control of behavior. Human
societies have used hierarchical organizations to
solve complex tasks dating back to at least Egyp-
tian times. It seems natural, therefore, to in-
troduce hierarchical structure into reinforcement
learning to solve more complex problems.

When large problems can be decomposed hi-
erarchically there may be improvements in the
time and space complexity for both learning and
execution of the overall task. Hierarchical de-
composition is a divide-and-conquer strategy that
solves the smaller subtasks and puts them back
together for a more cost-effective solution to
the larger problem. The subtasks defined over
the larger problem are stochastic macro-operators
that execute their policy until termination. If there
are multiple ways to terminate a subtask the
optimal subtask policy will depend on the context

in which the subtask is invoked. Subtask policies
usually persist for multiple time-steps and are
hence referred to as temporally extended actions.
Temporally extended actions have the potential
to transition through a much smaller “higher-
level” state-space, reducing the size of the orig-
inal problem. For example, navigating through a
house may only require room states to represent
the abstract problem if room-leaving temporally
extended actions are available to move through
each room. A room state in this example is
referred to as an abstract state as the detail of
the exact position in the room is abstracted away.
Hierarchical reinforcement learning can also pro-
vide opportunities for subtask reuse. If the rooms
are similar, the policy to leave a room will only
need to be learnt once and can be transferred and
reused.

Early developments of hierarchical learning
appeal to analogies of boss – subordinate models.
Ashby (1956) discusses the “amplification” of
regulation in very large systems through hier-
archical control – a doctor looks after a set of
mechanics who in turn maintain thousands of
air-conditioning systems. Watkins (1989) used a
navigator – helmsman hierarchical control ex-
ample to illustrate how reinforcement learning
limitations may be overcome. Early examples
of hierarchical reinforcement learning include
Singh’s Hierarchical-DYNA (Dyna, a class of
architectures for intelligent systems based on
approximating dynamic programming methods.
Dyna architectures integrate trial-and-error (rein-
forcement) learning and execution-time planning
into a single process operating alternately on
the world and on a learned model of the world
Sutton et al. 1999) (Singh 1992), Kaelbling’s
Hierarchical Distance to Goal (HDG) (Kaelbling
1993), and Dayan and Hinton’s Feudal reinforce-
ment learning (Dayan and Hinton 1992). The
latter explains hierarchical structure in terms of
a management hierarchy. The example has four
hierarchical levels and employs abstract states,
which they refer to as “information hiding”.

Close to the turn of the last century three
approaches to hierarchical reinforcement learn-
ing were developed relatively independently: Hi-
erarchies of Abstract Machines (HAMs) (Parr

Hierarchical Reinforcement Learning 613

H

Sense, reward

Agent Environment

Act

Goal

Hierarchical Reinforcement Learning, Fig. 1 Left: The agent view of reinforcement learning. Right: A four-room
environment with the agent in one of the rooms show as a solid black oval

and Russell 1997); the Options framework (Sut-
ton et al. 1999); and MAXQ value function de-
composition (Dietterich 2000). Each approach
has different emphases, but a common factor is
the use of temporally extended actions and the
formalization of HRL in terms of semi-Markov
decision process theory (Puterman 1994) to solve
the higher-level abstract reinforcement learning
problem.

Hierarchical reinforcement learning is still
an active research area. More recent extensions
include: continuous state-space; concurrent
actions and multi-agency; use of average
rewards (Ghavamzadeh and Mahadevan 2002);
continuing problems; policy-gradient methods;
partial-observability and hierarchical memory;
factored state-spaces and graphical models;
and basis functions. Hierarchical reinforcement
learning also includes hybrid approaches such
as Ryan’s reinforcement learning teleo-operators
(RL-TOPs) (Ryan and Reid 2000) that combines
planning at the top level and reinforcement
learning at the more stochastic lower levels.
Please see Barto and Mahadevan (2003) for
a survey of recent advances in hierarchical
reinforcement learning. More details can be
found in the section on recommended reading.

In most applications the structure of the hi-
erarchy is provided as background knowledge
by the designer. Some researchers have tried to
learn the hierarchical structure from the agent–
environment interaction. Most approaches look
for subgoals or subtasks that try to partition the
problem into near independent reusable subprob-
lems.

Structure of Learning System

Structure of HRL
The agent view of reinforcement learning illus-
trated on the left in Fig. 1 shows an agent inter-
acting with an environment. At regular time-steps
the agent takes actions in the environment and
receives sensor observations and rewards from
the environment. A hierarchical reinforcement
learning agent is given or discovers background
knowledge that explicitly or implicitly provides a
decomposition of the environment. The agent ex-
ploits this knowledge to solve the problem more
efficiently by finding an action policy to optimize
a measure of future reward, as for reinforcement
learning.

We will motivate the machinery of hierar-
chical reinforcement learning with the simple
example shown in Fig. 1 (right). This diagram
shows a four-room house with doorways between
adjoining rooms and a doorway in the top left
room leading outside. Each cell represents a pos-
sible position of the agent. We assume the agent
always starts in the bottom left room position as
shown by the black oval. It is able to sense its
position in the room and which room it occupies.
It can move one step in any of the four compass
directions each time-step. It also receives a
reward of �1 at each time-step. The objective
is to leave the house via the least-cost route. We
assume that the actions are stochastic with an
80 % chance of moving in the intended direction
and a 20 % chance of staying in place. Solving
this problem in a straightforward manner using
reinforcement learning requires storage for 400
Q values defined over 100 states and 4 actions.

614 Hierarchical Reinforcement Learning

If the state space is decomposed into the
four identical rooms a hierarchical reinforcement
learner could solve this problem more efficiently.
For example, we could solve two subproblems.
One that finds an optimal solution to leave a room
to the North and another to leave a room to the
West. When learning these subtasks, leaving a
room in any other way is disallowed. Each of
these subproblems requires storage for 100 Q

values – 25 states and 4 actions.
We also formulate and solve a higher-level

problem that consists of only the four rooms as
states. These are abstract states because, as pre-
viously explained, the exact position in the room
has been abstracted away. In each abstract state
we allow a choice of only one or the other of the
learnt room-leaving actions. These are temporally
extended actions because, once invoked, they will
usually persist for multiple time-steps until the
agent exits the room. We proceed to solve this
higher-level problem in the usual way using rein-
forcement learning. The proviso is that the reward
on completing a temporally extended action is
the sum of rewards accumulated since invocation
of the subtask. The higher-level problem requires
storage for only 8 Q values – 4 states and 2
actions.

Once learnt, execution of the higher-level pol-
icy will determine the optimal room-leaving ac-
tion to invoke given the current room – in this
case to leave the room via the West doorway.
Control is passed to the room-leaving subtask
that leads the agent out of the room through
the chosen doorway. Upon leaving the room,
the subtask is terminated and control is passed
back to the higher level that chooses the next
optimal room-leaving action until the agent fi-
nally leaves the house. The total number of Q

values required for the hierarchical reinforce-
ment formulation is 200 for the two subtasks and
eight for the higher-level problem, a total of 208.
This almost halves the storage requirements com-
pared to the “flat” formulation with correspond-
ing savings in time complexity. In this exam-
ple, hierarchical reinforcement learning finds the
same optimal policy that a less efficient reinforce-
ment learner would find, but this is not always
the case.

The above example hides many issues that
hierarchical reinforcement learning needs to ad-
dress, including: safe state abstraction; appro-
priately accounting for accumulated subtask re-
ward when initial conditions change or rewards
are discounted; optimality of the solution; and
learning of the hierarchical structure itself. In the
next sections we will touch on these issues as
we discuss the semi-Markov decision problem
formalism and review several approaches to hi-
erarchical reinforcement learning.

Semi-Markov Decision Problem Formalism
The common underlying formalism in hierarchi-
cal reinforcement learning is the semi-Markov
decision process (SMDP). A SMDP generalizes
a �Markov decision process by allowing actions
to be temporally extended. We will state the dis-
crete time equations following Dietterich (2000),
recognizing that in general SMDPs are formu-
lated with real-time valued temporally extended
actions (Puterman 1994).

Denoting the random variable N to be the
number of time steps that a temporally extended
action a takes to complete when it is executed
starting in state s, the state transition probability
function for the result state s0 and the expected
reward function are given by (1) and (2) respec-
tively.

T
N;a
ss0 D P rfstCN D s0jst D s; at D ag (1)

R
N;a
ss0 D E

(
NX

nD1

�n�1rtCnjst

D s; at D a; stCN D s0

)
(2)

R
N;a
ss0 is the expected sum of N future discounted

rewards. The discount factor � 2 [0, 1]. When set
to less than 1, � insures that the value function
will converge for continuing or infinite-horizon
problems. The Bellman “backup” equations for
the value function V (s/ for an arbitrary policy �

and optimal policies (denoted by �) are similar to
those for MDPs with the sum taken with respect
to s0 and N .

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Hierarchical Reinforcement Learning 615

H

DoorDoor

West West EastSouth

0.5 0.5
0.50.5

North North

West
Wall

North
Wall

Choose Leave room
to North

Leave room
to West

Hierarchical Reinforcement Learning, Fig. 2 An abstract machine for a HAM that provides routines for leaving
rooms to the West and North of the house in Fig. 1 right

V �
m .s/ D

X
s0;N

T
N;�.s/
ss0

h
R

N;pi.s/
ss0 C �N V �

m .s0/
i

(3)

V �
m.s/ D max

a

X
s0;N

T
N;a
ss0

h
R

N;a
ss0 C �N V �

m.s0/
i

(4)

For problems that are guaranteed to terminate, the
discount factor � can be set to 1. In this case the
number of steps N can be marginalized out and
the sum taken with respect to s alone. The above
equations are then similar to the ones for MDPs
with the expected primitive reward replaced with
the expected sum of rewards to termination of
the temporally extended action. All the meth-
ods developed for reinforcement learning using
primitive actions work equally well for problems
using temporally extended actions.

Approaches to Hierarchical Reinforcement
Learning

Hierarchies of Abstract Machines (HAMs)
In the HAM approach to hierarchical reinforce-
ment learning (Parr and Russell 1997), the de-
signer specifies subtasks by providing stochastic
finite state automata called abstract machines.
While in practice several abstract machines may
allow some to call others as subroutines (hence
hierarchies of abstract machines), in principle
this is equivalent to specifying one large abstract
machine with two types of states. Action states,
that specify the action to be taken given the state
of the MDP to be solved and choice states with
nondeterministic actions.

An abstract machine is a triple h�; I; ıi, where
� is a finite set of machine states, I is a stochastic
function from states of the MDP to be solved to
machine states that determines the initial machine
state, and ı is a stochastic next-state function
mapping machine states and MDP states to next
machine states. The parallel action of the MDP
and an abstract machine yields a discrete-time
higher-level SMDP with the abstract machine’s
action states generating a sequence of temporally
extended actions between choice states. Only a
subset of states of the original MDP are associ-
ated with choice-points, potentially reducing the
higher-level problem significantly.

Continuing with our four-room example, the
abstract machine in Fig. 2 provides choices for
leaving a room to the West or the North. In each
room it will take actions that move the agent to
a wall, and perform a random walk along the
wall until it finds the doorway. Only five states
of the original MDP are states of the higher-level
SMDP. These states are the initial state of the
agent and the states on the other side of doorways
where the abstract machine enters choice states.
Reinforcement learning methods update the value
function for these five states in the usual way
with rewards accumulated since the last choice
state. The optimal policy consists of the three
temporally extended actions sequentially leaving
a room to the West, North, and North again.

Solving the SMDP will yield an optimal policy
for the agent to leave the house subject to the
constraints of the abstract machine. In this case it
is not a globally optimal policy because a random
walk along walls to find a doorway is inefficient.

616 Hierarchical Reinforcement Learning

The HAM approach is predicated on engineers
and control theorists being able to design good
controllers that will realize specific lower level
behaviors. HAMs are a way to partially specify
procedural knowledge to transform an MDP to a
reduced SMDP. In the most general case HAMs
can be Turing machines that execute any com-
putable mapping of the agent’s complete sensory-
action history.

Options
For an MDP with finite states S and actions
A, options generalize one-step primitive actions
to include temporally extended actions (Sutton
et al. 1999). Options consist of three components:
a policy � : S � A ! [0, 1], a termination
condition ˇ : S ! [0, 1], and an initiation
set I � S . An option hI; �; ˇi is available
in state s if and only if s 2 I . If an option
is invoked, actions are selected according to �

until the option terminates according to ˇ. These
options are called Markov options because intra-
option actions taken by policy � depend only on
the current state s. It is possible to generalize
options to semi-Markov options in which policies
and termination conditions make their choices
dependent on all prior events since the option was
initiated. In this way it is possible, for example,
to “time-out” options after some period of time
has expired. For their most general interpretation,
options and HAMs appear to have similar func-
tionality, but different emphases.

Options were intended to augment the primi-
tive actions available to an MDP. The temporally
extended actions executed by the options yield a
SMDP. As for HAMs, if options replace primitive
actions, the SMDP can be considerably reduced.
There is debate as to benefits when primitive
actions are retained. Reinforcement learning may
be accelerated because the value function can
be backed-up over greater distances in the state-
space and the inclusion of primitive actions guar-
antees convergence to the globally optimal pol-
icy, but the introduction of additional actions
increased the storage and exploration necessary.

In a similar four-room example to that of
Fig. 1, the authors (Sutton et al. 1999) show how
options can learn significantly faster proceeding

on a room-by-room basis, rather than position by
position. When the goal is not in a convenient
location, able to be reached by the given op-
tions, it is possible to include primitive actions as
special-case options and still accelerate learning
for some problems. For example, with room-
leaving options alone, it is not possible to reach a
goal in the middle of a room. Primitive actions are
required when the room containing the goal state
is entered. Although the inclusion of primitive
actions guarantees convergence to the globally
optimal policy, this may create extra work for the
learner.

MAXQ
The MAXQ (Dietterich 2000) approach to hier-
archical reinforcement learning restricts subtasks
to subsets of states, actions, and policy frag-
ments of the original MDP without introducing
extra state, as is possible with HAMs and semi-
Markov options. The contribution of MAXQ is
the decomposition of the value function over
the hierarchy and provision of opportunities for
state abstraction. An MDP is manually decom-
posed into a hierarchical directed acyclic graph
of subtasks called a task-hierarchy. Each subtask
is a smaller (semi-)MDP. In decomposing the
MDP the designer specifies the active states and
terminal states for each subtask. Terminal states
are typically classed either as goal terminal states
or non-goal terminal states. Using disincentives
for non-goal terminal states, policies are learned
for each subtask to encourage them to terminate
in goal terminal states. The actions available in
each subtask can be primitive actions or other
(child) subtasks. Each sub-task can invoke any of
its child subtasks as a temporally extended action.
When a task enters a terminal state, it, and all its
children, abort and return control to the calling
subtask.

Figure 3 shows a task-hierarchy for the pre-
vious four-room problem. The four lower-level
subtasks are sub-MDPs for a generic room, where
a separate policy is learnt to exit a room by
each of the four possible doorways. The arrow
indicates a transition to a goal terminal state and
the “�”s indicate non-goal terminal states. States,
actions, transitions, and rewards are inherited

Hierarchical Reinforcement Learning 617

H

Hierarchical
Reinforcement Learning,
Fig. 3 A task-hierarchy
decomposing the
four-room problem in
Fig. 1. The four lower-level
subtasks are generic
room-leaving sub-MDPs,
one for leaving a room in
each compass direction

X

XX X XX

X X

X

X

X

X

from the original MDP. The rewards on transition
to terminal states are engineered to encourage
the agent to avoid non-goal terminal states and
terminate in goal states. The higher-level problem
(SMDP) consists of just four states representing
the rooms. Any of the subtasks (room-leaving
actions) can be invoked in any of the rooms.

A key feature of MAXQ is that it represents
the value of a state as a decomposed sum of
subtask completion values plus the value of the
immediate primitive action. A completion value
is the expected (discounted) cumulative reward
to complete the subtask after taking the next
(temporally extended) action when following a
policy over subtasks. The sum includes all the
tasks invoked on the path from the root task in
the task hierarchy right down to the primitive
action. For a rigorous mathematical treatment the
reader is referred to Dietterich (2000). The Q
function is expressed recursively (5) as the value
for completing the subtask plus the completion
value for the overall problem after the subtask
has terminated. In this equation, i is the subtask
identifier, s is the current state, action a is the
child subtask (or primitive action), and � is a
policy for each subtask.

Q�.i; s; a/ D V �.a; s/C C �.i; s; a/ (5)

We describe the basic idea for the task-
hierarchy shown in Fig. 3 for the optimal
policy. The value of the agent’s state has three
components determined by the two levels in the
task-hierarchy plus a primitive action. For the
agent state, shown in Fig. 4 by a solid black oval,
the value function represents the expected reward
for taking the next primitive action to the North,
completing the lower-level subtask of leaving the

room to the West, and completing the higher-
level task of leaving the house. The benefit of
decomposing the value function is that it can be
represented much more compactly because only
the completion values for non-primitive subtasks
and primitive actions need be stored.

The example illustrates two types of state
abstraction. As all the rooms are similar we can
ignore the room identity when we learn intra-
room navigation policies. Secondly, when future
rewards are not discounted, the completion value
after leaving a room is independent of the starting
state in that room. These “funnel” actions allow
the intra-room states to be abstracted into a single
state for each room as far as the completion
value is concerned. The effect is that the original
problem can be decomposed into a small four-
state SMDP at the top level and four smaller
subtask MDPs.

Optimality
Hierarchical reinforcement learning can at best
yield solutions that are hierarchically optimal, as-
suming convergence conditions are met, meaning
that they are consistent with the task-hierarchy.
MAXQ introduces another form of optimality –
recursive optimality. MAXQ optimizes subtask
policies to reach goal states ignoring the needs
of their parent tasks. This has the advantage
that subtasks can be reused in various contexts,
but they may not therefore be optimal in each
situation. A recursively optimal solution cannot
be better than a hierarchical optimal solution.
Both recursive and hierarchical optimality can be
arbitrarily worse than the globally optimal solu-
tion if a designer chooses a poor HAM, option or
hierarchical decomposition.

618 Hierarchical Reinforcement Learning

Hierarchical
Reinforcement Learning,
Fig. 4 The components of
the decomposed value
function for the agent
following an optimal policy
for the four-room problem
in Fig. 1. The agent is
shown as a solid black oval
at the starting state

The stochastic nature of MDPs means that
the condition under which a temporally abstract
action is appropriate may have changed after the
action’s invocation and that another action may
become a better choice because of “stochastic
drift.” A subtask policy proceeding to termination
in this situation may be suboptimal. By con-
stantly interrupting the subtask, as for example
in HDG (Kaelbling 1993), a better subtask may
be chosen. Dietterich calls this “polling” proce-
dure hierarchical greedy execution. While this is
guaranteed to be no worse than the hierarchically
optimal or recursively optimal solution and may
be considerably better, it still does not provide
any global optimality guarantees. Great care is
required while learning with hierarchical greedy
execution. Hauskrecht et al. (1998) discuss de-
composition and solution techniques that make
optimality guarantees, but unfortunately, unless
the MDP can be decomposed into very weakly
coupled smaller MDPs, the computational com-
plexity is not necessarily reduced. Benefits will
still accrue if the options or subtask policies can
be reused and amortized over multiple MDPs.

Automatic Decomposition
In the above approaches the programmer is ex-
pected to manually decompose the overall prob-
lem into a hierarchy of subtasks. Methods to auto-
matically decompose problems include ones that
look for subgoal bottleneck or landmark states,
and ones that find common behavior trajectories
or region policies. For example, in Fig.1 the agent
will exit one of the two starting room doorways

on the way to the goal. The states adjacent to
each doorway will be visited more frequently in
successful trials than other states.

Both NQL (nested Q learning) Digney (1998)
and McGovern (2002) use this idea to identify
subgoals. Moore et al. (1999) suggest that, for
some navigation tasks, performance is insensitive
to the position of landmarks and an (automatic)
randomly generated set of landmarks does
not show widely varying results from more
purposefully positioned ones. Hengst has
explored automatic learning of MAXQ-like
task-hierarchies from the agent’s interactive
experience with the environment, automatically
finding common regions and generating subgoals
when the agent’s prediction fails. Methods
include state abstraction with discounting for
infinite horizon problems and decompositions of
problems to form partial-order task-hierarchies
(Hengst 2008). When there are no cycles in the
causal graph the variable influence structure
analysis (VISA) algorithm (Jonsson and Barto
2006) performs hierarchical decomposition of
factored Markov decision processes using a given
dynamic Bayesian network model of actions.
Konidaris and Barto (2009) introduce a skill
discovery method for reinforcement learning in
continuous domains that constructs chains of
skills leading to an end-of-task reward.

Given space limitations we cannot adequately
cover all the research in hierarchical reinforce-
ment learning, but we trust that the material above
will provide a starting point.

Higher-Order Logic 619

H

Cross-References

�Associative Reinforcement Learning
�Average-Reward Reinforcement Learning
�Bayesian Reinforcement Learning
�Credit Assignment
�Markov Decision Processes
�Model-Based Reinforcement Learning
� Policy Gradient Methods
�Q-Learning
�Reinforcement Learning
�Relational Reinforcement Learning
� Structured Induction
�Temporal Difference Learning

Recommended Reading

Ashby R (1956) Introduction to cybernetics. Chapman
& Hall, London

Barto A, Mahadevan S (2003) Recent advances in
hiearchical reinforcement learning. Spec Issue Reinf
Learn Discret Event Syst J 13:41–77

Dayan P, Hinton GE (1992) Feudal reinforcement
learning. In: Advances in neural information pro-
cessing systems 5 NIPS conference, Denver, 2–5
Dec 1991. Morgan Kaufmann, San Francisco

Dietterich TG (2000) Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition. J Artif Intell Res 13:227–303

Digney BL (1998) Learning hierarchical control
structures for multiple tasks and changing
environments. In: From animals to animats
5: proceedings of the fifth international
conference on simulation of adaptive behaviour,
SAB 98, Zurich, 17–21 Aug 1998. MIT,
Cambridge

Ghavamzadeh M, Mahadevan S (2002) Hierarchically
optimal average reward reinforcement learning. In:
Sammut C, Achim Hoffmann (eds) Proceedings of
the nineteenth international conference on machine
learning, Sydney. Morgan-Kaufman, San Francisco,
pp 195–202

Hauskrecht M, Meuleau N, Kaelbling LP, Dean T,
Boutilier C (1998) Hierarchical solution of Markov
decision processes using macro-actions. In: Four-
teenth annual conference on uncertainty in artificial
intelligence, Madison, pp 220–229

Hengst B (2008) Partial order hierarchical reinforce-
ment learning. In: Australasian conference on arti-
ficial intelligence, Auckland, Dec 2008. Springer,
Berlin, pp 138–149

Jonsson A, Barto A (2006) Causal graph based de-
composition of factored MDPs. J Mach Learn Res
7:2259–2301

Kaelbling LP (1993) Hierarchical learning in stochas-
tic domains: preliminary results. In: Proceed-
ings of the tenth international conference on
machine learning. Morgan Kaufmann, San Mateo,
pp 167–173

Konidaris G, Barto A (2009) Skill discovery in con-
tinuous reinforcement learning domains using skill
chaining. In: Bengio Y, Schuurmans D, Lafferty J,
Williams CKI, Culotta A (eds) Advances in neu-
ral information processing systems 22, Vancouver,
pp 1015–1023

McGovern A (2002) Autonomous discovery of ab-
stractions through interaction with an environment.
In: SARA. Springer, London, pp 338–339

Moore A, Baird L, Kaelbling LP (1999) Multi-
value functions: efficient automatic action hierar-
chies for multiple goal MDPs. In: Proceedings
of the international joint conference on artificial
intelligence, Stockholm. Morgan Kaufmann, San
Francisco, pp 1316–1323

Parr R, Russell SJ (1997) Reinforcement learning with
hierarchies of machines. In: NIPS, Denver

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. New York,
Wiley

Ryan MRK, Reid MD (2000) Using ILP to improve
planning in hierarchical reinforcement learning. In:
Proceedings of the tenth international conference on
inductive logic programming, ILP 2000, London.
Springer, London

Singh S (1992) Reinforcement learning with a hierar-
chy of abstract models. In: Proceedings of the tenth
national conference on artificial intelligence, San
Jose

Sutton RS, Precup D, Singh SP (1999) Between MDPs
and semi-MDPs: a framework for temporal abstrac-
tion in reinforcement learning. Artif Intell 112(1–2):
181–211

Watkins CJCH (1989) Learning from delayed rewards.
PhD thesis, King’s College

Higher-Order Logic

John Lloyd
The Australian National University, Canberra,
ACT, Australia

Definition

Higher-order logic is a logic that admits so-
called higher-order functions, which are func-
tions that can have functions as arguments or
return a function as a result. The expressive power

http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_185
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_646
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_796
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

620 Higher-Order Logic

that comes from higher-order functions makes the
logic highly suitable for representing individuals,
predicates, features, background theories, and hy-
potheses and performing the necessary reasoning,
in machine learning applications.

Motivation and Background

Machine learning tasks naturally require knowl-
edge representation and reasoning. The individu-
als that are the subject of learning, the training
examples, the features, the background theory,
and the hypothesis languages all have to be rep-
resented. Furthermore, reasoning, usually in the
form of computation, has to be performed.

Logic is a convenient formalism in which
knowledge representation and reasoning can be
carried out; indeed, it was developed exactly for
this purpose. For machine learning applications,
quantification over variables is generally needed,
so that, at a minimum, �first-order logic should
be used. Here, the use of higher-order logic for
this task is outlined. Higher-order logic admits
higher-order functions that can have functions
as arguments or return a function as a result.
This means that the expressive power of higher-
order logic is greater than first-order logic so
that some expressions of higher-order logic are
difficult or impossible to state directly in first-
order logic. For example, sets can be represented
by � predicates which are terms in higher-order
logic, and operations on sets can be implemented
by higher-order functions. Grammars that gener-
ate spaces of predicates can be easily expressed.
Also the programming idioms of functional pro-
gramming languages become available.

The use of higher-order logic in learning ap-
plications began around 1990 when researchers
argued for the advantages of lifting the concept
of � least general generalization in the first-order
setting to the higher-order setting (Dietzen and
Pfenning 1992; Feng and Muggleton 1992; Lu
et al. 1998). A few years later, Muggleton and
Page (1994) advocated the use of higher-order
concepts, especially sets, for learning applica-
tions. Then the advantages of a type system and
also higher-order facilities for concept learning

were presented in Flach et al. (1998). Higher-
order logic is also widely used in other parts
of computer science, for example, theoretical
computer science, functional programming, and
verification of software.

Most treatments of higher-order logic can be
traced back to Church’s simple theory of types
(Church 1940). Recent accounts can be found, for
example, in Andrews (2002), Fitting (2002), and
Wolfram (1993). For a highly readable account of
the advantages of working in higher-order rather
than first-order logic, Farmer (2008) is strongly
recommended. An account of higher-order logic
specifically intended for learning applications is
in Lloyd (2003), which contains much more de-
tail about the knowledge representation and rea-
soning issues that are discussed below.

Theory

Logic
To begin, here is one formulation of the syntax
of higher-order logic which gives prominence to
a type system that is useful for machine learning
applications, in particular.

An alphabet consists of four sets: a set T of
type constructors, a set P of parameters, a set C
of constants, and a set V of variables. Each type
constructor in T has an arity. The set T always
includes the type constructor � of arity 0. �

is the type of the booleans. Each constant in C

has a signature (i.e., type declaration). The set V
is denumerable. Variables are typically denoted
by x; y; ´; : : :. The parameters are type variables
that provide polymorphism in the logic; they are
ignored for the moment.

Here is the definition of a type (for the non-
polymorphic case).

Definition A type is defined inductively as fol-
lows:

1. If T is a type constructor of arity k and
˛1; : : : ; ˛k are types, then T ˛1 : : : ˛k is a
type. (Thus, a type constructor of arity 0 is a
type.)

2. If ˛ and ˇ are types, then ˛ ! ˇ is a type.

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_653
http://dx.doi.org/10.1007/978-1-4899-7687-1_327

Higher-Order Logic 621

H

3. If ˛1; : : : ; ˛n are types, then ˛1 � � � � � ˛n is a
type.

The set C always includes the following con-
stants:

1. > and ?, having signature �.
2. D˛ , having signature ˛ ! ˛ ! �, for each

type ˛.
3. :, having signature �! �.
4. ^, _, �!, �, and !, having signature

�! �! �.
5. †˛ and …˛ , having signature .˛ ! �/! �,

for each type ˛.

The intended meaning of D˛ is identity (i.e.,
D˛ x y is> if x and y are identical), the intended
meaning of > is true, the intended meaning of
? is false, and the intended meanings of the
connectives :, ^, _, �!, �, and ! are as
usual. The intended meanings of †˛ and …˛ are
that †˛ maps a predicate to > if the predicate
maps at least one element to > and …˛ maps a
predicate to > iff the predicate maps all elements
to >.

Here is the definition of a term (for the non-
polymorphic case).

Definition A term, together with its type, is de-
fined inductively as follows:

1. A variable in V of type ˛ is a term of type ˛.
2. A constant in C having signature ˛ is a term of

type ˛.
3. If t is a term of type ˇ and x a variable of type

˛, then �x:t is a term of type ˛ ! ˇ.
4. If s is a term of type ˛ ! ˇ and t a term of

type ˛, then .s t/ is a term of type ˇ.
5. If t1; : : : ; tn are terms of type ˛1; : : : ; ˛n, re-

spectively, then .t1; : : : ; tn/ is a term of type
˛1 � � � � � ˛n.

A formula is a term of type �. Terms of the
form .†˛ �x:t/ are written as 9˛ x:t , and terms
of the form .…˛ �x:t/ are written as 8˛x:t (in
accord with the intended meaning of †˛ and
…˛). Thus, in higher-order logic, each quantifier
is obtained as a combination of an abstraction
acted on by a suitable function (†˛ or …˛).

The polymorphic version of the logic extends
what is given above by also having available
parameters. The definition of a type as above
is then extended to polymorphic types that may
contain parameters, and the definition of a term
as above is extended to terms that may have
polymorphic types.

Reasoning in higher-order logic can consist of
theorem proving, via resolution or tableaus, for
example, or can consist of equational reasoning,
as is embodied in the computational mechanisms
of functional programming languages, for exam-
ple. Theorem proving and equational reasoning
can even be combined to produce more flexible
reasoning systems. Determining whether a for-
mula is a theorem is, of course, undecidable.

The semantics for higher-order logic is gener-
ally based on Henkin (1950) models. Compared
with first-order interpretations, the main extra
ingredient is that, for each (closed) type of the
form ˛ ! ˇ, there is a domain that consists
of some set of functions from the domain corre-
sponding to ˛ to the domain corresponding to ˇ.
There exist proof procedures that are sound and
complete with respect to this semantics (Andrews
2002; Fitting 2002).

The logic includes the �-calculus. Thus, the
rules of �-conversion are available:

1. (˛-Conversion) �x:t �˛ �y:.tfx=yg/, if y

is not free in t .
2. (ˇ-Reduction) .�x:s t/ �ˇ sfx=tg.
3. (�-Reduction) �x:.t x/ �� t , if x is not free

in t .

Here sfx=tg denotes the result of replacing free
occurrences of x in s by t , where free vari-
able capture is avoided by renaming the relevant
bound variables in s.

Higher-order generalization is introduced
through the concept of least general general-
ization as follows (Feng and Muggleton 1992). A
term s is more general than a term t if there is a
substitution � such that s� is �-convertible to t .
A term t is a common generalization of a set T of
terms if t is more general than each of the terms
in T . A term t is a least general generalization of
a set T of terms if t is a common generalization

622 Higher-Order Logic

of T and, for all common generalizations s of T ,
t is not strictly more general than s.

Knowledge Representation
In machine learning applications, the individuals
that are the subject of learning need to be rep-
resented. Using logic, individuals are most nat-
urally represented by (closed) terms. In higher-
order logic, advantage can be taken of the fact
that sets can be identified with predicates (their
characteristic functions). Thus, the set f1; 2g is
the term

�x:if x D 1 then > else if x D 2 then > else ?:

This idea generalizes to multisets and similar
abstractions. For example,

�x:if x D A then 42 else if xDB then 21 else 0

is the multiset with 42 occurrences of A and
21 occurrences of B (and nothing else). Thus,
abstractions of the form

�x:if x D t1 then s1 else : : : if

x D tn then sn else s0

are adopted to represent (extensional) sets, multi-
sets, and so on.

These considerations motivate the introduc-
tion of the class of basic terms that are used to
represent individuals (Lloyd 2003). The defini-
tion of basic terms is an inductive one consisting
of three parts. The first part covers data types such
as lists and trees and uses the same constructs
for this as are used in functional programming
languages. The second part uses abstractions to
cover data types such as (finite) sets and mul-
tisets, for which the data can be represented by
a finite lookup table. The third part covers data
types that are product types and therefore allows
the representation of tuples. The definition is
inductive in the sense that basic terms include
lists of sets of tuples, tuples of sets, and so on.

It is common in learning applications to need
to generate spaces of predicates. This is be-
cause features are typically predicates and logical

hypothesis languages contain predicates. Thus,
there is a need to specify grammars that can
generate spaces of predicates. In addition to first-
order approaches based on refinement operators
or antecedent description grammars, higher-order
logic offers another approach to this task based on
the idea of generating predicates by composing
certain primitive functions.

Predicate rewrite systems are used to define
spaces of standard predicates, where standard
predicates are predicates in a particular syntactic
form that involves composing certain functions
(Lloyd 2003). A predicate rewrite is an expres-
sion of the form p � q, where p and q are
standard predicates. The predicate p is called the
head and q is the body of the rewrite. A predicate
rewrite system is a finite set of predicate rewrites.
One should think of a predicate rewrite system
as a kind of grammar for generating a particular
class of predicates. Roughly speaking, this works
as follows. Starting from the weakest predicate
top, all predicate rewrites that have top (of the
appropriate type) in the head are selected to make
up child predicates that consist of the bodies
of these predicate rewrites. Then, for each child
predicate and each redex (i.e., subterm selected
for expansion) in that predicate, all child predi-
cates are generated by replacing each redex by
the body of the predicate rewrite whose head is
identical to the redex. This generation of pred-
icates continues to produce the entire space of
predicates given by the predicate rewrite system.

Predicate rewrite systems are a convenient
mechanism to specify precise control over the
space of predicates that is to be generated. Note
that predicate rewrite systems depend essentially
on the higher-order nature of the logic since
standard predicates are obtained by composition
of functions and composition is a higher-order
function.

Other ingredients of learning problems, such
as background theories and training examples,
can also be conveniently represented in higher-
order logic.

Reasoning
Machine learning applications require that
reasoning tasks be carried out, for example,

Higher-Order Logic 623

H

computing the value of some predicate on some
individual. Generally, reasoning in (higher-order)
logic can be either theorem proving or purely
equational reasoning or a combination of both.

A variety of proof systems have been
developed for higher-order logic; these include
Hilbert-style systems (Andrews 2002) and
tableau systems (Fitting 2002).

Purely equational reasoning includes the com-
putational models of functional programming
languages and therefore can be usefully thought
of as computation. Typical examples of this
approach include the declarative programming
languages of Curry (Hanus 2006) and Escher
(Lloyd 2003) which are extensions of the
functional programming language of Haskell
(Peyton Jones 2003). For both Curry and Escher,
the Haskell computational model is generalized
in such a way as to admit the logic programming
idioms.

Alternatively, by suitably restricting the frag-
ment of the logic considered and the proof sys-
tem, computation systems in the form of declara-
tive programming languages can be developed. A
prominent example of this approach is the logic
programming language �Prolog that was intro-
duced in the 1980s (Nadathur and Miller 1998).
In �Prolog, program statements are higher-order
hereditary Harrop formulas, a generalization of
the definite � clauses used by �Prolog. The lan-
guage provides an elegant use of �-terms as data
structures, metaprogramming facilities, universal
quantification, and implications in goals, among
other features.

Applications

Higher-order logic has been used in a variety of
machine learning settings including decision tree
learning, kernels, Bayesian networks, and evolu-
tionary computing. Decision tree learning based
on the use of higher-order logic as the knowledge
representation and reasoning language is pre-
sented in Bowers et al. (2000) and further devel-
oped in Ng (2005b). Kernels and distances over
individuals represented by basic terms are studied
in Gärtner et al. (2004). In Gyftodimos and Flach

(2005), Bayesian networks over basic terms are
defined, and it is shown there how to construct
probabilistic classifiers over such networks. In Ng
et al. (2008), higher-order logic is used as the
setting for studying probabilistic modeling, infer-
ence, and learning. An evolutionary approach to
learning higher-order concepts is demonstrated in
Kennedy and Giraud-Carrier (1999). In addi-
tion, the learnability of hypothesis languages ex-
pressed in higher-order logic is investigated in Ng
(2005a, 2006).

Cross-References

� First-Order Logic
� Inductive Logic Programming
�Learning from Structured Data
� Propositional Logic

Recommended Reading

Andrews PB (2002) An introduction to mathematical
logic and type theory: to truth through proof, 3rd
edn. Kluwer Academic, Dordrecht

Bowers AF, Giraud-Carrier C, Lloyd JW (2000) Clas-
sification of individuals with complex structure. In:
Langley P (ed) Machine learning: proceedings of the
seventeenth international conference (ICML 2000),
Stanford. Morgan Kaufmann, Stanford, pp 81–88

Church A (1940) A formulation of the simple theory of
types. J Symb Log 5:56–68

Dietzen S, Pfenning F (1992) Higher-order and modal
logic as a framework for explanation-based general-
ization. Mach Learn 9:23–55

Farmer W (2008) The seven virtues of simple type
theory. J Appl Log 6(3):267–286

Feng C, Muggleton SH (1992) Towards inductive gen-
eralisation in higher order logic. In: Sleeman D, Ed-
wards P (eds) Proceedings of the ninth international
workshop on machine learning. Morgan Kaufmann,
San Mateo, pp 154–162

Fitting M (2002) Types, tableaus, and Gödel’s god.
Kluwer Academic, Dordrecht

Flach P, Giraud-Carrier C, Lloyd JW (1998) Strongly
typed inductive concept learning. In: Page D (ed)
Inductive logic programming, 8th international con-
ference, ILP-98, Madison. Lecture notes in artificial
intelligence, vol 1446. Springer, Berlin, pp 185–194

Gärtner T, Lloyd JW, Flach P (2004) Kernels and dis-
tances for structured data. Mach Learn 57(3):205–
232

Gyftodimos E, Flach P (2005) Combining Bayesian
networks with higher-order data representations.
In: Proceedings of 6th international symposium on

http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_677
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_963

624 Hold-One-Out Error

intelligent data analysis (IDA 2005), Madrid. Lec-
ture notes in computer science, vol 3646. Springer,
Berlin, pp 145–156

Hanus M (ed) (2006) Curry: an integrated func-
tional logic language. http://www.informatik.uni-
kiel.de/�curry. Retrieved 21 Dec 2009

Henkin L (1950) Completeness in the theory of types.
J Symb Log 15(2):81–91

Kennedy CJ, Giraud-Carrier C (1999) An evolution-
ary approach to concept learning with structured
data. In: Proceedings of the fourth international
conference on artificial neural networks and ge-
netic algorithms (ICANNGA’99). Springer, Berlin,
pp 331–366

Lloyd JW (2003) Logic for learning. Cognitive tech-
nologies. Springer, Berlin

Lu J, Harao M, Hagiya M (1998) Higher order gen-
eralization. In: JELIA ’98: proceedings of the Eu-
ropean workshop on logics in artificial intelligence,
Dagstuhl. Lecture notes in artificial intelligence,
vol 1489. Springer, Berlin, pp 368–381

Muggleton S, Page CD (1994) Beyond first-order
learning: inductive learning with higher-order logic.
Technical report PRG-TR-13-94, Oxford University
Computing Laboratory

Nadathur G, Miller DA (1998) Higher-order logic
programming. In: Gabbay DM, Hogger CJ, Robin-
son JA (eds) The handbook of logic in artificial
intelligence and logic programming, vol 5. Oxford
University Press, Oxford, pp 499–590

Ng KS (2005a) Generalization behaviour of alkemic
decision trees. In: Inductive logic programming,
15th international conference (ILP 2005), Bonn.
Lecture notes in artificial intelligence, vol 3625.
Springer, Berlin, pp 246–263

Ng KS (2005b) Learning comprehensible theories
from structured data. PhD thesis, Computer Sci-
ences Laboratory, The Australian National Univer-
sity

Ng KS (2006) (Agnostic) PAC learning concepts in
higher-order logic. In: European conference on ma-
chine learning (ECML 2006), Berlin. Lecture notes
in artificial intelligence, vol 4212. Springer, Berlin,
pp 711–718

Ng KS, Lloyd JW, Uther WTB (2008) Probabilis-
tic modelling, inference and learning using log-
ical theories. Ann Math Artif Intell 54:159–205.
doi:10.1007/s 10472-009-9136-7

Peyton Jones S (ed) (2003) Haskell 98 language and
libraries: the revised report. Cambridge University
Press, Cambridge

Wolfram DA (1993) The clausal theory of types. Cam-
bridge University Press, Cambridge

Hold-One-Out Error

�Leave-One-Out Error

Holdout Data

�Holdout Set

Holdout Evaluation

Definition

Holdout evaluation is an approach to � out-of-sample
evaluation whereby the available data are
partitioned into a � training set and a � test
set. The test set is thus � out-of-sample data
and is sometimes called the holdout set or
holdout data. The purpose of holdout evaluation
is to test a model on different data to that
from which it is learned. This provides less
biased estimate of learning performance than
� in-sample evaluation.

In repeated holdout evaluation, repeated hold-
out evaluation experiments are performed, each
time with a different partition of the data, to
create a distribution of training and � test sets
with which an algorithm is assessed.

Cross-References

�Algorithm Evaluation

Holdout Set

Synonyms

Holdout data

Definition

A holdout set is a � data set containing data that
are not used for learning and that are used for
� evaluation by a learning system.

Cross-References

�Evaluation Set
�Holdout Evaluation

http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~curry
http://dx.doi.org/10.1007/978-1-4899-7687-1_470
http://dx.doi.org/10.1007/978-1-4899-7687-1_370
http://dx.doi.org/10.1007/978-1-4899-7687-1_621
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_620
http://dx.doi.org/10.1007/978-1-4899-7687-1_405
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_100199
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_265
http://dx.doi.org/10.1007/978-1-4899-7687-1_100146
http://dx.doi.org/10.1007/978-1-4899-7687-1_369

Hypothesis Language 625

H

Hopfield Network

Risto Miikkulainen
Department of Computer Science,
The University of Texas at Austin, Austin,
TX, USA

Synonyms

Recurrent associative memory

Definition

The Hopfield network is a binary, fully recurrent
network that, when started on a random activa-
tion state, settles the activation over time into
a state that represents a solution (Hopfield and
Tank 1986). This architecture has been analyzed
thoroughly using tools from statistical physics.
In particular, with symmetric weights, no self-
connections, and asynchronous neuron activation
updates, a Lyapunov function exists for the net-
work, which means that the network activity will
eventually settle. The Hopfield network can be
used as an associate memory or as a general
optimizer. When used as an associative memory,
the weight values are computed from the set
of patterns to be stored. During retrieval, part
of the pattern to be retrieved is activated, and
the network settles into the complete pattern.
When used as an optimizer, the function to be
optimized is mapped into the Lyapunov func-
tion of the network, which is then solved for
the weight values. The network then settles to
a state that represents the solution. The basic
Hopfield architecture can be extended in many
ways, including continuous neuron activations.
However, it has limited practical value mostly
because it is not strong in either of the above
task: as an associative memory, its capacity is
approximately 0.15N in practice (where N is the
number of neurons), and as an optimizer, it often
settles into local optima instead of the global
one. The �Boltzmann machine extends the archi-
tecture with hidden neurons, allowing for better
performance in both tasks. However, the Hopfield

network has had a large impact in the field be-
cause the theoretical techniques developed for
it have inspired theoretical approaches for other
architectures as well, especially for those of self-
organizing systems (e.g., � self-organizing maps,
� adaptive resonance theory).

Recommended Reading

Hopfield JJ, Tank DW (1986) Computing with neural
circuits: a model. Science 233:624–633

Hyperparameter Optimization

�Metalearning

Hypothesis Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
Leiden Institute of Advanced Computer Science,
Heverlee, Belgium

Synonyms

Representation language

Definition

The hypothesis language used by a machine
learning system is the language in which the
hypotheses (also referred to as patterns or
models) it outputs are described.

Motivation and Background

Most machine learning algorithms can be seen
as a procedure for deriving one or more hy-
potheses from a set of observations. Both the
input (the observations) and the output (the hy-
potheses) need to be described in some particular
language. This language is respectively called
the �Observation Language or the hypothesis

http://dx.doi.org/10.1007/978-1-4899-7687-1_100399
http://dx.doi.org/10.1007/978-1-4899-7687-1_31
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_100412
http://dx.doi.org/10.1007/978-1-4899-7687-1_608

626 Hypothesis Language

IF Outlook=sunny AND Humidity=high THEN Play=no
IF Outlook=sunny AND Humidity=normal THEN Play=yes
IF Outlook=overcast THEN Play=yes
IF Outlook=rainy AND Wind=strong THEN Play=no
IF Outlook=rainy AND Wind=weak THEN Play=yes

Outlook

overcast

no

strong weak

yesyesno

high normal

WindyesHumidity

sunny rainy

Hypothesis Language, Fig. 1 A decision tree and an equivalent rule set

language. These terms are mostly used in the con-
text of symbolic learning, where these languages
are often more complex than in subsymbolic
or statistical learning. For instance, hypothesis
languages have received a lot of attention in the
field of � Inductive Logic Programming, where
systems typically take as one of their input pa-
rameters a declarative specification of the hypoth-
esis language they are supposed to use (which is
typically a strict subset of full clausal logic). Such
a specification is also called a �Language Bias.

Examples of Hypothesis Languages

The hypothesis language used obviously depends
on the learning task that is performed. For in-
stance, in predictive learning, the output is typi-
cally a function, and thus the hypothesis language
must be able to represent functions; whereas in
clustering the language must have constructs for
representing clusters (sets of points). Even for
one and the same goal, different languages may
be used; for instance, decision trees and rule
sets can typically represent the same type of
functions, so the difference between these two is
mostly syntactic.

In the following section, we discuss briefly
a few different formalisms for representing hy-
potheses. For most of these, there are separate
entries in this volume that offer more detail on
the specifics of that formalism.

Decision Trees and Rule Sets
A �Decision Tree represents a decision pro-
cess where consecutive tests are performed on
an instance to determine the value of its target

variable, and at each step in this process, the
test that is performed depends on the outcome of
previous tests. Each leaf of the tree contains the
set of all instances that fulfill the conjunctions of
all conditions on the path from the root to this
leaf, and as such a tree can easily be written as
a set of if-then rules where each rule contains
one such conjunction. If the target variable is
boolean, this format corresponds to disjunctive
normal form.

Figure 1 shows a decision tree and the corre-
sponding rule set. (Inspired by Mitchell 1997).

Graphical Models
The term “graphical models” usually refers to
probabilistic models where the joint distribution
over a set of variables is defined as the product
of a number of joint distributions over subsets
of these variables (i.e., a factorization), and this
factorization is defined by a graph structure. The
graph may be directed, in which case we speak
of a �Bayesian Network, undirected, in which
case we speak of a �Markov Network, or even
a mix of the two (so-called chain graphs). In a
Bayesian network, the constituent distributions
of the factorization are conditional probability
functions associated with each node. In a Markov
network, the constituent distributions are poten-
tial functions associated with each clique in the
graph.

Two learning settings can be distinguished:
learning the parameters of a graphical model
given the model structure (the graph), and learn-
ing both structure and parameters of the model. In
the first case, the graph is in fact a language bias
specification: the user forces the learner to return
a hypothesis that lies within the set of hypotheses

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_515

Hypothesis Language 627

H

Wind

Humidity

Outlook

Play

Wind Humidity

Outlook Play

Wind Humidity

Outlook Play

Hypothesis Language, Fig. 2 A Bayesian network, a Markov network, and a neural network

representable by this particular structure. In the
second case, the structure of the graph makes
explicit certain independencies that are hypothe-
sized to exist between the variables (thus it is part
of the hypothesis itself).

Figure 2 shows examples of possible graphical
models that might be learned from data. For
details about the interpretation of such graphical
models, we refer to the respective entries in this
encyclopedia.

Neural Networks
�Neural Networks are typically used to represent
complex nonlinear functions. A neural network
can be seen as a directed graph where the nodes
are variables and edges indicate which variables
depend on which other variables. Some nodes
represent the observed input variables xi and out-
put variables y, and some represent new variables
introduced by the network. Typically, a variable
depends, in a nonlinear way, on a linear com-
bination of those variables that directly precede
it in the directed graph. The parameters of the
network are numerical edge labels that represent
the weight of a parent variable in that linear
combination.

As with graphical models, one can learn the
parameters of a neural network with a given
structure, in which case the structure serves as a
language bias; or one can learn both the structure
and the parameters of the network.

Figure 2 shows an example of a neural net-
work. We refer to the respective entry for more
information on neural networks.

Instance-Based Learning
In the most basic version of � instance-based
learning, the training data set itself represents the

hypothesis. As such, the hypothesis language is
simply the powerset of the observation language.
Because many instance-based learners rescale the
dimensions of the input space, the vector contain-
ing the rescaling factors can be seen as part of
the hypothesis. Similarly, some methods derived
from instance-based learning build a model in
which the training set instances are replaced by
prototypes (one prototype being representative
for a set of instances) or continuous functions
approximating the instances.

Clustering
In clustering tasks, there is an underlying as-
sumption that there is a certain structure in the
data set; that is, the data set is really a mixture of
elements from different groups or clusters, with
each cluster corresponding to a different popu-
lation. The goal is to describe these clusters or
populations and to indicate which data elements
belong to which cluster.

Some clustering methods define the clusters
extensionally, that is, they describe the different
clusters in the dataset by just enumerating the
elements in the dataset that belong to them. Other
methods add an intensional description to the
clusters, defining the properties that an instance
should have in order to belong to the cluster;
as such, these intensional methods attempt to
describe the population that the cluster is a sam-
ple from. Some methods recursively group the
clusters into larger clusters, building a cluster
hierarchy. Figure 3 shows an example of such a
cluster hierarchy.

The term “mixture models” typically refers to
methods that return a probabilistic model (e.g., a
Gaussian distribution with specified parameters)
for each separate population identified. Being

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_409

628 Hypothesis Language

black white

sqsq cir tr cir

Hypothesis Language, Fig. 3 A hierarchical cluster-
ing: left, the data set; middle: an extensional clustering
shown on the data set; right, above: the corresponding

extensional clustering tree; right, below: a corresponding
intensional clustering tree, where the clusters are de-
scribed based on color and shape of their elements

probabilistic in nature, these methods typically
also assign data elements to the populations
in a probabilistic, as opposed to deterministic,
manner.

First-Order Logic Versus Propositional
Languages
In symbolic machine learning, a distinction is
often made between the so-called attribute-value
(or propositional) and relational (or first-order)
languages. The terminology “propositional”
versus “first-order” originates in logic. In
� Propositional Logic, only the existence of
propositions, which can be true or false,
is assumed, and these propositions can be
combined with the usual logical connectives
into logical formulae. In � First-Order Predicate
Logic, the existence of a universe of objects is
assumed as well as the existence of predicates
that can express certain properties of and
relationships between these objects. By adding
variables and quantifiers, one can describe
deductive reasoning processes in first-order
logic that cannot be described in propositional
logic. For instance, in propositional logic, one
could state propositions Socrates is human and
all humans are mortal (both are statements that
may be true or false), but there is no inherent
relationship between them. In first order logic, the
formulae human(Socrates) and8x: human.x/!

mortal.x/ allow one to deduce mortal(Socrates).

A more extensive explanation of the differences
between propositional and first-order logic can
be found in the entry on �First-Order Logic.

Many machine learning approaches use an
essentially propositional language for describing
observations and hypotheses. In the fields of
Inductive Logic Programming and �Relational
Learning, more powerful languages are used,
with an expressiveness closer to that of first-order
logic. Many of the representation languages men-
tioned above, which are essentially propositional,
have been extended towards the first-order logic
context.

The simplest example is that of rule sets. If-
then rules have a straightforward counterpart in
first-order logic in the form of �Clauses, which
are usually written as logical implications where
all variables are interpreted as universally quan-
tified. For instance, the rule “IF Human = true
THEN Mortal = true” can be written in clausal
form as

mortal.x/ human.x/: (1)

Propositional rules correspond to clauses that
refer to only one object (and the object reference
is implicit). A rule such as

grandparent.x; y/ parent.x; ´/; parent.´; y/

(2)

(expressing that, for any x; y; ´, whenever x is
a parent of ´ and ´ is a parent of y, x is a

http://dx.doi.org/10.1007/978-1-4899-7687-1_963
http://dx.doi.org/10.1007/978-1-4899-7687-1_100175
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_116

Hypothesis Space 629

H

grandparent of y/ has no translation into proposi-
tional logic that retains the inference capacity of
the first-order logic clause.

Clauses are a natural first-order logic equiva-
lent to the if-then rules typically returned by rule
learners, and many of the other representation
languages have also been upgraded to the
relational or first-order-logic context. For
instance, several researchers (e.g., Blockeel and
De Raedt 1998) have upgraded the formalism of
decision trees toward “structural” or “first-order
logic” decision trees. Probabilistic relational
models (Getoor et al. 2001) and Bayesian
logic programs (Kersting and De Raedt 2001)
are examples of how Bayesian networks have
been upgraded, while Markov networks have
been lifted to “Markov logic” (Richardson and
Domingos 2006).

Further Reading

Most of the literature on hypothesis and obser-
vation languages is found in the area of induc-
tive logic programming. Excellent starting points,
containing extensive examples of bias specifica-
tions, are Relational Data Mining by Džeroski
and Lavra (2001), Logic for Learning by Lloyd
(2003), and Logical and Relational Learning by
De Raedt (2008).

De Raedt (1998) compares a number of dif-
ferent observation and hypothesis languages with
respect to their expressiveness, and indicates re-
lationships between them.

Cross-References

� First-Order Logic
�Hypothesis Space
� Inductive Logic Programming
�Observation Language

Recommended Reading

Blockeel H, De Raedt L (1998) Top-down induction of
first order logical decision trees. Artif Intell 101(1–
2):285–297

De Raedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links
(extended abstract). In: Page D (ed) Proceedings
of the eighth international conference on inductive
logic programming. Lecture notes in artificial intel-
ligence, vol 1446. Springer, Berlin, pp 1–8

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

Džeroski S, Lavraè N (ed) (2001) Relational data
mining. Springer, Berlin

Getoor L, Friedman N, Koller D, Pfeffer A (2001)
Learning probabilistic relational models. In: Dze-
roski S, Lavrac N (eds) Relational data mining.
Springer, Berlin, pp 307–334

Kersting K, De Raedt L (2001) Towards combining in-
ductive logic programming and Bayesian networks.
In: Rouveirol C, Sebag M (eds) Proceedings of
the 11th international conference on inductive logic
programming. Lecture notes in computer science,
vol 2157. Springer, Berlin, pp 118–131

Lloyd JW (2003) Logic for learning. Springer, Berlin
Mitchell T (1997) Machine learning. McGraw Hill,

New York
Richardson M, Domingos P (2006) Markov logic net-

works. Mach Learn 62(1–2):107–136

Hypothesis Space

Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
Leiden Institute of Advanced Computer Science,
Heverlee, Belgium

Synonyms

Model space

Definition

The hypothesis space used by a machine learning
system is the set of all hypotheses that might pos-
sibly be returned by it. It is typically defined by a
�Hypothesis Language, possibly in conjunction
with a �Language Bias.

Motivation and Background

Many machine learning algorithms rely on some
kind of search procedure: given a set of observa-
tions and a space of all possible hypotheses that

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_100309
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_440

630 Hypothesis Space

Hypothesis Space, Fig. 1
Structure of learning
systems that derive one or
more hypotheses from a set
of observations

sesehtopyhsnoitavresbo fo tes

language bias

bias specification
language

egaugnal sisehtopyhegaugnal noitavresbo

learning algorithm

learner’s implicit
hypothesis language

hypothesis space

might be considered (the “hypothesis space”),
they look in this space for those hypotheses that
best fit the data (or are optimal with respect to
some other quality criterion).

To describe the context of a learning system in
more detail, we introduce the following terminol-
ogy. The key terms have separate entries in this
encyclopedia, and we refer to those entries for
more detailed definitions.

A learner takes observations as inputs. The
�Observation Language is the language used to
describe these observations.

The hypotheses that a learner may produce,
will be formulated in a language that is called the
Hypothesis Language. The hypothesis space is
the set of hypotheses that can be described using
this hypothesis language.

Often, a learner has an implicit, built-in, hy-
pothesis language, but in addition the set of hy-
potheses that can be produced can be restricted
further by the user by specifying a language bias.
This language bias defines a subset of the hypoth-
esis language, and correspondingly a subset of the
hypothesis space. A separate language, called the
�Bias Specification Language, is used to define
this language bias. Note that while elements of
a hypothesis language refer to a single hypoth-
esis, elements of a bias specification language
refer to sets of hypotheses, so these languages
are typically quite different. Bias specification
languages have been studied in detail in the field
of � Inductive Logic Programming.

The terms “hypothesis language” and “hy-
pothesis space” are sometimes used in the broad
sense (the language that the learner is inherently
restricted to, e.g., Horn clauses), and sometimes

in a more narrow sense, referring to the smaller
language or space defined by the language bias.

The structure of a learner, in terms of the
above terminology, is summarized in Fig. 1.

Theory

For a given learning problem, let us denote with
O the set of all possible observations (sometimes
also called the instance space), and with H the
hypothesis space, i.e., the set of all possible hy-
potheses that might be learned. Let 2X denote the
power set of a set X . Most learners can then be
described abstractly as a function T W 2O ! H,
which takes as input a set of observations (also
called the training set) S � O, and produces as
output a hypothesis h	H.

In practice, the observations and hypotheses
are represented by elements of the observation
language LO and the hypothesis language LH ,
respectively. The connection between language
elements and what they represent is defined by
functions IO W LO ! O (for observations)
and IH W LH ! H (for hypotheses). This
mapping is often, but not always, bijective. When
it is not bijective, different representations for the
same hypothesis may exist, possibly leading to
redundancy in the learning process.

We will use the symbol I as a shorthand for
IO or IH . We also define the application of I to
any set S as IS D fI.x/jx 2 Sg, and to any
function f as I.f / D g , 8x W g.I.x// D

I.f .x//.
Thus, a machine learning system really im-

plements a function T 0 W 2LO ! LH , rather
than a function T W 2O ! H. The connection

http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_73
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Hypothesis Space 631

H

Hypothesis Space, Fig. 2 Illustration of the interpreta-
tion function I mapping LO ;LH , and T 0 onto O;H,
and T

between T 0 and T is straightforward: for any
S � LO and h 2 LH ; T 0.S/ D h if and only
if T .I.S// D I.h/; in other words: T D I.T 0/.

Figure 2 summarizes these languages and
spaces and the connections between them. We
further illustrate them with a few examples.

Example 1 In supervised learning, the observa-
tions are usually pairs (x, y/ with x 2 X an
instance and y 2 Y its label, and the hypotheses
are functions mapping X onto Y . Thus O D X �

Y and H � Y X , with Y X the set of all functions
from X to Y . LO is typically chosen such that
I.LO/ D O, i.e., each possible observation can
be represented in LO . In contrast to this, in many
cases I.LH / will be a strict subset of Y X , i.e.,
I.LH / � Y X . For instance, LH may contain
representations of all polynomial functions from
X to Y if X D Rn and Y D R (with R the set
of real numbers), or may be able to represent all
conjunctive concepts over X when X D Bn and
Y D B (with B the set of booleans).

When I.LH � Y X , the learner cannot learn
every imaginable function. Thus, LH reflects
an inductive bias that the learner has, called its
language bias. We can distinguish an implicit
language bias, inherent to the learning system,
and corresponding to the hypothesis language
(space) in the broad sense, and an explicit lan-
guage bias formulated by the user, corresponding
to the hypothesis language (space) in the narrow
sense.

Example 2 Decision tree learners and rule set
learners use a different language for representing
the functions they learn (call these languages

LDT and LRS , respectively), but their language
bias is essentially the same: for instance, if X D

Bn and Y D B; I.LDT / D I.LRS / D Y X :
both trees and rule sets can represent any boolean
function from Bn to B.

In practice a decision tree learner may employ
constraints on the trees that it learns, for instance,
it might be restricted to learning trees where each
leaf contains at least two training set instances. In
this case, the actual hypothesis language used by
the tree learner is a subset of the language of all
decision trees.

Generally, if the hypothesis language in the
broad sense is LH and the hypothesis language in
the narrow sense is L0

H , then we have L0
H � LH

and the corresponding spaces fulfill (in the case
of supervised learning)

I.L0
H / � I.LH / � Y X : (1)

Clearly, the choice of LO and LH determines
the kind of patterns or hypotheses that can be
expressed. See the entries on Observation Lan-
guage and Hypothesis Language for more details
on this.

Further Reading

The term “hypothesis space” is ubiquitous in
the machine learning literature, but few articles
discuss the concept itself. In Inductive Logic
Programming, a significant body of work exists
on how to define a language bias (and thus a
hypothesis space), and on how to automatically
weaken the bias (enlarge the hypothesis space)
when a given bias turns out to be too strong.
The expressiveness of particular types of learners
(e.g., classes of �Neural Networks) has been
studied, and this relates directly to the hypothesis
space they use. We refer to the respective entries
in this volume for more information on these
topics.

Cross-References

�Bias Specification Language
�Hypothesis Language
� Inductive Logic Programming
�Observation Language

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_73
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_608

632 Hypothesis Space

Recommended Reading

De Raedt L (1992) Interactive theory revision: an
inductive logic programming approach. Academic,
London

Nédellec C, Adé H, Bergadano F, Tausend B (1996)
Declarative bias in ILP. In: De Raedt L (ed) Ad-
vances in inductive logic programming. Frontiers in
artificial intelligence and applications, vol 32. IOS
Press, Amsterdam, pp 82–103

I

Identification

�Classification

Identity Uncertainty

�Entity Resolution
�Record Linkage

Idiot’s Bayes

�Naı̈ve Bayes

Immune Computing

�Artificial Immune Systems

Immune Network

A proposed theory that the immune system is
capable of achieving immunological memory by
the existence of a mutually reinforcing network
of B-cells. This network of B-cells forms due to
the ability of the paratopes, located on B-cells,

to match against the idiotopes on other B-cells.
The binding between the idiotopes and paratopes
has the effect of stimulating the B-cells. This is
because the paratopes on B-cells react to the id-
iotopes on similar B-cells, as it would an antigen.
However, to counter the reaction there is a certain
amount of suppression between the B-cells which
acts as a regulatory mechanism. This interaction
of the B-cells due to the network was said to con-
tribute to a stable memory structure and account
for the retainment of memory cells, even in the
absence of antigen. This interaction of cells forms
the basis of inspiration for a large number of AIS
algorithms, for example aiNET.

Immune-Inspired Computing

�Artificial Immune Systems

Immunocomputing

�Artificial Immune Systems

Immunological Computation

�Artificial Immune Systems

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_919
http://dx.doi.org/10.1007/978-1-4899-7687-1_919
http://dx.doi.org/10.1007/978-1-4899-7687-1_919
http://dx.doi.org/10.1007/978-1-4899-7687-1_919

634 Implication

Implication

�Entailment

Improvement Curve

�Learning Curves in Machine Learning

Incremental Learning

Paul E. Utgoff
University of Massachusetts, Amherst, MA,
USA

Definition

Incremental learning refers to any � online learn-
ing process that learns the same model as would
be learned by a � batch learning algorithm.

Motivation and Background

Incremental learning is useful when the input to
a learning process occurs as a stream of distinct
observations spread out over time, with the need
or desire to be able to use the result of learning
at any point in time, based on the input observa-
tions received so far. In principle, the stream of
observations may be infinitely long, or the next
observation long delayed, precluding any hope
of waiting until all the observations have been
received. Without the ability to forestall learning,
one must commit to a sequence of hypotheses
or other learned artifacts based on the inputs
observed up to the present. One would rather not
simply accumulate and store all the inputs and,
upon receipt of each new one, apply a batch learn-
ing algorithm to the entire sequence of inputs
received so far. It would be preferable computa-
tionally if the existing hypothesis or other artifact
of learning could be updated in response to each
newly received input observation.

Theory

Consider the problem of computing the balance
in one’s checkbook account. Most would say that
this does not involve learning, but it illustrates
an important point about incremental algorithms.
One procedure, a batch algorithm based on the
fundamental definition of balance, is to compute
the balance as the sum of the deposits less the
sum of the checks and fees. As deposit, check,
and fee transactions accumulate, this definition
remains valid. There is an expectation that there
will be more transactions in the future, and there
is also a need to compute the balance periodically
to ensure that no contemplated check or fee will
cause the account to become overdrawn. We
cannot wait to receive all of the transactions and
then compute the balance just once.

One would prefer an incremental algorithm for
this application, to reduce the cost of computing
the balance after each transaction. This can be
accomplished by recording and maintaining one
additional piece of information, the balance after
the nth transaction. It is a simple matter to prove
that the balance after n transactions added to
the amount of transaction n C 1 provides the
balance after nC 1 transactions. This is because
the sums of the fundamental definition for nC 1
transactions can be rewritten as the sums of the
fundamental definition for n transactions plus the
amount of the nth transaction. This incremental
algorithm reduces the computation necessary to
know the balance after each transaction, but it
increases the bookkeeping effort somewhat due
to the need for an additional variable.

Now consider the problem of learning the
mean of a real-valued variable from a stream of
observed values of this variable. Though simple,
most would say that this does involve learning,
because one estimates the mean from observa-
tions, without ever establishing the mean defini-
tively. The fundamental definition for the mean
requires summing the observed values and then
dividing by the number of observed values. As
each new observation is received, one could com-
pute the new mean. However, one can reduce the
computational cost by employing an incremental
algorithm. For n observations, we could just as

http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_452
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_58

Incremental Learning 635

I

well have observed exactly the n occurrences of
the mean. The sum of these observations divided
by n would produce the mean. If we were to be
provided with an n C 1 observation, we could
compute the new sum of the n C 1 observations
as n cases of the mean value plus the new obser-
vation, divided by n C 1. This reduces the cost
of computing the mean after each observation to
one multiplication, two addition, and one division
operations. There is a small increase in bookkeep-
ing in maintaining the counter n of how many
observations have been received and the mean m

after n observations.
In both of the above examples, the need to

record the fundamental data is eliminated. Only
a succinct summary of the data needs to be
retained. For the checkbook balance, only the
balance after n transactions needs to be stored,
making the specific amounts for the individual
transactions superfluous. For the mean of a vari-
able, only the mean m after n observations and
the number n of observations need to be retained,
making the specific values of the individual ob-
servations superfluous. Due to this characteristic,
incremental algorithms are often characterized as
memoryless, not because no memory at all is
required but because no memory of the original
data items is needed. An incremental algorithm
is not required to be memoryless, but the in-
cremental algorithm must operate by modifying
its existing knowledge, not by hiding the appli-
cation of the corresponding batch algorithm to
the accumulated set of observations. The criti-
cal issue is the extent to which computation is
reduced compared to starting with all the data
observations and nothing more. An essential as-
pect for an incremental algorithm is that the ob-
tained result be identical to that indicated by the
fundamental definition of the computation to be
performed.

A point of occasional confusion is whether
to call an algorithm incremental when it makes
adjustments to its data structures in response to
a new data observation. The answer depends on
whether the result is the same that one would
obtain when starting with all the observations in
hand. If the answer is no, then one may have
an online learning algorithm that is not an incre-

mental learning algorithm. For example, consider
two alternative formulations of the problem men-
tioned above of learning the mean of a variable.
Suppose that the count of observations, held in
the variable n, is not permitted to exceed some
constant, say 100. Then the mean after n observa-
tions coupled with the minimum of n and 100 no
longer summarizes all n observations accurately.
Consider a second reformulation. Suppose that
the most recent 100 observations are held in a
queue. When a new observation is received, it
replaces the oldest of the 100 observations. Now
the algorithm can maintain a moving average, but
not the overall overage. These may be desirable,
if one wishes to remain responsive to drift in
the observations, but that is another matter. The
algorithm would not be considered incremental
because it does not produce the same result for
all n observations that the corresponding batch
algorithm would for these same n observations.
The algorithm would be online, and it would be
memoryless, but it would not be computing the
same learned artifact as the batch algorithm.

These two latter reformulations raise the issue
of whether the order in which the observations
are received is relevant. It is often possible to
determine this by looking at the fundamental
definition of the computation to be performed.
If the operator that aggregates the observations
is commutative, then order is not important. For
the checking account balance example above, the
fundamental aggregation is accomplished in the
summations, and addition is commutative, so the
order of the transactions is not relevant to the
resulting balance. If a fundamental algorithm op-
erates on a set of observations, then aggregation
of a new observation into a set of observations
is accomplished by the set union operator, which
is commutative. Can one have an incremental
algorithm for which order of the observations is
important? In principle, yes, provided that the
result of the incremental algorithm after obser-
vation n is the same as that of the fundamental
algorithm for the first n observations.

A final seeming concern for an incremental
learning algorithm is whether the selection of fu-
ture observations (nC1 and beyond) is influenced
by the first n observations. This is a red herring,

636 Incremental Learning

because for the n observations, the question of
whether the learning based on these observations
can be accomplished by a batch algorithm or a
corresponding incremental algorithm remains. Of
course, if one needs to use the result of learning
on the first k instances to help select the k C 1
instance, then it would be good sense to choose
an incremental learning algorithm. One would
rather not apply a batch algorithm to each and
every prefix of the input stream. This would
require saving the input stream and it would
require doing much more computation than is
necessary.

We can consider a few learning scenarios
which suit incremental learning. An � active
learner uses its current knowledge to select
the next observation. For a learner that is
inducing a classifier, the observation would be an
unclassified instance. The active learner selects
an unclassified instance, which is passed to an
oracle that attaches a correct class label. Then
the oracle returns the labeled instance as the next
observation for the learner. The input sequence
is no longer one of instances for which each was
drawn independently according to a probability
distribution over the possible instances. Instead,
the distribution is conditionally dependent
on what the learner currently believes. The
learning problem is sequential in its nature. The
observation can be delivered in sequence, and
an incremental learning algorithm can modify its
hypothesis accordingly. For the n observations
received so far, one could apply a corresponding
batch algorithm, but this would be unduly
awkward.

�Reinforcement learning is a kind of online
learning in which an agent makes repeated trials
in a simulated or abstracted world in order to
learn a good, or sometimes optimal, policy that
maps states to actions. The learning artifact is
typically a function V over states or a function
Q over state-action pairs. As the agent moves
from state to state, it can improve its function
over time. The choice of action depends on the
current V or Q and on the reward or punishment
received at each step. Thus, the sequence of ob-
servations consists of state-reward pairs or state-
action-reward triples. As with active learning,

the sequence of observations can be seen as be-
ing conditionally dependent on what the learner
currently believes at each step. The function V or
Q can be modified after each observation, with-
out retaining the observation. When the function
is approximated in an unbiased manner, by using
a lookup table for discrete points in the function
domain, there is an analogy with the problem
of computing a checkbook balance, as described
above. For each cell of the lookup table, its value
is its initial value plus the sum of the changes,
analogously for transactions. One can compute
the function value by computing this sum, or
one can store the sum in the cell, as the net
value of all the changes. An incremental algo-
rithm is preferable both for reasons of time and
space.

A k-nearest classifier (see � Instance-Based
Learning) is defined by a set of training in-
stances, the observations, and a distance metric
that returns the numeric distance between any
two instances. The difference between the batch
algorithm and the incremental algorithm is slight.
The batch algorithm accepts all the observations
at once, and the incremental algorithm simply
adds each new observation to the set of obser-
vations. If, however, there were data structures
kept in the background to speed computation,
one could distinguish between building those data
structures once (batch) and updating those data
structures (incremental). One complaint might be
that all of the observations are retained. However,
these observations do not need to be revisited
when a new one arrives. There is an impact on
space, but not on time.

A � decision tree classifier may be correct for
the n observations observed so far. When the nC1
observation is received, an incremental algorithm
will restructure the tree as necessary to produce
the tree that the batch algorithm would have built
for these n C 1 observations. To do this, it may
be that no restructuring is required at all or that
restructuring is needed only in a subtree. This is
a case in which memory is required for saving
observations in the event that some of them may
be needed to be reconsidered from time to time.
There is a great savings in time over running the
corresponding batch algorithm repeatedly.

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

Induction 637

I

Applications

Incremental learning is pervasive, and one can
find any number of applications described in the
literature and on the web. This is likely due to
the fact that incremental learning offers computa-
tional savings in both time and space. It is also
likely due to the fact that human and animal
learning takes place over time. There are sound
reasons for incremental learning being essential
to development.

Future Directions

Increasingly, machine learning is confronted with
the problem of learning from input streams that
contain many millions, or more, of observations.
Indeed, the stream may produce millions of ob-
servations per day. Streams with this many in-
stances need to be handled by methods whose
memory requirements do not grow much or at
all. Memoryless online algorithms are being de-
veloped that are capable of handling this much
throughput. Consider transaction streams, say of
a telephone company, or a credit card company,
or a stock exchange, or a surveillance camera,
or eye-tracking data, or mouse movement data.
For such a rich input stream, one could sample it,
thereby reducing it to a smaller stream. Or, one
could maintain a window of observations, giving
a finite sample that changes but does not grow
over time. There is no shortage of applications
that can produce rich input streams. New methods
capable of handling such heavy streams have al-
ready appeared, and we can expect to see growth
in this area.

Cross-References

�Active Learning
�Cumulative Learning
�Online Learning

Recommended Reading

Domingos P, Hulten G (2003) A general framework for
mining massive data streams. J Comput Graph Stat
12:945–949

Giraud-Carrier C (2000) A note on the utility of incre-
mental learning. AI Commun 13:215–223

Utgoff PE, Berkman NC, Clouse JA (1997) Decision
tree induction based on efficient tree restructuring.
Mach Learn 29:5–44

Indirect Reinforcement Learning

�Model-Based Reinforcement Learning

Induction

James Cussens
University of York, Heslington, UK

Definition

Induction is the process of inferring a general
rule from a collection of observed instances.
Sometimes it is used more generally to refer
to any inference from premises to conclusion
where the truth of the conclusion does not follow
deductively from the premises, but where the
premises provide evidence for the conclusion.
In this more general sense, induction includes
abduction where facts rather than rules are in-
ferred. (The word “induction” also denotes a
different, entirely deductive form of argument
used in mathematics.)

Theory

Hume’s Problem of Induction
The problem of induction was famously set out by
the great Scottish empiricist philosopher David
Hume (1711–1776), although he did not actually
use the word “induction” in this context. With
characteristic bluntness, he argued that:

there can be no demonstrative arguments to prove
that those instances of which we have had no
experience resemble those of which we have had
experience (Hume 1739, Part 3, Section 6).

Since scientists (and machine-learning algo-
rithms) do infer future-predicting general laws
from past observations, Hume is led to the

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_191
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_561

638 Induction

following unsettling conclusion concerning
human psychology (and statistical inference):

It is not, therefore, reason, which is the guide of
life, but custom. That alone determines the mind,
in all instances, to suppose the future conformable
to the past (Hume 1740).

That general laws cannot be demonstrated
(i.e., deduced) from data is generally accepted.
Hume, however, goes further: he argues that past
observations do not even affect the probability of
future events:

Nay, I will go farther, and assert, that he could not
so much as prove by any probable arguments, that
the future must be conformable to the past. All
probable arguments are built on the supposition,
that there is this conformity betwixt the future and
the past, and therefore can never prove it. This
conformity is a matter of fact, and if it must be
proved, will admit of no proof but from experience.
But our experience in the past can be a proof of
nothing for the future, but upon a supposition, that
there is a resemblance betwixt them. This therefore
is a point, which can admit of no proof at all,
and which we take for granted without any proof
(Hume 1740).

Induction and Probabilistic Inference
Hume’s unwavering skepticism concerning pre-
diction appears at variance with the predictive
accuracy of machine learning algorithms: there
is much experimental evidence that ML algo-
rithms, once trained on “past observations,” make
predictions on unseen cases with an accuracy far
in excess of what can be expected by chance.
This apparent discrepancy between Hume’s phi-
losophy and practical experience of statistical
inference can be explored using a familiar ex-
ample from the literature on induction. Let e be
the statement that all swans seen so far have
been white and let h be the general rule that all
swans are white. Since h implies e it follows that
P.ejh/ D 1 and so, using Bayes’ theorem, we
have that

P.hje/ D
P.h/P.ejh/

P.e/
D

P.h/

P.e/
: (1)

So P.hje/ > P.h/ as long as P.e/ < 1 and
P.h/ > 0. This provides an explanation for the
predictive accuracy of hypotheses supported by

data: given supporting data they just have in-
creased probability of being true. Of course, most
machine learning outputs are not “noise-free”
rules like h; almost always hypotheses claim
a certain distribution for future data where no
particular observation is ruled out entirely – some
are just more likely than others. The same basic
argument applies: if P.h/ > 0 then as long
as the observed data is more likely given the
hypothesis than it is a priori, that is, as long as
P.ejh/=P.e/ > 1, then the probability of h will
increase. Even in the (common) case where each
hypothesis in the hypothesis space depends on
real-valued parameters and so P.h/ D 0 for all
h, Bayes theorem still produces an increase in
the probability density in the neighborhoods of
hypotheses supported by the data.

In all these cases, it appears that e is giving
“inductive support” to h. Consider, however, h0
which states that all swans until now have been
white and all future swans will be black. Even
in this case, we have that P.h0je/ > P.h0/ as
long as P.e/ < 1 and P.h0/ > 0, though h

and h0 make entirely contradictory future predic-
tions. This is a case of Goodman’s paradox. The
paradox is the result of confusing probabilistic
inference with inductive inference. Probabilistic
inference, of which Bayes theorem is an instance,
is entirely deductive in nature – the conclusions
of all probabilistic inferences follow with abso-
lute certainty from their premises (and the axioms
of probability). P.hje/ > P.h/ for P.e/ < 1 and
P.h/ > 0 essentially because e has (deductively)
ruled out some data that might have refuted h, not
because a “conformity betwixt the future and the
past” has been established.

Good performance on unseen data can still
be explained. Statistical models (equivalently
machine learning algorithms) make assumptions
about the world. These assumptions (so far!)
often turn out to be correct. Hume noted
that the principle “that like objects, placed
in like circumstances, will always produce
like effects” (Hume 1739, Part 3, Section 8)
although not deducible from first principles, has
been established by “sufficient custom.” This is
called the uniformity of nature principle in the
philosophical literature. It is this principle which

Induction 639

I

informs machine learning systems. Consider the
standard problem of predicting class labels for
attribute-value data using labeled data as training.
If an unlabeled test case has attribute values
which are “close” to those of many training
examples all of which have the same class label
then in most systems the test case will be labeled
also with this class. Different systems differ
in how they measure “likeness”: they differ in
their � inductive bias. A system which posited h0

above on the basis of e would have an inductive
bias strongly at variance with the uniformity of
nature principle.

These issues resurfaced within the machine
learning community in the 1990s. This ML work
focused on various “� no-free-lunch theorems.”
Such a theorem essentially states that a unifor-
mity of nature assumption is required to justify
any given inductive bias. This is how Wolpert
puts in one of the earliest “no-free-lunch” papers:

This paper proves that it is impossible to justify
a correlation between reproduction of a training
set and generalization error off of the training set
using only a priori reasoning. As a result, the use
in the real world of any generalizer which fits a
hypothesis function to a training set (e.g., the use
of back-propagation) is implicitly predicated on an
assumption about the physical universe (Wolpert
1992).

Note that in Bayesian approaches inductive
bias is encapsulated in the prior distribution: once
a prior has been determined all further work in
Bayesian statistics is entirely deductive. There-
fore it is no surprise that inductivists have sought
to find “objective” or “logical” prior distributions
to provide a firm basis for inductive inference.
Foremost among these is Rudolf Carnap (1891–
1970) who followed a logical approach – defining
prior distributions over “possible worlds” (first-
order models) which were in some sense uniform
(Carnap 1950). A modern extension of this line
of thinking can be found in Bacchus et al. (1996).

Popper
Karl Popper (1902–1994) accepted the Humean
position on induction yet sought to defend sci-
ence from charges of irrationality (Popper 1934).
Popper replaced the problem of induction by

the problem of criticism. For Popper, scientific
progress proceeds by conjecturing universal laws
and then subjecting these laws to severe tests
with a view to refuting them. According to the
verifiability principle of the logical positivist tra-
dition, a theory is scientific if it can be experi-
mentally confirmed, but for Popper confirmation
is a hopeless task, instead a hypothesis is only
scientific if it is falsifiable. All universal laws
have prior probability of zero, and thus will
eternally have probability zero of being true, no
matter how many tests they pass. The value of a
law can only be measured by how well-tested it
is. The degree to which a law has been tested is
called its degree of corroboration by Popper. The
P.ejh/=P.e/ term in Bayes theorem will be high
if a hypothesis h has passed many severe tests.

Popper’s critique of inductivism continued
throughout his life. In the Popper–Miller
argument (Popper and Miller 1984), as it became
known, it is observed that a hypothesis h is
logically equivalent to:

.h e/ ^ .h _ e/

for any evidence e. We have that e ` h_e (where
`means “logically implies”) and also that (under
weak conditions) p.h eje/ < p.h e/.
From this Popper and Miller argue that

: : : we find that what is left of h once we discard
from it everything that is logically implied by e,
is a proposition that in general is counterdependent
on e (Popper and Miller 1987)

and so.

Although evidence may raise the probability of a
hypothesis above the value it achieves on back-
ground knowledge alone, every such increase in
probability has to be attributed entirely to the de-
ductive connections that exist between the hypoth-
esis and the evidence (Popper and Miller 1987).

In other words if P.hje/ > P.h/ this is
only because e ` h _ e. The Popper–Miller
argument found both critics and supporters. Two
basic arguments of the critics were that (1) de-
ductive relations only set limits to probabilistic
support; infinitely many probability distributions

http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_592

640 Induction as Inverted Deduction

can still be defined on any given fixed system of
propositions and (2) Popper–Miller are mischar-
acterizing induction as the absence of deductive
relations, when it actually means ampliative in-
ference: concluding more than the premises entail
(Cussens 1996).

Causality and Hempel’s Paradox
The branch of philosophy concerned with how
evidence can confirm scientific hypotheses is
known as � confirmation theory. Inductivists
take the position (against Popper) that observing
data which follows from a hypothesis not only
fails to refute the hypothesis, but also confirms it
to some degree: seeing a white swan confirms the
hypothesis that all swans are white, because

8x W swan.x/! white.x/; swan.white swan/

` swan.white swan/:

But, by the same argument it follows that observ-
ing any nonwhite, nonswan (say a black raven)
also confirms that all swans are white, since:

8x W swan.x/! white.x/;:white.black reven/

` :.black reven/:

This is Hempel’s paradox to which there are
a number of possible responses. One option is
to accept that the black raven is a confirming
instance, as one object in the universe has been
ruled out as a potential refuter. The degree of
confirmation is however of “a miniscule and
negligible degree” (Howson and Urbach 1989,
p. 90). Another option is to reject the formulation
of the hypothesis as a material implication where
8x : swan(x/ ! white(x/ is just another way
of writing 8x : :swan(x/_ white(x/. Instead,
to be a scientific hypothesis of any interest the
statement must be interpreted causally. This is
the view of Imre Lakatos (1922–1974), and since
any causal statement has a (perhaps implicit)
ceteris paribus (“all other things being equal”)
clause this has implications for refutation also.

: : : “all swans are white,” if true, would be a mere
curiosity unless it asserted that swanness causes

whiteness. But then a black swan would not refute
this proposition, since it may only indicate other
causes operating simultaneously. Thus “all swans
are white” is either an oddity and easily disprovable
or a scientific proposition with a ceteris paribus
clause and therefore easily undisprovable (Lakatos
1970, p. 102).

Cross-References

�Abduction
�Classification

Recommended Reading

Bacchus F, Grove A, Halpern JY, Koller D (1996) From
statistical knowledge bases to degrees of belief.
Artif Intell 87(1–2):75–143

Carnap R (1950) Logical foundations of probability.
University of Chicago Press, Chicago

Cussens J (1996) Deduction, induction and probabilis-
tic support. Synthese 108(1):1–10

Howson C, Urbach P (1989) Scientific reasoning: the
Bayesian approach. Open Court, La Salle

Hume D (1739) A treatise of human nature, book one
(Anonymously published)

Hume D (1740) An abstract of a treatise of human
nature. (Anonymously published as a pamphlet).
Printed for C. Borbet, London

Lakatos I (1970) Falsification and the methodology of
scientific research programmes. In: Lakatos I, Mus-
grave A (eds) Criticism and the growth of knowl-
edge. Cambridge University Press, Cambridge,
pp 91–196

Popper KR (1959) The logic of scientific discov-
ery. Hutchinson, London (Translation of Logik der
Forschung, 1934)

Popper KR, Miller D (1984) The impossibility of
inductive probability. Nature 310:434

Popper KR, Miller D (1987) Why probabilistic support
is not inductive. Philos Trans R Soc Lond 321:
569–591

Wolpert DH (1992) On the connection between in-
sample testing and generalization error. Complex
Syst 6: 47–94

Induction as Inverted Deduction

�Logic of Generality

http://dx.doi.org/10.1007/978-1-4899-7687-1_156
http://dx.doi.org/10.1007/978-1-4899-7687-1_1
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Inductive Database Approach to Graphmining 641

I

Inductive Bias

Synonyms

Learning bias; Variance hint

Definition

Most ML algorithms make predictions concern-
ing future data which cannot be deduced from
already observed data. The inductive bias of an
algorithm is what choses between different possi-
ble future predictions. A strong form of inductive
bias is the learner’s choice of hypothesis/model
space which is sometimes called declarative bias.
In the case of Bayesian analysis, the inductive
bias is encapsulated in the prior distribution.

Cross-References

� Induction
�Learning as Search

Inductive Database Approach to
Graphmining

Stefan Kramer
Technische Universität München, Garching b.
München, Germany

Overview

The inductive database approach to graph min-
ing can be characterized by (1) the concept of
querying for (subgraph) patterns in databases of
graphs, and (2) the use of specific data structures
representing the space of solutions. For the for-
mer, a query language for the specification of
the patterns of interest is necessary. The latter
aims at a compact representation of the solution
patterns.

Pattern Domain

In contrast to other graph mining approaches,
the inductive database approach to graph mining
(De Raedt and Kramer 2001; Kramer et al. 2001)
focuses on simple patterns (paths and trees) and
complex queries (see below), not on complex
patterns (general subgraphs) and simple queries
(minimum frequency only). While the first ap-
proaches were restricted to paths as patterns in
graph databases, they were later extended toward
unrooted trees (Rückert and Kramer 2003, 2004).
Most of the applications are dealing with struc-
tures of small molecules and structure–activity
relationships (SARs), that is, models predicting
the biological activity of chemical compounds.

Query Language

The conditions on the patterns of interest are
usually called constraints on the solution space.
Simple constraints are specified by so-called
query primitives. Query primitives express
frequency-related or syntactic constraints. As
an example, consider the frequency-related
query primitive f .p; D/ � t , meaning that a
subgraph pattern p has to occur with a frequency
of at least t in the database of graphs D.
Analogously, other frequency-related primitives
demand a maximum frequency of occurrence,
or a minimum agreement with the target class
(e.g., in terms of the information gain or the �2

statistic). Answering frequency-related queries
generally requires database access. In contrast
to frequency-related primitives, syntax-related
primitives only restrict the syntax of solution
(subgraph) patterns, and thus do not require
database access. For instance, we may demand
that a pattern p is more specific than “c:c-Cl”
(formally p � c:c-Cl) or more general than “C-
c:c:c:c:c-Cl” (formally p � C-c:c:c:c:c-Cl). The
strings in the primitive contain vertex (e.g., “C ,”
“c,” “Cl”: : :) and edge labels (e.g., “ : ,” “-”: : :)
of a path in a graph. Many constraints on patterns
can be categorized as either monotonic or anti-
monotonic. Minimum frequency constraints,
for instance, are anti-monotonic, because all

http://dx.doi.org/10.1007/978-1-4899-7687-1_100246
http://dx.doi.org/10.1007/978-1-4899-7687-1_100500
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_444

642 Inductive Inference

subpatterns (in our case: subgraphs) are frequent
as well, if a pattern is frequent (according to
some user-defined threshold) in a database.
Vice versa, maximum frequency is monotonic,
because if a pattern is not too frequent, then all
superpatterns (in our case: supergraphs) are not
too frequent either. Anti-monotonic or monotonic
constraints can be solved by variants of level-
wise search and APriori (De Raedt and Kramer
2001; Kramer et al. 2001; Mannila and Toivonen
1997). Other types of constraints involving
convex functions, for example, related to the
target class, can be solved by branch-and-bound
algorithms (Morishita and Sese 2000). Typical
query languages offer the possibility to combine
query primitives conjunctively or disjunctively.

Data Structures

It is easy to show that solutions to conjunctions of
monotonic and anti-monotonic constraints can be
represented by version spaces, and in particular,
borders of the most general and the most spe-
cific patterns satisfying the constraints (De Raedt
and Kramer 2001; Mannila and Toivonen 1997).
Version spaces of patterns can be represented in
data structures such as version space trees (De
Raedt et al. 2002; Rückert and Kramer 2003).
For sequences, data structures based on suffix
arrays are known to be more efficient than data
structures based on version spaces (Fischer et al.
2006). Query languages allowing disjunctive nor-
mal forms of monotonic or anti-monotonic prim-
itives yield multiple version spaces as solutions,
represented by generalizations of version space
trees (Lee and De Raedt 2003). The inductive
database approach to graph mining can also be
categorized as constraint-based mining, as the
goal is to find solution patterns satisfying user-
defined constraints.

Recommended Reading

De Raedt L, Kramer S (2001) The levelwise version
space algorithm and its application to molecular
fragment finding. In: Proceedings of the seventeenth

international joint conference on artificial intelli-
gence (IJCAI 2001). Morgan Kaufmann, San Fran-
cisco

De Raedt L, Jaeger M, Lee SD, Mannila H (2002) A
theory of inductive query answering. In: Proceed-
ings of the 2002 IEEE international conference on
data mining (ICDM 2002). IEEE Computer Society,
Washington, DC

Fischer J, Heun V, Kramer S (2006) Optimal string
mining under frequency constraints. In: Proceedings
of the tenth European conference on the principles
and practice of knowledge discovery in databases
(PKDD 2006). Springer, Berlin

Kramer S, De Raedt L, Helma C (2001) Molecular
feature mining in HIV data. In: Proceedings of the
seventh ACM SIGKDD international conference on
knowledge discovery and data mining (KDD 2001).
ACM, New York

Lee SD, De Raedt L (2003) An algebra for inductive
query evaluation. In: Proceedings of the third IEEE
international conference on data mining (ICDM
2003). IEEE Computer Society, Washington, DC

Mannila H, Toivonen H (1997) Levelwise search and
borders of theories in knowledge discovery. Data
Min Knowl Discov 1(3):241–258

Morishita S, Sese J (2000) Traversing itemset lat-
tice with statistical metric pruning. In: Proceed-
ings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on principles of database sys-
tems (PODS 2000). ACM, New York

Rückert U, Kramer S (2003) Generalized version space
trees. In: Boulicaut J-F, Dzeroski S (eds) Pro-
ceedings of the second international workshop on
knowledge discovery in inductive databases (KDID-
2003). Berlin, Springer

Rückert U, Kramer S (2004) Frequent free tree discov-
ery in graph data. In: Proceedings of the ACM sym-
posium on applied computing (SAC 2004). ACM,
New York

Inductive Inference

Sanjay Jain1 and Frank Stephan2

1School of Computing, National University of
Singapore, Singapore, Singapore
2Department of Mathematics, National
University of Singapore, Singapore, Singapore

Definition

Inductive inference is a theoretical framework
to model learning in the limit. The typical sce-
nario is that the learner reads successively datum

Inductive Inference 643

I

d0; d1; d2; : : : about a concept and outputs in
parallel hypotheses e0; e1; e2; : : : such that each
hypothesis en is based on the preceding data
d0; d1; : : : ; dn�1. The hypotheses are expected to
converge to a description for the data observed;
here the constraints on how the convergence has
to happen depend on the learning paradigm con-
sidered. In the most basic case, almost all en have
to be the same correct index e, which correctly
explains the target concept. The learner might
have some preknowledge of what the concept
might be, that is, there is some class C of possible
target concepts – the learner has only to find out
which of the concepts in C is the target concept;
on the other hand, the learner has to be able to
learn every concept which is in the class C.

Detail

The above given scenario of learning is
essentially the paradigm of inductive inference
introduced by Gold (1967) and known as Ex
(explanatory) learning. Usually one considers
learning of recursive functions or recursively
enumerable languages. Intuitively, using coding,
one can code any natural phenomenon into
subsets of N, the set of natural numbers. Thus,
recursive functions from N to N or recursively
enumerable subsets of N (called languages here)
are natural concepts to be considered.

Here we will mainly consider language learn-
ing. Paradigms related to function learning can
be similarly defined and we refer the reader to
Osherson et al. (1986) and Jain et al. (1999).

One normally considers data provided to the
learner to be either full positive data (i.e., the
learner is told about every element in the tar-
get language, one element at a time, but never
told anything about elements not in the target
language) or full positive data and full negative
data (i.e., the learner is told about every element,
whether it belongs or does not belong to the target
language). Intuitively, the reason for considering
only positive data is that in many natural situa-
tions, such as language learning by children and
scientific exploration (such as in astronomy), one
gets essentially only positive data.

A text is a sequence of elements over N[f#g.
Content of a text T , denoted ctnt.T /, is the set
of natural numbers in the range of T . For a
finite sequence � over N[f#g, one can similarly
define ctnt.�/ as the set of natural numbers in
the range of � . A text T is said to be for a
language L if ctnt.T / D L. Intuitively, a text
T for L represents sequential presentation of all
elements of L, with #’s representing pauses in
the presentation. For example, the only text for
; is #1. T Œn� denotes the initial sequence of T of
length n. That is, T Œn� D T .0/T .1/ : : : T .n� 1/.
We let SEQ denote the set of all finite sequences
over N [f#g. An informant I is a sequence
of elements over N � f0; 1g [f#g, where for
each x 2 N, exactly one of .x; 0/ or .x; 1/ is
in the range of I . An informant I is for L if
range.I / � f#g D f.x; �L.x// W x 2 Ng, where
�L denotes the characteristic function of L.

A learner M is a mapping from SEQ to N[f‹g.
Intuitively, output of ‹ denotes that the learner
does not wish to make a conjecture on the cor-
responding input. The output of e denotes that
the learner conjectures hypothesis We , where
W0; W1; : : : is some acceptable numbering of all
the recursively enumerable languages. We say
that a learner M converges on T to e if, for all
but finitely many n, M.T Œn�/ D e.

Explanatory Learning

A learner M TxtEx identifies a language L iff,
for all texts T for L, M converges to an index e

such that We D L. Learner M TxtEx identifies a
class L of languages if M TxtEx identifies each
language in the class L. Finally, one says that
a class L is TxtEx learnable if some learner
TxtEx identifies L. TxtEx denotes the collection
of all TxtEx-learnable classes. One can similarly
define InfEx identification, for learning from
informants instead of texts. The following classes
are important examples:

RE D fL W L is recursively enumerablegI

FIN D fL W L is a finite subset of NgI

KFIN D fL W LDK[H for some H 2 FINgI

644 Inductive Inference

SD D fL W Wmin.L/ D LgI

COFIN D fL W N � L is finitegI

SDSIZE D ffe C x W x D 0 _ x < jWejg

W We is finitegI

SDALL D ffe C x W x 2 Ng W e 2 Ng:

Here, in the definition of KFIN, K is the halting
problem, a standard example of a set which is
recursively enumerable but not recursive. The
classes FIN, SD, SDSIZE, and SDALL are TxtEx
learnable (Case and Smith 1983; Gold 1967):
The learner for FIN always conjectures the set
of all data observed so far. The learner for SD
conjectures the least datum seen so far as, even-
tually, the least observed datum coincides with
the least member of the language to be learned.
The learner for SDSIZE as well as the learner
for SDALL also find in the limit the least datum
e to occur and translate it into an index for the
e-th set to be learned. The class KFIN is not
TxtEx learnable, mainly for computational rea-
sons. It is impossible for the learner to determine
if the current input datum belongs to K or not;
this forces a supposed learner either to make
infinitely many mind changes on some text for
K or to make an error on K [fxg, for some
x 62 K. The union SDSIZE [SDALL is also
not TxtEx learnable, although it is the union of
two learnable classes; so it is one example of
various nonunion theorems. Gold (1967) gave
even a more basic example: FIN [fNg is not
TxtEx learnable. Furthermore, the class COFIN
is also not TxtEx learnable. However, except
for RE, all the classes given above are InfEx
learnable, so when being fed the characteristic
function in place of only an infinite list of all
elements, the learners become, in general, more
powerful.

Note that the learner never knows when it has
converged to its final hypothesis. If the learner is
required to know when it has converged to the
final hypothesis, then the criterion of learning is
the same as finite learning. Here a finite learner is
defined as follows: the learner keeps outputting
the symbol ‹ while waiting for enough data to
appear and, when the data observed are sufficient,

the learner outputs exactly one conjecture differ-
ent from ‹, which then is required to be an index
for the input concept in the hypothesis space. The
class of singletons ffng W n 2 Ng is finitely
learnable; the learner just waits until the unique
element n of fng has appeared and then knows
the language. In contrast to this, the classes FIN
and SD are not finitely learnable.

Blum and Blum (1975) obtained the follow-
ing fundamental result: Whenever M learns L

explanatorily from text, then L has a locking
sequence for M. Here, a sequence � is said to be a
locking sequence for M on L if (a) ctnt.�/ � L,
(b) for all � such that ctnt.�/ � L, M.�/ D

M.��/, and (c) WM.�/ D L. If only the first
two conditions are satisfied, then the sequence is
called a stabilizing sequence for M on L (Fulk
1990). It was shown by Blum and Blum (1975)
that if a learner M TxtEx identifies L, then there
exists a locking sequence � for M on L. One can
use this result to show that certain classes, such
as FIN [fNg, are not TxtEx learnable.

Beyond Explanatory Learning

While TxtEx learning requires that the learner
syntactically converges to a final hypothesis,
which correctly explains the concept, this is no
longer required for the more general criterion
of behaviorally correct learning (called TxtBc
learning). Here, the learner may not syntactically
converge, but it is still required that all its
hypothesis after sometime are correct; see
Bārzdiņš (1974b), Case and Lynes (1982), Case
and Smith (1983), Osherson et al. (1986), and
Osherson and Weinstein (1982). So there is
semantic convergence to a final hypothesis. Thus,
a learner M TxtBc identifies a language L if
for all texts T for L, for all but finitely many
n, WM.T Œn�/ D L. One can similarly define
TxtBc learnability of classes of languages and
the collection TxtBc. Every TxtEx-learnable
class is Bc learnable, but the classes KFIN and
SDSIZE [SDALL are TxtBc learnable but not
TxtEx learnable. Furthermore, InfEx 6� TxtBc,
for example, FIN [fNg is InfEx learnable but
not TxtBc learnable. On the other hand, every

Inductive Inference 645

I

class that is finitely learnable from informant is
also TxtEx learnable (Sharma 1998).

An intermediate learning criterion is TxtFex
learning (Case 1999) or vacillatory learning,
which is similar to TxtBc learning except that
we require that the number of distinct hypotheses
output by the learner on any text is finite. Here
one says that the learner TxtFexn learns the
language L if the number of distinct hypotheses
that appears infinitely often on any text T for L

is bounded by n. Note that TxtFex� D TxtFex.
Case (1999) showed that

TxtEx D TxtFex1 � TxtFex2 � TxtFex3

� : : : � TxtFex� � TxtBc:

For example, the class SD [SDALL is actu-
ally TxtFex2 learnable and not TxtEx learn-
able. The corresponding notion has also been
considered for function learning, but there the
paradigms of explanatory and vacillatory learning
coincide (Case and Smith 1983).

Blum and Blum (1975), Case and Lynes
(1982), and Case and Smith (1983) also
considered allowing the final (or final sequence
of) hypothesis to be anomalous; Blum and Blum
(1975) considered � anomalies, and (Case and
Lynes 1982; Case and Smith 1983) considered
the general case. Here the final grammar for
the input language may not be perfect, but
may have up to a anomalies. A grammar n

is a anomalous for L (written Wn D
a L) iff

card ..L�Wn/ [.Wn�L// � a. Here one
also considers finite anomalies, denoted by
�-anomalies, where card.S/ � � just means that
S is finite. Thus, a learner M TxtExa identifies
a language L iff, for all texts T for all L, M
on T converges to a hypothesis e such that
We D

a L. One can similarly define TxtBca-
learning criteria. It can be shown that

TxtEx D TxtEx0 � TxtEx1 � TxtEx2 � : : :

� TxtEx�

and

TxtBc D TxtBc0 � TxtBc1 � TxtBc2 � : : :

� TxtBc�:

Let SDn D fL W Wmin.L/ D
n Lg. Then

one can show (Case and Lynes 1982; Case
and Smith 1983) that SDnC1 2 TxtExnC1 �

TxtExn. However, there is a trade-off between
behaviorally correct learning and explanatory
learning for learning with anomalies. On one
hand, TxtBc 6� TxtEx�, but on the other hand
TxtEx2nC1 6� TxtBcn and TxtEx2n � TxtBcn.
However, for learning from informants, we have
InfEx� � InfBc (see Case and Lynes (1982) for
the above results).

Consistent and Conservative
Learning

Besides the above basic criteria of learning, re-
searchers have also considered several properties
that are useful for the learner to satisfy.

A learner M is said to be consistent on L iff,
for all texts T for L, ctnt.T Œn�/ � WM.T Œn�/.
That is, the learner’s hypothesis is consistent with
the data seen so far. There are three notions
of consistency considered in the literature: (a)
TCons, in which the learner is expected to be
consistent on all inputs, irrespective of whether
they represent some concept from the target class
or not (Wiehagen and Liepe 1976); (b) Cons, in
which the learner is just expected to be consistent
on the languages in the target class being learned,
though the learner may be inconsistent or even
undefined on the input outside the target class
(Bārzdiņš 1974a); and (c) RCons, in which the
learner is expected to be defined on all inputs, but
required to be consistent only on the languages in
the target class (Jantke and Beick 1981). It can be
shown that TCons � RCons � Cons � TxtEx
(Jantke and Beick 1981; Wiehagen and Liepe
1976; Bārzdiņš 1974a; Wiehagen and Zeugmann
1995).

A learner M is said to be conservative (An-
gluin 1980) if it does not change its mind unless
the data contradicts its hypothesis. That is, M
conservatively learns L iff, for all texts T for L,
if M.T Œn�/ ¤ M.T Œn C 1�/, then ctnt.T Œn C

1�/ 6� WM.T Œn�/. It can be shown that conserva-
tiveness is restrictive, that is, there are classes
of languages, which can be TxtEx identified

646 Inductive Inference

but not conservatively identified. An example
of a class that can be identified explanatorily
but not conservatively is the class containing all
sets from SDALL, that is, the sets of the form
fe; e C 1; e C 2; : : :g, and all sets with minimum
ks and up to s elements where k0; k1; k2; : : :

is a recursive one-one enumeration of K. The
general idea why this class is not conservatively
learnable is that when the learner reads the data
e; e C 1; e C 2; : : :, it will, after some finite
time based on data e; e C 1; e C 2; : : : ; e C s,
output a conjecture which contains these data
plus e C s C 1; but conservative learning would
then imply that e 2 K iff e D kr for some r � s,
contradicting the non-recursiveness of K.

Monotonicity

Related notions to conservativeness are the var-
ious notions on monotonic learning that impose
certain conditions on whether the previous hy-
pothesis is a subset of the next hypothesis or not.
The following notions are the three main ones.

• A learner M is said to be strongly mono-
tonic (Jantke 1991) on L iff, for all
texts T for L, WM.T Œn�/ � WM.T ŒnC1�.
Intuitively, strong monotonicity requires
that the hypothesis of the learner grows
with time.

• A learner M is said to be monotonic (Wieha-
gen 1990) on L iff, for all texts T for L,
WM.T Œn�/ \ L � WM.T ŒnC1�/ \ L. In mono-
tonicity, the growth of the hypothesis is re-
quired only with respect to the language being
learned.

• A learner M is said to be weakly mono-
tonic (Jantke 1991) on L iff, for all texts T

for L, if ctnt.T Œn C 1�/ � WM.T Œn�/, then
WM.T Œn�/ � WM.T ŒnC1�/. That is, the learner
behaves strongly monotonically, as long as the
input data is consistent with the hypothesis.

An example for a strong monotonically learn-
able class is the class SDALL. When the learner
currently conjectures fe; e C 1; e C 2; : : :g and

it sees a datum d < e, then it makes a mind
change to fd; d C 1; d C 2; : : :g which is a
superset of the previous conjecture; it is easy
to see that all mind changes are of this type.
It can be shown that strong monotonic learning
implies monotonic learning and weak monotonic
learning, though monotonic learning and weak
monotonic learning are incomparable (and thus
both are proper restrictions of TxtEx learning).
For example, consider the class C consisting of
the set f0; 2; 4; : : :g of all even numbers and,
for each n, the set f0; 2; 4; : : : ; 2ng [f2n C 1g
consisting of the even numbers below 2n and the
odd number 2nC1. Then, C is monotonically but
not strong monotonically learnable.

Lange et al. (1992) also considered the dual
version of the above criteria, where dual strong
monotonicity learning of L requires that, for all
texts T for L, WM.T Œn�/ 	 WM.T ŒnC1�/; dual
monotonicity requires that, for all texts T for
L, WM.T Œn�/ \ .N � L/ 	 WM.T ŒnC1�/ \ .N �

L/, and dual weak monotonicity requires that,
if ctnt.T Œn C s�/ � WM.T Œn�/, then WM.T Œn�/ 	

WM.T ŒnCs�/.
In a similar fashion, various other properties of

learners have been considered. For example, reli-
ability (Blum and Blum 1975; Minicozzi 1976)
postulates that the learner does not converge on
the input text unless it learns it; prudence (Fulk
1990; Osherson et al. 1986) postulates that the
learner outputs only indices of languages, which
it also learns; and confidence (Osherson et al.
1986) postulates that the learner converges on
every text to some index, even if the text is for
some language outside the class of languages to
be learned.

Indexed Families

Angluin (1980) initiated a study of learning in-
dexed families of recursive languages. A class of
languages (along with its indexing) L0; L1; : : : is
an indexed family if membership questions for
the languages are uniformly decidable, that is,
x 2 Li can be recursively decided in x and
i . Angluin gave an important characterization of
indexed families that are TxtEx learnable.

Inductive Inference 647

I

Suppose a class L D fL0; L1; : : :g (along with
the indexing) is given. Then, S is said to be a tell-
tale set (Angluin 1980) of Li iff S is finite, and
for all j , if S � Lj and Lj � Li , then Li D Lj .
It can be shown that for any class of languages
that are learnable (in TxtEx or TxtBc sense),
there exists a tell-tale set for each language in the
class. Moreover, Angluin showed that for indexed
families, L D L0; L1; : : : ; one can TxtEx learn L
iff one can recursively enumerate a tell-tale set for
each Li , effectively from i . Within the framework
of learning indexed families, a special emphasis
is given to the hypothesis space used; so the
following criteria are considered for defining the
learnability of a class L in dependence of the hy-
pothesis space H D H0; H1; : : :. The class L is

• Exactly learnable iff there is a learner using
the same hypothesis space as the given class,
that is, Hn D Ln for all n;

• Class-preservingly learnable iff there is a
learner using a hypothesis space H with
fL0; L1; : : :g D fH0; H1; : : :g – here the
order and the number of occurrences in the
hypothesis space can differ, but the hypothesis
space must consist of the same languages as
the class to be learned, and no other languages
are allowed in the hypothesis space;

• Class-comprisingly learnable iff there is a
learner using a hypothesis space H with
fL0; L1; : : :g � fH0; H1; : : :g – here the
hypothesis space can also contain some
further languages not in the class to be learned
and the learner does not need to identify these
additional languages;

• Prescribed learnable iff for every hypothesis
space H containing all the languages from L,
there is a learner for L using this hypothesis
space;

• Uniformly learnable iff for every hypothesis
space H with index e containing all the lan-
guages from L one can synthesize a learner
Me which succeeds to learn L using the hy-
pothesis space H.

Note that in all five cases H only ranges over
indexed families. This differs from the standard
case where H is an acceptable numbering of

all recursively enumerable sets. We refer the
reader to the survey of Lange et al. (2008) for
an overview on work done on learning indexed
families (TxtEx learning, learning under various
properties of learners, as well as characterizations
of such learning criteria) and to (Jain et al. 2008;
Lange and Zeugmann 1993). While for explana-
tory learning and every class L, all these five no-
tions coincide, these notions turn out to be differ-
ent for other learning notions like those of conser-
vative learning, monotonic learning, and strong
monotonic learning. For example, the class of all
finite sets is not prescribed conservatively learn-
able: one can make an adversary hypothesis space
where some indices contain large spurious ele-
ments, so that a learner is forced to do nonconser-
vative mind change to obtain correct indices for
the finite sets. The same example as above works
for showing the limitations of prescribed learning
for monotonic and strong monotonic learning.

The interested reader is referred to the
textbook Systems that Learn (Jain et al. 1999;
Osherson et al. 1986) and the papers below as
well as the references found in these papers for
further reading. Complexity issues in inductive
inference like the number of mind changes
necessary to learn a class or oracles needed to
learn some class can be found under the entries
Computational Complexity of Learning and
Query-Based Learning. The entry Connections
between Inductive Inference and Machine
Learning provides further information on this
topic.

Cross-References

�Connections Between Inductive Inference and
Machine Learning

Acknowledgements Sanjay Jain was supported in part
by NUS grant numbers C252-000-087-001, R146-000-
181-112, R252-000-534-112. Frank Stephen was sup-
ported in part by NUS grant numbers R146-000-181-112,
R252-000-534-112.

Recommended Reading

Angluin D (1980) Inductive inference of formal lan-
guages from positive data. Inf Control 45:117–135

http://dx.doi.org/10.1007/978-1-4899-7687-1_52

648 Inductive Inference Rules

Bārzdiņš J (1974a) Inductive inference of automata,
functions and programs. In: Proceedings of the
international congress of mathematics, Vancouver,
pp 771–776

Bārzdiņš J (1974b) Two theorems on the limiting
synthesis of functions. In: Theory of algorithms
and programs, vol 1. Latvian State University, Riga,
pp 82–88 (In Russian)

Blum L, Blum M (1975) Toward a mathematical theory
of inductive inference. Inf Control 28:125–155

Case J (1999) The power of vacillation in language
learning. SIAM J Comput 28:1941–1969

Case J, Lynes C (1982) Machine inductive
inference and language identification. In:
Nielsen M, Schmidt EM (eds) Proceedings of
the 9th international colloquium on automata,
languages and programming. Lecture notes in
computer science, vol 140. Springer, Heidelberg,
pp 107–115

Case J, Smith C (1983) Comparison of identifica-
tion criteria for machine inductive inference. Theor
Comput Sci 25:193–220

Fulk M (1990) Prudence and other conditions on for-
mal language learning. Inf Comput 85:1–11

Gold EM (1967) Language identification in the limit.
Inf Control 10:447–474

Jain S, Osherson D, Royer J, Sharma A (1999) Systems
that learn: an introduction to learning theory, 2nd
edn. MIT Press, Cambridge

Jain S, Stephan F, Ye N (2008) Prescribed learning of
indexed families. Fundam Inf 83:159–175

Jantke KP (1991) Monotonic and non-monotonic in-
ductive inference. New Gener Comput 8:349–360

Jantke KP, Beick H-R (1981) Combining postulates
of naturalness in inductive inference. J Inf Process
Cybern (EIK) 17:465–484

Lange S, Zeugmann T (1993) Language learn-
ing in dependence on the space of hypotheses.
In: Proceedings of the sixth annual conference
on computational learning theory, Santa Cruz,
pp 127–136

Lange S, Zeugmann T, Kapur S (1992) Class preserv-
ing monotonic language learning. Technical report
14/92, GOSLER-Report, FB Mathematik und Infor-
matik, TH Leipzig

Lange S, Zeugmann T, Zilles S (2008). Learn-
ing indexed families of recursive languages from
positive data: a survey. Theor Comput Sci 397:
194–232

Minicozzi E (1976) Some natural properties of strong
identification in inductive inference. Theor Comput
Sci 2:345–360

Osherson D, Weinstein S (1982) Criteria of language
learning. Inf Control 52:123–138

Osherson D, Stob M, Weinstein S (1986) Systems that
learn, an introduction to learning theory for cog-
nitive and computer scientists. Bradford–The MIT
Press, Cambridge

Sharma A (1998) A note on batch and incremental
learnability. J Comput Syst Sci 56:272–276

Wiehagen R (1990) A thesis in inductive inference. In:
Dix J, Jantke K, Schmitt P (eds) Nonmonotonic and
inductive logic, 1st international workshop. Lecture
notes in artificial intelligence, vol 543. Springer,
Berlin, pp 184–207

Wiehagen R, Liepe W (1976) Charakteristische Eigen-
schaften von erkennbaren Klassen rekursiver Funk-
tionen. J Inf Process Cybern (EIK) 12:421–438

Wiehagen R, Zeugmann T (1995) Learning and con-
sistency. In: Jantke KP, Lange S (eds) Algorithmic
learning for knowledge-based systems (GOSLER),
final report. Lecture notes in artificial intelligence,
vol 961. Springer, Heidelberg, pp 1–24

Inductive Inference Rules

�Logic of Generality

Inductive Learning

Synonyms

Statistical learning

Definition

Inductive learning is a subclass of machine learn-
ing that studies algorithms for learning knowl-
edge based on statistical regularities. The learned
knowledge typically has no deductive guarantees
of correctness, though there may be statistical
forms of guarantees.

Inductive Logic Programming

Luc De Raedt
Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium

Abstract

Inductive logic programming is the subfield
of machine learning that uses �First-Order
Logic to represent hypotheses and data.

http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_100445
http://dx.doi.org/10.1007/978-1-4899-7687-1_103

Inductive Logic Programming 649

I

Because first-order logic is expressive and
declarative, inductive logic programming
specifically targets problems involving
structured data and background knowledge.
Inductive logic programming tackles a wide
variety of problems in machine learning,
including classification, regression, clustering,
and reinforcement learning, often using
“upgrades” of existing propositional machine
learning systems. It relies on logic for
knowledge representation and reasoning
purposes. Notions of coverage, generality,
and operators for traversing the space of
hypotheses are grounded in logic; see
also �Logic of Generality. Inductive logic
programming systems have been applied to
important applications in bio- and chemo-
informatics, natural language processing, and
web mining.

Synonyms

Learning in logic; Multi-relational data mining;
Relational data mining; Relational learning

Motivation

The first motivation and most important moti-
vation for using inductive logic programming is
that it overcomes the representational limitations
of attribute-value learning systems. Such systems
employ a table-based representations where the
instances correspond to rows in the table, the
attributes to columns, and for each instance, a sin-
gle value is assigned to each of the attributes. This
is sometimes called the single-table single-tuple
assumption. Many problems, such as the Bon-
gard problem shown in Fig. 1, cannot elegantly
be described in this format. Bongard (1970) in-
troduced about a hundred concept learning or
pattern recognition problems, each containing six
positive and six negative examples. Even though
Bongard problems are toy problems, they are
similar to real-life problems such as structure–
activity relationship prediction, where the goal

is to learn to predict whether a given molecule
(as represented by its 2D graph structure) is
active or not. It is hard – if not, impossible – to
squeeze this type of problem into the single-table
single-tuple format for various reasons. Attribute-
value learning systems employ a fixed number of
attributes and also assume that these attributes are
present in all of the examples. This assumption
does not hold for the Bongard problems as the
examples possess a variable number of objects
(shapes). The singe-table single-tuple representa-
tion imposes an implicit order on the attributes,
whereas there is no natural order on the objects
in the Bongard problem. Finally, the relationships
between the objects in the Bongard problem are
essential and must be encoded as well. It is un-
clear how to do this within the single-table single-
tuple assumption. First-order logic and relational
representations allow one to encode problems
involving multiple objects (or entities) as well as
the relationships that hold them in a natural way.

The second motivation for using inductive
logic programming is that it employs logic,
a declarative representation. This implies that
hypotheses are understandable and interpretable.
By using logic, inductive logic programming
systems are also able to employ background
knowledge in the induction process. Background
knowledge can be provided in the form of
definitions of auxiliary relations or predicates
that may be used by the learner. Finally,
logic provides a well-understood theoretical
framework for knowledge representation and
reasoning. This framework is also useful for
machine learning, in particular, for defining and
developing notions such as the covers relation,
generality, and refinement operators; see also
�Logic of Generality.

Theory

Inductive logic programming is usually defined
as concept learning using logical representations.
It aims at finding a hypothesis (a set of rules) that
covers all positive examples and none of the neg-
atives, while taking into account a background
theory. This is typically realized by searching a

http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_100257
http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_100405
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

650 Inductive Logic Programming

Inductive Logic
Programming, Fig. 1 A
complex classification
problem: Bongard problem
47, developed by the
Russian scientist Bongard
(1970). It consists of 12
scenes (or examples), 6 of
class˚ and 6 of class�.
The goal is to discriminate
between the two classes

space of possible hypotheses. More formally, the
traditional inductive logic programming defini-
tion reads as follows:

Given

• A language describing hypotheses Lh

• A language describing instances Li

• Possibly a background theory B , usually in the
form of a set of (definite) clauses

• The covers relation that specifies the relation
between Lh and Li , that is, when an example
e is covered (considered positive) by a hy-
pothesis h, possibly taking into account the
background theory B

• A set of positive and negative examples E D

P [N

Find a hypothesis h 2 Lh such that for all p 2

P W covers.B; h; p/ D t rue and for all n 2 N W

covers.B; h; n/ D false.
This definition can, as for �Concept-Learning

in general, be extended to cope with noisy data
by relaxing the requirement that all examples be
classified correctly.

There exist different ways to represent learn-
ing problems in logic, resulting in different learn-
ing settings. They typically use definite clause
logic as the hypothesis language Li but differ in
the notion of an example. One can learn from

entailment, from interpretations, or from proofs,
cf. �Logic of Generality. The most popular set-
ting is learning from entailment, where each
example is a clause and covers.B; h; e/ D t rue

if and only if B [h ˆ e.
The top leftmost scene in the Bongard problem

of Fig. 1 can be represented by the clause:

positive :- object(o1),
object(o2),
circle(o1),
triangle(o2),
in(o1, o2),
large(o2).

The other scenes can be encoded in the same
way. The following hypothesis then forms a solu-
tion to the learning problem:

positive :- object(X),
object(Y),
circle(X),
triangle(Y),
in(X,Y).

It states that those scenes having a circle inside
a triangle are positive. For some more complex
Bongard problems, it could be useful to employ
background knowledge. It could, for instance,
state that triangles are polygons.

polygon(X) :- triangle(X).

http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Inductive Logic Programming 651

I

Using this clause as background theory, an
alternative hypothesis covering all positives and
none of the negatives is

positive :- object(X),
object(Y),
circle(X),
polygon(Y),
in(X,Y).

An alternative for using long clauses as exam-
ples is to provide an identifier for each example
and to add the corresponding facts from the
condition part of the clause to the background
theory. For the above example, the facts such as

object(e1,o1).
object(e1,o2).
circle(e1,o1).
triangle(e1,o2).
in(e1,o1,o2).
large(e1,o2).

would be added to the background theory, and the
positive example itself would then be represented
through the fact positive(e1), where e1 is
the identifier. The inductive logic programming
literature typically employs this format for exam-
ples and hypotheses.

Whereas inductive logic programming origi-
nally focused on concept learning – as did the
whole field of machine learning – it is now being
applied to virtually all types of machine learn-
ing problems, including regression, clustering,
distance-based learning, frequent pattern mining,
reinforcement learning, and even kernel methods
and graphical models.

A Methodology

Many of the more recently developed inductive
logic programming systems have started from
an existing attribute-value learner and have
upgraded it toward the use of first-order logic
(Van Laer and De Raedt 2001). By examining
state-of-the-art inductive logic programming
systems, one can identify a methodology for
realizing this (Van Laer and De Raedt 2001). It
starts from an attribute-value learning problem
and system of interest and takes the following

two steps. First, the problem setting is upgraded
by changing the representation of the examples,
the hypotheses as well as the covers relation
toward first-order logic. This step is essentially
concerned with defining the learning setting,
and possible settings to be considered include
the already mentioned learning from entailment,
interpretations, and proofs settings. Once the
problem is clearly defined, one can attempt
to formulate a solution. Thus, the second step
adapts the original algorithm to deal with
the upgraded representations. While doing
so, it is advisable to keep the changes as
minimal as possible. This step often involves
the modification of the operators used to traverse
the search space. Different operators for realizing
this are introduced in the entry on the �Logic of
Generality.

There are many reasons why following
the methodology is advantageous. First, by
upgrading a learner that is already effective for
attribute-value representations, one can benefit
from the experiences and results obtained in
the propositional setting. In many cases, for
instance, decision trees, this implies that one can
rely on well-established methods and findings,
which are the outcomes of several decades
of machine learning research. It will be hard
to do better starting from scratch. Second,
upgrading an existing learner is also easier than
starting from scratch as many of the components
(such as heuristics and search strategy) can
be recycled. It is therefore also economic in
terms of man power. Third, the upgraded system
will be able to emulate the original one, which
provides guarantees that the output hypotheses
will perform well on attribute-value learning
problems. Even more important is that it will
often also be able to emulate extensions of the
original systems. For instance, many systems
that extend frequent item-set mining toward
using richer representations, such as sequences,
intervals, the use of taxonomies, graphs, and so
on, have been developed over the past decade.
Many of them can be emulated using the
inductive logic programming upgrade of Apriori
(Agrawal et al. 1996) called Warmr (Dehaspe
and Toivonen 2001). The upgraded inductive

http://dx.doi.org/10.1007/978-1-4899-7687-1_489

652 Inductive Logic Programming

logic programming systems will typically be
more flexible than the systems it can emulate
but typically also less efficient because there is
a price to be paid for expressiveness. Finally,
it may be possible to incorporate new features
in the attribute-value learner by following the
methodology. One feature that is often absent
from propositional learners and may be easy to
incorporate is the use of a background theory.

It should be mentioned that the methodol-
ogy is not universal, that is, there exist also
approaches, such as Muggleton’s Progol (1995),
which have directly been developed in first-order
logic and for which no propositional counterpart
exists. In such cases, however, it can be inter-
esting to follow the inverse methodology, which
would specialize the inductive logic program-
ming system.

FOIL: An Illustration

One of the simplest and best-known inductive
logic programming systems is FOIL (Quinlan
1990). It can be regarded as an upgrade of a
rule learner such as CN2 (Clark and Niblett
1989). FOIL’s problem setting is an instance of
the learning from entailment setting introduced
above (though it restricts the background theory
to ground facts only and does not allow functors).

Like most rule-learning systems, FOIL em-
ploys a separate-and-conquer approach. It starts
from the empty hypothesis, and then repeatedly
searches for one rule that covers as many positive
examples as possible and no negative example,
adds it to the hypothesis, removes the positives
covered by the rule, and then iterates. This pro-
cess is continued until all positives are covered.
To find one rule, it performs a hill-climbing
search through the space of clauses ordered ac-
cording to generality. The search starts at the
most general rule, the one stating that all exam-
ples are positive, and then repeatedly specializes
it. Among the specializations, it then selects the
best one according to a heuristic evaluation based
on information gain. A heuristic, based on the
minimum description length principle, is then
used to decide when to stop specializing clauses.

The key differences between FOIL and its
propositional predecessors are the representation
and the operators used to compute the special-
izations of a clause. It employs a refinement op-
erator under � -subsumption (Plotkin 1970) (see
also �Logic of Generality). Such an operator
essentially refines clauses by adding atoms to the
condition part of the clause or applying substitu-
tions to a clause. For instance, the clause

positive :- triangle(X),
in(X,Y),
color(X,C).

can be specialized to

positive :- triangle(X),
in(X,Y),
color(X,red).

positive :- triangle(X),
in(X,Y),
color(X,C),
large(X).

positive :- triangle(X),
in(X,Y),
color(X,C),
rectangle(Y).

...

The first specialization is obtained by substituting
the variable C by the constant red, the
other two by adding an atom (large(X),
rectangle(Y), respectively) to the condition
part of the rule. Inductive logic programming
systems typically also employ syntactic
restrictions – the so-called – that specify which
clauses may be used in hypotheses. For instance,
in the above example, the second argument of
the color predicate belongs to the type Color,
whereas the arguments of in are of type Object
and consist of object identifiers.

Application

Inductive logic programming has been suc-
cessfully applied to many application domains,
including bio- and chemo-informatics, ecology,

http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Inductive Logic Programming 653

I

network mining, software engineering, infor-
mation retrieval, music analysis, web mining,
natural language processing, toxicology, robotics,
program synthesis, design, architecture, and
many others. The best-known applications
are in scientific domains. For instance, in
structure–activity relationship prediction, one
is given a set of molecules together with their
activities, and background knowledge encoding
functional groups, that is particular components
of the molecule, and the task is to learn rules
stating when a molecule is active or inactive.
This is illustrated in Fig. 2 (after Srinivasan
et al. 1996), where two molecules are active
and two are inactive. One then has to find
a pattern that discriminates the actives from
the inactives. Structure–activity relationship
(SAR) prediction is an essential step in, for
instance, drug discovery. Using the general
purpose inductive logic programming system
Progol (Muggleton 1995) structural alerts, such
as that shown in Fig. 2, have been discovered.
These alerts allow one to distinguish the actives
from the inactives – the one shown in the
figure matches both of the actives but none of
the inactives – and at the same time they are
readily interpretable and provide useful insight
into the factors determining the activity. To

solve structure–activity relationship prediction
problems using inductive logic programming,
one must represent the molecules and hypotheses
using the logical formalisms introduced above.
The resulting representation is very similar to
that employed in the Bongard problems: the
objects are the atoms and relationships the bonds.
Particular functional groups are encoded as
background predicates.

State-of-the-Art

The upgrading methodology has been applied
to a wide variety of machine learning systems
and problems. There exist now inductive logic
programming systems that:

• Induce logic programs from examples under
various learning settings. This is by far the
most popular class of inductive logic program-
ming systems. Well-known systems include
Aleph (Srinivasan 2007) and Progol (Mug-
gleton 1995) as well as various variants of
FOIL (Quinlan 1990). Some of these systems,
especially Progol and Aleph, contain many
features that are not present in propositional
learning systems. Most of these systems focus

O CH=N-NH-C-NH2O=N

O– O

nitrofurazone

N O
+

4-nitropenta[cd]pyrene

N

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N+
O– O

4-nitroindole

Active

Inactive
Y=Z

Structural alert:

O– O–

O–

Inductive Logic Programming, Fig. 2 Predicting mutagenicity (Srinivasan et al. 1996)

654 Inductive Logic Programming

on a classification setting and learn the defini-
tion of a single predicate.

• Induce logical decision trees from examples.
These are binary decision trees containing
conjunctions of atoms (i.e., queries) as tests.
If a query succeeds, then one branch is taken,
else the other one. Decision tree methods for
both classification and regression exist (see
Blockeel and De Raedt 1998; Kramer and
Widmer 2001).

• Mine for frequent queries, where queries are
conjunctions of atoms. Such queries can be
evaluated on an example. For instance, in the
Bongard problem, the query ?- triangle
(X),in (X,Y) succeeds on the leftmost
scenes and fails on the rightmost ones. There-
fore, its frequency would be 6. The goal is then
to find all queries that are frequent, that is,
whose frequencies exceed a certain threshold.
Frequent query mining upgrades the popular
local pattern mining setting due to Agrawal
et al. (1996) to inductive logic programming
(see Dehaspe and Toivonen 2001).

• Learn or revise the definitions of theories,
which consist of the definitions of multiple
predicates, at the same time (cf. Wrobel 1996),
and the entry in this encyclopedia. Several of
these systems have their origin in the model
inference system by Shapiro (1983) or the
work by Angluin (1987).

Current Trends and Challenges

There are two major trends and challenges in
inductive logic programming. The first challenge
is to extend the inductive logic programming
paradigm beyond the purely symbolic one. Im-
portant trends in this regard include:

• The combination of inductive logic program-
ming principles with graphical and probabilis-
tic models for reasoning about uncertainty.
This is a field known as statistical relational
learning, probabilistic logic learning, or prob-
abilistic inductive logic programming. At the
time of writing, this is a very popular re-
search stream, attracting a lot of attention in

the wider artificial intelligence community,
cf. the entry � Statistical Relational Learn-
ing in this encyclopedia. It has resulted in
many relational or logical upgrades of well-
known graphical models including Bayesian
networks, Markov networks, hidden Markov
models, and stochastic grammars.

• The use of relational distance measures for
classification and clustering (Ramon and
Bruynooghe 1998; Kirsten et al. 2001). These
distances measure the similarity between two
examples or clauses, while taking into account
the underlying structure of the instances.
These distances are then combined with
standard classification and clustering methods
such as k-nearest neighbor and k-means.

• The integration of relational or logical repre-
sentations in reinforcement learning, known
as �Relational Reinforcement Learning (Dze-
roski et al. 2001).

The power of inductive logic programming
is also its weakness. The ability to represent
complex objects and relations and the ability to
make use of background knowledge add to the
computational complexity. Therefore, a key chal-
lenge of inductive logic programming is tackling
this added computational complexity. Even the
simplest method for testing whether one hypoth-
esis is more general than another – that is, � -
subsumption (Plotkin 1970) – is NP-complete.
Similar tests are used for deciding whether a
clause covers a particular example in systems
such as FOIL. Therefore, inductive logic pro-
gramming and relational learning systems are
computationally much more expensive than their
propositional counterparts. This is an instance
of the expressiveness versus efficiency trade-off
in computer science. Because of these computa-
tional difficulties, inductive logic programming
has devoted a lot of attention to efficiency is-
sues. On the theoretical side, there exist vari-
ous results about the polynomial learnability of
certain subclasses of logic programs (cf. Cohen
and Page 1995, for an overview). From a prac-
tical perspective, there is quite some work on
developing efficient methods for searching the

http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_726

Inductive Logic Programming 655

I

hypothesis space and especially for evaluating the
quality of hypotheses. Many of these methods
employ optimized inference engines based on
Prolog or database technology or constraint sat-
isfaction methods (cf. Blockeel and Sebag 2003
for an overview).

Cross-References

�Multi-Relational Data Mining

Recommended Reading

A comprehensive introduction to inductive
logic programming can be found in the book
by De Raedt (2008) on logical and relational
learning. Early surveys of inductive logic
programming are contained in Muggleton and
De Raedt (1994) and Lavrač and Džeroski (1994)
and an account of its early history is provided
in Sammut (1993). More recent collections on
current trends can be found in the proceedings
of the annual Inductive Logic Programming
Conference (published in Springer’s Lectures
Notes in Computer Science Series) and special
issues of the Machine Learning Journal. A
summary of some key future challenges is
given in Muggleton et al. (2012). An interesting
collection of inductive logic programming and
multi-relational data mining works are provided
in Džeroski and Lavrač (2001). The upgrading
methodology is described in detail in Van Laer
and De Raedt (2001). More information on
logical issues in inductive logic programming are
given in the entry �Logic of Generality in this
encyclopedia, whereas the entries � Statistical
Relational Learning and �Graph Mining are
recommended for those interested in frameworks
tackling similar problems using other types of
representations.

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad U, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge
discovery and data mining. MIT Press, Cambridge,
pp 307–328

Angluin D (1987) Queries and concept-learning. Mach
Learn 2:319–342

Blockeel H, De Raedt L (1998) Top-down induction
of first order logical decision trees. Artif Intell
101(1–2):285–297

Blockeel H, Sebag M (2003) Scalability and efficiency
in multi-relational data mining. SIGKDD Explor
5(1):17–30

Bongard M (1970) Pattern recognition. Spartan Books,
New York

Clark P, Niblett T (1989) The CN2 algorithm. Mach
Learn 3(4):261–284

Cohen WW, Page D (1995) Polynomial learnability
and inductive logic programming: methods and re-
sults. New Gener Comput 13:369–409

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

Dehaspe L, Toivonen H (2001) Discovery of relational
association rules. In: Džeroski S, Lavrač N (eds) Re-
lational data mining. Springer, Berlin/Heidelberg,
pp 189–212

Džeroski S, De Raedt L, Driessens K (2001) Relational
reinforcement learning. Mach Learn 43(1/2): 5–52

Džeroski S, Lavrač N (eds) (2001) Relational data
mining. Springer, Berlin/New York

Kirsten M, Wrobel S, Horvath T (2001) Distance based
approaches to relational learning and clustering. In:
Džeroski S, Lavrač N (eds) Relational data mining.
Springer, Berlin/Heidelberg, pp 213–232

Kramer S, Widmer G (2001) Inducing classification
and regression trees in first order logic. In: Džeroski
S, Lavrač N (eds) Relational data mining. Springer,
Berlin/Heidelberg, pp 140–159

Lavrač N, Džeroski S (1994) Inductive logic program-
ming: techniques and applications. Ellis Horwood,
Chichester

Muggleton S (1995) Inverse entailment and Progol.
New Gener Comput 13:245–286

Muggleton S, De Raedt L (1994) Inductive logic
programming: theory and methods. J Log Program
19(20):629–679

Muggleton S, De Raedt L, Poole D, Bratko I, Flach P,
Inoue K, Srinivasan A (2012) ILP Turns 20. Mach
Learn 86:2–23

Plotkin GD (1970) A note on inductive generalization.
In: Machine intelligence, vol 5. Edinburgh Univer-
sity Press, Edinburgh, pp 153–163

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Ramon J, Bruynooghe M (1998) A framework for
defining distances between first-order logic objects.
In: Page D (ed) Proceedings of the eighth interna-
tional conference on inductive logic programming.
Lecture notes in artificial intelligence, vol 1446.
Springer, Berlin/Heidelberg, pp 271–280

Sammut C (1993) The origins of inductive logic pro-
gramming: a prehistoric tale. In: Muggleton S (ed)
Proceedings of the third international workshop on
inductive logic programming. J. Stefan Institute,
Ljubljana, pp 127–148

http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_350

656 Inductive Process Modeling

Shapiro EY (1983) Algorithmic program debugging.
MIT Press, Cambridge

Srinivasan A (2007) The Aleph Manual. http://www.
comlab.ox.ac.uk/oucl/research/areas/machlearn/
Aleph/aleph toc.html

Srinivasan A, Muggleton S, Sternberg MJE, King
RD (1996) Theories for mutagenicity: a study in
first-order and feature-based induction. Artif Intell
85(1/2):277–299

Van Laer W, De Raedt L (2001) How to upgrade
propositional learners to first order logic: a case
study. In: Džeroski S, Lavrač N (eds) Relational data
mining. Springer, Berlin/Heidelberg, pp 235–261

Wrobel S (1996) First-order theory refinement. In:
De Raedt L (ed) Advances in inductive logic
programming. Frontiers in artificial intelligence
and applications, vol 32. IOS Press, Amsterdam,
pp 14–33

Inductive Process Modeling

Ljupčo Todorovski
University of Ljubljana, Ljubljana, Slovenia

Synonyms

Process-based modeling

Definition

Inductive process modeling is a machine learn-
ing task that deals with the problem of learning
quantitative process models from � time series
data about the behavior of an observed dynamic
system. Process models are models based on or-
dinary differential equations that add an explana-
tory layer to the equations. Namely, scientists and
engineers use models to both predict and explain
the behavior of an observed system. In many do-
mains, models commonly refer to processes that
govern system dynamics and entities altered by
those processes. Ordinary differential equations,
often used to cast models of dynamic systems,
offer one way to represent these mechanisms and
can be used to simulate and predict the system
behavior, but fail to make the processes and
entities explicit. In response, process models tie

Inductive Process Modeling, Table 1 A process
model of Predatory–Prey interaction between foxes and
rabbits. The notation dŒX; t� indicates the time deriva-
tive of variable X

model predation;

entities foxfpopulationg, rabbitfpopulationg;
process rabbit growth;
entites rabbit;
equations d[rabbit.conc,t]D 1.81 * rabbit.conc *
(1� 0.0003 * rabbit.conc);
process fox death;
entites fox;
equations d[fox.conc,t]D �1.04 * fox.conc;
process fox rabbit predation;
entities fox, rabbit;
equations
d[fox.conc,t]D 0.03 * rabbit.conc * fox.conc;
d[rabbit.conc,t]D �1 * 0.3 * rabbit.conc * fox.conc;

the explanatory information about processes and
entities to the mathematical formulation, based
on equations, that enables simulation.

Table 1 shows a process model for a
predator–prey interaction between foxes and
rabbits. The three processes explain the dynamic
change of the concentrations of both species
(represented in the model as two population
entities) through time. The rabbit growth process
states that the reproduction of rabbit is limited
by the fixed environmental capacity. Similarly,
the fox death process specifies an unlimited
exponential mortality function for the fox
population. Finally, the fox rabbit predation
process refers to the predator–prey interaction
between foxes and rabbits that states that the
prey concentration decreases and the predator
one increases proportionally with the sizes of the
two populations. The process model makes the
structure of the model explicit and transparent to
scientists; while at the same time it can be easily
transformed in to a system of two differential
equations by additively combining the equations
for the time derivatives of the system variables
fox.conc and rabbit.conc. Given initial values for
these variables, one can simulate the equations
to produce trajectories that correspond to the
population dynamics through time.

The processes from Table 1 instantiate more
general generic processes, that can be used for

http://www. comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_ toc.html
http://www. comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_ toc.html
http://www. comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_ toc.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_100378
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

Inductive Process Modeling 657

I

modeling any ecological system. For example:
is a general form of the fox rabbit predation
process from the example model in Table 1. Note
that in the generic process, the parameters are
replaced with numeric ranges and the entities
with identifiers of generic entities (i.e., Predator
and Prey are identifiers that refer to instances of
the generic entity population).

generic process predation;
entities Predatorfpopulationg, Preyfpopulationg;
parameters ar[0.01, 10], ef[0.001, 0.8];
equations

d[Predator.conc,t] = ef * ar * Prey.conc *
Predator.conc;

d[Prey.conc,t] = �1 * ar * Prey.conc * Preda-
tor.conc;

Having defined entities and processes on an
example, one can define the task of inductive
process modeling as: Given

• Time series observations for a set of numeric
system variables as they change through time

• A set of entities that the model might include
• Generic processes that specify casual relations

among entities
• Constraints that determine plausible relations

among processes and entities in the model

Find a specific process model that explains the
observed data and the simulation of which closely
matches observed time series.

There are two approaches for solving the
task of inductive process modeling. The first is
the transformational approach that transforms
the given knowledge about entities, processes,
and constraints to � language bias for equation
discovery and uses the Lagramge method for
� equation discovery in turn (Todorovski and
Džeroski 1997, 2007). The second approach
performs search through the space of candidate
process models to find the one that matches the
given time series data best.

Inductive process modeling methods IPM
(Bridewell et al. 2008) and HIPM (Todorovski
et al. 2005) follow the second approach. IPM is
a naı̈ve method that exhaustively searches the

space of candidate process models following
the � learning as search paradigm. The search
space of candidate process models is defined
by the sets of generic processes and of entities
in the observed system specified by the user.
IPM first matches the type of each entity
against the types of entities involved in each
generic process and produces a list of all
possible instances of that generic process.
For example, the generic process predation,
from the example above, given two population
entities fox and rabbit, can be instantiated
in four different ways (fox fox predation,
fox rabbit predation, rabbit fox predation,
and rabbit rabbit predation). The IPM search
procedure collects the set of all possible instances
of all the generic processes and uses them
as a set of candidate model components. In
the search phase, all combinations of these
model components are being matched against
observed � time series. The matching involves
the employment of gradient-descent methods for
nonlinear optimization to estimate the optimal
values of the process model parameters. As
output, IPM reports the process models with
the best match.

Trying out all components’ combinations
is prohibitive in many situations since it
obviously leads to combinatorial explosion.
HIPM employs constraints that limit the space
of combinations by ruling-out implausible or
forbidden combinations. Examples of such
constraints in the predator–prey example above
include rules that a proper process model of
population dynamics should include a single
growth and a single mortality process per
species, the predator–prey process should relate
two different species, and different predator–
prey interaction should refer to different
population pairs. HIPM specifies the rules in
a hierarchy of generic processes where each
node in the hierarchy specifies a rule for proper
combination/selection of process instances.

Cross-References

�Equation Discovery

http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_258
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_258

658 Inductive Program Synthesis

Recommended Reading

Bridewell W, Langley P, Todorovski L, Džeroski S
(2008) Inductive process modeling. Mach Learn
71(1):1–32

Todorovski L, Džeroski S (1997) Declarative bias in
equation discovery. In: Fisher DH (ed) Proceedings
of the fourteenth international conference on ma-
chine learning,Nashville

Todorovski L, Džeroski S (2007) Integrating domain
knowledge in equation discovery. In: Džeroski S,
Todorovski L (eds) Computational discovery of
scientific knowledge. LNCS, vol 4660. Springer,
Berlin

Todorovski L, Bridewell W, Shiran O, Langley P
(2005) Inducing hierarchical process models in dy-
namic domains. In: Veloso MM, Kambhampati S
(eds) Proceedings of the twentieth national confer-
ence on artificial intelligence, Pittsburgh

Inductive Program Synthesis

� Inductive Programming

Inductive Programming

Pierre Flener1 and Ute Schmid2

1Department of Information Technology,
Uppsala University, Uppsala, Sweden
2Faculty of Information Systems and Applied
Computer Science, University of Bamberg,
Bamberg, Germany

Abstract

Inductive programming is introduced as a
branch of program synthesis which is based on
inductive inferece where recursive, declarative
programs are constructed from incomplete
specifications, especially from input/output
examples. Inductive logic programming as
well as inductive functional programming are

Most of the work by this author was done while on
leave of absence in 2006/07 as a Visiting Faculty
Member and Erasmus Exchange Teacher at Sabancı
University, Turkey.

addressed. Central concepts such as predicate
invention and background knowledge are
defined. Two worked-out examples are
presented to illustrate inductive logic as well
as inductive functional programming.

Synonyms

Example-based programming; Inductive program
synthesis; Inductive synthesis; Programming by
examples; Program synthesis from examples

Definition

Inductive programming is the inference of an
algorithm or program featuring recursive calls or
repetition control structures, starting from infor-
mation that is known to be incomplete, called
the evidence, such as positive and negative input-
output examples or clausal constraints. The in-
ferred program must be correct with respect to
the provided evidence, in a generalization sense:
it should be neither equivalent to it nor inconsis-
tent. Inductive programming is guided explicitly
or implicitly by a language bias and a search
bias. The inference may draw on background
knowledge or query an oracle. In addition to in-
duction, abduction may be used. The restriction
to algorithms and programs featuring recursive
calls or repetition control structures distinguishes
inductive programming from concept learning
or classification.

We here restrict ourselves to the inference
of declarative programs, whether functional
or logic, and dispense with repetition control
structures in the inferred program in favor of
recursive calls.

Motivation and Background

Inductive program synthesis is a branch of the
field of program synthesis, which addresses a
cognitive question as old as computers, namely,
the understanding of the human act of computer

http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_100158
http://dx.doi.org/10.1007/978-1-4899-7687-1_100216
http://dx.doi.org/10.1007/978-1-4899-7687-1_100217
http://dx.doi.org/10.1007/978-1-4899-7687-1_100381
http://dx.doi.org/10.1007/978-1-4899-7687-1_100379

Inductive Programming 659

I

programming, to the point where a computer can
be made to help in this task (and ultimately to
enhance itself). See Flener (2002) and Gulwani
et al. (2014) for surveys; the other main branches
of program synthesis are based on deductive in-
ference, namely, constructive program synthesis
and transformational program synthesis. In such
deductive program synthesis, the provided infor-
mation, called the specification, is assumed to be
complete (in contrast to inductive program syn-
thesis where the provided information is known
to be incomplete), and the presence of repetitive
or recursive control structures in the synthesized
program is not imposed.

Research on the inductive synthesis of
recursive functional programs started in the early
1970s and was brought onto firm theoretical
foundations with the seminal THESYS system
of Summers (1977) and work of Biermann
(1978), where all the evidence is handled non-
incrementally. Essentially, the idea is first to
infer computation traces from input-output
examples (instances) and then to use a trace-
based programming method to fold these traces
into a recursive program. The main results until
the mid-1980s were surveyed in Smith (1984).
Due to limited progress with respect to the
range of programs that could be synthesized,
research activities decreased significantly in the
next decades. However, a new approach that
formalizes functional program synthesis in the
term rewriting framework and that allows the
synthesis of a broader class of programs than the
classical approaches is pursued in Kitzelmann
and Schmid (2006).

The advent of logic programming brought a
new lan but also a new direction in the early
1980s, especially due to the MIS system of
Shapiro (1983), eventually spawning the new
field of inductive logic programming (ILP).
Most of this ILP work addresses a wider class of
problems, as the focus is not only on recursive
logic programs: more adequate designations
are inductive theory revision and declarative
program debugging, as an additional input is a
possibly empty initial theory or program that is
incrementally revised or debugged according to
each newly presented piece of evidence, possibly

in the presence of background knowledge or
an oracle. The main results on the inductive
synthesis of recursive logic programs were
surveyed in Flener and Yılmaz (1999).

Structure of Learning System

The core of an inductive programming system is
a mechanism for constructing a recursive gen-
eralization for a set of input/output examples
(instances). Although we use the vocabulary of
logic programming, this method also covers the
synthesis of functional programs.

The input, often a set of input/output exam-
ples, is called the evidence. Further evidence may
be queried from an oracle. Additional informa-
tion, in the form of predicate symbols that can
be used during the synthesis, can be provided
as background knowledge. Since the hypothesis
space – the set of legal recursive programs –
is infinite, a language bias is introduced. One
particularly useful and common approach in in-
ductive programming is to provide a statement
bias by means of a program schema.

The evidential synthesis of a recursive pro-
gram starts from the provided evidence for some
predicate symbol and works essentially as fol-
lows. A program schema is chosen to provide
a template for the program structure, where all
yet undefined predicate symbols must be instan-
tiated during the synthesis. Predefined predicate
symbols of the background knowledge are then
chosen for some of these undefined predicate
symbols in the template. If it is deemed that the
remaining undefined predicate symbols cannot all
be instantiated via purely structural generaliza-
tion by non-recursive definitions, then the method
is recursively called to infer recursive definitions
for some of them (this is called predicate in-
vention and amounts to shifting the vocabulary
bias); otherwise the synthesis ends successfully
right away. This generic method can backtrack
to any choice point for synthesizing alternative
programs.

In the rest of this section, we discuss this ba-
sic terminology of inductive programming more
precisely. In the next section, instantiations of this

660 Inductive Programming

generic method by some well-known methods are
presented.

The Evidence and the Oracle
The evidence is often limited to ground positive
examples of the predicate symbols that are to
be defined. Ground negative examples are conve-
nient to prevent overgeneralization, but should be
used constructively and not just to reject candi-
date programs. A useful generalization of ground
examples is evidence in the form of a set of (non-
recursive) clauses, as variables and additional
predicate symbols can then be used.

Example 1 The delOdds.L; R/ relation, which
holds if and only if R is the integer list L without
its odd elements, can be incompletely described
by the following clausal evidence:

delOdds.Œ �; Œ �/ true

delOdds.ŒX�; Œ �/ odd.X/

delOdds.ŒX�; ŒX�/ :odd.X/

delOdds.ŒX; Y �; ŒY �/ odd.X/; :odd.Y /

delOdds.ŒX; Y �; ŒX; Y �/ :odd.X/; :odd.Y /

false delOdds.ŒX�; ŒX�/; odd.X/

(1)

The first clause is a ground positive example,
whereas the second and third clauses generalize
the infinity of ground positive examples, such
as delOdds.Œ5�; Œ �/ and delOdds.Œ22�; Œ22�/,
for handling singleton lists, while the fourth and
fifth clauses summarize the infinity of ground
positive examples for handling lists of two ele-
ments, the second one being even: these clauses
make explicit the underlying filtering relation
(odd) that is intrinsic to the problem at hand
but cannot be provided via ground examples and
would otherwise have to be guessed. The sixth
clause summarizes an infinity of ground negative
examples for handling singleton lists, namely,
where the only element of the list is odd but not
filtered.

In some methods, especially for the induction
of functional programs, the first n positive input-
output examples with respect to the underlying
data type are presented (e.g., for linear lists, what
to do with the empty list, with a one-element list,

up to a list with three elements); because of this
ordering of examples, no explicit presentation of
negative examples is then necessary.

Inductive program synthesis should be mono-
tonic in the evidence (more evidence should never
yield a less complete program, and less evidence
should not yield a more complete program) and
should not be sensitive to the order of presenta-
tion of the evidence.

Program Schemas
Informally, a program schema contains a tem-
plate program and a set of axioms. The tem-
plate abstracts a class of actual programs, called
instances, in the sense that it represents their
dataflow and control flow by means of placehold-
ers, but does not make explicit all their actual
computations nor all their actual data structures.
The axioms restrict the possible instances of the
placeholders and define their interrelationships.
Note that a schema is problem independent. Let
us here take a first-order logic approach and
consider templates as open logic programs (i.e.
programs where some placeholder predicate sym-
bols are left undefined or open; a program with no
open predicate symbols is said to be closed) and
axioms as first-order specifications of these open
predicate symbols.

Example 2 Most methods of inductive synthesis
are biased by program schemas whose templates
have clauses of the forms in the following generic
template:

r.X; Y; Z/ c.X; Y; Z/;

p.X; Y; Z/

r.X; Y; Z/ d.X; H; X1; : : : ; Xt ; Z/;

r.X1; Y1; Z/; : : : ; r.Xt ; Yt ; Z/;

q.H; Y1; : : : ; Yt ; Z; Y /
(2)

where c, d , p, q are open predicate symbols,
X is a nonempty sequence of terms, and Y , Z

are possibly empty sequences of terms. The in-
tended semantics of this generic template can be
informally described as follows. For an arbitrary
relation r over parameters X , Y , Z, an instance
of this generic template is to determine the values
of result parameter Y corresponding to a given

Inductive Programming 661

I

value of induction parameter X , considering the
value of auxiliary parameter Z. Two cases arise:
either the c test succeeds and X has a value for
which Y can be easily directly computed through
p, or X has a value for which Y cannot be
so easily directly computed and the divide-and-
conquer principle is applied:

1. divide X through d into a term H and t terms
X1; : : : ; Xt of the same type as X but smaller
than X according to some well-founded rela-
tion;

2. conquer through t recursive calls to r to deter-
mine the values of Y1; : : : ; Yt corresponding
to X1; : : : ; Xt , respectively, considering the
value of Z;

3. combine through q the terms H; Y1; : : : ; Yt ; Z

to build Y .

Enforcing this intended semantics must be done
manually, as any instance template by itself has
no semantics, in the sense that any program
is an instance of it (it suffices to define c by
a program that always succeeds and p by the
given program). One way to do this is to attach
to a template some axioms (see Smith (1985)
for the divide-and-conquer axioms), namely,
the set of specifications of its open predicate
symbols: these specifications refer to each other,
including the one of r , and are generic (because
even the specification of r is unknown), but
can be manually abduced once and for all
according to the informal semantics of the
schema.

Predicate Invention
Another important language bias is the available
vocabulary, which is here the set of predicate
symbols mentioned in the evidence set or actu-
ally defined in the background knowledge (and
possibly mentioned by the oracle). If an inductive
synthesis fails, other than backtracking to a differ-
ent program schema (i.e., shifting the statement
bias), one can try and shift the vocabulary bias
by inventing new predicate symbols and inducing
programs for them in the extended vocabulary;

this is also known as performing constructive
induction. Only the invention of recursively de-
fined predicate symbols is necessary, as a non-
recursive definition of a predicate symbol can be
eliminated by substitution (under resolution) for
its calls in the induced program (even though that
might make the program longer).

In general, it is undecidable whether predicate
invention is necessary to induce a finite program
in the vocabulary of its evidence and background
knowledge (as a consequence of Rice’s theorem,
1953), but introducing new predicate symbols
always allows the induction of a finite program
(as a consequence of a result by Kleene), as
shown in Stahl (1995). The necessity of shifting
the vocabulary bias is only decidable for some
restricted languages (but the bias shift attempt
might then be unsuccessful), so in practice one
often has to resort to heuristics. Note that an
inductive synthesizer of recursive algorithms may
be recursive itself: it may recursively invoke itself
for a necessary new predicate symbol.

Other than the decision problem, the difficul-
ties of predicate invention are as follows. First,
adequate formal parameters for a new predicate
symbol have to be identified among all the vari-
ables in the clause using it. This can be done
instantaneously by using precomputations done
manually once and for all at the template level.
Second, evidence for a new predicate symbol has
to be abduced from the current program using
the evidence for the old predicate symbol. This
usually requires an oracle for the old predicate
symbol, whose program is still unfinished at that
moment and cannot be used. Third, the abduced
evidence may be less numerous than for the old
predicate symbol (note that if the new predicate
symbol is in a recursive clause, then no new
evidence might be abduced from the old evidence
that is covered by the base clauses) and can be
quite sparse, so that the new synthesis is more dif-
ficult. This sparseness problem can be illustrated
by an example.

Example 3 Given the positive ground examples
factorial.0; 1/, factorial.1; 1/, factorial.2; 2/,
factorial.3; 6/, and factorial.4; 24/ and given the
still open program:

662 Inductive Programming

factorial.N; F / N D 0; F D 1
factorial.N; F / add.M; 1; N /;

factorial.M; G/;

product.N; G; F /

where add is known but product was just invented
(and named so only for the reader’s convenience),
the abduceable examples are product.1; 1; 1/,
product.2; 1; 2/, product.3; 2; 6/, and product
.4; 6; 24/, which is hardly enough for inducing
a recursive program for product; note that
there is one less example than for factorial.
Indeed, examples such as product.3; 6; 18/,
product.2; 6; 12/, product.1; 6; 6/, etc. are miss-
ing, which puts the given examples more than
one resolution step apart, if not on different res-
olution paths. This is aggravated by the absence
of an oracle for the invented predicate symbol,
which is not necessarily intrinsic to the task at
hand (although product actually is intrinsic to]
factorial).

Background Knowledge
In an inductive programming context, back-
ground knowledge is particularly important,
as the inference of recursive programs is more
difficult than the inference of classifiers. For
the efficiency of synthesis, it is crucial that
this collection of definitions of the predefined
predicate symbols be annotated with information
about the types of their arguments and about
whether some well-founded relation is being
enforced between some of their arguments,
so that semantically suitable instances for the
open predicate symbols of any chosen program
schema can be readily spotted. (This requires
in turn that the types of the arguments of the
predicate symbols in the provided evidence are
declared as well.) The background knowledge
should be problem independent, and an inductive
programming method should be able to perform
knowledge mobilization, namely organizing it
dynamically according to relevance to the current
task.

In data-driven, analytical approaches,
background knowledge is used in combination
with explanation-based learning (EBL)
methods, such as abduction (see Exam-

ple 4) or systematic rewriting of input/output
examples into computational traces (see
Example 5).

Background knowledge can also be given in
the form of constraints or an explicit inductive
bias as in meta-interpretative learning (Muggle-
ton and Lin 2013) or in using higher-order pat-
terns (Katayama 2006).

Programs and Data

Example 4 The DIALOGS (Dialogue-based
Inductive-Abductive LOGic program Synthe-
sizer) method (Flener 1997) is interactive. The
main design objective was to take all extra
burden from the specifier by having the method
ask for exactly and only the information it
needs, default answers being provided wherever
possible. As a result, no evidence needs to be
prepared in advance, as the method invents
its own candidate evidence and queries the
oracle about it, with an opportunity to declare
(at the oracle/specifier’s risk) that enough
information has been provided. All answers by
the oracle are stored as judgments, to prevent
asking the same query twice. This is suitable
for all levels of expertise of human users, as
the queries are formulated in the specifier’s
initially unknown conceptual language, in a way
such that the specifier must know the answers
if she really feels the need for the wanted
program. The method is schema-biased, and the
current implementation has two schemas. The
template of the divide-and-conquer schema has
the generality of the generic template (2). The
template of the accumulate schema extends this
by requiring an accumulator in the sequence Z

of auxiliary parameters. The evidence language
(observation language) is (non-recursive) logic
programs with negation. Type declarations are
provided as a language bias. The program
language (hypothesis language) is recursive
logic programs with negation, with possibly
multiple base cases and recursive cases.

For instance, starting from the empty pro-
gram for the relation delOdds in Example 1, the
algorithm design choices of using the divide-

Inductive Programming 663

I

and-conquer schema with R as result parame-
ter and L as induction parameter decomposed
(with t D 1) through head-tail decomposition
by d lead to the following intermediate open
program:

delOdds.L; R/ c.L; R/; p.L; R/

delOdds.L; R/ d.L; H; L1/;

delOdds.L1; R1/;

q.H; R1; R/

c. ; / true

d.L; H; T / L D ŒH jT �

(3)

The first five evidential clauses for delOdds
in (1) are then implicitly interactively acquired
from the oracle/specifier by the following
question and answer dialogue, leading the
specifier to reveal the intrinsic predicate symbol
odd:

DIALOGS: When does delOdds.Œ �; R/ hold?
Specifier: If R D Œ �.
DIALOGS: When does delOdds.ŒX�; R/ hold?
Specifier: If .odd.X/ and R D Œ �/ or

.:odd.X/ and R D ŒX�/.
DIALOGS: When does delOdds.ŒX; Y �; R/

hold, assuming odd.Y /?
Specifier: If .odd.X/ and R D Œ �/ or

.:odd.X/ and R D ŒX�/.
DIALOGS: When does delOdds.ŒX; Y �; R/

hold, assuming :odd.Y /?
Specifier: If .odd.X/ and R D ŒY �/ or

.:odd.X/ and R D ŒX; Y �/.

Next, abduction infers the following evidence
set for the still open predicate symbols p

and q:

p.Œ �; Œ �/ true
p.ŒX�; Œ �/ odd.X/

p.ŒX�; ŒX�/ :odd.X/

p.ŒX; Y �; ŒY �/ odd.X/; :odd.Y /

p.ŒX; Y �; ŒX; Y �/ :odd.X/; :odd.Y /

q.X; Œ �; Œ �/ odd.X/

q.X; Œ �; ŒX�/ :odd.X/

q.X; ŒY �; ŒY �/ odd.X/

q.X; ŒY �; ŒX; Y �/ :odd.X/

From this, induction infers the following
closed programs for p and q:

p.Œ �; Œ �/ true

q.H; L; ŒH jL�/ :odd.H/

q.H; L; L/ odd.H/

(4)

The final closed program is the union of
the programs (3) and (4), as no predicate
invention is deemed necessary. Sample syn-
theses with predicate invention are presented
in Flener (1997) and Flener and Yılmaz
(1999).

Example 5 The THESYS method (Summers
1977) was one of the first methods for
the inductive synthesis of functional (Lisp)
programs. Although it has a rather restricted
scope, it can be seen as the methodological
foundation of many later methods for inducing
functional programs. The noninteractive method
is schema biased, and the implementation has
two schemas. Upon adaptation to functional
programming, the template of the linear
recursion schema is the instance of the generic
template (2) obtained by having X as a sequence
of exactly one induction parameter and Z as the
empty sequence of auxiliary parameters, and by
dividing X into t D 1 smaller value Xt , so that
there is only t D 1 recursive call. The template
of the accumulate schema extends this by
having Z as a sequence of exactly one auxiliary
parameter, playing the role of an accumulator.
The evidence language (observation language)
is sets of ground positive examples. The program
language (hypothesis language) is recursive
functional programs, with possibly multiple
base cases, but only one recursive case. The
only primitive functions are nil, cons, head,
tail, and empty, because the implementation is
limited to the list data type, inductively defined
by list
 nil j cons.x; list/, under the axioms
empty.nil/ D true, head.cons.x; y// D x,
and tail.cons.x; y// D y. There is no function
invention.

For instance, from the following examples of
a list unpacking function:

664 Inductive Programming

unpack.nil/ D nil
unpack..A// D ..A//

unpack..A B// D ..A/ .B//

unpack..A B C // D ..A/ .B/ .C //

the abduced traces are:

empty.X/ ! nil
empty.tail.X// ! cons.X; nil/
empty.tail.tail.X/// ! cons.cons.head.X/; nil/; cons.tail.X/; nil//
empty.tail.tail.tail.X////! cons.cons.head.X/; nil/; cons.cons.head.tail.X//; nil/;

cons.tail.tail.X//; nil///

and the induced program is:

unpack.X/ D empty.X/ ! nil;
empty.tail.X//! cons.X; nil/;
true ! cons.cons.head.X/; nil/; unpack.tail.X///

A modern extension of THESYS is the IGOR

method (Kitzelmann and Schmid 2006). The un-
derlying program template describes the set of all
functional programs with the following restric-
tions: built-in functions can only be first-order,
and no nested or mutual recursion is allowed.
IGOR adopts the two-step approach of THESYS.
Synthesis is still restricted to structural problems,
where only the structure of the arguments mat-
ters, but not their contents, such as in list re-
versing. Nevertheless, the scope of synthesizable
programs is considerably larger. For instance,
tree-recursive functions and functions with hid-
den parameters can be induced. Most notably,
programs consisting of a calling function and an
arbitrary set of further recursive functions can be
induced. The first step of synthesis (trace con-
struction) is therefore expanded such that traces
can contain nestings of conditions. The second
step is expanded such that the synthesis of a
function can rely on the invention and synthesis
of other functions (i.e., IGOR uses a technique of
function invention in correspondence to the con-
cept of predicate invention introduced above).
An extension, IGOR2, relies on constructor term
rewriting techniques. The two synthesis steps are
merged into one and make use of background
knowledge. Therefore, the synthesis of programs

for semantic problems, such as list sorting, be-
comes feasible.

Applications

In the framework of software engineering, induc-
tive programming is defined as the inference of
information that is pertinent to the construction
of a generalized computational system for which
the provided evidence is a representative sam-
ple (Flener and Partridge 2001). In other words,
inductive programming does not have to be a
panacea for software development in the large
and infer a complete software system in order to
be useful: it suffices to induce, for instance, a self-
contained system module while programming in
the small, problem features and decision logic
for specification acquisition and enhancement or
support for debugging and testing. Inductive pro-
gramming is then not always limited to programs
with repetitive or recursive control structures.
There are opportunities for synergy with manual
programming and deductive program synthesis,
as there are sometimes system modules that no
one knows how to specify in a complete way,
or that are harder to specify or program in a
complete way, and yet where incomplete infor-

Inductive Programming 665

I

mation such as input-output examples is readily
available. More examples and pointers to the
literature are given in Flener (2002, Section 5)
and Flener and Partridge (2001).

In the context of end-user programming,
inductive programming methods can be used
to enable nonexpert users to take advantage of
the more sophisticated functionalities offered
by their software. This kind of application is in
the focus of programming by demonstration
(PBD).

Finally, it is worth having an evidential syn-
thesizer of recursive algorithms invoked by a
more general-purpose machine learning method
when necessary predicate invention is detected or
conjectured, as such general methods require a lot
of evidence to infer reliably a recursively defined
hypothesis.

Future Directions

Inductive programming is still mainly a topic
of basic research, exploring how the intellectual
ability of humans to infer generalized recursive
procedures from incomplete evidence can be cap-
tured in the form of synthesis methods. Already
a variety of promising methods are available. A
necessary step should be to compare and analyze
the current methods. A first extensive compari-
son of different ILP methods for inductive pro-
gramming was presented some years ago (Flener
and Yılmaz 1999). An up-to-date analysis should
take into account not only ILP methods but also
methods for the synthesis of functional programs,
using classical (Kitzelmann and Schmid 2006)
as well as evolutionary (Olsson 1995) methods.
The methods should be compared with respect to
the required quantity of evidence, the kind and
amount of background knowledge, the scope of
programs that can be synthesized, and the effi-
ciency of synthesis. Such an empirical compari-
son should result in the definition of characteris-
tics that describe concisely the scope, usefulness,
and efficiency of the existing methods in different
problem domains. A first step toward such a sys-
tematic comparison was presented in Hofmann
et al. (2009).

Since only a few inductive programming
methods can deal with semantic problems, it
should be useful to investigate how inductive
programming methods can be combined with
other machine learning methods, such as kernel-
based classification.

Finally, the existing methods should be
adapted to a broad variety of application areas
in the context of programming assistance,
as well as in other domains where recursive
data structures or recursive procedures are
relevant.

Cross-References

�Explanation-Based Learning
� Inductive Logic Programming
� Programming by Demonstration
� Programming by Example (PBE)
�Trace-Based Programming

Recommended Reading

• Online Platform of the Inductive Program-
ming Community: http://www.inductive-
programming.org/.

• Journal of Automated Software Engineering,
Special Issue on Inductive Programming,
April 2001: Flener and Partridge (2001),
http://user.it.uu.se/�pierref/ase/.

• Biannual Workshops on Approaches and Ap-
plications of Inductive Programming: http://
www.cogsys.wiai.uni-bamberg.de/aaip/.

• Journal of Machine Learning Research,
Special Topic on Approaches and Applications
of Inductive Programming, February/March
2006: http://jmlr.csail.mit.edu/papers/topic/
inductive programming.html.

• Dagstuhl Report 3/12 on Approaches and Ap-
plications of Inductive Programming http://
drops.dagstuhl.de/opus/volltexte/2014/4507/.

Biermann AW (1978) The inference of regular LISP
programs from examples. IEEE Trans Syst Man
Cybern 8(8):585–600

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_679
http://dx.doi.org/10.1007/978-1-4899-7687-1_100380
http://dx.doi.org/10.1007/978-1-4899-7687-1_844
http://www.inductive-programming.org/
http://www.inductive-programming.org/
http://user.it.uu.se/~pierref/ase/
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://drops.dagstuhl.de/opus/volltexte/2014/4507/
http://drops.dagstuhl.de/opus/volltexte/2014/4507/

666 Inductive Synthesis

Flener P (1997) Inductive logic program synthesis
with DIALOGS. In: Muggleton SH (ed) Revised
selected papers of the 6th international workshop
on inductive logic programming (ILP 1996), Stock-
holm. Volume 1314 of lecture notes in artificial
intelligence. Springer, pp 175–198

Flener P (2002) Achievements and prospects of pro-
gram synthesis. In: Kakas A, Sadri F (eds) Com-
putational logic: logic programming and beyond;
essays in honour of Robert A. Kowalski. Vol-
ume 2407 of lecture notes in artificial intelligence.
Springer, Berlin/New York, pp 310–346

Flener P, Partridge D (2001) Inductive programming.
Autom Softw Eng 8(2):131–137

Flener P, Yılmaz S (1999) Inductive synthesis of recur-
sive logic programs: achievements and prospects. J
Log Program 41(2–3):141–195

Gulwani S, Kitzelmann E, Schmid U (2014) Ap-
proaches and Applications of Inductive Program-
ming (Dagstuhl Seminar 13502). Dagstuhl Reports
3/12, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl

Hofmann M, Kitzelmann E, Schmid U (2009) A unify-
ing framework for analysis and evaluation of induc-
tive programming systems. In: Goerzel B, Hitzler
P, Hutter M (eds) Proceedings of the second con-
ference on artificial general intelligence (AGI-09,
Arlington, Virginia, 6–9 March 2009), Amsterdam.
Atlantis Press, pp 55–60

Katayama S (2005) Systematic search for lambda ex-
pressions. In: Trends in functional programming.
Intellect, Bristol, pp 111–126

Kitzelmann E, Schmid U (2006) Inductive synthesis of
functional programs – an explanation based gener-
alization approach. J Mach Learn Res 7(Feb): 429–
454

Muggleton SH, Lin D (2013) Meta-interpretive learn-
ing of higher-order dyadic datalog: predicate
invention revisited. In: Rossi F (ed) IJCAI 2013,
proceedings of the 23rd international joint confer-
ence on artificial intelligence, Beijing, 3–9 Aug
2013. IJCAI/AAAI, pp 1551–1557

Olsson JR (1995) Inductive functional programming
using incremental program transformation. Artif In-
tell 74(1):55–83

Shapiro EY (1983) Algorithmic program debugging.
The MIT Press, Cambridge

Smith DR (1984) The synthesis of LISP programs from
examples: a survey. In: Biermann AW, Guiho G,
Kodratoff Y (eds) Automatic program construction
techniques. Macmillan, New York, pp 307–324

Smith DR (1985) Top-down synthesis of divide-
and-conquer algorithms. Artificial Intelligence,
27(1):43–96

Stahl I (1995) The appropriateness of predicate in-
vention as bias shift operation in ILP. Mach Learn
20(1–2):95–117

Summers PD (1977) A methodology for LISP pro-
gram construction from examples. J ACM 24(1):
161–175

Inductive Synthesis

� Inductive Programming

Inductive Transfer

Ricardo Vilalta1, Christophe Giraud-Carrier2,
Pavel Brazdil3, and Carlos Soares3;4

1Department of Computer Science, University of
Houston, Houston, TX, USA
2Department of Computer Science, Brigham
Young University, Provo, UT, USA
3LIAAD-INESC Tec/Faculdade de Economia,
University of Porto, Porto, Portugal
4LIAAD-INESC Porto L.A./Faculdade de
Economia, University of Porto, Porto, Portugal

Abstract

We describe different scenarios where a learn-
ing mechanism is capable of acquiring expe-
rience on a source task, and subsequently ex-
ploit such experience on a target task. The core
ideas behind this ability to transfer knowledge
from one task to another have been studied in
the machine learning literature under different
titles and perspectives. Here we describe some
of them under the names of inductive trans-
fer, transfer learning, multitask learning, meta-
searching, meta-generalization, and domain
adaptation.

Synonyms

Domain adaptation; Multitask learning; Transfer
learning; Transfer of knowledge across domains

Definition

Inductive transfer refers to the ability of a learn-
ing mechanism to improve performance on the
current or target task after having learned a dif-
ferent but related concept or skill on a previ-

http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_100121
http://dx.doi.org/10.1007/978-1-4899-7687-1_100322
http://dx.doi.org/10.1007/978-1-4899-7687-1_100487
http://dx.doi.org/10.1007/978-1-4899-7687-1_100488

Inductive Transfer 667

I

ous source task. Transfer may additionally occur
between two or more learning tasks that are
being undertaken concurrently. The object being
transferred may refer to instances, features, a
particular form of search bias, an action policy,
background knowledge, etc.

Motivation and Background

Learning is not the result of an isolated task
that starts from scratch with every new problem.
Instead, a learning algorithm should exhibit the
ability to adapt through a mechanism dedicated
to transfer knowledge gathered from previous ex-
perience. The problem of transfer of knowledge
is central to the field of machine learning and
is also known as inductive transfer. In this case,
knowledge can be understood as a collection of
patterns observed across tasks. One view of the
nature of patterns across tasks is that of invariant
transformations. For example, image recognition
of a target object is simplified if the object is
invariant under rotation, translation, scaling, etc.
A learning system should be able to recognize a
target object on an image even if previous images
show the object in different sizes or from different
angles. Hence, inductive transfer studies know
how to improve learning by detecting, extracting,
and exploiting (meta)knowledge in the form of
invariant transformations across tasks.

Similarly, in competitive games involving
teams of robots (e.g., RoboCup Soccer),
transferring knowledge learned from one task to
another task is crucial to acquire skills necessary
to beat the opponent team. Specifically, imagine a
situation where a team of robots has been taught
to keep a soccer ball away from the opponent
team. To achieve that goal, robots must learn to
keep the ball, pass the ball to a close teammate,
etc., always trying to remain at a safe distance
from the opponents. Now let us assume that we
wish to teach the same team of robots to be
efficient at scoring against a team of defending
robots. Knowledge gained during the first activity
can be transferred to the second one. Specifically,
a robot can prefer to perform an action learned in
the past over actions proposed during the current

task, because the past action has a significant
higher merit value. For example, a robot under
the second task may learn to recognize that
it is preferable to shoot than to pass the ball
because the goal is very close. This action can
be learned from the first task by recognizing that
the precision of a pass is contingent upon the
proximity of the teammate.

Structure of the Learning System

The main idea behind a learning architecture
using knowledge transfer is to produce a source
model from which knowledge can be extracted
and transferred to a target model. This allows
for multiple scenarios (Brazdil et al. 2009; Pratt
and Thrun 1997). For example, the target and
source models can be trained at different times
in such a way that the transfer takes place after
the source model has been trained. In this case
there is an explicit form of knowledge transfer,
also called representational transfer. In contrast,
we use the term functional transfer to denote
the case where two or more models are trained
simultaneously; in this case the models share
(part of) their internal structure during learning
(see Neural Networks below). Under representa-
tional transfer, we denote as literal transfer the
case when the source model is left intact and
as nonliteral transfer the case when the source
model is modified before knowledge is trans-
ferred to the target model. In nonliteral transfer
some processing takes place on the source model
before it is used to initialize the target model (see
Fig. 1).

Neural Networks. A learning paradigm
amenable to test the feasibility of knowledge
transfer is that of neural networks (Caruana
1993). A popular form of (functional) knowledge
transfer is effected through multitask learning,
where the output nodes in the multilayer network
represent more than one task. In such a scenario,
internal nodes are shared by different tasks
dynamically during learning. As an illustration,
consider the problem of learning to classify
astronomical objects from images mapping

668 Inductive Transfer

Inductive Transfer, Fig. 1
A taxonomy of inductive
transfer

Knowledge Transfer

Representational Transfer
(trained sequentially)

Literal Transfer
(direct transfer)

Non-Literal Transfer
(indirect transfer)

Functional Transfer
(trained concurrently)

the sky into multiple classes. One task may
be in charge of classifying a star into several
classes (e.g., main sequence, dwarf, red giant,
neutron, pulsar, etc.). Another task can focus on
galaxy classification (e.g., spiral, barred spiral,
elliptical, irregular, etc.). Rather than separating
the problem into different tasks where each task
is in charge of identifying one type of luminous
object, one can combine the tasks together into
a single parallel multitask problem where the
hidden layer of a neural network shares patterns
that are common to all classification tasks (see
Fig. 2). The reasons explaining why learning
often improves in accuracy and speed in this
context is that training with many tasks in parallel
on a single neural network induces information
that accumulates in the training signals; if
there exists properties common to several tasks,
internal nodes can serve to represent common
sub-concepts simultaneously.

Other Paradigms. Knowledge transfer can be
performed using other learning and data analysis
paradigms –mainly in the form of representa-
tional transfer– such as kernel methods, prob-
abilistic methods, clustering, etc. (Raina et al.
2006; Evgeniou et al. 2005). For example, induc-
tive transfer can take place in learning methods
that assume a probabilistic distribution of the data
by guaranteeing a form of relatedness among the
distributions adopted across tasks (Raina et al.
2006). As an illustration, if learning to classify
stars and galaxies both assume a mixture of
normal densities to model the input-output or
example-class distribution, one can force both

distributions to have sets of parameters that are as
similar as possible while preserving good gener-
alization performance. In that case, shared knowl-
edge can be interpreted as a set of assumptions
about the data distribution for all tasks under
analysis. The concept of knowledge transfer is
also related to the problem of introducing new
intermediate concepts during rule induction. In
the inductive logic programming (ILP) setting,
this is referred to as predicate invention (Stahl
1995).

Meta-Searching for Problem Solvers. A
different research direction in inductive transfer
explores complex scenarios where the software
architecture itself evolves with experience
(Schmidhuber 1997). The main idea is to
divide a program into different components
that can be reused during different stages of
the learning process. As an illustration, one
can work within the space of (self-delimiting
binary) programs to propose an optimal ordered
problem solver. The goal is to solve a sequence of
problems, deriving one solution after the other, as
optimally as possible. Ideally the system should
be capable of exploiting previous solutions and
of incorporating them into the solution to the
current problem. This can be done by allocating
computing time to the search for previous
solutions that, if useful, become transformed
into building blocks. We assume the current
problem can be solved by copying or invoking
previous pieces of code (i.e., building blocks
or knowledge). In that case the mechanism will
accept those solutions with substantial savings in
computational time.

Inductive Transfer 669

I

Inductive Transfer, Fig. 2
Example of multitask
learning (functional
transfer) applied to
astronomical images

Main
sequence

Giants and
Red Giants

Stars

White Dwarfs Spiral Elliptical

Galaxies

Irregular

… …

Stars Galaxies

……

Domain Adaptation. A recent research direc-
tion in representational transfer seeks to adjust
the model obtained in a source domain to account
for differences exhibited in a new target domain.
Unlike traditional studies in classification where
both training and testing sets are assumed as
realizations of the same joint input-output distri-
bution, this domain adaptation approach either
weakens or completely disregards such assump-
tion (Ben-David et al. 2007, Daumé, et al. 2006,
Storkey 2009). In addition, domain adaptation
commonly assumes an abundance of labeled ex-
amples in the source domain, but little or no class
labels in the target domain.

An example of these concepts lies in light
curve classification from star samples obtained
from different galaxies. A classification task
set to differentiate different types of stars in
a nearby source galaxy –where class labels
are available– will experience a change in
distribution as it moves to a target galaxy lying
farther away –where class labels are unavailable.
A major reason for such change is that at greater
distances, less luminous stars fall below the
detection threshold and more luminous stars
are preferentially detected. The corresponding

dataset shift (Quinonero-Candela et al. 2009)
precludes the direct utilization of one single
model across galaxies; it calls for a form of
model adaptation to compensate for the change
in the data distribution.

Domain adaptation has gained much attention
recently, mainly due to the pervasive character of
problems where distributions change over time. It
assumes that the learning task remains constant,
but the marginal and class posterior distributions
between source and target domain may differ
(as opposed to traditional transfer learning where
tasks can in addition exhibit different input rep-
resentations, i.e., different input spaces). Domain
adaptation has been attacked from different an-
gles: by searching for a single representation that
unifies both source and target domains (Glorot
et al. 2011); by proving error bounds as a func-
tion of empirical error and the distance between
source and target distributions (Ben-David et al.
2010), within a co-training framework where
target vectors are incorporated into the source
training set based on confidence (Chen et al.
2011), by re-weighting source instances (Man-
sour et al. 2009), by using regularization terms
to learn models that perform well on both source

670 Inductive Transfer

and target domains (Daumé et al. 2010), and
several others.

Theoretical Work

Several studies have provided a theoretical analy-
sis of the case where a learner uses experience
from previous tasks to learn a new task. This
process is often referred to as meta-learning or
meta-generalization. The aim is to understand the
conditions under which a learning algorithm can
provide good generalizations when embedded in
an environment made of related tasks. Although
the idea of knowledge transfer is normally made
implicit in the analysis, it is clear that the meta-
learner extracts and exploits knowledge on every
task to perform well on future tasks. Theoretical
studies fall within a Bayesian model and within
a probably approximately correct (PAC) model.
The idea is to find not only the right hypothesis in
a hypothesis space (base learning), but in addition
to find the right hypothesis space in a family of
hypothesis spaces (meta-learning).

We briefly review the main ideas behind these
studies (Baxter 2000). We begin by assuming
that the learner is embedded in a set of related
tasks that share certain commonalities. Going
back to the problem where a learner is designed
for recognition of astronomical objects, the idea
is to classify objects (e.g., stars, galaxies, nebu-
lae, and planets) extracted from images mapping
certain region of the sky. One way to transfer
learning experience from one astronomical cen-
ter to another is by sharing a meta-learner that
carries a bias toward recognition of astronom-
ical objects. In traditional learning, we assume
a probability distribution p that indicates which
examples are more likely to be seen in such a
task. Now we assume that there is a more gen-
eral distribution P over the space of all possible
distributions. In essence, the meta-distribution P
indicates which tasks are more likely to be found
within the sequence of tasks faced by the meta-
learner (distribution p indicates which examples
are more likely to be seen in one task). In our
example, the meta-distribution P peaks over tasks
corresponding to classification of astronomical

objects. Given a family of hypothesis spaces fHg,
the goal of the meta-learner is to find a hypothesis
space H* that minimizes a functional risk corre-
sponding to the expected loss of the best possible
hypothesis in each hypothesis space. In practice,
since we ignore the form of P, we need to draw
samples T1; T2; : : :; Tn to infer how tasks are
distributed in our environment. To summarize, in
the transfer learning scenario, our input is made
of samples T D fTig, where each sample Ti is
composed of examples. The goal of the meta-
learner is to output a hypothesis space with a
learning bias that generates accurate models for
a new task.

Future Directions

The research community faces several challenges
on how to efficiently transfer knowledge across
tasks. One challenge involves devising learning
architectures with an explicit representation of
knowledge about models and algorithms, i.e.,
meta-knowledge. Most systems that integrate
knowledge transfer mechanisms make an implicit
assumption about the type of knowledge being
transferred. This is indeed possible when strong
assumptions are made on the relationship
between the source and target tasks. For example,
most approaches to domain adaptation work
under strong assumptions about the similarity
between the source and target tasks, imposing
similar class posterior distributions, marginal
distributions, or both. Ideally we would like to
track the evolution of the source task to the target
task to be able to justify any assumptions about
their differences.

From a global perspective, it seems clear that
proper treatment of the inductive transfer prob-
lem requires more than just statistical or math-
ematical techniques. Inductive transfer can be
embedded in a complex artificial intelligence sys-
tem that incorporates important components such
as knowledge representation, search, planning,
reasoning, etc. Without the incorporation of ar-
tificial intelligence components, we are forced
to work with a large hypothesis space and a set

Information Retrieval 671

I

of stringent assumptions about the nature of the
discrepancy between the source and target tasks.

Cross-References

�Metalearning

Recommended Reading

Baxter J (2000) A model of inductive learning bias. J
Artif Intell Res 12:149–198

Ben-David S, Blitzer J, Crammer K, Pereira F (2007)
Analysis of representations for domain adaptation.
Adv Neural Inf Process Syst 19:137–144

Ben-David S, Blitzer J, Crammer K, Kulesza A,
Pereira F, Wortman J (2010) A theory of learning
from different domains. Mach Learn Spec Issue
Learn Mult Sources 79:151–175

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2009)
Metalearning: applications to data mining. Springer,
Berlin

Caruana R (1993) Multitask learning: a knowledge-
based source of inductive bias. In: Proceedings of
the 10th international conference on machine learn-
ing (ICML), Amherst, pp 41-48

Chen M, Weinberger KQ, Blitzer J (2011) Co-training
for domain adaptation. In: Advances in neural infor-
mation processing systems (NIPS), Granada

Dai W, Yang Q, Xue G, Yu Y (2007) Boosting for
transfer learning. In: Proceedings of the 24th inter-
national conference on machine learning (ICML),
Corvallis, pp 193–200

Daumé H, Marcu D (2006) Domain adaptation for
statistical classifiers. J Mach Learn Res 26:102–126

Daumé H, Kumar A, Saha A (2010) Co-regularization
based semi-supervised domain adaptation. In: Ad-
vances in neural information processing systems
(NIPS), Whistler

Evgeniou T, Micchelli CA, Pontil M (2005) Learning
multiple tasks with kernel methods. J Mach Learn
Res 6:615–637

Glorot X, Bordes A, Bengio Y (2011) Domain adapta-
tion for large-scale sentiment classification: a deep
learning approach. In: Proceedings of the 28th in-
ternational conference on machine learning (ICML),
Bellevue, pp 513–520

Mansour Y, Mohri M, Rostamizadeh A (2009) Do-
main adaptation with multiple sources. In: Advances
in neural information processing systems (NIPS),
Whistler, pp 1041–1048

Mihalkova L, Huynh T, Mooney RJ (2007) Mapping
and revising markov logic networks for transfer
learning. In: Proceedings of the 22nd AAAI confer-
ence on artificial intelligence, Vancouver, pp 608–
614

Oblinger D, Reid M, Brodie M, de Salvo Braz R (2002)
Cross-training and its application to skill-mining.
IBM Syst J 41(3):449–460

Pratt L, Thrun S (1997) Second special issue on induc-
tive transfer. Mach Learn 28:4175

Quinonero-Candela J, Sugiyama M, Schwaighofer A,
Lawrence ND (2009) Dataset shift in machine learn-
ing. MIT Press, Cambridge

Raina R, Ng AY, Koller D (2006) Constructing in-
formative priors using transfer learning. In: Pro-
ceedings of the 23rd international conference on
machine learning (ICML), Pittsburgh, pp 713–720

Reid M (2004) Improving rule evaluation using mul-
titask learning. In: Proceedings of the 14th interna-
tional conference on ILP, Porto, pp 252–269

Schmidhuber J (1997) Shifting inductive bias with
success-story algorithm, adaptive levin search, and
incremental self-improvement. Mach Learn 28:
105–130

Stahl I (1995) Predicate invention in inductive logic
programming. In: De Raedt L (ed) Advances in
inductive logic programming. IOS Press, Amster-
dam/Washington, DC, pp 34–47

Storkey A (2009) When training and test sets are
different. In: Quinonero-Candela J, Sugiyama M,
Schwaighofer A, Lawrence ND (eds) Dataset
shift in machine learning. MIT Press, Cambridge,
pp 3–28

Inequalities

�Generalization Bounds

Information Retrieval

Information retrieval (IR) is a set of techniques
that extract from a collection of documents those
that are relevant to a given query. Initially ad-
dressing the needs of librarians and specialists,
the field has evolved dramatically with the ad-
vent of the World Wide Web. It is more general
than data retrieval, whose purpose is to deter-
mine which documents contain occurrences of
the keywords that make up a query. Whereas
the syntax and semantics of data retrieval frame-
works is strictly defined, with queries expressed
in a totally formalized language, words from a
natural language given no or limited structure are
the medium of communication for information

http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_328

672 In-Sample Evaluation

retrieval frameworks. A crucial task for an IR
system is to index the collection of documents
to make their contents efficiently accessible. The
documents retrieved by the system are usually
ranked by expected relevance, and the user who
examines some of them might be able to provide
feedback so that the query can be reformulated
and the results improved.

In-Sample Evaluation

Synonyms

Within-sample evaluation

Definition

In-sample evaluation is an approach to � algorithm
evaluation whereby the learned model is
evaluated on the data from which it was learned.
This provides a biased estimate of learning
performance, in contrast to � holdout evaluation.

Cross-References

�Algorithm Evaluation

Instance

Synonyms

Case; Example; Item; Object

Definition

An instance is an individual object from the
universe of discourse. Most learners create a
model by analyzing a � training set of instances.
Most machine learning models take the form of
a function from an � instance space to an output

space. In � attribute-value learning, each instance
is often represented as a vector of � attribute
values, each position in the vector corresponding
to a unique attribute.

Instance Language

�Observation Language

Instance Space

Synonyms

Example space; Item space; Object space

Definition

An instance space is the space of all pos-
sible � instances for some learning task. In
� attribute-value learning, the instance space
is often depicted as a geometric space, one
dimension corresponding to each attribute.

Instance-Based Learning

Eamonn Keogh
University of California-Riverside, Riverside,
CA, USA

Synonyms

Analogical reasoning; Case-based learning;
Memory-based; Nearest neighbor methods;
Non-parametric methods

Definition

Instance-based learning refers to a family of
techniques for � classification and � regression,
which produce a class label/predication based

http://dx.doi.org/10.1007/978-1-4899-7687-1_100503
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_100044
http://dx.doi.org/10.1007/978-1-4899-7687-1_100156
http://dx.doi.org/10.1007/978-1-4899-7687-1_100225
http://dx.doi.org/10.1007/978-1-4899-7687-1_100340
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_100157
http://dx.doi.org/10.1007/978-1-4899-7687-1_100226
http://dx.doi.org/10.1007/978-1-4899-7687-1_100344
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_100012
http://dx.doi.org/10.1007/978-1-4899-7687-1_100045
http://dx.doi.org/10.1007/978-1-4899-7687-1_100296
http://dx.doi.org/10.1007/978-1-4899-7687-1_100325
http://dx.doi.org/10.1007/978-1-4899-7687-1_100336
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_716

Instance-Based Reinforcement Learning 673

I

on the similarity of the query to its nearest
neighbor(s) in the training set. In explicit contrast
to other methods such as � decision trees and
� neural networks, instance-based learning
algorithms do not create an abstraction from
specific instances. Rather, they simply store all
the data, and at query time derive an answer
from an examination of the query’s � nearest
neighbor (s).

Somewhat more generally, instance-based
learning can refer to a class of procedures for
solving new problems based on the solutions of
similar past problems.

Motivation and Background

Most instance-based learning algorithms can
be specified by determining the following four
items:

1. Distance measure: Since the notion of
similarity is being used to produce class
label/prediction, we must explicitly state what
similarity/distance measure to use. For real-
valued data, Euclidean distance is a popular
choice and may be optimal under some
assumptions.

2. Number of neighbors to consider: It is possible
to consider any number from one to all neigh-
bors. This number is typically denoted as k.

3. Weighting function: It is possible to give each
neighbor equal weight, or to weight them
based on their distance to the query.

4. Mapping from local points: Finally, some
method must be specified to use the (possibly
weighted) neighbors to produce an answer.
For example, for regression the output can be
the weighted mean of the k nearest neighbors,
or for classification the output can be the
majority vote of the k nearest neighbors (with
some specified tie-breaking procedure).

Since instance-based learning algorithms de-
fer all the work until a query is submitted, they
are sometimes called lazy algorithms (in contrast
to eager learning algorithms, such as decision
trees). Beyond the setting of parameters/distance

measures/mapping noted above, one of the main
research issues with instance-based learning al-
gorithms is mitigating their expensive classifica-
tion time, since a naı̈ve algorithm would require
comparing the distance for the query to every
point in the database. Two obvious solutions are
indexing the data to achieve a sublinear search,
and numerosity reduction (data editing) (Wilson
and Martinez 2000).

Further Reading

The best distance measure to use with an
instance-based learning algorithms is the subject
of active research. For the special case of time
series data alone, there are at least one hundred
methods (Ding et al. 2008). Conferences such
as ICML, SIGKDD, etc. typically have several
papers each year which introduce new distance
measures and/or efficient search techniques.

Recommended Reading

Aha DW, Kibler D, Albert MK (1991) Instance-based
learning algorithms. Mach Learn 6:37–66

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh
EJ (2008) Querying and mining of time series data:
experimental comparison of representations and dis-
tance measures. PVLDB 1(2):1542–1552

Wilson DR, Martinez TR (2000) Reduction tech-
niques for exemplar-based learning algorithms.
Mach Learn 38(3):257–286

Instance-Based Reinforcement
Learning

William D. Smart
Washington University in St. Louis, St. Louis,
MO, USA

Synonyms

Kernel-based reinforcement learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_100235

674 Instance-Based Reinforcement Learning

Definition

Traditional reinforcement-learning (RL) algo-
rithms operate on domains with discrete state
spaces. They typically represent the value
function in a table, indexed by states, or by
state–action pairs. However, when applying
RL to domains with continuous state, a tabular
representation is no longer possible. In these
cases, a common approach is to represent
the value function by storing the values of a
small set of states (or state–action pairs), and
interpolating these values to other, unstored,
states (or state–action pairs). This approach is
known as instance-based reinforcement learning
(IBRL). The instances are the explicitly stored
values, and the interpolation is typically done
using well-known instance-based supervised
learning algorithms.

Motivation and Background

Instance-Based Reinforcement Learning (IBRL)
is one of a set of value-function approximation
techniques that allow standard RL algorithms to
deal with problems that have continuous state
spaces. Essentially, the tabular representation of
the value function is replaced by an instance-
based supervised learning algorithm and the rest
of the RL algorithm remains unaltered. Instance-
based methods are appealing because each stored
instance can be viewed as analogous to one cell
in the tabular representation. The interpolation
method of the instance-based learning algorithm
then blends the value between these instances.

IBRL allows generalization of value across
the state (or state–action) space. Unlike tabular
representations it is capable of returning a value
approximation for states (or state–action pairs)
that have never been directly experienced by the
system. This means that, in theory, fewer experi-
ences are needed to learn a good approximation
to the value function and, hence, a good con-
trol policy. IBRL also provides a more compact
representation of the value function than a table
does. This is especially important in problems
with multi-dimensional continuous state spaces.

A straightforward discretization of such a space
results in an exponential number of table cells.
This, in turn, leads to an exponential increase in
the amount of training experiences needed to ob-
tain a good approximation of the value function.

An additional benefit of IBRL over other
value-function approximation techniques, such as
artificial neural networks, is the ability to bound
the predicted value of the approximation. This
is important, since it allow us to retain some of
the theoretical non-divergence results for tabular
representations.

Structure of Learning System

IBRL can be used to approximate both the state
value function and the state–action value func-
tion. For problems with discrete actions, it is
common to store a separate value function for
each action. For continuous actions, the (con-
tinuous) state and action vectors are often con-
catenated, and VFA is done over this combined
domain. For clarity, we will discuss only the
state value function here, although our comments
apply equally well to the state–action value func-
tion.

The Basic Approach
IBRL uses an instance-based supervised learn-
ing algorithm to replace the tabular value func-
tion representation of common RL algorithms.
It maintains a set of states, often called basis
points, and their associated values, using them to
provide a value-function approximation for the
entire state space. These exemplar states can be
obtained in a variety of ways, depending on the
nature of the problem. The simplest approach is
to sample, either regularly or randomly, from the
state space. However, this approach can result
in an unacceptably large number of instances,
especially if the state space is large, or has high
dimension. A better approach is to use states
encountered by the learning agent as it follows
trajectories in the state space. This allows the
representational power of the approximation al-
gorithm to be focused on areas of the space in
which the learning agent is likely to be. This, too,

Instance-Based Reinforcement Learning 675

I

can result in a large number of states, if the agent
is long-lived. A final approach combines the
previous two by sub-sampling from the observed
states.

Each stored instance state has a value asso-
ciated with it, and an instance-based supervised
learning algorithm is used to calculate the value
of all other states. While any instance-based algo-
rithm can be used, kernel-based algorithms have
proven to be popular. Algorithms such as locally
weighted regression (Smart and Kaelbling 2000),
and radial basis function networks (Kretchmar
and Anderson 1997) are commonly seen in the
literature. These algorithms make some implicit
assumptions about the form of the value function
and the underlying state space, which we discuss
below. For a state s, the kernel-based value-
function approximation V.s/ is

V.s/ D
1

�

nX

iD1

�.s; si /V .si /; (1)

where the si values are the n stored basis points,
� is a normalizer,

� D

nX

iD1

�.s; si /; (2)

and � is the kernel function. A common choice
for � is an exponential kernel,

�.s; t/ D e
.s�t/2

�2 ; (3)

where � is the kernel bandwidth. The use
of kernel-based approximation algorithms is
well motivated, since they respect Gordon’s
non-divergence conditions (Gordon 1995),
and also Szepesvári and Smart’s convergence
criteria (Szepesvári and Smart 2004).

As the agent gathers experience, the value
approximations at each of the stored states and,
optionally, the location and bandwidth of the
states must be updated. Several techniques, often
based on the temporal difference error, have been
proposed, but the problem remains open. An
alternative to on-line updates is a batch approach,
which relies on storing the experiences generated

by the RL agent, composing these into a discrete
MDP, solving this MDP exactly, and then using
supervised learning techniques on the states and
their associated values. This approach is known
as fitted value iteration (Szepesvári and Munos
2005).

Examples of IBRL Algorithms
Several IBRL algorithms have been reported in
the literature. Kretchmar and Anderson (1997)
presented one of the first IBRL algorithms. They
used a radial basis function (RBF) network to
approximate the state–action value function for
the well-known mountain-car test domain. The
temporal difference error of the value update is
used to modify the weights, centers, and vari-
ances of the RBF units, although they noted that it
was not particularly effective in producing good
control policies.

Smart and Kaelbling (2000) used locally
weighted learning algorithms and a set of
heuristic rules to approximate the state–action
value function. A set of states, sampled from
those experienced by the learning agent, were
stored along with their associated values. One
approximation was stored for each discrete
action. Interpolation between these exemplars
was done by locally weighted averaging or
locally weighted regression, supplemented with
heuristics to avoid extrapolation and over-
estimation. Learning was done on-line, with
new instances being added as the learning agent
explored the state space. The algorithm was
shown to be effective in practice, but offered
no theoretical guarantees.

Ormoneit and Sen (2002) presented an offline
kernel-based reinforcement-learning algorithm
that stores experiences (si ; ai ; ri ; s0i) as the
instances, and uses these to approximate the
state–action value function for problems with
discrete actions. For a given state s and action a,
the state–action value Q.s; a/ is approximated as

OQ.s; a/ D
1

�s;a

X

i jaiDa

�

�
d.s; si /

�

�

�
ri C 	 max

a0

OQ.s0i ; a0/

�
; (4)

676 Instance-Based Reinforcement Learning

where � is a kernel function, � is the kernel
bandwidth, 	 is the RL discount factor, and �s;a

is a normalizing term,

�s;a D
X

i jaiDa

�

�
d.s; si /

�

�
: (5)

They showed that, with enough basis points,
this approximation converges to the true value
function, under some reasonable assumptions.
However, they provide no bound on the number
of basis points needed to provide a good approx-
imation to the value function.

Assumptions
IBRL makes a number of assumptions about the
form of the value function, and the underlying
state space. The main assumptions are that state
similarity is well measure by (weighted) Eu-
clidean distance. This implicity assumes that the
underlying state space be metric, and is a topo-
logical disk. Essentially, this means that stattes
that are close to each other in the state space have
similar value. This is clearly not true for states
between which the agent cannot move, such as
those on the opposite sides of a thin wall. In this
case, there is a discontinuity in the state space,
introduced by the wall, which is not well modeled
by the instance-based algorithm.

Instance-based function approximation algo-
rithms assume that the function they model is
smooth and continuous between the basis points.
Any discontinuities in the function tend to get
“smoothed out” in the approximation. This as-
sumption is especially problematic for value-
function approximation, since it allows value on
one side of the discontinuity to affect the ap-
proximation on the other. If the location of the
discontinuity is known, and we are able to allo-
cate an arbitrary number of basis points, we can
overcome this problem. However, in practical ap-
plications of RL, neither of these is feasible, and
the problem of approximating the value function
at or near discontinuities remains an open one.

Problems and Drawbacks
Although IBRL has been shown to be effec-
tive on a number of problems, it does have a
number of drawbacks that remain unaddressed.

Instance-based approximation algorithms are of-
ten expensive in terms of storage, especially for
long-lived agents. Although the literature con-
tains many techniques for editing the basis set of
instance-based approximators, these techniques
are generally for a supervised learning setting,
where the utility of a particular edit can be easily
evaluated. In the RL setting, we lack the ground
truth available to supervised learning, making the
evaluation of edits considerably more difficult.
Additionally, as the number of basis points in-
creases, so does the time needed to perform an
approximation. This limitation is significant in
the RL setting, since many such value predictions
are needed on every step of the accompanying RL
algorithm.

The value of a particular state, s, is calculated
by blending the values from other nearby states,
si . This is problematic if it is not possible to
move from state s to each of the states si . The
value of s should only be influenced by the value
of states reachable from s, but this condition is
not enforced by standard instance-based approx-
imation algorithms. This leads to problems when
modeling discontinuities in the value function, as
noted above, and in situations where the system
dynamics constrain the agent’s motion, as in the
case of a “one-way door” in the state space.

IBRL also suffers badly from the curse of
dimen-sionality; the number of points needed to
adequately represent the value function is expo-
nential in the dimensionality of the state space.
However, by using only states actually experi-
enced by the learning agent, we can lessen the
impact of this problem. By using only observed
states, we are explicitly modeling the manifold
over which the system state moves. This manifold
is embedded in the full state space and, for many
real-world problems, has a lower dimensional-
ity than the full space. The Euclidean distance
metric used by many instance-based algorithms
will not accurately measure distance along this
manifold. In practice, the manifold over which
the system state moves will be locally Euclidean
for problems with smooth, continuous dynamics.
As a result, the assumptions of instance-based
function approximators are valid locally and the
approximations are of reasonable quality.

Inverse Entailment 677

I

Cross-References

�Curse of Dimensionality
� Instance-Based Learning
�Locally Weighted Learning
�Reinforcement Learning
�Value Function Approximation

Recommended Reading

Gordon GJ (1995) Stable function approximation
in dynamic programming. In: Proceedings of the
twelfth international conference on machine learn-
ing, Tahoe City, pp 261–268

Kretchmar RM, Anderson CW (1997) Comparison of
CMACs and radial basis functions for local function
approximators in reinforcement learning. In: Inter-
national conference on neural networks, Houston,
vol 2, pp 834–837

Ormoneit D, Sen Ś (2002) Kernel-based reinforcement
learning. Mach Learn 49(2–3):161–178

Smart WD, Kaelbling LP (2000) Practical reinforce-
ment learning in continuous spaces. In: Proceedings
of the seventeenth international conference on ma-
chine learning (ICML 2000), Stanford, pp 903–910

Szepesvári C, Munos R (2005) Finite time bounds for
sampling based fitted value iteration. In: Proceed-
ings of the twenty-second international conference
on machine learning (ICML 2005), Bonn, pp 880–
887

Szepesvári C, Smart WD (2004) Interpolation-based
Q-learning. In: Proceedings of the twenty-first in-
ternational conference on machine learning (ICML
2004), Banff, pp 791–798

Intelligent Backtracking

Synonyms

Dependency directed backtracking

Definition

Intelligent backtracking is a general class of
techniques used to enhance search and constraint
satisfaction algorithms. Backtracking is a general
mechanism in search where a problem solver
encounters an unsolvable search state and
backtracks to a previous search state that
might be solvable. Intelligent backtracking

mechanisms provide various ways of selecting
the backtracking point based on past experience
in a way that is likely to be fruitful.

Intent Recognition

� Inverse Reinforcement Learning

Internal Model Control

Synonyms

Certainty equivalence principle; Model-based
control

Definition

Many advanced controllers for nonlinear systems
require knowledge of the model of the dynam-
ics of the system to be controlled. The system
dynamics is often called an “internal model,”
and the resulting controller is model-based. If
the model is not known, it can be learned with
function approximation techniques. The learned
model is subsequently used as if it were correct
in order to synthesize a controller – the con-
trol literature calls this assumption the “certainty
equivalence principle.”

Interval Scale

An interval measurement scale ranks the data,
and the differences between units of measure can
be calculated by arithmetic. However, zero in the
interval level of measurement means neither “nil”
nor “nothing” as zero in arithmetic means. See
�Measurement Scales.

Inverse Entailment

Definition

Inverse entailment is a � generality relation
in � inductive logic programming. More
specifically, when learning from entailment using

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_100273
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100109
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100051
http://dx.doi.org/10.1007/978-1-4899-7687-1_100310
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_100179
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

678 Inverse Optimal Control

a background theory B , a hypothesis H covers an
example e, relative to the background theory B if
and only if B ^ H ˆ e, that is, the background
theory B and the hypothesis H together entail
the example (see � entailment). For instance,
consider the background theory B:

bird :- blackbird.
bird :- ostrich.

and the hypothesis H :

flies :- bird.

Together B ^H entail the example e:

flies :- blackbird, normal.

This can be decided through deductive inference.
Now when learning from entailment in inductive
logic programming, one starts from the example
e and the background theory B , and the aim is
to induce a rule H that together with B entails
the example. Inverting entailment is based on
the observation that B ^ H ˆ e is logically
equivalent to B^:e ˆ :H , which in turn can be
used to compute a hypothesis H that will cover
the example relative to the background theory.
Indeed, the negation of the example is :e:

blackbird.
normal.
:-flies.

and together with B this entails :H :

bird.
:-flies.

The principle of inverse entailment is typically
employed to compute the � bottom clause, which
is the most specific clause covering the example
under entailment. It can be computed by gener-
ating the set of all facts (true and false) that are
entailed by B ^ :e and negating the resulting
formula :H .

Cross-References

�Bottom Clause
�Entailment
� Inductive Logic Programming
�Logic of Generality

Inverse Optimal Control

� Inverse Reinforcement Learning

Inverse Reinforcement Learning

Pieter Abbeel1 and Andrew Y. Ng2

1EECS Department, UC Berkeley, Stanford, CA,
USA
2Computer Science Department, Stanford
University, Stanford, CA, USA
3Stanford University, Stanford, CA, USA

Synonyms

Intent recognition; Inverse optimal control; Plan
recognition

Definition

Inverse reinforcement learning (inverse RL) con-
siders the problem of extracting a reward function
from observed (nearly) optimal behavior of an
expert acting in an environment.

Motivation and Background

The motivation for inverse RL is twofold:

• For many RL applications, it is difficult
to write down an explicit reward function
specifying how different desiderata should
be traded off exactly. In fact, engineers
often spend significant effort tweaking the
reward function such that the optimal policy
corresponds to performing the task they have
in mind. For example, consider the task of
driving a car well. Various desiderata have
to be traded off, such as speed, following
distance, lane preference, frequency of
lane changes, distance from the curb, etc.
Specifying the reward function for the task of
driving requires explicitly writing down the
trade-off between these features.

http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100220
http://dx.doi.org/10.1007/978-1-4899-7687-1_100221
http://dx.doi.org/10.1007/978-1-4899-7687-1_100362

Inverse Reinforcement Learning 679

I

Inverse RL algorithms provide an efficient
solution to this problem in the apprenticeship
learning setting – when an expert is available
to demonstrate the task. Inverse RL algorithms
exploit the fact that an expert demonstration
implicitly encodes the reward function of the
task at hand.

• Reinforcement learning and related frame-
works are often used as computational models
for animal and human learning (Watkins 1989;
Schmajuk and Zanutto 1997; Touretzky and
Saksida 1997). Such models are supported
both by behavioral studies and by neurophys-
iological evidence that reinforcement learning
occurs in bee foraging (Montague et al.
1995) and in songbird vocalization (Doya
and Sejnowski 1995). It seems clear that
in examining animal and human behavior,
we must consider the reward function as an
unknown to be ascertained through empirical
investigation, particularly when dealing with
multiatttribute reward functions. Consider,
for example, that the bee might weigh nectar
ingestion against flight distance, time, and
risk from wind and predators. It is hard to
see how one could determine the relative
weights of these terms a priori. Similar
considerations apply to human economic
behavior, for example. Hence, inverse
reinforcement learning is a fundamental
problem of theoretical biology, econometrics,
and other scientific disciplines that deal with
reward-driven behavior.

Structure of the Learning System

Preliminaries and Notation
A Markov decision process (MDP) is a tuple
hS; A; T; 	; D; Ri, where S is a finite set of states,
A is a set of actions, T D fPsag is a set
of state-transition probabilities (here, Psa is the
state transition distribution upon taking action a

in state s), 	 2 Œ0; 1/ is a discount factor, D

is the distribution over states for time zero, and
R W S 7! R is the reward function.

A policy
 is a mapping from states to proba-
bility distributions over actions. We let Π denote

the set of all stationary policies (We restrict atten-
tion to stationary policies, since it is well known
that there exists a stationary policy that is optimal
for infinite horizon MDPs.). The value of a policy

 is given by

V.
/ D e

"
1X

tD0

	 t R.st /j

#
:

The expectation is taken with respect to the ran-
dom state sequence s0; s1; s2; : : : drawn by start-
ing from a state s0 � D and picking actions
according to
 .

Let �S .
/ be the discounted distribution over
states when acting according to the policy
 . In
particular, for a discrete state space, we have that
Œ�S .
/�.s/ D

P1
tD0 	 t Prob.st D sj
/. (In the

case of a continuous state space, we replace
Prob.st D sj
/ by the appropriate probability
density function.) Then, we have that

V.
/ D R>�S .
/:

Thus, the value of a policy
 when starting from
a state s0 is linear in the reward function.

Often the reward function R can be repre-
sented more compactly. Let � W S ! R

n be a
feature map. A typical assumption in inverse RL
is to assume the reward function R is a linear
combination of the features �: R.s/ D w>�.s/.
Then, we have that the value of a policy
 is
linear in the reward function weights w:

V.
/ D EŒ
P1

tD0 	 t R.st /j
�

D EŒ
P1

tD0 	 t w>�.st /j
�

D w>EŒ
P1

tD0 	 t �.st /j
�

D w>��.
/: (1)

Here, we used linearity of expectation to bring w
outside of the expectation. The last equality de-
fines the vector of feature expectations ��.
/ D

E
� P1

tD0 	 t �.st /j

�
.

We assume access to demonstrations by some
expert. We denote the expert’s policy by
�.
Specifically, we assume the ability to observe
trajectories (state sequences) generated by the

680 Inverse Reinforcement Learning

expert starting from s0 � D and taking actions
according to
�.

Characterization of the Inverse RL
Solution Set
A reward function R is consistent with the policy

� being optimal if and only if the value obtained
when acting according to the policy
� is at
least as high as the value obtained when acting
according to any other policy
 , or equivalently:

U.
�/ � U.
/ 8
 2 Π: (2)

Using the fact that U.
/ D R>�S .
/, we can
equivalently write the conditions of Eq. (2) as a
set of linear constraints on the reward function R:

R>�S .
�/ � R>�S .
/ 8
 2 Π: (3)

The state distribution �S .
/ does not depend on
the reward function R. Thus, Eq. (3) is a set of
linear constraints in the reward function, and we
can use a linear program (LP) solver to find a
reward function consistent with the policy
� be-
ing optimal. Strictly speaking, Eq. (3) solves the
inverse RL problem. However, to apply inverse
RL in practice, the following three issues need to
be addressed:

1. Reward function ambiguity. Typically a
large set of reward functions satisfy all the
constraints of Eq. (3). One such a reward
function that satisfies all the constraints for
any MDP is the all-zeros reward function (it
is consistent with any policy being optimal).
Clearly, the all-zeros reward function is not a
desirable answer to the inverse RL problem.
More generally, this observation suggests not
all reward functions satisfying Eq. (3) are of
equal interest and raises the question of how
to recover reward functions that are of interest
to the inverse RL problem.

2. Statistical efficiency. Often the state space is
very large (or even infinite), and we do not
have sufficiently many expert demonstrations
available to accurately estimate �. � I
�/ from
data.

3. Computational efficiency. The number of
constraints in Eq. (3) is equal to the number
of stationary policies jΠj and grows quickly
with the number of states and actions of the
MDP. For finite-state-action MDPs, we have
jAjjS j constraints. So, even for small state and
action spaces, feeding all the constraints of
Eq. (3) into an LP solver becomes quickly
impractical. For continuous state-action
spaces, the formulation of Eq. (3) has an
infinite number of constraints, and thus using
a standard LP solver to find a feasible reward
function R is impossible.

In the following sections, we address these
three issues.

Reward Function Ambiguity
As observed above, typically a large set of reward
functions satisfy all the constraints of Eq. (3).
To obtain a single reward function, it is natural
to reformulate the inverse RL problem as an
optimization problem. We describe one standard
approach for disambiguation. Of course many
other formulations as an optimization problem
are possible.

Similar to common practice in support vector
machines research, one can maximize the (soft)
margin by which the policy
� outperforms all
other policies. As is common in structured pre-
diction tasks ((see, e.g., Taskar et al. (2003)), one
can require the margin by which the policy
�

outperforms another policy
 to be larger when

 differs more from
�, as measured according
to some function h.
�;
/. The resulting formu-
lation (Ratliff et al. 2006) is

min
R;�

kRk2
2 C C �

s:t: R>�S .
�/ � R>�S .
/C h.
�;
/ � �

8
 2 Π: (4)

For the resulting optimal reward function to
correspond to a desirable solution to the inverse
RL problem, it is important that the objective and
the margin scaling encode the proper prior knowl-
edge. If a sparse reward function is suggested by
prior knowledge, then a 1-norm might be more

Inverse Reinforcement Learning 681

I

appropriate in the objective. An example of a
margin scaling function for a discrete MDP is the
number of states in which the action prescribed
by the policy
 differs from the action prescribed
by the expert policy
�. If the expert has only
been observed in a small number of states, then
one could restrict attention to these states when
evaluating this margin scaling function.

Another way of encoding prior knowledge is
by restricting the reward function to belong to a
certain functional class, for example, the set of
functions linear in a specified set of features. This
approach is very common and is also important
for statistical efficiency. It will be explained in the
next section.

Remark When using inverse RL to help us spec-
ify a reward function for a given task based on
an expert demonstration, it is not necessary to
explicitly resolve the ambiguities in the reward
function. In particular, one can probably perform
as well as the expert without matching the ex-
pert’s reward function. More details are given in
Sect. “A Generative Approach to Inverse RL”.

Statistical Efficiency
As formulated thus far, solving the inverse RL
problem requires the knowledge (or accurate sta-
tistical estimates) of �S .
�/. For most practical
problems, the number of states is large (or even
infinite), and thus accurately estimating �S .
�/

requires a very large number of expert demonstra-
tions. This (statistical) problem can be resolved
by restricting the reward function to belong to
a prespecified class of functions. The common
approach is to assume the reward function R can
be expressed as a linear combination of a known
set of features. In particular, we have R.s/ D

w>�.s/. Using this assumption, we can use the
expression for the value of the policy
 from
Eq. (1).

Rewriting Eq. (4), we now have the following
constraints in the reward weights w:

min
w;�

kwk2
2 C C �

s:t: w>��.
�/ � w>��.
/C h.
�;
/ � �

8
 2 Π: (5)

This new formulation only requires estimates
of the expected feature counts ��.
�/, rather
than estimates of the distribution over the state
space �S .
�/. Assuming the number of features
is smaller than the number of states, this signif-
icantly reduces the number of expert demonstra-
tions required.

Computational Efficiency
For concreteness, we will consider the formula-
tion of Eq. (6). Although the number of variables
is only equal to the number of features in the
reward function, the number of constraints is very
large (equal to the number of stationary policies).
As a consequence, feeding the problem into a
standard quadratic programming (QP) solver will
not work.

Ratliff et al. (2006) suggested a formal com-
putational approach to solving the inverse RL
problem, using standard techniques from convex
optimization, which provide convergence guar-
antees. More specifically, they used a subgradi-
ent method to optimize the following equivalent
problem:

min
w;�
kwk2

2 C C max
�2Π

�
w>��.
/C h.
�;
/

�w>��.
�/
	

: (6)

In each iteration, to compute the subgradient, it is
sufficient to find the optimal policy with respect
to a reward function that is easily determined
from the current reward weights w and the margin
scaling function h.
�; � /. In more recent work,
Ratliff et al. (2007) proposed a boosting algo-
rithm to solve a formulation similar to Eq. (6),
which also includes feature selection.

A Generative Approach to Inverse RL
Abbeel and Ng (2004) made the following obser-
vation, which resolves the ambiguity problem in
a completely different way: if, for a policy
 , we
have that ��.
/ D ��.
�/, then the following
holds:

U.
/ D w>��.
/ D w>��.
�/ D U.
�/;

682 Inverse Resolution

no matter what the value of w is. Thus, to perform
as well as the expert, it is sufficient to find a policy
that attains the same expected feature counts ��

as the expert.
Abbeel and Ng provide an algorithm that

finds a policy
 satisfying ��.
/ D ��.
�/.
The algorithm iterates over two steps: (i)
Generate a reward function by solving a QP.
(ii) Solve the MDP for the current reward
function.

In contrast to the previously described inverse
RL methods, which focus on merely recovering
a reward function that could explain the expert’s
behavior, this inverse RL algorithm is shown to
find a policy that performs at least as well as the
expert. The algorithm is shown to converge in a
polynomial number of iterations.

Apprenticeship Learning: Inverse RL
Versus Imitation Learning

Inverse RL alleviates the need to specify a reward
function for a given task when expert demon-
strations are available. Alternatively, one could
directly estimate the policy of the expert us-
ing standard a machine-learning algorithm, since
it is simply a mapping from state to action.
The latter approach, often referred to as imita-
tion learning or behavioral cloning (links), has
been successfully tested on a variety of tasks,
including learning to fly in a fixed-wing flight
simulator (Sammut et al. 1992) and learning to
drive a car (Pomerleau 1989; Abbeel and Ng
2004).

The imitation learning approach can be ex-
pected to be successful whenever the policy class
to be considered can be learned efficiently from
data. In contrast, the inverse RL approach relies
on having a reward function that can be estimated
efficiently from data.

Cross-References

�Apprenticeship Learning
�Reinforcement Learning
�Reward Shaping

Recommended Reading

Abbeel P, Ng AY (2004) Apprenticeship learning via
inverse reinforcement learning. In: Proceedings of
ICML, Alberta

Doya K, Sejnowski T (1995) A novel reinforcement
model of birdsong vocalization learning. Neural Inf
Process Syst 7:101

Montague PR, Dayan P, Person C, Sejnowski TJ (1995)
Bee foragin in uncertain environments using predic-
tive hebbian learning. Nature 377(6551):725–728

Pomerleau D (1989) Alvinn: an autonomous land ve-
hicle in a neural network. In: NIPS 1, Denver

Ratliff N, Bagnell J, Zinkevich M (2006) Maximum
margin planning. In: Proceedings of ICML, Pitts-
burgh

Ratliff N, Bradley D, Bagnell J, Chestnutt J (2007)
Boosting structured prediction for imitation learn-
ing. Neural Inf Process Syst 19:1153–1160

Sammut C, Hurst S, Kedzier D, Michie D (1992)
Learning to fly. In: Proceedings of ICML, Aberdeen

Schmajuk NA, Zanutto BS (1997) Escape, avoidance,
and imitation. Adapt Behav 6:63–129

Taskar B, Guestrin C, Koller D (2003) Max-margin
markov networks. In: Neural information process-
ing systems conference (NIPS03), Vancouver

Touretzky DS, Saksida LM (1997) Operant condition-
ing in skinnerbots. Adapt Behav 5:219–47

Watkins CJ (1989) Models of delayed reinforcement
learning. Ph.D. thesis, Psychology Department,
Cambridge University

Inverse Resolution

Definition

Inverse resolution is, as the name indicates, a rule
that inverts resolution. This follows the idea of
induction as the inverse of deduction formulated
in the � logic of generality. The resolution rule
is the best-known deductive inference rule, used
in many theorem provers and logic programming
systems. �Resolution starts from two � clauses
and derives the resolvent, a clause that is entailed
by the two clauses. This can be graphically rep-
resented using the following schema (for propo-
sitional logic).

h g; a1; : : : ; an and g b1; : : : ; bm

h b1; : : : ; bm; a1; : : : ; an

:

Inverse resolution operators, such as absorption
(17) and identification (17), invert this process.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100017
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_116

Iterative Computation 683

I

To this aim, they typically assume the resolvent
is given together with one of the original clauses
and then derive the missing clause. This leads to
the following two operators, which start from the
clauses below and induce the clause above the
line.

h g; a1; : : : ; an and g b1; : : : ; bm

h b1; : : : ; bm; a1; : : : ; an and g b1; : : : ; bm

;

h g; a1; : : : ; an and g b1; : : : ; bm

h b1; : : : ; bm; a1; : : : ; an and h g; a1; : : : ; an

The operators are shown here only for the propo-
sitional case, as the first order case is more in-
volved as it requires one to deal with substitutions
as well as inverse substitutions.

As one example, consider the clauses

1. flies :- bird, normal.
2. bird :- blackbird.
3. flies :- blackbird, normal.

Here, (3) is the resolvent of (1) and (2). Further-
more, starting from (3) and (2), the absorption
operator would generate (1), and starting from
(3) and (1), the identification operator would
generate (2).

Cross-References

� First-Order Logic
�Logic of Generality

Is More General Than

�Logic of Generality

Is More Specific Than

�Logic of Generality

Isotonic Calibration

�Classifier Calibration

Item

� Instance

Item Space

� Instance Space

Iterative Algorithm

�K-Medoids Clustering

Iterative Classification

�Collective Classification

Iterative Computation

�K-Means Clustering

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_432
http://dx.doi.org/10.1007/978-1-4899-7687-1_44
http://dx.doi.org/10.1007/978-1-4899-7687-1_431

J

Junk Email Filtering

�Text Mining for Spam Filtering

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_828

K

k-Armed Bandit

Shie Mannor
Israel Institute of Technology, Haifa, Israel

Synonyms

Multi-armed bandit; Multi-armed bandit problem

Definition

In the classical k-armed bandit problem, there
are k alternative arms, each with a stochastic
reward whose probability distribution is initially
unknown. A decision maker can try these arms
in some order, which may depend on the rewards
that have been observed so far. A common objec-
tive in this context is to find a policy for choosing
the next arm to be tried, under which the sum of
the expected rewards comes as close as possible
to the ideal reward, that is, the expected reward
that would be obtained if it were to try the “best”
arm at all times. There are many variants of the
k-armed bandit problem that are distinguished by
the objective of the decision maker, the process
governing the reward of each arm, and the infor-
mation available to the decision maker at the end
of every trial.

Motivation and Background

k-Armed bandit problems are a family of sequen-
tial decision problems that are among the most
studied problems in statistics, control, decision
theory, and machine learning. In spite of their
simplicity, they encompass many of the basic
problems of sequential decision making in uncer-
tain environments such as the tradeoff between
exploration and exploitation.

There are many variants of bandit problems
including Bayesian, Markovian, adversarial,
budgeted, and exploratory variants. Bandit
formulations arise naturally in multiple fields and
disciplines including communication networks,
clinical trials, search theory, scheduling, supply
chain automation, finance, control, information
technology, etc. (Berry and Fristedt 1985; Cesa-
Bianchi and Lugosi 2006; Gittins 1989).

The term “multi-armed bandit” is borrowed
from the slang term for a slot machine (the one-
armed bandit), where a decision maker has to
decide whether to insert a coin into the gam-
bling machine and pull a lever possibly getting
a significant reward, or to quit without spending
any money.

Theory

We briefly review some of the most popular
bandit variants.

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_100315
http://dx.doi.org/10.1007/978-1-4899-7687-1_100316

688 k-Armed Bandit

The Stochastic k-Armed Bandit
Problem

The classical stochastic bandit problem is de-
scribed as follows. There are k arms (or ma-
chines or actions) and a single decision maker (or
controller or agent). Each arm corresponds to a
discrete time Markov process. At each timestep,
the decision maker observes the current state of
each arm’s process and selects one of the arms.
As a result, the decision maker obtains a reward
from the process of the selected arm and the state
of the corresponding process changes. Arms that
are not selected are “frozen” and their processes
remain in the same state. The objective of the
decision maker is to maximize her (discounted)
reward.

More formally, let the state of arm n’s process
at stage t be xn.t/. Then, if the decision maker
selects arm m.t/ at time t we have that:

xn.t C 1/ D

(
xn.t/ n ¤ m.t/

fn.xn.t/; !/ n D m.t/
;

where fn.x; !/ is a function that describes the
(possibly stochastic) transition probability of the
n-th process and accepts the state of the n-th
process and a random disturbance !.

The reward the decision maker receives at time
t is a function of the current state and a random
element: r.xm.t/.t/; !/. The objective of the de-
cision maker is to maximize her cumulative dis-
counted reward. That is, she wishes to maximize

V D E�

"
1X

tD1

� t r.xm.t/.t/; !t /

#
;

where E� is the expectation obtained when
following policy � and � is a discount factor (0 <

� < 1). A policy is a decision rule for selected
arms as a function of the state of the processes.

This problem can be solved using � dynamic
programming, but the state space of the joint
Markov decision process is exponential in the
number of arms. Moreover, the dynamic pro-
gramming solution does not reveal the important
structural properties of the solution.

Gittins and Jones (1972) showed that there
exists an optimal index policy. That is, there is
a function that maps the state of each arm to real
number (the “index”) such that the optimal policy
is to choose the arm with the highest index at
any given time. Therefore, the stochastic bandit
problem reduces to the problem of computing
the index, which can be easily done in many
important cases.

Regret Minimization for the
Stochastic k-Armed Bandit Problem

A different flavor of the bandit problem focuses
on the notion of regret, or learning loss. In this
formulation, there are k arms as before and when
selecting arm m a reward that is independent
and identically distributed is given (the reward
depends only on the identity of the arm and not
on some internal state or the results of previous
trials). The decision maker’s objective is to obtain
high expected reward. Of course, if the decision
maker had known the statistical properties of
each arm, she would have always chosen the
arm with the highest expected reward. However,
the decision maker does not know the statistical
properties of the arms in advance, in this setting.

More formally, if the reward when choosing
arm m has expectation rm, the regret is defined as:

r.t/ D t � max
1�m�k

rm � E�

"
tX

�D1

r.�/

#
; (1)

where r.t/ is sampled from the arm m.t/. This
quantity represents the expected loss for not
choosing the arm with the highest expected
reward on every timestep.

This variant of the bandit problem highlights
the tension between acquiring information
(exploration) and using the available information
(exploitation). The decision maker should
carefully balance between the two since if she
chooses to only try the arm with the highest
estimated reward she might regret not exploring
other arms whose reward is underestimated but is
actually higher than the reward of the arm with
highest estimated reward.

http://dx.doi.org/10.1007/978-1-4899-7687-1_77

k-Armed Bandit 689

K

A basic question in this context is whether
R.t/ can be made to grow sub-linearly. Robbins
(1952) answered this question in the affirmative.
It was later proved (Lai and Robbins 1985) that
it is possible in fact to obtain logarithmic regret
(the growth of the regret is logarithmic in the
number of timesteps). Matching lower bounds
(and constants) were also derived.

The Non-stochastic k-Armed Bandit
Problem

A third popular variant of the bandit problem
is the non-stochastic one. In this problem, it is
assumed that the sequence of rewards each arm
produces is deterministic (possibly adversarial).
The decision maker, as in the stochastic bandit
problem, wants to minimize her regret, where
the regret is measured with respect to the best
fixed arm (this best arm might change with time,
however). Letting the reward of arm m at time t

be rm.t/, we redefine the regret as:

r.t/ D max
1�m�k

tX
�D1

rm.�/ � E�

"
tX

�D1

r.�/

#
; (2)

where the expectation is now taken with respect
to randomness in the arm selection. The basic
question here is if the regret can be made to
grow sub-linearly. The case where the reward
of each arm is observed was addressed in the
1950s (see Cesa-Bianchi and Lugosi (2006), for
a discussion), where it was shown that there are
algorithms that guarantee that the regret grows
like

p
t . For the more difficult case, where only

the reward of the selected arm is observed and
that the rewards of the other arms may not be
observed it was shown (Auer et al. 2002) that the
same conclusion still holds.

It should be noticed that the optimal policy of
the decision maker in this adversarial setting is
generally randomized. That is, the decision maker
has to select an action at random by following
some distribution. The reason is that if the action
the decision maker takes is deterministic and can
be predicted by Nature, then Nature can consis-
tently “give” the decision maker a low reward for

the selected arm while “giving” a high reward to
all other arms, leading to a linear regret.

There are some interesting relationships be-
tween the non-stochastic bandit problem and pre-
diction with expert advice, universal prediction,
and learning in games (Cesa-Bianchi and Lugosi
2006).

The Exploratory k-Armed Bandit
Problem

This bandit variant emphasizes efficient explo-
ration rather than on the exploration–exploitation
tradeoff. As in the stochastic bandit problem,
the decision maker is given access to k arms
where each arm is associated with an independent
and identically distributed random variable with
unknown statistics. The decision maker’s goal is
to identify the “best” arm. That is, the decision
maker wishes to find the arm with the highest
expected reward as quickly as possible.

The exploratory bandit problem is a sequential
hypothesis testing problem but with the added
complication that the decision maker can choose
where to sample next, making it among the sim-
plest active learning problems. In the context of
the probably approximate correct (PAC) setup,
it was shown (Mannor and Tsitsiklis 2004) that
finding the "-optimal arm (that is, an arm whose
expected reward is lower than that of the best arm
by at most ") with probability of at least 1 � ı

requires

O

�
k

"2
log

�
1

ı

��

samples on expectation. Moreover, this bound
can be obtained (up to multiplicative constants)
via an algorithm known as median elimination.

Bandit analyses such as these have played
a key role in understanding the efficiency of
� reinforcement-learning algorithm as well.

Cross-References

�Active Learning
�Associative Bandit Problem
�Dynamic Programming

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_100023
http://dx.doi.org/10.1007/978-1-4899-7687-1_77

690 Kernel Density Estimation

�Machine Learning and Game Playing
�Markov Process
� PAC Learning
�Reinforcement Learning

Recommended Reading

Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2002)
The non-stochastic multi-armed bandit problem.
SIAM J Comput 32(1):48–77

Berry D, Fristedt B (1985) Bandit problems: sequen-
tial allocation of experiments. Chapman and Hall,
London/New York

Cesa-Bianchi N, Lugosi G (2006) Prediction, learning,
and games. Cambridge University Press, New York

Gittins JC (1989) Multi-armed bandit allocation in-
dices. Wiley, New York

Gittins J, Jones D (1972) A dynamic allocation index
for sequential design of experiments. In: Progress
in statistics, European meeting of statisticians, Bu-
dapest, vol 1, pp 241–266

Lai TL, Robbins H (1985) Asymptotically efficient
adaptive allocation rules. Adv Appl Math 6:4–22

Mannor S, Tsitsiklis JN (2004) The sample complexity
of exploration in the multi-armed bandit problem. J
Mach Learn Res 5:623–648

Robbins H (1952) Some aspects of the sequential
design of experiments. Bull Am Math Soc 55:527–
535

Kernel Density Estimation

�Density Estimation

Kernel Matrix

Synonyms

Gram matrix

Definition

Given a kernel function k: X �X ! and patterns
x1; : : : ; xm 2 X , the m � m matrix K with
elements Kij WD k.xi ; xj / is called the kernel
matrix of k with respect to x1; : : : ; xm.

Kernel Methods

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Over the past decade, kernel methods have
gained much popularity in machine learning.
Linear estimators have been popular due to
their convenience in analysis and computa-
tion. However, nonlinear dependencies exist
intrinsically in many real applications and are
indispensable for effective modeling. Kernel
methods can sometimes offer the best of both
aspects. The reproducing kernel Hilbert space
provides a convenient way to model nonlinear-
ity, while the estimation is kept linear. Kernels
also offer significant flexibility in analyzing
generic non-Euclidean objects such as graphs,
sets, and dynamic systems. Moreover, kernels
induce a rich function space where functional
optimization can be performed efficiently. Fur-
thermore, kernels have also been used to de-
fine statistical models via exponential families
or Gaussian processes and can be factorized
by graphical models. Indeed, kernel methods
have been widely used in almost all tasks in
machine learning.

Definition

Kernel methods refer to a class of techniques that
employ positive definite kernels. At an algorith-
mic level, its basic idea is quite intuitive: im-
plicitly map objects to high-dimensional feature
spaces and then directly specify the inner prod-
uct there. As a more principled interpretation,
it formulates learning and estimation problems
in a reproducing kernel Hilbert space, which is
advantageous in a number of ways:

http://dx.doi.org/10.1007/978-1-4899-7687-1_509
http://dx.doi.org/10.1007/978-1-4899-7687-1_516
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_210
http://dx.doi.org/10.1007/978-1-4899-7687-1_100189

Kernel Methods 691

K

• It induces a rich feature space and admits a
large class of (nonlinear) functions.

• It can be flexibly applied to a wide range of
domains including both Euclidean and non-
Euclidean spaces.

• Searching in this infinite-dimensional space
of functions can be performed efficiently, and
one only needs to consider the finite subspace
expanded by the data.

• Working in the linear spaces of function lends
significant convenience to the construction
and analysis of learning algorithms.

Motivation and Background

The reproducing kernel was first studied by
Aronszajn (1950). Poggio and Girosi (1990) and
Wahba (1990) used kernels for data analysis, and
Boser et al. (1992) incorporated kernel functions
into maximum margin models. Schölkopf et al.
(1998) first used kernels for principal component
analysis.

Theory

Positive semi-definite (psd) kernels are the most
commonly used type of kernels, and its motiva-
tion is as follows. Given two objects x1; x2 from
a space X which is not necessarily Euclidean,
we map them to a high-dimensional feature space
via �.x1/ and �.x2/, and then compute the inner
products there by k.x1; x2/ D h�.x1/�.x2/i. In
many algorithms, the set fxi g influences learn-
ing only via inner products between xi and xj ;
hence it is sufficient to specify k.x1; x2/ di-
rectly without explicitly defining �. This leads
to considerable savings in computation, when
� ranges in high-dimensional spaces or even
infinite-dimensional spaces. Clearly, the function
k must satisfy some conditions. For example, as
a necessary condition, for any finite number of
examples x1; : : : ; xn from X , the matrix

K WD .k.xi ; xj //i;j

D .�.x1/; : : : ; �.xn//>.�.x1/; : : : ; �.xn//

must be positive semi-definite. Surprisingly, this
turns out to be a sufficient condition as well,
and hence we define the positive semi-definite
kernels.

Definition 1 (positive semi-definite kernels)
Let X be a nonempty set. A function k W

X � X 7! R is called a positive semi-definite
kernel if for any n 2 N and x1; : : : ; xn 2 X , the
Gram matrix K WD .k.xi ; xj //i;j is symmetric
and positive semi-definite (psd).

Reproducing Kernel Hilbert Space
Given a psd kernel k, we are able to construct
a map � from X to an inner product space
H, such that h�.x1/�.x2/i D k.x1; x2/.
The image of x under � is just a function
�.x/ WD k.x; � /, where k.x; � / is a function
of � , assigning the value k.x; x0/ for any
x0 2 X . To define inner products between
functions, we need to construct an inner product
space H which contains fk.x; � / W x 2 X g.
First, H must contain the linear combinations˚Pn

iD1 ˛i k.xi ; � / W n 2N; xi 2X ; ˛i 2 R
�
. Then

we endow it with an inner product as follows.
For any f; g 2 H and f D

Pn
iD1 ˛i k.xi ; � /,

g D
Pm

j D1 ˇj k.x0
j ; � /, define

hfgi WD

nX
iD1

mX
j D1

˛i ˇj k.xi ; x0
j /;

and it is easy to show that this is well defined
(independent of the expansion of f and g). Using
the induced norm, we can complete the space
and thus get a Hilbert space H, which is called
reproducing kernel Hilbert space (RKHS). The
term “reproducing” is because for any function
f 2 H, hf k.x; � /i D f .x/.

Properties of psd Kernels
Let X be a nonempty set and k1; k2; : : : be arbi-
trary psd kernels on X � X . Then

• The set of psd kernels is a closed convex cone,
i.e., (a) if ˛1; ˛2 � 0, then ˛1k1 C ˛2k2 is psd
and (b) if k.x; x0/ WD limn!1 kn.x; x0/ exists
for all x; x0, then k is psd.

• The pointwise product k1k2 is psd.

692 Kernel Methods

• Assume for i D 1; 2, ki is a psd kernel on
Xi � Xi , where Xi is a nonempty set. Then
the tensor product k1 ˝ k2 and the direct sum
k1 ˚ k2 are psd kernels on .X1 � X2/ � .X1 �

X2/.

Example Kernels
One of the key advantages of kernels lies in its
applicability to a wide range of objects.

Euclidean Spaces In R
n, popular kernels

include linear kernel k.x1; x2/ D hx1x2i,
polynomial kernels k.x1; x2/ D .hx1x2i C c/d

where d 2 N and c � 0, Gaussian RBF
kernels k.x1; x2/ D exp.�� kx1 � x2k2/ where
� > 0, and Laplacian RBF kernels k.x1; x2/ D

exp.�� kx1 � x2k/. Another useful type of
kernels on Euclidean spaces is the spline kernels.

Convolution Kernels Haussler (1999) investi-
gated how to define a kernel between composite
objects by building on the similarity measures
that assess their respective parts. It needs to
enumerate all possible ways to decompose the
objects; hence efficient algorithms like dynamic
programming are needed.

Graph Kernels Graph kernels are available
in two categories: between graphs and on a
graph. The first type is similar to convolution
kernels, which measures the similarity between
two graphs. The second type defines a metric
between the vertices and is generally based
on the graph Laplacian. By applying various
transform functions to the eigenvalue of the graph
Laplacian, various smoothing and regularization
effects can be achieved.

Fisher Kernels Kernels can also be defined be-
tween probability densities p.xj�/. Let U� .x/ D

�@� log p.xj�/ and I D Ex ŒU� .x/U >
�

.x/� be
the Fisher score and Fisher information matrix,
respectively. Then the normalized and unnormal-
ized Fisher kernels are defined by

k.x; x0/ D U >
� .x/I �1U� .x0/

and k.x; x0/ D U >
� .x/U� .x0/;

respectively. In theory, estimation using normal-
ized Fisher kernels corresponds to regularization
on the L2.p. � j�// norm. And in the context
of exponential families, the unnormalized Fisher
kernels are identical to the inner product of suffi-
cient statistics.

Kernel Function Classes
Many machine learning algorithms can be posed
as functional minimization problems, and the
candidate function set is chosen as the RKHS.
The main advantage of optimizing over an RKHS
originates from the representer theorem.

Theorem 2 (representer theorem) Denote by
� W Œ0; 1/ 7! R a strictly monotonic increasing
function, by X a set, and by c W .X � R

2/n 7!

R [f1g an arbitrary loss function. Then
each minimizer f 2 H of the regularized risk
functional

c..x1; y1; f .x1//; : : : ; .xn; yn; f .xn///

C �.kf k2
H/ (1)

admits a representation of the form

f .x/ D

nX
iD1

˛i k.xi ; x/:

The representer theorem is important in that al-
though the optimization problem is in an infinite-
dimensional space H, the solution is guaranteed
to lie in the span of n particular kernels centered
on the training points.

The objective (1) is composed of two parts:
the first part measures the loss on the training set
fxi ; yi g

n
iD1 which depends on f only via its value

at xi . The second part is the regularizer, which
encourages small RKHS norm of f . Intuitively,
this regularizer penalizes the complexity of f

and prefers smooth f . When the kernel k is
translation invariant, i.e., k.x1; x2/ D h.x1 � x2/,
Smola et al. (1998) showed that kf k2 is related
to the Fourier transform of h, with more penalty
imposed on the high-frequency components of f .

Applications

Kernels have been applied to almost all branches
of machine learning.

Kernel Methods 693

K

Supervised Learning
One of the most well-known applications of ker-
nel method is the SVM for binary classification.
Its primal form can be written as

minimize
w;b;�

	

2
kwk2 C

1

n

nX
iD1

i ;

s:t: yi .hwxi i C b/ � 1 �
i ; and
i � 0; 8i:

Its dual form can be written as

minimize
˛i

1

2	

X
i;j

yi yj

˝
xi xj

˛
˛i ˛j �

X
i

˛i ;

s:t:
X

i

yi ˛i D 0; ˛i 2 Œ0; n�1�; 8i:

Clearly, this can be extended to feature maps
and kernels by setting k.xi ; xj / D

˝
xi xj

˛
. The

same trick can be applied to other algorithms like
�-SVM, regression, density estimation, etc. For
multi-class classification and structured output
classification where the possible label set Y can
be large, kernel maximum margin machines can
be formulated by introducing a joint kernel on
pairs of .xi ; y/ (y 2 Y), i.e., the feature map
takes the tuple .xi ; y/. Letting Δ.yi ; y/ be the
discrepancy between the true label yi and the
candidate label y, the primal form is

minimize
w;�i

	

2
kwk2 C

1

n

nX
iD1

i ; s:t:
˝
w�.xi ; yi /

� �.xi ; y/
˛
� Δ.yi ; y/ �
i ; 8 i; y;

and the dual form is

minimize
˛i;y

1

2	

X
.i;y/;.i 0;y0/

˛i;y˛i 0;y0

˝
�.xi ; yi /

� �.xi ; y/�.xi 0 ; yi 0/ � �.xi 0 ; y0/
˛

�
X
i;y

Δ.yi ; y/˛i;y

s:t: ˛i;y � 0; 8 i; yI
X

y

˛i;y D
1

n
; 8i:

Again all the inner products h�.xi ; y/�.xi 0 ; y0/i

can be replaced by the joint kernel k..xi ; y/;

.xi 0 ; y0//. Further factorization using graph-
ical models is possible; see Taskar et al.
(2004). Notice when Y D f1; �1g, setting
�.xi ; y/ D y�.xi / recovers the binary
SVM formulation. Effective methods to
optimize the dual objective include sequential
minimal optimization, exponentiated gradient
(Collins et al. 2008), mirror descent, cutting
plane, or bundle methods (Smola et al.
2007a).

Unsupervised Learning
Data analysis can benefit from modeling the dis-
tribution of data in feature space. There we can
still use the rather simple linear methods, which
give rise to nonlinear methods on the original data
space. For example, the principal components
analysis (PCA) can be extended to Hilbert spaces
(Schölkopf et al. 1998), which allows for image
denoising, clustering, and nonlinear dimension-
ality reduction.

Given a set of data points fxi g
n
iD1, PCA tries to

find a direction d such that the projection of fxi g

to d has the maximal variance. Mathematically,
one solves

max
d WkdkD1

Var fhxi d ig ” max
d WkdkD1

d >

�

0
@ 1

n

X
i

xi x
>
i �

1

n2

X
ij

xi x
>
j

1
A d;

which can be solved by finding the maximum
eigenvalue of the variance of fxi g. Along the
same line, we can map the examples to the RKHS
and find the maximum variance projection direc-
tion again. Here we first center the data, i.e., let
the feature map be Q�.xi / D �.xi /� 1

n

P
j �.xj /,

and define a kernel Qk based on the centered
feature. So we have

Pn
j D1

QKij D 0 for all i . Now
the objective can be written as

max
f Wkf k

QHD1
Var

˚˝
Q�.xi /f

˛
QH
�

” max
f Wkf kD1

Var ff .xi /g ” max
f Wkf k�1

Var ff .xi /g : (2)

694 Kernel Methods

Treat the constraint kf k � 1 as an indicator
function �.kf k2/ where �.x/ D 0 if x �

1 and 1 otherwise. Then the representer theo-
rem can be invoked to guarantee that the opti-
mal solution is f D

P
i ˛i

Qk.xi ; � / for some
˛i 2 R. Plugging it into (2), the problem becomes
max

˛W˛> QK˛D1 ˛> QK2˛. To get necessary condi-
tions for optimality, we write out the Lagrangian
L D ˛ QK2˛ � 	.˛ QK˛ � 1/. Setting to 0 the
derivative over ˛, we get

QK2˛ D 	 QK˛: (3)

Therefore ˛> QK2˛ D 	. Although (3) does not
guarantee that ˛ is an eigenvector of QK, one can
show that for each 	 satisfying (3), there exists an
eigenvector ˛ of QK such that QK˛ D 	˛. Hence,
it is sufficient to study the eigensystem of QK just
like in the vanilla PCA. Once the optimal ˛�

i is
obtained, any data point x can be projected toP

i ˛�
i

Qk.xi ; x/.
More applications of kernels in unsupervised

learning can be found in canonical correlation
analysis, independent component analysis (Bach
and Jordan 2002), kernelized independence crite-
ria via Hilbert space embeddings of distributions
(Smola et al. 2007b), etc.

Cross-References

� Principal Component Analysis
�Radial Basis Function Networks
� Support Vector Machines

Recommended Reading

A survey paper on kernel methods up to year
2007 is Hofmann et al. (2008). For an introduc-
tion to SVMs and kernel methods, read Cris-
tianini and Shawe-Taylor (2000). More compre-
hensive treatment can be found in Schölkopf
and Smola (2002), Shawe-Taylor and Cristianini
(2004), and Steinwart and Christmann (2008).
As far as applications are concerned, see Lam-
pert (2009) for computer vision and Schölkopf
et al. (2004) for bioinformatics. Finally, Vapnik

(1998) provides the details on statistical learning
theory.

Aronszajn N (1950) Theory of reproducing kernels.
Trans Am Math Soc 68:337–404

Bach FR, Jordan MI (2002) Kernel independent com-
ponent analysis. J Mach Learn Res 3:1–48

Boser B, Guyon I, Vapnik V (1992) A training algo-
rithm for optimal margin classifiers. In: Haussler
D (ed) Proceedings of annual conference on com-
putational learning theory. ACM Press, Pittsburgh,
pp 144–152

Collins M, Globerson A, Koo T, Carreras X, Bartlett
P (2008) Exponentiated gradient algorithms for
conditional random fields and max-margin markov
networks. J Mach Learn Res 9:1775–1822

Cristianini N, Shawe-Taylor J (2000) An introduction
to support vector machines and other kernel-based
learning methods. Cambridge University Press,
Cambridge

Haussler D (1999) Convolution kernels on discrete
structures. Technical report UCS-CRL-99-10, UC
Santa Cruz

Hofmann T, Schölkopf B, Smola AJ (2008) Kernel
methods in machine learning. Ann Stat 36(3):1171–
1220

Lampert CH (2009) Kernel methods in computer
vision. Found Trends Comput Graph Vis 4(3):
193–285

Poggio T, Girosi F (1990) Networks for approximation
and learning. Proc IEEE 78(9):1481–1497

Schölkopf B, Smola A (2002) Learning with kernels.
MIT Press, Cambridge

Schölkopf B, Smola AJ, Müller K-R (1998) Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Comput 10:1299–1319

Schölkopf B, Tsuda K, Vert J-P (2004) Kernel methods
in computational biology. MIT Press, Cambridge

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge

Smola A, Vishwanathan SVN, Le Q (2007a) Bun-
dle methods for machine learning. In: Koller D,
Singer Y (eds) Advances in neural information pro-
cessing systems, vol 20. MIT Press, Cambridge

Smola AJ, Gretton A, Song L, Schölkopf B (2007b)
A Hilbert space embedding for distributions. In:
International conference on algorithmic learning
theory, Sendai. Volume 4754 of LNAI. Springer,
pp 13–31

Smola AJ, Schölkopf B, Müller K-R (1998) The
connection between regularization operators
and support vector kernels. Neural Netw 11(5):
637–649

Steinwart I, Christmann A (2008) Support vector ma-
chines. Information science and statistics. Springer,
New York

Taskar B, Guestrin C, Koller D (2004) Max-
margin Markov networks. In: Thrun S, Saul L,
Schölkopf B (eds) Advances in neural information

http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

K-Means Clustering 695

K

processing systems, vol 16. MIT Press, Cambridge,
pp 25–32

Vapnik V (1998) Statistical learning theory. Wiley,
New York

Wahba G (1990) Spline models for observational data.
Volume 59 of CBMS-NSF regional conference se-
ries in applied mathematics. SIAM, Philadelphia

Kernel Shaping

�Local Distance Metric Adaptation �Locally
Weighted Regression for Control

Kernel-Based Reinforcement
Learning

� Instance-Based Reinforcement Learning

Kernels

�Gaussian Process

Kind

�Class

K-Means Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Abstract

K-Means Clustering is a popular clustering
algorithm with local optimization. In order
to improve its performance, researchers have
proposed methods for better initialization and
faster computation.

Synonyms

Cluster initialization; Iterative computation

Definition

K-means (Lloyd 1957; MacQueen 1967) is a
popular data clustering method, widely used in
many applications. Algorithm 1 shows the proce-
dure of K-means clustering. The basic idea of the
K-means clustering is that given an initial but not
optimal clustering, relocate each point to its new
nearest center, update the clustering centers by
calculating the mean of the member points, and
repeat the relocating-and-updating process until
converge criteria (such as predefined number of
iterations, difference on the value of the distortion
function) are satisfied.

The task of initialization is to form the initial
K clusters. Many initializing techniques have
been proposed, from simple methods, such as
choosing the first K data points, Forgy initial-
ization (randomly choosing K data points in
the dataset), and random partitions (dividing the
data points randomly into K subsets), to more
sophisticated methods, such as density-based ini-
tialization, intelligent initialization, furthest-first
initialization (FF for short, it works by picking
first center point randomly and then adding more
center points which are furthest from existing
ones), and subset furthest-first (SFF) initializa-
tion. For more details, refer to paper Steinley
and Brusco (2007) which provides a survey and
comparison of over 12 initialization methods.

Algorithm 1 K-means clustering algorithm
Input: K, number of clusters; D, a data set of N points
Output: A set of K clusters
1. Initialization.
2. repeat
3. for each point p in D do
4. find the nearest center and assign p to the

corresponding cluster.
5. end for
6. update clusters by calculating new centers using

mean of the members.
7. until stop-iteration criteria satisfied
8. return clustering result.

http://dx.doi.org/10.1007/978-1-4899-7687-1_484
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_410
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_100058
http://dx.doi.org/10.1007/978-1-4899-7687-1_100229

696 K-Means Clustering

K-Means Clustering, Fig. 1 K-means clustering example (K D 2). The center of each cluster is marked by “x.”
(a) Initialization. (b) Re-assignment

Figure 1 shows an example of K-means clus-
tering on a set of points, with K D 2. The clusters
are initialized by randomly selecting two points
as centers.

Complexity analysis. Let N be the number of
points, D the number of dimensions, and K the
number of centers. Suppose the algorithm runs I

iterations to converge. The space complexity of
K-means clustering algorithm is O.N.D C K//.
Based on the number of distance calculations, the
time complexity of K-means is O.NKI/.

Fast Computation for Large-Scale
Data

For large-scale data clustering, K-means algo-
rithm spends the majority of the time on the nu-
merous distance calculations between the points
and the centers. Many algorithms have been pro-
posed to handle this problem, such as PDS (Bei
and Gray 1985), TIE (Chen and Hsieh 1991),
Elkan (Beil et al. 2003), MPS (Ra and Kim 1993),
kd-tree K-means (Pelleg and Moore 1999), HKM
(Nister and Stewenius 2006), GT (Kaukoranta
et al. 2000), CGAUDC (Lai et al. 2008), and
GAD (Jin et al. 2011).

PDS (partial distortion search) (Bei and
Gray 1985) cumulatively computes the distance
between the point and a candidate center by
summing up the differences at each dimension.
TIE (triangular inequality elimination) (Chen

and Hsieh 1991) prunes candidate centers based
on the triangle inequality of metric distance.
MPS (mean-distance-ordered partial search) (Ra
and Kim 1993) uses sorting to initially guess
the center whose mean value is closest to that
of the current point and prune candidates via
an inequality based on an Euclidean distance
property.

In many large-scale applications, we need to
perform large K clustering, and HKM (Nister and
Stewenius 2006) and kd-tree K-means (Pelleg
and Moore 1999) are fast algorithms which work
for this large cluster problem because their time
complexity on K is reduced from the original
O.K/ in K-means to O.log.K//.

HKM (Nister and Stewenius 2006) performs
fast hierarchical K-means clustering. Instead of
directly performing clustering on large clusters,
HKM uses K-means for a small number of clus-
ters at each node of a hierarchical tree.

The kd-tree K-means (Pelleg and Moore
1999) algorithm utilizes kd-tree to find the
approximate nearest center in a way that is faster
than brute force searching. Centers were split
hierarchically from the root to the leaf nodes
of the kd -tree; leaf nodes will contain similar
centers. When searching for the nearest center,
we only need to check leaf nodes which are most
similar to the point.

Many fast algorithms are based on a strategy
that filters out unnecessary distance calculations
using metric properties and thus only work for
metric distances. Another strategy called activity

K-Medoids Clustering 697

K

detection avoids the metric properties and works
for both metric and non-metric distances. GT
(Kaukoranta et al. 2000) utilizes point activity for
fast clustering. CGAUDC (Lai et al. 2008) is an
extension of GT and gets further improvement on
performance. GAD (Jin et al. 2011) provides a
general solution for utilizing activity detection for
fast clustering.

Software

The following software have implementations of
the K-means clustering algorithm:

• Weka. Open source data mining software in
Java (Hall et al. 2009), from Machine Learn-
ing Group at the University of Waikato:

http://www.cs.waikato.ac.nz/ml/weka/ ind
ex.html

• Apache Mahout. Open source machine learn-
ing software in Java for use in Hadoop, with
support on K-means, Fuzzy K-means, and
streaming K-means:

http://mahout.apache.org / users / clustering
/k-means-clustering.html

• LNKnet Software. Written in C. A public do-
main software from MIT Lincoln Laboratory:

http://www.ll.mit.edu/mission/communica
tions/cyber/softwaretools/lnknet/lnknet.html

• R K-means. R package. It performs K-means
clustering on a data matrix.

http://stat.ethz.ch/R-manual/R-patched/libr
ary/stats/html/kmeans.html

• MLPack. A scalable C++ machine learning
library.

http://mlpack.org
• Scikit-Learn. An open source machine learn-

ing software written in Python.
http://scikit-learn.org

Recommended Reading

Bei C-D, Gray RM (1985) An improvement of the
minimum distortion encoding algorithm for vector
quantization. IEEE Trans Commun 33:1132–1133

Beil F, Ester M, Xu X (2003) Using the trian-
gle inequality to accelerate k-means. In: Twen-
tieth international conference on machine learning
(ICML’03), Washington, DC, pp 147–153

Chen S-H, Hsieh WM (1991) Fast algorithm
for VQ codebook design. In: IEE Proceedings
I-Communications, Speech and Vision, 138(5):357–
362

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann
P, Witten IH (2009) The weka data mining software:
an update. ACM SIGKDD Explor Newsl 11(1):
10–18

Jin X, Kim S, Han J, Cao L, Yin Z (2011) A general
framework for efficient clustering of large datasets
based on activity detection. Stat Anal Data Min
4(1):11–29

Kaukoranta T, Franti P, Nevalainen O (2000) A fast
exact gla based code vector activity detection. IEEE
Trans Image Process 9(8):1337–1342

Lai JZC et al (2008) A fast VQ codebook generation
algorithm using codeword displacement. Pattern
Recognit 41(1):315–319

Lloyd SP (1957) Least squares quantization in pcm.
Technical report RR-5497, Bell Lab, Sept 1957

MacQueen JB (1967) Some methods for
classification and analysis of multivariate
observations. In: Le Cam LM, Neyman J (eds)
Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability,
vol 1. University of California Press, Berkeley,
pp 281–297

Nister D, Stewenius H (2006) Scalable recognition
with a vocabulary tree. In: CVPR06, New York

Pelleg D, Moore A (1999) Accelerating exact k-means
algorithms with geometric reasoning. In: Proceed-
ings of KDD’99, New York. ACM, pp 277–281

Ra S-W, Kim J-K (1993) A fast mean-distance-ordered
partial codebook search algorithm for image vector
quantization. IEEE Trans Circuits Syst 40:576–579

Steinley D, Brusco MJ (2007) Initializing k-means
batch clustering: a critical evaluation of several
techniques. J Classif 24(1):99–121

K-Medoids Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinios at Urbana-Champaign,
Urbana, IL, USA

Abstract

K-Medoids Clustering is a clustering method
more robust to outliers than K-Means.
Representative algorithms include Parti-
tioning Around Medoids (PAM), CLARA,
CLARANS, etc.

http://www.cs.waikato.ac.nz/ml/weka/index.html
http://mahout.apache.org/users/clustering/k-means-clustering.html
http://www.ll.mit.edu/mission/communications/cyber/softwaretools/lnknet/lnknet.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/kmeans.html
http://mlpack.org
http://scikit-learn.org

698 K-Medoids Clustering

Synonyms

Iterative algorithm

Definition

The K-means clustering algorithm is sensitive
to outliers, because a mean is easily influenced
by extreme values. K-medoids clustering is a
variance of K-means but more robust to noises
and outliers (Han et al. 2011). Instead of using the
mean point as the center of a cluster, K-medoids
use an actual point in the cluster to represent
it. Medoid is the most centrally located object
of the cluster, with minimum sum of distances
to other points. Figure 1 shows the difference
between mean and medoid in a 2D example.
The group of points in the right form a cluster,
while the rightmost point is an outlier. Mean is
greatly influenced by the outlier and thus cannot
represent the correct cluster center, while medoid
is robust to the outlier and correctly represents the
cluster center.

Partitioning Around Medoids (PAM) (Kauf-
man and Rousseeuw 2005) is a representative
K-medoids clustering method. The basic idea is
as follows: select K representative points to form
initial clusters and then repeatedly move to better
cluster representatives. All possible combinations
of representative and nonrepresentative points are
analyzed, and the quality of the resulting cluster-

ing is calculated for each pair. An original rep-
resentative point is replaced with the new point
which causes the greatest reduction in distortion
function. At each iteration, the set of best points
for each cluster form the new respective medoids.

When calculating the cost of swapping a
nonrepresentative point prand with a represen-
tative point pi , there are four cases that need to
be examined for each of the nonrepresentative
point p.

1. Case 1: p originally belongs to representative
point pi . If, after replacement, p is closest to
one of the other representative point pj , then
p is reassigned to pj .

2. Case 2: p originally belongs to representative
point pi . If after replacement, p is closest to
prand, then p is reassigned to prand.

3. Case 3: p originally belongs to one of the
other representative point pj . If after replace-
ment, p is still closest to pj , then there is no
reassignment of p.

4. Case 4: p originally belongs to one of the
other representative point pj . If after replace-
ment, p is closest to prand, then p is reassigned
to prand.

The cost function is defined as the change in
the value of the distortion function when a repre-
sentative point is replaced by a nonrepresentative
point. The total cost C of replacing is the sum
of costs incurred by all nonrepresentative points.

K-Medoids Clustering, Fig. 1 Mean vs. medoid in 2D space. In both figures (a) and (b), the group of points in the
right forms a cluster and the rightmost point is an outlier. The red point represents the center found by mean or medoid

http://dx.doi.org/10.1007/978-1-4899-7687-1_100227

K-Medoids Clustering 699

K

If C is negative, then the replacement is allowed
since the distortion function would be reduced.

Algorithm 1 K-medoids clustering algorithm
(PAM)
Require: K, number of clusters; D, a data set of N points
Ensure: A set of K clusters
1: Arbitarily choose K points in D as initial representa-

tive points.
2: repeat
3: for each non-representative point p in D do
4: find the nearest representative point and assign

p to the corresponding cluster.
5: end for
6: randomly select a non-representative point prand;
7: compute the overall cost C of swapping a repre-

sentative point pi with prand;
8: if C < 0 then
9: swap pj with prand to form a new set of K

representative points.
10: end if
11: until stop-iteration criteria satisfied
12: return clustering result.

The time complexity of the PAM algorithm is
O.K.N � K/2I /.

Fast Computation for Large Data

PAM is not scalable for large data set; some
algorithms have been proposed to improve the
efficiency, such as CLARA (clustering large ap-
plications) (Kaufman and Rousseeuw 2005) and
CLARANS (clustering large applications based
upon randomized search) (Ng and Han 2002).

CLARA takes the sampling strategy:
randomly sample a small portion of the actual
data as a representative of the whole data
and perform PAM from the sampled data set
to find the K medoids. If the sample can
closely represent the original data set, the
representative medoids found will be a good
approximation of those that found from using
the whole data set. To improve clustering quality,
CLARA takes multiple random samples, applies
PAM on each sample, and outputs the best
clustering. Suppose the size of the sample is
M , which is much smaller than the original
data size N ; the time complexity of CLARA is

O..KM 2 C K.N � K//I /. CLARA is more
efficient than PAM; however, it cannot find the
best clustering if any medoid found from the
sample is not among the best K-medoids.

CLARANS is able to improve the quality of
CLARA. It can be modeled as searching through
a graph where a node is a set of K-medoids
and neighbor nodes differ by one medoid, so
each node has K.N � K/ neighbors. A node is
evaluated by the distortion function to measure
its clustering quality. CLARANS starts with a
randomly selected node and randomly selects its
neighbor; if the neighbor has better clustering
quality, move to the neighbor node and con-
tinue iteration. If the node is a local minimum,
i.e., no tested neighbor gets better clustering,
restart with a new randomly selected node and
repeat the procedure. Iteration stops at some
criteria, for example, finding a predefined num-
ber of local minima. Some improvements (Chu
et al. 2008) have been proposed for CLARANS.
There are two categories, conceptual/algorithmic
and implementational improvements, including
the revisiting of the accepted cases for swap
comparison and the application of partial dis-
tance searching and previous medoid indexing to
clustering.

Softwares

The following softwares have implementations of
the K-medoids clustering algorithm:

• Flexclust: flexible cluster algorithms. R
package. It provides a general framework
for k-centroids cluster analysis supporting
arbitrary distance measures and centroid
computation. http://cran.r-project.org/web/
packages/flexclust/index.html

• Julia. Clustering package:
https://github.com/JuliaStats/Clustering.jl

• ELKI (for environment for developing KDD-
applications supported by index structures). A
Java-based data mining software framework
developed at the Ludwig Maximilian Univer-
sity of Munich, Germany. http://elki.dbs.ifi.
lmu.de

http://cran.r-project.org/web/packages/flexclust/index.html
http://cran.r-project.org/web/packages/flexclust/index.html
https://github.com/JuliaStats/Clustering.jl
http://elki.dbs.ifi.lmu.de
http://elki.dbs.ifi.lmu.de

700 Kohonen Maps

• Java-ML. Java Machine Learning Library:
http://java-ml.sourceforge.net

Recommended Reading

Chu S-C, Roddick JF, Pan J-S (2008) Improved
search strategies and extensions to k-medoids-based
clustering algorithms. Int J Bus Intell Data Min
3(2):212–231

Han J, Kamber M, Pei J (2011) Data mining: concepts
and techniques, 3rd edn. Morgan Kaufmann Pub-
lishers, San Francisco

Kaufman L, Rousseeuw PJ (2005) Finding groups in
data: an introduction to cluster analysis. Wiley se-
ries in probability and statistics. Wiley-Interscience,
New York

Ng RT, Han J (2002) CLARANS: a method for clus-
tering objects for spatial data mining. IEEE Trans
Knowl Data Eng 14(5):1003–1016

Kohonen Maps

� Self-Organizing Maps

K-Way Spectral Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinios at Urbana-Champaign,
Urbana, IL, USA

Abstract

K-Way Spectral Clustering is the technology
to discover k clusters using spectral clustering.

Synonyms

Diagonal matrix; Eigenvector; Laplacian matrix;
Spectral clustering

Definition

In spectral clustering (Luxburg 2007; Zha et al.
2001; Dhillon et al. 2004), the dataset is repre-
sented as a similarity graph G D .V; E/. The
vertices represent the data points. Two vertices
are connected if the similarity between the cor-

responding data points is larger than a certain
threshold, and the edge is weighted by the sim-
ilarity value. Clustering is achieved by choosing
a suitable partition of the graph that each group
corresponds to one cluster.

A good partition (i.e., a good clustering) is
that the edges between different groups have an
overall low weight and the edges within a group
have high weight, which indicates that points in
different clusters are dissimilar from each other
and points within the same cluster are similar to
each other. One basic spectral clustering algo-
rithm finds a good partition in the following way:

Given a set of data points P and the similar-
ity matrix S where Sij measures the similarity
between points i; j 2 P , form a graph. Build
Laplacian matrix L of the graph,

L D I � D�1=2SD�1=2 (1)

where D is the diagonal matrix:

Di i D
X

j

Sij (2)

Find eigenvalues and eigenvectors of the ma-
trix L, map vertices to corresponding compo-
nents, and form clusters based on the embedding
space.

The methods to find K clusters include recur-
sive bi-partitioning and clustering multiple eigen-
vectors. The former technique is inefficient and
unstable. The latter approach is more preferable
because it is able to prevent instability due to
information loss.

Recommended Reading

Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means:
spectral clustering and normalized cuts. In: Proceed-
ings of the tenth ACM SIGKDD international con-
ference on knowledge discovery and data mining.
ACM, New York, pp 551–556

Luxburg U (2007) A tutorial on spectral clustering. Stat
Comput 17(4):395–416

Zha H, He X, Ding C, Gu M, Simon HD (2001) Spec-
tral relaxation for k-means clustering. In: Advances
in neural information processing systems, Neural
Information Processing Systems (NIPS), pp 1057–
1064

http://java-ml.sourceforge.net
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_100110
http://dx.doi.org/10.1007/978-1-4899-7687-1_100134
http://dx.doi.org/10.1007/978-1-4899-7687-1_100241
http://dx.doi.org/10.1007/978-1-4899-7687-1_100437

L

L1-Distance

�Manhattan Distance

Label

A label is a target value that is associated
with each � object in � training data. In
� classification learning, labels are � classes.
In � regression, labels are numeric.

Labeled Data

Labeled data are data for which each � object
has an identified target value, the � label. Labeled
data are used in � supervised learning. They stand
in contrast to unlabeled data that are used in
� unsupervised learning.

Language Bias

Definition

A learner’s language bias is the set of hypotheses
that can be expressed using the hypothesis lan-
guage employed by the learner.

This language bias can be implicit, or it can
be defined explicitly, using a bias specification
language (see �Bias Specification Language).

Cross-References

�Learning as Search

Laplace Estimate

�Gaussian Process

Laplacian Matrix

�K-Way Spectral Clustering

Latent Class Model

�Mixture Model

Latent Factor Models and Matrix
Factorizations

Definition

Latent Factor models are a state of the art
methodology for model-based � collaborative
filtering. The basic assumption is that there exist
an unknown low-dimensional representation of
users and items where user-item affinity can
be modeled accurately. For example, the rating
that a user gives to a movie might be assumed
to depend on few implicit factors such as the
user’s taste across various movie genres. Matrix

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_511
http://dx.doi.org/10.1007/978-1-4899-7687-1_100340
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_100340
http://dx.doi.org/10.1007/978-1-4899-7687-1_438
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_73
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_433
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_945

702 Lazy Learning

factorization techniques are a class of widely
successful Latent Factor models that attempt to
find weighted low-rank approximations to the
user-item matrix, where weights are used to hold
out missing entries. There is a large family of
matrix factorization models based on choice of
loss function to measure approximation quality,
regularization terms to avoid overfitting, and
other domain-dependent formulations.

Lazy Learning

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Abstract

Lazy learning is a machine learning strategy
whereby learning is delayed until consultation
time.

Definition

The computation undertaken by a learning system
can be viewed as occurring at two distinct times,
training time and consultation or testing time.
Consultation time is the time between when an
object is presented to a system for an inference
to be made and the time when the inference is
completed. Training time is time prior to con-
sultation time during which the system makes
inferences from training data in preparation for
consultation time. Lazy learning refers to any
machine learning process that defers the majority
of computation to consultation time. Two typical
examples of lazy learning are � instance-based
learning and Lazy Bayesian Rules.

Lazy learning stands in contrast to eager
learning, in which the majority of computation
occurs at training time.

Discussion

Lazy learning can be computationally advanta-
geous when predictions using a single training
set will only be made for few objects. This is
because it is only necessary to model the im-
mediate areas of the � instance space that are
occupied by objects to be classified. In conse-
quence, no computation is expended modeling
areas of the instance space that are irrelevant
to the predictions that need to be made. This
can also be an advantage when a training set is
frequently updated, as can be the case in � online
learning, as it is not necessary to create a com-
plete global model before making a prediction
subsequent to new training examples becoming
available.

Lazy learning can help improve prediction
� accuracy, by allowing a system to concentrate
on deriving the best possible decision for the ex-
act points of the instance space for which predic-
tions are to be made. In contrast, eager learning
can sometimes result in suboptimal predictions
for some specific areas of the instance space as a
result of trade-offs during the process of deriving
a single model that seeks to minimize average
error over the entire instance space.

However, lazy learning must store the entire
training set for use in classification. In contrast,
eager learning need only store a model, which
may be must more compact than the original
data.

Cross-References

� Instance-Based Learning
�Locally Weighted Regression for Control
�Online Learning

References

Aha, David W. Lazy learning. Kluwer academic pub-
lishers, 1997.

http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_618

Learning as Search 703

L

Learning Algorithm Evaluation

�Evaluation of Learning Algorithms

Learning as Search

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Definition

Learning can be viewed as a search through the
space of all sentences in a concept description
language for a sentence that best describes the
data. Alternatively, it can be viewed as a search
through all hypotheses in a � hypothesis space.
In either case, a generality relation usually deter-
mines the structure of the search space.

Background

The input to a learning program consists of
descriptions of objects from the universe (the
� training set) and, in the case of � supervised
learning, an output value associated with
the example. A program is limited in the
concepts that it can learn by the representational
capabilities of both the � observation language
(i.e., the language used to describe the training
examples) and � hypothesis language (the
language used to describe the concept). For
example, if an attribute/value list is used to
represent examples for an induction program, the
measurement of certain attributes and not others
places limits on the kinds of patterns that the
learner can find. The learner is said to be biased
by its observation language. The hypothesis
language also places constraints on what may and
may not be learned. For example, in the language

of attributes and values, relationships between
objects are difficult to represent. Whereas, a more
expressive language, such as first-order logic,
can easily be used to describe relationships.
These biases are collectively referred to as
representation bias.

Representational power comes at a price.
Learning can be viewed as a search through
the space of all sentences in a language for a
sentence that best describes the data. The richer
the language, the larger the search space. When
the search space is small, it is possible to use
“brute force” search methods. If the search space
is very large, additional knowledge is required
to reduce the search. Notions of generality and
specificity are important for ordering the search
(see �Generalization and � Specialization).

Representation

The representation of instances and concepts af-
fects the way a learning system searches for
concept representations.

The input to a learning program may
take many forms, for example, records in a
database, pages of text, images, audio, and
other signals of continuous data. Very often, the
raw data are transformed into feature vectors or
attribute/value lists. The values of the attributes
or features may be continuous or discrete. These
representation by attribute/value lists is the
observation language.

The representation of the concept varies con-
siderably, depending on the approach taken for
learning. In � instance-based learning, concepts
are represented by a set of prototypical instances
of the concept, so abstract representations are not
constructed at all. This kind of representation is
said to be extensional. Instance-based learning is
also called � lazy learning because the learner
does little work at the time that training instances
are presented. Rather, at classification time, the
system must find the most similar instances to the
new example. See Fig. 1.

http://dx.doi.org/10.1007/978-1-4899-7687-1_8
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_769
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_449

704 Learning as Search

+

+
+

+

+ +

+

-

-
-

-

- +
+ +

+

-

-

-

-

-
-

-

-

-

-

-

-

-

-

+ +

+

+

+

+

Learning as Search, Fig. 1 The extension of an
instance-based Learning concept is shown in solid lines.
The dashed lines represent the target concept. A sample
of positive and negative examples is shown (Adapted from
Aha et al. 1991)

When instances are represented as feature vec-
tors, we can treat each feature or attribute as
one dimension in a multi-dimensional space. The
supervised learning problem can then be char-
acterized as the problem of finding a surface
that separates objects that belong to different
classes into different regions. In the case of un-
supervised learning, the problem becomes one
of the finding clusters of instances in the multi-
dimensional space.

Learning methods differ in the way they
represent and create the discrimination surfaces.
In function approximation, the learner searches
for functions that describes the surface (Fig. 2).
Function approximation methods can often
produce accurate classifiers because they are
capable of construction complex decision
surfaces. However, the concept description is
stored as a set of coefficients. Thus, the results of
learning are not easily available for inspection by
a human reader.

Rather than searching for discriminant func-
tions, symbolic learning systems find expressions
equivalent to sentences in some form of logic. For
example, we may distinguish objects according to

Learning as Search, Fig. 2 A linear discrimination be-
tween two classes

two attributes: size and color. We may say that an
object belongs to class 3 if its color is red and
its size is very small to medium. Following the
notation of Michalski (1983), the classes in Fig. 3
may be written as:

class1 size D large ^ color 2 fred; orangeg

class2 size 2 fsmall;mediumg ^ color

2 forange; yellowg

class3 size 2 fv small : : :mediumg ^ color

D blue

Note that this kind of description partitions the
universe with axis-orthogonal surfaces, unlike the
function approximation methods that find smooth
surfaces to discriminate classes (Fig. 4).

Useful insights into induction can be gained
by visualizing it as searching for a discrimination
surface in a multi-dimensional space. However,
there are limits to this geometric interpretation
of learning. If we wish to learn concepts that de-
scribe complex objects and relationships between
the objects, it is often useful to rely on reasoning
about the concept description language itself.

As we saw, the concepts in Fig. 3 can be ex-
pressed as clauses in propositional logic. We can
establish a correspondence between sentences in
the concept description language (the hypothesis
language) and a diagrammatic representation of
the concept. More importantly, we can create a
correspondence between generalization and spe-

Learning as Search 705

L

Learning as Search,
Fig. 3 Discrimination on
attributes and values

V_small

V_large

small

medium

large

red orange yellow green blue violet

Class1 Class1

Class2

Class2

Class3

Class3

Class3

Class2

+

+
+

+

+ +

+

-

-
-

-

-

+

+

+
+

-

-

-

-

-

-

-

-

-

-

-

+ +

+

+

+

+

Learning as Search, Fig. 4 The dashed line shows the
real division of objects in the universe. The solid lines
show a decision tree approximation

cialization operations on the sets of objects and
generalization and specialization operations on
the sentences of the language.

Once we have established the correspondence
between sets of objects and their descriptions, it
is often convenient to forget about the objects and
only consider that we are working with expres-
sions in a language. For example, the clause

class2 size D large ^ color D red (1)

can be generalized to

class size D large (2)

by dropping one of the conditions. Thus, we can
view learning as search through a generalization
lattice that is created by applying different syn-
tactic transformations on sentences in the hypoth-
esis language.

Version Spaces and Subsumption

Mitchell (1977, 1982) defines the version space
for a learning algorithm as the subset of hypothe-
ses consistent with the training examples. That is,
the hypothesis language is capable of describing
a large, possibly infinite, number of concepts.
When searching for the target concept, we are
only interested in the subset of sentences in the
hypothesis language that are consistent with the
training examples, where consistent means that
the examples are correctly classified. We can
used the generality of concepts to help us limit
our search to only those hypotheses in the ver-
sion space.

In the above example, we stated that clause
(2) is more general than clause (1). In doing so,
we assumed that there is a general-to-specific
ordering on the sentences in the hypothesis lan-
guage. We can formalize the generality relation as
follows. A hypothesis, h, is a predicate that maps
an instance to true or false. That is, if h.x/ is true
then x is hypothesized to belong to the concept
being learned, the target. Hypothesis, h1, is more
general than or equal to h2, if h1 covers at least
as many examples as h2 (Mitchell 1997). That is,
h1 � h2 if and only if

.8x/Œh1.x/! h2.x/�

A hypothesis, h1, is strictly more general than h2,
if h1 � h2 and h2 — h1.

Note that the more general than order-
ing is strongly related to subsumption (see
� subsumption and the �Logic of Generality).
Where the above definition of the generality
relation is given in terms of the cover of a

http://dx.doi.org/10.1007/978-1-4899-7687-1_800
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

706 Learning as Search

h1

h2

h3

Specific

General

Learning as Search, Fig. 5 Generalization lattice

hypothesis, subsumption defines a generality
ordering on expressions in the hypothesis
language.

Learning algorithms can use the more general
than relation to order their search for the best
hypothesis. Because generalizations and special-
izations may not be unique, this relation forms
a lattice over the sentences in the hypothesis
language, as illustrated in Fig. 5. A search may
start from the set of most specific hypotheses
that fit the training data and perform a specific-
to-general search or it may start from the set of
most general hypotheses and perform a general-
to-specific search. The search algorithm may also
be bidirectional, combining both.

In Fig. 5, each node represents a hypothesis.
The learning algorithm searches this lattice in an
attempt to find the hypothesis that best fits the
training data. Like searching in any domain, the
algorithm may keep track of one node at a time,
as in depth first or best first searches, or it may
create a frontier of nodes as in breadth first or
beam searches.

Suppose we have single-hypothesis search.
A specific-to-general search may begin by ran-
domly selecting a positive training example and
creating a hypothesis that the target concept is
exactly that example. Each time a new positive
example is seen that is not covered by the hypoth-
esis, the hypothesis must be generalized. That is,
a new hypothesis is constructed that is general
enough to cover all the examples covered by
the previous hypothesis, as well as covering the
new example. If the algorithm sees a negative

example that is incorrectly covered by the current
hypothesis, then the hypothesis must be special-
ized. That is, a new hypothesis is construct that
is more specific than the current hypothesis such
that all the positive examples that were previously
covered are still covered by the new negative
example is excluded.

A similar method can be used for a general-to-
specific search. In this case, the initial hypothesis
is that the target concept covers every object in
the universe. In both cases, the algorithm must
choose how to construct either generalizations or
specializations. That is, a method is needed to
choose which nodes in the search to expand next.
Here, the � least general generalization (Plotkin
1970) or the �most general specialization are
useful. These define the smallest steps that can
be taken in expanding the search. For example, in
Fig. 5, h2 is the minimal specialization that can be
made from h1 or h3 in a general-to-specific search
that starts from the top of the lattice. Similarly,
h1 and h3 are the least general generalizations
of h2. A search for the target concept can begin
with an initial hypothesis and make minimal
generalizations or specializations in expanding
the next node in the search.

Rather than maintaining on a single current
hypothesis, a search strategy may keep a set of
candidate hypotheses. For example, a breadth
first search generalizing from hypothesis h2 will
create a frontier for the search that is the set
fh1, h3g. When there are many ways in which an
hypothesis can be generalized or specialized, the
size of the frontier set may be large. In algorithms
such as Aq (Michalski 1983) and CN2 (Clark and
Niblett 1989), a beam search is used. Rather than
storing all possible hypotheses, the n best are kept
are stored, where “best” can be defined in several
ways. One metric for comparing hypotheses is
given by

Pc CN Nc

P CN

where P and N are the number of positive and
negative instances, respectively; Pc is the number
of positive instances covered by the hypothesis;

http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_560

Learning as Search 707

L

and N Nc is the number of negative instances not
covered.

Algorithm 1 The candidate-elimination algo-
rithm, after Mitchell (1997)
Initialize G to the set of maximally general hypotheses in
the hypothesis space
Initialize S to the maximally specific hypotheses in the
hypothesis space
For each training example, d ,

if d is a positive example
remove from G any hypothesis inconsistent with d
For each hypothesis, s, in S that is not consistent

with d
remove s from S

add all minimal generalizations, h, of s such
that

h is consistent with d and some member of
G is more general than h
remove from S any hypothesis that is more general than
another hypothesis in S

if d is a negative example
remove from S any hypothesis inconsistent with d
For each hypothesis, g , in G that is not consistent

with d
remove g from G

add all minimal specializations, h, of g such
that

h is consistent with d and some member of
S is more general than h

remove from G any hypothesis that is less general
than another hypothesis in G

Mitchell’s (1997) candidate-elimination algo-
rithm performs a bidirectional search in the hy-
pothesis space. It maintains a set, S , of most spe-
cific hypotheses that are consistent with the train-
ing data and a set, G, of most general hypotheses
consistent with the training data. These two sets
form two boundaries on the version space. As
new training examples are seen, the boundaries
are generalized or specialized to maintain consis-
tency. If a new positive example is not covered
by a hypothesis in S , then it must be generalized.
If a new negative example is not rejected by an
hypotheses inG, then it must be specialized. Any
hypothesis in G not consistent with a positive
example is removed and any hypothesis in S

not consistent with a negative example is also
removed. See Algorithm 1.

Noisy Data

Up to this point, we have assumed that the train-
ing data are free of noise. That is, all the examples
are correctly classified and all the attribute values
are correct. Once we relax this assumption, the
algorithms described above must be modified to
use approximate measures of consistency. The
danger presented by noisy data is that the learning
algorithm will over fit the training data by creat-
ing concept descriptions that try to cover the bad
data as well as the good. For methods to handle
noisy data see the entries in � pruning.

Several standard texts give good introductions
to search in learning, including Langley (1996),
Mitchell (1997), Bratko (2000), and Russell and
Norvig (2009).

Cross-References

�Decision Tree
�Generalization
� Induction
� Instance-Based Learning
�Logic of Generality
�Rule Learning
� Subsumption

Recommended Reading

Aha DW, Kibler D, Albert MK (1991) Instance-based
learning algorithms. Mach Learn 6(1):37–66

Bratko I (2000) Prolog programming for artificial in-
telligence, 3rd edn. Addison-Wesley, Boston

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3(4):261–283

Langley P (1996) Elements of machine learning. Mor-
gan Kaufmann, San Mateo

Michalski RS (1983) A theory and methodology of
inductive learning. In R. S

Michalski RS, Carbonell JG, Mitchell TM (eds)
(1983) Machine learning: an artificial intelligence
approach. Tioga, Palo Alto

Mitchell TM (1977) Version spaces: a candidate elimi-
nation approach to rule-learning. In: Proceedings of
the fifth international joint conference on artificial
intelligence, Cambridge, pp 305–310

Mitchell TM (1982) Generalization as search. Artif
Intell 18(2):203–226

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_800

708 Learning Bayesian Networks

Plotkin GD (1970) A note on inductive generalization.
In: Meltzer B, Michie D (eds) Machine intelligence,
vol 5, pp 153–163. Edinburgh University Press,
Edinburgh

Russell S, Norvig P (2009) Artificial intelligence: a
modern approach, 3rd edn. Prentice Hall, Engle-
wood cliffs

Learning Bayesian Networks

�Learning Graphical Models

Learning Bias

� Inductive Bias

Learning by Demonstration

�Behavioral Cloning

Learning by Imitation

�Behavioral Cloning

Learning Classifier Systems

�Classifier Systems

Learning Control

Learning control refers to the process of acquir-
ing a control strategy for a particular control
system and a particular task by trial and error.
Learning control is usually distinguished from
adaptive control in that the learning system is
permitted to fail during the process of learning. In
contrast, adaptive control emphasizes single trial
convergence without failure. Thus, learning con-
trol resembles the way that humans and animals
acquire new movement strategies, while adaptive

control is a special case of learning control that
fulfills stringent performance constraints, e.g., as
needed in life-critical systems like airplanes and
industrial robots. In general, the control system
can be any system that changes its state in re-
sponse to a control signal, e.g., a web page with a
hyperlink, a car, or a robot.

Learning Control Rules

�Behavioral Cloning

Learning Curves in Machine
Learning

Claudia Perlich
IBM T.J. Watson Research Center, Yorktown
Heights, NY, USA

Synonyms

Error curve; Experience curve; Improvement
curve; Training curve

Definition

A learning curve shows a measure of predictive
performance on a given domain as a function of
some measure of varying amounts of learning
effort. The most common form of learning curves
in the general field of machine learning shows
predictive accuracy on the test examples as a
function of the number of training examples as
in Fig. 1.

Motivation and Background

Learning curves were initially introduced in
educational and behavioral/cognitive psychology.
The first person to describe the learning curve
was Hermann Ebbinghaus in 1885 (Wozniak

http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_100140
http://dx.doi.org/10.1007/978-1-4899-7687-1_100160
http://dx.doi.org/10.1007/978-1-4899-7687-1_100210
http://dx.doi.org/10.1007/978-1-4899-7687-1_100478

Learning Curves in Machine Learning 709

L

Number of Training Examples

P
re

di
ct

io
n

A
cc

ur
ac

y

Learning Curves in Machine Learning, Fig. 1 Stylized
learning curve showing the model accuracy on test exam-
ples as a function of the number of training examples

1999). He found that the time required to
memorize a nonsense syllable increased sharply
as the number of syllables increased. Wright
(1936) described the effect of learning on labor
productivity in the aircraft industry and proposed
a mathematical model of the learning curve. Over
time, the term has acquired related interpretation
in many different fields including the above
definition in machine learning and statistics.

Use of Learning Curves in Machine
Learning

In the area of machine learning, the term “learn-
ing curve” is used in two different contexts, the
main difference being the variable on the x-axis
of the curve.

• The � artificial neural network (ANN) litera-
ture has used the term to show the diverging
behavior of in and out-of-sample performance
as a function of the number of training itera-
tions for a given number of training examples.
Figure 2 shows this stylized effect.

• General machine learning uses learning curves
to show the predictive � generalization perfor-
mance as a function of the number of training
examples. Both the graphs in Fig. 3 are exam-
ples of such learning curves.

Training Iterations

P
re

d
ic

ti
o

n
 E

rr
o

r

Generalization error

Training error

Early stopping

Learning Curves in Machine Learning, Fig. 2
Learning curve for an artificial neural network

Artificial Neural Networks
The origins of ANNs are heavily inspired by the
social sciences and the goal of recreating the
learning behavior of the brain. The original model
of the “perceptron” mirrored closely the biolog-
ical foundations of neural sciences. It is likely
that the notion of learning curves was to some
extent carried over from the social sciences of
human learning into the field of ANNs. It shows
the model error as a function of the training time
measured in terms of the number of iterations.
One iteration denotes in the context of neural
network learning one single pass over the training
data and the corresponding update of the network
parameters (also called weights). The algorithm
uses gradient descent minimizing the model error
on the training data.

The learning curve in Fig. 2 shows the stylized
effect of the relative training and generalization
error on a test set as a function of the number of
iterations. After initial decrease of both types of
error, the generalization error reaches a minimum
and starts to increase again while the training
error continues to decrease.

This effect of increasing generalization error
is closely related to the more general machine
learning issue of � overfitting and variance error
for models with high expressive power (or capac-
ity). One of the initial solutions to this problem
for neural networks was early stopping – some
form of early regularization technique that picked
the model at the minimum of the error curve on a

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_329
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

710 Learning Curves in Machine Learning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000 14000 16000

 A
cc

ur
ac

y

Sample Size

Learning Curve of Californian Housing Data

Decision Tree
Logistic Regression

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

10 100 1000 10000 100000

 A
cc

ur
ac

y

Sample Size

Learning Curve of Californian Housing Data

Decision Tree
Logistic Regression

Learning Curves in Machine Learning, Fig. 3 Typical learning curves in original and log scale;

validation subset of the data that was not used for
training.

General Machine Learning
In the more general machine learning setting
and statistics (Flury and Schmid 1994), learning
curves represent the generalization performance
of the model as a function of the size of the
training set.

Figure 3 was taken from Perlich et al. (2003)
and shows two typical learning curves for two
different modeling algorithms (� decision tree
and � logistic regression) on a fairly large do-
main. For smaller training-set sizes the curves
are steep, but the increase in accuracy lessens
for larger training-set sizes. Often for very large
training-set sizes the standard representation in
the upper graph obscures small, but non-trivial,
gains. Therefore, to visualize the curves it is

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_951

Learning from Preferences 711

L

often useful to use a log scale on the horizontal
axis and start the graph at the accuracy of the
smallest training-set size (rather than at zero). In
addition, one can include error bars that capture
the estimated variance of the error over multiple
experiments and provide some impression of the
relevance of the differences between two learning
curves as shown in the graphs.

The figure also highlights a very important
issue in comparative analysis of different mod-
eling techniques: learning curves for the same
domain and different models can cross. This
implies an important pitfall as pointed out by
Kibler and Langley (1988): “Typical empirical
papers report results on training sets of fixed size,
which tells one nothing about how the methods
would fare given more or less data, rather than
collecting learning curves � � � ”. A corollary on the
above observation is the dangers of selecting an
algorithm on a smaller subset of the ultimately
available training data either in the context of a
proof of concept pre-study or some form of cross-
validation.

Aside from its empirical relevance there has
been significant theoretical work on learning
curves – notably by Cortes et al. (1994). They
are addressing the question of predicting the
expected generalization error from the training
error of a model. Their analysis provides many
additional insights about the generalization
performance of different models as a function
of not only training size but in addition the model
capacity.

Cross-References

�Artificial Neural Networks
�Decision Tree
�Generalization Performance
�Logistic Regression
�Overfitting

Recommended Reading

Cortes C, Jackel LD, Solla SA, Vapnik V, Denker JS
(1994) Learning curves: asymptotic values and rate
of convergence. Adv Neural Inf Process Syst 6:327–
334

Flury BW, Schmid MJ (1994) Error rates in quadratic
discrimination with constraints on the covariance
matrices. J Classif 11:101–120

Kibler D, Langley P (1988) Machine learning
as an experimental science. In: Proceedings of
the third European working session on learning,
Pittman, Glasgow. Kluwer Academic, Hingham,
pp 81–92

Perlich C, Provost F, Simonoff J (2003) Tree induction
vs. logistic regression: a learning-curve analysis. J
Mach Learn Res 4:211–255

Shavlik JW, Mooney RJ, Towell GG (1991) Symbolic
and neural learning algorithms: an experimental
comparison. Mach Learn 6:11–143

Wozniak RH (1999) Introduction to memory: Hermann
Ebbinghaus (1885/1913). In: Classics in the history
of psychology. Thoemmes Press, Bristol

Wright TP (1936) Factors affecting the cost of air-
planes. J Aeronaut Sci 3(4):122–128

Learning from Complex Data

�Learning from Structured Data

Learning from Labeled and
Unlabeled Data

� Semi-supervised Learning
� Semi-supervised Text Processing

Learning from Non-Propositional
Data

�Learning from Structured Data

Learning from Nonvectorial Data

�Learning from Structured Data

Learning from Preferences

� Preference Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_329
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_667

712 Learning from Preferences

Learning from Structured Data

Tamás Horváth and Stefan Wrobel
Fraunhofer IAIS, Schloss Birlinghoven,
University of Bonn, Sankt Augustin, Germany

Synonyms

Learning from complex data; Learning from
non-propositional data; Learning from nonvecto-
rial data

Definition

Learning from structured data refers to all those
learning tasks where the objects to be considered
as inputs and/or outputs can usefully be thought
of as possessing internal structure and/or as being
interrelated and dependent on each other, thus
forming a structured space. Typical instances of
data in structured learning tasks are sequences as
they arise, e.g., in speech processing or bioin-
formatics, and trees or general graphs such as
syntax trees in natural language processing and
document analysis, molecule graphs in chem-
istry, relationship networks in social analysis, and
link graphs in the World Wide Web. Learning
from structured data presents special challenges,
since the commonly used feature vector rep-
resentation and/or the i.i.d. (independently and
identically distributed data) assumption are no
longer applicable. Different flavors of learning
from structured data are represented by (overlap-
ping) areas such as � Inductive Logic Program-
ming, � Statistical Relational Learning, proba-
bilistic relational and logical learning, learning
with structured outputs, sequence learning, learn-
ing with trees and graphs, � graph mining, and
� collective classification.

Motivation and Background

For a long time, learning algorithms had almost
exclusively considered data represented in rectan-
gular tables defined by a fixed set of columns and

a number of rows corresponding to the number
of objects to be described. In this representation,
each row independently and completely describes
one object, each column containing the value
of one particular property or feature of the ob-
ject. Correspondingly, this representation is also
known as feature vector representation, proposi-
tional representation, or vectorial data represen-
tation. Statistically, in such a representation, the
values in each row (i.e., the objects) are assumed
to be drawn i.i.d. from a fixed (but unknown)
distribution.

However, when working with objects that are
interrelated and/or have internal structure, this
representation is no longer adequate. Consider
representing chemical molecules with varying
numbers of atoms and bonds in a table with a
fixed number of columns. If we wanted each
molecule to correspond to one row, we would
have to fit the atoms and bonds into the columns,
e.g., by reserving a certain number of columns for
each one of them and their respective properties.
To do that however, we would have to make the
table wide enough to contain the largest possible
molecule, resulting in many empty columns for
smaller molecules, and by mapping the compo-
nent atoms and bonds to columns, we would
assign an order to them that would not be jus-
tified by the underlying problem and that would
consequently mislead any feature vector learning
algorithm.

The second issue with structured data arises
from objects that are interrelated. Consider, e.g.,
the task of speech recognition, i.e., learning to
map an acoustic unit into the corresponding lex-
ical unit. Clearly, to solve this task, one must
consider the sequence of such units, since both on
the input and the output sides the probability of
observing a particular unit will strongly depend
on the preceding or subsequent units. The same is
true, e.g., in classifying pages in the World Wide
Web, where it is quite likely that the classification
of the page will correlate with the classifications
of neighboring pages. Therefore, any learning
algorithm that would regard acoustic units or
pages as independent and identically distributed
objects is destined to fail, since for a successful
solution the interdependencies must be modeled
and exploited.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100251
http://dx.doi.org/10.1007/978-1-4899-7687-1_100254
http://dx.doi.org/10.1007/978-1-4899-7687-1_100255
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_44

Learning from Structured Data 713

L

In machine learning, even though there has
been interest in structured representation from
the very beginning of the 1970s (cf. the systems
Arch (Winston 1975) or INDUCE (Michalski
1983)), it was only in the 1990s, triggered by the
popularity of logic programming and Horn clause
representation, that learning from structured data
was more intensively considered for logical rep-
resentations in the subfield of Inductive Logic
Programming. Outside of (what was then) ma-
chine learning, due to important applications such
as speech processing, probabilistic models for
sequence data such as �Hidden Markov Mod-
els have been considered much earlier. Toward
the end of the 1990s, given an enormous surge
of interest in applications in bioinformatics and
the World Wide Web, and technical advances
resulting from the integration of probabilistic and
statistical approaches into machine learning (e.g.,
�Graphical Models and � kernel methods), work
on learning from structured data has taken off
and now represents a significant part of machine
learning research in overlapping subareas such as
Inductive Logic Programming, Statistical Rela-
tional Learning, probabilistic relational and logi-
cal learning, learning with structured outputs, se-
quence learning, learning with trees and graphs,
graph mining, and collective inference.

Main Tasks and Solution Approaches

A particular problem setting for learning from
structured data is given by specifying, among
others, (1) the language representing the input
and output of the learning algorithms, (2) the
type of the input and/or output data, and (3) the
learning task.

1. Beyond attribute-value representation, the
most intensively investigated representation
languages used in learning are �First-Order
Logic, in particular, the fragment of first-
order Horn clauses, and labeled graphs.
Although labeled graphs can be considered
as special relational structures and thus form a
special fragment of first-order logic, these
two representation languages are handled
separately in machine learning. As an example

of first-order representation of labeled graphs,
the molecular graph of a benzene ring can be
represented as follows:

atom(a1,carbon).,. . . ,atom(a6,carbon).,
atom(a7,hydrogen).,. . . ,atom(a12,hydrogen).,
edge(a1,a2,aromatic).,. . . ,edge(a6,a1,arom-

atic).,
edge(a1,a7,single).,. . . ,edge(a6,a12,single).,
edge(X ,Y) edge(Y ,X).

The molecular graph of benzene rings
(carbon atoms are unmarked)

H

H

H

H

H

H

Besides complexity reasons, the above two
representation languages are motivated also
by the difference in the matching operators
typically used for these two representations.
While in case of first-order logic, the matching
operator is defined by logical implication or
by relational homomorphism (often referred
to as subsumption), which is a decidable, but
thus, incomplete variant of logical implica-
tion, in case of labeled graphs it is defined
by subgraph isomorphism (i.e., by injective
homomorphism).

2. Another component defining a task for
learning from structured data is the type
of the input and/or output data (see
�Observation Language and �Hypothesis
Language). For the input, two main types
can be distinguished: the instances are
disjoint structures (structured instances)
or substructures of some global structure
(structured instance space). Molecular graphs
formed by the atom-bond structure of
chemical compounds are a common example
of structured instances. For structured instance
spaces, the web graph provides an example
of a global structure; for this case, the
set of instances corresponds to the set of
vertices formed by the web sites. The primary
goal of traditional discriminative learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_372

714 Learning from Structured Data

is to approximate unknown target functions
mapping the underlying instance space to
some subset of the set of real numbers.
In some of the applications, however, the
elements of the range of the target function
must also be structured. Such problems are
referred to as learning in structured output
spaces. As an example of structured output,
we mention the protein secondary structure
prediction problem, where the goal is to
approximate the function mapping the primary
structures of proteins to their secondary
structures. Notice that primary and secondary
structures can be represented by strings, which
in turn can be considered as labeled directed
paths.

3. Finally, the third component defining a
problem setting is the learning task. Besides
the classical learning tasks (e.g., supervised,
semisupervised, unsupervised, transductive
learning etc.), recent tasks include new
problems such as, e.g., learning preferences
(i.e., a directed graph, where an edge from
vertex u to vertex v denotes that v is preferred
to u), learning rankings (i.e., when the target
preference relation must be a total order), etc.

Several classes of algorithms have been de-
veloped for the problem settings defined by the
above components. � Propositionalization tech-
niques (e.g., as in LINUS (Lavrac et al. 1991))
first transform the structured data into a single
table of fixed width by extracting a large num-
ber of propositional features and then use some
propositional learner.

Non-propositionalization rule-based ap-
proaches follow mainly general-to-specific (top–
down) or specific-to-general (bottom-up) search
strategies. For top–down search (e.g., as in
FOIL (Quinlan 1990)), the crucial step of the
algorithms is the definition of the refinement
operators. While for graph structured data the
specialization relation on the hypothesis space
is usually defined by subgraph isomorphism
and is therefore a partial order, for First-Order
Logic it is typically defined by subsumption and
is therefore only a preorder (i.e., antisymmetry
does not hold), leading to undesirable algorithmic

properties (e.g., incompleteness). For bottom–
up search (e.g., as in GOLEM (Muggleton and
Feng 1992)), which is less common for graph
structured data, the generalization of hypotheses
is usually defined by some variant of Plotkin’s
Least General Generalization operator for first-
order clauses. While this generalization operator
has nice algebraic properties, its application
raises severe complexity issues, as the size of
the hypotheses may exponentially grow in the
number of examples.

Recent research in structural learning has been
focusing very strongly on distance- and kernel-
based approaches which in terms of accuracy
have often turned out superior to rule-based ap-
proaches (e.g., in virtual screening of molecules).
In such approaches, the basic algorithms carry
over unchanged from the propositional case; in-
stead, special distance (e.g., as in RIBL (Emde
and Wettschereck 1996)) or kernel functions for
structural data are developed. Since even for
graphs, computing any complete kernel (i.e., for
which the underlying embedding function into
the feature space is injective) is at least as hard as
the graph isomorphism problem, most practical
and efficient kernels are based on examining the
structure for the occurrence of simpler parts (e.g.,
trees, walks, paths, and cycles) which are then
counted and effectively used as feature vectors in
an intersection kernel.

Finally, as a recent class of approaches, we
also mention Statistical Relational Learning
which extends probabilistic Graphical Models
(e.g., Bayesian networks or Markov networks)
with relational and logic elements (e.g., as in
Alchemy (Domingos and Richardson 2007), ICL
(Poole 2008), PRISM (Sato and Kameya 2008)).

Applications

Virtual compound screening is a representative
application example of learning from structured
data. This computational problem in pharmaceu-
tical research is concerned with the identification
of chemical compounds that can be developed
into drug candidates. Since current pharmaceu-
tical compound repositories contain millions of

http://dx.doi.org/10.1007/978-1-4899-7687-1_686

Learning Graphical Models 715

L

molecules, the design of efficient algorithms for
virtual compound screening has become an in-
tegral part of computer-aided drug design. One
of the branches of the learning algorithms con-
cerned with this prediction problem is based
on using the compounds’ 2D graph structures
formed by their atoms and bonds. Depending
on the representation of chemical graphs, this
branch of algorithms can further be classified
into logic and graph-based approaches. The first
class of algorithms, developed mostly in Induc-
tive Logic Programming, treats chemical graphs
as relational structures addressing the problem to
the context of learning in logic; the second class
of algorithms regards them as labeled graphs
addressing the problem to �Graph Mining.

Cross-References

�Hypothesis Language
� Inductive Logic Programming
�Observation Language
� Statistical Relational Learning
� Structured Induction

Recommended Reading

Cook D, Holder L (eds) (2007) Mining graph data.
Wiley, New York

De Raedt L (2008) From inductive logic programming
to multi-relational data mining. Springer, Heidel-
berg

Domingos P, Richardson M (2007) Markov logic: a
unifying framework for statistical relational learn-
ing. In Getoor L, Taskar B (eds) Introduction to sta-
tistical relational learning. MIT Press, Cambridge,
MA, pp 339–371

Emde W, Wettschereck D (1996) Relational instance
based learning. In: Saitta L (ed) Proceedings of the
13th international conference on machine learning.
Morgan Kaufmann, San Francisco, pp 122–130

Gärtner T (2003) A survey of kernels for structured
data. SIGKDD Explor 5(1):49–58

Getoor L, Taskar B (eds) (2007) Introduction to re-
lational statistical learning. MIT Press, Cambridge,
MA

Lavrac N, Dzeroski S, Grobelnik M (1991) Learning
nonrecursive definitions of relations with LINUS. In
Kodratoff Y (ed) Proceedings of the 5th European
working session on learning. Lecture notes in com-
puter science, vol 482. Springer, Berlin, pp 265–281

Michalski RS (1983) A theory and methodology of
inductive learning. In Michalski RS, Carbonell JG,
Mitchell TM (eds) Machine learning: an artificial in-
telligence approach. Morgan Kaufmann, San Fran-
cisco, pp 83–134

Muggleton SH, De Raedt L (1994) Inductive logic
programming: theory and methods. J Logic Program
19,20:629–679

Muggleton SH, Feng C (1992) Efficient induction
of logic programs. In: Muggleton S (ed) Induc-
tive logic programming. Academic Press, London,
pp 291–298

Poole D (2008) The independent choice logic and
beyond. In: De Raedt L, Frasconi P, Kersting K,
Muggleton S (eds) Probabilistic inductive logic pro-
gramming: theory and application. Lecture notes in
artificial intelligence, vol 4911. Springer, Berlin

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5(3):239–266

Sato T, Kameya Y (2008) New advances in logic-based
probabilistic modeling by PRISM. In De Raedt L,
Frasconi P, Kersting K, Muggleton S (eds) Prob-
abilistic inductive logic programming: theory and
application. Lecture notes in artificial intelligence,
vol 4911. Springer, Berlin, pp 118–155

Winston PH (1975) Learning structural descriptions
from examples. In: Winston PH (ed) The psychol-
ogy of computer vision. McGraw-Hill, New York,
pp 157–209

Learning Graphical Models

Kevin B. Korb
Clayton School of Information Technology,
Monash University, Clayton, VIC, Australia

Abstract

Learning graphical models has become an
important part of data mining and data science.
Here we survey some of the more impor-
tant techniques and concepts, including causal
models and causal discovery, statistical equiv-
alence, Markov Blanket discovery and knowl-
edge engineering.

Synonyms

Bayesian model averaging; Causal discovery;
Dynamic Bayesian network; Learning Bayesian
networks

http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_796
http://dx.doi.org/10.1007/978-1-4899-7687-1_100038
http://dx.doi.org/10.1007/978-1-4899-7687-1_100049
http://dx.doi.org/10.1007/978-1-4899-7687-1_100125
http://dx.doi.org/10.1007/978-1-4899-7687-1_100245

716 Learning Graphical Models

Definition

Learning graphical models (see Graphical Mod-
els) means to learn a graphical representation of
either a causal or probabilistic model containing
the variables Xj 2 fXig. Although graphical
models include more than directed acyclic graphs
(DAGs), we shall focus here on learning DAGs,
as that is where the majority of research and
application is taking place.

Definition 1 (Directed acyclic graph (DAG))
A directed acyclic graph (DAG) is a set of
variables (nodes, vertices) fXig and a set of
directed arcs (edges) between them such that
following the arcs in their given direction can
never lead from a variable back to itself.

DAGs parameterized to represent probability dis-
tributions are otherwise known as Bayesian net-
works. Some necessary concepts and notation for
discussing the learning of graphical models is
given in Table 1.

A key characteristic of multivariate probabil-
ity distributions is the conditional independence
structure they give rise to, i.e., the complete list
of statements of the form

XA ˆ XB jXC

true of the distribution. The goal of learning
DAGs is to learn a minimal DAG representation
of the conditional independence structure for a
distribution satisfying the Markov condition:

Definition 2 (Markov condition) A DAG satis-
fies the Markov condition relative to a probability
distribution if and only if for allXi andXj 62 �Xi

in the DAG Xi ˆ Xj j�Xi
so long as Xj is not a

descendant of Xi (i.e., Xj is not in the transitive
closure of the parent relation starting from Xi).

DAGs which violate the Markov condition
are not capable of fully representing the relevant
probability distribution. Upon discovering such a
violation, the normal response is to fix the model
by adding missing arcs. In the causal discovery
literature, this condition is often referred to as the
causal Markov condition, which simply means
the arcs are being interpreted as representing
causal relationships and not merely as probabilis-
tic dependencies.

Definition 3 (Markov blanket) The Markov
blanket (MB) of a node Xi is the minimal set
XMB such that for all other nodes Xj in the
model Xi ˆ Xj jXMB.

The Markov blanket consists of a node’s parents,
children, and its children’s other parents.

Motivation and Background

Bayesian networks have enjoyed a substantial
success in thousands of diverse modeling, predic-
tion, and control applications, including medical
diagnosis, epidemiology, software engineering,
ecology and environmental management, agri-
culture, intelligence and security, finance, and

Learning Graphical Models, Table 1 Notation

Notation Description

Xi A random variable

X A set of random variables

fXig A set of random variables indexed by i 2 I

X D xj (or, xj) A random variable taking the value xj

p.x/ The probability that X D x

XA ˆ XB XA and XB are independent (i.e., p.XA/ D p.XAjXB/)

XA ˆ XB jXC XA and XB are conditionally independent given XC (i.e., p.XAjXC /Dp.XAjXB ; XC /)

XA 6ˆ XB XA and XB are dependent (i.e., p.XA/ 6D p.XAjXB/)

XA 6ˆ XB jXC XA and XB are conditionally dependent given XC (i.e., p.XAjXC / 6D p.XAjXB ; XC /)

�Xi
The set of parents of Xi in a DAG (i.e., nodes Y such that Y ! Xi)

Learning Graphical Models 717

L

marketing (see, e.g., http://www.norsys.com for
customers implementing such applications and
more). Many of these networks have been built
by the traditional process of “knowledge engi-
neering,” that is, by eliciting both structure and
conditional probabilities from human domain ex-
perts. That process is limited by the availabil-
ity of expertise and also by the time and cost
of performing such elicitation and subsequent
model validation. In domains where significant
quantities of data are available, it is pertinent to
consider whether automated learning of Bayesian
networks might either replace or compliment
knowledge engineering. A variety of techniques
for doing so have been developed, and the causal
discovery of Bayesian networks is by now an
important subindustry of data mining.

Theory

Probability and Causality
The key to learning Bayesian networks from
the sample data is the relation between causal
dependence and probabilistic dependence. This is
most easily understood in reference to undirected
chains of variables, as in Fig. 1.

Where the arcs in Fig. 1 represent causal de-
pendencies, then the probabilistic dependencies
are as the caption describes, that is, in common
causes and chains, the end nodes A and B are
rendered probabilistically independent of each
other given the knowledge of the state of C .
Contrariwise, when A and B are parents of a
common effect, and otherwise unrelated, they are
probabilistically independent given no informa-
tion (i.e., marginally independent), but become

dependent given the knowledge of C . This last
relationship is often called “explaining away,” be-
cause it corresponds to situations where, when al-
ready knowing the presence of, say, some symp-
tom C , the learning of the presence of a diseaseA
reduces our belief in some alternative explanation
B of the symptom.

These relationships between probabilistic de-
pendence and causal dependence are the key for
learning the causal structure of Bayesian net-
works because the sample data allow us to es-
timate probabilistic dependencies directly, and
the difference between conditional dependency
structures in Fig. 1a, b versus its opposite in
Fig. 1c allows automated learners to distinguish
between these different underlying causal pat-
terns. (This is related to d-separation in graphical
models.) This distinction is explicitly made use
of in constraint learners, but also implicitly used
by metric learners.

In addition to structure learning, parameter
learning is necessary, i.e., learning the conditional
probabilities of nodes given their parent values
(conditional probability tables). Straightforward
counting methods are frequently employed, al-
though expectation maximization, Gibbs sam-
pling, and other techniques may come into play
when the available data are noisy.

Statistical Equivalence
Two DAGs are said to be statistically equivalent
(or Markov equivalent) when they contain the
same variables, and each can be parameterized
so as to represent any probability distribution that
the other can represent. Verma and Pearl (1990)
proved that DAGs are statistically equivalent just
in case they have the same undirected arc struc-
tures and the identical set of uncovered common

A B

A C B
A B

C

C
a b c

Learning Graphical Models, Fig. 1 Causality and probabilistic dependence: (a) common cause with A ˆ BjC ;
(b) causal chain with A ˆ BjC ; (c) common effect with A 6 ˆ BjC

http://www.norsys.com

718 Learning Graphical Models

effects, i.e., common effects such as in Fig. 1c
where the two parents are not themselves directly
connected. They dubbed the set of statistically
equivalent models patterns; these can be rep-
resented using partially directed acyclic graphs
(PDAGs), i.e., graphs with some arcs left undi-
rected. Chickering (1995) showed that statisti-
cally equivalent models have identical maximum
likelihoods relative to any given set of data. This
latter result has suggested to many that causal
learning programs can have no reasonable am-
bition to learn anything other than patterns, that
is, any learner’s discrimination between DAGs
within a common pattern can only be based
upon prior probability (e.g., prejudice). This is
suggested, for example, by the fact that Bayesian
learning combines (by multiplying) prior proba-
bilities and likelihoods, so identical likelihoods
will always lead to identical conclusions should
the priors also be the same. We shall note some
reason to doubt this supposed limit to causal
discovery below.

Applications

Constraint Learners
The most direct application of the above ideas
to learning Bayesian networks is exhibited in
what may be called constraint learners. These
programs assess conditional independencies be-
tween paired sets of variables given some other
set of observed variables using statistical tests on
the data, eliminating all DAGs that are incompat-
ible with the independencies and dependencies
asserted by the statistical test. (For this reason
these programs are often called “conditional in-
dependence learners”; however that tag is mis-
leading, as is explained below.) The original such
algorithm, the IC algorithm of Verma and Pearl
(1990), can be described in simplified form as
three rules for constructing a network from Yes
or No answers to questions of the form “Is it the
case that X ˆ Y jW?”

Rule I: Put an undirected link between any
two variables X and Y if and only if
for every set of variables W s.t. X; Y 62W

X 6 ˆ Y jW;

i.e., X and Y are directly connected if and
only if they are dependent under every condi-
tioning set (including ;).

Rule II: For every undirected structure
X � Y � Z, orient the arcs X ! Y Z if
and only if

X 6 ˆ ZjW

for every W s.t. X;Z 62W and Y 2 Z,

i.e., Y is an uncovered common effect if
and only if the end variables X and Z are
dependent under every conditioning set that
includes Y .

Rule I is justified by the need to express the
probabilistic dependency betweenX and Y under
all possible circumstances. Rule II is justified
by the asymmetry in probabilistic dependencies
illustrated in Fig. 1.

Application of these two rules is then followed
by applying a Rule III, which just checks for any
arc directions that are forced by further consider-
ations, such as avoiding the introduction of cycles
or any uncovered common effects not already
identified in Rule II, and so not supported by the
conditional independence tests.

This algorithm was first put into practice in
the PC algorithm distributed as a part of the
TETRAD program (Spirtes et al. 1993). Aside
from introducing some algorithmic efficiencies,
PC adds orthodox statistical tests to answer the
conditional independence questions. In the case
of linear models, it uses a statistical significance
test for vanishing partial correlations, accepting
a dependence when and only when the test is
statistically significant. For discrete networks a
�2 test replaces the correlation test. Margari-
tis and Thrun further improve the algorithm’s
efficiency by limiting conditioning sets to the
Markov blankets of the variable under test (Mar-
garitis and Thrun 2000). The PC algorithm has
become the most widely used Bayesian network
learner, available in weka and many Bayesian
network modeling tools.

Learning Graphical Models 719

L

Metric Learners
Constraint learners attempt to build up a network
using a sequence of independent statistical tests.
One problem with them is that when one such
test gives an incorrect result, subsequent tests will
assume that result, with the potential for errors to
cascade. Metric learners, by contrast, use some
score applied to a network as a whole to assess it
relative to the data. The earliest of this kind, by
Cooper and Herskovits, turned the computation
of a Bayesian measure into a counting problem.
Under a number of fairly strong assumptions,
such as that children variable states are always
uniformly distributed given their parent states,
they derived the measure

P.d; e/

D P.d/

nY

kD1

s�.k/Y

jD1

.sk � 1/Š

.Skj C sk � 1/Š

skY

lD1

˛kjl Š

where d is the DAG being scored, e the data, n
the number of variables, sk the number of values
Xk may take, s�.k/ the number of values the
parents of Xk may take, Skj the number of cases
in the data where �k takes its j -th value, and
˛kjl is the number of cases where Xk takes its
l-th value and �k takes its j -th value. Cooper
and Herskovits proved that this measure can be
computed in polynomial time. Assuming the ad-
equacy of this probability distribution, computa-
tion of the joint probability suffices for Bayesian
learning, since by Bayes’ theorem, maximizing
P.d; e/ is equivalent to maximizing the posterior
probability of d . Cooper and Herskovits applied
this measure in the program K2, which required
as inputs both the data and a total ordering of the
variables. The latter input eliminates all problems
about discovering arc orientations, which could
be considered a cheat since, as the discussion
of the IC algorithm showed, this is a part of
the causal learning problem. Subsequently, Chow
and Liu’s (1968) maximum-weighted spanning
tree algorithm (MWST) has been used as a pre-
processor to K2, doing a reasonable job of finding
an ordering based upon the mutual information
between pairs of variables.

A wide variety of alternative metrics for DAGs
have been developed since K2. Heckerman et al.
(1994) generalized the K2 metric to incorporate
prior information, yielding BD (Bayesian met-
ric with Dirichlet priors). Other alternatives in-
clude minimum description length (MDL) scores
(Bouckaert 1993; Suzuki 1996, 1999), Bayesian
information criterion (BIC) (Cruz-Ramı́rez et al.
2006), and minimum message length (MML)
(Wallace et al. 1996; Korb and Nicholson 2011).
Although all of these measures score the DAG as
a whole relative to some data set, they are just as
(or more) sensitive to the individual dependencies
and independencies between variables as are the
constraint learners. The difference between the
two types of learners is not whether they attend to
the sets of conditional independencies expressed
in the data, but whether do so serially (which the
constraint learners do) or collectively (as do the
metric learners).

The question naturally arises whether con-
straint learners as a class are superior to met-
ric learners or vice versa or, indeed, in which
individual learner might be best. There is no
settled answer to such questions, nor, in fact, is
there any agreement about how such questions
are best settled, even for fixed domains or data
sets. Perhaps the issue is more general than that of
learning Bayesian networks, since the fundamen-
tal theory of machine learning evaluation seems
to be massively underdeveloped (see Algorithm
Evaluation). In consequence, while nearly every
new publication claims superiority in some sense
for its preferred algorithm, the evidential basis
for such claims remains a suspect. It is clear
nonetheless that many of the programs available
are helpful with data analysis and are being so
applied.

Search and Complexity
The space of DAGs is superexponential in the
number of variables, making the learning process
hard; it is NP-hard to be exact (Chickering et al.
2004). In practice there are limits to the effective-
ness of each algorithm, imposed by the number
of variables (see Dimensionality Reduction), the
number of joint states the variables may take,

720 Learning Graphical Models

and the amount of data. The known limitations
for different algorithms are scattered throughout
the literature. This and the next section introduce
some ideas for scaling up causal discovery.

Greedy search has frequently been used with
both constraint-based and metric-based learning.
The PC algorithm, searching the space of pat-
terns, is an example, as it starts with a fully
connected graph and searches greedily for arcs to
remove. Chickering and Meek’s greedy equiva-
lence search (GES) is another greedy algorithm
operating in the pattern space (Chickering and
Meek 2002). Cooper and Herskovits’ K2 is also
a greedy searcher, adding arcs so long as single
arc additions increase the probability score for
the network. Bouckaert adopted this approach
with his MDL score (Bouckaert 1993). Greedy
searches, of course, tend to get lost in local
maxima, and Suzuki loosened the search method
for his MDL scoring, using branch and bound
(Suzuki 1999).

Genetic algorithms (GAs) have been suc-
cessfully applied to learning Bayesian networks.
Larrañaga et al. used GAs over the space of total
orderings to maximize the K2 score (Larrañaga
et al. 1996); Neil and Korb developed a GA
searching the DAG space to maximize the MML
score (Neil and Korb 1999). A similar approach
using MDL is found in Wong et al. (1999).

Markov chain Monte Carlo (MCMC) searches
perform stochastic sampling over the model
space and have become a popular technique for
Bayesian network learning. Gibbs sampling is
used in Chickering and Heckerman (1997), where
they compare a number of different metrics (and
incorrectly conflate BIC and MDL scores; see
Cruz-Ramı́rez et al. 2006) for learning a restricted
class of Bayesian networks. Another MCMC
approach, the Metropolis-Hastings algorithm,
has been to estimate the posterior probability
distribution over the space of total orderings,
using the MML score (Korb and Nicholson 2011,
Chap 8).

An approach to coping with search complexity
is to use an anytime algorithm, that is, one which
at any given time can be stopped to yield a
best-so-far result. Yuan and Malone describe an

anytime version of A� search using metrics for
BN discovery (Yuan and Malone 2013). The
same authors show that a heuristic window A�

has reasonable efficiency; optimality is not guar-
anteed, but the algorithm can report a maximum
distance from the optimal BN (Malone and Yuan
2013).

An alternative to model selection – searching
for the single best model – is Bayesian model
averaging, that is, searching for a set of models
and weights for each of them Chickering and
Heckerman (1997). And an alternative to that is
to find a single Bayesian network that is equiva-
lent to an averaged selection of networks (Dash
and Cooper 2004).

Markov Blanket Discovery
Recently interest has grown in algorithms to
learn, specifically, the Markov blankets around
individual variables, which is a special kind of
feature selection problem (see Feature Selection).
This approach can help deal with “Big Data”:
whether the “curse of dimensionality” (too many
variables) or extremely large data sets.

One use for this is in prediction: since the
MB renders all other variables conditionally in-
dependent of a target variable, finding the MB
means having all the variables required for an op-
timal predictor. Koller and Sahami developed an
approximate Markov blanket filtering approach
for prediction (Koller and Sahami 1996); Saeed
improved the efficiency of this approach (Saeed
2008). Tsamardinos et al. describe the max-min
hill climbing (MMHC) algorithm for MB dis-
covery (Tsamardinos et al. 2006). Nägele et al.
apply this to learning in very high-dimensional
spaces (Nägele et al. 2007). Given the MB for a
target variable, one can simply apply regression
techniques (or any predictive technique) to the
discovered variables. This works fine for standard
prediction, but does not generalize to situations
where some of the predictor variables are ex-
ternally modified rather than observed. For an
interesting collection of papers mostly applying
some kind of Markov blanket discovery approach
to prediction, see the collection (Guyon et al.
2008).

Learning Graphical Models 721

L

One can also apply MB discovery to causal
learning, employing causal discovery within the
reduced set of variables in the Markov blanket.
Iterating this will yield multiple causal subnet-
works, when a global causal network might be
stitched together from them, as Aliferis et al. do
with their HHC algorithm (Aliferis et al. 2010b),
completing the whole causal discovery process
while evading complexity problems. A current
review of the issues and techniques can be found
in two companion articles by Aliferis et al.
(2010a, b).

Knowledge Engineering with Bayesian
Networks
Another approach to dealing with the complexity
and tribulations of global causal discovery is to
aid the discovery process with prior informa-
tion. Bayesian inference is, after all, done by
combining priors with likelihoods, and the priors
need not always be perfectly flavorless, such as
uniform priors over the DAG space. In almost all
applications where data threaten to overwhelm
automated discovery, there is also at least some
expertise, if only the ability to say, for example,
that the sex of a patient is determined before adult
lifestyle practices are adopted. Such temporal
information provided to a discovery algorithm
can provide a huge boost to the discovery process.

This quite simple kind of prior information,
the temporal tiers within which the variables
may be allocated, has been available in many
of the discovery programs for a long time. PC,
for example, allows tiers to be specified. K2
more restrictively required a total ordering of the
variables. The methods described by Heckerman
et al. (1994) go beyond tiers. They provide for
the specification of a network or subnetwork; the
prior probability of any network in the search
space can be computed according to its distance
from the network provided. They also introduced
the idea of equivalent sample size, i.e., the weight
to be given the prior information relative to the
data, meaning that their priors are soft (proba-
bilistic) rather than hard constraints. O’Donnell
et al. (2006) adapted their MML score to allow
soft priors for tiers, dependencies, direct and

indirect causal relations, and networks or subnet-
works, with variable degrees of confidence.

The flexible combination of prior information
(expertise) with data in the causal discovery pro-
cess allows for a fully fledged knowledge engi-
neering process in the construction of Bayesian
networks. Experts may be consulted for structural
or parametric information, data may be gath-
ered, and these different contributions may be
weighted or reweighted according to the results
of sensitivity analyses or other tests. The result
can be a much faster and more useful approach
to building and applying Bayesian networks. Re-
search continues in this useful area of incorporat-
ing prior information, e.g., in Borboudakis et al.
(2011).

Causal discovery with meaningful priors, by
the way, shows that limiting discovery to pat-
terns is insufficient: better priors, or better use of
priors, can make a significant difference within
patterns of DAGs.

Cross-References

�Anytime Algorithm
�Dimensionality Reduction
� Feature Selection
�Graphical Models
�Hidden Markov Models

Recommended Reading

The PC algorithm and variants were initially
documented in Spirtes et al. (1993); their second
edition Spirtes (2000) covers more ground. Their
TETRAD V program is available from their web
site http://www.phil.cmu.edu/projects/tetrad/. PC
is contained within (and is available also with the
weka machine learning platform at http://www.
cs.waikato.ac.nz/ml/weka/).
A well-known tutorial by David Heckerman
Heckerman (1999) (reprinted without change
in Heckerman (2008)) is well worth looking
at for background in causal discovery and
parameterizing Bayesian networks. A more
recent review of many of the topics introduced

http://dx.doi.org/10.1007/978-1-4899-7687-1_23
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://www.phil.cmu.edu/projects/tetrad/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

722 Learning Graphical Models

here is to be found in the article Daly et al. (2011).
For other good treatments of parameterization,
see Cowell et al. (1999) or Neapolitan (2003).
There are a number of useful anthologies in
the area of learning graphical models. Learning
in Graphical Models Jordan (1999) is one of
the best, including Heckerman’s tutorial and a
variety of excellent reviews of causal discovery
methods, such as Markov chain Monte Carlo
search techniques.
Textbooks treating the learning of Bayesian
networks include Borgelt and Kruse (2002);
Neapolitan (2003); Korb and Nicholson (2011);
Koller and Friedman (2009).

Aliferis CF, Statnikov A, Tsamardinos I, Mani S,
Koutsoukos XD (2010) Local causal and Markov
Blanket induction for causal discovery and feature
selection for classification part I: algorithms and
empirical evaluation. J Mach Learn Res 11:171–234

Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Kout-
soukos XD (2010) Local causal and Markov Blanket
induction for causal discovery and feature selection
for classification part II: analysis and extensions. J
Mach Learn Res 11:235–284

Borboudakis G, Triantafillou S, Lagani V, Tsamardinos
I (2011) A constraint-based approach to incorporate
prior knowledge in causal models. In: European
symposium on artificial neural networks, Computa-
tional Intelligence and machine learning, Bruges

Borgelt C, Kruse R (2002) Graphical models: methods
for data analysis and mining. Wiley, New York

Bouckaert R (1993) Probabilistic network construction
using the minimum description length principle.
Lect Notes Comput Sci 747:41–48

Chickering DM (1995) A tranformational characteriza-
tion of equivalent Bayesian network structures. In:
Besnard P, Hanks S (eds) Proceedings of the 11th
conference on uncertainty in artificial intelligence,
San Francisco, pp 87–98

Chickering DM, Heckerman D (1997) Efficient
approximations for the marginal likelihood of
Bayesian networks with hidden variables. Mach
Learn 29: 181–212

Chickering DM, Meek C (2002) Finding optimal
Bayesian networks. In: Proceedings of the eigh-
teenth annual conference on uncertainty in AI, San
Francisco, pp 94–102

Chickering DM, Heckerman D, Meek C (2004) Large-
sample learning of Bayesian networks is NP-hard. J
Mach Learn Res 5:1287–1330

Chow C, Liu C (1968) Approximating discrete prob-
ability distributions with dependence trees. IEEE
Trans Inf Theory 14:462–467

Cowell RG, Dawid AP, Lauritzen St L, Spiegelhalter
DJ (1999) Probabilistic networks and expert sys-
tems. Springer, New York

Cruz-Ramı́rez N, Acosta-Mesa HG, Barrientos-
Martı́nez RE, Nava-Fernández LA (2006) How
good are the Bayesian information criterion and the
Minimum Description length principle for model
selection? A Bayesian network analysis. Lect Notes
Comput Sci 4293:494–504

Daly R, Shen Q, Aitken S (2011) Learning Bayesian
networks: approaches and issues. Knowl Eng Rev
26: 99–157

Dash D, Cooper GF (2004) Model averaging for pre-
diction with discrete Bayesian networks. J Mach
Learn Res 5:1177–1203

Donnell RO, Nicholson A, Han B, Korb K, Alam M,
Hope L (2006) Causal discovery with prior informa-
tion. In: Australasian joint conference on artificial
intelligence, Auckland. Springer, pp 1162–1167

Guyon I, Aliferis C, Cooper G, Elisseeff A, Pellet J-P,
Spirtes P, Statnikov A (eds) (2008) In: JMLR work-
shop and conference proceedings: causation and
prediction challenge at WCCI 2008, Hong Kong,
vol 3. Journal of Machine Learning Research

Heckerman D (1999) A tutorial on learning with
Bayesian networks. In: Jordan M (ed) Learning in
graphical models, pp 301–354. MIT Press, Cam-
bridge

Heckerman D (2008) A tutorial on learning with
Bayesian networks. In: Holmes DE, Jain LC (eds)
Innovations in Bayesian networks. Springer, Berlin,
pp 33–82

Heckerman D, Geiger D, Chickering DM (1994)
Learning Bayesian networks: the combination of
knowledge and statistical data. In: de Mantras L,
Poole D (eds) Proceedings of the 10th conference on
uncertainty in artificial intelligence, San Francisco,
pp 293–301

Jordan MI (ed) (1999) Learning in graphical models.
MIT Press, Cambridge

Koller D, Friedman N (2009) Probabilistic graphical
models: principles and techniques. MIT, Cambridge

Koller D, Sahami M (1996) Toward optimal fea-
ture selection. In: Proceedings of the 13th in-
ternational conference on machine learning, Bari,
pp 284–292

Korb KB, Nicholson AE (2011) Bayesian artificial
intelligence, 2nd edn. CRC Press, Boca Raton

Larrañaga P, Kuijpers CMH, Murga RH, Yurramendi
Y (1996) Learning Bayesian network structures by
searching for the best ordering with genetic algo-
rithms. IEEE Trans Syst Man Cybern Part A 26:
487–493

Malone B, Yuan C (2013) Evaluating anytime algo-
rithsm for learning optimal Bayesian networks. In:
Nicholson A, Smyth P (eds) Proceedings of the 29th
conference on uncertainty in AI, Bellevue, pp 381–
390

Margaritis D, Thrun S (2000) Bayesian network in-
duction via local neighborhoods. In: Solla SA, Leen
TK, Müller KR (eds) Advances in neural informa-
tion processing systems, vol 12. MIT Press, Cam-
bridge, pp 505–511

Learning Models of Biological Sequences 723

L

Nägele A, Dejori M, Stetter M (2007) Bayesian
substructure learning-approximate learning of very
large network structures. In: Proceedings of the 18th
European conference on machine learning, Warsaw.
Lecture notes in AI, vol 4701, pp 238–249

Neapolitan RE (2003) Learning Bayesian networks.
Prentice Hall, Harlow

Neil JR, Korb KB (1999) The evolution of causal
models. In: Zhong N, Zhous L (eds) Third
Pacific-Asia conference on knowledge discovery
and datamining (PAKDD-99), Beijing. Springer,
pp 432–437

Saeed M (2008) Bernoulli mixture models for markov
blanket filtering and classification. In: Guyon I,
Aliferis C, Cooper G, Elisseeff A, Pellet J-P, Spirtes
P, Statnikov A (eds) JMLR workshop and confer-
ence proceedings: causation and prediction chal-
lenge (WCCI 2008), Hong Kong

Spirtes P, Glymour C, Scheines R (1993) Causation,
prediction and search. Number 81 in lecture notes
in statistics. Springer, New York

Spirtes P, Glymour C, Scheines R (2000) Causation,
prediction and search, 2nd edn. MIT Press, Cam-
bridge

Suzuki J (1996) Learning Bayesian belief networks
based on the minimum description length principle.
In: Saitta L (ed) Proceedings of the 13th interna-
tional conference on machine learning, Bari. Mor-
gan Kaufman, pp 462–470

Suzuki J (1999) Learning bayesian belief networks
based on the MDL principle: an efficient algorithm
using the branch and bound technique. IEEE Trans
Inf Syst 82:356–367

Tsamardinos I, Brown LE, Aliferis CF (2006) The
max-min hill-climbing Bayesian network structure
learning algorithm. Mach Learn 65(1):31–78

Verma TS, Pearl J (1990) Equivalence and synthesis
of causal models. In: Proceedings of the sixth con-
ference on uncertainty in AI, Cambridge. Morgan
Kaufmann, pp 220–227

Wallace CS, Korb KB, Dai H (1996) Causal discovery
via MML. In: Saitta L (ed) Proceedings of the 13th
international conference on machine learning, Bari.
Morgan Kaufman, pp 516–524

Wong ML, Lam W, Leung KS (1999) Using evo-
lutionary programming and minimum description
length principle for data mining of Bayesian net-
works. IEEE Trans Pattern Anal Mach Intell 21(2):
174–178

Yuan C, Malone B (2013) Learning optimal Bayesian
networks: a shortest path perspective. J Artif Intell
Res 48:23–65

Learning in Logic

� Inductive Logic Programming

Learning in Worlds with Objects

�Relational Reinforcement Learning

Learning Models of Biological
Sequences

William Stafford Noble1 and Christina Leslie2

1Department of Genome Science/Department of
Computer Science and Engineering, University
of Washington, Seattle, WA, USA
2Memorial Sloan Kettering Cancer Research
Center, New York, NY, USA

Abstract

The field of bioinformatics developed in the
1980s and 1990s, largely focusing on the com-
putational analysis of newly available collec-
tions of DNA and protein sequences. In this
context, a wide variety of machine learning
analysis methods have been developed to un-
derstand the evolutionary history and molecu-
lar biology function of such sequences.

Definition

Hereditary information is stored in the nucleus
of every living cell as biopolymers of deoxyri-
bonucleic acids (DNA). DNA thus encodes the
blueprint for all known forms of life. A DNA
sequence can be expressed as a finite string over
an alphabet of fA, C, G, Tg, corresponding to the
four DNA bases. The human genome consists of
approximately three billion bases, divided among
23 chromosomes.

During its life, each cell makes temporary
copies of short segments of DNA. These short-
lived copies are comprised of ribonucleic acid
(RNA). Each 3-mer of RNA can subsequently be
translated, via the universal genetic code, into one
of 20 amino acids. The resulting amino acid se-
quence is called a protein, and the DNA sequence
that encodes the protein is called a gene.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_726

724 Learning Models of Biological Sequences

Machine learning has been used to build mod-
els of many different types of biological se-
quences. These include models of short, func-
tional elements within DNA or protein sequences,
as well as models of genes, RNAs, and proteins.

Motivation and Background

Fundamentally, the motivation for building mod-
els of biological sequences is to understand the
molecular mechanisms of the cell and the molec-
ular basis for human disease. Each subheading
below describes a different type of model, each
of which attempts to capture a different facet
of the underlying biology. All of these models,
ultimately, aim to uncover either evolutionary or
functional relationships among sequences.

Although DNA and protein sequences were
available in small numbers as early as the 1950s,
a significant number of sequences were not avail-
able until the 1980s. Most of the advances in
model development started in the 1990s, with the
exception of phylogenetic models, which were
already being developed in the 1970s.

Structure of Learning System

Motifs
In the context of biological sequences, a “motif”
is a short (typically 6–20 letters) subsequence that
is functionally significant. A motif may corre-
spond to, e.g., the location along the DNA strand
where a particular protein binds or conversely the
location along the protein that binds to the DNA.
The motif can arise either via convergent evolu-
tion (when two sequences evolve to look similar
to one another) or via evolutionary conservation
(if sequences that lack the motif are likely to be
eliminated via natural selection).

Motif discovery is the problem of identifying a
previously unknown motif within a given collec-
tion of sequences, by finding patterns that occur
more often than one would expect by chance.
The problem is challenging in part because two
occurrences of a given motif may not resemble
each other exactly.

Work on motif discovery falls into two camps,
based upon how the motifs themselves are repre-
sented. One camp uses position-specific scoring
matrices (PSSMs), in which a motif of width w
over an alphabet of size A is represented as a
w-by-A probability matrix. In this matrix, each
entry represents the probability that a given letter
occurs at the given position. Early work in this
area used expectation-maximization to identify
protein motifs (Lawrence and Reilly 1990). This
effort was significantly extended in the MEME
algorithm (Bailey and Elkan 1994), which con-
tinues to be widely used today. A complementary
approach uses Gibbs sampling (Lawrence et al.
1993), which offers several benefits, including
avoiding local minima and the ability to sample
multiple motifs simultaneously.

The other motif discovery camp uses a dis-
crete motif representation, in which each motif
is represented as a consensus sequence plus a
specified maximum number of mismatches. In
this formalism, enumerative methods can guar-
antee solving a given problem to optimality. For
realistic problem sizes, this approach is most
applicable to DNA, because of its much smaller
alphabet size. One popular method of this kind
is Weeder (Pavesi et al. 2004), which performed
well in a comparison of motif discovery algo-
rithms (Tompa et al. 2005).

More recently, the generation of large-scale in
vitro binding data sets for DNA-binding proteins,
for example, using protein binding microarray
experiments, has renewed interest in algorithms
for learning transcription factor binding motifs
(Weirauch et al. 2013). These motifs may be
represented either as PSSMs or by more gen-
eral models based on k-length subsequences (“k-
mers”). Meanwhile, experimental data on in vivo
genomic binding of transcription factors based
on chromatin immunoprecipitation followed by
sequencing (ChIP-seq) has also been modeled
using k-mer based learning methods (Arvey et al.
2012).

Proteins
A central problem in computational biology
is the classification of proteins into functional
and structural classes given their amino acid

Learning Models of Biological Sequences 725

L

sequences. The 3D structure that a protein
assumes after folding largely determines
its function in the cell. However, directly
obtaining a protein’s 3D structure involves
difficult experimental techniques such as X-ray
crystallography or nuclear magnetic resonance,
whereas it is relatively easy to determine a
protein’s sequence. Through evolution, structure
is more conserved than sequence, so that
detecting even very subtle sequence similarities,
or remote homology, is important for predicting
function.

Since the early 1980s, researchers have de-
veloped a battery of successively more power-
ful methods for detecting protein sequence sim-
ilarities. This development can be broken into
three main stages. Early methods focused on
the pairwise comparison problem and assessed
the statistical significance of similarities between
two proteins based on pairwise alignment. These
methods are only capable of recognizing rela-
tively close homologies. The BLAST algorithm
(Altschul et al. 1990), based on heuristic align-
ment, and related tools are the most widely used
methods for pairwise sequence comparison and
database search today.

In the second stage, further accuracy was
achieved by collecting aggregate statistics from
a set of similar sequences and comparing
the resulting statistics to a single, unlabeled
protein of interest. One important example
of family-based models are profile hidden
Markov models (HMMs) (Krogh et al. 1994),
probabilistic generative models estimated from a
multiple alignment of sequences from a protein
family. Profile HMMs generate variable length
sequences by allowing insertions and deletions
relative to the core residues of the alignment.

The third stage introduced discriminative al-
gorithms based on classifiers like support vector
machines for protein classification and remote
homology detection. Such methods train both on
positive sequences belonging to a protein family
as well as negative examples consisting of se-
quences unrelated to the family. They require pro-
tein sequences to be represented using an explicit
feature mapping or a kernel function in order
to train the classifier. The first discriminative

protein classification algorithm was the SVM-
Fisher method (Jaakkola et al. 2000), which uses
a profile HMM to extract a feature vector of
Fisher scores for each input sequence x, defined
by the gradient vector

r� logP.xj�/j�D�0 ;

where logP.xj�/ is the log likelihood function
the sequence relative to the HMM and �0 is
the maximum likelihood estimate for the model
parameters. Another feature representation that
has been used is the empirical kernel map:

Φ.x/ D hs.x1; x/; : : : ; s.xm; x/i;

where s.x; y/ is a function depending on a pair-
wise similarity score between x and y and xi ,
i D 1 : : : m, are the training sequences (Liao
and Noble 2002). In addition, it is possible to
construct useful kernels directly without explic-
itly depending on generative models by using
subsequence-based string kernels. For example,
the mismatch kernel (Leslie et al. 2003) is de-
fined by a histogram-like feature map The fea-
ture space is indexed by all possible k-length
subsequences ˛ D a1a2 : : : ak , where each ai

is a character in the alphabet A of amino acids.
The feature map is defined on k-gram ˛ by
Φ.˛/ D .�ˇ .˛//Ak where �ˇ .˛/ D 1 if ˛ is
within m mismatches of ˇ, 0 otherwise, and is
extended additively to longer sequences: Φ.x/ DP

k�grams2x Φ.˛/.
One challenge in using the k-gram repre-

sentations is that computing sequence similar-
ity using this feature map can quickly become
computationally intractable (Leslie et al. 2003),
particularly when the number of mismatches m
is large or if the sequence alphabet grows beyond
the 20 basic amino acids to encode, for instance,
additional physical or chemical properties of the
protein sequence. To handle this problem, Kuksa
et al. (2008) introduced linear time algorithms
with alphabet-independent complexity applicable
to computation of a large class of existing string
kernels. The approach relies on the ability to
precompute, in closed form, the number of k-
grams that are at most m mismatches away from

726 Learning Models of Biological Sequences

two short strings ˛ and ˇ. These methods have
been subsequently extended from Hamming (i.e.,
match or no match) to arbitrary measures of
similarity S.a; b/ between elements a,b of each
k-gram (Kuksa et al. 2012).

Genes
After a genome (or a portion of a genome) has
been sequenced, a biologist’s first question is
usually, “Where are the genes?” In simple or-
ganisms, most of the genome is translated into
proteins, and so the gene-finding problem re-
duces, essentially, to identifying the boundaries
between genes. In more complex organisms, a
large proportion of the genome is comprised of
nonprotein coding DNA. The human genome,
for example, is comprised of approximately 98 %
noncoding DNA. This noncoding DNA is inter-
spersed between coding regions and even in the
midst of a single coding region. The gene-finding
problem, canonically, is to identify the regions of
a given DNA sequence that encode proteins.

Initial methods for gene finding combined
scores produced by different types of detectors.
A signal detector attempts to recognize local,
fixed-length features, such as characterize the
boundaries between coding and noncoding re-
gions within a single gene. A content detector
attempted to recognize larger patterns on the ba-
sis of compositional statistics. Early gene-finding
algorithms combined these various scores in an
ad hoc fashion to identify gene-like regions.

In the mid-1990s, several research groups be-
gan using HMMs for gene finding. HMMs pro-
vide a coherent, fully probabilistic method that
is capable of capturing many of the complexities
of real genes. An early, widely used method was
Genscan (Burge and Karlin 1997), which uses
fifth-order Markov statistics along with variable
duration HMMs. Next-generation gene finders
used conditional random field models (Bernal
et al. 2007) and large-margin structured output
techniques (Rätsch et al. 2007).

A more recent, unsupervised variant of the
gene-finding problem is semiautomated genome
annotation (Day et al. 2007). In this case, the
input is not the DNA sequence per se but a
collection of sequence-based measurements

arrayed along the genome, representing local
DNA conformation as well as properties of
proteins bound to the DNA. The task is to
simultaneously partition the genome and assign
an integer label to each segment in such a way
that segments with the same label have similar
data. The process is semiautomated because the
semantics of the labels – corresponding to genes,
regulatory elements, etc. – must be inferred
manually in a post-processing step.

RNAs
Most RNA molecules are so-called messenger
RNAs, which are used in the production of a cor-
responding protein molecule. Some RNAs, how-
ever, do not code for proteins but instead function
on their own. These RNAs fall into functional
categories, but they are not easily recognized by
HMMs because (1) the RNAs themselves are of-
ten very short, and (2) functional RNA typically
folds up in a deterministic fashion and therefore
exhibits nonlocal dependencies along the RNA
sequence.

Useful RNA modeling is therefore accom-
plished using covariance models, which are a
subclass of stochastic context-free grammars.
The foundational work in this area was due to
Eddy and Durbin (1994), who addressed both
the structure inference problem and the inference
of transition and emission probabilities given
the structure. They applied these algorithms to
transfer RNAs (tRNAs), and the approach was
the basis for widely used tools such as Rfam.

Much effort in RNA covariance models has
been devoted to improving the time and space
efficiency of the algorithms associated with co-
variance models. For example, Eddy (2002) in-
troduced a memory-efficient variant of the core
dynamic programming algorithm used to align a
covariance model to an RNA sequence. This im-
provement was practically important, since it re-
duced the O.N 3/ space requirement for a length
N RNA sequence. Other work has focused on
accelerating database search using the modeled
families.

Recent efforts have focused on algorithms
for genome-wide screens to discover functional
noncoding RNAs as well as small regulatory

Learning Models of Biological Sequences 727

L

RNAs like microRNAs. Various approaches to
this problem have incorporated conservation as
well as RNA structure prediction, both using
covariance models and other methodologies. One
such algorithm is RNAz (Washietl et al. 2005),
which combines a measure for thermodynamic
stability with a measure for structure conserva-
tion in an SVM approach to detect functional
RNAs in multiple sequence alignments.

Phylogenetic Models
Phylogenetic models attempt to infer the series of
evolutionary events (mutations, insertions, dele-
tions, etc.) that gave rise to an observed collection
of DNA or protein sequences. In most cases,
these models ignore the possibility of copying
DNA between individuals or species, and there-
fore represent the history as a phylogenetic tree,
in which leaf nodes represent the observed se-
quences and the internal nodes represent unob-
served ancestral sequences. Of primary interest is
inferring the topology and branch lengths of this
tree.

Methods for phylogenetic tree inference can
be divided into three classes: parsimony, distance,
and likelihood methods, all described in detail in
Felsenstein (2003).

Parsimony methods search for a tree that re-
quires the smallest number of mutations, inser-
tions, or deletions along its branches. Because
the search space of possible tree topologies is
so large, this approach is feasible only for rel-
ative small sets of sequences – tens rather than
hundreds. Also, because parsimony models do
not allow for so-called back mutations – where
a letter mutates to a different letter and then back
again – and other similar events, parsimony mod-
els are provably suboptimal for distantly related
sequences.

Distance methods replace parsimony with
a generalized notion of distance, which may
include back mutation. A series of increasingly
sophisticated distance metrics have been
developed in this domain, starting with the
one-parameter Jukes-Cantor model and the two-
parameter Kimura model. Given an all-versus-all
distance matrix, various tree inference algorithms
can be used, including neighbor joining and

agglomerative hierarchical clustering (called
UPGMA in phylogenetics).

The third class of models use a fully prob-
abilistic approach and attempt to infer the tree
with maximum likelihood, given the observed se-
quences. This approach was first outlined in 1973
(Felsenstein 1973), but was not computationally
feasible for large sets of sequences until recently.
Current methods employ Markov chain Monte
Carlo methods to carry out the search.

More recently, the so-called alignment-free
methods (Kuksa and Pavlovic 2009) have been
considered for the narrower problem of spec-
ies identification in the context of DNA bar-
coding. DNA barcoding was introduced as a
taxonomic tool for characterizing species using
fragments of a DNA sequence from standard
gene regions, such as the mitochondrial DNA
(mtDNA) (Hebert et al. 2003). These alignment-
free methods are similar in spirit to the discrimi-
native kernel approaches used for protein classi-
fication. They avoid the costly process of explicit
phylogenetic tree-building and instead focus on
more scalable identification of few species fami-
lies.

Programs and Data

Following are some of the more popular web sites
for performing biological sequence analysis:

• BLAST and PSI-BLAST (http://www.ncbi.
nlm.nih.gov/BLAST) search a protein or DNA
sequence with a given, query sequence, and
return a ranked list of homologs.

• MEME (http://meme.sdsc.edu) searches a
given set of DNA or protein sequences for one
or more recurrent motif patterns.

• HMMER (http://hmmer.janelia.org) is an
HMM toolkit for training and searching with
profile HMMs of proteins.

• Pfam (http://pfam.janelia.org) is a searchable
library of profile HMMs corresponding to a
curated collection of homologous protein do-
mains.

• Rfam (http://rfam.janelia.org) is an analogous
database of multiple sequence alignments and

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
http://meme.sdsc.edu
http://hmmer.janelia.org
http://pfam.janelia.org
http://rfam.janelia.org

728 Learning Models of Biological Sequences

covariance models covering many common
noncoding RNA families.

• PHYLIP (http://evolution.genetics.washington.
edu/phylip.html) is a free software toolkit
that includes many common phylogenetic
inference algorithms.

Recommended Reading

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ
(1990) A basic local alignment search tool. J Mol
Biol 215:403–410

Arvey A, Agius P, Noble WS, Leslie C (2012) Se-
quence and chromatin determinants of cell-type
specific transcription factor binding. Genome Res
22(9):1723–1734. PMC3431489

Bailey TL, Elkan CP (1994) Fitting a mixture model
by expectation-maximization to discover motifs in
biopolymers. In: Altman R, Brutlag D, Karp P,
Lathrop R, Searls D (eds) Proceedings of the second
international conference on intelligent systems for
molecular biology. AAAI Press, pp 28–36

Bernal A, Crammer K, Hatzigeorgiou A, Pereira F
(2007) Global discriminative learning for higher-
accuracy computational gene prediction. PLoS
Comput Biol 3(3):e54

Burge C, Karlin S (1997) Prediction of complete gene
structures in human genomic DNA. J Mol Biol
268(1):78–94

Day N, Hemmaplardh A, Thurman RE, Stamatoy-
annopoulos JA, Noble WS (2007) Unsupervised
segmentation of continuous genomic data. Bioinfor-
matics 23(11):1424–1426

Eddy SR (2002) A memory-efficient dynamic pro-
gramming algorithm for optimal alignment of a
sequence to an rna secondary structure. BMC
Bioinfo 3:18

Eddy SR, Durbin R (1994) RNA sequence analysis us-
ing covariance models. Nucleic Acids Res 22:2079–
2088

Felsenstein J (1973) Maximum-likelihood estimation
of evolutionary trees from continuous characters.
Am J Hum Genet 25:471–492

Felsenstein J (2003) Inferring phylogenies. Sinauer
Associates, Sunderland

Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003)
Biological identifications through DNA barcodes.
Proc Biol Sci/R Soc 270(1512):313–321

Jaakkola T, Diekhans M, Haussler D (2000) A dis-
criminative framework for detecting remote protein
homologies. J Comput Biol 7(1–2):95–114

Krogh A, Brown M, Mian I, Sjolander K, Haussler
D (1994) Hidden Markov models in computational
biology: applications to protein modeling. J Mol
Biol 235:1501–1531

Kuksa P, Pavlovic V (2009) Efficient alignment-free
DNA barcode analytics. BMC Bioinform 10(Suppl
14):S9

Kuksa P, Huang P-H, Pavlovic V (2008) Scalable algo-
rithms for string Kernels with inexact matching. In:
Proceedings neural information processing systems,
Vancouver, Dec 2008

Kuksa P, Khan I, Pavlovic V (2012) Generalized sim-
ilarity kernels for efficient sequence classification.
In: SIAM international conference on data mining.
SIAM, pp 873–882

Lawrence CE, Reilly AA (1990) An expectation max-
imization (EM) algorithm for the identification
and characterization of common sites in unaligned
biopolymer sequences. Proteins 7(1): 41–51

Lawrence CE, Altschul SF, Boguski MS, Liu JS,
Neuwald AF, Wootton JC (1993) Detecting sub-
tle sequence signals: a Gibbs sampling strategy
for multiple alignment. Science 262(5131):208–
214. Web server at http://bayesweb.wadsworth.org/
gibbs/gibbs.html

Leslie C, Eskin E, Weston J, Noble WS (2003) Mis-
match string kernels for SVM protein classifica-
tion. In: Becker S, Thrun S, Obermayer K (eds)
Advances in neural information processing systems,
Cambridge. MIT, pp 1441–1448

Liao L, Noble WS (2002) Combining pairwise se-
quence similarity and support vector machines for
remote protein homology detection. In: Proceedings
of the sixth annual international conference on com-
putational molecular biology, Washington, DC, Apr
18–21, pp 225–232

Pavesi G, Mereghetti P, Mauri G, Pesole G (2004)
Weeder Web: discovery of transcription factor
binding sites in a set of sequences from co-
regulated genes. Nucleic Acids Res 32(Web server
issue):W199–203. Web server at http://159.149.160.
51/modtools/

Rätsch G, Sonnenburg S, Srinivasan J, Witte H, Müller
KR, Sommer R, Schölkopf B (2007) Improving
the c. elegans genome annotation using machine
learning. PLoS Comput Biol 3(2):e20

Tompa M, Li N, Bailey TL, Church GM, De Moor B,
Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ,
Makeev VJ, Mironov AA, Noble WS, Pavesi G,
Pesole G, Regnier M, Simonis N, Sinha S, Thijs G,
van Helden J, Vandenbogaert M, Weng Z, Workman
C, Ye C, Zhu Z (2005) Assessing computational
tools for the discovery of transcription factor bind-
ing sites. Nat Biotechnol 23(1):137–144

Washietl S, Hofacker IL, Stadler PF (2005) Fast and
reliable prediction of noncoding RNAs. Proc Natl
Acad Sci USA 102(7):2454–2459

Weirauch MT, Cote A, Norel R, Annala M, Zhao Y,
Riley TR, Saez-Rodriguez J, Cokelaer T, Vedenko
A, Talukder S, DREAM5 Consortium (including
W. S. Noble), Bussemaker HJ, Morris QD, Bulyk
ML, Stolovitzky G, Hughes TR (2013) Evaluation

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
http://bayesweb.wadsworth.org/gibbs/gibbs.html
http://bayesweb.wadsworth.org/gibbs/gibbs.html
http://159.149.160.51/modtools/
http://159.149.160.51/modtools/

Learning to Rank 729

L

of methods for modeling transcription factor se-
quence specificity. Nat Biotechnol 31(2):126–134.
PMC3687085

Learning to Learn

�Metalearning

Learning to Rank

Hang Li
Huawei Technologies, Hong Kong, China

Abstract

Many tasks in information retrieval, natural
language processing, and data mining
are essentially ranking problems. These
include document retrieval, expert search,
question answering, collaborative filtering,
and keyphrase extraction. Learning to rank
is a subarea of machine learning, studying
methodologies and theories for automatically
constructing a model from data for a ranking
problem (Liu T-Y, Found Trends Inf Retr
3(3):225–331, 2009; Li H, Synth Lect Hum
Lang Technol 4(1):1–113, 2011a; Li H, IEICE
Trans Inf Syst 94-D(10):1854–1862, 2011b).

Learning to rank is usually formalized as a
supervised learning task, while unsupervised
learning and semi-supervised learning formu-
lations are also possible. In learning, training
data consisting of sets of objects as well as the
total or partial orders of the objects in each set
is given, and a ranking model is learned using
the data. In prediction, a new set of objects
is given, and a ranking list of the objects is
created using the ranking model.

Learning to rank has been intensively stud-
ied in the past decade and many methods of
learning to rank have been proposed. Popu-
lar methods include Ranking SVM, IR SVM,
AdaRank, LambdaRank, and LambdaMART.

The methods can be categorized into the point-
wise, pairwise, and listwise approaches ac-
cording to the loss functions which they use. It
is known that learning-to-rank methods, such
as LambdaMART, are being employed in a
number of commercial web search engines.

In this entry, we describe the formulation
as well as several methods of learning to rank.
Without loss of generality, we take document
retrieval as example.

Solution

Problem Formulation
In the supervised learning setting, learning to
rank includes training and testing phases (see
Fig. 1). In training, the learning system learns a
ranking model from given training data, and in
testing, given a query the ranking system assigns
scores to documents with respect to the query
using the ranking model and sorts the documents
on the basis of the scores.

The training data consists of queries and docu-
ments. Each query is associated with a number of
documents. The relevance of the documents with
respect to the query is also given. The relevance
can be represented in several ways. Here, we take
the most widely used approach and assume that
the relevance of a document with respect to a
query is represented by a label, while the labels
denote several grades (levels). The higher grade a
document has, the more relevant the document is.

Suppose that Q is the query set and D is the
document set. Suppose that Y D f1; 2; � � � ; lg
is the label set, where labels represent grades.
There exists a total order between the grades l �
l � 1 � � � � � 1, where � denotes the order rela-
tion. Further suppose that Q D fq1; q2; � � � ; qmg

is the set of queries for training and qi is the
i -th query. Di D fdi;1; di;2; � � � ; di;ni

g is the
set of documents associated with query qi , and
yi D fyi;1; yi;2; � � � ; yi;ni

g is the set of labels
associated with query qi , where ni denotes the
sizes of Di and yi ; di;j denotes the j -th docu-
ment in Di ; and yi;j 2 Y denotes the j -th grade

http://dx.doi.org/10.1007/978-1-4899-7687-1_543

730 Learning to Rank

Learning System

Ranking System

mm nmnmnn

mm

mm

m

ydyd

ydyd
ydyd

qq

,,,1,1

2,2,2,12,1

1,1,1,11,1

1

11
…

… …

…
…
…

1,1

2,1

1,1

1

++

+

+

+

mnm

m

m

m

d

d
d
q

…

Model

),(dqf

),(

),(
),(

11 ,11,1

2,112,1

1,111,1

1

++ +++

+++

+++

+

mm nmmnm

mmm

mmm

m

dqfd

dqfd
dqfd

q

…

Learning to Rank, Fig. 1 An overview of learning to rank for document retrieval

label in yi . The original training set is denoted as
S D f.qi ;Di /; yig

m
iD1.

A feature vector xi;j D �.qi ; di;j / is cre-
ated from each query-document pair .qi ; di;j /,
i D 1; 2; � � � ; mI j D 1; 2; � � � ; ni , where � de-
notes the feature functions. That is to say, features
are defined as functions of a query-document pair.
For example, BM25 and PageRank are typical
features. Letting xi D fxi;1; xi;2; � � � ; xi;ni

g, the
training data set is also represented as S 0 D
f.xi ; yi /g

m
iD1. Here x 2 X and X � <d , where d

denotes the number of features.
We aim to train a (local) ranking model

f .q; d/ D f .x/ that can assign a score to a given
query-document pair q and d or equivalently to
a given feature vector x. More generally, we can
also consider training a global ranking model
F.q;D/ D F.x/.

Let the documents in Di be identified by
the integers f1; 2; � � � ; nig. We define a permuta-
tion (ranking list) �i on Di as a bijection from
f1; 2; � � � ; nig to itself. We use ˘i to denote the
set of all possible permutations on Di and use
�i .j / to denote the rank (or position) of the j -th
document (i.e., di;j) in permutation �i . Ranking
is nothing but to select a permutation �i 2 ˘i for
the given query qi and the associated documents

Di using the scores given by the ranking model
f .qi ; di /.

The test data consists of a new query qmC1 and
associated documents DmC1. We create feature
vector xmC1, use the trained ranking model to
assign scores to the documents DmC1, sort them
based on the scores, and give the ranking list of
documents as output �mC1.

The training and testing data is similar to, but
different from, the data in conventional super-
vised learning such as classification and regres-
sion. Query and its associated documents form
a group. The groups are i.i.d. data, while the
instances within a group are not i.i.d. data. A
local ranking model is a function of a query
and a document or, equivalently, a function of
a feature vector derived from a query and a
document.

Evaluation on the performance of a ranking
model is carried out by comparison between the
ranking lists output by the model and the ranking
lists given as the ground truth. Several evalu-
ation measures are usually used in information
retrieval, such as NDCG (Normalized Discounted
Cumulative Gain), DCG (Discounted Cumula-
tive Gain), MAP (Mean Average Precision), and
Kendall’s Tau.

Learning to Rank 731

L

Evaluation Measures: DCG and NDCG
We give definitions of DCG and NDCG; both
are most utilized in document retrieval. NDCG is
normalized and thus it is easier to use NDCG in
comparison.

Given query qi and associated documents Di ,
suppose that �i is the ranking list (permutation)
on Di and yi is the set of labels (grades) of Di .
DCG measures the goodness of the ranking list
with the labels. Specifically, DCG at position k is
defined as

DCG.k/ D
X

j W�i .j /�k

G.j /D.�i .j //;

where Gi . � / is a gain function, Di . � / is a po-
sition discount function, �i .j / is the position of
di;j in �i , and the summation is taken over the
top k positions in the ranking list �i . The gain
function is normally defined as an exponential
function of grade

G.j / D 2yi;j � 1;

where yi;j is the label (grade) of document di;j

in ranking list �i . The position discount function
is normally defined as a logarithmic function of
position

D.�i .j // D
1

log2.1C �i .j //
;

where �i .j / is the position of document di;j in
ranking list �i . DCG represents the cumulative
gain of accessing the information from position
one to position k with discounts on the positions.
Hence, DCG at position k becomes

DCG.k/ D
X

j W�i .j /�k

2yi;j � 1

log2.1C �i .j //
:

NDCG is normalized DCG, and NDCG at
position k is defined as

NDCG.k/ D G�1
max;i .k/DCG.k/;

where Gmax;i .k/ is the normalizing factor and is
chosen such that a perfect ranking ��i ’s NDCG
score at position k is 1. In a perfect ranking, the
documents with higher grades are always ranked
higher. Note that there can be multiple perfect
rankings for a query and associated documents.
Then, NDCG at position k becomes

NDCG.k/D G�1
max;i .k/

X

j W�i .j /�k

2yi;j�1

log2.1C �i .j //
:

In evaluation, DCG and NDCG values are
further averaged over queries.

Objective Function of Learning
Learning to rank is generally formalized as a
supervised learning task. Suppose that X is the
input space (feature space) consisting of lists
of feature vectors and Y is the output space
consisting of lists of grades. Further suppose that
x is an element of X representing a list of feature
vectors and y is an element of Y representing a
list of grades. Let P.X; Y / be an unknown joint
probability distribution where random variableX
takes x as its value and random variable Y takes
y as its value.

Assume that F. � / is a function mapping from
a list of feature vectors x to a list of scores.
The goal of the learning task is to automati-
cally learn a function OF .x/ given training data
.x1; y1/; .x2; y2/; : : : ; .xm; ym/. Each training in-
stance is comprised of feature vectors xi and the
corresponding grades yi (i D 1; � � � ; m). Here m
denotes the number of training instances.
F.x/ and y can be further written as

F.x/ D .f .x1/; f .x2/; � � � ; f .xn// and y D
.y1; y2; � � � ; yn/. The feature vectors represent
objects to be ranked. Here F.x/ denotes the
global ranking function, f .x/ denotes the local
ranking function, and n denotes the number of
feature vectors and grades.

A loss function L. � ; � / is utilized to evaluate
the prediction result of F. � /. First, feature vec-
tors x are ranked according to F.x/, and then
the top n results of the ranking are evaluated

732 Learning to Rank

using their corresponding grades y. If the feature
vectors with higher grades are ranked higher,
then the loss will be small. Otherwise, the loss
will be large. The loss function is specifically
represented as L.F.x/; y/. Note that the loss
function for ranking is slightly different from the
loss functions in other statistical learning tasks, in
the sense that it makes use of sorting.

The loss function can be defined, for example,
based on NDCG (Normalized Discounted Cumu-
lative Gain) and MAP (Mean Average Precision).
In the former case, we have

L.F.x/; y/ D 1 � NDCG:

The risk function, i.e., the objective function
in learning, is further defined as the expected
loss function with respect to the joint distribution
P.X; Y /:

R.F / D

Z

X�Y
L.F.x/; y/dP.x; y/:

Given training data, the empirical risk function
is defined as follows:

OR.F / D
1

m

mX

iD1

L.F.xi /; yi /: (1)

The learning task then becomes minimization
of the empirical risk function, as in other learning
tasks. The minimization could be difficult due to
the nature of the loss function (it is not continuous
and it uses sorting). We can consider using a
surrogate loss function L0.F.x/; y/.

The corresponding empirical risk function is
defined as follows:

OR0.F / D
1

m

mX

iD1

L0.F.xi /; yi /: (2)

One can also introduce a regularizer to the mini-
mization. In such case, the learning problem be-
comes minimization of the regularized empirical
risk function based on the surrogate loss.

For the surrogate loss function, there are also
different ways to define it, which lead to different

approaches to learning to rank, referred to as
pointwise loss, pairwise loss, and listwise loss
functions.

Methods

Ranking SVM and IR SVM
A perfect ranking implies perfect classification
on all pairs of objects, and an imperfect ranking
implies existence of incorrect classification on
pairs of objects. Therefore, learning of a ranking
model can be transformed to learning of a pair-
wise classification or regression model. This is
the idea behind the pairwise approach to learning
to rank. Ranking SVM proposed by Herbrich
et al. (1999) is a typical example.

Ranking SVM takes pairs of objects (feature
vectors) at different grades as new objects and
takes the orders of the pairs of objects as positive
or negative classes. It learns an SVM classifier
which can classify the order of pair of objects and
then utilizes the SVM classifier to assign scores
to newly given objects and rank the objects on
the basis of the scores. One can easily verify that
if the classifier is a linear function, then it can be
directly utilized as a ranking model.

It can be proved that the “pairwise” loss func-
tion in Ranking SVM is an upper bound of
(1-NDCG) Li (2011a), and therefore Ranking
SVM is a method equivalent to minimizing em-
pirical risk based on a surrogate loss function (cf.,
Eq. (2)).

IR SVM proposed by Cao et al. (2006) is
an extension of Ranking SVM for information
retrieval (IR). Ranking SVM transforms ranking
into pairwise classification, and thus it actually
makes use of the 0-1 loss in the classification.
There exists a gap between the loss function and
the IR evaluation measures such as NDCG. IR
SVM attempts to bridge the gap by modifying
the 0-1 loss, that is, conducting cost-sensitive
learning of Ranking SVM.

One problem with Ranking SVM is that it
equally treats document pairs across different
grades (levels). Another issue with Ranking SVM
is that it equally treats document pairs from dif-
ferent queries. IR SVM addresses the above two
problems by modifying the hinge loss function.

Learning to Rank 733

L

Specifically, it sets different losses for document
pairs across different grades and from different
queries. To emphasize the importance of correct
ranking on the top, the loss function heavily
penalizes errors related to the top. To increase
the influence of queries with less documents, the
loss function heavily penalizes errors from the
queries.

AdaRank
Since the evaluation measures in IR are defined
on lists of objects, it is more natural and effec-
tive to directly optimize “listwise” loss functions
defined on lists. This is the presumption in the
listwise approach to learning to rank. AdaRank,
proposed by Xu and Li (2007), is one of the
listwise algorithms. One advantage of AdaRank
is its simplicity, and it is perhaps one of the
simplest learning-to-rank algorithms.

In learning, ideally we would create a ranking
model that can maximize the ranking accuracy
in terms of an evaluation measure (e.g., NDCG)
on the training data or equivalently minimize the
empirical risk function in Eq. (1) specified as

mX

iD1

.1 �E.�i ; yi //;

where xi is a list of feature vectors, yi is the cor-
responding list of grades, �i is the permutation
of feature vectors xi by the ranking model f .x/,
E.�i ; yi / is the evaluation result of �i based on
yi in terms of the evaluation measure, and m is
the number of training instances.

The empirical risk function is not smooth and
differentiable, and thus straightforward optimiza-
tion of the evaluation result might not work.
Instead, we can consider optimizing an upper
bound of the function. For example, one upper
bound is the following function:

mX

iD1

exp.�E.�i ; yi //;

which is continuous, differentiable, and even con-
vex with respect to E.

AdaRank minimizes the upper bound, by tak-
ing the boosting approach. Mimicking the fa-
mous AdaBoost algorithm, AdaRank conducts
stepwise minimization of the upper bound. More
specifically, AdaRank repeats the process of re-
weighting the training instances, creating a weak
ranker, and assigning a weight to the weak ranker.
Finally, AdaRank linearly combines the weak
rankers as the ranking model.

One can prove that AdaRank can continuously
reduce the empirical risk during the training pro-
cess, under certain conditions. When the evalua-
tion measure is dot product, AdaRank can reduce
the risk to zero.

LambdaRank and LambdaMART
The objective function (empirical risk function)
in learning to rank is not continuous and differ-
entiable, and it depends on sorting. This makes
it difficult to use gradient decent to optimize
the function. LambdaRank and LambdaMART,
proposed by Burges (2010), manage to solve
the problem by directly defining and utilizing a
gradient function of the risk function.

Suppose that the ranking model, query, and
documents are given. Then each document re-
ceives a score from the ranking model, and a
ranking list can be created by sorting the docu-
ments based on the scores. Since the documents
are also assigned ground truth labels, a ranking
evaluation result based on an IR measure can
be obtained. Suppose that we use a surrogate
loss function L to approximate the IR evaluation
measure. Then, an evaluation result based on the
surrogate loss function L can also be obtained.
It is this evaluation result which LambdaRank
attempts to continuously optimize.

LambdaRank does not explicitly give the def-
inition of the loss function. Instead it defines the
gradient function of the surrogate loss function.
More specifically, the gradient function is defined
as

@L

@si
D ��i .s1; y1; � � � ; sn; yn/;

where s1; s2; � � � ; sn denote the scores of doc-
uments and y1; y2; � � � ; yn denote the labels of
documents. Note that the index i is on a sin-
gle document. That is to say, the gradient of a

734 Learning Using Privileged Information

document depends on the scores and labels of the
other documents. The sign is chosen such that
a positive value for a document means that the
document must reduce the loss. The gradients of
documents are calculated after the current model
generates a ranking list of documents for the
query. The negative gradient function is called
lambda function, and that is why the method
is called LambdaRank. LambdaRank utilizes a
neural network as its ranking model.

LambdaMART follows the idea of Lamb-
daRank, but it utilizes an ensemble of trees as
its ranking model and employs the Gradient Tree
Boosting algorithm to build the ranking model.
Specifically, LambdaMART directly uses the
lambda function as the gradient function in the
learning process of Gradient Tree Boosting.

In the Yahoo Learning to Rank Challenge,
LambdaMART achieved the best performance. It
is viewed as one of the state-of-the-art methods
for learning to rank and is being used in a number
of commercial search systems.

Applications

Learning to rank has been successfully
applied to a wide variety of applications,
including document retrieval, expert search,
definition search, personalized search, online
advertisement, collaborative filtering, question
answering, keyphrase extraction, document
summarization, and machine translation.
Particularly, in document retrieval there are
many signals which can represent relevance.
Incorporating such information into the ranking
model and automatically constructing the ranking
model by using data become a natural choice. In
fact, learning to rank has become one of the
fundamental technologies for document retrieval.

Recommended Reading

Burges CJC (2010) From RankNet to LambdaRank
to LambdaMART: an overview. Microsoft Research
Technical Report, MSR-TR-2010-82

Cao Y, Xu J, Liu T-Y, Li H, Huang Y, Hon H-W (2006)
Adapting ranking SVM to document retrieval. In:
Proceedings of the 29th annual international ACM
SIGIR conference on research and development in
information retrieval, Seattle, pp 186–193

Herbrich R, Graepel T, Obermayer K (1999) Large
margin rank boundaries for ordinal regression. Adv
Neural Inf Process Syst 115–132

Li H (2011a) Learning to rank for information retrieval
and natural language processing. Synth Lect Hum
Lang Technol 4(1):1–113

Li H (2011b) A short introduction to learning to rank.
IEICE Trans Inf Syst 94-D(10):1854–1862

Liu T-Y (2009) Learning to rank for information re-
trieval. Found Trends Inf Retr 3(3):225–331

Xu J, Li H (2007) Adarank: a boosting algorithm for
information retrieval. In: Proceedings of the 30th
annual international ACM SIGIR conference on
research and development in information retrieval,
Amsterdam, pp 391–398

Learning Using Privileged
Information

Viktoriia Sharmanska1 and Novi Quadrianto2

1Department of Informatics, University of
Sussex, SMiLe CLiNiC, Falmer, UK
2Department of Informatics, SMiLe CLiNiC,
University of Sussex, Brighton, UK

Abstract

When applying machine learning techniques
to real-world problems, prior knowledge plays
a crucial role in enriching the learning system.
This prior knowledge is typically defined by
domain experts and can be integrated into
machine learning algorithms in a variety of
ways: as a preference of certain prediction
functions over others, as a Bayesian prior
over parameters, or as additional information
about the samples in the training set used
for learning a prediction function. The latter
setup is called learning using privileged in-
formation (LUPI) and was adopted by Vapnik
and Vashist in (Neural Netw, 2009). Formally,
LUPI refers to the setting when, in addition
to the main data modality, the learning system
has access to an extra source of information

Learning Using Privileged Information 735

L

about the training examples. The additional
source of information is only available during
training and therefore is called privileged. The
main goal of LUPI is to utilize privileged
information and to learn a better model in the
main data modality than one would learn with-
out the privileged source. As an illustration,
for protein classification based on amino-acid
sequences, the protein tertiary structure can
be considered additional information. Another
example is recognizing objects in images; the
textual information in the form of image tags
contains additional object descriptions and can
be used as privileged.

Theory/Solution

We formalize the LUPI setup for the task of
supervised binary classification with a single
source of privileged information. Assume
that we are given a set of N training
examples, represented by feature vectors X D
fx1; : : : ; xN g � X D R

d , their label annotation,
Y D fy1; : : : ; yN g 2 Y D fC1;�1g, and
additional information, also in the form of feature
vectors, X� D fx�1 ; : : : ; x

�
N g � X � D R

d�

,
where x�i encodes the additional information
we have about sample xi . We will refer to
X and X � as the original and the privileged
data spaces, respectively. For learning a binary
classification function f W X ! Y from a space
of all possible functions F , one of the well-
established methods is Support Vector Machine
(Editor, this is a link to another encyclopedia
entry called Support Vector Machine.) In
Vapnik and Vashist (2009), the SVMC method
was introduced as a generalization of the SVM-
based framework to solve LUPI. This SVMC
formulation can be directly extended for multiple
sources of privileged information and for the
regression estimation problem (more details in
Vapnik and Vashist 2009).

SVMC

The SVMC optimization admits the following
form:

minimize
w2Rd ;b2R

w�2Rd�

;b�2R

1

2

�
kwk2 C�kw�k2

�

C C

NX

iD1

hw�; x�i i C b
� (1a)

subject to, for all i D 1; : : : ; N ,

yi Œhw; xi i C b� � 1 � Œhw�; x�i i C b
��

(1b)

and hw�; x�i i C b
� � 0: (1c)

The above problem is a generalization of nonlin-
early separable (soft-margin) SVM in which the
slack variables are parameterized with unknown
w� and b�, so that the slack value for each sample
is 	i D hw�; x�i i C b

�.
The SVMC optimization problem can be

solved in the dual representation using a
standard quadratic programming (QP) solver.
For a medium-sized problem (thousands to
hundred thousands of samples), a general
purpose QP solver might not suffice, and special
purpose algorithms have to be developed to
solve the QP. In Pechyony and Vapnik (2011),
suitable sequential minimal optimization (SMO)
algorithms were derived to tackle the problem.

Motivation of SVMC

When the number of training examples N in-
creases, soft-margin SVM solutions are known

Vapnik (1999) to converge with a rate of O
�

1p
N

�

to the optimal classifier in the function class F .
This is in sharp contrast to hard-margin (linearly
separable) solutions that converge with a rate of
O
�

1
N

�
. The difference in the learning rate lies in

the number of variables to be estimated from the
data. In the hard-margin SVM, the weight vector
w and bias parameter b have to be learned. For
the soft-margin SVM, in addition to the weight
and bias parameters, N slack variables 	i – one
for each training sample – have to be estimated.
The idea of the SVMC classifier is based on a
direct observation that the soft-margin SVM can

736 Learning Using Privileged Information

be turned into the hard-margin SVM if one had
access to a so-called slack oracle that knows the
optimal slack value 	i . Since, in practice, we do
not have access to the oracle, we can instead
estimate the slack function using the additional
privileged data.

Relation to Existing Learning Settings

Other than the LUPI framework, there are several
machine learning frameworks that exploit multi-
ple sources of information to learn the classifi-
cation model, among others, domain adaptation,
multi-view learning, and multimodal learning.
In Table 1, we overview the commonalities and
differences of those settings for two sources of
information, X and X �, and binary classification
task Y D f�1;C1g.

Applications

The LUPI framework is of interest for prac-
tical applications because it captures the typi-
cal learning-from-data setting where domain ex-
perts are able to provide additional knowledge
about the data. For instance, Vapnik and Vashist
(2009) explored protein tertiary structures (geo-
metrical shapes) as additional information when
the learning task is about classifying proteins
based on their secondary structures (amino-acid
sequences). In the context of recognizing animal
objects such as leopard, panda, or horse in im-

ages, Sharmanska et al. (2013) considered phys-
ical attributes or properties such as furry, stripes,
or smelly associated with the animals to be the
extra information. In the longer term, the LUPI
framework might have potential applications in
the medical settings. For example, in terms of ma-
chine learning-aided diagnosis technologies, re-
sults from advanced medical tests such as fMRI,
CT scans, or X-ray can be used as additional
knowledge to compliment routinely collected test
results such as the heart rate or the pulse. In
the three settings described above, protein geo-
metrical shapes, object physical attributes, and
advanced medical tests share the properties that
they are very hard and time consuming to gather
data and are expensive to provide at test time.

Current and Future Directions

LUPI is an active research area both within
machine learning and in application areas such
as finance (Ribeiro et al. 2010) and computer
vision (Sharmanska et al. 2013; Li et al. 2014). In
machine learning, there is interest in algorithms
and theoretical aspects of LUPI (Pechyony and
Vapnik 2011, 2010; Lapin et al. 2014) and also
in adapting SVM-based LUPI to other learning
settings. For the latter, LUPI was generalized
to learning to rank (Sharmanska et al. 2013),
clustering (Feyereisl and Aickelin 2012), metric
learning (Fouad et al. 2013), and structured
prediction (Feyereisl et al. 2014) and in the
Bayesian nonparametric (Editor, this is a link

Learning Using Privileged Information, Table 1 Different machine learning settings according to the availability
of the data

Learning setting Definition Train
domain

Test
domain

Illustration

LUPI
Learning with additional information
that is only available at training time

X , X� X
X : Images,

X�: Bounding boxes

Domain adaptation
Learning to adapt the classifier from the
training domain (also called source) to the
test domain (also called target)

X X�
X : Amazon images,

X�: Webcam images

Multi-view/multimodal
Learning from multiple feature
representations (multiple domains)

X , X� X , X�
X : Images,

X�: Image tags

Learning with Different Classification Costs 737

L

to another encyclopedia entry called Bayesian
nonparametric.) setting using Gaussian
Processes (Editor, this is a link to another
encyclopedia entry called Gaussian Processes.)
(Hernández-Lobato et al. 2014). To compare
different types of privileged information, a recent
research direction (Wang et al. 2014) explores
a bias-variance decomposition (Editor, this is
a link to another encyclopedia entry called
bias-variance decomposition.) tool. The work
concludes that a useful privileged information is
the one that leads to a large reduction in variance
with only a slight penalty in bias with respect to
the model trained without privileged information.

Cross-References

� Inductive Transfer
�Transfer of Knowledge Across Domains

Recommended Reading

Feyereisl J, Aickelin U (2012) Privileged information
for data clustering. Inf Sci 194:4–23

Feyereisl J, Kwak S, Son J, Han B (2014) Object lo-
calization based on structural svm using privileged
information. In: Neural information processing sys-
tems (NIPS), Montreal

Fouad S, Tino P, Raychaudhury S, Schneider P (2013)
Incorporating privileged information through met-
ric learning. IEEE Trans Neural Netw Learn Syst
24(7):1086–1098

Hernández-Lobato D, Sharmanska V, Kersting K,
Lampert CH, Quadrianto N (2014) Mind the nui-
sance: Gaussian process classification using privi-
leged noise. In: Neural information processing sys-
tems (NIPS), Montreal

Lapin M, Hein M, Schiele B (2014) Learning using
privileged information: SVM+ and weighted SVM.
Neural Netw 53:95-108

Li W, Niu L, Xu D (2014) Exploiting privileged infor-
mation from web data for image categorization. In:
European conference on computer vision (ECCV),
Zurich

Pechyony D, Vapnik V (2010) On the theory of learn-
ing with privileged information. In: Neural informa-
tion processing systems (NIPS), Vancouver

Pechyony D, Vapnik V (2011) Fast optimization algo-
rithms for solving SVM+. In: Statistical Learning
and Data Science.

Ribeiro B, Silva C, Vieira A, Gaspar-Cunha A, das
Neves J (2010) Financial distress model prediction

using SVM+. In: International joint conference on
neural networks (IJCNN), Barcelona

Sharmanska V, Quadrianto N, Lampert CH (2013)
Learning to rank using privileged information.
In: International conference on computer vision
(ICCV), Sydney

Vapnik V (1999) The nature of statistical learning
theory. Springer, Berlin/Heidelberg

Vapnik V, Vashist A (2009) A new learning paradigm:
learning using privileged information. Neural Netw
22(5):544–557

Wang Z, Wang X, Ji Q (2014) Learning with hidden
information. In: International Conference on Pattern
Recognition (ICPR), Stockholm

Learning Vector Quantization

Synonyms

LVQ

Definition

Learning vector quantization (LVQ) algorithms
produce prototype-based classifiers. Given a set
of labeled prototype vectors, each input vector is
mapped to the closest prototype, and classified
according to its label. The basic LVQ learning
algorithm works by iteratively moving the closest
prototype toward the current input if their labels
are the same, and away from the input if not.
Some variants of the algorithm have been shown
to approximate Bayes optimal decision borders.
The algorithm was introduced by Kohonen, and
being prototype-based it bears close resemblance
to � competitive learning and �Self-Organizing
Maps. The differences are that LVQ is supervised
and the prototypes are not ordered (i.e., there is
no neighborhood function).

Learning with Different
Classification Costs

�Cost-Sensitive Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_100488
http://dx.doi.org/10.1007/978-1-4899-7687-1_100281
http://dx.doi.org/10.1007/978-1-4899-7687-1_146
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_181

738 Learning with Hidden Context

Learning with Hidden Context

�Concept Drift

Learning Word Senses

�Word Sense Disambiguation

Least-Squares Reinforcement
Learning Methods

Michail G. Lagoudakis
Technical University of Crete, Chania, Greece

Abstract

Most algorithms for sequential decision
making rely on computing or learning a
value function that captures the expected
long-term return of a decision at any given
state. Value functions are in general complex,
nonlinear functions that cannot be represented
compactly as they are defined over the
entire state or state-action space. Therefore,
most practical algorithms rely on value
function approximation methods, and the
most common choice for approximation
architecture is a linear architecture. Exploiting
the properties of linear architectures, a number
of efficient learning algorithms based on least-
squares techniques have been developed.
These algorithms focus on different aspects
of the approximation problem and deliver
diverse solutions; nevertheless they share the
tendency to process data collectively (batch
mode) and, in general, achieve better results
compared to their counterpart algorithms
based on stochastic approximation.

Definition

Least-Squares Reinforcement Learning Methods
are methods that focus on the problem of
reinforcement learning (learning by trial and

error) using least-squares techniques (opti-
mization techniques for deriving solutions that
minimize some form of squared error measure).

Motivation and Background

Consider a Markov decision process (MDP)
.S;A;P;R; �;D/, where S is the state space,
A is the action space, P.s0js; a/ is a Markovian
transition model, R.s; a/ is a reward function,
� 2 .0; 1� is the discount factor, and D is the ini-
tial state distribution. A linear approximation ar-
chitecture approximates the value function V �.s/

or Q�.s; a/ of a stationary (stochastic) policy
�.ajs/ as a linear weighted combination of lin-
early independent basis functions or features �:

OV �.sIw/ D
kX

jD1

�j .s/wj D �.s/
>w

OQ�.s; aIw/ D
mX

jD1

�j .s; a/wj D �.s; a/
>w:

The parameters or weights of the approximation
are the coefficients w.

Let V � and OV � be the exact and the approxi-
mate, respectively, state value function of a policy
� , both given as column vectors of size jSj.
Define ˚V as the .jSj � k/ matrix with elements
�j .s/, where s 2 S span the rows and j D

1; 2; : : : ; k span the columns. Then, OV � can be
expressed compactly as OV � D ˚V w� . Similarly,
let Q� and OQ� be the exact and the approxi-
mate, respectively, state-action value function of
a policy � , both given as column vectors of size
jSjjAj. Define ˚Q as the .jSjjAj � m/ matrix
with elements �j .s; a/, where .s; a/ 2 .S � A/
span the rows and j D 1; 2; : : : ; m span the
columns. Then, OQ� can be expressed compactly
as OQ� D ˚Qw� . In addition, let R be a vector
of size jSjjAj with entries R.s; a/ that contains
the reward function, P be a stochastic matrix of
size .jSjjAj � jSj/ that contains the transition
model (P..s; a/; s0/ D P.s0js; a/), and Π� be
a stochastic matrix of size .jSj � jSjjAj/ that
describes policy � (Π�.s; .s; a// D �.ajs/).
The state value function V � and the state-action

http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_882

Least-Squares Reinforcement Learning Methods 739

L

value function Q� are the solutions of the linear
Bellman equations

V � D Π�.RC �PV �/

Q� D RC �PΠ�Q
�

and also the fixed points of the corresponding
linear Bellman operators

V � D T �
V .V

�/; whereT �
V .x/ D Π�.RC �Px/

Q� D T �
Q.Q

�/; whereT �
Q.x/ D RC �PΠ�x:

If V � and Q� were known, they could be pro-
jected orthogonally onto the space spanned by the
basis functions to obtain the optimal least-squares
approximation. (For simplicity of presentation,
we consider only uniform least-squares criteria
in this text, but generalization to weighted least-
squares criteria is possible in all cases.) For the
state value function, we have

OV � D ˚V w�

D ˚V

�
˚>V ˚V

��1
˚>V V

� H) w�

D ˚�1
V ˚V

�
˚>V ˚V

��1
˚>V V

� ;

whereas for the state-action value function, we
have

OQ� D ˚Qw�

D ˚Q

�
˚>Q˚Q

��1
˚>QQ

� H) w�

D ˚�1
Q ˚Q

�
˚>Q˚Q

��1
˚>QQ

� :

The learning algorithms described here strive to
find a set of parameters w, such that the approx-
imate value function is a good approximation
to the true one. However, since the exact value
functions are unknown, these algorithms have
to rely on information contained in the Bellman
equations and the Bellman operators to derive
expressions that characterize a good choice for
w. It has been shown that, in many cases, this
kind of learning is equivalent to approximating

the MDP using a linear (compressed) model and
solving exactly the approximate model (Parr et al.
2008).

Bellman Residual Minimizing
Approximation
An obvious approach to deriving a good approxi-
mation is to require that the approximate function
satisfies the linear Bellman equation as closely as
possible. Substituting the approximation OV � into
the Bellman equation for V � yields an overcon-
strained linear system over the k parameters w� :

OV � 	 Π�

�
RC �P OV �

�

˚V w� 	 Π� .RC �P˚V w�/

.˚V � �Π�P˚V /w� 	 Π�R:

Solving this overconstrained system in the least-
squares sense is a .k � k/ system

.˚V � �Π�P˚V /
> .˚V � �Π�P˚V /w�

D .˚V � �Π�P˚V /
>Π�R (1)

whose solution is unique and minimizes

kT �
V

�
OV �
�
� OV �k2. Similarly, substituting the

approximation OQ� into the Bellman equation for
Q� yields an overconstrained linear system over
the m parameters w� :

OQ� 	 RC �PΠ�
OQ�

˚Qw� 	 RC �PΠ�˚Qw�

�
˚Q � �PΠ�˚Q

�
w� 	 R:

Solving this overconstrained system in the least-
squares sense is a .m �m/ system

�
˚Q � �PΠ�˚Q

�> �
˚Q � �PΠ�˚Q

�
w�

D
�
˚Q � �PΠ�˚Q

�>R (2)

whose solution is unique and minimizes

kT �
Q

�
OQ�
�
� OQ�k2. In both cases, the solution

minimizes the L2 norm of the Bellman residual

740 Least-Squares Reinforcement Learning Methods

(the difference between the left-hand side and the
right-hand side of the linear Bellman equation).

Least-Squares Fixed-Point Approximation
Recall that a value function is also the fixed point
of the corresponding linear Bellman operator.
Another way to go about finding a good approxi-
mation is to force the approximate value function
to be a fixed point under the linear Bellman op-
erator. For that to be possible, the fixed point has
to lie in the space of approximate value functions
which is the space spanned by the basis functions.
Even though the approximate function itself lies
in that space by definition, the result of applying
the linear Bellman operator to the approximation
will in general be out of that space and must be
projected back. Considering the orthogonal pro-
jection

�
˚.˚>˚/�1˚>

�
(which minimizes the

L2 norm) onto the column space of ˚ , we seek an
approximate value function that is invariant under
one application of the linear Bellman operator
followed by orthogonal projection onto the space
spanned by the basis functions. More specifically,
for the state value function, we require that

OV � D ˚V

�
˚>V ˚V

��1
˚>V

�
T �

V .
OV �/

�

˚V w� D ˚V

�
˚>V ˚V

��1

˚>V
�
Π�.RC �P˚V w�/

�
:

Note that the orthogonal projection to the col-
umn space of ˚V is well defined, because the
columns of ˚V (the basis functions) are linearly
independent by definition. The expression above
is equivalent to solving a .k � k/ linear system

˚>V .˚V � �Π�P˚V /w
� D ˚>V Π�R (3)

whose solution is guaranteed to exist for all,
but finitely many, values of � (Koller and Parr
2000) and minimizes (in fact, zeros out) the
projected Bellman residual. Since the orthogonal
projection minimizes the L2 norm, the solution
w� yields a value function OV � which is the
least-squares fixed-point approximation to the

true state value function. Similarly, for the state-
action value function, we require that

OQ� D ˚Q

�
˚>Q˚Q

��1
˚>Q

�
T �

Q.
OQ�/

�

˚Qw� D ˚Q

�
˚>Q˚Q

��1

˚>Q
�
RC�PΠ�˚Qw�

�
:

This is equivalent to solving a .m � m/ linear
system

˚>Q
�
˚Q � �PΠ�˚Q

�
w� D ˚>QR (4)

whose solution is again guaranteed to exist for
all, but finitely many, values of � (Koller and
Parr 2000) and minimizes (in fact, zeros out) the
projected Bellman residual. Since the orthogonal
projection minimizes the L2 norm, the solution
w� yields a value function OQ� which is the
least-squares fixed-point approximation to the
true state-action value function.

Structure of Learning System

Least-Squares Temporal Difference
Learning
The least-squares temporal difference (LSTD)
learning algorithm (Bradtke and Barto 1996)
learns the least-squares fixed-point approxi-
mation to the state value function V � of a
fixed policy � . In essence, LSTD attempts
to form and solve the linear system of Eq. 3
using sampling. Each sample .s; r; s0/ indicates
a minimal interaction with the unknown process,
whereby in some state s, a decision was made
using policy � , and reward r was observed, as
well as a transition to state s0. LSTD processes a
set of samples collectively to derive the weights
of the approximate value function. LSTD is an
on-policy method; it requires that all training
samples are collected using the policy under
evaluation. The LSTD algorithm is summarized
in Algorithm 1.

LSTD improves upon the temporal difference
(TD) learning algorithm for linear architectures
by making efficient use of data and converging

Least-Squares Reinforcement Learning Methods 741

L

Algorithm 1 Least-squares temporal difference
(LSTD)
w = LSTD.D; k; �; �/

Input: samples D, integer k, basis functions �, dis-
count factor �
Output: weights w of the learned state value function

A 0 // .k � k/ matrix
b 0 // .k � 1/ vector
for each sample .s; r; s0/ 2D do

A AC �.s/
�
�.s/� ��.s0/

�
>

b bC �.s/r
end for
w A�1b
return w

faster. The main advantage of LSTD over TD
is the elimination of the slow stochastic approx-
imation and the learning rate that needs care-
ful adjustment. TD uses samples to make small
modifications and then discards them. In contrast,
with LSTD, the information gathered from a
single sample remains present in the matrices
of the linear system and is used in full every
time the parameters are computed. In addition,
as a consequence of the elimination of stochastic
approximation, LSTD does not diverge.

LSTD.�/ (Boyan 1999) is an extension to
LSTD that spans the spectrum between LSTD
(� D 0) and linear regression over Monte Carlo
returns (� D 1) for � 2 Œ0; 1�. LSTD.�/ for
� > 0 requires that samples come from complete
episodes. RLSTD.�/ is a variant of LSTD.�/
that uses recursive least-squares techniques for
efficient implementation (Xu et al. 2002).

Bellman Residual Minimization Learning
The main idea behind LSTD can also be used
to learn the Bellman residual minimizing ap-
proximation to the state value function V � of a
fixedpolicy � . In this case, the goal is to form and
solve the linear system of Eq. 1 using sampling.
However, the structure of the system, in this
case, requires that samples are “paired,” which
means that two independent samples .s; r; s0/ and
.s; r; s00/ for the same state s must be drawn to
perform one update. This is necessary to obtain
unbiased estimates of the system matrices. Each

Algorithm 2 Bellman residual minimization
learning (BRML)
w = BRML.D; k; �; �/

Input: paired samples D, integer k, basis functions �,
discount factor �
Output: weights w of the learned state value function

A 0 // .k � k/ matrix
b 0 // .k � 1/ vector
for each pair of samples Œ.s; r; s0/; .s; r; s00/� 2D do

A AC
�
�.s/� ��.s0/

��
�.s/� ��.s00/

�
>

b bC
�
�.s/� ��.s0/

�
r

end for
w A�1b
return w

sample .s; r; s0/ again indicates a minimal inter-
action with the unknown process, whereby in
some state s, a decision was made using policy � ,
and reward r was observed, as well as a transition
to state s0. Obtaining paired samples is trivial with
a generative model (a simulator) of the process,
but virtually impossible when samples are drawn
directly from a physical process. This fact makes
the Bellman residual minimizing approximation
somewhat impractical for learning, but otherwise
a reasonable approach for computing approxi-
mate state value functions from the model of the
process (Schweitzer and Seidmann 1985). The
learning algorithm for Bellman residual mini-
mization is summarized in Algorithm 2.

Hybrid Least-Squares Learning
Value function learning algorithms, either in the
Bellman residual minimization or in the fixed-
point sense, have been used within approximate
policy iteration schemes for policy learning,
but in practice, they exhibit quite diverse
performance. Fixed-point approximations tend
to deliver better policies, whereas Bellman
residual minimizing approximations fluctuate
less between different rounds of policy
iteration. Motivated by a desire to combine
the advantages of both approximations, some
researchers have focused on learning hybrid
approximations that lie somewhere between these
two extremes. Johns et al. (2009) have proposed
two different approaches to combining these two

742 Least-Squares Reinforcement Learning Methods

approximations. The first relies on a derivation
that begins with the goal of minimizing a convex
combination of the two objectives (Bellman
residual and projected Bellman residual); the
resulting learning algorithm is quite expensive as
it requires the maintenance of three matrices
and two vectors (as opposed to one matrix
and one vector when learning a non-hybrid
approximation), as well as the inversion of
one of the three matrices at each update. The
second approach focuses directly on a convex
combination of the linear systems produced
by the two extreme approximations (Eqs. 1
and 3); the resulting learning algorithm has
the same complexity as non-hybrid algorithms
and in many cases exhibits better performance
than the original approximations. On the other
hand, both hybrid learning algorithms still
have to deal with the paired samples problem
and additionally require tuning of the convex
combination parameter.

Least-Squares Policy Evaluation
The least-squares policy evaluation (LSPE)
learning algorithm (Nedić and Bertsekas 2003),
like LSTD, learns the least-squares fixed-point
approximation to the state value function V �

of a fixed policy � . Both LSPE and LSTD
strive to obtain the solution to the same linear
system (Eq. 3) but using different methods; LSPE
uses an iterative method, whereas LSTD uses
direct matrix inversion. Unlike LSTD, LSPE
begins with some arbitrary approximation to the
value function (given by a parameter vector w0)
and focuses on the one-step application of the
Bellman operator within the lower-dimensional
space spanned by the basis functions aiming
at producing an incremental improvement
on the parameters. In that sense, LSPE can
take advantage of a good initialization of the
parameter vector. Given the current parameters w0

and a set
˚�
sk ; rk ; s

0
k

�
W k D 0; : : : ; t

�
of samples,

LSPE first computes the solution Nw to the least-
squares problem

min
w

tX

kD0

�
�.sk/

>w �
�
rk C ��.s

0
k/
>w0

��2

Algorithm 3 Least-squares policy evaluation
(LSPE)
w = LSPE.D; k; �; �; w0; ˛/

Input: samples D, integer k, features �, discount
factor � , weights w0, stepsize ˛
Output: weights w of the learned state value function

A 0 // .k � k/ matrix
b 0 // .k � 1/ vector
for each sample .s; r; s0/ 2D do

A AC �.s/�.s/>

b bC �.s/
�
r C ��.s0/>w0

�

end for
Nw A�1b
w ˛w0 C .1� ˛/ Nw
return w

and then updates w0 toward Nw using a stepsize
˛ 2 .0; 1�. The LSPE algorithm is summarized
in Algorithm 3.

The LSPE incremental update at the extreme
can be performed whenever a new sample ar-
rives or whenever a batch of samples becomes
available to remedy computational costs. An ef-
ficiency improvement to LSPE is to use recur-
sive least-squares computations, so that the least-
squares problem can be solved without matrix
inversion. LSPE.�/ for � 2 Œ0; 1� is an extension
of LSPE to multistep updates in the same spirit
as LSTD.�/. LSPE.�/ for � > 0 requires that
samples come from complete episodes.

Least-Squares Policy Iteration
Least-squares policy iteration (LSPI) (Lagoudakis
and Parr 2003) is a model-free, reinforcement
learning algorithm for policy learning based
on the approximate policy iteration framework.
LSPI learns in a batch manner by processing
multiple times the same set of samples. LSPI
is an off-policy method; samples can be
collected arbitrarily from the process using
any policy. Each sample .s; a; r; s0/ indicates
that the learner observed the current state s,
chose an action a, and observed the resulting
next state s0 and the reward received r . LSPI
iteratively learns a (weighted) least-squares fixed-
point approximation of the state-action value
functions (Eq. 4) of a sequence of improving
(deterministic) policies � . At each iteration, the

Least-Squares Reinforcement Learning Methods 743

L

Algorithm 4 Least-squares policy iteration
(LSPI)
w = LSPI.D; m; �; �; �/

Input: samples D, integer m, basis functions �, dis-
count factor � , tolerance �
Output: weights w of the learned value function of the
best learned policy

w 0
repeat

A 0 // .m�m/ matrix
b 0 // .m� 1/ vector
w0 w
for each sample .s; a; r; s0/ in D do

a0 D arg maxa00
2A �.s0; a00/>w0

A AC �.s; a/
�
�.s; a/� ��.s0; a0/

�
>

b bC �.s; a/r
end for
w A�1b

until
�
kw� w0k < �

�

return w

value function of the policy is approximated by
solving a .m � m/ linear system, formed using
the single sample set and the policy from the
previous iteration. LSPI offers a non-divergence
guarantee, and in most cases, it converges in just
a few iterations. LSPI exhibits excellent sample
efficiency and has been used widely in many
domains. Algorithm 4 summarizes LSPI.

The default internal policy evaluation proce-
dure in LSPI is the variation of LSTD for the
state-action value function (LSTDQ). However,
any other value function learning algorithm, such
as BRML or LSPE, could be used instead; nev-
ertheless, the � extensions are not applicable in
this case, because the samples in LSPI have been
collected arbitrarily and not by the policy being
evaluated each time. The variation of LSPI that
internally learns the Bellman residual minimizing
approximation (Eq. 2) using BRML has produced
inferior policies, in general, and suffers from the
paired samples problem.

Least-Squares Fitted Q-Iteration
Fitted Q-iteration (FQI) (Ernst et al. 2005) is a
batch reinforcement learning algorithm for pol-
icy learning based on the popular Q-learning
algorithm. FQI uses an iterative scheme to ap-

Algorithm 5 Least-squares fitted Q-iteration
w = LS-FQI.D; m; �; �; N /

Input: samples D, integer m, basis functions �, dis-
count factor � , iterations N
Output: weights w of the learned value function of the
best learned policy

i 0
w 0
while .i < N / do

A 0 // .m�m/ matrix
b 0 // .m� 1/ vector
for each sample .s; a; r; s0/ in D do

A AC �.s; a/�.s; a/>

b bC �.s; a/
�
r C � maxa0

2A
˚
�.s0; a0/>w

��

end for
w A�1b
i i C 1

end while
return w

proximate the optimal value function, whereby
an improved value function Q is learned at each
iteration by fitting a function approximator to a
set of training examples generated using a set
of samples from the process and the Q-learning
update rule. Any function approximation archi-
tecture and the corresponding supervised learning
algorithm could be used in the iteration. The
simplest choice is to use least-squares regression
along with a linear architecture to learn the least-
squares fixed-point approximation of the state-
action value function (Eq. 4). This version of
least-squares fitted Q-iteration is summarized in
Algorithm 5. In a sense, this version of FQI com-
bines ideas from LSPE and LSPI. Like LSPI, FQI
is an off-policy method; samples can be collected
arbitrarily from the process using any policy. In
practice, FQI produces very good policies within
a moderate number of iterations.

Cross-References

�Curse of Dimensionality
� Feature Selection
�Radial Basis Function Approximation
�Reinforcement Learning
�Temporal Difference Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100389
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

744 Leave-One-Out Cross-Validation

Recommended Reading

Boyan JA (1999) Least-squares temporal difference
learning. In: Proceedings of the sixteenth inter-
national conference on machine learning, Bled,
pp 49–56

Bradtke SJ, Barto AG (1996) Linear least-squares
algorithms for temporal difference learning. Mach
Learn 22:33–57

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch
mode reinforcement learning. J Mach Learn Res
6:503–556

Johns J, Petrik M, Mahadevan S (2009) Hybrid least-
squares algorithms for approximate policy evalua-
tion. Mach Learn 76(2–3):243–256

Koller D, Parr R (2000) Policy iteration for factored
MDPs. In: Proceedings of the sixteenth conference
on uncertainty in artificial intelligence, Stanford,
pp 326–334

Lagoudakis MG, Parr R (2003) Least-squares policy
iteration. J Mach Learn Res 4:1107–1149

Nedić A, Bertsekas DP (2003) Least-squares pol-
icy evaluation algorithms with linear function ap-
proximation. Discret Event Dyn Syst Theory Appl
13(1–2):79–110

Parr R, Li L, Taylor G, Painter-Wakefield C, Littman
ML (2008) An analysis of linear models, linear
value-function approximation, and feature selection
for reinforcement learning. In: Proceedings of the
twenty-fifth international conference on machine
learning, Helsinki, pp 752–759

Schweitzer PJ, Seidmann A (1985) Generalized poly-
nomial approximations in Markovian decision pro-
cesses. J Math Anal Appl 110(6):568–582

Xu X, He H-G, Hu D (2002) Efficient reinforce-
ment learning using recursive least-squares meth-
ods. J Artif Intell Res 16:259–292

Leave-One-Out Cross-Validation

Definition

Leave-one-out cross-validation is a special case
of � cross-validation where the number of folds
equals the number of � instances in the � data
set. Thus, the learning algorithm is applied once
for each instance, using all other instances as a
� training set and using the selected instance as
a single-item � test set. This process is closely
related to the statistical method of jack-knife
estimation (Efron 1982).

Cross-References

�Algorithm Evaluation

Recommended Reading

Efron B (1982) The Jackknife, the bootstrap and other
resampling plans. In: CBMS-NSF regional confer-
ence series in applied mathematics 1982. Society
for Industrial and Applied Mathematics (SIAM),
Philadelphia

Leave-One-Out Error

Synonyms

Hold-one-out error; LOO error

Definition

Leave-one-out error is an estimate of � error
obtained by � leave-one-out cross-validation.

Lessons-Learned Systems

�Case-Based Reasoning

Lifelong Learning

�Cumulative Learning

Life-Long Learning

�Continual Learning

Lift

Lift is a measure of the relative utility of a
� classification rule. It is calculated by dividing

http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_100198
http://dx.doi.org/10.1007/978-1-4899-7687-1_100279
http://dx.doi.org/10.1007/978-1-4899-7687-1_100139
http://dx.doi.org/10.1007/978-1-4899-7687-1_469
http://dx.doi.org/10.1007/978-1-4899-7687-1_34
http://dx.doi.org/10.1007/978-1-4899-7687-1_191
http://dx.doi.org/10.1007/978-1-4899-7687-1_171
http://dx.doi.org/10.1007/978-1-4899-7687-1_914

Linear Discriminant 745

L

the probability of the consequent of the rule,
given its antecedent by the prior probability of the
consequent:

lift.x ! y/ D P.Y D yjX D x/=P.Y D y/:

In practice, the probabilities are usually esti-
mated from either � training data or � test data.
In this case,

lift.x ! y/ D F.Y D yjX D x/=F.Y D y/:

where F.Y D yjX D x/ is the frequency with
which the consequent occurs in the data in the
context of the antecedent and F(Y D y) is the
frequency of the consequent in the data.

Linear Discriminant

Novi Quadrianto1 and Wray L. Buntine2;3

1Department of Informatics, SMiLe CLiNiC,
University of Sussex, Brighton, UK
2Statistical Machine Learning Program, NICTA,
Canberra, ACT, Australia
3Faculty of Information Technology, Monash
University, Clayton, VIC, Australia

Definition

A discriminant is a function that takes an input
variable x and outputs a class label y for it. A
linear discriminant is a discriminant that uses a
linear function of the input variables and more
generally a linear function of some vector func-
tion of the input variables f .x/.

This entry focuses on one such linear
discriminant function called Fisher’s linear
discriminant. Fisher’s discriminant works by
finding a projection of input variables to a lower
dimensional space while maintaining a class
separability property.

Motivation and Background

The curse of dimensionality (�Curse of Dimen-
sionality) is an ongoing problem in applying
statistical techniques to pattern recognition
problems. Techniques that are computationally
tractable in low-dimensional spaces can become
completely impractical in high-dimensional
spaces. Consequently, various methods have been
proposed to reduce the dimensionality of the
input or feature space in the hope of obtaining a
more manageable problem. This relies on the
fact that real data will often be confined to
a region of the space having lower effective
dimensionality, and in particular the directions
over which important variations in the output
variables occur may be so confined. For example,
we can reduce a d -dimensional problem to one
dimension if we project the d -dimensional data
onto a line. However, arbitrary projections will
usually produce cluttered projected samples from
all of the classes. Thus, the aim is to find a good
projection so that the projected samples are well
separated. This is exactly the goal of Fisher’s
linear discriminant analysis.

Fisher’s Discriminant for
Two-Category Problem

Given N observed training data points f.xi ;

yi /g
N
iD1 where yi 2 f1; : : : ;
g is the label

for an input variable xi 2R
d , our task is

to find the underlying discriminant function,
f W Rd ! f1; : : : ;
g. The linear discriminant
seeks a projection of d -dimensional input onto a
line in the direction of w 2 R

d , such that

f .x/ D wT x: (1)

Subsequently, a class label y can be assigned by
thresholding the projected values, for example,
for f .x/ � C we assign y D 1 and otherwise
we assign y D 2 for an appropriate choice of
constant C . While the magnitude of w has no
real significance (acts only as a scaling factor
to y), the direction of w plays a crucial role.

http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_192

746 Linear Discriminant

Wa

Wb

Linear Discriminant, Fig. 1 Black and white encode class labels. Projection of samples onto two different lines. The
plot on the left shows greater separation between the white and black projected points

Inappropriate choice of w can result in a non-
informative heavily cluttered line. However, by
adjusting the components of weight w, we can
find a projection that maximizes the class separa-
bility (Fig. 1). It is crucial to note that whenever
the underlying data distributions are multimodal
and highly overlapping, it might not be possible
to find such a projection.

Consider a two-category problem, a class label

1 and a class label
2 with N1 and N2 number
of data points, respectively. The d -dimensional
per-class sample mean is given by

�1 D
1

N1

X

i2�1

xi �2 D
1

N2

X

i2�2

xi :

(2)
The simplest class separability criterion is the
separation of the projected class mean, that is, we
can find the weight vector w that maximizes

m2 �m1 D
1

N2

X

i2�2

wT xi �
1

N1

X

i2�1

wT xi

D wT .�2 � �1/; (3)

where m1 and m2 are the projected class means.
An additional unit length constraint on w, i.e.,P

i w2
i D 1 should be imposed to have a well-

defined maximization problem. The above sepa-
rability criterion produces a line that is parallel
to the line joining the two means. However, this
projection is suboptimal whenever the data has

distinct covariances depending on class (i.e., it is
un-isotropic).

Fisher’s criterion maximizes a large separation
between the projected class means while
simultaneously minimizing a variance within
each class. This criterion can be expressed as

J.w/ D
wT SBw

wT SW w
: (4)

where the total within-class covariance
matrix is

SW D
X

i2�1

.xi � �1/.xi � �1/
T

C
X

i2�2

.xi � �2/.xi � �2/
T ; (5)

and a between-class covariance matrix is

SB D .�2 � �1/.�2 � �1/
T : (6)

The maximizer of (4) can be found by setting its
first derivative with respect to the weights vector
to zero, that is,

.wT SBw/SW w D .wT SW w/SBw: (7)

It is clear from (6), that SBw admits the direction
of .�2��1/ (Bishop 2006). As only the direction

Linear Regression 747

L

of w is important, we can drop the scaling factors
in (7), those are .wT SBw/ and .wT SW w/. Mul-
tiplying both sides of (7) by S�1

W , we can then
obtain the solution of w that maximizes (4) as

w D S�1
W .�2 � �1/: (8)

Fisher’s Discriminant for
Multi-category Problem

For the general
-class problem, we seek
a projection from d -dimensional space to a
.
�1/-dimensional space which is accomplished
by
 � 1 linear discriminant functions, that is,

fc.x/ D wT
c x c D 1; : : : ;
 � 1: (9)

In the matrix notation, f .x/ D W T x for W 2

R
d�.��1/ and f .x/ 2 R

.��1/. The generaliza-
tion of the within-class covariance matrix in (5)
to the case of
 classes is simply the total
within-class covariance matrix over
 classes,
that is SW D

P�
cD1 Sc with Sc D

P
i2c.xi �

�c/.xi ��c/
T . Following Duda and Hart (1973)

and Bishop (2006), the between-class covariance
matrix SB is defined as substracting the within-
class covariance matrix from the so-called total
covariance matrix,

PN
iD1.xi ��/.xi ��/

T with
� denoting the total sample mean of the dataset.
One of the criteria to be optimized is (Fukunaga
1990)

J.w/ D Trace..W T SWW /
�1.W T SBW //:

(10)
The maximizer of (10) is eigenvectors of S�1

W SB

associated with
 � 1 largest eigenvalues. It is
important to note that the between-class covari-
ance matrix SB is the sum of
 matrices of rank
one or less, and because only
 � 1 of these
matrices are independent, SB has rank at most
equal to
 � 1 and so there are at most
 � 1
nonzero eigenvalues. Therefore, we are unable to
find more than
�1 discriminant functions (see,
e.g., Bishop 2006).

Cross-References

�Regression
� Support Vector Machines

Recommended Reading

Most good statistical text books cover this.

Bellman RE (1961) Adaptive control processes.
Princeton University Press, Princeton

Bishop C (2006) Pattern recognition and machine
learning. Springer, New York

Duda RO, Hart PE (1973) Pattern classification and
scene analysis. Wiley, New York

Fukunaga K (1990) Introduction to statistical pattern
recognition, 2nd edn. Academic, San Diego

Linear Regression

Novi Quadrianto1 and Wray L. Buntine2;3

1Department of Informatics, SMiLe CLiNiC,
University of Sussex, Brighton, UK
2Statistical Machine Learning Program, NICTA,
Canberra, ACT, Australia
3Faculty of Information Technology, Monash
University, Clayton, VIC, Australia

Definition

Linear regression is an instance of the
�Regression problem which is an approach
to modeling a functional relationship between
input variables x and an output/response variable
y. In linear regression, a linear function of the
input variables is used, and more generally a
linear function of some vector function of the
input variables �.x/ can also be used. The
linear function estimates the mean of y (or more
generally the median or a quantile).

Motivation and Background

Assume we are given a set of data points sam-
pled from an underlying but unknown distribu-
tion, each of which includes input x and output

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_716

748 Linear Regression

y. The task of regression is to learn a hidden
functional relationship between x and y from
observed and possibly noisy data points, so y

is to be approximated in some way by f .x/.
This is the task covered in more detail in Re-
gression. A general approach to the problem is
to make the function f ./ be linear. Depending
on the optimization criteria used to fit between
the linear function f .x/ and the output y, this
can include many different regression techniques,
but optimization is generally easier because of the
linearity.

Theory/Solution

Formally, in a regression problem, we are in-
terested in recovering a functional dependency
yi D f .xi / C �i from N observed training data
points f.xi ; yi /g

N
iD1, where yi 2 R is the noisy

observed output at input location xi 2 R
d . For

the linear parametric technique, we tackle this
regression problem by parameterizing the latent
regression function f ./ by a parameter w 2 R

H ,
that is, f .xi / WD h�.xi /;wi for H fixed basis
functions f�h.xi /g

H
hD1. Note that the function is

a linear function of the weight vector w. The
simplest form of the linear parametric model is
when �.xi / D xi 2 R

d , that is, the model is
also linear with respect to the input variables,
f .xi / WD w0 C w1x

1
i C � � � C wdx

d
i . Here the

weight w0 allows for any constant offset in the
data. With general basis functions such as poly-
nomials, exponentials, sigmoids, or even more
sophisticated Fourier or wavelets bases, we can
obtain a regression function which is nonlinear
with respect to the input variables although still
linear with respect to the parameters.

In the subsequent section, the simplest and
thus common linear parametric method for solv-
ing a regression problem is covered, the least
squares method.

Least Squares Method
Let X 2 R

N�d be a matrix of input variables and
y 2 R

N be a vector of output variables. The least
squares method minimizes the following sum of
squared error:

E.w/ D .Xw � y/T .Xw � y/ (1)

to infer the weight vector w. Note that the above
error function is quadratic in the w, thus the
minimization has a unique solution and leads to a
closed-form expression for the estimated value of
the unknown weight vector w. The minimizer of
the error function in (1) can be found by setting its
first derivative with respect to the weight vector to
zero, that is,

@wE.w/ D 2XT .Xw � y/ D 0 (2)

w� D .XTX/�1XT y: (3)

The term

.XTX/�1XT WD X	 (4)

is known as the Moore-Penrose pseudo-inverse
(Golub and Van Loan 1996) of the matrixX . This
quantity can be regarded as a generalization of a
matrix inverse to nonsquare matrices. Whenever
X is square and invertible, X	
 X�1. Having
computed the optimal weight vector, we can then
predict the output value at a novel input location
xnew simply by taking an inner product: ynew D

h�.xnew/;w�i.
Under the assumption of an independent and

normally distributed noise term, �i � N .0; 2/,
the above least squares approach can be shown
to be equivalent to the maximum likelihood so-
lution. With the Gaussian noise term, the log-
likelihood model on an output vector y and an
input matrix X is

ln p.yjX;w/ D ln N .Xw; 2I / (5)

D �
N

2
ln.2�2/ �

1

22

.y �Xw/T .y �Xw/: (6)

Maximizing the above likelihood function with
respect to w will give the optimal weight to be
in the form of (3). We can also find the maximum
likelihood estimate of the noise variance by set-
ting the first derivative of (6) with respect to 2

to zero, that is,

Linear Regression 749

L

y

ψ1

ψ2

Φw∗

y−Φw∗

Linear Regression, Fig. 1 Geometrical interpretation of
least squares (Bishop 2006). The optimal solution w� with
respect to the least squares criterion corresponds to the
orthogonal projection of y onto the linear subspace which
is formed by the vectors of the basis functions

2
ML D

1

N
.y �Xw/T .y �Xw/: (7)

Geometrical Interpretation of Least Squares
Method
Let y be a vector in an N -dimensional space
whose axes are given by fyig

N
iD1. Each of the

H basis functions evaluated at N input loca-
tions can also be represented as a vector in the
same N -dimensional space. For notational con-
venience, we denote this vector as h. The H
vectors h will span a linear subspace of di-
mensionality H whenever the number of basis
functions H is smaller than the number of input
locations N (see Fig. 1). Denote ˚ 2 R

N�H as a
matrix whose rows are the vectors f�h.xi /g

H
hD1.

Our linear prediction model, ˚w (in the simplest
form Xw) will be an arbitrary linear combination
of the vectors h. Thus, it can lie anywhere in
the H -dimensional space. The sum of squared
error criterion in (1) then corresponds to the
squared Euclidean distance between ˚w and y.
Therefore, the least squares solution of w cor-
responds to the orthogonal projection of y onto
the linear subspace. This orthogonal projection
is associated with the minimum of the squared
Euclidean distance. As a side note, from Fig. 1,

it is clear that the vector y � ˚w is normal
(perpendicular) to the range of ˚ ; thus ˚T˚w D
˚T y is called the normal equation associated
with the least squares problem.

Practical Note
The computation of (3) requires an inversion of
an H by H matrix ˚T˚ (or a d by d matrix
XTX). A direct inversion of this matrix might
lead to numerical difficulties when two or more
basis vectors h or input dimensions are (nearly)
collinear. This problem can be addressed con-
veniently by using singular value decomposition
(SVD) (Press et al. 1992). It is important to note
that adding a regularization term (see also the
later section on ridge regression) ensures the non-
singularity of ˚T˚ matrix, even in the presence
of degeneracies.

Sequential Learning of Least Squares Method
Computation of the optimal weight vector in (3)
involves the whole training set comprising N

data points. This learning technique is known
as a batch algorithm. Real datasets can how-
ever involve large numbers of data points which
might make batch techniques computationally
prohibitive. In contrast, sequential algorithms or
online algorithms process one data point at a time
and can be more suited to handle large datasets.

We can use a sequential algorithm called
stochastic gradient descent for learning the opti-
mal weight vector. The objective function of (1)
can be decomposed into

PN
iD1.hxi ;wi � yi /

2.
This transformation suggests a simple stochastic
gradient descent procedure: we traverse the data
point i and update the weight vector using

wtC1 wt � 2�.
˝
xi ;w

t
˛
� yi /xi ; (8)

This algorithm is known as least mean squares
(LMS) algorithm. In the above equation, t de-
notes the iteration number, and � denotes the
learning rate. The value of � needs to be chosen
carefully to ensure the convergence of the algo-
rithm.

750 Linear Regression

Regularized/Penalized Least Squares Method
The issue of over-fitting as mentioned in Re-
gression is usually addressed by introducing a
regularization or penalty term to the objective
function. The regularized objective function is
now in the form of

Ereg D E.w/C �R.w/: (9)

Here E.w/ measures the quality (such as
least squares quality) of the solution on the
observed data points, R.w/ penalizes complex
solutions, and � is called the regularization
parameter which controls the relative importance
between the two. This regularized formulation
is sometimes called coefficient shrinkage as it
shrinks coefficients/weights toward zero (cf.
coefficient subset selection formulation where
the best k out of H basis functions are greedily
selected). Two simple penalty terms R.w/ are
given next, but more generally measures of
curvature can also be used to penalize non-
smooth functions.

Ridge Regression
The regularization term is in the form of

R.w/ D
DX

dD1

w2
d : (10)

Considering E.w/ to be in the form of (1), the
regularized least squares quality function is now

.Xw � y/T .Xw � y/C �wT w: (11)

Since the additional term is a quadratic of
w, the regularized objective function is still
quadratic in w, thus the optimal solution is unique
and can be found in closed form. As before,
setting the first derivative of (11) with respect to
w to zero, the optimal weight vector is in the form
of

@wEreg.w/ D 2XT .Xw�y/C 2�wD 0 (12)

w� D .XTX C �I/�1XT y: (13)

The effect of the regularization term is to put a
small weight for those basis functions which are
useful only in a minor way as the penalty for
small weights is very small.

Lasso Regression
The regularization term is in the form of

R.w/ D
DX

dD1

jwd j: (14)

In contrast to ridge regression, lasso regression
(Tibshirani 1996) has no closed-form solution. In
fact, the non-differentiability of the regulariza-
tion term has produced many approaches. Most
of the methods involve quadratic programming
and recently coordinate-wise descent algorithms
for large lasso problems (Friedman et al. 2007).
Lasso regression leads to sparsity in w, that is,
only a subset of w is nonzero, so irrelevant basis
functions will be ignored.

Cross-References

�Gaussian Processes
�Regression

Recommended Reading

Statistical textbooks and machine learning text-
books, such as Bishop (2006) among others,
introduce different linear regression models. For
a large variety of built-in linear regression tech-
niques, refer to R (http://www.r-project.org/).

Bishop C (2006) Pattern recognition and machine
learning. Springer, New York

Friedman J, Hastie T, Hölfling H, Tibshirani R
(2007) Pathwise coordinate optimization. Ann Stat
1(2):302–332

Golub GH, Van Loan CF (1996) Matrix computations,
3rd edn. John Hopkins University Press, Baltimore

Press WH, Teukolsky SA, Vetterling WT, Flannery BP
(1992) Numerical recipes in C: the art of scientific
computing, 2nd edn. Cambridge University Press,
Cambridge. ISBN:0-521-43108-5

Tibshirani R (1996) Regression shrinkage and selec-
tion via the lasso. J R Stat Soc Ser B Stat Methodol
58:267–288

http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://www.r-project.org/

Link Mining and Link Discovery 751

L

Linear Regression Trees

�Model Trees

Linear Separability

Two classes are linearly separable if there exists a
hyperplane that separates the data for each of the
classes.

Cross-References

� Precision
� Support Vector Machines

Link Analysis

�Link Mining and Link Discovery

Link Mining and Link Discovery

Lise Getoor
University of Maryland, College Park, MD, USA

Synonyms

Link analysis; Network analysis

Definition

Many domains of interest today are best de-
scribed as a linked collection of interrelated ob-
jects. Datasets describing these domains may
describe homogeneous networks, in which there
is a single-object type and link type, or richer, het-
erogeneous networks, in which there may be mul-
tiple object and link types (and possibly other se-
mantic information). Examples of homogeneous

networks include social networks, such as people
connected by friendship links, or the WWW,
a collection of linked web pages. Examples of
heterogeneous networks include those in medical
domains describing patients, diseases, treatments
and contacts, or bibliographic domains describ-
ing publications, authors, and venues. Link min-
ing refers to data mining techniques that explic-
itly consider these links when building predic-
tive or descriptive models of the linked data.
Commonly addressed link mining tasks include
collective classification, object ranking, group de-
tection, link prediction, and subgraph discovery.
Additional important components include entity
resolution, and other data cleaning and data map-
ping operations.

Motivation and Background

“Links,” or more generically “relationships,”
among data instances are ubiquitous. These links
often exhibit patterns that can indicate properties
of the data instances such as the importance,
rank, or category of the instances. In some cases,
not all links will be observed; therefore, we may
be interested in predicting the existence of links
between instances. Or, we may be interested
in identifying unusual or anomalous links. In
other domains, where the links are evolving over
time, our goal may be to predict whether a link
will exist in the future, given the previously
observed links. By taking links into account,
more complex patterns may be discernable as
well. This observation leads to other challenges
focused on discovering substructures, such as
communities, groups, or common subgraphs. In
addition, links can also help in the process of
� entity resolution, or figuring out when two
instance references refer to the same underlying
entity.

Link mining is a newly emerging research area
that is at the intersection of the work in link
analysis (Feldman 2002; Jensen and Goldberg
1998) hypertext and web mining (Chakrabarti
2002), � relational learning and � inductive logic
programming (Raedt 2008), and � graph mining
(Cook and Holder 2000). We use the term link

http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://dx.doi.org/10.1007/978-1-4899-7687-1_100267
http://dx.doi.org/10.1007/978-1-4899-7687-1_100327
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_350

752 Link Mining and Link Discovery

mining to put a special emphasis on the links –
moving them up to first-class citizens in the data
analysis endeavor.

Theory/Solution

Traditional data mining algorithms such as
� association rule mining, market basket analy-
sis, and cluster analysis commonly attempt to find
patterns in a dataset characterized by a collection
of independent instances of a single relation. This
is consistent with the classical statistical infer-
ence problem of trying to identify a model given
an independent, identically distributed (IID)
sample. One can think of this process as learning
a model for the node attributes of a homogeneous
graph while ignoring the links between the nodes.

A key emerging challenge for data mining is
tackling the problem of mining richly structured,
heterogeneous datasets. These kinds of datasets
are commonly described as networks or graphs.
The domains often consist of a variety of object
types; the objects can be linked in a variety of
ways. Thus, the graph may have different node
and edge (or hyperedge) types. Naively applying
traditional statistical inference procedures, which
assume that instances are independent, can lead to
inappropriate conclusions about the data (Jensen
1999). Care must be taken that potential corre-
lations due to links are handled appropriately.
In fact, object linkage is knowledge that should
be exploited. This information can be used to
improve the predictive accuracy of the learned
models: attributes of linked objects are often cor-
related, and links are more likely to exist between
objects that have some commonality. In addition,
the graph structure itself may be an important
element to include in the model. Structural prop-
erties such as degree and connectivity can be
important indicators.

Data Representation

While data representation and feature selection
are significant issues for traditional machine
learning algorithms, data representation for

linked data is even more complex. Consider
a simple example from Singh et al. (2005)
of a social network describing actors and
their participation in events. Such social
networks are commonly called affiliation
networks (Wasserman and Faust 1994), and are
easily represented by three tables representing
the actors, the events, and the participation
relationships. Even this simple structure can
be represented as several distinct graphs. The
most natural representation is a bipartite graph,
with a set of actor nodes, a set of event nodes,
and edges that represent an actor’s participation
in an event. Other representations may enable
different insights and analysis. For example, we
may construct a network in which the actors
are nodes and edges correspond to actors who
have participated in an event together. This
representation allows us to perform a more actor-
centric analysis. Alternatively, we may represent
these relations as a graph in which the events are
nodes, and events are linked if they have an actor
in common. This representation may allow us to
more easily see connections between events.

This flexibility in the representation of a graph
arises from a basic graph representation duality.
This duality is illustrated by the following simple
example: Consider a data set represented as a
simple G D (0, L), where 0 is the set of objects
(i.e., the nodes or vertices) and L is the set of links
(i.e., the edges or hyperedges). The graphG(0, L)
can be transformed into a new graph G0(00, L0),
in which the links li , lj in G are objects in G0

and there exists an link between oi , oj 2 00 if
and only if li and lj share an object in G. This
basic graph duality illustrates one kind of simple
data representation transformation. For graphs
with multiple node and edge types, the number of
possible transformations becomes immense. Typ-
ically, these reformulations are not considered as
part of the link mining process. However, the rep-
resentation chosen can have a significant impact
on the quality of the statistical inferences that can
be made. Therefore, the choice of an appropriate
representation is actually an important issue in
effective link mining, and is often more complex
than in the case where we have IID data instances.

http://dx.doi.org/10.1007/978-1-4899-7687-1_38

Link Prediction 753

L

Link Mining and Link Discovery, Table 1 A simple
categorization of different link mining tasks

1. Object-related tasks
a. Object classification (collective classification)
b. Object clustering (group detection)
c. Object consolidation (entity resolution)
d. Object ranking

2. Link-related tasks
a. Link labeling/classification
b. Link prediction
c. Link ranking

3. Graph-related tasks
a. Subgraph discovery
b. Graph classification

Link Mining Tasks

Link mining puts a new twist on some classic data
mining tasks, and also poses new problems. One
way to understand the different types of learning
and inference problems is to categorize them in
terms of the components of the data that are being
targeted. Table 1 gives a simple characterization.
Note that for the object-related tasks, even though
we are concerned with classifying, clustering,
consolidating, or ranking the objects, we will
be exploiting the links. Similarly for link-related
tasks, we can use information about the objects
that participate in the links, and their links to
other objects and so on.

In addition, because of the underlying link
structure, link mining affords the opportunity for
inferences and predictions to be collective or
dependent on one another. The simplest exam-
ple of this is in collective classification, where
the inferred label of one node can depend on
the inferred label of its neighbors. There are a
variety of ways of modeling and exploiting this
dependence. Methods include performing joint
inference in the appropriate probabilistic model,
use of information diffusion models, constructing
and optimizing the appropriate structured predic-
tion using a max margin approach, and others.

Additional information on different link min-
ing subtasks is provided in separate entries on
collective classification, entity resolution, group
detection, and link prediction. Related problems
and techniques can be found in the entries on

relational learning, graph mining, and inductive
logic programming.

Cross-References

�Collective Classification
�Entity Resolution
�Graph Clustering
�Graph Mining
�Group Detection
� Inductive Logic Programming
�Link Prediction
�Relational Learning

Recommended Reading

Chakrabarti S (2002) Mining the web. Morgan Kauf-
man, San Francisco

Cook DJ, Holder LB (2000) Graph-based data mining.
IEEE Intell Syst 15(2):32–41. ISSN:1094–7167.
http://dx.doi.org/10.1109/5254.850825

Feldman R (2002) Link analysis: current state of the
art. In: Proceedings of the KDD’02, Edmonton

Jensen D (1999) Statistical challenges to inductive
inference in linked data. In: Seventh international
workshop on artificial intelligence and statistics,
Fort Lauderdale. Morgan Kaufman, San Francisco

Jensen D, Goldberg H (1998) AAAI fall symposium on
AI and link analysis, Orlando. AAAI Press, Menlo
Park

Raedt LD (ed) (2008) Logical and relational learning.
Springer, Berlin

Singh L, Getoor L, Licamele L (2005) Pruning social
networks using structural properties and descriptive
attributes. In: International conference on data min-
ing, 2005, Houston. IEEE Computer Society

Wasserman S, Faust K (1994) Social network analysis:
methods and applications. Cambridge University
Press, Cambridge

Link Prediction

Galileo Namata and Lise Getoor
University of Maryland, College Park, MD, USA

Synonyms

Edge prediction; Relationship extraction

http://dx.doi.org/10.1007/978-1-4899-7687-1_44
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_355
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_486
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1109/5254.850825
http://dx.doi.org/10.1007/978-1-4899-7687-1_100132
http://dx.doi.org/10.1007/978-1-4899-7687-1_100411

754 Link Prediction

Definition

Many datasets can naturally be represented as
graph where nodes represent instances and links
represent relationships between those instances.
A fundamental problem with these types of data
is that the link information in the graph may be
of dubious quality; links may incorrectly exist
between unrelated nodes and links may be miss-
ing between two related nodes. The goal of link
prediction is to predict the existence of incorrect
or missing links between the nodes of the graph.

Theory/Solution

Inferring the existences of edges between nodes
in a graph has traditionally been referred to as
link prediction (Liben-Nowell and Kleinberg
2003a; Taskar et al. 2003). Link prediction is
a challenging problem that has been studied
in various guises in different domains. For
example, in social network analysis, there is
work on predicting friendship links (Zheleva et al.
2008), event participation links (i.e., coauthorship
O’Madadhain et al. 2005), communication links
(i.e., email O’Madadhain et al. 2005), and links
representing semantic relationships (i.e., advisor
of Taskar et al. 2003, subordinate manager Diehl
et al. 2007). In bioinformatics, there is interest
in predicting the existence of edges representing
physical protein–protein interactions (Szilagyi
et al. 2005b; Yu et al. 2006), domain–domain
interactions (Deng et al. 2002), and regulatory
interactions (Albert et al. 2007). Similarly,
in computer network systems, there is work
in inferring unobserved connections between
routers, as well as inferring relationships between
autonomous systems and service providers
(Spring et al. 2004). There is also work on using
link prediction to improve recommender systems
(Farrell et al. 2005), Web site navigation (Zhu
2003), surveillance (Huang and Lin 2008), and
automatic document cross-referencing (Milne
and Witten 2008).

We begin with some basic definitions and
notation. We refer to the set of possible edges in
a graph as potential edges. The set of potential

edges depends on the graph type and how the
edges for the graph are defined. For example,
in a directed graph, the set of potential edges
consists of all edges e D .v1; v2/ where v1 and
v2 are any two nodes V in the graph (i.e., the
number of potential edges is jV j � jV j). In an
undirected bipartite graph with two subsets of
nodes (V1; V2 2 V), while the edges still consist
of a pair of nodes, e D .v1; v2/, there is an added
condition such that one node must be from V1

and the other node must be from V2; this results
in jV1j � jV2j potential edges. Next, we refer to
set of “true” edges in a graph as positive edges,
and we refer to the “true” non-edges in a graph
(i.e., pairs of nodes without edges between them)
as negative edges. For a given graph, typically
we only have information about a subset of the
edges; we refer to this set as the observed edges.
The observed edges can include both positive
and negative edges, though in many formulations
there is an assumption of positive-only informa-
tion. We can view link prediction as a proba-
bilistic inference problem, where the evidence
includes the observed edges, the attribute values
of the nodes involved in the potential edge, and
possibly other information about the network,
and for any unobserved, potential edge, we want
to compute the probability of it existing. This
can be reframed as a binary classification prob-
lem by choosing some probability threshold and
concluding that potential edges with existence
probability above the threshold are true edges and
those below the threshold are considered false
edges (more complex schemes are possible as
well). For noisy and incomplete networks, we use
terminology from the machine learning literature
and refer to an edge that is inferred to exist and is
a true edge in the graph as a true positive edge, an
edge that should exist but is not inferred as a false
negative edge, an edge that should not exist and is
not inferred as a true negative edge, and an edge
that should not exist but is incorrectly inferred to
exist as a false positive edge.

One of the early and simple formulations
of the link prediction problem was proposed
by Liben-Nowell and Kleinberg (2003b). They
proposed a temporal prediction problem defined
over a dynamic network where given a graph

Link Prediction 755

L

Gt .Vt ; Et / at time t , the problem is to infer the
set of edges at the next time step t C 1. More
formally, the objective is to infer a set of edges
Enew where EtC1 D Et

S
Enew. We use a more

general definition of link prediction proposed by
Taskar et al. (2003) where given a graph G and
the set of potential edges in G, denoted P.G/,
the problem of link prediction is to predict for
all p 2 P.G/ whether p exists or does not exist,
remaining agnostic on whetherG is a noisy graph
with missing edges or a snapshot of a dynamic
graph at a particular time point.

Approaches

In this section, we discuss the two general cat-
egories of the current link prediction models:
topology-based approaches and node attribute-
based approaches. Topology-based approaches
are methods that rely solely on the topology
of the network to infer edges. Node attribute-
based approaches make predictions based on the
attribute values of the nodes incident to the edges.
In addition, there are models that make use of
both structure and attribute values.

Topology-Based Approaches

A number of link prediction models have been
proposed, which rely solely on the topology of
the network. These models typically rely on some
notion of structural proximity, where nodes that
are close are likely to share an edge (e.g., sharing
common neighbors, nodes with a small shortest
path distance between). The earliest topologi-
cal approach for link prediction was proposed
by Liben-Nowell and Kleinberg (2003b). In this
work, Liben-Nowell and Kleinberg proposed var-
ious structure-based similarity scores and applied
them over the unobserved edges of an undirected
graph. They then use a threshold k and only
predict edges with the top k scores as existing. A
variety of similarity scores were proposed, given
two nodes v1 and v2, including graph distance
(the length of the shortest path between v1 and
v2), common neighbors (the size of the inter-

section of the sets of neighbors of v1 and v2),
and more complex measures such as the Katz
measure (the sum of the lengths of the paths be-
tween v1 and v2 exponentially damped by length
to count short paths more heavily). Evaluating
over a coauthorship network, the best performing
proximity score measure was the Katz measure;
however the simple measures, which rely only
on the intersection of the set of nodes adjacent
to both nodes, performed surprisingly well. A re-
lated approach was proposed by Yu et al. (2006),
which applies the link prediction problem to pre-
dicting missing protein–protein interactions (PPI)
from PPI networks generated by high-throughput
methods. This work assumes that interacting pro-
teins tend to form a clique. Thus, missing edges
can be predicted by predicting the existence of
edges that will create cliques in the network.
More recent work by Clauset et al. (2008) has
tried to go beyond predicting edges between
neighboring nodes. In their problem domain of
food webs, for example, pairs of predators often
prey on a shared prey species but rarely prey on
each other. Thus, in these networks, predicting
“predator–prey” edges need to go beyond prox-
imity. For this, they propose a “hierarchical ran-
dom graph” approach, which fits a hierarchical
model to all possible dendrograms of a given
network. The model is then used to calculate the
likelihood of an edge existing in the network.

Node Attribute-Based Approaches

Although topology is useful in link prediction,
topology-based approaches ignore an important
source of information in networks, the attributes
of nodes. Often there are correlations in the
attributes of nodes that share an edge with each
other. One approach that exploits this correlation
was proposed by Taskar et al. (2003). In their
approach, Taskar et al. (2003) applied the rela-
tional Markov network (RMN) framework to link
prediction to predicting the existence and class of
edges between Web sites. They exploit the fact
that certain links can only exist between nodes of
the appropriate type. For example, an “advisor”
edge can only exist between student and faculty.

756 Link Prediction

Another approach that uses node attributes
was proposed by Popescul and Ungar (2003). In
that approach, they used a structured � logistic
regression model over learned relational features
to predict citation edges in a citation network.
Their relational features are built over attributes
such as the words used in the paper nodes.
O’Madadhain et al. (2005) also approached
an attribute-based approach, constructing local
conditional probability models based on the
attributes such as node attribute similarity,
topic distribution, and geographical location in
predicting “co-participation” edges in an email
communication network. More recently, there
is work on exploiting other node attributes like
the group membership of the nodes. Zheleva
et al. (2008) showed that membership in family
groups is very useful in predicting friendship
links in social networks. Similarly, Sprinzak
et al. (2006) showed that using protein complex
information can be useful in predicting protein–
protein interactions. Finally, we note that in
link prediction, as in classification, the quality
of predictions can be improved by making
the predictions collectively. Aside from the
relational Markov network approach by Taskar
et al. (2003) mentioned earlier, Markov logic
networks (Richardson and Domingos 2006) and
probabilistic relational models (Getoor et al.
2003) have also been proposed for link prediction
and are capable of performing joint inference.

Issues

There are a number of challenges that make
link prediction very difficult. The most difficult
challenge is the large class skew between the
number of edges that exist and the number of
edges that do not. To illustrate, consider directed
graph denoted by G.V;E/. While the number
of edges jEj is often O.jV j/, the number of
edges that do not exist is often O.jV j2/. Con-
sequently, the prior probability edge existence is
very small. This causes many supervised models,
which naively optimize for accuracy, to learn
a trivial model, which always predicts that a
link does not exist. A related problem in link

prediction is the large number of edges whose
existence must be considered. The number of
potential edges isO.jV j2/ and this limits the size
of the datasets that can be considered.

In practice, there are general approaches to
addressing these issues either prior to or during
the link prediction. With both large class skew
and number of edges to contend with, the general
approach is to make assumptions that reduce the
number of edges to consider. One common way
to do this is to partition the set of nodes where
we only consider potential edges between nodes
of the same partition; edges between partitions
are not explicitly modeled, but are assumed not
to exist. This is useful in many domains where
there is some sort of natural partition among the
nodes available (e.g., geography in social net-
works, location of proteins in a cell), which make
edges across partitions unlikely. Another way is
to define some simple, computationally inexpen-
sive distance measure such that only edges whose
nodes are within some distance are considered.

Another practical issue in link prediction is
that while real-world data often indicates which
edges exist (positive examples), the edges which
do not exist (negative examples) are rarely anno-
tated for use by link prediction models. In bioin-
formatics, for example, the protein–protein inter-
action network of yeast, the most and annotated
studied organism, is annotated with thousands of
observed edges (physical interactions) between
the nodes (proteins) gathered from numerous ex-
periments. There are currently, however, no major
datasets available that indicate which proteins
definitely do not physically interact. This is an
issue not only in creating and learning models
for link prediction but is also an issue evaluating
them. Often, it is unclear whether a predicted
edge which is not in our ground truth data is an
incorrectly predicted edge or an edge resulting
from incomplete data.

Related Problems

In addition to the definition of link prediction
discussed above, it is also important to mention
three closely related problems: link completion,

http://dx.doi.org/10.1007/978-1-4899-7687-1_951

Link Prediction 757

L

leak detection, and anomalous link discovery,
whose objectives are different but very similar to
link prediction. Link completion (Chaiwanarom
and Lursinsap 2008; Goldenberg et al. 2003)
and leak detection (Balasubramanyan et al. 2009;
Carvalho and Cohen 2007) are a variation of link
prediction over hypergraphs. A hypergraph is a
graph where the edges (known as hyperedges)
can connect any number of nodes. For example,
in a hypergraph representing an email communi-
cation network, a hyperedge may connect nodes
representing email addresses that are recipients of
a particular email communication. In link com-
pletion, given the set of nodes that participate in
a particular hyperedge, the objective is to infer
nodes that are missing. For the email communi-
cation network example, link completion may in-
volve inferring which email addresses need to be
added to the recipient list of an email communi-
cation. Conversely, in leak detection, given the set
of nodes participating in a particular hyperedge,
the objective is to infer which nodes should not
be part of that hyperedge. For example, in email
communications, leak detection will attempt to
infer which email address nodes are incorrectly
part of the hyperedge representing the recipient
list of the email communication.

The last problem, anomalous link discovery
(Huang and Zeng 2006; Rattigan and Jensen
2005a), has been proposed as an alternate task
to link prediction. As with link completion, the
existence of the edges is assumed to be observed,
and the objective is to infer which of the ob-
served links are anomalous or unusual. Specifi-
cally, anomalous link discovery identifies which
links are statistically improbable with the idea
that these may be of interest for those analyzing
the network. Rattigan and Jensen (2005b) show
that some methods that perform poorly for link
prediction can still perform well for anomalous
link discovery.

Cross-References

�Graph Mining
� Statistical Relational Learning

Recommended Reading

Albert R, DasGupta B, Dondi R, Kachalo S, Sontag
E, Zelikovsky A et al (2007) A novel method for
signal transduction network inference from indirect
experimental evidence. J Comput Biol 14:407–419

Balasubramanyan R, Carvalho VR, Cohen W (2009)
Cutonce recipient recommendation and leak detec-
tion in action. In: Workshop on enhanced messag-
ing, Chicago

Carvalho VR, Cohen WW (2007) Preventing informa-
tion leaks in email. In: SIAM conference on data
mining, Minneapolis

Chaiwanarom P, Lursinsap C (2008) Link completion
using prediction by partial matching. In: Interna-
tional symposium on communications and informa-
tion technologies, Vientiane

Clauset A, Moore C, Newman MEJ (2008) Hierarchi-
cal structure and the prediction of missing links in
networks. Nature 453:98

Deng M, Mehta S, Sun F, Chen T (2002) Inferring
domain-domain interactions from protein-protein
interactions. Genome Res 12(10):1540–1548

Diehl C, Namata GM, Getoor L (2007) Relationship
identification for social network discovery. In:
Proceedings of the 22nd national conference on
artificial intelligence, Vancouver

Farrell S, Campbell C, Myagmar S (2005) Relescope:
an experiment in accelerating relationships. In:
Extended abstracts on human factors in computing
systems, Portland

Getoor L, Friedman N, Koller D, Taskar B (2003)
Learning probabilistic models of link structure.
Mach Learn 3:679–707

Goldenberg A, Kubica J, Komarek P, Moore A, Schnei-
der J (2003) A comparison of statistical and
machine learning algorithms on the task of link
completion. In: Conference on knowledge discovery
and data mining, workshop on link analysis for
detecting complex behavior, Washington, DC

Huang Z, Lin DKJ (2008) The time-series link pre-
diction problem with applications in communication
surveillance. Inf J Comput 21:286–303

Huang Z, Zeng DD (2006) A link prediction approach
to anomalous email detection. In: IEEE interna-
tional conference on systems, man, and cybernetics,
Taipei

Liben-Nowell D, Kleinberg J (2003a) The link predic-
tion problem for social networks. In: International
conference on information and knowledge manage-
ment, New Orleans

Liben-Nowell and Kleinberg (2003b)
Milne D, Witten IH (2008) Learning to link with

wikipedia. In: Proceedings of the 17th ACM confer-
ence on information and knowledge management,
Napa Valley

O’Madadhain J, Hutchins J, Smyth P (2005) Prediction
and ranking algorithms for event-based network
data. SIGKDD Explor Newsl 7(2):23–30

http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_786

758 Link-Based Classification

Popescul A, Ungar LH (2003) Statistical relational
learning for link prediction. In: International joint
conferences on artificial intelligence workshop on
learning statistical models from relational data

Rattigan MJ, Jensen D (2005a) The case for anomalous
link discovery. SIGKDD Explor Newsl 7:41–47

Rattigan and Jensen (2005b)
Richardson M, Domingos P (2006) Markov logic

networks. Mach Learn 62:107–136
Spring N, Wetherall D, Anderson T (2004) Reverse

engineering the internet. SIGCOMM Comput Com-
mun Rev 34(1):3–8

Sprinzak E, Altuvia Y, Margalit H (2006) Characteri-
zation and prediction of protein-protein interactions
within and between complexes. Proc Natl Acad Sci
103(40):14718–14723

Szilagyi A, Grimm V, Arakaki AK, Skolnick J (2005a)
Prediction of physical protein-protein interactions.
Phys Biol 2(2):S1–S16

Szilagyi et al. (2005b)
Taskar B, Wong M-F, Abbeel P, Koller D (2003) Link

prediction in relational data. In: Advances in neural
information processing systems, Vancouver

Yu H, Paccanaro A, Trifonov V, Gerstein M (2006)
Predicting interactions in protein networks by
completing defective cliques. Bioinformatics
22(7):823–829

Zheleva E, Getoor L, Golbeck J, Kuter U (2008) Using
friendship ties and family circles for link prediction.
In: 2nd ACM SIGKDD workshop on social network
mining and analysis, Las Vegas

Zhu J (2003) Mining web site link structure for
adaptive web site navigation and search. Ph.D.
thesis, University of Ulster at Jordanstown

Link-Based Classification

�Collective Classification

Liquid State Machine

�Reservoir Computing

List Washing

�Record Linkage

Local Distance Metric Adaptation

Synonyms

Kernel shaping; Nonstationary kernels; Super-
smoothing

Definition

In learning systems with kernels, the shape and
size of a kernel plays a critical role for accuracy
and generalization. Most kernels have a distance
metric parameter, which determines the size and
shape of the kernel in the sense of a Mahalanobis
distance. Advanced kernel learning tune every
kernel’s distance metric individually, instead of
turning one global distance metric for all kernels.

Cross-References

�Locally Weighted Regression for Control

Local Feature Selection

� Projective Clustering

Locality Sensitive Hashing Based
Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

The basic idea of the LSH (Gionis et al. 1999)
technique is using multiple hash functions to hash

http://dx.doi.org/10.1007/978-1-4899-7687-1_44
http://dx.doi.org/10.1007/978-1-4899-7687-1_731
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_100234
http://dx.doi.org/10.1007/978-1-4899-7687-1_100338
http://dx.doi.org/10.1007/978-1-4899-7687-1_100455
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_676

Locally Weighted Regression for Control 759

L

the data points and guarantee that there is a high
probability of collision for points which are close
to each other and low collision probability for
dissimilar points. LSH schemes exist for many
distance measures, such as Hamming norm, Lp

norms, cosine distance, earth movers distance
(EMD), and Jaccard coefficient.

In LSH, define a family H D fh W S ! U g

as locality-sensitive, if for any a, the function
p.t/DP rH Œh.a/Dh.b/ W jja � bjj D x� is de-
creasing in x. Based on this definition, the
probability of collision of points a and b is
decreasing with their distance.

Although LSH was originally proposed for
approximate nearest neighbor search in high di-
mensions, it can be used for clustering as well
(Das et al. 2007; Haveliwala et al. 2000). The
buckets could be used as the bases for clustering.
Seeding the hash functions several times can help
getting better quality clustering.

Recommended Reading

Das AS, Datar M, Garg A, Rajaram S (2007) Google
news personalization: scalable online collaborative
filtering. In: Proceedings of the 16th international
conference on world wide web (WWW’07). ACM,
New York, pp 271–280

Gionis A, Indyk P, Motwani R (1999) Similarity search
in high dimensions via hashing. In: Proceedings of
the 25th international conference on very large data
bases (VLDB’99). Morgan Kaufmann Publishers,
San Francisco, pp 518–529

Haveliwala TH, Gionis A, Indyk P (2000)
Scalable techniques for clustering the web
(extended abstract). In: Proceedings of the
third international workshop on the web
and databases. Stanford University, Stanford,
pp 129–134

Locally Weighted Learning

�Locally Weighted Regression for Control

Locally Weighted Regression for
Control

Jo-Anne Ting1, Franziska Meier2, Sethu
Vijayakumar1;2, and Stefan Schaal3;4

1University of Edinburgh, Edinburgh, UK
2University of Southern California, Los Angeles,
CA, USA
3Max Planck Institute for Intelligent Systems,
Stuttgart, Germany
4Computer Science, University of Southern
California, Los Angeles, CA, USA

Synonyms

Kernel shaping; Lazy learning; Locally weighted
learning; Local distance metric adaptation; LWR;
LWPR; Nonstationary kernels; Supersmoothing

Definition

This entry addresses two topics: � learning con-
trol and locally weighted regression.

�Learning control refers to the process of
acquiring a control strategy for a particular con-
trol system and a particular task by trial and
error. It is usually distinguished from adaptive
control (Aström and Wittenmark 1989) in that
the learning system is permitted to fail during
the process of learning, resembling how humans
and animals acquire new movement strategies.
In contrast, adaptive control emphasizes single-
trial convergence without failure, fulfilling strin-
gent performance constraints, e.g., as needed in
life-critical systems like airplanes and industrial
robots.

Locally weighted regression refers to
� supervised learning of continuous functions
(otherwise known as function approximation or
� regression) by means of spatially localized
algorithms, which are often discussed in the
context of � kernel regression, � nearest neighbor

http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_100234
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_100273
http://dx.doi.org/10.1007/978-1-4899-7687-1_484
http://dx.doi.org/10.1007/978-1-4899-7687-1_100283
http://dx.doi.org/10.1007/978-1-4899-7687-1_100282
http://dx.doi.org/10.1007/978-1-4899-7687-1_100338
http://dx.doi.org/10.1007/978-1-4899-7687-1_100455
http://dx.doi.org/10.1007/978-1-4899-7687-1_450
http://dx.doi.org/10.1007/978-1-4899-7687-1_450
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_579

760 Locally Weighted Regression for Control

methods, or � lazy learning (Atkeson et al. 1997).
Most regression algorithms are global learning
systems. For instance, many algorithms can be
understood in terms of minimizing a global � loss
function such as the expected sum squared error:

J D E

"
1

2

NX

iD1

.ti � yi /
2

#

D E

"
1

2

NX

iD1

�
ti � � .xi /

T ˇ
�2
#

(1)

where E Œ � � denotes the expectation operator,
ti the noise-corrupted target value for an in-
put xi —which is expanded by basis functions
into a basis function vector � .xi /-and ˇ is the
vector of (usually linear) regression coefficients.
Classical feedforward � neural networks, � radial
basis function networks, �mixture models, or
�Gaussian process regression are all global func-
tion approximators in the spirit of Eq. (1).

In contrast, local learning systems conceptu-
ally split up the global learning problem into
multiple simpler learning problems. Traditional
locally weighted regression approaches achieve
this by dividing up the cost function into multiple
independent local cost functions,

J D E

"
1

2

KX

kD1

NX

iD1

wk;i

�
ti � xT

i ˇk

�2
#

D
1

2

KX

kD1

E

"
NX

iD1

wk;i

�
ti � xT

i ˇk

�2
#

D
1

2

KX

kD1

Jk : (2)

resulting inK (independent) local model learning
problems. A different strategy for local learning
starts out with the global objective (Eq. 1) and
reformulates it to capture the idea of local models
that cooperate to generate a (global) function fit.
This is achieved by assuming there are K feature
functions �k , such that the kth feature function
�k .xi / D wk;i xi , resulting in

J D E

"
1

2

NX

iD1

�
ti � � .xi /

T ˇ
�2
#

D E

2

41

2

NX

iD1

ti �

KX

kD1

wk;i .x
T
i ˇk/

!2
3

5 :

(3)

In this setting, local models are initially coupled
and approximations are found to decouple the
learning of the local models parameters.

Motivation and Background

Figure 1 illustrates why locally weighted re-
gression methods are often favored over global
methods when it comes to learning from incre-
mentally arriving data, especially when dealing
with nonstationary input distributions. The figure
shows the division of the training data into two
sets: the “original training data” and the “new
training data” (in dots and crosses, respectively).

Initially, a sigmoidal � neural network and a
locally weighted regression algorithm are trained
on the “original training data,” using 20 % of
the data as a cross validation set to assess con-
vergence of the learning. In a second phase,
both learning systems are trained solely on the
“new training data” (again with a similar cross-
validation procedure), but without using any data
from the “original training data.” While both
algorithms generalize well on the “new training
data,” the global learner incurred catastrophic
interference, unlearning what was learned ini-
tially, as seen in Fig. 1a. Figure 1b shows that
the locally weighted regression algorithm does
not have this problem since learning (along with
� generalization) is restricted to a local area.

Appealing properties of locally weighted re-
gression include the following:

• Function approximation can be performed
incrementally with nonstationary input and
output distributions and without significant
danger of interference. Locally weighted
regression can provide � posterior probability

http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_499
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_648

Locally Weighted Regression for Control 761

L

•••

•

••

•

•

•
•
•••

•

•
•••

•
•

•

•

•

••
••

•

•

•
•

••
•••

•
•

••

•

•••

•
•••
••••

•

•••

•

•

•
•

••
•
•

•
•

•

••
••

•

••

•

•••

•

••••
•
••
•

•

•
•
•
•

••

•
•••

•

•
•
•••
•
•

••
••
••
•

•
•
•

•
•
•

•

•

•

•
•

•

••

•

•

•

+
++

+

+

+
+

+
++

+

++

++
+
+

+
+
+

+

+

+

+

+
+
++

++
++

+
++
+

+
+++

++
+
+++

+
+
++

++
+

+
++

+++++++
++

+

+
+

++

–2

–1

0

1

2

3

4

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

y

x

• original training data

+ new training data

true y predicted y predicted y after new training data

0
0.5

1

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
w

x

Learned Organization of Receptive Fields

•••

•

••

•

•

•
•
•••

•

•
•••

•
•

•

•

•

••
••

•

•

•
•

••
•••

•
•

••

•

•••

•
•••
••••

•

•••

•

•

•
•

••
•
•

•
•

•

••
••

•

••

•

•••

•

••••
•
••
•

•

•
•
•
•

••

•
•••

•

•
•
•••
•
•

••
••
••
•

•
•
•

•
•
•

•

•

•

•
•

•

••

•

•

•

+
++

+

+

+
+

+
++

+

++

++
+
+

+
+
+

+

+

+

+

+
+
++

++
++

+
++
+

+
+++

++
+
+++

+
+
++

++
+

+
++

+++++++
++

+

+
+

++

–6

–5

–4

–3

–2

–1

0

1

2

3

4a b

c

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

y

x

Local Function Fitting With Receptive FieldsGlobal Function Fitting With Sigmoidal Neural
Network

Locally Weighted Regression for Control, Fig. 1
Function approximation results for the function y D
sin.2x/ C 2 exp.�16x2/ C N.0; 0:16/ with (a) a sig-
moidal neural network, (b) a locally weighted regression
algorithm (note that the data traces “true y,” “predicted y,”

and “predicted y after new training data” largely coincide),
and (c) the organization of the (Gaussian) kernels of (b)
after training. See Schaal and Atkeson 1998 for more
details

distributions, offer confidence assessments,
and deal with heteroscedastic data.

• Locally weighted learning algorithms are
computationally inexpensive to compute. It
is well suited for online computations (e.g.,
for � online and � incremental learning) in the
fast control loop of a robot—typically on the
order of 100–1000 Hz.

• Locally weighted regression methods can im-
plement continual learning and learning from
large amounts of data without running into se-
vere computational problems on modern com-
puting hardware.

• Locally weighted regression is a nonparamet-
ric method (i.e., it does not require that the
user determine a priori the number of local
models in the learning system), and the learn-
ing systems grow with the complexity of the
data it tries to model.

• Locally weighted regression can include
� feature selection, � dimensionality reduc-
tion, and �Bayesian inference—all which are
required for robust � statistical inference.

• Locally weighted regression works favorably
with locally linear models (Hastie and Loader

1993), and local linearizations are of ubiqui-
tous use in control applications.

Background
Returning to Eqs. (1) to (3), the main differences
between global methods that directly solve
Eq. (1) and local methods that solve either
Eqs. (2) or (3) are listed below:

(i) A weight wi;k is introduced that focuses:
• either the function approximation fit in

Eq. (2)
• or a local models contribution toward the

global function fit in Eq. (3)
on only a small neighborhood around a
point of interest ck in input space (see Eq. 4
below).

(ii) The learning problem is split into K inde-
pendent optimization problems.

(iii) Due to the restricted scope of the function
approximation problem, we do not need a
nonlinear basis function expansion and can,
instead, work with simple local functions
or local polynomials (Hastie and Loader
1993).

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_130
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_100445

762 Locally Weighted Regression for Control

The weights wk;i in Eq. (2) are typically
computed from some � kernel function (Atkeson
et al. 1997) such as a squared exponential
kernel:

wk;i D exp

�
�

1

2
.xi � ck/

T Dk .xi � ck/

�
(4)

with Dk denoting a positive semidefinite dis-
tance metric and ck the center of the kernel.
The number of kernels K is not finite. In many
local learning algorithms, the kernels are never
maintained in memory. Instead, for every query
point xq , a new kernel is centered at ck D xq , and
the localized function approximation is solved
with weighted � regression techniques (Atkeson
et al. 1997).

Locally weighted regression should not be
confused with mixture of experts models (Jordan
and Jacobs 1994). �Mixture models are global
learning systems since the experts compete
globally to cover training data. Mixture models
address the � bias-variance dilemma (Intuitively,
the � bias-variance dilemma addresses how many
parameters to use for a function approximation
problem to find an optimal balance between
� overfitting and oversmoothing of the training
data.) by finding the right number of local
experts. Locally weighted regression addresses
the � bias-variance dilemma in a local way
by finding the optimal distance metric for
computing the weights in the locally weighted
regression (Schaal and Atkeson 1998).

Structure of Learning System

All local learning approaches have three critical
components in common:

(i) Optimizing the regression parameters ˇk

(ii) Learning the distance metric Dk that defines
a local model neighborhood

(iii) Choosing the location ck of receptive
field(s)

Local learning methods can be separated into
“lazy” approaches that require all training data

to be stored and “memoryless” approaches that
compress data into a several local models and
thus do not require storage of data points.

In the “lazy” approach, the computational bur-
den of a prediction is deferred until the last
moment, i.e., when a prediction is needed. Such a
“compute-the-prediction-on-the-fly” approach is
often called lazy learning and is a memory-based
learning system where all training data is kept
in memory for making predictions. A prediction
is formed by optimizing the parameters ˇq and
distance metric Dq of one local model centered at
the query point cq D xq .

Alternatively, in the “memoryless” approach,
multiple kernels are created as needed to cover
the input space, and the sufficient statistics of the
weighted regression are updated incrementally
with recursive � least squares (Schaal and Atke-
son 1998). This approach does not require storage
of data points in memory. Predictions of neigh-
boring local models can be blended, improving
function fitting results in the spirit of committee
machines.

We describe some algorithms of both flavors
next.

Memory-Based Locally Weighted
Regression (LWR)
The original locally weighted regression algo-
rithm was introduced by Cleveland (1979) and
popularized in the machine learning and learning
control community by Atkeson (1989). The algo-
rithm – categorized as a “lazy” approach – can
be summarized as follows below (for algorithmic
pseudo-code, see Schaal et al. 2002):

• All training data is collected in the rows of the
matrix X and the vector (For simplicity, only
functions with a scalar output are addressed.
Vector-valued outputs can be learned either
by fitting a separate learning system for each
output or by modifying the algorithms to fit
multiple outputs (similar to multi-output lin-
ear regression).) t.

• For every query point xq , the weighting kernel
is centered at the query point.

http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_28
http://dx.doi.org/10.1007/978-1-4899-7687-1_473

Locally Weighted Regression for Control 763

L

• The weights are computed with Eq. (4), and
all data points’ weights are collected in the
diagonal weight matrix Wq

• The local regression coefficients are computed
as

ˇq D
�

XT WqX
��1

XT Wqt (5)

• A prediction is formed with yq D
	
xT

q 1

ˇq .

As in all kernel methods, it is important to op-
timize the kernel parameters in order to get opti-
mal function fitting quality. For LWR, the critical
parameter determining the � bias-variance trade-
off is the distance metric Dq . If the kernel is too
narrow, it starts fitting noise. If it is too broad,
oversmoothing will occur. Dq can be optimized
with leave-one-out cross validation to obtain a
globally optimal value, i.e., the same Dq D D
is used throughout the entire input space of the
data. Alternatively, Dq can be locally optimized
as a function of the query point, i.e., obtain a
Dq (as indicated by the subscript “q”). In the
recent machine learning literature (in particular,
work related to kernel methods), such input-
dependent kernels are referred to as nonstationary
kernels.

Locally Weighted Projection Regression
(LWPR)
Schaal and Atkeson (1998) suggested a
memoryless version of LWR, called RFWR, in
order to avoid the expensive � nearest neighbor
computations—particularly for large training
data sets—of LWR and to have fast real-time (In
most robotic systems, “real time” means on the
order of maximally 1–10 ms computation time,
corresponding to a 1000 to 100 Hz control loop.)
prediction performance. The main ideas of the
RFWR algorithm (Schaal and Atkeson 1998) are
listed below:

• Create new kernels only if no existing kernel
in memory covers a training point with some
minimal activation weight.

• Keep all created kernels in memory and up-
date the weighted regression with weighted re-

cursive � least squares for new training points
fx; tg:

ˇnC1
k
D ˇn

k C wPnC1 Qx
�
t � QxT ˇn

k

�

where PnC1
k
D

1

�

Pn

k �
Pn

k
QxQxT Pn

k

w C Qx

T Pn
k
Qx

!
and Qx

D
h
xT 1

iT

: (6)

• Adjust the distance metric Dq for each kernel
with a gradient descent technique using leave-
one-out cross validation.

• Make a prediction for a query point taking a
weighted average of predictions from all local
models:

yq D

PK
kD1 wq;k Oyq;kPK

kD1 wq;k

(7)

Adjusting the distance metric Dq with leave-one-
out cross validation without keeping all training
data in memory is possible due to the PRESS
residual. The PRESS residual allows the leave-
one-out cross validation error to be computed in
closed form without needing to actually exclude
a data point from the training data.

Another deficiency of LWR is its inability
to scale well to high-dimensional input spaces
since the � covariance matrix inversion in Eq. (5)
becomes severely ill-conditioned. Additionally,
LWR becomes expensive to evaluate as the
number of local models to be maintained
increases. Vijayakumar et al. (2005) suggested
local � dimensionality reduction techniques
to handle this problem. Partial least squares
(PLS) regression is a useful � dimensionality
reduction method that is used in the LWPR
algorithm (Vijayakumar et al. 2005). In
contrast to PCA methods, PLS performs
� dimensionality reduction for � regression,
i.e., it eliminates subspaces of the input space
that minimally correlates with the outputs, not
just parts of the input space that have low
variance.

While LWPR is typically used in conjunction
with linear local models, the use of local non-

http://dx.doi.org/10.1007/978-1-4899-7687-1_932
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_57
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_716

764 Locally Weighted Regression for Control

parametric models, such as Gaussian processes,
has also been explored (Nguyen-Tuong et al.
2008). Finally, LWPR is currently one of the best
developed locally weighted regression algorithms
for control (Klanke et al. 2008) and has been
applied to learning control problems with over
100 input dimensions.

A Full Bayesian Treatment of Locally
Weighted Regression
Ting et al. (2008) proposed a fully probabilistic
treatment of LWR in an attempt to avoid cross-
validation procedures and minimize any manual
parameter tuning (e.g., gradient descent rates,
kernel initialization, forgetting rates, etc.). The
resulting Bayesian algorithm learns the distance
metric of local linear model (For simplicity, a lo-
cal linear model is assumed, although local poly-
nomials can be used as well.) probabilistically,
can cope with high input dimensions, and rejects
data outliers automatically. The main ideas of
Bayesian LWR are listed below (please see Ting
2009 for details):

• Introduce hidden variables z to the local
linear model to decompose the statistical
estimation problem into d individual
estimation problems (where d is the number
of input dimensions). The result is an iterative
expectation-maximization (EM) algorithm
that is of linear � computational complexity
in d and the number of training data samples
N , i.e., O.Nd/.

• Associate a scalar weight wi with each train-
ing data sample fxi ; tig, placing a Bernoulli
� prior probability distribution over a weight
wim for each input dimension m so that the
weights are positive and between 0 and 1:

wi D

dY

mD1

wim where

wim� Bernoulli .qim/ for i D 1; ::; N I

m D 1; ::; d (8)

The weight wi indicates a training sample’s
contribution to the local model. The formula-

tion of the parameter qim determines the shape
of the weighting function applied to the local
model. The weighting function qim used in
Bayesian LWR is listed below:

qim D
1

1C
�
xim � xqm

�2
hm

for i D 1; ::; N I

m D 1; ::; d (9)

where xq 2 <
d�1 is the query input point

and hm is the bandwidth parameter/distance
metric of the local model in the m-th input
dimension.

• Place a gamma � prior probability distribution
over the distance metric hm:

hm � Gamma .ahm0; bhm0/ (10)

where fahm0; bhm0g are the prior parameter
values of the gamma distribution.

• Treat the model as an EM-like � regression
problem, using � variational approximations
to achieve analytically tractable inference of
the � posterior probability distributions.

This Bayesian method can also be applied
as general kernel shaping algorithm for global
� kernel learning methods that are linear in
the parameters (e.g., to realize nonstationary
�Gaussian processes (Ting et al. 2008), resulting
in an augmented nonstationary �Gaussian
process).

Figure 2 illustrates Bayesian kernel shaping’s
bandwidth adaptation abilities on several syn-
thetic data sets, comparing it to a stationary
�Gaussian process and the augmented nonsta-
tionary �Gaussian process. For the ease of vi-
sualization, the following one-dimensional func-
tions are considered: (i) a function with a discon-
tinuity, (ii) a spatially inhomogeneous function,
and (iii) a straight line function. Figure 2 shows
the predicted outputs of all three models trained
on noisy data drawn from data sets (i)–(iii). The
local kernel shaping algorithm smoothens over
regions where a stationary �Gaussian process
overfits, and yet, it still manages to capture re-
gions of highly varying curvature, as seen in

http://dx.doi.org/10.1007/978-1-4899-7687-1_47
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_108

Locally Weighted Regression for Control 765

L

−2 −1 0

Function i) Function ii) Function iii)

1 2
−4

−2

0

2

x

y

−2 −1 0 1 2

−1

0

1

2

x

y

Training data
Stationary GP
Aug GP
Kernel Shaping

−2 −1 0 1 2
−2

−1

0

1

2

x

y

0

1

w

−2 −1 0 1 2
100

103

107

x

h

w
xq

0

1

w

−2 −1 0 1 2
100

106

x

h

0

1

w

−2 −1 0 1 2

10−6

100

106

x

h

a b c

Locally Weighted Regression for Control, Fig. 2
Predicted outputs using a stationary Gaussian process
(GP), the augmented nonstationary GP, and local kernel
shaping on three different data sets. Figures on the bottom

row show the bandwidths learned by local kernel shaping
and the corresponding weighting kernels (in dotted black
lines) for various input query points (shown in red circles)

Fig. 2a, b. It correctly adjusts the bandwidths h
with the curvature of the function. When the data
looks linear, the algorithm opens up the weight-
ing kernel so that all data samples are considered,
as Fig. 2c shows.

From the viewpoint of � learning control,
� overfitting—as seen in the �Gaussian
process in Fig. 2—can be detrimental since
learning control often relies on extracting local
linearizations to derive controllers. Obtaining the
wrong sign on a slope in a local linearization may
destabilize a controller.

In contrast to LWPR, the Bayesian LWR
method is a “lazy” learner, although memoryless
versions could be derived. Future work will
also have to address how to incorporate
� dimensionality reduction methods for robust-
ness in high dimensions. Nevertheless, it is a
first step toward a probabilistic locally weighted
regression method with minimal parameter
tuning required by the user.

From Global to Local: Local Regression
with Coupling Between Local Models
Meier et al. (2014) offer an alternative approach
to local learning. They start out with the global
objective (Eq. 3) and reformulate it to capture the
idea of local models that cooperate to generate a
function fit, resulting in

J D E

2

41

2

NX

iD1

ti �

KX

kD1

wk;i .x
T
i ˇk/

!2
3

5 :

(11)

With this change, a local models’ contribution
Oyk D xT

i ˇk toward the fit of target ti is local-
ized through weight wk;i . However, this form of
localization couples all local models. For efficient
learning, local Gaussian regression (LGR) thus
employs approximations to decouple learning of
parameters. The main ideas of LGR are:

http://dx.doi.org/10.1007/978-1-4899-7687-1_450
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_71

766 Locally Weighted Regression for Control

• Introduce Gaussian hidden variables fk that
form virtual targets for the weighted contribu-
tion of the kth local model:

fk;i D N
�

wk;i .x
T
i ˇk/; ˇ

�1
m

�
(12)

Assume that the target t is observed with
Gaussian noise and that the hidden variables
fk need to sum up to noisy target ti

ti D N

X

k

fk;i ; ˇ
�1
y

!
(13)

In its exact form, this model learning proce-
dure will couple all local models parameters.

• Employ a variational approximation to de-
couple local models. This results in an itera-
tive (EM style) learning procedure, between
updating posteriors over hidden variables fk

followed by posterior updates for regression
parameters ˇk , for all local models k D

1; : : : ; K.
• The updates over the hidden variables fk turn

out to be a form of message passing between
local model predictions. This step allows the
redistribution of virtual target values for each
local model. This communication between lo-
cal models is what distinguishes LGR from
typical LWR approaches. This update is linear

in the number of local models and in the
number of data points.

• The parameter updates (ˇk and Dk) per lo-
cal model become completely independent
through the variational approximation, result-
ing in a localized learning algorithm, similar
in spirit to LWR.

• Place Gaussian priors over regression param-
eters ˇk � N .ˇk I 0; diag .˛k// that allow for
automatic relevance determination of the input
dimensions.

• For incrementally incoming data, apply recur-
sive Bayesian updates that utilize the poste-
rior over parameters at time step t � 1 to
be the prior over parameters at time step t .
Furthermore, new local models are added if
no existing local model is activated with some
minimal activation weight, similar to LWPR.

• Prediction for a query input xq becomes a
weighted average of local models predictions

yq D

KX

kD1

wk;q.x
T
q ˇk/

More details and a pseudo-algorithm for incre-
mental LGR can be found in Meier et al. (2014).
Figure 3 illustrates the different shapes of local
models being learned by LWPR and LGR. Local
models learned by LGR collaborate to generate
a good fit, as visualized in Fig. 3c. Compared to

–1
0

1

–1
0

Cross function in 2D Local models trained with
LWPR

Local models trained with
LGR

1

0

1

–2 –1 0 1 2

–1

0

1

–2 –1 0 1 2

–1

0

1

a b c

Locally Weighted Regression for Control, Fig. 3
Local models trained on data from the 2D cross function
for LWPR and LGR. Local models trained via LWPR

(visualized in (b)) do not know of each other, while local
models trained by LGR (visualized in (c)) collaborate to
generate a function fit

Locally Weighted Regression for Control 767

L

0
2
4
6
8

10
12
14
16
18
20a b

0

50

100

150

200

250

300

350
1 10 10
0

10
00

10
00

0

10
00

00
12

50
00

M
S

E
 o

n
Te

st
 S

et

#R
ec

ep
tiv

e
Fi

el
ds

#Training Data Points

Parameter
Estimation
LWPR

Locally Weighted Regression for Control, Fig. 4
Learning an inverse dynamics model in real time with a
high-performance anthropomorphic robot arm. (a) Learn-

ing curve LWPR online learning. (b) Seven degree-of-
freedom Sarcos robot arm

LWPR, this often allows LGR to achieve similar
predictive performance while using fewer local
models.

Finally, an interesting structural feature of lo-
cal �Gaussian regression is that it easily extends
to a model with finitely many local nonparametric
�Gaussian process models.

Applications

Learning Internal Models with LWPR
Learning an internal model is one of most typical
applications of local regression methods for
control. The model could be a forward model
(e.g., the nonlinear differential equations of robot
dynamics), an inverse model (e.g., the equations
that predict the amount of torque to achieve a
change of state in a robot), or any other function
that models associations between input and
output data about the environment. The models
are used, subsequently, to compute a controller,
e.g., an inverse dynamics controller similar to
Eq. (16). Models for complex robots such as
like humanoids exceed easily a hundred input
dimensions. In such high-dimensional spaces, it
is hopeless to assume that a representative data
set can be collected for offline training that can
generalize sufficiently to related tasks. Thus, the
local regression philosophy involves having a

learning algorithm that can learn rapidly when
entering a new part of the state space such
that it can achieve acceptable � generalization
performance almost instantaneously. Both
LWPR (Vijayakumar et al. 2005) and incremental
LGR (Meier et al. 2014) have been applied to
inverse dynamics learning tasks.

Figure 4 demonstrates � online learning of
an inverse dynamics model for the elbow joint
(cf. Eq. 16) for a Sarcos Dexterous Robot Arm.
The robot starts with no knowledge about this
model, and it tracks some randomly varying de-
sired trajectories with a proportional-derivative
(PD) controller. During its movements, train-
ing data consisting of tuples .q; Pq; Rq; �/—which
model a mapping from joint position, joint ve-
locities, and joint accelerations .q; Pq; Rq/ to motor
torques �—are collected (at about every 2 ms).
Here, every data point is used to train a LWPR
function approximator, which generates a feed-
forward command for the controller. The learning
curve is shown in Fig. 4a.

Using a test set created beforehand, the model
predictions of LWPR are compared every 1000
training points with that of a parameter esti-
mation method. The parameter estimation ap-
proach fits the minimal number of parameters
to an analytical model of the robot dynamics
under an idealized rigid body dynamics (RBD)
assumptions, using all training data (i.e., not

http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_618

768 Locally Weighted Regression for Control

incrementally). Given that the Sarcos robot is
a hydraulic robot, the RBD assumption is not
very suitable, and, as Fig. 4a shows, LWPR (in
thick red line) outperforms the analytical model
(in dotted blue line) after a rather short amount
of training. After about 5 min of training (about
125,000 data points), very good performance is
achieved, using about 350 local models. This
example demonstrates (i) the quality of function
approximation that can be achieved with LWPR
and (ii) the online allocation of more local models
as needed.

Learning Paired Inverse-Forward Models
Learning inverse models (such as inverse kine-
matics and inverse dynamics models) can be
challenging since the inverse model problem is
often a relation, not a function, with a one-to-
many mapping. Applying any arbitrary nonlinear
function approximation method to the inverse
model problem can lead to unpredictably bad
performance, as the training data can form non-
convex solution spaces, in which averaging is
inappropriate. Architectures such as �mixture
models (in particular, mixture density networks)
have been proposed to address problems with
non-convex solution spaces. A particularly inter-
esting approach in control involves learning lin-
earizations of a forward model (which is proper
function) and learning an inverse mapping within
the local region of the forward model.

Ting et al. (2008) demonstrated such a
forward-inverse model learning approach with
Bayesian LWR to learn an inverse kinematics
model for a haptic robot arm (shown in Fig. 5)
in order to control the end effector along a
desired trajectory in task space. Training data
was collected while the arm performed random
sinusoidal movements within a constrained box
volume of Cartesian space. Each sample consists
of the arm’s joint angles q, joint velocities Pq, end-
effector position in Cartesian space x, and end-
effector velocities Px. From this data, a forward
kinematics model is learned:

Px D J.q/ Pq (14)

Locally Weighted Regression for Control, Fig. 5
SensAble Phantom haptic robotic arm

where J.q/ is the Jacobian matrix. The transfor-
mation from Pq to Px can be assumed to be locally
linear at a particular configuration q of the robot
arm. Bayesian LWR is used to learn the forward
model, and, as in LWPR, local models are only
added if a training point is not already sufficiently
covered by an existing local model. Importantly,
the kernel functions in LWR are localized only
with respect to q, while the regression of each
model is trained only on a mapping from Pq to Px—
these geometric insights are easily incorporated
as � priors in Bayesian LWR, as they are natu-
ral to locally linear models. Incorporating these
� priors in other function approximators, e.g.,
�Gaussian process regression, is not straightfor-
ward.

The goal of the robot task is to track a desired
trajectory .x; Px/ specified only in terms of x and
´ positions and velocities, i.e., the movement is
supposed to be in a vertical plane in front of
the robot, but the exact position of the vertical
plane is not given. Thus, the task has one degree
of redundancy, and the learning system needs to
generate a mapping from fx; Pxg to Pq. Analytically,
the inverse kinematics equation is

Pq D J#.q/Px � ˛.I � J#J/
@g

@q
(15)

http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_100373
http://dx.doi.org/10.1007/978-1-4899-7687-1_100373
http://dx.doi.org/10.1007/978-1-4899-7687-1_108

Locally Weighted Regression for Control 769

L

where J #.q/ is the pseudo-inverse of the Jaco-
bian. The second term is a gradient descent op-
timization term for redundancy resolution, spec-
ified here by a cost function g in terms of joint
angles q.

To learn an inverse kinematics model, the local
regions of q from the forward model can be
reused since any inverse of J is locally linear
within these regions. Moreover, for locally linear
models, all solution spaces for the inverse model
are locally convex, such that an inverse can be
learned without problems. The redundancy issue
can be solved by applying an additional weight
to each data point according to a reward func-
tion. Since the experimental task is specified in
terms of f Px; Ṕ g, a reward is defined, based on
a desired y coordinate, ydes , and enforced as
a soft constraint. The resulting reward function
is g D e�

1
2 h.k.ydes�y/� Py/2

, where k is a gain
and h specifies the steepness of the reward. This
ensures that the learned inverse model chooses a
solution that pushes Py toward ydes . Each forward
local model is inverted using a weighted � linear
regression, where each data point is weighted
by the kernel weight from the forward model
and additionally weighted by the reward. Thus,
a piecewise locally linear solution to the inverse
problem can be learned efficiently.

Figure 6 shows the performance of the learned
inverse model (Learnt IK) in a figure-eight track-
ing task. The learned model performs as well as
the analytical inverse kinematics solution (Ana-
lytical IK), with root-mean-squared tracking er-

rors in positions and velocities very close to that
of the analytical solution.

Learning Trajectory Optimizations
Mitrovic et al. (2008) have explored a theory
for sensorimotor adaptation in humans, i.e., how
humans replan their movement trajectories in
the presence of perturbations. They rely on the
iterative Linear Quadratic Gaussian (iLQG) al-
gorithm (Todorov and Li 2004) to deal with the
nonlinear and changing plant dynamics that may
result from altered morphology, wear and tear,
or external perturbations. They take advantage of
the “on-the-fly” adaptation of locally weighted
regression methods like LWPR to learn the for-
ward dynamics of a simulated arm for the purpose
of optimizing a movement trajectory between a
start point and an end point.

Figure 7a shows the diagram of a two degrees-
of-freedom planar human arm model, which is
actuated by four single-joint and two double-
joint antagonistic muscles. Although kinemati-
cally simple, the system is over-actuated and,
therefore, an interesting test bed because large
redundancies in the dynamics have to be re-
solved. The dimensionality of the control sig-
nals makes adaptation processes (e.g., to external
force fields) quite demanding.

The dynamics of the arm is, in part, based on
standard RBD equations of motion:

� DM .q/ RqC C .q; Pq/ Pq (16)

0.2

a b
Desired
Analytical IK

Desired

Learnt IK

0.1

z
(m

)

0

–0.1
–0.1 –0.05 0

x (m) x (m)

0.05 0.1

0.2

0.1

z
(m

)

0

–0.1
–0.1 –0.05 0 0.05 0.1

Locally Weighted Regression for Control, Fig. 6 Desired versus actual trajectories for SensAble Phantom robot
arm. (a) Analytical solution. (b) Learned solution

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

770 Locally Weighted Regression for Control

Shoulder

Human arm model iLQG

Elbow

x

y

q1

q2

1

2

3

4

5

a b

6

1 2 3 4 5 6
1

25

49

muscles

k
(ti

m
e)

−10 0 10 20
30

40

50

60

Locally Weighted Regression for Control, Fig. 7 (a)
Human arm model with six muscles; (b) Optimized con-
trol sequence (left) and resulting trajectories (right) using
the known analytic dynamics model. The control se-

quences (left target only) for each muscle (1–6) are drawn
from bottom to top, with darker gray levels indicating
stronger muscle activation

ILQG u plantlearned
dynamics model +

feedback
controller

x, dx

L, x

u

perturbationsxcost function
(incl. target)

δu

–

– u +– uδ

Locally Weighted Regression for Control, Fig. 8 Illustration of learning and control scheme of the iterative Linear
Quadratic Gaussian (iLQG) algorithm with learned dynamics

where � are the joint torques; q and Pq are the
joint angles and velocities, respectively; M.q/
is the two-dimensional symmetric joint space
inertia matrix; and C .q; Pq/ accounts for Coriolis
and centripetal forces. Given the antagonistic
muscle-based actuation, it is not possible to com-
mand joint torques directly. Instead, the effective
torques from the muscle activations u—which
happens to be quadratic in u—should be used. As
a result, in contrast to standard torque-controlled
robots, the dynamics equation in Eq. (16) is non-
linear in the control signals u.

The iLQG algorithm (Todorov and Li 2004) is
used to calculate solutions to “localized” linear
and quadratic approximations, which are iterated
to improve the global control solution. However,
it relies on an analytical forward dynamics model
Px D f .x;u/ and finite difference methods to
compute gradients. To alleviate this requirement
and to make iLQG adaptive, LWPR can be used

to learn an approximation of the plant’s forward
dynamics model. Figure 8 shows the control
diagram, where the “learned dynamics model”
(the forward model learned by LWPR) is then
updated in an � online fashion with every iter-
ation to cope with changes in dynamics. The
resulting framework is called iLQG-LD (iLQG
with learned dynamics).

Movements of the arm model in Fig. 7a are
studied for fixed time horizon reaching move-
ment. The manipulator starts at an initial position
q0 and reaches toward a target qtar . The cost
function to be optimized during the movement
is a combination of target accuracy and amount
of muscle activation (i.e., energy consumption).
Figure 7b shows trajectories of generated move-
ments for three reference targets (shown in red
circles) using the feedback controller from iLQG
with the analytical plant dynamics. The trajecto-
ries generated with iLQG-LD (where the forward

http://dx.doi.org/10.1007/978-1-4899-7687-1_618

Locally Weighted Regression for Control 771

L

0 10
30

40

50

60

1 2 3 4 5 6
1

25

49

muscles

k
(ti

m
e)

1 2 3 4 5 6
1

25

49

muscles

k
(ti

m
e)

initial adapted

Locally Weighted Regression for Control, Fig. 9
Adaptation to a unidirectional constant force field (indi-
cated by the arrows). Darker lines indicate better trained
models. In particular, the left-most trajectory corresponds

to the “initial” control sequence, which was calculated
using the LWPR model before the adaptation process.
The fully “adapted” control sequence results in a nearly
straight line reaching movement

plant dynamics are learned with LWPR) are omit-
ted as they are hardly distinguishable from the
analytical solution.

A major advantage of iLQG-LD is that it does
not rely on an accurate analytic dynamics model;
this enables the framework to predict adaptation
behavior under an ideal observer planning model.
Reaching movements were studied where a con-
stant unidirectional force field acting perpendic-
ular to the reaching movement was generated
as a perturbation (see Fig. 9 (left)). Using the
iLQG-LD model, the manipulator gets strongly
deflected when reaching for the target because
the learned dynamics model cannot yet account
for the “spurious” forces. However, when the de-
flected trajectory is used as training data and the
dynamics model is updated � online, the tracking
improves with each new successive trial (Fig. 9
(left)). Please refer to Mitrovic et al. (2008)
for more details. Aftereffects upon removing the
force field, very similar to those observed in
human experiments, are also observed.

Cross-References

�Bias Variance Decomposition
�Dimensionality Reduction
�Direct Controller
� Incremental Learning
�Kernel Methods

�Lazy Learning
�Linear Regression
�Mixture Model
�Online Learning
�Overfitting
�Radial Basis Function Networks
�Regression
� Supervised Learning
�Value Function Approximation

Programs and Data

http://www-clmc.usc.edu/software
http://www.ipab.inf.ed.ac.uk/slmc/software/

Recommended Reading

Aström KJ, Wittenmark B (1989) Adaptive control.
Addison-Wesley, Reading

Atkeson C (1989) Using local models to control move-
ment. In: Proceedings of the advances in neural in-
formation processing systems, vol 1. Morgan Kauf-
mann, San Mateo, pp 157–183

Atkeson C, Moore A, Schaal S (1997) Locally
weighted learning. AI Rev 11:11–73

Cleveland WS (1979) Robust locally weighted regres-
sion and smoothing scatterplots. J Am Stat Assoc
74:829–836

Hastie T, Loader C (1993) Local regression: automatic
kernel carpentry. Stat Sci 8:120–143

http://dx.doi.org/10.1007/978-1-4899-7687-1_891
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_100112
http://dx.doi.org/10.1007/978-1-4899-7687-1_130
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://www-clmc.usc.edu/software
http://www.ipab.inf.ed.ac.uk/slmc/software/

772 Logic of Generality

Jordan MI, Jacobs R (1994) Hierarchical mixtures
of experts and the EM algorithm. Neural Comput
6:181–214

Klanke S, Vijayakumar S, Schaal S (2008) A library
for locally weighted projection regression. J Mach
Learn Res 9:623–626

Meier F, Hennig P, Schaal S (2014) Incremental local
Gaussian regression. In: Proceedings of advances
in neural information processing systems, Montreal,
vol 27

Mitrovic D, Klanke S, Vijayakumar S (2008) Adaptive
optimal control for redundantly actuated arms. In:
Proceedings of the 10th international conference
on the simulation of adaptive behavior, Osaka.
Springer, pp 93–102

Nguyen-Tuong D, Peters J, Seeger M (2008) Local
Gaussian process regression for real-time online
model learning. In: Proceedings of advances in
neural information processing systems, Vancouver,
vol 21

Schaal S, Atkeson CG (1998) Constructive incremental
learning from only local information Neural Com-
put 10(8):2047–2084

Schaal S, Atkeson CG, Vijayakumar S (2002) Scalable
techniques from nonparametric statistics. Appl In-
tell 17:49–60

Ting J (2009) Bayesian methods for autonomous learn-
ing systems. Phd Thesis, Department of Computer
Science, University of Southern California

Ting J, Kalakrishnan M, Vijayakumar S, Schaal S
(2008) Bayesian kernel shaping for learning control.
In: Proceedings of advances in neural information
processing systems, Vancouver, vol 21. MIT Press,
pp 1673–1680

Todorov E, Li W (2004) A generalized iterative LQG
method for locally-optimal feedback control of con-
strained nonlinear stochastic systems. In: Proceed-
ings of 1st international conference of informatics
in control, automation and robotics, Setúbal

Vijayakumar S, D’Souza A, Schaal S (2005) Incre-
mental online learning in high dimensions. Neural
Comput 17:2602–2634

Logic of Generality

Luc De Raedt
Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium

Synonyms

Generality and logic; Induction as inverted de-
duction; Inductive inference rules; Is more gen-
eral than; Is more specific than; Specialization

Definition

One hypothesis is more general than another
one if it covers all instances that are also cov-
ered by the latter one. The former hypothesis
is called a � generalization of the latter one,
and the latter a � specialization of the former.
When using logical formulae as hypotheses, the
generality relation coincides with the notion of
logical entailment, which implies that the gen-
erality relation can be analyzed from a logical
perspective. The logical analysis of generality,
which is pursued in this chapter, leads to the
perspective of induction as the inverse of de-
duction. This forms the basis for an analysis of
various logical frameworks for reasoning about
generality and for traversing the space of possible
hypotheses. Many of these frameworks (such as
for instance, � -subsumption) are employed in the
field of � inductive logic programming and are
introduced below.

Motivation and Background

Symbolic machine learning methods typically
learn by searching a hypothesis space. The hy-
pothesis space can be (partially) ordered by the
� generality relation, which serves as the basis for
defining operators to traverse the space as well as
for pruning away unpromising parts of the search
space. This is often realized through the use of
refinement operators, that is, generalization and
specialization operators. Because many learning
methods employ a � hypothesis language that is
logical or that can be reformulated in logic, it is
interesting to analyze the generality relation from
a logical perspective. When using logical formu-
lae as hypotheses, the generality relation closely
corresponds to logical entailment. This allows us
to directly transfer results from logic to a machine
learning context. In particular, machine learning
operators can be derived from logical inference
rules. The logical theory of generality provides a
framework for transferring these results. Within
the standard setting of inductive logic program-
ming, learning from entailment, specialization is
realized through deduction, and generalization

http://dx.doi.org/10.1007/978-1-4899-7687-1_100179
http://dx.doi.org/10.1007/978-1-4899-7687-1_100213
http://dx.doi.org/10.1007/978-1-4899-7687-1_100214
http://dx.doi.org/10.1007/978-1-4899-7687-1_100222
http://dx.doi.org/10.1007/978-1-4899-7687-1_100223
http://dx.doi.org/10.1007/978-1-4899-7687-1_769
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_769
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_100179
http://dx.doi.org/10.1007/978-1-4899-7687-1_372

Logic of Generality 773

L

through induction, which is considered to be the
inverse of deduction. Different deductive infer-
ence rules lead to different frameworks for gen-
eralization and specialization. The most popular
one is that of � -subsumption, which is employed
by the vast majority of contemporary inductive
logic programming systems.

Theory

A hypothesis g is more general than a hypothesis
s if and only if g covers all instances that are
also covered by s, more formally, if covers(s/ �
covers(g/, in which case, covers(h/ denotes the
set of all instances covered by the hypothesis h.

There are several possible ways to represent
hypotheses and instances in logic (De Raedt
2008, 1997), each of which results in a different
setting with a corresponding covers relation.
Some of the best known settings are learning
from entailment, learning from interpretations,
and learning from proofs.

Learning from Entailment
In learning from entailment, both hypotheses and
instances are logical formulae, typically definite
clauses, which underlie the programming lan-
guage Prolog (Flach 1994). Furthermore, when
learning from entailment, a hypothesis h covers
an instance e if and only if h ˆ e, that is, when
h logically entails e, or equivalently, when e is a
logical consequence of h. For instance, consider
the hypothesis h:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

The first clause or rule can be read as flies if
normal and bird, that is, normal birds fly. The
second and third states that blackbirds are birds.
Consider now the examples e1:

flies :- blackbird, normal, small.

and e2:

flies :- ostrich, small.

Example e1 is covered by h, because it is a
logical consequence of h, that is, h ˆ e1. On the

other hand, example e2 is not covered, which we
denote as h ² e2.

When learning from entailment, the following
property holds:

Property 1 A hypothesis g is more general than
a hypothesis s if and only if g logically entails s,
that is, g ˆ s.

This is easy to see. Indeed, g is more general
than s if and only if covers(s/ � covers(g/ if and
only if for all examples e : (s ˆ e/ ! (g ˆ e/,
if and only if g ˆ s. For instance, consider the
hypothesis h1:

flies :- blackbird, normal.

Because h ˆ h1, it follows that h covers all
examples covered by h1, and hence, h generalizes
h1.

Property 1 states that the generality relation
coincides with logical entailment when learning
from entailment. In other learning settings, such
as when learning from interpretations, this rela-
tionship also holds though the direction of the
relationship might change.

Learning from Interpretations
In learning from interpretations, hypotheses
are logical formulae, typically sets of definite
clauses, and instances are interpretations.
For propositional theories, interpretations are
assignments of truth-values to propositional
variables. For instance, continuing the flies
illustration, two interpretations could be

{blackbird, bird, normal, flies} and

{ostrich, small}

where we specify interpretations through the
set of propositional variables that are true. An
interpretation specifies a kind of possible world.
A hypothesis h then covers an interpretation
if and only if the interpretation is a model for
the hypothesis. An interpretation is a model
for a hypothesis if it satisfies all clauses in
the hypothesis. In our illustration, the first
interpretation is a model for the theory h, but
the second is not. Because the condition part
of the rule bird :- ostrich. is satisfied

774 Logic of Generality

in the second interpretation (as it contains
ostrich), the conclusion part, that is, bird,
should also belong to the interpretation in order
to have a model. Thus, the first example is
covered by the theory h, but the second is
not.

When learning from interpretations, a hypoth-
esis g is more general than a hypothesis s if and
only if for all examples e: (e is a model of s)!
(e is a model of g), if and only if s ˆ g.

Because the learning from entailment setting
is more popular than the learning from interpre-
tations setting, we shall employ in this section the
usual convention that states that one hypothesis g
is more general than a hypothesis s if and only if
g ˆ s.

An Operational Perspective
Property 1 lies at the heart of the theory of
inductive logic programming and generalization
because it directly relates the central notions of
logic with those of machine learning (Muggleton
and De Raedt 1994). It is also extremely useful
because it allows us to directly transfer results
from logic to machine learning.

This can be illustrated using traditional deduc-
tive inference rules, which start from a set of for-
mulae and derive a formula that is entailed by the
original set. For instance, consider the resolution
inference rule for propositional definite clauses:

h g; a1; : : : ; an; and g b1; : : : ; bm

h b1; : : : ; bm; a1; : : : ; an;
: (1)

This inference rule starts from the two rules
above the line and derives the so-called resolvent
below the line. This rule can be used to infer h1

from h. An alternative deductive inference rule
adds a condition to a rule:

h a1; : : : ; an

h a; a1; : : : ; an;
(2)

This rule can be used to infer that h1 is more
general than the clause used in example e1. In
general, a deductive inference rule can be written
as

g

s
: (3)

If s can be inferred from g and the operator is
sound, then g ˆ s. Thus, applying a deductive
inference rule realizes specialization, and hence,
deductive inference rules can be used as spe-
cialization operators. A specialization operator
maps a hypothesis onto a set of its specializations.
Because specialization is the inverse of gener-
alization, generalization operators – which map
a hypothesis onto a set of its generalizations –
can be obtained by inverting deductive inference
rules. The inverse of a deductive inference rule
written in format (3) works from bottom to top,
that is, from s to g. Such an inverted deductive
inference rule is called an inductive inference
rule. This leads to the view of induction as the
inverse of deduction. This view is operational as it
implies that each deductive inference rule can be
inverted into an inductive one, and, also, that each
inference rule provides an alternative framework
for generalization.

An example of a generalization operator is ob-
tained by inverting the adding condition rule (2).
It corresponds to the well-known “dropping con-
dition” rule (Michalski 1983). As will be seen
soon, it is also possible to invert the resolution
principle (1).

Before deploying inference rules, it is nec-
essary to determine their properties. Two desir-
able properties are soundness and completeness.
These properties are based on the repeated appli-
cation of inference rules. Therefore, we write g `
rs when there exists a sequence of hypotheses
h1; : : : ; hn such that

g

h1
;
h1

h2
; : : : ;

hn

s
using r: (4)

A set of inference rules r is sound whenever g `
rs implies g ˆ s; and complete whenever g ˆ s

implies g ` rs. In practice, soundness is always
enforced though completeness is not always re-
quired in a machine learning setting. When work-
ing with incomplete rules, one should realize that
the generality relation “` r” is weaker than the
logical one “ˆ.”

The most important logical frameworks
for reasoning about generality, such as � -
subsumption and resolution, are introduced

Logic of Generality 775

L

below using the above introduced logical theory
of generality.

Frameworks for Generality

Propositional Subsumption
Many propositional learning systems employ
hypotheses that consist of rules, often definite
clauses as in the flies illustration above.
The propositional subsumption relation defines
a generality relation among clauses and is
defined through the adding condition rule (2).
The properties follow from this inference rule
by applying the logical theory of generalization
presented above. More specifically, the generality
relation ` a induced by the adding condition rule
states that a clause g is more general than a
clause s, if s can be derived from g by adding
a sequence of conditions to g. Observing that a
clause h a1; : : : ; an is a disjunction of literals
h _ :a1 _ � � � _ :an allows us to write it in set
notation as fh;:a1; : : : ;:ang. The soundness
and completeness of propositional subsumption
then follow from

g `a s if and only if g � s if and only if g ˆ s;
(5)

which also states that g subsumes s if and only if
g � s.

The propositional subsumption relation
induces a complete lattice on the space of
possible clauses. A complete lattice is a partial
order – a reflexive, antisymmetric, and transitive
relation – where every two elements posses a
unique least upper and greatest lower bound. An
example lattice for rules defining the predicate
flies in terms of bird, normal, and small
is illustrated in the Hasse diagram depicted in
Fig. 1.

The Hasse diagram also visualizes the differ-
ent operators that can be used. The generalization
operator �g maps a clause to the set of its parents
in the diagram, whereas the specialization oper-
ator �s maps a clause to the set of its children.
So far, we have defined such operators implic-
itly through their corresponding inference rules.

In the literature, they are often defined explicitly:

�g.h a1; : : : an/

D fh a1; : : : ai�1; aiC1; : : : ; anjiD1; : : : ; ng:
(6)

In addition to using the inference rules directly,
some systems such as Golem (Muggleton and
Feng 1990) also exploit the properties of the
underlying lattice by computing the least upper
bound of two formulae. The least upper bound
operator is known under the name of least general
generalization (lgg) in the machine learning liter-
ature. It returns the least common ancestor in the
Hasse diagram. Using a set notation for clauses,
the definition of the lgg is:

lgg.c1; c2/ D c1 \ c2: (7)

The least general generalization operator is
used by machine learning systems that follow
a cautious generalization strategy. They take two
clauses corresponding to positive examples and
minimally generalize them.

�-Subsumption
The most popular framework for generality
within inductive logic programming is � -
subsumption (Plotkin 1970). It provides a
generalization relation for clausal logic and it
extends propositional subsumption to first order
logic.

A definite clause is an expression of the form
h a1; : : : ; an where h and the ai are logical
atoms. An atom is an expression of the form
p.t1; : : : ; tm/ where p is a predicate name (or,
the name of a relation) and the ti are terms.
A term is either a constant (denoting an object
in the domain of discourse), a variable, or a
structured term of the form f .u1; : : : ; uk/ where
f is a functor symbol (denoting a function in
the domain of discourse) and the ui are terms,
see Flach (1994) for more details. Consider for
instance the clauses

likes(X,Y) :- neighbours(X,Y).

likes(X,husbandof(Y)) :- likes(X,Y).

likes(X,tom) :- neighbours(X,tom),

male(X).

776 Logic of Generality

Logic of Generality,
Fig. 1 The Hasse diagram
for the predicate flies

flies.

flies :- normal. flies :- small.

flies :-bird, normal. flies :- bird, small. flies :- small, normal.

flies :-bird, normal, small.

flies :- bird.

The first clause states that X likes Y if X
is a neighbour of Y. The second one that X
likes the husband of Y if X likes Y. The
third one that all male neighbours of tom
like tom.
� -Subsumption is based not only on the

adding condition rule (2) but also on the
substitution rule:

g

g�
: (8)

The substitution rule applies a substitution
� to the definite clause g. A substitution
fV1=t1; : : : ; Vn=tng is an assignment of terms
to variables. Applying a substitution to a clause
c yields the instantiated clause, where all
variables are simultaneously replaced by their
corresponding terms.
� -subsumption is then the generality relation

induced by the substitution and the adding condi-
tion rules. Denoting this set of inference rules by
t , we obtain our definition of � -subsumption:

g� -subsumptions if and only if g `t s

if and only if 9� W g� � s: (9)

For instance, the first clause for likes subsumes
the third one with the substitution {Y/tom}.

• � -subsumption has some interesting proper-
ties:

• � -subsumption is sound.

• � -subsumption is complete for clauses that are
not self-recursive. It is incomplete for self-
recursive clauses such as

nat(s(X)) :- nat(X)
nat(s(s(Y))) :- nat(Y)

for which one can use resolution to prove that
the first clause logically entails the second
one, even though it does not � -subsume it.

• Deciding � -subsumption is an NP-complete
problem.

Because � -subsumption is relatively simple
and decidable whereas logical entailment be-
tween single clauses is undecidable, it is used as
the generality relation by the majority of induc-
tive logic programming systems. These systems
typically employ a specialization or refinement
operator to traverse the search space. To guaran-
tee systematic enumeration of the search space,
the specialization operator �s can be employed.
�s.c/ is obtained by applying the adding con-
dition or substitution rule with the following
restrictions.

• The adding condition rule only adds atoms
of the form p.V1; : : : ; Vn/, where the Vi are
variables not yet occurring in the clause c.

• The substitution rule only employs elementary
substitutions, which are of the form
– fX / Y g, where X and Y are two variables

appearing in c
– fV / ctg, where V is a variable in c and ct a

constant

Logic of Generality 777

L

– fV / f .V1; : : : ; Vn/g, where V is a variable
in c, f a functor of arity n and the Vi are
variables not yet occurring in c.

A generalization operator can be obtained by
inverting �s , which requires one to invert substi-
tutions. Inverting substitutions is not easy. While
applying a substitution � D {V/a} to a clause
c replaces all occurrences of V by a and yields
a unique clause c� , applying the substitution rule
in the inverse direction does not necessarily yield
a unique clause. If we assume the elementary
substitution applied to c with

c

q.a; a/
: (10)

was {V/a}, then there are at least three possibil-
ities for c: q(a,V), q(V,a), and q(V,V).
� -subsumption is reflexive, transitive but

unfortunately not anti-symmetric, which can be
seen by considering the clauses

parent(X,Y) :- father(X,Y).
parent(X,Y) :- father(X,Y),

father(U,V).

The first clause clearly subsumes the second
one because it is a subset. The second one
subsumes the first with the substitution fX/U,
V/Yg. The two clauses are therefore equivalent
under � -subsumption, and hence also logically
equivalent. The loss of the anti-symmetry
complicates the search process. The naive
application of the specialization operator �s may
yield syntactic specializations that are logically
equivalent. This is illustrated above where the
second clause for parent is a refinement of
the first one using the adding condition rule. In
this way, useless clauses are generated, and if the
resulting clauses are further refined, there is a
danger that the search will end up in an infinite
loop.

Plotkin (1970) has studied the quotient set
induced by � -subsumption and proven various
interesting properties. The quotient set consists
of classes of clauses that are equivalent under � -
subsumption. The class of clauses equivalent to a
given clause c is denoted by

Œc� Dfc0jc0 is equivalent with c

under � -subsumptiong: (11)

Plotkin proved that

• The quotient set is well-defined w.r.t. � -
subsumption.

• There is a representative, a canonical form, of
each equivalence class, the so-called reduced
clause. The reduced clause of an equivalence
class is the shortest clause belonging to class.
It is unique up to variable renaming. For
instance, in the parent example above, the
first clause is in reduced form.

• The quotient set forms a complete lattice,
which implies that there is a least general
generalization of two equivalence classes. In
the inductive logic programming literature,
one often talks about the least general gener-
alization of two clauses.

Several variants of � -subsumption have been
developed. One of the most important ones is that
of OI-subsumption (Esposito, Laterza, Malerba,
and Semeraro, 1996). For functor-free clauses,
it modifies the substitution rule by disallowing
substitutions that unify two variables or that sub-
stitute a variable by a constant already appearing
in the clause. The advantage is that the resulting
relation is anti-symmetric, which avoids some of
the above mentioned problems with refinement
operators. On the other hand, the minimally gen-
eral generalization of two clauses is not necessary
unique, and hence, there exists no least general
generalization operator.

Inverse Resolution

Applying resolution is a sound deductive infer-
ence rule and therefore realizes specialization.
Reversing it yields inductive inference rules or
generalization operators (Muggleton 1987; Mug-
gleton and Buntine 1988). This is typically real-
ized by combining the resolution principle with
a copy operator. The resulting rules are called
absorption (12) and identification (13). They start

778 Logic of Generality

from the clauses below and induce the clause
above the line. They are shown here only for the
propositional case, as the first order case requires
one to deal with substitutions as well as inverse
substitutions.

h g; a1; : : : ; an; and g b1; : : : ; bm

h b1; : : : ; bm; a1; : : : ; an; and g b1; : : : ; bm
:

(12)

h g; a1; : : : ; an; and g b1; : : : ; bm

h b1; : : : ; bm; a1; : : : ; an; and h g; a1; : : : ; an
:

(13)

Other interesting inverse resolution operators
perform predicate invention, that is, they intro-
duce new predicates that were not yet present
in the original data. These operators invert two
resolution steps. One such operator is the intra-
construction operator (14). Applying this opera-
tor from bottom to top introduces the new predi-
cate q that was not present before.

q l1; : : : ; lk ; and p k1; : : : ; kn; q and q l 01; : : : ; l
0
m

p k1; : : : ; kn; l1; : : : ; lk and q k1; : : : ; kn; l
0
1; : : : ; l

0
m

: (14)

The idea of inverting the resolution operator
is very appealing because it aims at inverting
the most popular deductive inference operator,
but is also rather complicated due to the non-
determinism and the need to invert substitutions.
Due to these complications, there are only few
systems that employ inverse resolution operators.

Background Knowledge

Inductive logic programming systems employ
background knowledge during the learning pro-
cess. Background knowledge typically takes the
form of a set of clauses B , which is then used by
the covers relation. When learning from entail-
ment in the presence of background knowledge
B an example e is covered by a hypothesis h if
and only if B [h ˆ e. This notion of coverage is
employed in most of the work on inductive logic
programming. In the intial flies example, the
two clauses defining bird would typically be
considered background knowledge.

The incorporation of background knowledge
in the induction process has resulted in the frame-
works for generality relative to a background
theory. More formally, a hypothesis g is more
general than a hypothesis s relative to the back-
ground theory B if and only if B [g ˆ s.

The only inference rules that deal with multiple
clauses are those based on (inverse) resolution.
The other frameworks can be extended to cope
with this generality relation following the logi-
cal theory of generalization. Various frameworks
have been developed along these lines. Some of
the most important ones are relative subsump-
tion (Plotkin 1971) and generalized subsumption
(Buntine 1998), which extend � -subsumption and
the notion of least general generalization toward
the use of background knowledge. Computing the
least general generalization of two clauses rela-
tive to the background theory is realized by first
computing the most specific clauses covering the
examples with regard to the background theory
and then generalizing them using the least general
generalization operator of � -subsumption.

The first step is the most interesting one, and
has been tackled under the name of saturation
(Rouveirol 1994) and bottom-clauses (Muggleton
1995). We illustrate it within the framework of
inverse entailment due to (Muggleton 1995). The
bottom clause? (c) of a clause c with regard to a
background theory B is the most specific clause
? (c) such that

B [?.c/ ˆ c: (15)

If B consist of

Logic of Generality 779

L

polygon :- rectangle.
rectangle :- square.
oval :- circle.

and the example c is

positive :- red, square.

Then the bottom-clause ? (c/ is

positive :- red, rectangle,
square, polygon.

The bottom-clause is useful because it only
lists those atoms that are relevant to the example,
and only generalizations (under � -subsumption)
of ? (c/ will cover the example. For instance,
in the illustration, the bottom-clause mentions
neither oval nor circle as clauses for pos
containing these atoms will never cover the ex-
ample clause c. Once the bottom-clause covering
an example has been found the search process
continues as if no background knowledge were
present. Either specialization operators (typically
under � -subsumption) would search the space of
clauses more general than ? (c/, or the least
general generalization of multiple bottom-clauses
would be computed.

Equation (15) is equivalent to

B [:c ˆ :?.c/: (16)

which explains why the bottom-clause is
computed by finding all factual consequences
of B [:c and then inverting the resulting clause
again. On the example:
:c D {:positive, red, square}

and the set of all consequences is
:?(c)D :c[{rectangle, polygon\verb}

which then yields ?.c/ mentioned above. When
dealing with first order logic, bottom-clauses can
become infinite, and therefore, one typically im-
poses further restrictions on the atoms that appear
in bottom-clauses. These restrictions are part of
the language bias.

The textbook by Nienhuys-Cheng and de Wolf
(1997) is the best reference for an in-depth formal
description of various frameworks for generality
in logic, in particular, for � -subsumption and
some of its variants. The book by De Raedt
(2008) contains a more complete introduction

to inductive logic programming and relational
learning, and also introduces the key frameworks
for generality in logic. An early survey of in-
ductive logic programming and the logical the-
ory of generality is contained in Muggleton and
De Raedt (1994). Plotkin (1970, 1971) pioneered
the use � -subsumption and relative subsumption
(under a background theory) for machine learn-
ing. Buntine (1998) extended these frameworks
toward generalized subsumption, and Esposito
et al. (1996) introduced OI-subsumption. Inverse
resolution was first used in the system Marvin
(Sammut and Banerji 1986), and then elaborated
by Muggleton (1987) for propositional logic and
by Muggleton and Buntine (1988) for definite
clause logic. Various learning settings are studied
by De Raedt (1997) and discussed extensively by
De Raedt (2008). They are also relevant to prob-
abilistic logic learning and � statistical relational
learning.

Recommended Reading

Buntine W (1998) Generalized subsumption and its
application to induction and redundancy. Artif Intell
36:375–399

De Raedt L (1997) Logical settings for concept learn-
ing. Artif Intell 95:187–201

De Raedt L (2008) Logical and relational learning.
Springer, New York

Flach PA (1994) Simply logical: intelligent reasoning
by example. Wiley, New York

Michalski RS (1983) A theory and methodology of
inductive learning. Artif Intell 20(2):111–161

Muggleton S (1987) Duce, an oracle based approach to
constructive induction. In: Proceedings of the 10th
international joint conference on artificial intelli-
gence. Morgan Kaufmann, San Francisco, pp 287–
292

Muggleton S (1995) Inverse entailment and Progol.
New Gener Comput 13(3–4):245–286

Muggleton S, Buntine W (1988) Machine invention
of first order predicates by inverting resolution. In:
Proceedings of the 5th international workshop on
machine learning. Morgan Kaufmann, San Fran-
cisco, pp 339–351

Muggleton S, De Raedt L (1994) Inductive logic pro-
gramming: theory and methods. J Logic Program
19/20:629–679

Muggleton S, Feng C (1990) Efficient induction of
logic programs. In: Proceedings of the 1st con-
ference on algorithmic learning theory, Ohmsma,
Tokyo, pp 368–381

http://dx.doi.org/10.1007/978-1-4899-7687-1_786

780 Logic Program

Nienhuys-Cheng S-H, de Wolf R (1997) Foundations
of inductive logic programming. Springer, Berlin

Plotkin GD (1970) A note on inductive generalization.
In: Machine intelligence, vol 5. Edinburgh Univer-
sity Press, Edinburgh, pp 153–163

Plotkin GD (1971) A further note on inductive gener-
alization. In: Machine intelligence, vol 6. Edinburgh
University Press, Edinburgh, pp 101–124

Rouveirol C (1994) Flattening and saturation: two rep-
resentation changes for generalization. Mach Learn
14(2):219–232

Sammut C, Banerji RB (1986) Learning concepts by
asking questions. In: Michalski RS, Carbonell JG,
Mitchell TM (eds) Machine learning: an artificial
intelligence approach, vol 2. Morgan Kaufmann,
San Francisco, pp 167–192

Semeraro G, Esposito F, Malerba D (2006) Ideal
refinement of datalog programs. In: Proceedings
of the 5th international workshop on logic pro-
gram synthesis and transformation, Utrecht. Lec-
ture notes in computer science, vol 1048. Springer,
pp 120–136

Logic Program

A logic program is a set of logical rules or
� clauses. Logic programs are employed to
answer queries using the � resolution inference
rule. For example, consider the following logic
program:

grandparent(X,Y) :- parent(X,Z),
parent(Z,Y).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(charles, william).

mother(diana, william).
father(philip, charles).

mother(elizabeth, charles).
father(john, diana).

mother(frances, diana).

Using resolution we obtain the following answers
to the query :-grandparent(X,Y):

X = philip, Y = william ;
X = john, Y = william ;
X = elizabeth, Y = william ;
X = frances, Y = william.

Cross-References

�Clause
� First-Order Logic
� Prolog

Logical Consequence

�Entailment

Logical Regression Tree

� First-Order Regression Tree

Logistic Calibration

�Classifier Calibration

Logistic Regression

Synonyms

Logit model

Definition

Logistic regression provides a mechanism for
applying the techniques of � linear regression
to � classification problems. It utilizes a linear
regression model of the form

´ D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇnxn

where x1 to xn represent the values of the n
attributes and ˇ0 to ˇn represent weights. This
model is mapped onto the interval [0,1] using

P.c0jx1 : : : xn/ D
1

1C e�´

where c0 represents class 0.

http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_100214
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_677
http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_314
http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_100277
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_111

LWR 781

L

Recommended Reading

Hastie T, Tibshirani R, Friedman J (2009) The ele-
ments of statistical learning, 2nd edn. Springer, New
York

Logit Model

�Logistic Regression

Log-Linear Models

�Maximum Entropy Models for Natural Lan-
guage Processing

Long-Term Potentiation of Synapses

By a suitable induction protocol, the connection
between two neurons can be strengthened. If this
change persists for hours, the effect is called a
long-term potentation.

LOO Error

�Leave-One-Out Error

Loopy Belief Propagation

Loopy belief propagation is a heuristic inference
algorithm for �Bayesian networks. See
�Graphical Models for details.

Loss

Synonyms

Cost

Definition

The cost or loss of a prediction y0, when the
correct value is y, is a measure of the relative util-

ity of that prediction given that correct value. A
common loss function used with � classification
learning is � zero-one loss. Zero-one loss assigns
0 to loss for a correct classification and 1 for an
incorrect classification. �Cost sensitive classifi-
cation assigns different costs to different forms
of misclassification. For example, misdiagnosing
a patient as having appendicitis when he or she
does not might be of lower cost than misdiag-
nosing the patient as not having it when he or
she does. A common loss function used with
� regression is � error squared. This is the square
of the difference between the predicted and true
values.

Loss Function

Synonyms

Cost function

Definition

A loss function is a function used to determine
� loss.

Lossy Compression

�Dimensionality Reduction

LVQ

�Learning Vector Quantization

LWPR

�Locally Weighted Regression for Control

LWR

�Locally Weighted Regression for Control

http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_525
http://dx.doi.org/10.1007/978-1-4899-7687-1_470
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_178
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055
http://dx.doi.org/10.1007/978-1-4899-7687-1_884
http://dx.doi.org/10.1007/978-1-4899-7687-1_100092
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_263
http://dx.doi.org/10.1007/978-1-4899-7687-1_100091
http://dx.doi.org/10.1007/978-1-4899-7687-1_499
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_464
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_493

M

Machine Learning and Game Playing

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Game playing is a major application area for
research in artificial intelligence in general
(Schaeffer and van den Herik 2002) and for
machine learning in particular (Fürnkranz
and Kubat 2001). Traditionally, the field is
concerned with learning in strategy games
such as tic-tac-toe (Michie 1963), checkers
(�Samuel’s checkers player), backgammon
(�TD-Gammon), chess (Baxter et al. 2000;
Björnsson and Marsland 2003; Donninger and
Lorenz 2006; Sadikov and Bratko 2006), Go
(Silver et al. 2016), Othello (Buro 2002),
poker (Billings et al. 2002), or bridge (Amit
and Markovitch 2006). However, recently
computer and video games have received
increased attention (Laird and van Lent 2001;
Spronck et al. 2006; Ponsen et al. 2006).

Motivation and Background

Since the early days of the field, game-playing
applications have been popular test beds for ma-
chine learning. This has several reasons:

• Games allow to focus on intelligent reasoning.
Other components of intelligent agents, such
as perception or physical actions, can be ig-
nored.

• Games are easily accessible. A typical game-
playing environment can be implemented
within a few days, often hours. Exceptions
are real-time computer games, for which only
a few open-source test beds exist.

• Games are very popular. It is not very hard to
describe the agent’s task to the general public,
and they can easily appreciate the achieved
level of intelligence.

There are various types of problems that
keep reoccurring in game-playing applications,
for which solutions with machine learning
methods are desirable, including opening book
learning, learning of evaluation functions, player
modeling, and others, which will be dealt with in
the following.

Structure of the Learning System

Game-playing applications offer various chal-
lenges for machine learning. A wide variety of
learning techniques have been used for tackling
these problems. We cannot provide details on
the learning algorithms here, but will instead
focus on the problems and give some of the
most relevant and most recent pointers to the
literature. A more detailed survey can be found
in Fürnkranz (2001).

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_740
http://dx.doi.org/10.1007/978-1-4899-7687-1_813

784 Machine Learning and Game Playing

Learning of Evaluation Functions
The most extensively studied learning problem in
game playing is the automatic adjustment of the
weights of an evaluation function. Typically, the
situation is as follows: the game programmer has
provided the program with a library of routines
that compute important features of the current
board position (e.g., the number of pieces of
each kind on the board, the size of the territory
controlled, etc.). What is not known is how to
combine these pieces of knowledge and how
to quantify their relative importance. Most fre-
quently, these parameters are combined linearly,
so that the learning task is to adjust the weights of
a weighted sum. The main problem is that there
are typically no direct target values that could be
used as training signals. Exceptions are games
or endgames that have been solved completely,
which are treated further below. However, in gen-
eral, algorithms use � preference learning (where
pairs of moves or positions are labeled according
to which one is preferred by an expert player) or
� reinforcement learning (where moves or posi-
tions are trained based on information about the
eventual outcome of the game) for tuning the
evaluation functions.

The key problem with reinforcement learning
approaches is the � credit assignment problem,
i.e., even though a game has been won (lost),
there might be bad (good) moves in the game.
Reinforcement learning takes a radical stance at
this problem, giving all positions the same rein-
forcement signal, hoping that erroneous signals
will be evened out over time. An early classic in
this area is MENACE, a tic-tac-toe player that
simulates reinforcement learning with delayed
rewards (Michie 1963) using a stack of match-
boxes, one for each position, each containing
a number of beads in different colors, which
represent the different legal moves in the position.
Moves are selected by randomly drawing a bead
out of the box that represents the current posi-
tion. After a game is won, all played moves are
reinforced by adding beads of the corresponding
colors to these boxes; in the case of a lost game,
corresponding beads are removed, thereby de-
creasing the probability that the same move will
be played again.

The premier example of a system that has
tuned its evaluation function to expert strength
by playing millions of games against itself is
the backgammon program �TD-Gammon. Its
key innovation was the use of a � neural net-
work instead of a position table, so that the
reinforcement signal can be generalized to new
unseen positions. Many authors have tried to copy
TD-GAMMON’s learning methodology to other
games (Ghory 2004). None of these successors,
however, achieved a performance that was as
impressive as TD-GAMMON’s. The reason for
this seems to be that backgammon has various
characteristics that make it perfectly suited for
learning from self-play. Foremost, among these
are the facts that the dice rolls guarantee suf-
ficient variability, which allows to use training
by self-play without the need for an explicit
exploration/exploitation trade-off, and that it only
requires a very limited amount of search, which
allows to ignore the dependencies of search algo-
rithm and search heuristic. These points have, for
example, been addressed with limited success in
the game of chess, where the program KNIGHT-
CAP (Baxter et al. 2000) integrates � temporal
difference learning into a game-tree search by
using the final positions of the principal variation
for updates and by using play on a game server
for exploration.

Many aspects of evaluation function learning
are still discussed in the current literature,
including whether there are alternatives to
reinforcement learning (e.g., evolutionary
algorithms), which training strategies should be
used (e.g., self-play vs. play against a teacher),
etc. One of the key problems that has already
been mentioned in � Samuel’s Checkers Player,
namely, the automated construction of useful
features, remains still largely unsolved. Some
progress has, e.g., been made in the game of
Othello, where a simple algorithm, very much
like �APriori, has been shown to produce
valuable conjunctions of basic features (Buro
2002).

Learning Search Control
A more challenging but considerably less inves-
tigated task is to automatically tune the vari-

http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_185
http://dx.doi.org/10.1007/978-1-4899-7687-1_813
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_740
http://dx.doi.org/10.1007/978-1-4899-7687-1_27

Machine Learning and Game Playing 785

M

ous parameters that control the search in game-
playing programs. These parameters influence,
for example, how aggressive the search algorithm
is in pruning unpromising parts of the search tree
and which lines are explored in more depth. The
key problem here is that these parameters are
intertwined with the search algorithm and cannot
be optimized independently, making the process
very tedious and expensive.

There have been a few attempts to use
� explanation-based learning to automatically
learn predicates that indicate which branches of
the search tree are the most promising to follow.
These approaches are quite related to various
uses of � explanation-based learning in planning,
but these could not be successfully be carried
over to game-tree search.

Björnsson and Marsland (2003) present a gra-
dient descent approach that minimizes the to-
tal number of game positions that need to be
searched in order to successfully solve a num-
ber of training problems. The idea is to adjust
each parameter in proportion to its sensitivity to
changes in the number of searched nodes, which
is estimated with additional searches. The amount
of positions that can be searched for each training
position is bounded in order to avoid infinite solu-
tion times for individual problems, and simulated
annealing is used to ensure convergence.

Monte Carlo Tree Search
Automated tuning of evaluation functions and
search control parameters does not work well
for all games. For many years, research in com-
puter Go has not made much progress with con-
ventional search-based and pattern learning al-
gorithms. However, a breakthrough came when
Monte Carlo techniques could be combined with
tree search algorithms. The basic algorithm inter-
leaves four phases (Browne et al. 2012):

1. Selection: select a node of the current search
tree for expansion

2. Expansion: generate one (or more) of the
successor nodes for the selected node

3. Simulation: starting from these nodes, simu-
late a game until a terminal state is reached

4. Backpropagation: propagate the observed re-
sult back to the root of the tree

The best known of such methods, UCT, may
be viewed as the extension of the UCB method
for solving � k-armed bandit problems to search
trees (Kocsis and Szepesvári 2006). In the selec-
tion phase, UCT computes the following term for
choosing the next node at each interior node of
the current tree:

UCT D NXj C C �

s
2 ln n

nj

(1)

where Xj is the average reward that has been
observed at node j , nj is the number of times
the node has been visited, and n is the num-
ber of times its predecessor has been visited.
Clearly, it can be seen that nodes with a high
utility are generally preferred (exploitation), but
the second term also increases the chances that
nodes that have been rarely visited are selected
(exploration). The parameter C can be adjusted
to trade off exploration and exploitation. From
the selected node, a single random rollout is
conducted, and its outcome is used to adapt the
Xj values in all visited nodes in the search tree.

MCTS is generally applicable but has been
particularly successful in game playing, most
notably in Computer Go. In particular, AlphaGo
(Silver et al. 2016), which employs deep learning
for training value networks to evaluate positions
and policy networks to bias the simulation phase
of MCTS towards promising moves, became the
first computer player to beat a world-class Go
player in a celebrated 5-game match in March
2016.

Opening Book Learning
Human game players not only rely on their ability
to estimate the value of moves and positions but
are often also able to play certain positions “by
heart,” i.e., without having to think about their
next move. This is the result of home preparation,
opening study, and rote learning of important
lines and variations. As computers do not forget,
the use of an opening book provides an easy way
for increasing their playing strength. However,

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_97
http://dx.doi.org/10.1007/978-1-4899-7687-1_424

786 Machine Learning and Game Playing

the construction of such opening books can be
quite laborious, and the task of keeping it up-to-
date is even more challenging.

Commercial game-playing programs, in par-
ticular chess programs, have thus resorted to tools
that support the automatic construction of open-
ing from large game databases. The key challenge
here is that one cannot rely on statistical infor-
mation alone: a move that has been successfully
employed in hundreds of games may be refuted
in a single game. Donninger and Lorenz (2006)
describe an approach that evaluates the “good-
ness” of a move based on a heuristic formula that
has been found by experimentation. This value
is then added to the result of a regular alpha-
beta search. The technique has been so successful
that the chess program HYDRA, probably the
strongest chess program today, has abandoned
conventionally large man-made (and therefore
error-prone) error books. Similar techniques have
also been used in games like Othello (Buro 2002).

Pattern Discovery
In addition to databases of common openings
and huge game collections, which are mostly
used for the tuning of evaluation functions or
the automatic generation of opening books (see
above), many games or subgames have already
been solved, i.e., databases are available in which
the game-theoretic value of positions of these
subgames can be looked up. For example, in
chess all endgames with up to six pieces and in
checkers all ten-piece endgames have been solved
(Schaeffer et al. 2003). Other games, such as
Connect-4, are solved completely, i.e., all possi-
ble positions have been evaluated, and the game-
theoretic value of the starting position has been
determined. Many of these databases are readily
available; some of them (in the domains of chess,
Connect-4, and tic-tac-toe) are part of the UCI
repository for machine learning databases.

The simplest learning task is to train a classi-
fier that is able to decide whether a given game
position is a game-theoretical win or loss (or
draw). In many cases, this is insufficient. For ex-
ample, in the chess endgame king-rook-king, any
position in which the white rook cannot be imme-
diately captured and in which black is not a stale-

mate is, in principle, won by white. However, in
order to actually win the game, it is not sufficient
to simply make moves that avoid rook captures
and stalemates. Thus, most databases contain the
maximal number of moves that are needed for
winning the position. Predicting this is a much
harder, largely unsolved problem (some recent
work can be found in Sadikov and Bratko 2006).
In addition to the game-specific knowledge that
could be gained by the extraction of patterns that
are indicative of won positions, another major
application could be a knowledge-based com-
pression of these databases (the collection of all
perfect-play chess endgame databases with up to
six men is 1.2 TB in a very compressed database
format; the win/loss checkers databases with up
to ten men contain about 4 � 1013 positions
compressed into 215 GB Schaeffer et al. 2003).

Player Modeling
Player modeling is an important research area in
game playing, which can serve several purposes.
The goal of opponent modeling is to improve
the capabilities of the machine player by allow-
ing it to adapt to its opponent and exploit his
weaknesses. Even if a game-theoretical optimal
solution to a game is known, a system that has the
capability to model its opponent’s behavior may
obtain a higher reward. Consider, for example,
the game of rock-paper-scissors aka RoShamBo,
where either player can expect to win one third
of the games (with one third of draws) if both
players play their optimal strategies (i.e., ran-
domly select one of their three moves). However,
against a player that always plays rock, a player
that is able to adapt his strategy to always playing
paper can maximize his reward, while a player
that sticks with the “optimal” random strategy
will still win only one third of the games. One
of the grand challenges in this line of work is
a game like poker, where opponent modeling is
crucial to improve over game-theoretical optimal
play (Billings et al. 2002).

Player modeling is also of increasing impor-
tance in commercial computer games (see be-
low). For one, � behavioral cloning techniques
could be used to increase the playing strength or
credibility of artificial characters by copying the

http://dx.doi.org/10.1007/978-1-4899-7687-1_69

Machine Learning and Game Playing 787

M

strategies of expert human players. Moreover, the
playing strength of the characters can be adapted
to the increasing skill level of the human player.
Finally, agents that can be trained by nonpro-
grammers can also play an important role. For ex-
ample, in massive multiplayer online role-playing
games (MMORPGs), an avatar that is trained to
simulate a user’s game-playing behavior could
take his creator’s place at times when the human
player cannot attend to his game character.

Commercial Computer Games
In recent years, the computer game industry has
discovered artificial intelligence as a necessary
ingredient to make games more entertaining and
challenging, and, vice versa, AI has discovered
computer games as an interesting and rewarding
application area (Laird and van Lent 2001). In
comparison to conventional strategy games, com-
puter game applications are more demanding,
as the agents in these games typically have to
interact with a large number of partner or enemy
agents in a highly dynamic, real-time environ-
ment, with incomplete knowledge about its states.
Tasks include off-line or online player modeling
(see above), virtual agents with learning capabil-
ities, optimization of plans and processes, etc.

Computer players in games are often con-
trolled with scripts. Dynamic scripting (Spronck
et al. 2006) is an online � reinforcement learn-
ing technique that is designed to be integrated
into scripting languages of game-playing agents.
Contrary to conventional reinforcement learn-
ing agents, it updates the weights of all actions
for a given state simultaneously. This sacrifices
guaranteed convergence, but this is desirable in
a highly dynamic game environment. The ap-
proach was successfully applied to improving the
strength of computer-controlled characters and
increasing the entertainment value of the game
by automated scaling of the difficult level of
the game AI to the human player’s skill level.
Similar to the problem of constructing suitable
features for the use in evaluation functions, the
basic tactics of the computer player had to be
handcoded. Ponsen et al. (2006) extend dynamic
scripting with an � evolutionary algorithm for
automatically constructing the tactical behaviors.

Machine learning techniques are not only used
for controlling players but also for tasks like skill
estimation, for example, TrueSkillTM (Herbrich
et al. 2007), a Bayesian skill rating system which
is used for ranking players in games on the
Microsoft’s Xbox 360. SAGA-ML (Southey et al.
2005) is a machine learning system for support-
ing game designers in improving the playability
of a game.

Despite the large commercial potential, re-
search in this area has just started, and the num-
ber of workshops and publications on this topic
is rapidly increasing. For a list of commercial
games using AI techniques, we refer to http://
www.gameai.com.

Cross-References

� Samuel’s Checkers Player
�TD-Gammon

Recommended Reading

Amit A, Markovitch S (2006) Learning to bid in
bridge. Mach Learn 63(3):287–327.

Baxter J, Tridgell A, Weaver L (2000) Learning to
play chess using temporal differences. Mach Learn
40(3):243–263.

Billings D, Peña L, Schaeffer J, Szafron D (2002) The
challenge of poker. Artif Intell 134(1–2):201–240.
Special Issue on Games, Computers and Artificial
Intelligence

Björnsson Y, Marsland TA (2003) Learning extension
parameters in game-tree search. Inf Sci 154(3–
4):95–118.

Bowling M, Fürnkranz J, Graepel T, Musick R (2006)
Special issue on machine learning and games. Mach
Learn 63(3).

Browne CB, Powley E, Whitehouse D, Lucas SM,
Cowling PI, Rohlfshagen P, Tavener S, Perez D,
Samothrakis S, Colton S (2012) A survey of Monte
Carlo tree search methods. IEEE Trans Comput
Intell AI Games 4(1):1–43

Buro M (2002) Improving heuristic mini-max search
by supervised learning. Artif Intell 134(1–2):85–99.
Special Issue on Games, Computers and Artificial
Intelligence

Donninger C, Lorenz U (2006) Innovative opening-
book handling. In: van den Herik HJ, Shun-Chin
Hsu, Donkers HHLM (eds) Advances in computer
games, vol 11. Springer, Berlin/New York

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://www.gameai.com
http://www.gameai.com
http://dx.doi.org/10.1007/978-1-4899-7687-1_740
http://dx.doi.org/10.1007/978-1-4899-7687-1_813

788 Machine Learning for IT Security

Fürnkranz J (2001) Machine learning in games: a
survey. In: Fürnkranz J, Kubat M (eds) Machines
that learn to play games, chapter 2. Nova Science
Publishers, Huntington, pp 11–59.

Fürnkranz J, Kubat M (eds) (2001) Machines that learn
to play games. Volume 8 of advances in computa-
tion: theory and practice. Nova Science Publishers,
Huntington.

Ghory I (2004) Reinforcement learning in board
games. Technical report CSTR-04-004, Department
of Computer Science, University of Bristol, Bristol.

Herbrich R, Minka T, Graepel T (2007) Trueskilltm:
a Bayesian skill rating system. In: Schölkopf B,
Platt JC, Hoffman T (eds) Advances in neural infor-
mation processing systems (NIPS-06), Vancouver,
vol 19. MIT Press, pp 569–576

Kocsis L, Szepesvári C (2006) Bandit based monte-
carlo planning. In: Proceedings of the 17th Euro-
pean conference on machine learning, ECML’06.
Springer, Berlin/Heidelberg, pp 282–293

Laird JE, van Lent M (2001) Human-level AI’s Killler
application: interactive computer games. AI Mag
22(2):15–26

Michie D (1963) Experiments on the mechanization
of game-learning – Part I. Characterization of the
model and its parameters. Comput J 6:232–236

Ponsen M, Muñoz-Avila H, Spronck P, Aha DW
(2006) Automatically generating game tactics via
evolutionary learning. AI Mag 27(3):75–84.

Sadikov A, Bratko I (2006) Learning long-term
chess strategies from databases. Mach Learn 63(3):
329–340

Schaeffer J, van den Herik HJ (eds) (2002) Chips
challenging champions: games, computers and arti-
ficial intelligence. North-Holland Publishing, Am-
sterdam. Reprint of a Special Issue of Artificial
Intelligence 134(1–2)

Schaeffer J, Björnsson Y, Burch N, Lake R, Lu P,
Sutphen S (2003) Building the checkers 10-piece
endgame databases. In: van den Herik HJ, Iida
H, Heinz EA (eds) Advances in computer games,
vol 10. Springer, Graz, pp 193–210.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L,
van den Driessche G, Schrittwieser J, Antonoglou I,
Panneershelvam V, Lanctot M, Dieleman S, Grewe
D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap
T, Leach M, Kavukcuoglu K, Graepel T, Hass-
abis D (2016) Mastering the game of Go with
deep neural networks and tree search. Nature. 529:
484–489.

Southey F, Xiao G, Holte RC, Trommelen M,
Buchanan JW (2005) Semi-automated gameplay
analysis by machine learning. In: Young RM, Laird
JE (eds) Proceedings of the 1st artificial intelli-
gence and interactive digital entertainment confer-
ence (AIIDE-05). AAAI Press, Marina del Rey,
pp 123–128

Spronck P, Ponsen MJV, Sprinkhuizen-Kuyper IG,
Postma EO (2006) Adaptive game AI with dynamic
scripting. Mach Learn 63(3):217–248.

Machine Learning for IT Security

Philip K. Chan
Florida Institute of Technology, Melbourne, FL,
USA

Definition

The prevalence of information technology (IT)
across all segments of society, greatly improves
the accessibility of information, however, it also
provides more opportunities for individuals to
act with malicious intent. Intrusion detection is
the task of identifying attacks against computer
systems and networks. Based on data/behavior
observed in the past, machine learning methods
can automate the process of building detectors for
identifying malicious activities.

Motivation and Background

Cyber security often focuses on preventing at-
tacks using authentication, filtering, and encryp-
tion techniques, but another important facet is
detecting attacks once the preventive measures
are breached. Consider a bank vault: thick steel
doors prevent intrusions, while motion and heat
sensors detect intrusions. Prevention and detec-
tion complement each other to provide a more
secure environment.

How do we know if an attack has occurred or
has been attempted? This requires analyzing huge
volumes of data gathered from the network, host,
or file systems to find suspicious activities. Two
general approaches exist for this problem: misuse
detection (also known as signature detection),
where we look for patterns signaling well-known
attacks, and � anomaly detection, where we look
for deviations from normal behavior.

Misuse detection usually works reliably on
known attacks (though false alarms and missed
detections are not uncommon), but has the obvi-
ous disadvantage of not being capable of detect-
ing new attacks. Though anomaly detection can
detect novel attacks, it has the drawback of not

http://dx.doi.org/10.1007/978-1-4899-7687-1_912

Machine Learning for IT Security 789

M

being capable of discerning intent; it can only sig-
nal that some event is unusual, but not necessarily
hostile, thus generating false alarms. A desirable
system would employ both approaches. Misuse
detection methods are more well understood and
widely applied; however, anomaly detection is
much less understood and more challenging.

Can we automate the process of building soft-
ware for misuse and anomaly detection? Machine
learning techniques hold promise in efficiently
analyzing large amounts of recent activities, iden-
tifying patterns, and building detectors.

Besides computer attacks, spam email mes-
sages, though not intended to damage computer
systems or data, are annoying and waste system
resources. To construct spam detectors from large
amounts of email messages, machine learning
techniques have been used (see “References” and
“Recommended Reading” for more).

Structure of Learning System

Machine learning can be used to construct models
for misuse as well as anomaly detection.

Misuse Detection
For misuse detection, the machine learning goal
is to identify characteristics of known attacks.
One approach is to learn the difference between
attacks and normal events, which can be casted
as a classification problem. Given examples of
labeled attacks and normal events, a learning
algorithm constructs a model that differentiates
attacks from normal events.

Lee et al. (1999) apply machine learning to
detect attacks in computer networks. They first
identify frequent episodes, associations of fea-
tures that frequently appear within a time frame,
in attack and normal data separately. Frequent
episodes that only appear in attack data help
construct features for the models. For example,
if the SYN flag is set for a http connection is a
frequent episode within 2 s and the episode only
appears in the attack data, a feature is constructed
for the number of http connections with the SYN
flag set within a period of 2 s. Using RIPPER and
based on different sets of features, they construct

three models: traffic, host-based traffic, and con-
tent models. The three models are then combined
using meta-learning.

Ghosh and Schwartzbard (1999) use neural
networks to identify attacks in operating systems.
Based on system calls in the execution traces of
normal and attack programs, they first identify a
number of “examplar” sequences of system calls.
For each system call sequence, they calculate
the distance from the examplar sequences. The
number of input nodes for the neural network
is equal to the number of examplars and values
for the input nodes are distances from those
examplar sequences. The value for the output
node is whether the system call sequence is from
an attack or normal program.

Anomaly Detection
For anomaly detection, the machine learning goal
is to characterize normal behavior. The learned
models of normal behavior are then used to iden-
tify events that are anomalies, events that devi-
ate from the models. Since anomalies are not
always attacks, to reduce false alarms, the learned
models usually provide a scoring mechanism to
indicate the degree of anomaly.

Warrender et al. (1999) identify anomalies in
system calls in the operating systems. The model
is a table of system call sequences from execution
traces of normal programs. During detection, a
sequence that is not in the table or occurs less
than 0.001 % in the training data is considered
a mismatch. The number of mismatches within
a locality frame of 20 sequences is the anomaly
score.

Mahoney and Chan (2003) introduce the
LERAD algorithm for learning rules that
identify anomalies in network traffic. LERAD
first uses a randomized algorithm to generate
candidate rules that represent associations. It
then finds a set of high quality rules that can
succinctly cover the training data. Each rule
has an associated probability of violating the
rule. During detection, based on the probability,
LERAD provides a score for anomalous events
that do not conform to the rules in the learned
model.

790 Manhattan Distance

Misuse Detection: Schultz et al. (2001) with
program executables, Maxion and Townsend
(2002) with user commands.

Anomaly Detection: Sekar et al. (2001) with
program execution, Apap et al. (2002) with Win-
dows Registry, Anderson et al. (1995) with sys-
tem resources, Lane and Brodley (1999) with user
commands.

Spam detection: Bratko et al. (2006) with text,
Fumera et al. (2006) with text and embedded
images.

Cross-References

�Anomaly Detection
�Association Rule
�Classification

Recommended Reading

Anderson D, Lunt T, Javitz H, Tamaru A, Valdes A
(1995) Detecting unusual program behavior using
the statistical component of the next-generation in-
trusion detection expert system (NIDES). Technical
report SRI-CSL-95-06, SRI

Apap F, Honig A, Hershkop S, Eskin E, Stolfo S (2002)
Detecting malicious software by monitoring anoma-
lous windows registry accesses. In: Proceeding of
fifth international symposium on recent advances in
intrusion detection (RAID), Zurich, pp 16–18

Bratko A, Filipic B, Cormack G, Lynam T, Zupan B
(2006) Spam filtering using statistical data compres-
sion models. J Mach Learn Res 7:2673–2698

Fumera G, Pillai I, Roli F (2006) Spam filtering based
on the analysis of text information embedded into
images. J Mach Learn Res 7:2699–2720

Ghosh A, Schwartzbard A (1999) A study in using
neural networks for anomaly and misuse detection.
In: Proceeding of 8th USENIX security symposium,
Washington, DC, pp 141–151

Lane T, Brodley C (1999) Temporal sequence learning
and data reduction for anomaly detection. ACM
Trans Inf Syst Secur 2(3):295–331

Lee W, Stolfo S, Mok K (1999) A data mining
framework for building intrusion detection mod-
els. In: IEEE symposium on security and privacy,
pp 120–132

Mahoney M, Chan P (2003) Learning rules for
anomaly detection of hostile network traffic. In:
Proceeding of IEEE international conference data
mining, Melbourne, pp 601–604

Maxion R, Townsend T (2002) Masquerade detection
using truncated command lines. In: Proceeding of
international conference dependable systems and
networks (DSN), Washington, DC, pp 219–228

Schultz M, Eskin E, Zadok E, Stolfo S (2001) Data
mining methods for detection of new malicious
executables. In: Proceeding of IEEE symposium
security and privacy, Oakland, pp 38–49

Sekar R, Bendre M, Dhurjati D, Bollinen P (2001)
A fast automaton-based method for detecting
anomalous program behaviors. In: Proceeding of
IEEE symposium security and privacy, Oakland,
pp 144–155

Warrender C, Forrest S, Pearlmutter B (1999) Detect-
ing intrusions using system calls: alternative data
models. In: IEEE symposium on security and pri-
vacy, Los Alamitos, pp 133–145

Manhattan Distance

Susan Craw
Robert Gordon University, Aberdeen, UK

Synonyms

City block distance; L1-distance; 1-norm dis-
tance; Taxicab norm distance

Definition

The Manhattan distance between two points x D
.x1; x2; : : : xn/ and y D .y1; y2; : : : yn/ in n-
dimensional space is the sum of the distances in
each dimension:

d.x; y/ D

nX
iD1

j xi � yi j

It is called the Manhattan distance because it
is the distance a car would drive in a city (e.g.,
Manhattan) where the buildings are laid out in
square blocks and the straight streets intersect at
right angles. This explains the other terms city
block and taxicab distances. The terms L1 and 1-
norm distances are the mathematical descriptions
of this distance.

http://dx.doi.org/10.1007/978-1-4899-7687-1_912
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_100054
http://dx.doi.org/10.1007/978-1-4899-7687-1_100239
http://dx.doi.org/10.1007/978-1-4899-7687-1_100001
http://dx.doi.org/10.1007/978-1-4899-7687-1_100465

Markov Chain Monte Carlo 791

M

Cross-References

�Case-Based Reasoning
�Nearest Neighbor

Margin

Definition

In a �Support Vector Machine, a margin is the
distance between a hyperplane and the closest
example.

Cross-References

� Support Vector Machines

Market Basket Analysis

�Basket Analysis

Markov Chain

�Markov Process

Markov Chain Monte Carlo

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Synonyms

MCMC

Definition

A Markov Chain Monte Carlo (MCMC)
algorithm is a method for sequential sampling
in which each new sample is drawn from the

neighborhood of its predecessor. This sequence
forms a �Markov chain, since the transition
probabilities between sample values are only
dependent on the last sample value. MCMC
algorithms are well suited to sampling in high-
dimensional spaces.

Motivation

Sampling from a probability density function
is necessary in many kinds of approximation,
including Bayesian inference and other applica-
tions in Machine Learning. However, sampling is
not always easy, especially in high-dimensional
spaces. Mackay (2003) gives a simple example to
illustrate the problem. Suppose we want to find
the average concentration of plankton in a lake,
whose profile looks like this:

If we do not know the depth profile of the lake,
how would we know where to sample from? If we
take a boat out, would we have to sample almost
exhaustively by fixing a grid on the surface of
the lake and sinking our instrument progressively
deeper, sampling at fixed intervals until we hit the
bottom? This would be prohibitively expensive
and if we had a similar problem, but with more
dimensions, the problem becomes intractable. If
we try to simplify the problem by drawing a
random sample, how do we ensure that enough
samples are taken from the canyons in the lake
and not just the shallows, which account for most
of the surface area?

The Algorithm

The general approach adopted in MCMC algo-
rithms is as follows. We start sampling in some
random initial state, represented by vector, x. At

http://dx.doi.org/10.1007/978-1-4899-7687-1_34
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_516
http://dx.doi.org/10.1007/978-1-4899-7687-1_100292
http://dx.doi.org/10.1007/978-1-4899-7687-1_100285

792 Markov Chain Monte Carlo

each state, we can evaluate the probability den-
sity function, P.x/. We then choose a candidate
next state, x0, near the current state and evaluate
P.x0/. Comparing the two, we decide whether
to accept or reject the candidate. If we accept it,
the candidate becomes the new current state and
the process repeats for a fixed number of steps or
until some convergence criterion is satisfied.

The Metropolis Algorithm

There are several variants of the general algo-
rithm presented above. Each variant must specify
how a candidate state is proposed and what crite-
rion should be used to accept or reject the can-
didate. The Metropolis algorithm assumes that
the next candidate is drawn from a symmetric
distribution, Q.x/, centered on the current state,
for example, a Gaussian distribution (Metropolis
et al. 1953; Metropolis and Ulam 1949). This dis-
tribution is called the proposal distribution. The
Metropolis algorithm is shown in Algorithm 1.

To decide if a candidate should be accepted or
rejected, the algorithm calculates,

˛ D
P.x0/

P.xi /

where xi is the current state and x0 is the candi-
date state. If ˛ > 1, the candidate is immediately
accepted. If ˛ < 1, then a stochastic choice

Algorithm 1 The Metropolis Algorithm
Given: target probability density function P.x/

a proposal distribution, Q, e.g., a Gaussian
the number of iterations, N

Output: a set of samples fxi g drawn from P.x/
Randomly select initial state vector, x0

for i D 0 to N � 1
create a new candidate x0 D xi C �x,

where �x is randomly chosen from Q.�x/

set ˛ D P.x0/

P.xi /

if ˛ � 1 or with probability ˛
accept the new candidate and set xiC1 D x0

else
reject the candidate and set xiC1 D xi

is made with the candidate being accepted with
probability ˛, otherwise, it is rejected.

Hastings (1970) introduced a variant, the
Metropolis–Hastings algorithm, which allows
the proposal distribution to be asymmetric. In
this case, the accept/reject calculation is:

˛ D
P.x0/Q.xi I x

0/

P.xi /Q.x0I xi /

Burn-In and Convergence

It can be difficult to decide how many iterations
are needed before an MCMC algorithm achieves
a stable distribution. Several factors affect the
length of the Markov chain needed. Depending
on the start state, many of the initial samples
may have to be discarded, called burn-in, as
illustrated below. The ellipses represent contours
of the distribution.

The variance of the proposal distribution can
also affect the chain length. If the variance is
large, the jumps are large, meaning that there is
varied sampling. However, this is also likely to
mean that fewer samples are accepted. Narrowing
the variance should increase acceptance but may
require a long chain to ensure wide sampling,
which is particularly necessary if the distribution
has several peaks. See Andrieu et al. (2003) for
a discussion of methods for improving conver-
gence times.

Markov Decision Processes 793

M

Gibbs Sampling

An application of MCMC is inference in a
�Bayesian network, also known as �Graphical
Models. Here, we sample from evidence
variables to find a probability for non-evidence
variables. That is, we want to know what
unknowns we can derive from the knowns and
with what probability. Combining the evidence
across a large network is intractable because
we have to take into account all possible
interactions of all variables, subject to the
dependencies expressed in the network. Since
there are too many combinations to compute in
a large network, we approximate the solution
by sampling. The Gibbs sampler is a special
case of the Metropolis–Hastings algorithm that
is well suited to sampling from distributions
over two or more dimensions. It proceeds
as in Algorithm 1, except that when a new
candidate is generated, only one dimension is
allowed to change while all the others are held
constant. Suppose we have n dimensions and
x D .x1; : : : ; xn/. One complete pass consists
of jumping in one dimension, conditioned on the
values for all the other dimensions, then jumping
in the next dimension, and so on. That is, we
initialise x to some value, and then for each xi

we resample P.xi jxj D6i / for j in 1. . . n. The
resulting candidate is immediately accepted. We
then iterate, as in the usual Metropolis algorithm.

Cross-References

�Bayesian Network
�Graphical Models
�Learning Graphical Models
�Markov Chain

Recommended Reading

MCMC is well covered in several text books.
Mackay (2003) gives a thorough and readable
introduction to MCMC and Gibbs Sampling.
Russell and Norvig (2009) explain MCMC in the
context of approximate inference for Bayesian

networks. Hastie et al. (2009) also give a more
technical account of sampling from the posterior.
Andrieu et al. (2003) Machine Learning paper
gives a thorough introduction to MCMC for
Machine Learning. There are also some excellent
tutorials on the web including Walsh (2004) and
Iain Murray’s video tutorial (Murray 2009) for
machine learning summer school.

Andrieu C, DeFreitas N, Doucet A, Jordan MI (2003)
An introduction to MCMC for machine learning.
Mach Learn 50(1):5–43

Hastie T, Tibshirani R, Friedman J (2009) The ele-
ments of statistical learning: data mining, inference
and perception, 2nd edn. Springer, New York

Hastings WK (1970) Monte Carlo sampling meth-
ods using Markov chains and their applications.
Biometrika 57:97–109

Mackay DJC (2003) Information theory, inference and
learning algorithms. Cambridge University Press,
Cambridge

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller
A, Teller H (1953) Equations of state calculations
by fast computing machines. J Chem Phys 21:1087–
1091

Metropolis N, Ulam S (1949) The Monte Carlo
method. J Am Stat Assoc 44(247):335–341

Murray I (2009) Markov chain Monte Carlo. http://
videolectures.net/mlss09uk murray mcmc/.
Retrieved 25 July 2010

Russell S, Norvig P (2009) Artificial intelligence: a
modern approach, 3rd edn. Prentice Hall, Engle-
wood Cliffs

Walsh B (2004) Markov chain Monte Carlo and Gibbs
sampling. http://nitro.biosci.arizona.edu/courses/
EEB581-2004/handouts/Gibbs. Retrieved 25 July
2010

Markov Decision Processes

William Uther
NICTA and The University of New South Wales,
Sydney, NSW, Australia

Synonyms

Policy search

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_100285
http://videolectures.net/mlss09uk_murray_mcmc/
http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs
http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364

794 Markov Decision Processes

Definition

A Markov Decision Process (MDP) is a discrete,
stochastic, and generally finite model of a system
to which some external control can be applied.
Originally developed in the Operations Research
and Statistics communities, MDPs, and their ex-
tension to �Partially Observable Markov Deci-
sion Processes (POMDPs), are now commonly
used in the study of � reinforcement learning in
the Artificial Intelligence and Robotics commu-
nities (Bellman 1957; Bertsekas and Tsitsiklis
1996; Howard 1960; Puterman 1994). When used
for reinforcement learning, firstly the parameters
of an MDP are learned from data, and then the
MDP is processed to choose a behavior.

Formally, an MDP is defined as a tuple: <

S;A; T; R >, where S is a discrete set of states,
A is a discrete set of actions, T W S � A !
.S ! R/ is a stochastic transition function, and
R W S � A ! R specifies the expected reward
received for performing the given action in each
state.

An MDP carries the Markov label because
both the transition function, T , and the reward
function, R, are Markovian; i.e., they are de-
pendent only upon the current state and action,
not previous states and actions. To be a valid
transition function, the distribution over the re-
sulting states, S ! R, must be a valid probability
distribution, i.e., non-negative and totalling 1.
Furthermore, the expected rewards must be finite.

The usual reason for specifying an MDP is to
find the optimal set of actions, or policy, to per-
form. We formalize the optimality criteria below.
Let us first consider how to represent a policy. In
its most general form the action, a 2 A, indicated
by a policy, � , might depend upon the entire his-
tory of the agent; � W .S �A/� �S!A. How-
ever, for each of the common optimality criteria
considered below a Markov policy, S ! A, will
be sufficient. i.e., for every MDP, for each of the
optimality criteria below, there exists a Markov
policy that performs as well as the best full policy.
Similarly, there is no requirement for an MDP
that a policy be stochastic or mixed.

Optimality Criteria
Informally, one wants to choose a policy so as
to maximise the long term sum of immediate
rewards. Unfortunately the naive sum,

P1
tD0 rt

where rt is the expected immediate reward re-
ceived at time t , usually diverges. There are
different optimality criteria that can than be used
as alternatives.

Finite Horizon
The easiest way to make sure that the sum of
future expected rewards is bounded is to only
consider a fixed, finite time into the future; i.e.,
find a policy that maximises

Pn
tD0 rt for each

state.

Infinite Horizon Discounted
Rather than limiting the distance we look into the
future, another approach is to discount rewards
we will receive in the future by a multiplicative
factor, � , for each time-step. This can be justified
as an inflation rate, as an otherwise unmodelled
probability that the simulation ends each time-
step, or simply as a mathematical trick to make
the criteria converge. Formally we want a policy
that maximises

P1
tD0 � t rt for each state.

Average Reward
Unfortunately, the infinite horizon discounted
optimality criterion adds another parameter to
our model: the discount factor. Another approach
is to optimize the average reward per time-step,
or gain, by finding a policy that maximizes
limn!1

1
n

Pn
tD0 rt for each state. This is very

similar to using sensitive discount optimality;
finding a policy that maximizes the infinite
horizon discounted reward as the discount factor
approaches 1, lim�!1

P1
tD0 � t rt , for each state.

When maximizing average reward, any finite
deviation from the optimal policy will have neg-
ligible effect on the average over an infinite
timeframe. This can make the agent “lazy.” To
counteract this, often a series of increasingly
strict optimality criteria are used. The first is the
“gain” optimality criterion given above – opti-
mizing the long term average reward. The next is
a “bias” optimality which selects from among all

http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Markov Decision Processes 795

M

gain optimal policies the ones that also optimize
transient initial rewards.

Value Determination
For the finite horizon, infinite horizon discounted,
or bias optimality criteria, the optimality criteria
can be calculated for each state, or for each state-
action pair, giving a value function. Once found,
the value function can then be used to find an
optimal policy.

Bellman Equations
The standard approach to finding the value func-
tion for a policy over an MDP is a dynamic
programming approach using a recursive formu-
lation of the optimality criteria. That recursive
formulation is known as the Bellman equation.

There are two, closely related, common forms
for a value function; the state value function,
V W S ! R and the state-action value function,
Q W S � A ! R. For a finite horizon undis-
counted optimality criterion with time horizon n

and policy � :

Q�
n .s; a/ D

nX
tD0

rt

D R.s; a/C Es02T .s;a/V
�

n�1.s0/

D R.s; a/C
X
s02S

T .s; a/.s0/V �
n�1.s0/

V �
n .s/ D Q�

n .s; �.s//

For the infinite horizon discounted case:

Q�.s; a/ D R.s; a/C �
X
s02S

T .s; a/.s0/V �.s0/

V �.s/ D Q�.s; �.s//

These equations can be turned into a method
for finding the value function by replacing the
equality with an assignment:

Q�.s; a/ R.s; a/

C �
X
s02S

T .s; a/.s0/Q�.s0; �.s0//

As long as this update rule is followed infinitely
often for each state/action pair, the Q-function
will converge.

Prioritised sweeping: Rather than blindly
updating each state/action, intelligent choice
of where to update will significantly speed
convergence. One technique for this is called
Prioritized Sweeping (Moore 1993; Andre et al.
1997).

A priority queue of states is kept. Initially
one complete pass of updates over all states is
performed, but thereafter states are updated in
the order they are pulled from the priority queue.
Any time the value of a state, V �.s/, changes, the
priorities of all states, s0, that can reach state s are
updated; we update fs0jT .s0; �.s0//.s/ ¤ 0g. The
priorities are increased by the absolute change in
V �.s/.

The effect of the priority queue is to focus
computation where values are changing rapidly.

Linear Programming Solutions
Rather than using the Bellman equation and dy-
namic programming, an alternative approach is to
set up a collection of inequalities and use linear
programming to find an optimal value function.
In particular if we minimize,

X
s2S

V �.s/

subject to the constraints

8s2S0 � V �.s/ � ŒR.s; a/

C �
X
s02S

T .s; a/.s0/V �.s0/�;

then the resulting V � accurately estimates the
expected sum of discounted reward.

Bellman Error Minimization
A third approach to value determination is simi-
lar to the dynamic programming solution above.
Rather than replacing the equality in the Bellman
equation with an assignment, it turns the equation
into an error function and adjusts the Q function
to minimise the sum of squared Bellman residuals

796 Markov Decision Processes

(Baird 1995):

Residual.s/ D Q�.s; a/ � ŒR.s; a/

C �
X
s02S

T .s; a/.s0/Q�.s0; �.s0//� Err

D
X
s2S

Residual.s/2

Control Methods
The previous section gave us a way to obtain a
value function for a particular policy, but what we
usually need is a good policy, not a value function
for the policy we already have. For an optimal
policy, for each state:

�.s/ D argmaxa2AQ�.s; a/

If a policy, � , is not optimal then its value
function can be used to find a better policy, � 0. It
is common to use the greedy policy for the value
function:

� 0.s/ argmaxa2AQ�.s; a/

This process can be used iteratively to find the
optimal policy.

Policy iteration: Policy iteration alternates be-
tween value determination and greedy policy up-
dating steps until convergence is achieved. The
algorithm starts with a policy, �1. The value
function is calculated for that policy, V �1. A new
policy is then found from that value function,
�2. This alternation between finding the optimal
value function for a given policy and then im-
proving the policy continues until convergence.
At convergence the policy is optimal.

Value iteration: Rather than explicitly updat-
ing the policy, value iteration works directly with
the value function. We define an update,

Q.s; a/ R.s; a/

C �
X
s02S

T .s; a/.s0/ max
a02A

Q.s0; a0/;

with a maximization step included. As long as
this update is performed often enough in each

state, Q will converge. Once Q has converged,
the greedy policy will be optimal.

Mixed policy iteration: The two previous
methods, policy and value iteration, are two
extremes of a spectrum. In practice updates
to the policy and value function can occur
asynchronously as long as the value and policy in
each state are updated often enough.

Representations
In the above discussion we have discussed a
number of functions, but not discussed how these
functions are represented. The default represen-
tation is an array or tabular form which has
no constraints on the function it can represent.
However, the � curse of dimensionality suggests
that the number of states will, in general, be
exponential in the problem size. This can make
even a single complete iteration over the state
space intractable. One solution is to represent the
functions in a more compact form so that they can
be updated efficiently. This approach is known
as function approximation. Here we review some
common techniques.

A class of representations is chosen to rep-
resent the functions we need to process: e.g.,
the transition, T , reward, R, Value, V or Q,
and/or policy, � , functions. A particular function
is selected from the chosen class by a parameter
vector, � .

There are two important questions that must be
answered by any scheme using function approxi-
mation; does the resulting algorithm converge to
a solution, and does the resulting solution bear
any useful relationship with the optimal solution?

A simple approach when using a differentiable
function to represent the value function is to use
a form of � temporal difference learning. For a
given state, s, and action, a, the Bellman equation
is used to calculate a new value, Qnew.s; a/, and
then � is updated to move the value function
toward this new value. This gradient based ap-
proach usually has a learning rate, ˛ 2 [0, 1], to
adjust the speed of learning.

Qnew.s; a/ R.s; a/C �
X
s02S

T .s; a/.s0/V old.s0/

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

Markov Decision Processes 797

M

Δs;a�D˛
@Q

@�
.Qnew.s; a/�Q01d.s; a//

This approach is known not to converge in
general, although it does converge in some spe-
cial cases. A similar approach with full Bellman
Error minimization will not oscillate, but it may
cause the � to diverge even as the Bellman
residual converges.

Contraction mappings: The first class of func-
tion approximators that was shown to converge
with the above update, apart from a complete tab-
ular representation, was the class of contraction
mappings (Gordon 1995). Simply put, these are
function approximation classes where changing
one value by a certain amount changes every
other value in the approximator by no more than
that amount. For example, linear interpolation
and tile coding (Tile codings are also known
as Cerebellar Motor Action Controllers (CMAC)
in early work Albus 1981) are each contraction
mappings whereas linear extrapolation is not.

Formally, let S be a vector space with max
norm jj:jj1. A function f is a contraction map-
ping if,

8a; b 2 S; kf .a/ � f .b/k1 < ka � bk1

The class of function approximations that form
contraction mappings includes a number of
common approximation techniques including
tile coding. Tile coding represents a function as a
linear combination of basis functions, �.s; a/,

OQ.s; a/ D � �'.s; a/;

where the individual elements of ' are binary
features on the underlying state.

Linear approximations: The linear combina-
tion of basis functions can be extended beyond bi-
nary features. This will converge when temporal
differencing updates are performed in trajectories
through the state space following the policy being
evaluated (Tsitsiklis and Van Roy 1997).

Variable resolution techniques: One technique
for representing value functions over large state
spaces is use a non-parametric representation.
Munos gives a technique that introduces more

basis functions for their approximation over time
as needed (Munos and Moore 2001).

Dynamic Bayesian networks: Bayesian Net-
works are an efficient representation of a factored
probability distribution. Dynamic Bayesian Net-
works use the Bayesian Network formalism to
represent the transition function, T , in an MDP
(Guestrin et al. 2003). The reward and value
functions are usually represented with linear ap-
proximations. The policy is usually represented
implicitly by the value function.

Decision diagrams: Arithmetic Decision Dia-
grams (ADDs) are a compact way of representing
functions from a factored discrete domain to a
real range. ADDs can also be efficiently manip-
ulated, with operators for the addition and multi-
plication of ADDs as well as taking the maximum
of two ADDs. As the Bellman equation can be
re-written using operators, it is possible to im-
plement mixed policy iteration using this efficient
representation St-Aubin et al. (2000).

Hierarchical representations: �Hierarchical
Reinforcement Learning factors out common
substructure in the functions that represent an
MDP in order to solve it efficiently. This has been
done in many different ways. Dietterich’s MAXQ
hierarchy allowed a prespecified hierarchy to
re-use common elements in a value function
(Dietterich 2000). Sutton’s Options framework
focussed on temporal abstraction and re-
use of policy elements (Sutton et al. 1998).
Moore’s Airports hierarchy allowed automatic
decomposition of a problem where the specific
goal could change over time, and so was made
part of the state (Moore et al. 1999). Andre’s A-
Lisp system takes the hierarchical representation
to an extreme by building in a Turing complete
programming language (Andre and Russell
2002).

Greedy Algorithms Versus Search

In the previous sections the control problem was
solved using a greedy policy for a value func-
tion. If the value function was approximate, then
the resulting policy may be less than optimal.
Another approach to improving the policy is

http://dx.doi.org/10.1007/978-1-4899-7687-1_363

798 Markov Model

to introduce search during execution. Given the
current state, the agent conducts a forward search
looking for the sequence of actions that produces
the best intermediate reward and resulting state
value combination.

These searches can be divided into two broad
categories: deterministic and stochastic searches.
Deterministic searches, such as LAO� (Hansen
and Zilberstein 1998), expand through the state
space using the supplied model of the MDP. In
contrast stochastic, or Monte-Carlo, approaches
sample trajectories from the model and use
statistics gathered from those samples to choose
a policy (Kocsis and Szepesvári 2006).

Cross-References

�Bayesian Network
�Curse of Dimensionality
�Markov Chain Monte Carlo
� Partially Observable Markov Decision

Processes
�Reinforcement Learning
�Temporal Difference Learning

Recommended Reading

Albus JS (1981) Brains, behavior, and robotics. BYTE,
Peterborough. ISBN:0070009759

Andre D, Friedman N, Parr R (1997) Generalized
prioritized sweeping. In: Neural and information
processing systems, Denver, pp 1001–1007

Andre D, Russell SJ (2002) State abstraction for pro-
grammable reinforcement learning agents. In: Pro-
ceedings of the eighteenth national conference on
artificial intelligence (AAAI), Edmonton

Baird LC (1995) Residual algorithms: reinforcement
learning with function approximation. In: Prieditis
A, Russell S (eds) Machine learning: proceedings
of the twelfth international conference (ICML95).
Morgan Kaufmann, San Mateo, pp 30–37

Bellman RE (1957) Dynamic programming. Princeton
University Press, Princeton

Bertsekas DP, Tsitsiklis J (1996) Neuro-dynamic pro-
gramming. Athena Scientific, Belmont

Dietterich TG (2000) Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition. J Artif Intell Res 13:227–303

Gordon GJ (1995) Stable function approximation in
dynamic programming (Technical report CMU-CS-
95-103). School of Computer Science, Carnegie
Mellon University

Guestrin C et al (2003) Efficient solution algorithms
for factored MDPs. J Artif Intell Res 19:399–468

Hansen EA, Zilberstein S (1998) Heuristic search
in cyclic AND/OR graphs. In: Proceedings of
the fifteenth national conference on artificial
intelligence. http://rbr.cs.umass.edu/shlomo/papers/
HZaaai98.html

Howard RA (1960) Dynamic programming and
Markov processes. MIT Press, Cambridge

Kocsis L, Szepesvári C (2006) Bandit based Monte-
Carlo planning. In: European conference on ma-
chine learning (ECML), Berlin. Lecture notes in
computer science, vol 4212. Springer, pp 282–293

Moore AW, Atkeson CG (1993) Prioritized sweeping:
reinforcement learning with less data and less real
time. Mach Learn 13:103–130

Moore AW, Baird L, Pack Kaelbling L (1999) Multi-
value-functions: efficient automatic action hierar-
chies for multiple goal MDPs. In: International
joint conference on artificial intelligence (IJCAI99),
Stockholm

Munos R, Moore AW (2001) Variable resolution dis-
cretization in optimal control. Mach Learn 1:1–31

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley series
in probability and mathematical statistics. Applied
probability and statistics section. Wiley, New York.
ISBN:0-471-61977-9

St-Aubin R, Hoey J, Boutilier C (2000) APRICODD:
approximate policy construction using decision dia-
grams. In: NIPS-2000, Denver

Sutton RS, Precup D, Singh S (1998) Intra-option
learning about temporally abstract actions. In: Ma-
chine learning: proceedings of the fifteenth inter-
national conference (ICML98). Morgan Kaufmann,
Madison, pp 556–564

Tsitsiklis JN, Van Roy B (1997) An analysis of
temporal-difference learning with function approxi-
mation. IEEE Trans Autom Control 42(5):674–690

Markov Model

�Markov Process

Markov Net

�Markov Network

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://rbr.cs.umass.edu/shlomo/papers/HZaaai98.html
http://rbr.cs.umass.edu/shlomo/papers/HZaaai98.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_516
http://dx.doi.org/10.1007/978-1-4899-7687-1_515

Maximally Specific Hypothesis 799

M

Markov Network

Synonyms

Markov net; Markov random field

Definition

A Markov network is a form of undirected
� graphical model for representing multivariate
probability distributions.

Cross-References

�Graphical Models

Markov Process

Synonyms

Markov chain; Markov model
A stochastic process in which the conditional
probability distribution of future states of the
process, given the present state and all past states,
depends only upon the present state. A process
with this property may be called Markovian.
The best known Markovian processes are Markov
chains, also known as Markov Models, which are
discrete-time series of states with transition prob-
abilities. Markov chains are named after Andrey
Markov (1865–1922), who introduced several
significant new notions to the concept of stochas-
tic processes. Brownian motion is another well-
known phenomenon that, to close approximation,
is a Markov process.

Recommended Reading

Meyn SP, Tweedie RL (1993) Markov chains and
stochastic stability. Springer, London

Markov Random Field

�Markov Network

Markovian Decision Rule

Synonyms

Randomized decision rule

Definition

In a �Markov decision process, a decision rule,
dt , determines what action to take, based on the
history to date at a given decision epoch and for
any possible state. It is deterministic if it selects a
single member of A.s/ with probability 1 for each
s 2 S and for a given ht , and it is randomized if
it selects a member of A.s/ at random with prob-
ability qdt .ht /.a/. It is Markovian if it depends on
ht only through st . That is, dt .ht / D dt .st /.

Maxent Models

�Maximum Entropy Models for Natural Lan-
guage Processing

Maximally General Hypothesis

�Most General Hypothesis

Maximally Specific Hypothesis

�Most Specific Hypothesis

http://dx.doi.org/10.1007/978-1-4899-7687-1_100287
http://dx.doi.org/10.1007/978-1-4899-7687-1_100288
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_100285
http://dx.doi.org/10.1007/978-1-4899-7687-1_100286
http://dx.doi.org/10.1007/978-1-4899-7687-1_515
http://dx.doi.org/10.1007/978-1-4899-7687-1_100393
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_525
http://dx.doi.org/10.1007/978-1-4899-7687-1_560
http://dx.doi.org/10.1007/978-1-4899-7687-1_562

800 Maximum Entropy Models for Natural Language Processing

Maximum Entropy Models for
Natural Language Processing

Adwait Ratnaparkhi
Yahoo!, Sunnyvale, CA, USA

Abstract

This chapter provides an overview of the max-
imum entropy framework and its application
to a problem in natural language processing.
The framework provides a way to combine
many pieces of evidence from an annotated
training set into a single probability model.
The framework has been applied to many
tasks in natural language processing, including
part-of-speech tagging. This chapter covers
the maximum entropy formulation, its rela-
tionship to maximum likelihood, a parameter
estimation method, and the details of the part-
of-speech tagging application.

Synonyms

Maxent models; Log-linear models; Statistical
natural language processing

Definition

The term maximum entropy refers to an opti-
mization framework in which the goal is to find
the probability model that maximizes entropy
over the set of models that are consistent with the
observed evidence.

The information-theoretic notion of entropy is
a way to quantify the uncertainty of a probability
model; higher entropy corresponds to more un-
certainty in the probability distribution. The ra-
tionale for choosing the maximum entropy model
– from the set of models that meet the evidence –
is that any other model assumes evidence that has
not been observed (Jaynes 1957).

In most natural language processing prob-
lems, observed evidence takes the form of co-

occurrence counts between some prediction of
interest and some linguistic context of interest.
These counts are derived from a large number
of linguistically annotated examples, known as
a corpus. For example, the frequency in a large
corpus with which the word that co-occurs with
the tag corresponding to determiner, or DET, is a
piece of observed evidence. A probability model
is consistent with the observed evidence if its
calculated estimates of the co-occurrence counts
agree with the observed counts in the corpus.

The goal of the maximum entropy frame-
work is to find a model that is consistent with
the co-occurrence counts, but is otherwise max-
imally uncertain. It provides a way to combine
many pieces of evidence into a single probability
model. An iterative parameter estimation proce-
dure is usually necessary in order to find the
maximum entropy probability model.

Motivation and Background

The early 1990s saw a resurgence in the use of
statistical methods for natural language process-
ing (Church and Mercer 1993). In particular, the
IBM TJ Watson Research Center was a prominent
advocate in this field for statistical methods such
as the maximum entropy framework. Language
modeling for speech recognition (Lau et al. 1993)
and machine translation (Berger et al. 1996) were
among the early applications of this framework.

Structure of Learning System

The goal of a typical natural language processing
application is to automatically produce linguis-
tically motivated categories or structures over
freely occurring text. In statistically based ap-
proaches, it is convenient to produce the cate-
gories with a conditional probability model p

such that p.ajb/ is the probability of seeing a
prediction of interest a (e.g., a part-of-speech tag)
given a linguistic context of interest b (e.g., a
word).

The maximum entropy framework discussed
here follows the machine learning approach to

http://dx.doi.org/10.1007/978-1-4899-7687-1_100289
http://dx.doi.org/10.1007/978-1-4899-7687-1_100278
http://dx.doi.org/10.1007/978-1-4899-7687-1_100446

Maximum Entropy Models for Natural Language Processing 801

M

NLP, which assumes the existence of a large
corpus of linguistically annotated examples. This
annotated corpus is used to create a training set,
which in turn is used to estimate the probability
model p.

Representing Evidence
Evidence for the maximum entropy model is
derived from the training set. The training set is
a list of (prediction, linguistic context) pairs that
are generated from the annotated data. However,
in practice, we do not record the entire lin-
guistic context. Instead, linguistically motivated
Boolean-valued questions reduce the entire lin-
guistic context to a vector of question identifiers.
Therefore, each training sample looks like:

Prediction Question vector
a q1 : : : qn

where a is the prediction and where q1 : : : qn is
a vector of questions that answered true for the
linguistic context corresponding to this training
sample. The questions must be designed by the
experimenter in advance, and are specifically de-
signed for the annotated data and the problem
space.

In the framework discussed here, any piece of
evidence is represented with a feature. A feature
correlates a prediction a with an aspect of a
linguistic context b, captured by some question:

fj .a; b/ D

�
1 if a D x and q.b/ Dtrue
0 otherwise

Combining the Evidence
The maximum entropy framework provides a
way to combine all the features into a probability
model. In the conditional maximum entropy for-
mulation (Berger et al. 1996), the desired model
p� is given by:

P D
˚
pjEpfj D E Qpfj ; j D 1 : : : k

�
(1)

H.p/ D �
X
a;b

Qp.b/p.ajb/ log p.ajb/

p� D argmaxp2P H.p/

where H. p/ is the conditional entropy of p,
Qp.b/ is the observed probability of the linguistic

context b in the training set, and P is the set
of models that are consistent with the observed
data. A model p is consistent if its own feature
expectation Epfj is equal to the observed feature
expectation E Qpfj , for all j D 1 : : : k features.
E Qpfj can be interpreted as the observed count
of fj in the training sample, normalized by the
training sample size. Both are defined as follows:

Epfj D
X
a;b

Qp.b/p.ajb/fj .a; b/

E Qpfj D
X
a;b

Qp.a; b/fj .a; b/

According to the maximum entropy frame-
work, the optimal model p� is the most uncertain
model among those that satisfy the feature con-
straints. It is possible to show that the form of the
optimal model must be log-linear:

p�.ajb/ D
1

Z.b/

Y
j D1:::k

˛
fj .a;b/

j (2)

Z.b/ D
X
a0

Y
j D1:::k

˛
fj .a0;b/

j

Here Z.b/ is a normalization factor, and ˛j > 0.
Each model parameter ˛j can be viewed as the
“strength” of its corresponding feature fj ; the
conditional probability is the normalized product
of the feature weights of the active features.

Relationship to Maximum Likelihood
The maximum entropy framework described here
has an alternate interpretation under the more
commonly used technique of maximum likeli-
hood estimation.

Q D

8<
:pjp.ajb/ D

1

Z.b/

Y
j D1:::k

˛
fj .a;b/

j

9=
;

L.p/ D
X
a;b

Qp.a; b/ log p.ajb/

q� D argmax
p2Q

L.p/

802 Maximum Entropy Models for Natural Language Processing

Here Q is the set of models of form (2),
Qp.a; b/ is the observed probability of prediction
a together with linguistic context b, L.p/ is
the log-likelihood of the training set, and q� is
the maximum likelihood model. It can be shown
that p�D q�; maximum likelihood estimation for
models of the form (2) gives the same answer as
maximum entropy estimation over the constraints
on feature counts (1). The difference between
approaches is that the maximum likelihood ap-
proach assumes the form of the model, whereas
the maximum entropy approach assumes the con-
straints on feature expectations, and derives the
model form.

Parameter Estimation
The Generalized Iterative Scaling (GIS) algo-
rithm (Darroch and Ratcliff 1972) is the easiest
way to estimate the parameters for this kind of
model. The iterative updates are given below:

˛
.0/
j D 1

˛
.n/
j D ˛

.n�1/
j

�
E Qpfj

Epfj

� 1
C

GIS requires the use of a “correction” feature g

and constant C > 0, which are defined so that
g.a; b/ D C �

P
j D1:::k fj .a; b/ for any .a; b/

pair in the training set. Normally, the correction
feature g must be trained in the model along
with the k original features, although (Curran
and Clark 2003) show that GIS converges even
without the correction feature. The number of
iterations needed to achieve convergence depends
on certain aspects of the data, such as the training
sample size and the feature set size, and is typi-
cally tuned for the problem at hand.

Other algorithms for parameter estimation in-
clude the Improved Iterative Scaling (Berger et al.
1996) algorithm and the Sequential Conditional
GIS (Goodman 2002) algorithm. The list given
here is not complete; many other numerical al-
gorithms can be applied to maximum entropy
parameter estimation, see Malouf (2002) for a
comparison.

It is usually difficult to assess the reliability
of features that occur infrequently in the training

set, especially those that occur only once. When
the parameters are trained from low frequency
feature counts, maximum entropy models – as
well as many other statistical learning techniques
– have a tendency to “overfit” the training data.
In this case, performance on training data ap-
pears very high, but performance on the intended
test data usually suffers. Smoothing or regular-
ization techniques are designed to alleviate this
problem for statistical models; some smoothing
techniques for maximum entropy models are re-
viewed in Chen and Rosenfeld (1999).

Applications

This framework has been used as a generic ma-
chine learning toolkit for many problems in nat-
ural language processing. Like other generic ma-
chine learning techniques, the core of the maxi-
mum entropy framework is invariant across dif-
ferent problem spaces. However, some informa-
tion is specific to each problem space:

Predictions: The space of predictions for this
model

Questions: The space of questions for this model
Feature Selection: Any possible (question, pre-

diction) pair can be used as a feature. In
complex models, only a small subset of all
the possible features are used in a model.
The feature selection strategy specifies how to
choose the subset.

For a given application, it suffices to give the
above three pieces of information to fully specify
a maximum entropy probability model.

Part-of-Speech Tagging
Part-of-speech tagging is a well-known task in
computational linguistics in which the goal is to
disambiguate the part-of-speech of all the words
in a given sentence. For example, it can be non-
trivial for a computer to disambiguate the part-of-
speech of the word flies in the following famous
examples:

• Fruit flies like a banana.
• Time flies like an arrow.

Maximum Entropy Models for Natural Language Processing 803

M

The word flies behaves like a noun in the first
case, and like a verb in the second case. In the
machine learning approach to this problem, co-
occurrence statistics of tags and words in the
linguistic context are used to create a predictive
model for part-of-speech tags.

The computational linguistics community has
created annotated corpora to help build and test
algorithms for tagging. One such corpus, known
as the Penn treebank (Marcus et al. 1994), has
been used extensively by machine learning and
statistical NLP practitioners for problems like
tagging. In this corpus, roughly 1 M words from
the Wall St. Journal have manually been assigned
part-of-speech tags. This corpus can be converted
into a set of training samples, which in turn can
be used to train a maximum entropy model.

Model Specification
For tagging, the goal is a maximum entropy
model p that will produce a probability of
seeing a tag at position i , given the linguistic
context of the i th word, the surrounding words,
and the previously predicted tags, written as
p.ti jti�1 : : : t1; w1 : : : wn/. The intent is to use
the model left-to-right, one word at a time.
The maximum entropy model for tagging
(Ratnaparkhi 1996) is specified as:

Predictions: The 45 part-of-speech tags of the
Penn treebank

Questions: Listed below are the questions and
question patterns. A question pattern has a
placeholder variable (e.g., X; Y) that is instan-
tiated by scanning the annotated corpus for
examples in which the patterns match. Let i

denote the position of the current word in the
sentence, and let wi and ti denote the word and
tag at position i , respectively.

• Does wi D X?
• Does wi�1 D X?
• Does wi�2 D X?
• Does wiC1 D X?
• Does wiC2 D X?
• Does ti�1 D X?
• Does ti�1ti�2 D X; Y ?

• For word that occur less than 5 times in the
training set:
– Are the first K (for K � 4) characters

X1 : : : XK?
– Are the last K (for K � 4) characters

X1 : : : XK?
– Does the current word contain a num-

ber?
– Does the current word contain a hy-

phen?
– Does the current word contain an upper-

case character?

Feature Selection: Any feature whose count in
the training data is less than 10 is discarded.

While the features for each probability decision
could in theory look at the entire linguistic con-
text, they actually only look at a small window
of words surrounding the current word, and a
small window of tags to the left. Therefore each
decision effectively makes the markov-like as-
sumption given in Eq. (3).

p.ti jti�1 : : : t1; w1 : : : wn/

D p.ti jti�1ti�2wi�2wi�1wi wiC1wiC2/ (3)

D

Q
j D1:::k ˛

fj .ti ;ti�1ti�2wi�2wi�1wi wiC1wiC2/

j

Z.ti�1ti�2wi�2wi�1wi wiC1wiC2/

(4)

Equation (4) is the maximum entropy model for
tagging. Each conditional probability of a predic-
tion ti given some context ti�1ti�2wi�2wi�1wi

wiC1wiC2 is the product of the features that are
active for that (prediction, context) pair.

Training Data
The training set is created by applying the ques-
tions to each word in the training set. For exam-
ple, when scanning the word flies in the sentence
“Time flies like an arrow” the training example
would be:

Prediction Question vector
verb wi D flies; wi�1 D Time; wi�2 D �bd�;

wiC1 D like; wiC2 D an;

ti�1 D noun; ti�1ti�2 D noun; �bd�

804 Maximum Entropy Models for Natural Language Processing

Here *bd* is a special symbol for boundary. The
tags have been simplified for this example; the
actual tags in the Penn treebank are more fine-
grained than noun and verb.

Hundreds of thousands of training samples are
used to create candidate features. Any possible
(prediction, question) pair that occurs in training
data is a candidate feature. The feature selection
strategy is a way to eliminate unreliable or noisy
features from the candidate set. For the part-of-
speech model described here, a simple frequency
threshold is used to implement feature selection.

Given a selected feature set, the GIS algorithm
is then used to find the optimal value for the cor-
responding ˛j parameters. For this application,
roughly 50 iterations of GIS sufficed to achieve
convergence.

Search for Best Sequence
The probability model described thus far will
produce a distribution over tags, given a linguistic
context including and surrounding the current
word. In practice we need to tag entire sentences,
which means that the model must produce a
sequence of tags. Tagging is typically performed
left-to-right, so that each decision has the left
context of previously predicted tags. The prob-
ability of the best tag sequence for an n-word
sentence is factored as:

p.t1 : : : tnjw1 : : : wn/

D
Y

iD1:::n

p.ti jti�1 : : : t1; w1 : : : wn/

The desired tag sequence is the one with the
highest conditional sequence probability:

t�
1 : : : t�

n D argmax
t1:::tn

p.t1 : : : tnjw1 : : : wn/

A dynamic programming procedure known as the
Viterbi algorithm is typically used to find the
highest probability sequence.

Other NLP Applications
Other NLP applications have used maximum en-
tropy models to predict a wide variety of linguis-
tic structure. The statistical parser in Ratnaparkhi

(1999) uses separate maximum entropy models
for part-of-speech, chunk, and parse structure
prediction. The system in Borthwick (1999) uses
maximum entropy models for named entity de-
tection, while the system in Ittycheriah et al.
(2001) uses them as sub-components for both
answer type prediction and named entity detec-
tion. Typically, such applications do not need to
change the core framework, but instead need to
modify the meaning of the predictions, questions,
and feature selection to suit the intended task of
the application.

Future Directions

Conditional random fields (Lafferty et al. 2001),
or CRFs, are an alternative to maximum entropy
models that address the label bias issue. Label
bias affects sequence models that predict one el-
ement at a time, in which features at a given state
(or word, in the case of POS tagging) compete
with each other, but do not compete with features
at any other state in the sequence. In contrast,
a CRF model directly produces a probability
distribution over the entire sequence, and there-
fore allows global competition of features across
the entire sequence. The parameter estimation
for CRFs is related to the Generalized Iterative
Scaling algorithm used for maximum entropy
models. See Sha and Pereira (2003) for a example
of CRFs applied to noun phrase chunking.

Another recently published future direction is
Collobert et al. (2011), which presents a multi-
layer neural network approach for several se-
quence labeling tasks, including POS tagging.
This approach avoids task-specific feature engi-
neering – like the questions in section “Model
Specification” – and instead uses the neural net-
work training algorithm to discover internal rep-
resentations for the word and tag context. It also
uses large amounts of unlabeled data to enhance
the internal representations for words.

Recommended Reading

Berger AL, Della Pietra SA, Della Pietra VJ (1996)
A maximum entropy approach to natural language
processing. Comput Linguist 22(1):39–71

Mean Absolute Deviation 805

M

Borthwick A (1999) A maximum entropy approach
to named entity recognition. PhD thesis, New York
University

Chen S, Rosenfeld R (1999) A Gaussian prior for
smoothing maximum entropy models. Technical re-
port CMUCS-99-108, Carnegie Mellon University

Church KW, Mercer RL (1993) Introduction to the spe-
cial issue on computational linguistics using large
corpora. Comput Linguist 19(1):1–24

Collobert R, Weston J, Bottou L, Karlen M,
Kavukcuoglu K, Kuksa P (2011) Natural language
processing (almost) from scratch. J Mach Learn Res
12:2493–2537

Curran JR, Clark S (2003) Investigating GIS and
smoothing for maximum entropy taggers. In:
Proceedings of the tenth conference on Euro-
pean chapter of the Association for Computational
Linguistics-Volume 1. Association for Computa-
tional Linguistics, pp 91–98

Darroch J, Ratcliff D (1972) Generalized iterative
scaling for log-linear models. Ann Stat 43(5):1470–
1480

Goodman J (2002) Sequential conditional generalized
iterative scaling. In: Proceedings of the Association
for Computational Linguistics

Ittycheriah A, Franz M, Zhu W, Ratnaparkhi A (2001)
Question answering using maximum-entropy com-
ponents. In: Procedings of NAACL

Jaynes ET (1957) Information theory and statistical
mechanics. Phys Rev 106(4):620–630

Lafferty J, McCallum A, Pereira F (2001) Condi-
tional random fields: probabilistic models for seg-
menting and labeling sequence data. In: Proceed-
ings of the 18th international conference on ma-
chine learning. Morgan Kaufmann, San Francisco,
pp 282–289

Lau R, Rosenfeld R, Roukos S (1993) Adaptive
language modeling using the maximum entropy
principle. In: Proceedings of the ARPA human
language technology workshop. Morgan Kaufmann,
San Francisco, pp 108–113

Malouf R (2002) A comparison of algorithms for
maximum entropy parameter estimation. In: Sixth
conference on natural language learning, pp 49–55

Marcus MP, Santorini B, Marcinkiewicz MA (1994)
Building a large annotated corpus of English:
the Penn Treebank. Comput Linguist 19(2):
313–330

Ratnaparkhi A (1996) A maximum entropy model
for part-of-speech tagging. In: Brill E, Church
K (eds) Proceedings of the conference on empir-
ical methods in natural language processing. As-
sociation for Computational Linguistics, Somerset,
pp 133–142

Ratnaparkhi A (1999) Learning to parse natural lan-
guage with maximum entropy models. Mach Learn
34(1–3):151–175

Sha F, Pereira F (2003) Shallow parsing with con-
ditional random fields. In: Proceedings of HLT-
NAACL, pp 213–220

McDiarmid’s Inequality

Synonyms

Bounded differences inequality

Definition

McDiarmid’s inequality shows how the values of
a bounded function of independent random vari-
ables concentrate about its mean. Specifically,
suppose f W X n ! R satisfies the bounded
differences property. That is, for all i D 1; : : : ; n

there is a ci � 0 such that for all x1; : : : ; xn; x0 2

X

jf .x1; : : : ; xn/

� f .x1; : : : ; xi�1; x0; xiC1; : : : ; xn/j � ci :

If X D .X1; : : : ; Xn/ 2 X n is a random variable
drawn according to P n and � D EP n Œf ŒX� then
for all � > 0

P n.f .X/ � � � �/ � exp

�
2�2Pn
iD1 c2

i

�
:

McDiarmid’s is a generalization of Hoeffding’s
inequality, which can be obtained by assuming
X D Œa; b� and choosing f .X/ D

Pn
iD1 Xi .

When applied to empirical risks this inequality
forms the basis of many � generalization bounds.

MCMC

�Markov Chain Monte Carlo

Mean Absolute Deviation

�Mean Absolute Error

http://dx.doi.org/10.1007/978-1-4899-7687-1_100041
http://dx.doi.org/10.1007/978-1-4899-7687-1_328
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_953

806 Mean Absolute Error

Mean Absolute Error

Synonyms

Absolute error loss; Mean absolute deviation;
Mean error

Definition

Mean Absolute Error is a �model evaluation
metric used with regression models. The mean
absolute error of a model with respect to a � test
set is the mean of the absolute values of the in-
dividual prediction errors on over all � instances
in the � test set. Each prediction error is the dif-
ference between the true value and the predicted
value for the instance.

mae D

Pn
iD1 abs.yi � �.xi //

n

where yi is the true target value for test instance
xi , �.xi / is the predicted target value for test
instance xi , and n is the number of test instances.

Cross-References

�Mean Squared Error

Mean Error

�Mean Absolute Error

Mean Shift

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Abstract

Mean Shift is a clustering algorithm based on
kernel density estimation. Various extensions

have been proposed to improve speed and
quality.

Synonyms

Density estimator

Definition

Mean shift (Comaniciu and Meer 2002) is a non-
parametric algorithm for partitional clustering
which does not require specifying the number of
clusters and can form any shape of clusters. The
mean shift procedure was originally proposed by
Fukunaga and Hostetler (1975). Cheng (1995)
adapted it for image analysis. Comaniciu, Meer,
and Ramesh presented the mean shift approach
to solve low-level vision problems: image seg-
mentation (Comaniciu and Meer 2002), adap-
tive smoothing (Comaniciu and Meer 2002), and
kernel-based object tracking (Comaniciu et al.
2003).

Given n data points xi , i D 1; : : : ; n in the
d -dimensional space Rd , the multivariate kernel
density estimator obtained with kernel K.x/ and
window radius h is given by

f .x/ D
1

nhd

nX
iD1

K.
x � xi

h
/ (1)

Given the gradient of the density estimator, the
mean shift is defined as the difference between
the weighted (using the kernel as weights) mean
and x, the center of the kernel,

mh.x/ D

Pn
iD1 xi g.jj x�xi

h
jj2/Pn

iD1 g.jj x�xi

h
jj2/

� x (2)

The mean shift vector is proportional to the
normalized density gradient estimate, and thus
points to the direction of the maximum increase
in the density. By successively computing the
mean shift vector and translating the kernel (win-
dow) by the vector, the mean shift procedure can
guarantee converging at a nearby point where the
gradient of density function is zero.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100504
http://dx.doi.org/10.1007/978-1-4899-7687-1_100293
http://dx.doi.org/10.1007/978-1-4899-7687-1_100295
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_210

Mean Shift 807

M

Extensions

There are many extensions to the mean shift
algorithm. Methods have been proposed to im-
prove the performance of mean shift on speed
(Paris and Durand 2007) and on accuracy by
adaptive bandwidths (Georgescu et al. 2003) and
asymmetric kernels (Yilmaz 2007).

The mean shift algorithm is designed
for static distributions; a modified algorithm
called Continuously Adaptive Mean Shift
(CAMSHIFT) (Bradski 1998) can deal with
dynamically changing distributions, for example,
the color probability distributions derived from
video frame sequences.

Mean shift has been extended for manifold
clustering. Subbarao and Meer (2006) and Tuzel
et al. (2005) proposed extensions to Grassmann
manifolds and Lie groups for motion segmen-
tation and multibody factorization. The medoid
shift (Sheikh et al. 2007) algorithm avoids the
definition of a stopping criteria and performs data
clustering on both linear and curved spaces. The
quick shift (Vedaldi and Soatto 2008) algorithm
was proposed to eliminate the over-fragmentation
problem of medoid shift. Cetingul and Vidal
(2009) proposed intrinsic mean shift for clus-
tering on Stiefel and Grassmann manifolds. The
approach presents an alternative mean shift for-
mulation which performs the iterative optimiza-
tion on the manifold of interest and intrinsically
locates the modes via consecutive evaluations of
a mapping.

Softwares

The following softwares have implementations of
the mean shift clustering algorithm:

• Scikit-Learn. An open-source machine learn-
ing software written in Python. http://scikit-
learn.org

• OpenCV. Open Source Computer Vision Li-
brary. Written in C/C++. http://opencv.org

• Apache Mahout. Open-source machine
learning software in Java for use in Hadoop,

with support on mean shift before version 0.8.
http://mahout.apache.org

• ImageJ. A Java-based library for image anal-
ysis and processing. It has an image filter-
ing plug-in using the mean shift filter. http://
rsbweb.nih.gov/ij/plugins/mean-shift.html

Recommended Reading

Bradski GR (1998) Computer vision face tracking for
use in a perceptual user interface. Intel Technol J
Q2(Q2):214–219

Cetingul HE, Vidal R (2009) Intrinsic mean shift for
clustering on stiefel and grassmann manifolds. In:
IEEE conference on computer vision and pattern
recognition (CVPR 2009), Miami, pp 1896–1902

Cheng Y (1995) Mean shift, mode seeking, and
clustering. IEEE Trans Pattern Anal Mach Intell
17(8):790–799

Comaniciu D, Meer P (2002) Mean shift: a robust
approach toward feature space analysis. IEEE Trans
Pattern Anal Mach Intell 24(5):603–619

Comaniciu D, Ramesh V, Meer P (2003) Kernel-based
object tracking. IEEE Trans Pattern Anal Mach
Intell 25(5):564–577

Fukunaga K, Hostetler L (1975) The estimation of
the gradient of a density function, with applica-
tions in pattern recognition. IEEE Trans Inf Theory
21(1):32–40

Georgescu B, Shimshoni I, Meer P (2003) Mean shift
based clustering in high dimensions: a texture clas-
sification example. In: Proceedings of ninth IEEE
international conference on computer vision 2003,
Nice, vol 1, pp 456–463

Paris S, Durand F (2007) A topological approach
to hierarchical segmentation using mean shift. In:
IEEE conference on computer vision and pattern
recognition (CVPR 2007), Minneapolis, MN, pp 1–
8

Sheikh YA, Khan EA, Kanade T (2007) Mode-seeking
by medoidshifts. In: IEEE 11th international con-
ference on computer vision (ICCV 2007), Rio de
Janeiro, pp 1–8

Subbarao R, Meer P (2006) Nonlinear mean shift
for clustering over analytic manifolds. In: IEEE
computer society conference on computer vision
and pattern recognition (CVPR 2006), vol 1,
pp 1168–1175

Tuzel O, Subbarao R, Meer P (2005) Simultaneous
multiple 3d motion estimation via mode finding on
lie groups. In: Tenth IEEE international conference
on computer vision (ICCV 2005), vol 1, pp 18–25

Vedaldi A, Soatto S (2008) Quick shift and ker-
nel methods for mode seeking. In: Forsyth D,
Torr P, Zisserman A (eds) Computer vision ECCV
2008. Lecture notes in computer science, vol 5305.
Springer, Berlin/Heidelberg, pp 705–718

http://scikit-learn.org
http://scikit-learn.org
http://opencv.org
http://mahout.apache.org
http://rsbweb.nih.gov/ij/plugins/mean-shift.html
http://rsbweb.nih.gov/ij/plugins/mean-shift.html

808 Mean Squared Error

Yilmaz A (2007) Object tracking by asymmetric kernel
mean shift with automatic scale and orientation
selection. In: IEEE conference on computer vision
and pattern recognition (CVPR 2007), Minneapolis,
MN, pp 1–6

Mean Squared Error

Synonyms

Quadratic loss; Squared error loss

Definition

Mean Squared Error is a �model evaluation
metric often used with � regression models. The
mean squared error of a model with respect to a
� test set is the mean of the squared prediction
errors over all � instances in the � test set. The
prediction error is the difference between the true
value and the predicted value for an instance.

mse D

Pn
iD1.yi � �.xi //

2

n

where yi is the true target value for test instance
xi , �.xi / is the predicted target value for test
instance xi , and n is the number of test instances.

Cross-References

�Mean Absolute Error

Measurement Scales

Ying Yang
Australian Taxation Office, Box Hill, VIC,
Australia

Definition

Turning to the authority of introductory statistical
textbooks (Bluman 1992; Samuels and Witmer
1999), there are two parallel ways to classify data
into different types. Data can be classified into
either categorical or � numeric. Data can also be

classified into different levels of �measurement
scales.

There are two parallel ways to classify data
into different types. Data can be classified into
either categorical or numeric. Data can also be
classified into different levels of measurement
scales.

Categorical versus Numeric

Variables can be classified as either categorical
or numeric. Categorical variables, also often
referred to as qualitative variables, are variables
that can be placed into distinct categories accord-
ing to some characteristics. Categorical variables
sometimes can be arrayed in a meaningful rank
order. But no arithmetic operations can be applied
to them. Examples of categorical variables are

• Gender of a fish: male and female
• Student evaluation: fail, pass, good, and excel-

lent

Numeric variables, also often referred to as quan-
titative variables, are numerical in nature. They
can be ranked in order. They can also have mean-
ingful arithmetic operations. Numeric variables
can be further classified into two groups, discrete
or continuous.

A discrete variable assumes values that can be
counted. The variable cannot assume all values
on the number line within its value range. An
example of a discrete variable is the number of
children in a family.

A continuous variable can assume all values
on the number line within the value range. The
values are obtained by measuring. An example of
a continuous variable is Fahrenheit temperature.

Levels of Measurement Scales

In addition to being classified as either categor-
ical or numeric, variables can also be classified
by how they are categorized, counted, or mea-
sured. This type of classification uses measure-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100384
http://dx.doi.org/10.1007/978-1-4899-7687-1_100442
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_604
http://dx.doi.org/10.1007/978-1-4899-7687-1_529

Medicine: Applications of Machine Learning 809

M

ment scales, and four common types of scales are
used: nominal, ordinal, interval, and ratio.

The nominal level of measurement scales clas-
sifies data into mutually exclusive (nonoverlap-
ping), exhaustive categories in which no order or
ranking can be imposed on the data. An example
of a nominal variable is gender of a fish: male and
female.

The ordinal level of measurement scales clas-
sifies data into categories that can be ranked.
However, the differences between the ranks can-
not be calculated by arithmetic. An example of an
ordinal variable is student evaluation, with values
fail, pass, good, and excellent. It is meaningful to
say that the student evaluation of pass ranks is
higher than that of fail. It is not meaningful in
the same way to say that the gender female ranks
higher than the gender male.

The interval level of measurement scales
ranks the data, and the differences between
units of measure can be calculated by arith-
metic. However, zero in the interval level of
measurement means neither “nil” nor “nothing”
as zero in arithmetic means. An example of an
interval variable is Fahrenheit temperature. It
is meaningful to say that the temperature A is
two points higher than the temperature B. It is
not meaningful in the same way to say that the
student evaluation of pass is two points higher
than that of fail. Besides, 0ıF does not mean the
absence of heat.

The ratio level of measurement scales pos-
sesses all the characteristics of interval measure-
ment, and there exists a zero that, the same as
arithmetic zero, means “nil” or “nothing.” In
consequence, true ratios exist between different
units of measure. An example of a ratio variable
is number of children in a family. It is meaningful
to say that the number of children in the family
A is twice that of the family B. It is not mean-
ingful in the same way to say that the Fahrenheit
temperature A is twice that of B.

The nominal level is the lowest level of
measurement scales. It is the least powerful in
terms of including data information. The ordinal
level is higher. The interval level is even higher.
The ratio level is the highest level. Any data
conversion from a higher level of measurement

Measurement Scales, Table 1 Characteristics of differ-
ent levels of measurement scales

Level Ranking? Arithmetic op-
eration?

Arithmetic zero?

Nominal No No No

Ordinal Yes No No

Interval Yes Yes No

Ratio Yes Yes Yes

scales to a lower level of measurement scales,
such as � discretization, will lose information.
Table 1 gives a summary of the characteristics of
different levels of measurement scales.

Summary

In summary, the following taxonomy applies to
variable types:

• Categorical (qualitative) variables:
Nominal
Ordinal

• Numeric (quantitative) variables:
Interval, either discrete or continuous
Ratio, either discrete or continuous

Recommended Reading

Bluman AG (1992) Elementary statistics: a step by step
approach. Wm. C. Brown Publishers, Dubuque

Samuels ML, Witmer JA (1999) Statistics for the life
sciences, 2nd edn. Prentice-Hall Publishers, Upper
Saddle River

Medicine: Applications of Machine
Learning

Katharina Morik
Technische Universität Dortmund, Dortmund,
Germany

Motivation

Health care has been an important issue in
computer science since the 1960s. In addition
to databases storing patient records, library

http://dx.doi.org/10.1007/978-1-4899-7687-1_221

810 Medicine: Applications of Machine Learning

resources (e.g., PubMed, a service of the U.S.
National Library of Medicine that includes over
16 million citations from journals for biomedical
articles back to the 1950s), administrative and
financial systems, more sophisticated support
of health care has been the aim of artificial
intelligence (AI) from the very beginning on.
Starting with expert systems which abstract
laboratory findings and other vital parameters
of a patient before they heuristically classify
the patient into one of the modeled diagnoses
(Shortliffe 1976), knowledge acquisition was
discovered to be the bottleneck of systems
for the automatic medical diagnosis. Machine
learning came into play as a means of knowledge
acquisition. Learning rules for (medical) expert
systems focused on the heuristic classification
step within expert systems. Given conveniently
abstracted measurements of the patient’s state,
the classification was learned in terms of rules
or � decision trees. Since the early days, the use
of machine learning for health care progressed in
two ways:

• The abstraction of measurements of a patient’s
vital parameters is a learning task in its own
right. Diverse kinds of data are to be handled:
laboratory data, online measurements at the
bedside, x-rays or other imaging data, ge-
netic data,. . . Machine learning is confronted
with a diversity of representations for the
examples.

• Diagnosis is just one task in which physicians
are to be supported. There are many more
tasks which machine learning can ease. In
intensive care, the addressee of the learning
results can be a machine, e.g., the respirator.
Financing health care and planning the medi-
cal resources (e.g., for a predicted epidemia)
are yet another important issue. Machine
learning is placed in a diversity of medical
tasks.

The urgent need for sophisticated support of
health care follows from reports which estimate
up to 100,000 deaths in the USA each year due to
medical error (Kohn et al. 2000).

Structure of the Problem

The overall picture of the medical procedures
shows the kinds of data and how they are entered
into the database of health records (a synonym
is “patient database.”) A monitoring system is
given in intensive care units, which acquires
� time series from minute measurements. The
observations at the bedside are entered manually
into the system. The information from the
hospital is entered via a local area network.
The physician accesses information from
libraries and research databases (dashed lines).
Libraries, research databases, and biomedical
research also influence the development of
guidelines, protocols, and clinical pathways
(dotted lines). Guidelines are rather abstract.
Protocols of certain actions are integrated to
become a clinical pathway which is a plan of
both diagnostic and therapeutical actions for a
typical patient with a specific diagnosis. The
bold arrow shows the intended high-quality
therapy. Guidelines and protocols promote
evidence-based practices, reduce inter-clinician
practice variations and support decision-making
in patient care while constraining the costs of
care. Computerized protocols can be generated
based on guidelines. They have been proved
useful in improving the quality and consistency
of healthcare but the protocol development
process is time-consuming (Ten Teije et al.
2006). This is where machine learning offers
support. Usually, ontologies (e.g., in description
logic) or other knowledge-based techniques
(in medicine-specific formats like the Arden
Syntax, GuideLine Interchange Format (GLIF),
PROforma, Asbru, and EON) are used to support
the development of protocols (de Clercq et al.
2004). By contrast, machine learning induces
the current practices and their outcome from the
health records (Smith et al. 2009). To reflect such
use of Machine Learning, the bold arrows of
the picture would need to be turned the other
way around, protocols are learned from the data
or evaluated based on the data. All (reversed)
arrows mark possible applications of machine
learning.

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

Medicine: Applications of Machine Learning 811

M

Therapeutical interventions

Health records,
patient database

Respirator, heart assistance, ...
Vital signs

Monitor

NALtupnilaunaM
Nursing procedures
Plan of care
Medication
Intake
Output

X-Rays
microbiology
laboratory
blood bank
pharmacy
administration

Regional, national
registries

Research databases

Library resources

Guidelines, protocols, clinical pathways

Biomedical
research

Diversity of Representations

The overall health record of a patient includes
several types of data, not all of them are digital.

• Laboratory data consist of attributes almost
always with numerical values, sometimes with
discrete ordinal values, sometimes just binary
values like “positive,” “negative.”

• Plain text states anamneses, diagnosis, and
observations. From the text, key words can
be transformed into attributes for machine
learning.

• Online measurements at the bedside are time
series. They are analyzed in order to find level
changes or trends (Gather et al. 2006) and
alarm the physician (Sieben and Gather 2007).
In order to exploit the time series for fur-
ther learning tasks, they often are abstracted
(e.g., Bellazzi et al. 2002). Recently, online
measurements from body sensors have raised
attention in the context of monitoring patients
at home (Amft and Tröster 2008).

• Sequences can also be considered time series,
but the measurements are not equidistant and
not restricted to numerical values. Examples
are data gathered at doctors’ visits and long-
term patient observations.

• X-rays or other imaging data (e.g., ultrasound
imaging or more novel molecular imaging
techniques like positron emission tomography,
magnetic resonance imaging, or computer
tomography) cannot be analyzed directly by
machine learning algorithms. They require
the extraction of features. It has been shown
that the adequate extraction of features is
more important than the selection of the
best suited learning algorithm (Mavroforakis
et al. 2006). The number of extracted features
can become quite large. For instance, from
1,619 images of skin lesion, each 752 � 582
pixels, 107 features were extracted in order
to detect melanoma using diverse learning
algorithms (Dreiseitl et al. 2001). Hence,
feature selection is also an important task in
medical applications (Lucaces et al. 2009;
Withayachumnankul et al. 2006). Often,
different techniques are applied to gather data
for the detection of the same disease. For
instance, glaucoma detection uses standard
automated perimetry or scanning laser or
Heidelberg Retina Tomograph or stratus
optical coherence tomography. It is not
yet clear how important the choice among
measurement types (devices) is with respect
to feature extraction and machine learning.

812 Medicine: Applications of Machine Learning

• Tissue and blood: In vitro “data” also belong
to health records. Immediately after biopsy
or surgery, the tissue is transferred to the
pathology department. After the pathologist
has taken the sample needed for proper diag-
nosis, a representative tissue sample will be
snap frozen and stored in liquid nitrogen or at
�80 ıC. Also blood cells are stored in a blood
bank. From the specimen, the RNA is ex-
tracted and the so-called microarrays of gene
expressions are developed and then scaled.
The huge prognostic value of gene expression
in patients with breast cancer has been shown
by van’t Veer et al. (2002). Genome research
aims at revealing the impact of gene regulation
and protein expression-regulation (taking into
account the regulation of protein synthesis,
protein ubiquitination, and post-translational
modification) on, e.g., cancer diagnosis and
response to therapies. Machine learning, par-
ticularly clustering, frequent itemset mining,
and classification have been applied success-
fully (see learning from gene expression mi-
croarray data).

In addition to patient records, there are knowl-
edge bases describing particular diseases or com-
puterized protocols for particular therapies.

Medical Tasks

Diagnosis and Medication
Diagnosis is primarily a classification task. Given
the description of the patient’s state and a set
of diseases, the learning algorithm outputs the
classification into one of the classes. If physicians
want to inspect the learned classifier, logic-based
algorithms are preferred. Decision trees and the
conceptual clustering algorithm AQ were used
to diagnose breast cancer from nine abstracted
descriptions like tumor size: 0–4, 5–9, � � � 50–
54, 55–59 (Michalski et al. 1986; Cestnik et al.
1987).

�Bayesian methods were used to classify,
e.g., diseases of the lymph node. Based on the
examination of the extracted tissue, a patholo-

gist enters the description. The Bayesian net-
work (BN) outputs not only just one diagnosis,
but the conditional probabilities for the diseases
(Heckerman 1990). In particular, diagnosis for
rather vague symptoms such as abdominal pain
or lower back pain is well supported by BNs
(McNaught et al. 2001). BNs are capable of in-
corporating given expert knowledge as priors. In
order to combine textbook knowledge with em-
pirical data, electronic literature was transformed
into priors for BN structures. Then, from health
records, the BN was learned as a model of ovarian
tumors (Antal et al. 2004).

� Inductive logic programming (ILP) also al-
lows to take into account background knowledge.
This was used for an enhanced learning of med-
ical diagnostic rules (Lavrac et al. 1993). The
identification of glaucomatous eyes was effec-
tively learned by ILP (Mizoguchi et al. 1997).
One advantage of ILP is that the learned logic
clauses can easily be integrated into a knowledge-
based system and, hence, become operational for
clinical practice.

Since some tests which deliver information
about the patient’s state can be costly – both,
financially and in terms of a risk for the patient –
� cost-sensitive learning may be applied.

Since the error of classifying a patient as
ill where he or she is not (false positives) is
less harmful than classifying a patient as healthy
where he or she is not (false negatives), the eval-
uation of the learning result most often is used in
a biased way. The evaluation can be summarized
in Table 1.

Precision is the proportion A
ACB

, and recall is

the proportion A
ACC

. Sensitivity is synonymous
to recall. In medical applications, sensitivity is
balanced with respect to specificity being the pro-
portion B

BCD
(synonym false positives rate). The

analysis of the Receiver Operator Characteristic

Medicine: Applications of Machine Learning, Table 1
Evaluation measures

TrueC False�

PredicatedC A B

Predicated� C D

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_181

Medicine: Applications of Machine Learning 813

M

(ROC) allows to evaluate learning according to
sensitivity and specificity (see �ROC analysis).

If not the understandability but only sensitivity
and specificity are important, numerical learning
algorithms are used to classify the patient’s data.
In particular, if the patient’s state is described
by numerical features, no discretization is nec-
essary for numerical learners as is needed for
the logic-based ones. Multilayer perceptrons (see
�Neural Networks), � support vector machines
(SVM), mixtures of Gaussians, and mixture of
generalized Gaussian classifiers were trained on
the numerical data of 189 normal eyes and 156
glaucomatous eyes (Goldbaum et al. 2002). The
numerical description of the visual field is given
by standard automated threshold perimetry. The
medical standard procedure to interpret the visual
field is to derive global indices. The authors com-
pared performance of the classifiers with these
global indices, using the area under the ROC
curve. Two human experts were judged against
the machine classifiers and the global indices
by plotting their sensitivity–specificity pairs. The
mixture of Gaussian had the greatest area under
the ROC curve of the machine classifiers, and hu-
man experts were not better at classifying visual
fields than the machine classifiers or the global
indices.

Other approaches to glaucoma detection use
different features describing the patient’s state
(Zangwill et al. 2004) or other numerical learners,
e.g., � logistic regression (Huang et al. 2006).
For testing the learning from numerical attributes,
the UCI Machine Learning Repository offers the
arrhythmia database. The aim is to distinguish
between the presence and absence of cardiac
arrhythmia and to classify it in one of the 16
groups. About 279 attributes are given, 206 of
them being numerical ones.

As has been shown in an application to in-
tensive care, medication can be transformed into
a set of classification tasks (Morik et al. 2000).
Given measurements of eight vital signs, a de-
cision is made for each of six drugs, whether
to increase or to decrease it. This gives a set of
classification tasks, which the �SVM learned.
Depending on the drug, the accuracy ranged from
81.3 % with 2.5 standard error to 86.9 % with

7 standard error. Additionally, on 41 cases, the
SVM decision was compared with an expert’s
decisions when confronted with the same data.
In 32 cases the expert chose the same direction
of change as did the learned decision function.
In 34 cases the learned decision was equal to
the actual therapy. Another set of classification
tasks were to decide every minute whether to
increase, decrease, or leave the doses as it is.
Again, each of these classifiers was learned by the
SVM. From 1,319 examples decision functions
were learned and tested on 473 examples. For
training, an unbalanced cost function was used.
The SVM cost factor for error was chosen ac-
cording to CC

C�

D numberof negativeexample
numberofpositiveexample

. The
results again differed depending on the drug. For
adrenaline, 79 % of the test cases were equally
handled by the physician and the decision func-
tion. For adrenaline as well as for dobutamine,
only in 1.5 % of the test cases the learned rule
recommended the opposite direction of change.
Again, a blind test with an expert showed that the
learned recommendations’ deviation from actual
therapy was comparable to that of the human
expert. Combining the two sets of classifications,
for each minute and each patient, the support
vector machine’s decision function outputs a rec-
ommendation of treatment (Morik et al. 2000).

Prognosis and Quality of Care Assessment
Prognosis or outcome prediction is important for
the evaluation of the quality of care provided. The
standard statistical models use only a small set of
covariates and a score variable, which indicates
the severity of the illness. Machine learning may
also rely on the aggregated score features, but
is in addition capable of handling the features
underlying the scores. Given health records of
patients including the therapy, machine learning
is to predict the outcome of care, e.g., classifies
into mortal or surviving cases. The prediction
of breast cancer survivability has been tested on
a very large database comparing three learning
methods (Delen et al. 2004). The results indicated
that decision trees (here: C5) result in the best
predictor with 93.6 % accuracy on the holdout
sample (this prediction accuracy is better than
any reported in the literature), artificial neural

http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

814 Medicine: Applications of Machine Learning

networks came out to be the second with 91.2 %
accuracy, and the � logistic regression models
came out to be the worst of the three with 89.2 %
accuracy.

Prediction of survival is a hard task for
patients with serious stroke, because there is
a long-term risk after the stay at the hospital.
The scoring schemes (e.g., the Glasgow coma
scale and the Ranking score) are not sufficient
for predicting the outcome. In a data situation
where 29 attributes (or features) were given
for only 327 patient records, BNs were learned
and compared with a handmade causal network.
The results were encouraging – as soon as more
electronic health records become available, the
BNs will become closer to medical knowledge.
Moreover, the discovery of relations on the
basis of empirical data may enhance medical
knowledge (Wu et al. 2001).

Carcinogenesis prediction was performed us-
ing ILP methods. As has become usual with can-
cer diagnosis and prognosis, there is a close link
with microbiology (Srinivasan et al. 1994) (see
Learning from gene expression microarray data).

Prognosis need not be restricted to mortality
rates. In general, it is a means of quality
assessment of clinical treatments. For instance,
hemodialysis services have been assessed
through temporal data mining by Bellazzi et al.
(2002).

Finding subgroups of patients with devious
reactions to a therapy might lead to a better under-
standing of a certain medical process (Atzmueller
et al. 2005). While the before mentioned study
aims at an enhanced expert – system interaction,
a Dutch study aims at a more precise modeling
of prognoses (Abu-Hanna and Lucas 2001). In
an extensive study for eight different hospitals
and 7,803 patients, two different models were
combined: one for determining the subgroups and
the other for building a model for each subgroup.
For the prognoses of patients in an intensive care
unit, subgroups have been detected using decision
trees. The decision tree was trained to classify
patients into the survival class and the mortality
class on the basis of the nonaggregated features
underlying the illness score. The leaves of the
tree become subgroups. These are then used for

training a logistic regression model of mortality
based on the aggregated features.

Verification and Validation
Verification is the process of testing a model
against a specification. In medicine, this often
means to check clinical practice against expert
protocols, or to check an actual diagnosis
against one derived from textbook knowledge.
Since many logic-based machine learning
algorithms consist of a generalization and
a specialization step, they can be used for
verification. Generalization delivers rules from
clinical data which can then be compared with
given expert rules (protocols). Specialization
is triggered by facts that contradict a learning
hypothesis. Hence, using an expert rule as
hypothesis, the learning algorithm counts the
contradicting clinical cases and specializes the
rule. For an early case study on verification and
rule enhancement see, e.g., Morik et al. (1994).
A more recent study compares a given clinical
protocol for intensive care with actual therapies
at another hospital (Scholz 2002). Decision trees
and association rules have been learned in order
to inspect and enhance the knowledge base of
a web-based teledermatology system (Ou et al.
2007). While verification means to build the
system right, validation means to build the right
system. The borderline between verification and
validation is fuzzy. On the one hand, medical
practice is investigated with respect to the
guidelines (verification), on the other hand, the
guidelines are enhanced on the basis of medical
practice (validation).

Moreover, learned models can be verified with
respect to expert knowledge and validated with
respect to clinical practice. A study on the hemo-
dynamic monitoring of the critically ill integrated
machine learning into a knowledge-based ap-
proach to evidence-based medicine. A knowledge
base on drug effects was verified using patient
records. Only 18 % of the observations showed
vital signs of patients in the opposite direction
than predicted by the knowledge base. Then, the
knowledge base was used to validate therapeuti-
cal interventions proposed by a learned model.
Accuracy measures of a model only reflect how

http://dx.doi.org/10.1007/978-1-4899-7687-1_951

Medicine: Applications of Machine Learning 815

M

well the learning result fits actual behavior of
the physician and not how well it fits the “gold
standard.” Hence, a proposed intervention should
be validated with respect to its effects on the
patient. If the known effects push vital signs
in the direction of the desired value range, the
recommendation is considered sound, otherwise
it is rejected. Using past data, the learned model
was found to recommend an intervention with the
desired effects in 81 % of the cases (Morik et al.
2002).

Intelligent Search in Medical Literature
Intelligent search in the overwhelming number
of research publications supplies the information
when it is needed. ILP has been successfully
put to use for finding relevant medical docu-
ments (Dimec et al. 1999). Also the intelligent
search in clinical free-text guidelines is an issue
(Moskovitch et al. 2006). The techniques for text
categorization can be applied to medical texts in
the usual way. If the search engine not only labels
the overall document but, in addition, phrases
within it, the search could become more focused
and also deliver paragraphs instead of complete
texts. The biomedical challenge for named entity
recognition requires the automatic extraction and
classification of words referring to DNA, RNA,
proteins, cell types, and cell lines from texts (Kim
et al. 2004). Even more difficult is the discovery
of medical knowledge from texts (Sanchez and
Moreno 2005).

Epidemiology and Outbreak Detection
Understanding the transmission of infectious dis-
eases and forecasting epidemics is an important
task, since infections are distributed globally.
Statistical approaches to spatio-temporal analysis
of scan data are regularly used. There, a grid
partitions the map into regions where occurrences
of the disease are shown as points. “Hot spot”
partitions are those of high density. By contrast,
clustering detects hot spot regions depending on
the data, hence, the shape of regions is flexible.
Taking into account the a priori density of the
population, a risk-adjusted nearest neighbor hier-
archical clustering discovers “hot spot” regions.
Also a risk-adjusted support vector machine with

Gaussian kernel has successfully been applied to
the problem of detecting regions with infectious
disease outbreak. The discovery of hot spot re-
gions can be exploited for predicting virus ac-
tivity, if an indicator is known which can easily
be observed. For instance, dead crows indicate
activity of the West Nile virus. An overview of
infectious disease informatics is given by Zeng
et al. (2005).

Machine learning can also contribute to the
understanding of the transmission of infectious
diseases. A case study on tuberculosis epidemi-
ology uses BNs to identify the distribution of
tuberculosis patient attributes. The learning re-
sults captured the known statistical relationships.
A relational model learned from the database di-
rectly using structured statistical models revealed
several novel associations (Getoor et al. 2004).

Cross-References

�Class Imbalance Problem
�Classification
�Classifier Systems
�Cost-Sensitive Learning
�Decision Tree
� Feature Selection
� Inductive Logic Programming
�ROC Analysis
� Support Vector Machines
�Time Series

Recommended Reading

Abu-Hanna A, Lucas PJF (2001) Prognostic models in
medicine: AI and statistical approaches [Editorial].
Methods Inf Med 40(1):1–5

Amft O, Tröster G (2008) Recognition of dietary
events using on-body sensors. Artif Intell Med
42(2):121–136

Antal P, Fannes G, Timmerman D, Moreau Y, De Moor
B (2004) Using literature and data to learn BNs as
clinical models of ovarian tumors. Artif Intell Med
30(3): 257–281

Atzmueller M, Baumeister J, Hensing A, Richter E-
J, Puppe F (2005) Subgroup mining for interac-
tive knowledge refinement. In: Artificial intelligence
in medicine (AIME). Springer, Berlin/Heidelberg,
pp 453–462

http://dx.doi.org/10.1007/978-1-4899-7687-1_110
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

816 Medicine: Applications of Machine Learning

Bellazzi R, Larizza C, Magni P, Bellazi R (2002)
Quality assessment of dialysis services through in-
telligent data analysis and temporal data mining.
In: Workshop at the 15th European conference on
AI about intelligent data analysis in medicine and
pharmacology, Lyon, pp 3–9

Cestnik B, Kononenko I, Bratko I (1987) ASSISTANT
86: a knowledge-elicitation tool for sophisticated
users. In: Bratko I, Lavrac N (eds) Progress in
machine learning. Sigma Press, Wilmslow, pp 31–
45

de Clercq PA, Blomb JA, Korstenb HH, Has-
man A (2004) Approaches for creating computer-
interpretable guidelines that facilitate decision sup-
port. Artif Intell Med 31(1):1–27

Delen D, Walker G, Kadam A (2004) Predicting breast
cancer survivability: a comparison of three data
mining methods. Artif Intell Med 34(2):113–127

Dimec B, Dzeroski S, Todorovski L, Hristovski D
(1999) WWW search engine for Slovenian and
English medical documents. In: Proceedings of the
15th international congress for medical informatics.
IOS Press, Amsterdam, pp 547–552

Dreiseitl S, Ohn-Machado L, Kittler H, Vinterbo S,
Billhardt H, Binder M (2001) A comparison of
machine learning methods for the diagnosis of pig-
mented skin lesions. J Biomed Inform 34:28–36

Gather U, Schettlinger K, Fried R (2006) Online signal
extraction by robust linear regression. Comput Stat
21(1):33–51

Getoor L, Rhee JT, Koller D, Small P (2004) Under-
standing tuberculosis epidemiology using structured
statistical models. Artif Intell Med 30(3):233–256

Goldbaum MH, Sample PA, Chan K, Williams J, Lee
T-W, Blumenthal E et al (2002) Comparing machine
learning classifiers for diagnosing glaucoma from
standard automated perimetry. Investig Ophthalmol
Vis Sci 43:162–169

Heckerman D (1990) Probabilistic similarity networks.
Technical report STAN-CS-1316, Department of
Computer Science and Medicine at Stanford

Huang ML, Chen HY, Hung PT (2006) Analysis of
glaucoma diagnosis with automated classifiers using
stratus optical coherence tomography. Opt Quantum
Electron 37:1239–1249

Kim JD, Ohta T, Tsuruoka Y, Tateisi Y, Collier N
(2004) Introduction to the bio-entity recognition
task at JNLPBA. In: Collier N, Ruch P, Nazarenko
A (eds) Proceedings of the international joint work-
shop on natural language processing in biomedicine
and its applications. ACL, Morristown, pp 70–76

Kohn LT, Corrigan JM, Donaldson M (eds) (2000)
To err is human – building a safer health system.
National Academic Press, Washington, DC

Lavrac N, Dzeroski S, Prinat V, Krizman V (1993) The
utility of background knowledge in learning medical
diagnostic rules. Appl Artif Intell 7:273–293

Lucaces O, Taboada F, Albaiceta G, Domingues LA,
Enriques P, Bahamonde A (2009) Predicting the
probability of survival in intensive care unit patients

from a small number of variables and training ex-
amples. Artif Intell Med 45(1):63–76

Mavroforakis M, Georgiou H, Dimitropoulos N,
Cavouras D, Theodoridis S (2006) Mammographic
masses characterization based on localized texture
and dataset fractal analysis using linear, neural and
support vector machine classifiers. Artif Intell Med
37(2):145–162

McNaught K, Clifford S, Vaughn M, Foggs A, Foy
M (2001) A Bayesian belief network for lower
back pain diagnosis. In: Lucas P, van der Gaag LC,
Abu-Hanna A (eds) Bayesian models in medicine –
Workshop at AIME, Caseais

Michalski R, Mozetic I, Hong J, Lavrac N (1986) The
multi-purpose incremental learning system AQ15
and its testing application on three medical domains.
In: Proceedings of the 5th national conference on ar-
tificial intelligence. Morgan Kaufmann, San Mateo,
pp 1041–1045

Mizoguchi F, Ohwada H, Daidoji M, Shirato S (1997)
Using inductive logic programming to learn clas-
sification rules that identify glaucomatous eyes.
In: Lavraè N, Keravnou E, Zupan B (eds) Intelli-
gent data analysis in medicine and pharmacology.
Kluwer, Norwell, pp 227–242

Morik K, Imhoff M, Brockhausen P, Joachims T,
Gather U (2000) Knowledge discovery and knowl-
edge validation in intensive care. Artif Intell Med
19(3):225–249

Morik K, Joachims T, Imhoff M, Brockhausen P,
Rüping S (2002) Integrating kernel methods into
a knowledge-based approach to evidence-based
medicine. In: Schmitt M, Teodorescu HN, Jain A,
Jain A, Jain S, Jain LC (eds) Computational in-
telligence processing in medical diagnosis. Studies
in fuzziness and soft computing, vol 96. Physica-
Verlag, New York, pp 71–99

Morik K, Potamias G, Moustakis VS, Charissis G
(1994) Knowledgeable learning using MOBAL: a
medical case study. Appl Artif Intell 8(4):579–592

Moskovitch R, Cohen-Kashia S, Drora U, Levya I,
Maimona A, Shahar Y (2006) Multiple hierarchical
classification of free-text clinical guidelines. Artif
Intell Med 37(3):177–190

Ou M, West G, Lazarescu M, Clay C (2007) Dynamic
knowledge validation and verification for CBR tele-
dermatology system. Artif Intell Med 39(1):79–96

Sanchez D, Moreno A (2005) Web mining techniques
for automatic discovery of medical knowledge. In:
Proceedings of the 10th conference on artificial
intelligence in medicine, Aberdeen

Scholz M (2002) Using real world data for modeling
a protocol for ICU monitoring. In: Lucas P, Asker
L, Miksch S (eds) Working notes of the IDAMAP
2002 workshop, Lyon, pp 85–90

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok
JL, Aguiar RC et al (2002) Diffuse large B-cell
lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nat Med
8(1):68–74

Metaheuristic 817

M

Shortliffe EH (1976) Computer based medical consul-
tations: MYCIN. Elsevier, New York/Amsterdam

Sieben W, Gather U (2007) Classifying alarms in in-
tensive care–analogy to hypothesis testing. In: 11th
conference on artificial intelligence in medicine
(AIME). Springer, Berlin, pp 130–138

Smith WP, Doctor J, Meyer J, Kalet IJ, Philips
MH (2009) A decision aid for intensity-modulated
radiation-therapy plan selection in prostate cancer
based on a prognostic Bayesian network and a
Markov model. Artif Intell Med 46(2):119–130

Srinivasan A, Muggleton SH, King RD, Sternberg
MJE (1994) Carcinogenesis prediction using induc-
tive logic programming. In: Zupan B, Keravnou E,
Lavrac N (eds) Intelligent data analysis in medicine
and pharmacology. Kluwer, Norwell, pp 243–260

Ten Teije A, Lucas P, Miksch S (eds) (2006) Work-
shop on AI techniques in healthcare: evidence-based
guidelines and protocols, held in conjunction with
ECAI-2006, Riva del Garda

van’t Veer LJ, Dai HY, van de Vijver MJ, He YDD,
Hart AA, Mao M et al (2002) Gene expression
profiling predicts clinical outcome of breast cancer.
Nature 415:530–536

Withayachumnankul W, Ferguson B, Rainsford T,
Findlay D, Mickan SP, Abbott D (2006) T-ray rele-
vant frequencies for osteosarcoma classification. In:
Abbott D, Kivshar YS, Rubinstein-Dunlop HH, Fan
S-H (eds) Proceedings of SPIE, Brisbane

Wu X, Lucas P, Kerr S, Dijkhuisen R (2001)
Learning Bayesian-network topologies in realistic
medical domains. In: Intelligent data analysis in
medicine and pharmacology. Medical Data Analy-
sis. Springer, Berlin/Heidelberg, pp 302–307

Zangwill LM, Chan K, Bowd C, Hao J, Lee TW,
Weinreb RN et al (2004) Heidelberg retina tomo-
graph measurements of the optic disc and parap-
illary retina for detecting glaucoma analyzed by
machine learning classifiers. Investig Ophthalmol
Vis Sci 45(9):3144–3151

Zeng D, Chen H, Lynch C, Eidson M, Gotham I (2005)
Infectious disease informatics and outbreak detec-
tion. In: Chen H, Fuller S, Friedman C, Hersh W
(eds) Medical informatics: knowledge management
and data mining in biomedicine. Springer, New
York, pp 359–395

Memory-Based

� Instance-Based Learning

Memory-Based Learning

�Case-Based Reasoning

Merge-Purge

�Entity Resolution
�Record Linkage

Message

In �Minimum Message Length inference, a bi-
nary sequence conveying information is called a
message.

Meta-combiner

A meta-combiner is a form of � ensemble learn-
ing technique used with �missing attribute val-
ues. Its common topology involves base learners
and classifiers at the first level, and meta-learner
and meta-classifier at the second level. The meta-
classifier combines the decisions of all the base
classifiers.

Metaheuristic

Marco Dorigo1, Mauro Birattari1, and
Thomas Stützle2

1Université Libre de Bruxelles, Brussels,
Belgium
2Université libre de Bruxelles (ULB), Brussels,
Belgium

A metaheuristic is a set of concepts that can
be used to define heuristic methods that can be
applied to a wide set of different problems. In
other words, a metaheuristic can be seen as a gen-
eral algorithmic framework that can be applied
to different optimization problems with relatively
few modifications. Examples of metaheuristics
include simulated annealing, tabu search, iterated
local search, evolutionary algorithms, and ant
colony optimization.

http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_34
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_954

818 Metalearning

Metalearning

Pavel Brazdil2, Ricardo Vilalta3, Christophe
Giraud-Carrier4, and Carlos Soares1;2

1LIAAD-INESC Porto L.A./Faculdade de
Economia, University of Porto, Porto,
Portugal
2LIAAD-INESC Tec/Faculdade de Economia,
University of Porto, Porto, Portugal
3Department of Computer Science, University of
Houston, Houston, TX, USA
4Department of Computer Science, Brigham
Young University, Provo, UT, USA

Abstract

In the area machine learning / data mining
many diverse algorithms are available nowa-
days and hence the selection of the most suit-
able algorithm may be a challenge. Tbhis is
aggravated by the fact that many algorithms
require that certain parameters be set. If a
wrong algorithm and/or parameter configu-
ration is selected, substandard results may
be obtained. The topic of metalearning aims
to facilitate this task. Metalearning typically
proceeds in two phases. First, a given set of
algorithms A (e.g. classification algorithms)
and datasets D is identified and different pairs
<ai,dj> from these two sets are chosen for
testing. The dataset di is described by certain
meta-features which together with the per-
formance result of algorithm ai constitute a
part of the metadata. In the second phase the
metadata is used to construct a model, usually
again with recourse to machine learning meth-
ods. The model represents a generalization
of various base-level experiments. The model
can then be applied to the new dataset to
recommend the most suitable algorithm or a
ranking ordered by relative performance. This
article provides more details about this area.
Besides, it discusses also how the method can
be combined with hyperparameter optimiza-
tion and extended to sequences of operations
(workflows).

Synonyms

Adaptive learning; Dynamic selection of bias;
Hyperparameter optimization; Learning to learn;
Selection of algorithms, Ranking learning meth-
ods; Self-adaptive systems

Definition

Metalearning allows machine learning systems
to benefit from their repetitive application. If a
learning system fails to perform efficiently, one
would expect the learning mechanism itself to
adapt in case the same task is presented again.
Metalearning differs from base learning in the
scope of the level of adaptation; whereas learning
at the base level is focused on accumulating
experience on a specific task (e.g., credit rat-
ing, medical diagnosis, mine-rock discrimination,
fraud detection, etc.), learning at the meta-level
is concerned with accumulating experience on
the performance of multiple applications of a
learning system.

Briefly stated, the field of metalearning ex-
ploits the relation between tasks or domains and
learning algorithms. Rather than starting afresh
on each new task, metalearning facilitates evalu-
ation and comparison of learning algorithms on
many different previous tasks, establishes ben-
efits and disadvantages, and then recommends
the learning algorithm, or combination of algo-
rithms, that maximizes some utility function on
the new task. This problem can be seen as an
instance of the algorithm selection task (Rice
1976).

The utility or usefulness of a given learn-
ing algorithm is often determined through
a mapping between a characterization of
the task and the algorithm’s estimated per-
formance (Brazdil and Henery 1994). In
general, metalearning can recommend more
than one algorithm. Typically, the num-
ber of recommended algorithms is sig-
nificantly smaller than the number of all
possible (available) algorithms (Brazdil et al.
2009).

http://dx.doi.org/10.1007/978-1-4899-7687-1_100005
http://dx.doi.org/10.1007/978-1-4899-7687-1_100128
http://dx.doi.org/10.1007/978-1-4899-7687-1_100200
http://dx.doi.org/10.1007/978-1-4899-7687-1_100259
http://dx.doi.org/10.1007/978-1-4899-7687-1_100419
http://dx.doi.org/10.1007/978-1-4899-7687-1_100420

Metalearning 819

M

Motivation and Background

The application of machine learning systems to
classification and regression tasks has become a
standard, not only in research but also in com-
merce and industry (e.g., finance, medicine, and
engineering). However, most successful applica-
tions are custom designed, the result of skillful
use of human expertise. This is due, in part, to the
large, ever-increasing number of available ma-
chine learning systems, their relative complexity,
and the lack of systematic methods for discrimi-
nating among them. The problem is further com-
pounded by the fact that, in Knowledge Discov-
ery from Databases, each operational phase (e.g.,
pre-processing, model generation) may involve a
choice among various possible alternatives (e.g.,
progressive vs. random sampling, neural network
vs. decision tree learning), as observed by Bern-
stein et al. (2005).

Current data mining systems are only as pow-
erful as their users. These tools provide multi-
ple algorithms within a single system, but the
selection and combination of these algorithms
must be performed before the system is invoked,
generally by an expert user. For some researchers,
the choice of learning and data transformation
algorithms should be fully automated if machine
learning systems are to be of any use to nonspe-
cialists. Others claim that full automation of the
data mining process is not within the reach of
current technology. An intermediate solution is
the design of assistant systems aimed at helping
to select the right learning algorithm(s). What-
ever the proposed solution, there seems to be an
implicit agreement that metaknowledge should
be integrated seamlessly into the data mining
system. Metalearning focuses on the design and
application of learning algorithms to acquire and
use metaknowledge to assist machine learning
users with the process of model selection. A
general framework for this purpose, together with
a survey of approaches, is in Smith-Miles (2008).

Metalearning is often seen as a way of redefin-
ing the space of inductive hypotheses searched by
the learning algorithm(s). This issue is related to
the idea of � search bias, that is, search factors
that affect the definition or selection of induc-

tive hypotheses (Mitchell 1997). In this sense,
metalearning studies how to choose the right
bias dynamically and thus differs from base-level
learning, where the bias is fixed or user param-
eterized. Metalearning can also be viewed as an
important feature of self-adaptive systems, that
is, learning systems that increase in efficiency
through experience (Vilalta and Drissi 2002).

Structure of the Metalearning System

A metalearning system is essentially composed
of two parts. One part is concerned with the ac-
quisition of metaknowledge from machine learn-
ing systems. The other part is concerned with
the application of metaknowledge to new prob-
lems with the objective of identifying an optimal
learning algorithm or technique. The latter part
– application of metaknowledge – can be used
to help select or adapt suitable machine learning
algorithms. So, for instance, if we are dealing
with a � classification task, metaknowledge can
be used to select a suitable � classifier for the new
problem. Once this has been done, one can train
the classifier and apply it to some unclassified
sample for the purpose of class prediction.

In the following sections, we begin by describ-
ing scenarios corresponding to the case when
metaknowledge has already been acquired. We
then provide an explanation of how this knowl-
edge is acquired.

Employing Metaknowledge to Select
Machine Learning Algorithms

The aim of this section is to show that meta-
knowledge can be useful in many different set-
tings. We will start by considering the problem
of selecting suitable machine learning algorithms
from a given set. The problem can be seen as a
search problem. The search space includes the
individual machine learning algorithms, and the
aim is to identify the best algorithm. This process
can be divided into two separate phases. In the
first phase, the aim is to identify a suitable sub-
set of machine learning algorithms based on an

http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_100249

820 Metalearning

Dataset Meta-features

Matching & search

Meta-knowledge base:
- ML/DM algorithms (initial bias),
- Datasets + meta-features,
- Performance

Evaluation method (e.g. CV) +
performance criteria

(a) (b)

(c)

(d)

(e)

(Ordered) subset of
algorithms (new bias)

Evalution & Selection

The best ML/DM algorithm

Metalearning, Fig. 1 Selection of machine learning algorithms: determining the reduced space and selecting the best
alternative

input dataset (Fig. 1a–1b). The selection method
used in this process can exploit metaknowledge
(Fig. 1c). This is in general advantageous, as it
often leads to better choices. In some work the
result of this phase is represented in the form of
a ranked subset of machine learning algorithms
(Fig. 1d). The subset of algorithms represents the
reduced bias space. The ranking (i.e., ordering
of different algorithms) represents the procedural
search bias.

The second phase is used to search through
the reduced space. Each option is evaluated using
a given performance criterion (e.g., accuracy).
Typically, cross-validation is used to identify the
best learning algorithm (Fig. 1e). We note that
metaknowledge does not completely eliminate
the need for the search process but rather provides
a more effective search. The search effectiveness
depends on the quality of metaknowledge.

Input to and Output from the
Metalearning System

A metalearning approach to solving the algorithm
selection problem relies on dataset characteristics
or meta-features that provide some information
to differentiate performance among a given set of
learning algorithms. These include various types
of measures, or meta-features, discussed in detail
below.

Much previous work in dataset characteriza-
tion has concentrated on extracting statistical and
information-theoretic parameters estimated from
the training set. Measures include the number
of classes, the number of features, the ratio of
examples to features, the degree of correlation
between features and target concept, the average
class entropy, etc. (Engels and Theusinger
1998). The disadvantage of this approach is

Metalearning 821

M

that there is a limit to how much information
these meta-features can capture, given that all
these measures are uni- or bilateral measures
only (i.e., they capture relationships between
two attributes only or one attribute and the
class).

Another approach is based on what are called
landmarkers; these are simple and fast learners
(Pfahringer et al. 2000). The accuracy of these
simplified algorithms is used to characterize a
dataset and to identify areas where each type
of learner can be regarded as an expert. An
interesting variation on the theme of landmark-
ing uses information obtained on simplified ver-
sions of the data (e.g., samples). Accuracy results
on these samples serve to characterize individ-
ual datasets and are referred to as subsampling
landmarks.

In principle, any machine learning algorithm
can be used at the meta-level. However, one
important aspect of the metalearning task
is the scarcity of training data. As a result,
many researchers in the past have used lazy
learning methods, such as k-NN, since these
delay the generalization of metadata to the
application phase (Nakhaeizadeh and Schnabl
1997). However, other types of models, such
as neural networks, ranking trees, and bagging
ensembles, have been proposed and proved
rather successful (Sun and Pfahringer 2012,
2013).

There are several possible outputs or types of
model a metalearning system can produce. Some
focus on selecting the best algorithm in the set of
available base learners; some attempt to predict
the actual performance of individual algorithms;
yet others assess the relative performance of dif-
ferent pairs of algorithms; finally, some systems
produce a complete ranking of the base learners
that can then be followed by minimal testing to
identify the truly best algorithm for the user’s
dataset. One significant advantage of ranking
methods is that they offer a next best alternative
if the first algorithm seems to be suboptimal. As
the set of base learners may contain variants of
the same algorithms, and it would be wasteful
to test them all before moving on to other types
of algorithms, a recent approach known as ac-

tive testing has been proposed, which seeks to
identify the most promising algorithm that has a
chance of surpassing the best algorithm identified
so far (Leite et al. 2012).

Acquisition of Metaknowledge

There are two natural ways in which metaknowl-
edge can be acquired. One possibility is to rely
on expert knowledge. Another possibility is to
use an automatic procedure. We explore both
alternatives briefly below.

One way of representing metaknowledge is in
the form of rules that match domain (dataset)
characteristics with machine learning algorithms.
Such rules can be handcrafted, taking into ac-
count theoretical results, human expertise, and
empirical evidence. For example, in decision tree
learning, a heuristic rule can be used to switch
from univariate tests to linear tests if there is a
need to construct non-orthogonal partitions over
the input space. This method has serious disad-
vantages however. First, the resulting rule set is
likely to be incomplete. Second, timely and accu-
rate maintenance of the rule set as new machine
learning algorithms become available is problem-
atic. As a result, most research has focused on
automatic methods.

One other way of acquiring metaknowledge
relies on automatic experimentation. For this we
need a pool of problems (datasets) and a set of
machine learning algorithms that we wish to con-
sider. Then we need to define the experimental
method that determines which alternatives we
should experiment with and in which order (see
Fig. 2 for details).

Suppose we have a dataset (characterized us-
ing certain meta-features), in combination with
certain machine learning algorithms. The com-
bination is assessed using an evaluation method
(e.g., cross-validation) to produce performance
results. The results, together with the characteri-
zation, represent a piece of metadata that is stored
in the metaknowledge base. The process is then
repeated for other combinations of datasets and
algorithms.

822 Metalearning

repository of datasets

algorithm

data
characterization

meta-learning
algorithm

meta-knowledge
for

algorithm selection

meta-
features

algorithm
performance

Metalearning, Fig. 2 Acquisition of metadata for the metaknowledge base

Algorithm Selection and
Hyperparameter Optimization

While this entry describes metalearning in the
context of selecting algorithms for machine learn-
ing, there are a number of other areas, such
as regression, time series forecasting, and opti-
mization (Smith-Miles 2008), where algorithm
selection is important and could benefit from a
similar approach.

Similarly, there has been recent interest in the
optimization community in the problem of hyper-
parameter optimization, wherein one seeks a set
of hyperparameters for a learning algorithm, usu-
ally with the goal of obtaining good generaliza-
tion and consequently low loss (Xu et al. 2008).
Hyperparameter optimization is clearly relevant
to algorithm selection, since most learning al-
gorithms have parameters that can be adjusted
and whose values may affect the performance of
the learner. Historically, metalearning has largely
ignored parameter selection, and hyperparameter
optimization has largely ignored metalearning.
Recent efforts in bringing the two fields together
hold promise.

Applying Metalearning to Workflow
Design for KDD

Much of the work in metalearning has focused
on classification algorithm selection and thus
addressed only a small fraction of the overall data
mining process. In practice, users must not only
select a classification learner but must often also
consider various data pre-processing steps and
other aspects of the process to build what are
actually sequences of operations to apply to their
data, also known as workflows. Several advances
have been made in recent years in this area
(Hilario et al. 2011; Kietz et al. 2012). Usually,
it is possible to distinguish two phases. In the
first phase, the system runs different experiments
that involve different workflows for many diverse
problems. The workflow may be generated au-
tomatically with the recourse to a given ontol-
ogy of operators. The individual problems are
characterized and the performance of different
workflows recorded. This can be compared to
running experiments with a set of classification
algorithms and gathering the metaknowledge. In
the second phase, the system carries out planning

Minimum Description Length Principle 823

M

with the aim of designing a workflow that is likely
to achieve good results. In this phase, a given
ontology of operators can again be exploited. The
expansion of the operators may be guided by the
existing metaknowledge.

The aim is to give preference to the more
promising expansions and generate a ranked list
of viable workflows.

Cross-References

� Inductive Transfer

Recommended Reading

Bernstein A, Provost F, Hill S (2005) Toward in-
telligent assistance for a data mining process: an
ontology-based approach for cost-sensitive classifi-
cation. IEEE Trans Knowl Data Eng 17(4): 503–518

Brazdil P, Henery R (1994) Analysis of results. In:
Michie D, Spiegelhalter DJ, Taylor CC (eds) Ma-
chine learning, neural and statistical classification.
Ellis Horwood, New York

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R
(2009) Metalearning – applications to data mining.
Springer, Berlin

Engels R, Theusinger C (1998) Using a data metric for
offering preprocessing advice in data-mining appli-
cations. In: Proceedings of the 13th European con-
ference on artificial intelligence, Brighton, pp 430–
434

Hilario M, Nguyen P, Do H, Woznica A, Kalousis
A (2011) Ontology-based meta-mining of knowl-
edge discovery workflows. In: Jankowski N et al
(eds) Meta-learning in computational intelligence.
Springer, Berlin/New York

Kietz JU, Serban F, Bernstein A, Fischer S (2012)
Designing KDD-workflows via HTN-planning for
intelligent discovery assistance. In: Vanschoren J
et al (eds) Planning to learn workshop at ECAI-2012
(PlanLearn-2012)

Leite R, Brazdil P, Vanschoren J (2012) Selecting
classification algorithms with active testing. In: Ma-
chine learning and data mining in pattern recogni-
tion. Springer, Berlin/New York, pp 117–131

Mitchell T (1997) Machine learning. McGraw Hill,
New York

Nakhaeizadeh G, Schnabl A (1997) Development of
multi-criteria metrics for evaluation of data mining
algorithms. In: Proceedings of the 3rd international
conference on knowledge discovery and data min-
ing, Newport Beach, pp 37–42

Pfahringer B, Bensusan H, Giraud-Carrier C (2000)
Meta-learning by landmarking various learning al-

gorithms. In: Proceedings of the 17th interna-
tional conference on machine learning, Stanford,
pp 743–750

Rice JR (1976) The algorithm selection problem. Adv
Comput 15:65–118

Smith-Miles KA (2008) Cross-disciplinary perspec-
tives on meta-learning for algorithm selection. ACM
Comput Surv 41(1):6

Sun Q, Pfahringer B (2012) Bagging ensemble selec-
tion for regression. In: Proceedings of the 25th Aus-
tralasian joint conference on artificial intelligence,
Sydney, pp 695–706

Sun Q, Pfahringer B (2013) Pairwise meta-rules for
better meta-learning-based algorithm ranking. Mach
Learn 93(1):141–161

Vilalta R, Drissi Y (2002) A perspective view and
survey of metalearning. Artif Intell Rev 18(2): 77–
95

Xu L, Hutter F, Hoos H, Leyton-Brown K (2008)
Cross-disciplinary perspectives on meta-learning
for algorithm selection. J Artif Intell Res 32: 565–
606

Minimum Cuts

�Graph Clustering

Minimum Description Length
Principle

Teemu Roos
Department of Computer Science, Helsinki
Institute for Information Technology, University
of Helsinki, Helsinki, Finland

Abstract

The minimum description length (MDL) prin-
ciple states that one should prefer the model
that yields the shortest description of the data
when the complexity of the model itself is also
accounted for. MDL provides a versatile ap-
proach to statistical modeling. It is applicable
to model selection and regularization. Modern
versions of MDL lead to robust methods that
are well suited for choosing an appropriate
model complexity based on the data, thus ex-
tracting the maximum amount of information
from the data without over-fitting. The modern

http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_348

824 Minimum Description Length Principle

versions of MDL go well beyond the familiar
k
2 log n formula.

Philosophy

The MDL principle is a formal version of Oc-
cam’s razor. While the Occam’s razor only sug-
gests that between hypotheses that are compatible
with the evidence, one should choose the simplest
one, the MDL principle also quantifies the com-
patibility of the hypotheses with the evidence.
This leads to a trade-off between the complexity
of the hypothesis and its compatibility with the
evidence (“goodness of fit”).

The philosophy of the MDL principle em-
phasizes that the evaluation of the merits of a
model should not be based on its closeness to
a “true” model, whose existence is often impos-
sible to verify, but instead on the data. Inspired
by Solomonoff’s theory of universal induction,
Rissanen postulated that a yardstick of the per-
formance of a statistical model is the probability
it assigns to the data. Since the probability is
intimately related to code length (see below), the
code length provides an equivalent way to mea-
sure performance. The key idea made possible by
the coding interpretation is that the length of the
description of the model itself can be quantified
in the same units as the code length of the data,
namely, bits. Earlier, Wallace and Boulton had
made a similar proposal under the title minimum
message length (MML) (Wallace and Boulton
1968). A fundamental difference between the two
principles is that MML is a Bayesian approach
while MDL is not.

The central tenet in MDL is that the better
one is able to discover the regular features in
the data, the shorter the code length. Showing
that this is indeed the case often requires that we
assume, for the sake of argument, that the data
are generated by a true distribution and verify
the statistical behavior of MDL-based methods
under this assumption. Hence, the emphasis on
the freedom from the assumption of a true model
is more pertinent in the philosophy of MDL than
in the technical analysis carried out in its theory.

Theory

The theory of MDL addresses two kinds of ques-
tions: .i/ the first kind asks what is the shortest
description achievable using a given model class,
i.e., universal data compression; .ii/ the second
kind asks what can be said about the behav-
ior of MDL methods when applied to model
selection and other machine learning and data
mining tasks. The latter kind of questions are
closely related to the theory of statistical esti-
mation and statistical learning theory. We review
the theory related to these two kinds of questions
separately.

Universal Data Compression
As is well known in information theory, the short-
est expected code length achievable by a uniquely
decodable code under a known data source, p�,
is given by the entropy of the source, H.p�/.
The lower bound is achieved by using a code
word of length `�.x/ D � log p�.x/ bits for
each source symbol x. (Here and in the following,
log denotes base-2 logarithm.) Correspondingly,
a code-length function ` is optimal under a source
distribution defined by q.x/ D 2�`.x/. (For the
sake of notational simplicity, we omit a normal-
izing factor C D

P
x 2�`.x/ which is necessary

in case the code is not complete. Likewise, as is
customary in MDL, we ignore the requirement
that code lengths be integers.) These results can
be extended to data sequences whereupon we
write xn D x1 : : : xn to denote a sequence of
length n.

While the case where the source distribution
p� is known can be considered solved in the
sense that the average-case optimal code-length
function `� is easily established as described
above, the case where p� is unknown is more
intricate. Universal data compression studies sim-
ilar lower bounds when the source distribution is
not known or when the goal is not to minimize
the expected code length. For example, when
the source distribution is only known to be in
a given model class (a set of distributions), M,
the goal may be to find a code that minimizes
the worst-case expected code length under any
source distribution p� 2 M. A uniquely decod-

Minimum Description Length Principle 825

M

able code that achieves near-optimal code lengths
with respect to a given model class is said to be
universal.

Rissanen’s groundbreaking 1978 paper (Rissa-
nen 1978) gives a general construction for uni-
versal codes based on two-part codes. A two-part
code first includes a code for encoding a distribu-
tion, q, over source sequences. The second part
encodes the data using a code based on q. The
length of the second part is thus � log q.xn/ bits.
The length of the first part, `.q/, depends on the
complexity of the distribution q, which leads to a
trade-off between complexity measured by `.q/

and goodness of fit measured by log q.x/:

min
q

.`.q/ � log q.xn//: (1)

For parametric models that are defined by a
continuous parameter vector � , a two-part coding
approach requires that the parameters be quan-
tized so that their code length is finite. Rissa-
nen showed that given a k-dimensional para-
metric model class, M D fp� I � 2 ‚ �

R
kg, the optimal quantization of the parameter

space ‚ is achieved by using accuracy of or-
der 1=

p
n for each coordinate, where n is the

sample size. The resulting total code length be-
haves as � log Op.xn/ C k

2 log n C O.1/, where
Op.xn/ D maxfp� .xn/ W � 2 ‚g is the maxi-

mum probability under model class M. Note that
the leading terms of the formula are equivalent
to the Bayesian information criterion (BIC) by
Schwarz (Schwarz 1978). Later, Rissanen also
showed that this is a lower bound on the code
length of any universal code that holds for all
but a measure-zero subset of sources in the given
model class (Rissanen 1986).

The above results have subsequently been
refined by studying the asymptotic and finite-
sample values of the O.1/ residual term for
specific model classes. The resulting formulas
lead to a more accurate characterization of
model complexity, often involving the Fisher
information (Rissanen 1996).

Subsequently, Rissanen and others have
proposed other kinds of universal codes that
are superior to two-part codes. These include

Bayes-type mixture codes that involve a prior dis-
tribution for the unknown parameters (Rissanen
1986), predictive forms of MDL (Rissanen 1984;
Wei 1992), and, most importantly, normalized
maximum likelihood (NML) codes (Yuri
1987; Rissanen 1996). The latter have the
important point-wise minimax property that
they achieve the minimum worst-case point-wise
redundancy:

min
q

max
xn
� log q.xn/C log Op.xn/;

where the maximum is over all possible data
sequences of length n and the minimum is over
all distributions.

Behavior of MDL-Based Learning Methods
The philosophy of MDL suggests that data com-
pression is a measure of the success in discov-
ering regularities in the data, and hence, better
compression implies better modeling. Showing
that this is indeed the case is the second kind of
theory related to MDL.

Barron and Cover proposed the index of re-
solvability as a measure of the hardness of esti-
mating a probabilistic source in a two-part coding
setting (see above) (Barron and Cover 1991). It is
defined as

Rn.p�/ D min
q

�
`.q/

n
CD.p� jj q/

�
;

where p� is the source distribution and
D.p� jj q/ denotes the Kullback-Leibler
divergence between p� and q. Intuitively, a
source is easily estimable if there exists a simple
distribution that is close to the source. The
result by Barron and Cover bounds the Hellinger
distance between the true source distribution and
the distribution Oq minimizing the two-part code
length, Eq. (1), as

d 2
H .p�; Oq/ � O.Rn.p�// in p�-probability:

For model selection problems, consistency is
often defined in relation to a fixed set of alter-
native model classes and a criterion that selects
one of them given the data. If the criterion leads

826 Minimum Description Length Principle

to the simplest model class that contains the true
source distribution, the criterion is said to be
consistent. (Note that the additional requirement
that the selected model class is the simplest one
is needed in order to circumvent a trivial solution
in nested model classes where simpler models
are subsets of more complex model classes.)
There are a large number of results showing
that various MDL-based model selection crite-
ria are consistent; for examples, see the next
section.

Applications

MDL has been applied in a wide range of ap-
plications. It is well suited for model selection
problems where one needs not only to estimate
continuous parameters but also their number and,
more generally, the model structure, based on sta-
tistical data. Other approaches applicable in many
such scenarios include Bayesian methods (in-
cluding minimum message length), cross valida-
tion, and structural risk minimization (see Cross-
References below).

Some example applications include the fol-
lowing:

1. Autoregressive models, Markov chains, and
their generalizations such as tree machines
were among the first model classes studied in
the MDL literature, see Rissanen (1978, 1984)
and Weinberger et al. (1995).

2. Linear regression. Selecting a subset of rele-
vant covariates is a classical example of a situ-
ation involving models of variable complexity,
see Speed and Yu (1993), Wei (1992), and
Rissanen (2000).

3. Discretization of continuous covariates en-
ables the use of learning methods that use
discrete data. The granularity of the discretiza-
tion can be determined by applying MDL,
see Fayyad and Irani (1993).

4. The structure of probabilistic graphical
models encodes conditional independencies
and determines the complexity of the model.
Their structure can be learned by MDL, see,

e.g., Lam and Bacchus (1994) and Silander
et al. (2010)

Future Directions

The development of efficient and computation-
ally tractable codes for practically relevant model
classes is required in order to apply MDL more
commonly in modern statistical applications. The
following are among the most important future
directions:

– While the original k
2 log n formula is still

regularly referred to as “the MDL principle,”
future work should focus on modern formula-
tions involving more advanced codes such as
the NML and its variations.

– There is strong empirical evidence suggesting
that coding strategies with strong minimax
properties lead to robust model selection
methods, see, e.g., Silander et al. (2010).
Tools akin to the index of resolvability are
needed to gain better theoretical under-
standing of the properties of modern MDL
methods.

– Scaling up to modern big data applications,
where model complexity regularization is cru-
cial, requires approximate versions of MDL
with sublinear computational and storage re-
quirements. Predictive MDL is a promising
approach in handling high-throughput stream-
ing data scenarios.

Cross-References

�Cross-Validation
� Inductive Inference
�Learning Graphical Models
�Minimum Message Length
�Model Evaluation
�Occam’s Razor
�Overfitting
�Regularization
� Structural Risk Minimization
�Universal Learning Theory

http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_614
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_799
http://dx.doi.org/10.1007/978-1-4899-7687-1_867

Minimum Message Length 827

M

Recommended Reading

Good review articles on MDL include Barron
et al. (1998); Hansen and Yu (2001). The text-
book by Grünwald (2007) is a comprehensive and
detailed reference covering developments until
2007 Grünwald (2007).

Barron A, Cover T (1991) Minimum complexity den-
sity estimation. IEEE Trans Inf Theory 37(4):1034–
1054

Barron A, Rissanen J, Yu B (1998) The minimum
description length principle in coding and modeling.
IEEE Trans Inf Theory 44:2734–2760

Fayyad U, Irani K (1993) Multi-interval discretization
of continuous-valued attributes for classification
learning. In: Bajczy R (ed) Proceedings of the 13th
International Joint Conference on Artificial Intelli-
gence and Minimum Description Length Principle,
Chambery. Morgan Kauffman

Grünwald P (2007) The Minimum Description Length
Principle. MIT Press, Cambridge

Hansen M, Yu B (2001) Model selection and the
principle of minimum description length. J Am Stat
Assoc 96(454):746–774

Lam W, Bacchus F (1994) Learning Bayesian belief
networks: an approach based on the MDL principle.
Comput Intell 10:269–293

Rissanen J (1978) Modeling by shortest data descrip-
tion. Automatica 14(5):465–658

Rissanen J (1984) Universal coding, information, pre-
diction, and estimation. IEEE Trans Inf Theory
30:629–636

Rissanen J (1986) Stochastic complexity and model-
ing. Ann Stat 14(3):1080–1100

Rissanen J (1996) Fisher information and stocha-
sic complexity. IEEE Trans Inf Theory 42(1):
40–47

Rissanen J (2000) MDL denoising. IEEE Trans Inf
Theory 46(7):2537–2543

Schwarz G (1978) Estimating the dimension of a
model. Ann Stat 6(2):461–464

Silander T, Roos T, Myllymäki P (2010) Learning
locally minimax optimal Bayesian networks. Int J
Approx Reason 51(5):544–557

Speed T, Yu B (1993) Model selection and predic-
tion: normal regression. Ann Inst Stat Math 45(1):
35–54

Wallace C, Boulton D (1968) An information measure
for classification. Comput J 11(2):185–194

Wei C (1992) On predictive least squares principles.
Ann Stat 20(1):1–42

Weinberger M, Rissanen J, Feder M (1995) A univer-
sal finite memory source. IEEE Trans Inf Theory
41(3):643–652

Yuri Shtarkov (1987) Universal sequential coding
of single messages. Probl Inf Transm 23(3):
3–17

Minimum Message Length

Rohan A. Baxter
Australian Taxation Office, Sydney, NSW,
Australia

Abstract

The Minimum Message Length (MML) Prin-
ciple is an information-theoretic approach to
induction, hypothesis testing, model selection,
and statistical inference. MML, which pro-
vides a formal specification for the implemen-
tation of Occam’s Razor, asserts that the ‘best’
explanation of observed data is the shortest.
MML was first published by Chris Wallace
and David Boulton in 1968.

Definition

Minimum message length is a theory of
� inductive inference whereby the preferred
model is the one minimizing the expected
message length required to explain the data with
the prior information.

Given the data represented in a finite binary
string, E, an � explanation of the data is a two-
part �message or binary string encoding the data
to be sent between a sender and receiver. The
first part of the message (the � assertion) states
a hypothesis, model, or theory about the source
of the data. The second part (the � detail) states
those aspects of E which cannot be deduced
from this assertion and prior knowledge. The
sender and receiver are assumed to have agreed
on the prior knowledge, the assertion code, and
the detail code before the message is constructed
and sent. The shared prior knowledge captures
their belief about the data prior to seeing the data
and is needed to provide probabilities or, equiv-
alently, optimum codes, for the set of models.
The assertion and detail codes can be equiva-
lently considered to be the shared language for
describing models (for the assertion code) and for
describing data (for the detail code).

http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_294
http://dx.doi.org/10.1007/978-1-4899-7687-1_535
http://dx.doi.org/10.1007/978-1-4899-7687-1_37
http://dx.doi.org/10.1007/978-1-4899-7687-1_213

828 Minimum Message Length

Minimum Message
Length, Fig. 1 A view of
model selection by MML.
The data is coded assuming
a model and parameters in
the assertion. The model
and parameters are coded
in the assertion. As shown
here, often different models
have same probability,
while the code lengths for
model parameters and data
detail differ between the
different models

Out of all possible models which might be
advanced about the data, MML considers the
best inference as that model which leads to the
shortest explanation. The length of the expla-
nation can be calculated using �Shannon’s in-
formation, L.E/ D � log.P.E//, where L.E/

is the length of the shortest string encoding an
event, E, and P./ is the probability of a message
containing E.

To compare models, we calculate the expla-
nation length for each and prefer the one with
shortest explanation length. Figure 1 shows three
models being evaluated and the different lengths
of the assertion and details for each. Model 2
is preferred as it has the minimum message
length.

Motivation and Background

The original motivation for minimum message
length inductive inference is the idea that the
best explanation of the facts is the shortest
(Wallace and Boulton 1968). By inductive
inference, we mean the selection of a best
model of truth. This goal is distinct from a
best model for prediction of future data or
for choosing a model for making the most
beneficial decisions. In the field of machine
learning, greater focus has been on models for
prediction and decision, but inference of the
best models of truth has an important separate
application.

For discrete models, MML looks like
Bayesian model selection since choosing H to
minimize the explanation length of data X

� log P.H/ � log P.X jH/

D � log.P.H/P.X jH/

is often, but not always, as discussed below,
equivalent to choosing H to maximize the proba-
bility

P.H jX/ W

P.H jX/ D
P.H/P.X jH/

P.X/

where P.X/ is a constant for a given detail code.
For models with real-valued parameters, the

equivalence between MML and Bayesian model
selection always breaks down (Wallace 2005,
p. 117). Stating the P.H/ in a message requires
real-valued parameters in H to be stated to a
limited precision. The MML coding approach
replaces a continuum of possible hypotheses with
a discrete subset of values and assigns a nonzero
prior probability to each discrete theory. The
discrete subsets are chosen to optimize the ex-
pected message length given the prior knowledge
assumptions.

For models with only discrete-valued parame-
ters, the equivalence between MML and Bayesian
model selection may break down if the discrete

http://dx.doi.org/10.1007/978-1-4899-7687-1_968

Minimum Message Length 829

M

values chosen involve the merging of values in
the assumed prior distribution, P.H/ (Wallace
2005, p. 156). This may occur with a small
dataset if the data is insufficient to justify a code-
book distinguishing individual members of H .

Other than a discretized hypothesis space,
MML shares many properties of Bayesian
learning such as sufficiency, avoidance of
overfitting, and consistency (Wallace 2005). One
difference arising from the discretized hypothesis
space is that MML allows inductive inference
to be invariant under arbitrary monotonic
transformations of parameter spaces. The
Bayesian learning options for model choice such
as the maximum a posteriori (MAP) estimate
are not invariant under such transformations.
Other theoretical benefits include consistency
and guarantees against overfitting.

Message lengths of an explanation can be
based on the theory of algorithmic complexity
(Wallace and Dowe 1999), instead of Shannon’s
information. The algorithmic complexity (AC)
of a string with respect to a universal Turing
machine, T, can be related to Shannon’s infor-
mation by regarding T as defining a probability
distribution over binary strings, P.S/, such that

PT .S/ D 2�AC.S/;8S

The connection with algorithmic complexity has
some appeal for applications involving data that
are not random in a probabilistic sense, such as
function approximation where data seems to be
from a deterministic source. In these cases, after
fitting a model, the data residuals can be encoded
using AC randomness, since the probabilistic
sense of randomness does not apply (Wallace
2005, p. 275).

Theory

Strict MML (SMML) estimators refer to the es-
timator functions which exactly minimize the
expected message length (Wallace and Boulton
1975). Most practical MML estimators are not
strict and are discussed in a separate section on
Approximations.

A SMML estimator requires (Dowe et al.
2007):

• X; a data space, and a set of observations from
the data space, fxi W i 2 N g :

• p(xjh), a conditional probability function over
data given a model, h.

• H is a model space. For example, H can be a
simple continuum of known dimension k.

• P.h/: a prior probability density on the pa-
rameter space H :

R
H

P.h/dh D 1.

X; H , and the functions P.h/, p(xjh) are assumed
to be known a priori by both the sender and
receiver of the explanation message. Both the
sender and receiver agree on a code for X; using
knowledge of X; H; p.h/, and f(xjh) only.

The marginal prior probability of the data
x follows from the assumed background
knowledge:

r.x/ D

Z
H

p.xjh/P.h/dh

The SMML estimator is a function m W X ! H W

m.x/ D h which names the model to be selected.
The assertion, being a finite string, can name

at most a countable subset of H . Call the subset
H � D

˚
hj W j D 1; 2; 3; : : :

�
. The choice of H �

implies a coding distribution over H � W f .hj / D

qj > 0 W j D 1; 2; 3; : : : with
P

j qj D 1. So
choice of H �and qj lead to a message length:

� log qj � log p.xjhj /

The sender, given x, will choose an h to make the
explanation short. This choice is described by an
estimator function: m.x/ W X ! H so that the
length of the explanation is

I1.x/ D � log q.m.x// � log p.xjm.x//

and the expected length is (Wallace 2005, p. 155):

I1 D �
X

x2X
r.x/ Œlog q.m.x//

C log p.xi jm.xi //�

830 Minimum Message Length

Consider how to choose H � and coding distribu-
tion qj to minimize I1. This will give the shortest
explanation on average, prior to the sender seeing
the actual data.

Define tj D
˚
x W m.x/ D hj

�
, so that tj is

the set of data which results in assertion hj being
used in the explanation. I1 can now be written as
two terms:

I1 D �
X

hj 2Hstart

� X
xi 2tj

ri

�
log qj

�
X

hj 2Hstart

X
xi 2tj

ri log p.xi jhj /

The first term of I1is minimized by choosing:

qj D
X

xi 2tj

rj

So the coding probability assigned to estimate
hj is the sum of the marginal probabilities of the
data values resulting in hj . It is the probability
that estimate hj will be used in the explanation
based on the assumptions made.

The second term of I1 is the average of the
log likelihood over the data values used in hj .
Dowty (2013) gives a method for calculating the
SMML estimator for a one-dimensional exponen-
tial family of statistical models with a continuous
sufficient statistic. Techniques from differential
geometry may lead to extensions of this work to
linear and logistic regression models. This com-
putational approach does not answer outstanding
questions about the existence or uniqueness of
SMML estimates.

Example with Binomial Distribution

This section describes the SMML estimator for
the binomial distribution. For this problem with
100 independent trials giving success or failure,
we have p.xjp/ D pn.1 � p/100 � s; h.p/ D 1,
where s is the observed number of successes and
p is the unknown probability of success.

We have a SMML estimator minimizing I1 in
Table 1. I1 has 52.068 nits. Note that the partition

Minimum Message Length, Table 1 A SMML esti-
mator for binomial distribution (Wallace 2005; Farr and
Wallace 2002, p. 159)

j s p j

1 0 0

2 1–6 0.035

3 7–17 0.12

4 18–32 0.25

5 33–49 0.41

6 50–66 0.58

7 67–81 0.74

8 82–93 0.875

9 94–99 0.965

10 100 1

pj in Table 1 is not unique due to asymmetry
in having ten partitions of 101 success counts.
Note the difference between the SMML estimate,
pj , and the MAP estimate s

100 in this case. For
example, for 50 observed successes, the MAP
estimate is 0.5, while SMML estimate is 0.58.
With 49 successes, the SMML estimate jumps to
0.41, so it is very discrete. The SMML estimate
spacings are consistent with the expected error
and so the MAP estimates are arguably overly
precise and smooth.

This is less than 0.2 nits more than the optimal
one-part code based on the marginal probability
of the data � log r.x/.

Approximations

SMML estimators are hard to find in practice
and various approximations of SMML estimators
have been suggested. We focus on the quadratic
approximation here, often called the MML
estimator or MML87 (Wallace and Freeman
1987). Other useful approximations have been
developed and are described in Wallace (2005).
The use of approximations in applications re-
quires careful checking of the assumptions made
by the approximation (such as various regularity
conditions) to ensure the desirable theoretical
properties of MML inductive inference still
apply:

Minimum Message Length 831

M

I1.x/ 	� log
f .h0/q

F .h0/
12

C
�
� log p.xjh0/

	
C

0:5F.h0; x/

F.h0/

where F.h/ is the Fisher information:

F.h0/ D �E
@2

.@h0/2
log p.xjh0/

D �
X

x2X
p.xjh0/

@2

.@h0/2
log p.xjh0/

The assumptions are (Wallace and Freeman 1987;
Wallace 2005):

• f(xjh) is approximately quadratic on theta near
its maximum.

• H has a locally Euclidean metric.
• Fisher information is defined everywhere

in H .
• f .h/ and F.h/ vary little over theta of order

1p
F .h/

.

A further approximation has the third term sim-
plify to 0.5 only (Wallace 2005, p. 226) which
assumes F.h; x/ 	 F.h/.

The MML estimator is a discretized MAP es-
timator with the prior P.h/ being discretized as:

f .h0/ 	
P.h0/p
F.h0/

In practice, note that the Fisher information may
be difficult to evaluate. Various approximations
have been made for the Fisher information where
appropriate for particular applications.

Applications

MML estimators have been developed for various
probability distributions such as binomial, multi-
nomial, and Poisson. MML estimators were de-
veloped for densities such as normal, von Mises,
and Student’s T (Wallace 2005). These estimators
and associated coding schemes are then useful

components for addressing more complex model
selection problems in machine learning.

There have been many applications of MML
estimators to model spaces from machine learn-
ing (Wallace 2005; O’Donnell et al. 2006; Allison
2009). We will now briefly note MML applica-
tions for mixture models, regular grammars, deci-
sion trees, and causal nets. MML estimators have
also been developed for multiple linear regression
(Wallace 2005), polynomial regression (Wallace
2005), neural networks (Allison 2009), ARMA
time series, hidden Markov models (Edgoose
and Allison 1999), sequence alignment (Allison
2009), phylogenetic trees (Allison 2009), fac-
tor analysis (Wallace 2005), cut-point estimation
(Wallace 2005), and image segmentation.

Model-Based Clustering or Mixture
Models

Clustering was the first MML application from
Wallace and Boulton’s 1968 paper (Wallace and
Boulton 1968). Some changes to the coding
scheme have occurred over the decades. A
key development was the switch from definite
assignment of classes to things to probabilistic
assignment in the 1980s. The MML model
selection and a particularly efficient search
involving dynamic splitting and merging of
clusters were implemented in a FORTRAN
program called Snob (since it discriminated
between things).

The assertion code consists of:

1. The number of classes
2. For each class

2.1 The population proportion
2.2 Parameters of the statistical distribution

for each attribute (or an insignificant flag)

The detail code consists of, for each datum, the
class to which it belongs, attribute values assum-
ing the distribution parameters of the class. Bits-
back coding is used to partially or probabilisti-
cally assign a class to each datum. This efficiency
is needed to get consistent estimates.

832 Minimum Message Length

Probabilistic Finite-State Machines

Probabilistic finite-state machines can represent
probabilistic regular grammars (Wallace 2005).
A simple assertion code for the discrete FSM
structure, as developed by Wallace and Georgeff,
is the following:

• State the number of states, S , using a prior
P.S/.

• For each state, code the number of arcs leaving
the state, log.KC1/, where KC1 is maximum
number of arcs possible.

• Code the symbols labeling the arcs,

log

�
KC1
c
as

�
.

• For each arc, code the destination state,
as log S .

The number of all states other than state 1 is
arbitrary, so the code permits .S � 1/Š, equal
length, and different descriptions of the same
FSM. This inefficiency can be adjusted for by
subtracting log.S � 1/Š

A candidate detail code used to code the sen-
tences is an incremental code where each tran-
sition from state to state is coded incrementally,
using log nsk C

1
vs
C as where nsk is the number

of times this arc has already been followed and vs

is the number of times the state has already been
left.

This application illustrates some general is-
sues about assertion codes for discrete structures:

1. There can be choices about what to include
in the assertion code or not. For example,
the transition probabilities are not part of the
assertion code above, but could be included,
with adjustments, in an alternative design
(Wallace 2005).

2. Simple approaches with interpretable priors
may be desirable even if using non-optimal
codes. The assumptions made should be val-
idated. For example, arcs between states in
FSMs are usually relatively sparse (a s
 S)
so a uniform distribution is not a sensible prior
here.

3. Redundancy comes from being able to code
equivalent models with different descriptions.
For some model spaces, determining the
equivalence is either not possible or very
expensive computationally.

4. Redundancy can come from the code allowing
description of models that cannot arise.
For example, the example assertion code
could describe a FSM with states with
no arcs.

5. Exhaustive search of model space can only
be done for small FSMs. For larger applica-
tions, the performance of the MML model
selection is conflated with performance of
the necessary search space heuristics. This
issue also occurs with decision trees, causal
nets, etc.

In a particular application, it may be appropriate
to trade-off redundacy with interpretability in
assertion code design.

Decision Trees

Assertion codes for decision trees and graphs
have been developed (Wallace and Patrick 1993;
Wallace 2005). An assertion describes the struc-
ture of the tree, while the detail code describes
the target labels. The number of attributes, the
arity of each attribute, an agreed attribute order,
and probability that a node is a leaf or split node
are assumed known by the sender and receiver.
Like the PFSM transition probabilities, the leaf
class distributions are not explicitly included in
the decision tree model (a point of distinction
from Bayesian tree approaches).

An assertion code can be constructed
by performing a prefix traversal of the tree
describing each node. Describing a node requires
�log 2 P L if it is a leaf and �log 2 P s if it is
a split node. If it is a split node, the attribute
that it splits on must be specified, requiring
log 2 (number of available attributes). If it is
a leaf node, the data distribution model should
be specified. For example, the parameters of a
binomial distribution if the data consists of two
classes.

Minimum Message Length 833

M

Causal Nets (Dai et al. 1997; Neil et al.
1999; O’Donnell et al. 2006)

The assertion code has two parts.
First part: DAG

1. Specify an ordering of variables, log N Š.
2. Specify which of M a possible arcs are

present, log.N.N � 1/=2/ bits on assumption
probability an arc is present is 0.5.

Second part: Parameters
3. For each variable, state the form of conditional

distribution and then the parameters of the
distribution. Then encode all N values of v j
according to the distribution.

Note that the assertion code is intermixed with the
detail code for each variable (Wallace 2005). Fur-
ther adjustments are made to deal with grouping
of causal nets with various equivalences or near
equivalences. This requires a further approxima-
tion because no attempt is made to code the best
representative causal net from the group of causal
nets described (Fig. 2).

Future Directions

There seems a potential for further development
of feasible approximations that maintain the key
SMML properties. The crossover of exciting
new developments in coding theory may also
help with the development of MML estimators.
Examples include stochastic encoding such as
bits-back coding, discovered by Wallace in 1990
(Wallace 1990) and since expanded to many
new application areas showing connections
between MML with variational learning and
ensemble learning (Honkela and Valpola 2004).
Another area is the relationship between
optimum hypothesis discretization and indices
of resolvability and rate-distortion optimization
(Lanterman 2001).

MML estimators will continue to be developed
for the new model spaces that arise in machine
learning. MML relevance seems assured because
with complex models, such as social networks,
the best model is the useful outcome, rather

Minimum Message Length, Fig. 2 Assertion code
lengths for different DAGS using the example coding
scheme

than a prediction or posterior distribution of
networks.

Open-source software using MML estimators
for difference machine learning models is avail-
able (MML software).

Definition of Key Terms Used Above

Inductive inference: Choice of a model, theory,
or hypothesis to express an apparent regularity or
pattern in a body of data about many particular
instances or events.

Explanation: A code with two parts, where the
first part is an assertion code and the second part
is a detail code.

834 Mining a Stream of Opinionated Documents

Assertion: The code or language shared
between the sender and receiver that is used
to describe the model.

Detail: The code or language shared between
the sender and receiver that is used to describe
the data conditional on the asserted model.

Message: A binary sequence conveying infor-
mation is called a message.

Shannon’s information: If a message an-
nounces an event E1 of probability P.E1/, its
information content is � log2 P.E1/. This is also
its length in bits.

Cross-References

�Bayesian Methods
� Inductive Inference
�Minimum Description Length Principle
�Universal Learning Theory

Recommended Reading

Allison L (2009) MML website. http://www.allisons.
org/ll/MML/

Dowe DL, Gardner SB, Oppy G (2007) Bayes not
bust!: why simplicity is no problem for Bayesians.
Brit J Phil Sci 58:709–754

Dowty JG (2013) SMML estimators for 1-
dimensional continuous data. Comput J.
doi:10.1093/comjnl/bxt145

Dai H, Korb KB, Wallace CS, Wu X (1997) A study of
causal discovery with weak links and small samples.
In: Proceedings of fifteenth international joint con-
ference on artificial intelligence. Morgan Kaufman,
San Francisco, pp 1304–1309

Edgoose T, Allison L (1999) MML Markov classifica-
tion of sequential data. Stat Comput 9(4):269–278

Farr GE, Wallace CS (2002) The complexity of
strict minimum message length inference. Comput
J 45(3): 285–292

Grunwald P (2008) The minimum description length
principle. MIT Press, Cambridge

Honkela A, Valpola H (2004) Variational learning
and bits-back coding: an information-theoretic view
to Bayesian learning. IEEE Trans Neural Netw
15(4):800–810

Lanterman AD (2001) Schwarz, Wallace and Rissanen:
intertwining themes in theories of model selection.
Int Stat Rev 69(2):185–212

MML software: www.datamining.monash.edu.au/
software, http://allisons.org/ll/Images/People/
Wallace/FactorSnob/

Neil JR, Wallace CS, Korb KB, Learning Bayesian
networks with restricted interactions, in Laskey and
Prade. In: Proceedings of the fifteenth conference
of uncertainty in artificial intelligence (UAI-99),
Stockholm, pp 486–493

O’Donnell R, Allison L, Korb K (2006) Learning hy-
brid Bayesian networks by MML. Lecture notes in
computer science: AI 2006 – Advances in artificial
intelligence, vol 4304. Springer, Berlin/New York,
pp 192–203

Wallace CS (1990) Classification by minimum-
message length inference. In: Akl SG et al (eds)
Advances in computing and information-ICCI 1990.
No. 468 in lecture notes in computer science.
Springer, Berlin

Wallace CS (2005) Statistical & inductive inference by
MML. Information sciences and statistics. Springer,
New York

Wallace CS, Boulton DM (1968) An information mea-
sure for classification. Comput J 11:185–194

Wallace CS, Boulton DM (1975) An information
measure for single-link classification. Comput J
18(3):236–238

Wallace CS, Dowe DL (1999) Minimum message
length and Kolmogorov complexity. Comput J
42(4):330–337

Wallace CS, Freeman PR (1987) Estimation and in-
ference by compact coding. J. R. Stat. Soc. (Ser B)
49:240–252

Wallace CS, Patrick JD (1993) Coding decision trees.
Mach Learn 11:7–22

Mining a Stream of Opinionated
Documents

�Opinion Stream Mining

Missing Attribute Values

Ivan Bruha
McMaster University, Hamilton, ON, Canada

Synonyms

Missing values; Unknown attribute values; Un-
known values

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_867
http://www.allisons.org/ll/MML/
http://www.allisons.org/ll/MML/
www.datamining.monash.edu.au/software
www.datamining.monash.edu.au/software
http://allisons.org/ll/Images/People/Wallace/FactorSnob/
http://allisons.org/ll/Images/People/Wallace/FactorSnob/
http://dx.doi.org/10.1007/978-1-4899-7687-1_905
http://dx.doi.org/10.1007/978-1-4899-7687-1_100302
http://dx.doi.org/10.1007/978-1-4899-7687-1_100496
http://dx.doi.org/10.1007/978-1-4899-7687-1_100497

Missing Attribute Values 835

M

Definition

When inducing � decision trees or � decision
rules from real-world data, many different aspects
must be taken into account. One important as-
pect, in particular, is the processing of missing
(unknown) � attribute values. In machine learn-
ing (ML), instances (objects, observations) are
usually represented by a list of attribute values;
such a list commonly has a fixed length (i.e., a
fixed number of attributes).

The topic of missing attribute values has been
analyzed in the field of ML in many papers
(Brazdil and Bruha 1992; Bruha and Franek
1996; Karmaker and Kwer 2005; Long and
Zhang 2004; Quinlan 1986, 1989). Grzymala-
Busse (2003) and Li and Cercone (2006) discuss
the treatment of missing attribute values using
the rough set strategies.

There are a few directions in which missing
(unknown) attribute values as well as the
corresponding routines for their processing
may be studied and designed. First, the source
of “unknownness” should be investigated;
there are several such sources (Kononenko
1992):

• A value is missing because it was forgotten or
lost

• A certain attribute is not applicable for a given
instance (e.g., it does not exist for a given
observation)

• An attribute value is irrelevant in a given
context

• For a given observation, the designer of a
training database does not care about the value
of a certain attribute (the so-called dont-care
value)

The first source may represent a random case,
while the remaining ones are of structural char-
acter.

Moreover, it is important to define formu-
las for matching instances (examples) containing
missing attribute values with decision trees and
decision rules as different matching routines vary
in this respect.

Strategies for Missing Value
Processing

The aim of this section is to survey the well-
known strategies for the processing of missing
attribute values. Quinlan (1989) surveys and in-
vestigates quite a few techniques for process-
ing unknown attribute values processing for the
TDIDT family. This chapter first introduces the
seven strategies that are applied in many ML
algorithms. It then discusses particular strategies
for the four paradigms: Top Down Induction
Decision Trees (TDIDT), (also known as the
decision tree paradigm, or divide-and-conquer),
covering paradigm (also known as the decision
rules paradigm), Naive Bayes, and induction of
� association rules. The conclusion compares the
above strategies and then portrays possible direc-
tions in combining these strategies into a more
robust system.

To deal with real-world situations, it is
necessary to process incomplete data – i.e.,
data with missing (unknown) attribute values.
Here we introduce the seven strategies (routines)
for processing missing-attribute-values. They
differ in the style of the solution of their
matching formulae. There are the following
natural ways of dealing with unknown attribute
values:

1. Ignore the example (object, observation) with
missing values: strategy Ignore (I)

2. Consider the missing (unknown) value as an
additional regular value for a given attribute:
strategy Unknown (U) or

3. Substitute the missing (unknown) value for
matching purposes by a suitable value which
is either
• The most common value: strategy Common

(C)
• A proportional fraction: strategy Fraction

(F)
• Any value: strategy Anyvalue (A)
• Random value: strategy Random (Ran)
• A value determined by a ML approach:

strategy Meta-Fill-In (M) of the known
values of the attribute that occur in the
training set

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_201
http://dx.doi.org/10.1007/978-1-4899-7687-1_100496
http://dx.doi.org/10.1007/978-1-4899-7687-1_38

836 Missing Attribute Values

Dealing with missing attribute values is in fact
determined by matching a selector (see the cor-
responding definitions below) with an instance.
A matching procedure of a selector with a fully
specified instance returns the uniform solution:
the instance either matches or not. Dilemmas
arise when a partially defined instance is to be
matched.

We now informally introduce a couple of
definitions. An inductive algorithm generates
a knowledge base (decision tree or a set of
decision rules) from atraining set of K training
examples, each accompanied by its desired
� class Cr ; r D 1; : : : ; R. Examples are formally
represented by N � attributes, which are either
discrete (symbolic) or numerical (continuous).
A discrete attribute An; n D 1 : : : ; N , comprises
J.n/ distinct values V1; : : : ; VJ.n/. A numerical
attribute may attain any value from a continuous
interval. The symbolic/logical ML algorithms
usually process the numerical attributes by
� discretization/fuzzification procedures, either
on-line or off-line; see e.g., Bruha and Berka
(2000).

An example (object, observation) can thus
be expressed as an N-tuple x D Œx1; : : : ; xN �,
involving N attribute values. A selector Sn is
defined as an attribute-value pair of the form
xn D Vj , where Vj is the j th value of the
attribute An (or the j th interval of a numerical
attribute An).

To process missing values, we should know in
advance (for r D 1; : : : ; R; n D 1; : : : ; N; j D

1; : : : ; J.n/):

• The overallabsolute frequencies Fn;j that ex-
press the number of examples exhibiting the
value Vj for each attribute An

• The class-sensitive absolute frequencies
Fr;n;j that express the number of examples
of the class Cr exhibiting the value Vj for
each attribute An

• The overall relative frequencies fn;j of all
known values Vj for each attribute An

• The class-sensitive relative frequencies fr;n;j

of all known values Vj for each attribute An

and for a given class Cr

The underlying idea for learning relies on the
class distribution; i.e., the class-sensitive frequen-
cies (overall and class-sensitive frequencies) are
utilized. As soon as we substitute a missing value
by a suitable one, we take the desired class of
the example into consideration in order not to
increase the noise in the data set. On the other
hand, the overall frequencies are applied within
classification.

We can now define the matching of an exam-
ple x with a selector Sn by the so-called matching
ratio = 0 if xn ¤ Vj

�.x; Sn/fD 1 if xn D Vj g (1)

2 Œ0I 1� if xn is unknown (missing)

A particular value of the matching ratio is de-
termined by the selected routine (strategy) for
missing value processing.

(I) Strategy Ignore: Ignore Missing Values:
This strategy simply ignores examples (in-
stances) with at least one missing attribute value
before learning. Hence, no dilemma arises when
determining matching ratios within learning.
However, this approach does not contribute to
any enhancement of processing of noisy or partly
specified data.

As for classification, a missing value does not
match any regular (known) value of a selector.
Thus, a selector’s matching ratio is equal to 0 for
any missing value. Consequently, only a path of
nodes in a decision tree or a decision rule that
tests only the regular values during classification
may succeed. If there is no such path of nodes
in a decision tree or such a rule has not been
found, then the default principle is applied; i.e.,
the instance with missing value(s) is classified as
belonging to the majority class.

(U) Strategy Unknown: Unknown Value as
a Regular One: An unknown (missing) value
is considered as an additional attribute value.
Hence, the number of values is increased by
one for each attribute that depicts an unknown
value in the training set. The matching ratio of
a selector comprising the test of the selector Sn

and an instance with the nth attribute missing is
equal to 1 if this test (selector) is of the form

http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_221

Missing Attribute Values 837

M

xn D‹ where “?,” represents the missing (un-
known) value.

Note that selectors corresponding to the nu-
merical (continuous) attributes are formed by
tests xn 2 Vj (where Vj is a numerical interval)
or xn D‹.

(C) Strategy Common: The Most Common
Value: This routine needs the class-sensitive ab-
solute frequencies Fr;n;j to be known before the
actual learning process, and the overall frequen-
cies Fn;j before the classification. A missing
value of a discrete attribute An of an example
belonging to the class Cr is replaced by the class-
sensitive common value, which maximizes the
Laplacian formula Fr;n;j C1

Fn;j CR
over j for the given

r and n. If the maximum is reached for more
than one value of An, then the value Vj with
the greatest frequency Fr;n;j is selected as the
common value.

A missing value within the classification is
replaced by the overall common value, which
maximizes Fn;j over the subscript j . Conse-
quently, the matching ratio yields 0 or 1, as every
missing value is substituted by a concrete, known
value.

The Laplacian formula utilized within the
learning phase prefers those attribute values that
are more predictive for a given class, contrary to
the conventional “maximum frequency” scheme.
For instance, let an attribute have two values:
the value V1 with the absolute frequencies [4, 2]
for the classes C1 and C2, and the value V2 with
frequencies [3, 0] for these two classes. Then,
when looking for the most common value of this
attribute for the class C1, the maximum frequency
chooses the value V1 as the most common value,
whereas the Laplacian formula prefers the value
V2 as the more predictive for the class C1.

(F) Strategy Fraction: Split into Proportional
Fractions:

• Learning phase

The learning phase requires that the relative
frequencies fr;n;j above the entire training set
be known. Each example x of class Cr with
a missing value of a discrete attribute An is

substituted by a collection of examples before
the actual learning phase, as follows: the missing
value of An is replaced by all known values Vj

of An and Cr . The weight of each split example
(with the value Vj) is

wj D w.x/ � fr;n;j ; j D 1; : : : ; J.n/

where w(x) is the weight of the original example
x. The weight is assigned by the designer of the
training set and represents the designer’s subjec-
tive judgment of the importance of that particular
example within the entire training set. The match-
ing ratio of the split examples is accomplished by
(1) in a standard way.

If a training example involves more missing
attribute values, then the above splitting is done
for each missing value. Thus, the matching ratio
may rapidly decrease. Therefore, this strategy,
Fraction, should involve a methodology to avoid
explosion of examples, so that only a predefined
number of split examples with the largest weights
is used for replacement of the original example.

• Classification phase

The routine Fraction works for each paradigm
in a different way. In case of a decision tree, the
example with a missing value for a given attribute
An is split along all branches, with the weights
equal to the overall relative frequencies fn;j .

As for the decision rules, the matching ratio
for a selector xn D Vj is defined by (1) as
� D fn;j for a missing value of An. An instance
with a missing value is tested with the conditions
of all the rules, and is attached to the rule whose
condition yields the maximum matching ratio –
i.e., it is assigned to the class of this rule.
(A) Strategy Anyvalue: Any Value Matches:
A missing value matches any existing attribute
value, both in learning and classification.
Therefore, a matching ratio � of any selector
is equal to 1 for any missing value.

It should be noticed that there is no uniform
scheme in machine learning for processing the
“any-value.” In some systems, an example with
a missing value for attribute An is replaced by

838 Missing Attribute Values

J.n/ examples in which the missing value is in
turn substituted by each regular value Vj ; j D

1; : : : ; J.n/. In other systems, the missing “any-
value” is substituted by any first attribute value
involved in a newly generated rule when covered
examples are being removed from the training
set; see Bruha and Franek (1996) for details.
(Ran) Strategy Random: Substitute by Random
Value A missing value of an attribute An is
substituted by a randomly selected value from
the set of its values Vj ; j D 1; : : : ; J.n/. In
case of the numerical attributes, the process used
in the routine Common is first applied, i.e., the
entire numerical range is partitioned into a pre-
specified number of equal-length intervals. A
missing value of the numerical attribute is then
substituted by the mean value of a randomly
selected interval.

At least two possibilities exist in the random
procedure. Either

• A value is randomly chosen according to the
uniform distribution – i.e., all the values have
the same chance

• A value is chosen in conformity with the
value distribution – i.e., the most frequent
value has the greatest chance of being
selected

To illustrate the difference of the strategies Any-
value and Random, consider this scheme. Let
the attribute A have three possible values, V1,
V2, V3 with the relative distribution [0.5, 0.3,
0.2]. (Here, of course, we consider class-sensitive
distribution for the learning phase, overall one for
classification.)

Strategy Anyvalue for TDIDT replaces the
missing value A D‹ by each possible value A D

Vj , j D 1; 2; 3, and these selectors (attribute-
value pairs) are utilized for selecting a new node
(during learning), or pushed down along an exist-
ing decision tree (classi-fication).

Strategy Anyvalue for covering algorithms: if
the corresponding selector in a complex is for
example, A D V3 then the selector A D‹ in
an instance is replaced by A D V3, so that the
matching always succeeds.

Let the pseudo-random number be for exam-
ple, 0.4 in the strategy Random. Then, in the first
case – i.e., uniform distribution (one can con-
sider the relative distribution has been changed
to [0.33, 0.33, 0.33]) – the missing value A D‹ is
replaced by A D V2. In the second possibility –
i.e., the actual distribution – the missing value is
replaced by A D V1.
(M) Strategy Meta Fill In: Use Another Learning
Topology for Substitution: This interesting strat-
egy utilizes another ML algorithm in order to
fill in the missing attribute values. This second
(or meta) learning algorithm uses the remaining
attribute values of a given example (instance,
observation) for determining (inducing) the miss-
ing value of the attribute An. There are several
approaches to this strategy.

The first one was designed by Breiman; it uses
a surrogate split in order to determine the missing
attribute value. We can observe that a surrogate
attribute has the highest correlation with the orig-
inal one.

Quinlan (1989) was the first to introduce the
meta-fill-in strategy; in fact, this method was
proposed by A. Shapiro during their private com-
munication. It builds a decision tree for each
attribute that attempts to derive a value of the
attribute with a missing value for a given instance
in terms of the values of other attributes of the
given instance.

Lakshminarayan et al. (1996) introduced a
more robust approach where a ML technique (na-
mely, C4.5) is used to fill in the missing values.

Ragel and Cremilleux (1998) developed a
fill-in strategy by using the association rules
paradigm. It induces a set of association rules
according to the entire training set. This method
is able to efficiently process the missing attribute
values.

Missing Value Processing Techniques
in Various ML Paradigms

As mentioned above, various missing value
processing techniques have been embedded into
various ML paradigms. We introduce four such
systems.

Missing Attribute Values 839

M

Quinlan (1986, 1989) applied missing value
techniques into ID3, the most famous TDIDT
(decision tree inducing) algorithm. His list ex-
hibits two additional routines that were not dis-
cussed above:

– The evaluation of an attribute uses the rou-
tines I , C , M , and R (i.e., reduce the ap-
parent information gain from evaluating an
attribute by the proportion of training ex-
amples with the missing value for this at-
tribute)

– When partitioning a training set using the
selected attribute, the routines I , U , C , F , A,
M were used

– The classification phase utilizes the strategies
U , C , F , M , and H (i.e., halt the
classification and assign the instance to the
most likely class)

Quinlan then combined the above routine into
triples each representing a different overall strat-
egy; however, not all the possible combinations
of these routines make sense.

His experiments revealed that the strategies
starting with R or C behave reasonably accu-
rately among them the strategy RFF is the best.
Brazdil and Bruha (1992) improved this strategy
for partitioning a training set. They combined
the strategies U and F ; therefore, they call it
R(UF)(UF) strategy.

Bruha and Franek (1996) discusses the embed-
ding of missing value strategies into the covering
algorithm CN4 (Bruha and Kockova 1994), a
large extension of the well-known CN2 (Clark
and Niblett 1989). A condition of a decision rule
has the form:

cmplx D Sq1& : : : &SqM

where Sqm; m D 1; : : : ; M , is the mth selector
testing the j th value Vj of the qmth attribute, (i.e.,
exhibiting the form xqm D Vj). For the purposes
of processing missing values, we need to define
the matching ratio of the example x and the rule’s
condition Cond. (Bruha and Franek 1996) uses
two definitions:

The product of matching ratios of its selectors:

�.x; cmplx/ D w.x/

MY
mD1

�.x; Sqm/ (2)

or their average:

�.x; cmplx/ D
w.x/

M

MX
mD1

�.x; Sqm/; (3)

where w.x/ is the weight of the example x (1
by default), and � on the right-hand side is the
selector’s matching ratio (1).

The Naive Bayes algorithm can process miss-
ing attribute values in a very simple way, because
the probabilities it works with are, in fact, the
relative frequencies discussed above: the class-
sensitive relative frequencies fr;n;j (for the learn-
ing phase) and the overall relative frequencies
fn;j (for the purposes of classification). When
learning relative frequencies, all strategies can
by applied. Only routine Fraction is useless be-
cause it copies the distribution of the rest of a
training set. When classifying an instance with
missing value An D‹, all strategies can be ap-
plied as well. Section Fraction substitutes this
instances with J.n/ instances by each known
attribute value, and each “fractioned” instance
is attached by the weight fn;j , and classified
separately.

Ragel and Cremilleux (1998) present the miss-
ing value processing strategy for the algorithm
that induced � association rules. Their algorithm
uses a modified version of the routine Ignore.
The instances with missing attribute values are
not removed from the training database but the
missing values are ignored (or “hidden”).

The experiments with the above techniques
for handling missing values have revealed the
following. In both decision tree and decision
rules inducing algorithms, the routine Ignore
is evidently the worst strategy. An Interesting
issue is that the association rule inducing
algorithms use its modified version. In case
of the decision tree inducing algorithms, the
strategy Fraction is one of the best; however,
the decision rules inducing algorithms found

http://dx.doi.org/10.1007/978-1-4899-7687-1_38

840 Missing Attribute Values

it not so efficient. The explanation for this
fact is based on different ways of processing
examples in these two paradigms: in TDIDT, all
training examples are eventually incorporated
into the decision tree generated by the learning
algorithm; on the other hand, the covering
paradigm algorithm generates rules that may
not cover all of the examples from the training
set (as some of the examples are found not to be
representable).

Although the routine Unknown is one of the
“winners” (at least in the rule inducing algorithms
and Brazdil and Bruha (1992), it is not quite
clear how one can interpret, on a philosophi-
cal as well as a semantic level, a branch in a
decision tree or a decision rule that involves a
selector with an attribute equal to “?” (missing
value). Strategy Fraction can be faced by “prob-
lems”: if an example/instance exhibits too many
missing values, then this strategy generates too
many “fractioned” examples with very negligible
weights.

One can find out that each dataset has more
or less its own “favorite” routine for processing
missing attribute values. It evidently depends
on the magnitude of noise and the source of
unknownness in each dataset. The problem of
a “favorite” strategy can be solved by various
approaches. One possibility is to create a small
“window” within a training set, and to check the
efficiency of each strategy in this window, and
then choose the most efficient one. Bruha (2003)
discusses another possibility: investigating the
advantages of utilizing the external background
(domain-specific, expert) knowledge on an at-
tribute hierarchical tree.

Also, the concept of the so-called �meta-com-
biner (Fan et al. 1996) can be utilized. A learning
algorithm processes a given training base for
each strategy for missing values independently;
thus, all the missing value strategies are utilized
in parallel and the meta-classifier makes up its
decision from the results of the base level (Bruha
2004).

The above issue – i.e., selection or com-
bination of various strategies for missing
value processing – is an open field for future
research.

Recommended Reading

Brazdil PB, Bruha I (1992) A note on processing
missing attribute values: a modified technique. In:
Workshop on machine learning, Canadian confer-
ence AI, Vancouver

Bruha I (2003) Unknown attribute value processing
by domain-specific external expert knowledge. In:
7th WSEAS international conference on systems,
Corfu

Bruha I (2004) Meta-learner for unknown attribute
values processing: dealing with inconsistency of
meta-databases. J Intell Inf Syst 22(1):71–84

Bruha I, Franek F (1996) Comparison of various rou-
tines for unknown attribute value processing: cov-
ering paradigm. Int J Pattern Recognit Artif Intell
10(8):939–955

Bruha I, Berka P (2000) Discretization and fuzzifica-
tion of numerical attributes in attribute-based learn-
ing. In: Szczepaniak PS, Lisboa PJG, Kacprzyk J
(eds) Fuzzy systems in medicine. Physica/Springer,
Heidelberg/New York, pp 112–138

Bruha I, Kockova S (1994) A support for decision
making: cost-sensitive learning system. Artif Intell
Med 6: 67–82

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3:261–283

Fan DW, Chan PK, Stolfo SJ (1996) A comparative
evaluation of combiner and stacked generalization.
In: Workshop integrating multiple learning models,
AAAI, Portland

Grzymala-Busse JW (2003) Rough set strategies to
date with missing attribute values. In: IEEE confer-
ence on proceedings of workshop on foundations
and new directions in data mining, data mining,
pp 56–63

Karmaker A, Kwer S (2005) Incorporating an EM-
approach for handling missing attribute-values in
decision tree induction. In: International conference
on hybrid intelligent systems, pp 6–11

Kononenko I (1992) Combining decisions of multiple
rules. In: du Boulay B, Sgurev V (eds) Artificial
intelligence V: methodology, systems, applications,
pp 87–96. Elsevier

Lakshminarayan K et al (1996) Imputation of missing
data using machine learning techniques. In: Confer-
ence knowledge discovery in databases (KDD-96),
pp 140–145

Li J, Cercone N (2006) Assigning missing attribute
values based on rough sets theory. In: IEEE inter-
national conference on granular computing, Atlanta,
pp 31–37

Long WJ, Zhang WX (2004) A novel measure of
compatibility and methods of missing attribute val-
ues treatment in decision tables. In: International
conference on machine learning and cybernetics,
pp 2356–2360

Quinlan JR (1986) Induction of decision trees. Mach
Learn 1:81–106

http://dx.doi.org/10.1007/978-1-4899-7687-1_536

Mixture Model 841

M

Quinlan JR (1989) Unknown attribute values in ID3.
In: Proceedings of international workshop on ma-
chine learning, pp 164–168

Ragel A, Cremilleux B (1998) Treatment of missing
values for association rules. Lecture Notes in Com-
puter Science, vol 1394, pp 258–270

Missing Values

�Missing Attribute Values

Mistake-Bounded Learning

�Online Learning

Mixture Distribution

�Mixture Model

Mixture Model

Rohan A. Baxter
Australian Taxation Office, Sydney, NSW,
Australia

Abstract

A mixture model is a probability model for
representing subpopulations within a data set.
The mixture model is built up from a weighted
combination of component probability distri-
butions. Mixture models can be estimated by
attribution partial membership to the compo-
nent distributions to individual observations in
the data set.

Synonyms

Finite mixture model; Latent class model;
Mixture distribution; Mixture modeling; Mixture
modeling

Definition

A mixture model is a collection of probability
distributions or densities D1; : : : ; Dk and mixing
weights or proportions W1; : : : ; Wk ,where k is
the number of component distributions (McLach-
lan and Peel 2000; Lindsey 1996; Duda et al.
2000).

The mixture model, P.xjD1; : : : ; Dk ; w1; : : : ;

wk/ D
kP

j D1
wj P.xjDj /, is a probability distribu-

tion over the data conditional on the component
distributions of the mixture and their mixing
weights. Mixture models can be used for density
estimation, model-based clustering or unsuper-
vised learning, and classification.

Figure 1 shows one-dimensional data plotted
along the x-axis with tick marks and a histogram
of that data. The probability densities of two
mixture models fitted to that data are then shown.
The one-component mixture model is a Gaussian
density with mean around 2 and standard devi-
ation of 2:3. The two-component mixture model
has one component with mean around 0 and one
component with mean around 4, which reflects
how these simple example data was artificially
generated. The two-component mixture model
can be used for clustering by considering each of
its components as a cluster and assigning cluster
membership based on the relative probability of a
data item belonging to that component. Data less
than 2 will have higher probability of belonging
to the Gaussian with mean 0 component.

Motivation and Background
Mixture models are easy and convenient to apply.
They trade off good power in data representation
with relative ease in building the models. When
used in clustering, a mixture model will have
a component distribution covering each cluster,
while the mixing weights reflect the relative pro-
portion of a cluster’s population. For example,
a two-component mixture model of seal skull
lengths from two different seal species may have
one component with relative proportion 0:3 and
the other 0:7 reflecting the relative frequency of
the two components.

http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_100173
http://dx.doi.org/10.1007/978-1-4899-7687-1_100242
http://dx.doi.org/10.1007/978-1-4899-7687-1_100304
http://dx.doi.org/10.1007/978-1-4899-7687-1_100306
http://dx.doi.org/10.1007/978-1-4899-7687-1_100306

842 Mixture Model

Mixture Model, Fig. 1
Mixture model example for
one-dimensional data

Estimation

In order to use mixture models, the following
choices need to be made by the modeler or by
the mixture model software, based on the char-
acteristics of a particular problem domain and its
datasets:

1. The type of the component distributions (e.g.,
Gaussian, multinomial, etc.)

2. The number of component distributions, k

3. The parameters for the component distribu-
tions (e.g., a one-dimensional Gaussian has a
mean and standard deviation as parameters,
and a higher dimensional Gaussian has a mean
vector and covariance matrix as parameters)

4. Mixing weights, Wi

5. (Optional) component labels, cj for each da-
tum xj , where j D 1 : : : n and n is the number
of data

The fifth item above, component labels, are op-
tional because they are only used in latent class
mixture model frameworks where a definite com-
ponent membership is part of the model spec-
ification. Other mixture model frameworks use
probabilistic membership of each datum to each
component distribution and so do not need ex-
plicit component labels.

The most common way of fitting distribution
parameters and mixture weights is to use the
expectation-maximization (EM) algorithm to find
the maximum likelihood estimates. The EM al-
gorithm is an iterative algorithm that, starting
with initial guesses of parameter values, com-
putes the mixing weights (the expectation step).
The next step is to then compute the parameter
values based on these weights (the maximization
step). The expectation and maximization steps
iterate and convergence is assured (Redner and
Walker 2004). However there is no guarantee
that a global optimum has been found, and so
a number of random restarts may be required
to find what other optima exist (Xu and Jordan
1996).

As an alternative to random restarts, a good
search strategy can be to modify the current best
solution, perhaps by choosing to split, merge,
delete, or add component distributions at random.
This can also be a way to explore mixture models
with different number of components (Figueiredo
and Jain 2002).

Since mixture models are a probabilistic
model class, besides EM, other methods such
as Bayesian methods or methods for graphical
models can be used. These include Markov chain
Monte Carlo inference and variational learning
(Bishop 2006).

Mixture Model 843

M

Choosing the Number of Components

The number of components in a mixture model
is often unknown when used for clustering real-
world data. There have been many methods for
choosing the number of components. The global
maximum for maximum likelihood chooses a
component for every data item, which is usu-
ally undesirable. Criteria based on information
theory or Bayesian model selection choose rea-
sonable numbers of components in many do-
mains (McLachlan and Peel 2000, Chap 6, 5).
There is no universally accepted method, because
there is no universally accepted optimality crite-
ria for clustering or density estimation. The use
of an infinite mixture model, by using an infinite
number of components, is one way to avoid
the number of component problem (Rasmussen
2000).

Types of Component Distributions

Besides Gaussian, other distributions can be used
such as Poisson (for count data), von Mises (for
data involving directions or angles), and Weibull.
Heavy-tailed distributions require particular care
because standard estimation may not work when
mean or variance is infinite (Dasgupta et al.
2005).

Another commonly needed variation is a mix-
ture model to handle a mix of continuous and
categorical features (McLachlan and Peel 2000).
For example, a binomial distribution can be used
to model male/female gender proportions and
Gaussian to model length for data relating to a
seal species sample.

A further extension is to allow components
to depend on covariates, leading to mixtures of
regression models (McLachlan and Peel 2000).
This leads to models such as mixtures of experts
and hierarchical mixtures of experts (McLachlan
and Peel 2000; Bishop 2006) which are flexi-
ble models for nonlinear regression. The com-
bination of mixture models with hidden Markov
models allows the modeling of dependent data
(McLachlan and Peel 2000).

Large Datasets

The EM algorithm can be modified to find mix-
ture models for very large datasets (Bradley et al.
2000). The modification allows for a single scan
of the data and involves identifying compressible
regions of the data.

Theory
A key issue for mixture models is learnability
(Chaudri 2009). The more the component dis-
tributions overlap, the harder they are to learn.
Higher dimensional data also makes learning
harder. Sometimes, these problems can be over-
come by increasing the data quantity, but, in
extremely hard cases, this will not work (Xu and
Jordan 1996; Srebo et al. 2006).

Another issue is the relationship between ade-
quate sample size and the number of components.
A pragmatic policy is to set minimum mixing
weights for component distributions. For exam-
ple, for a dataset of size 100, if mixing weights
are required to be greater than 0.1, this implies
a maximum of ten components that are possible
to be learned from the data with these parameter
settings.

Applications
Mixture model software is often available in the
clustering or density estimation parts of general
statistical and data mining software. More spe-
cialized mixture modeling software for clustering
data has included Autoclass (Autoclass 2010),
Snob (Snob 2010), and mclust (Mclust 2010).

Definition of Key Terms Used Above
Probability distribution: This is the probability
for each value of a random variable with discrete
values.
Probability density: This is a function of a contin-
uous random variable that describes probability at
a given point in the variable space.
Gaussian distribution: A bell-shaped probability
density function with a peak at the mean. It has
two parameters: the mean to give the location of
the peak and the standard deviation to describe
the width of the bell-shaped curve.

844 Mixture Modeling

Mixing weights: These are the parameters of the
mixture model giving the relative weights of each
component distribution. The weights are between
0 and 1 and must sum to 1. In clustering applica-
tions, the mixing weights can be interpreted as the
relative size of a cluster compared to the whole
population.

Cross-References

�Density-Based Clustering
�Density Estimation
�Expectation Maximization Clustering
�Gaussian Distribution
�Graphical Models
�Learning Graphical Models
�Markov Chain Monte Carlo
�Model-based Clustering
�Unsupervised Learning

Recommended Reading

Autoclass (2010) http://ti.arc.nasa.gov/project/
autoclass/. Last Accessed 22 Mar 2010

Bishop CM (2006) Pattern recognition and machine
learning. Springer, New York

Bradley PS, Reina CA, Fayyad UM (2000) Clustering
very large databases using EM mixture models. In:
15th international conference on pattern recogni-
tion, vol 2. Barcelona, pp 2076

Chaudri K (2010) Learning mixture models. http://
themachinelearningforum.org/index.php/overviews/
34-colt-overviews/53-learning-mixture-models.html.
June 2009, Last Accessed 21 Mar 2010

Dasgupta A, Hopcroft J, Kleinberg J, Sandler M (2005)
On learning mixtures of heavy-tailed distributions.
In: Proceedings of foundations of computer science,
Pittsburg

Duda RO, Hart PE, Stork DG (2000) Pattern classifica-
tion, 2nd edn. Wiley-Interscience, New York

Figueiredo MAT, Jain AT (2002) Unsupervised learn-
ing of finite mixture models. IEEE Trans Pattern
Anal Mach Intell 24:381–396

Lindsey BG (1996) Mixture models: theory, geometry
and applications. IMS Publishers, Hayward

McLachlan GJ, Peel D (2000) Finite mixture models.
Wiley, New York

Mclust (2010) http://www.stat.washington.edu/
mclust/. Last Accessed 22 Mar 2010

Rasmussen CE (2000) The infinite Gaussian mixture
model. In: NIPS 12. MIT Press, Cambridge, pp 554–
560

Redner RA, Walker HF (2004) Mixture densities, max-
imum likelihood and the EM algorithm. SIAM Rev
26:195–239

Snob (2010) http://www.datamining.monash.
edu.au/software/snob/. Last Accessed 22 Mar
2010

Srebo N, Shakhnarovich G, Roweis S (2006) An inves-
tigation of computational and informational limits
in Gaussian mixture modeling. In: Proceedings of
ICML, Pittsburgh

Xu L, Jordan MI (1996) On convergence properties
of the EM algorithm for Gaussian mixtures. Neural
Comput 8:129–151

Mixture Modeling

�Mixture Model

Mode Analysis

�Density-Based Clustering

Model Assessment

�Model Evaluation

Model Evaluation

Geoffrey I. Webb
Faculty of Information Technology, Monash
Clayton, Victoria, Australia

Abstract

Model evaluation is the process of assessing a
property or properties of a model.

Synonyms

Evaluation of model performance; Model assess-
ment; Assessment of model performance

http://dx.doi.org/10.1007/978-1-4899-7687-1_70
http://dx.doi.org/10.1007/978-1-4899-7687-1_210
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_465
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_554
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://ti.arc.nasa.gov/project/autoclass/
http://ti.arc.nasa.gov/project/autoclass/
http://themachinelearningforum.org/index.php/overviews/34-colt-overviews/53-learning-mixture-models.html
http://www.stat.washington.edu/mclust/
http://www.stat.washington.edu/mclust/
http://www.datamining.monash.edu.au/software/snob/
http://www.datamining.monash.edu.au/software/snob/
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_70
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_100145
http://dx.doi.org/10.1007/978-1-4899-7687-1_100308
http://dx.doi.org/10.1007/978-1-4899-7687-1_100022

Model Trees 845

M

Motivation and Background

It is often valuable to assess the efficacy of a
model that has been learned. Such assessment
is frequently relative – an evaluation of which
of several alternative models is best suited to a
specific application.

Processes and Techniques

There are many metrics by which a model may be
assessed. The relative importance of each metric
varies from application to application.

The primary considerations often relate
to predictive efficacy – how useful will the
predictions be in the particular context in which
the model is to be deployed. Measures relating
to predictive efficacy include � accuracy, � lift,
�mean absolute error, �mean squared error,
� negative predictive value, � positive predictive
value, � precision, � recall, � sensitivity,
� specificity, and various metrics based on
�ROC analysis.

Computational issues may also be important,
such as a model’s size or its execution time.

In many applications one of the most
important considerations is the ease with which
the model can be understood by the users
or how consistent is it with the users’ prior
beliefs and understanding of the application
domain.

When assessing the predictive efficacy of a
model learned from data, to obtain a reliable
estimate of its likely performance on new data,
it is essential that it not be assessed by consid-
ering its performance on the data from which
it was learned. A learning algorithm must in-
terpolate appropriate predictions for regions of
the � instance space that are not included in
the training data. It is probable that the inferred
model will be more accurate for those regions
represented in the training data than for those
that are not, and hence predictions are likely
to be less accurate for instances that were not
included in the training data. Estimates that have
been computed on the training data are called
� resubstitution estimates. For example, the error

of a model on the training data from which it was
learned is called resubstitution error.

Algorithm evaluation techniques such as
� cross-validation, � holdout evaluation, and
� bootstrap sampling are designed to provide
more reliable estimates of the accuracy of the
models learned by an algorithm than would be
obtained by assessing them on the training data.

Cross-References

�Algorithm Evaluation
�Overfitting
�ROC Analysis

Recommended Reading

Hastie T, Tibshirani R, Friedman J (2001) The ele-
ments of statistical learning. Springer, New York

Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Witten IH, Frank E (2005) Data mining: practical
machine learning tools and techniques, 2nd edn.
Morgan Kaufmann, Amsterdam/Boston

Model Selection

Model selection is the process of choosing an
appropriate mathematical model from a class of
models.

Model Space

�Hypothesis Space

Model Trees

Luı́s Torgo
University of Porto, Porto, Portugal

Synonyms

Functional trees, Linear regression trees, Piece-
wise linear models

http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_474
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_582
http://dx.doi.org/10.1007/978-1-4899-7687-1_100367
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_728
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_100177
http://dx.doi.org/10.1007/978-1-4899-7687-1_100266
http://dx.doi.org/10.1007/978-1-4899-7687-1_100361

846 Model Trees

Definition

Model trees are supervised learning methods that
obtain a type of tree-based � regression model,
similar to � regression trees, with the particu-
larity of having functional models in the leaves
instead of constants. These methods address mul-
tiple regression problems. In these problems we
are usually given a training sample of n observa-
tions of a target continuous variable Y and of a
vector of p predictor variables, x D X1; � � � ; Xp .
Model trees provide an approximation of an un-
known regression function Y D f .x/ C " with
Y 2 < and " 	 N.0; 	2/. The leaves of these
trees usually contain linear regression models,
although some works also consider other types of
models.

Motivation and Background

Model trees are motivated by the purpose of
overcoming some of the known limitations of
regression trees caused by their piecewise con-
stant approximation. In effect, by using con-
stants at the leaves, regression trees provide a
coarse grained function approximation leading
to poor accuracy in some domains. Model trees
try to overcome this by using more complex
models on the leaves. Trees with linear models
in the leaves were first considered in Breiman
and Meisel (1976) and Friedman (1979). Torgo
(1997) has extended the notion of model trees to
other type of models in the tree leaves, namely,
kernel regression, later extended to other type
of local regression models (Torgo 1999, 2000).
The added complexity of the models used in the
leaves increases the computational complexity of
model trees when compared to regression trees
and also decreases their interpretability. In this
context, several works Chaudhuri et al. (1994),
Dobra and Gehrke (2002), Loh (2002), Malerba
et al. (2002), Natarajan and Pednault (2002),
Torgo (2002), Malerba (2004), Potts and Sammut
(2005), and Vogel et al. (2007) have focussed
on obtaining model trees in a computationally
efficient form.

Structure of Learning System

Approaches to model trees can be distinguished
along two dimensions: the criterion used to select
the best splits at each node, i.e., the criterion
guiding the partitioning obtained by the tree, and
the type of models used in the leaves. The choices
along the first dimension are mainly driven by
considerations of computational efficiency. In ef-
fect, the selection of the best split node involves
evaluating many candidate splits. The evaluation
of a binary split (the most common splits in tree-
based models) consists in calculating the error
reduction produced by the split, i.e.,

Δ.s; t/ D Err.t/

�

�
ntL

nt

�Err.tL/C
ntR

nt

�Err.tR/

�
(1)

where t is a tree node with sub-nodes tL and tR
originated by the split test s, while nt , ntL , and
ntR are the cardinalities of the respective sets of
observations on each of these nodes, and Err./ is
a function that estimates the error on a node being
defined as

Err.t/ D
1

nt

X
hxi ;yi i2Dt

.yi � g.Dt //
2 (2)

where Dt is the sample of cases in node t , nt is
the cardinality of this set, and g.Dt / is a function
of the cases in node t .

In standard regression trees, the function g./

is the average of the target variable Y , i.e.,
1

nt

P
hxi ;yi i2Dt

yi . This corresponds to assuming
a constant model on each leaf of the tree.
The evaluation of each candidate split requires
obtaining the models at the respective left and
right branches (Eq. 1). If this model is an average,
rather efficient incremental algorithms can be
used to evaluate all candidate splits. On the
contrary, if g./ is a linear regression model or
even other more complex models, this evaluation
is not so simple, and it is computationally very
demanding, as a result of which systems that use
this strategy (Karalic 1992) become impractical

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_717

Model Trees 847

M

for large problems. In this context, several
authors have adopted the alternative of growing
the trees assuming constant values in the leaves
and then fitting the complex models on each of
the obtained leaves (e.g. Quinlan 1992; Torgo
1997, 1999, 2000). This only requires fitting as
many models as there are leaves in the final tree.
The main drawback of this approach is that the
splits for the tree nodes are selected assuming the
leaves will have averages instead of the models
that in effect will be used. This may lead to splits
that are suboptimal for the models that will be
fit on each leaf (Malerba et al. 2002; Malerba
2004). Several authors have tried to maintain
the consistency of the split selection step with
the models used in the leaves by proposing
efficient algorithms for evaluating the different
splits. In Malerba et al. (2002) and Malerba
(2004) linear models are obtained in a stepwise
manner during tree growth. In Chaudhuri et al.
(1994), Loh (2002), and Dobra and Gehrke
(2002) the computational complexity is reduced
by transforming the original regression problem
into a classification problem. In effect, the best
split is chosen by looking at the distribution of
the sign of the residuals of a linear model fitted
locally. In Torgo (2002), Natarajan and Pednault
(2002), and Vogel et al. (2007) the problem is
addressed by proposing more efficient algorithms
to evaluate all candidate splits. Finally, Potts
and Sammut (2005) proposes an incremental
algorithm to obtain model trees that fights the
complexity of this task by imposing a limit on
the number of splits that are considered for each
node.

The most common form of model used in
leaves is � linear regression. Still, there are sys-
tems considering kernel models (Torgo 1997),
local linear models (Torgo 1999), and partial lin-
ear models (Torgo 2000). These alternatives pro-
vide smoother function approximation, although
with increased computational costs and less inter-
pretable models.

� Pruning in model trees does not bring any
additional challenges when compared to standard
regression trees, and so similar methods are used
for this over-fitting avoidance task. The same
occurs with the use of model trees for obtain-

ing predictions for new test cases. Each case is
“dropped down” the tree from the root node,
following the branches according to the logical
tests in the nodes, till a leaf is reached. The model
in this leaf is used to obtain the prediction for the
test case.

Cross References

�Random Forests
�Regression
�Regression Trees
� Supervised Learning
�Training Data

Recommended Reading

Breiman L, Meisel WS (1976) General estimates of the
intrinsic variability of data in nonlinear regression
models. J Am Stat Assoc 71:301–307

Chaudhuri P, Huang M, Loh W, Yao R (1994)
Piecewise-polynomial regression trees. Stat Sin
4:143–167

Dobra A, Gehrke JE (2002) Secret: a scalable linear
regression tree algorithm. In: Proceedings of the 8th
ACM SIGKDD international conference on knowl-
edge discovery and data mining, Edmonton

Friedman J (1979) A tree-structured approach to non-
parametric multiple regression. In: Gasser T, Rosen-
blatt M (eds) Smoothing techniques for curve es-
timation. Lecture notes in mathematics, vol 757.
Springer, Berlin/New York, pp 5–22

Karalic A (1992) Employing linear regression in re-
gression tree leaves. In Proceedings of ECAI-92,
Vienna. Wiley & Sons

Loh W (2002) Regression trees with unbiased vari-
able selection and interaction detection. Stat Sin
12:361–386

Malerba D, Appice A, Ceci M, Monopoli M (2002)
Trading-off local versus global effects of regression
nodes in model trees. In: ISMIS’02: proceedings of
the 13th international symposium on foundations of
intelligent systems, Lyon. Springer, pp 393–402

Malerba D, Esposito F, Ceci M, Appice A (2004)
Top-down induction of model trees with regression
and splitting nodes. IEEE Trans Pattern Anal Mach
Intell 26(5):612–625

Natarajan R, Pednault E (2002) Segmented regression
estimators for massive data sets. In: Proceedings of
the second SIAM international conference on data
mining (SDM’02), Arlington

Potts D, Sammut C (2005) Incremental learning of
linear model trees. Mach Learn 61(1–3):5–48

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_840

848 Model-Based Clustering

Quinlan J (1992) Learning with continuous classes.
In: Adams, Sterling (eds) Proceedings of AI’92,
Hobart. World Scientific, pp 343–348

Torgo L (1997) Functional models for regression
tree leaves. In: Fisher D (ed) Proceedings of the
14th international conference on machine learning,
Nashville. Morgan Kaufmann Publishers

Torgo L (1999) Inductive learning of tree-based re-
gression models. Ph.D. thesis, Faculty of Sciences,
University of Porto

Torgo L (2000) Partial linear trees. In: Langley P (ed)
Proceedings of the 17th International Conference on
Machine Learning (ICML 2000), Stanford. Morgan
Kaufmann Publishers, pp 1007–1014

Torgo L (2002) Computationally efficient linear re-
gression trees. In: Jajuga K, Sokolowski A, Bock
H (eds) Classification, clustering and data analysis:
recent advances and applications (Proceedings of
IFCS 2002). Studies in classification, data analysis,
and knowledge organization. Springer, Berlin/New
York, pp 409–415

Vogel D, Asparouhov O, Scheffer T (2007) Scalable
look-ahead linear regression trees. In: KDD’07: pro-
ceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, San Jose. ACM, pp 757–764

Model-Based Clustering

Arindam Banerjee and Hanhuai Shan
University of Minnesota, Minneapolis, MN,
USA

Definition

Model-based clustering is a statistical approach
to data clustering. The observed (multivariate)
data is assumed to have been generated from a fi-
nite mixture of component models. Each compo-
nent model is a probability distribution, typically
a parametric multivariate distribution. For exam-
ple, in a multivariate Gaussian mixture model,
each component is a multivariate Gaussian distri-
bution. The component responsible for generat-
ing a particular observation determines the cluster
to which the observation belongs. However, the
component generating each observation as well
as the parameters for each of the component
distributions are unknown. The key learning task
is to determine the component responsible for

generating each observation, which in turn gives
the clustering of the data. Ideally, observations
generated from the same component are inferred
to belong to the same cluster. In addition to infer-
ring the component assignment of observations,
most popular learning approaches also estimate
the parameters of each component in the pro-
cess. The strength and popularity of the methods
stem from the fact that they are applicable for a
wide variety of data types, such as multivariate,
categorical, sequential, etc., as long as suitable
component generative models can be constructed.
Such methods have found applications in several
domains such as text clustering, image process-
ing, computational biology, and climate sciences.

Structure of Learning System

Generative Model
Let X D fx1; : : : ; xng be a dataset on
which a k-clustering is to be performed. Let
p.xj�1/; : : : ; p.xj�k/ be k distributions which
form the components of the mixture model
from which the observed data is assumed to
have been generated, and let � D .�1; : : : ; �k/

denote a prior distribution over the components.
Then ‚ D .�; �/ constitutes the (unknown)
parameters of the generative mixture model,
where � D f�1; : : : ; �kg and � D f�1; : : : ; �kg.

Given the model, an observation is assumed to
be generated by the following two-step process:
(1) randomly pick a component following the dis-
crete distribution � over the components, i.e., the
hth component is chosen with the probability of
�h; (2) the observation is sampled from the com-
ponent distribution, e.g., if the hth component
was chosen, we draw a sample x � p.xj �h/.
Each observation is assumed to be statistically
independent so that they are all generated inde-
pendently following the same two-step process.

Figure 1 gives an example of data drawn
from a mixture of three (k D 3) 2-dimentional
multivariate Gaussians. In the example, the dis-
crete distribution over the component Gaussians
is given by � D .0:2; 0:3; 0:5/. The parameter
set �h, h D 1; 2; 3 for any individual multivariate
Gaussian consists of the mean vector �h and the

Model-Based Clustering 849

M

0 5 10 15

−2

0

2

4

6

8

10

12

x1

x 2

1

2

3

Model-Based Clustering, Fig. 1 Three 2-dimensional
Gaussians

z1 z2 zn

x1 x2 xn

1...k

Model-Based Clustering, Fig. 2 Bayesian network for
a finite mixture model

covariance matrix †h. For the example, we have
�1 D Œ1; 2�; �2 D Œ7; 8�; �3 D Œ16; 3�, and †1 D�

:3 0:5196
0:5196 1

�
, †2 D

�
4 �1:7321
�1:7321 3

�
,

†3 D

�
3 3:0984
3:0984 5

�
.

The generative process could be represented
as a Bayesian network as shown in Fig. 2, where
the arrows denote the dependencies among vari-
ables/parameters. In the Bayesian network, (�; �)
are the parameters of the mixture model, xi are
the observations and ´i are the latent variables
corresponding to the component which generates
xi , i D 1; : : : ; n. To generate an observation
xi , the model first samples a latent variable ´i

from the discrete distribution � , and then samples
the observation xi from component distribution
p.xj�´i /.

Learning
Given a set of observations X D fx1; : : : ; xng

assumed to have been generated from a finite
mixture model, the learning task is to infer the
latent variables ´i for each observation as well as
estimate the model parameters ‚ D .�; �/. In the
Gaussian mixture model example, the goal would
be to infer the component responsible for gen-
erating each observation and estimate the mean
and covariance for each component Gaussian as
well as the discrete distribution � over the three
Gaussians. After learning model parameters, the
posterior probability p.hjxi ; ‚/ of each observa-
tion xi belonging to each component Gaussian
gives a (soft) clustering for the observation.

The most popular approach for learning mix-
ture models is based on maximum likelihood
estimation (MLE) of the model parameters. In
particular, given the set of observations X , one
estimates the set of model parameters which
maximizes the (log-)likelihood of observing the
entire dataset X . For the finite mixture model, the
likelihood of observing any data point xi is given
by

p.xi j‚/ D

kX
hD1

�hp.xi j�h/: (1)

Since the data points in X are assumed to be
statistically independent, the log-likelihood. (In
practice, one typically focuses on maximizing the
log-likelihood log p.X j‚/ instead of the likeli-
hood p.X j‚/ due to both numerical stability and
analytical tractability). of observing the entire
dataset X is given by

log p.X j‚/ D log

nY

iD1

p.xi j�; �/

!

nX
iD1

log

kX

hD1

�hp.xi j�h/

!
: (2)

A direct application of MLE is difficult since
the log-likelihood cannot be directly optimized
with respect to the model parameters. The stan-
dard approach to work around this issue is to
use the expectation maximization (EM) algo-

850 Model-Based Clustering

rithm which entails maximizing a tractable lower
bound to the log-likelihood logp.X j‚/. To this
end, a latent variable ´i is explicitly introduced
for each xi to inform the component that xi

is generated from. The joint distribution of (xi ,
´i) is p.xi ; ´i j��/ D �´i p.xi j�´i /. Let Z D

f´1; : : : ; ´ng denote the set of latent variables
corresponding to X D fx1; : : : ; xng. The joint
log-likelihood of (X , Z) then becomes

log p.X; Zj‚/ D

nX
iD1

log p.xi ; ´i j‚/

D

nX
iD1

.log �´i C log p.xi j�´i //:

(3)

For a given set Z, it is easy to directly opti-
mize (3) with respect to the parameters ‚ D

.�; �). However, Z is actually a random vector
whose exact value is unknown. Hence, the log-
likelihood logp.X; Zj‚/ is a random variable
depending on the distribution of Z. As a result,
EM focuses on optimizing the following lower
bound based on the expectation of logp.X; Zj‚/

where the expectation is taken with respect to
some distribution p.Z/ over the latent variable
set Z. In particular, for any distribution q.Z/, we
consider the lower bound

L.q; ‚/ D E´�qŒlog p.X; Zj�/�CH.q.Z//;

(4)

where the expectation on the first term is with
respect to the posterior distribution q.Z/ and
H.q.Z// denotes the Shannon entropy of the
latent variable set Z � q.Z/. A direct calculation
shows that the difference between the true log-
likelihood in (2) and the lower bound in (4) is
exactly the relative entropy between q.Z/ and the
posterior distribution p.ZjX; ‚/, i.e.,

log p.X j‚/�L.q; ‚/

D KL.q.Z/kp.ZjX; ‚// � 0
(5)

) log p.X j‚/ � L.q; ‚/; (6)

where KL.jj/ denotes the KL-divergence or
relative entropy. As a result, when q.Z/ D

p.ZjX; ‚/, the lower bound is exactly
equal to the log-likelihood logp.X j‚/. EM
algorithms for learning mixture models work
by alternately optimizing the lower bound
L.q; ‚/ over q and ‚. Starting with an initial
guess ‚.0/ of the parameters, in iteration t

such algorithms perform the following two
steps:

E-step Maximize L.q; ‚.t�1// with respect to
q.Z/ to obtain

q.t/.Z/ D argmaxq.Z/ L.q.Z/; ‚.t�1//

D p.ZjX; ‚.t�1//:

(7)

M-step Maximize L.q.t/; ‚/ with respect to
‚, i.e.,

‚.t/ D arg‚maxL.q.t/.Z/; ‚/; (8)

which is equivalent to

‚.t/ D argmax‚

nX
iD1

E´i Œlog p.xi ; ´i j‚/�

since the second term in (4) does not
depend on ‚.

Model-based clustering of multivariate data
is often performed by learning a Mixture of
Gaussians (MoG) using the EM algorithm. In
a MoG model, the parameters corresponding to
each component are the mean and covariance for
each Gaussian given by (�h; †h/, h D 1; : : : ; k.
For a given dataset X , the EM algorithm for
learning MoG starts with an initial guess ‚.0/ for
the parameters where ‚.0/ D f.�

.0/

h
; �

.0/

h
; †

.0/

h
/,

h D 1; : : : ; kg. At iteration t , the following
updates are done:

E-step Update distributions over latent variables
´i , i D 1; : : : ; n as

Model-Based Clustering 851

M

q.t/.´j D h/ D p.´j D hjxj ; ‚.t�1//

D
�

.t�1/

h
p.xi j�

.t�1/

h
; †

.t�1/

h
; /

†k
h0D1�

.t�1/

h0
p.xi j�

.t�1/

h
; †

.t�1/

h
/
:

(9)

M-step Optimizing the lower bound over
f.�h; �h; †h/, h D 1; : : : ; kg yields

�
.t/

h
D

1

n

nX
iD1

p.hjxj ; ‚.t�1//; (10)

�
.t/

h
D

†n
iD1xi p.hjxi ; ‚.t�1//

n�
.t/

h

; (11)

†
.t/
h

D
†n

iD1.xi � �
.t/
h

/.xi � �
.t/
h

/T p.hjxi ; ‚.t�1//

n�
.t/
h

:

(12)

The iterations are guaranteed to lead to mono-
tonically non decreasing improvements of the
lower bound L.q; ‚/. The iterations are typically
run till a suitable convergence criterion is sat-
isfied. On convergence, one gets the estimates
‚ D f.�h; �h; †h/; h D 1; : : : ; kg of
the component parameters as well as the soft
clustering p.hjxi; ‚/ of individual data points.
The alternating maximization algorithm outlined
above can get stuck in a local minima or saddle
point of the objective function. In general, the
iterations are not guaranteed to converge to a
global optima. In fact, different initializations
‚.0/ of parameters can yield different final re-
sults. In practice, one typically tries a set of
different initializations and picks the best among
them according to the final value of the lower
bound obtained. Extensive empirical research has
gone into devising good initialization schemes for
EM algorithm in the context of learning mixture
models.

Recent years have seen progress in the design
and analysis of provably correct algorithms for
learning mixture models for certain well behaved
distributions, where the component distributions
are assumed to be separated from each other

in a well-defined sense. Such algorithms typi-
cally involve projecting data to a suitable lower-
dimensional space where the components sepa-
rate out and the clustering becomes simpler. One
family of algorithms rely on random projections
and are applicable to variety of problems includ-
ing that of learning mixture of Gaussians. More
recent developments include algorithms based on
spectral projections and are applicable to any log-
concave distri-butions.

Related Work
Model-based clustering is intimately related to a
wide variety of centroid-based partitional cluster-
ing algorithms. In particular, the popular kmeans
clustering algorithm can be viewed as a special
case of learning mixture of Gaussians with a
specific covariance structure. Given a dataset X ,
the kmeans problem is to find a partitioning C D

fC h; h D 1; : : : ; kg of X such that the following
objective is minimized:

J.C / D

kX
hD1

X
x2Ch

kx � �hk
2;

where �h is the mean of the points in Ch. Starting
from an initial guess at the cluster means, the
kmeans algorithm alternates between assigning
points to the nearest cluster and updating the clus-
ter means till convergence. Consider the problem
of learning a mixture of Gaussians on X such
that each Gaussian has a fixed covariance matrixP

h D ˇI , where I is the identity matrix and ˇ >

0 is a constant. Then, as ˇ ! 0, maximizing the
scaled lower bound ˇ L.q; ‚/ corresponding to
the mixture modeling problem becomes equiva-
lent to minimizing the kmeans objective. Further,
the EM algorithm outlined above reduces to the
popular kmeans algorithm. In fact, such a reduc-
tion holds for a much larger class of centroid-
based clustering algorithms based on Bregman
divergences, which are a general class of diver-
gence measures derived from convex function
and have popular divergences such as squared
Euclidean distance and KL-divergence as special
cases. Centroid-based clustering with Bregman
divergences can be viewed as a special case

852 Model-Based Control

of learning mixtures of exponential family dis-
tributions with a reduction similar to the one
from mixture of Gaussians to kmeans. Further,
non linear clustering algorithms such as ker-
nel kmeans can be viewed as a special case
of learning mixture of Gaussians in a Hilbert
space.

Recent years have seen generalizations of mix-
ture models to mixed membership models and
their non parametric extensions. Latent Dirichlet
allocation is an example of such a mixed mem-
bership model for topic modeling in text corpora.
The key novelty of mixed membership models is
that they allow a different component proportions
�x for each observation x instead of a fixed
proportion � as in mixture models. The added
flexibility yields superior performance in certain
problem domains.

Recommended Reading

Banerjee A, Merugu S, Dhillon I, Ghosh J (2005)
Clustering with Bregman divergences. J Mach Learn
Res 6:1705–1749

Bilmes J (1997) A gentle tutorial on the EM algo-
rithm and its application to parameter estimation
for Gaussian mixture and hidden Markov mod-
els. Technical Report ICSI-TR-97-02, University of
Berkeley

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet
allocation. J Mach Learn Res 3:993–1022

Dasgupta S (1999) Learning mixtures of Gaussians.
In: IEEE symposium on foundations of Computer
Science (FOCS). IEEE Press, Washington, DC

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

Kannan R, Salmasian H, Vempala S (2005) The spec-
tral method for general mixture models. In: Confer-
ence on learning theory (COLT)

McLachlan GJ, Krishnan T (1996) The EM algorithm
and extensions. Wiley-Interscience, New York

McLachlan GJ, Peel D (2000) Finite mixture models.
Wiley series in probability and mathematical statis-
tics: applied probability and statistics section. Wiley,
New York

Neal RM, Hinton GE (1998) A view of the EM al-
gorithm that justifies incremental, sparse, and other
variants. In: Jordan MI (ed) Learning in graphical
models (pp 355–368). MIT Press, Cambridge, MA

Redner R, Walker H (1984) Mixture densities, maxi-
mum likelihood and the EM algorithm. SIAM Rev
26(2):195–239

Model-Based Control

� Internal Model Control

Model-Based Reinforcement
Learning

Soumya Ray1 and Prasad Tadepalli2
1Case Western Reserve University, Cleveland,
OH, USA
2School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR,
USA

Synonyms

Indirect reinforcement learning

Definition

Model-based reinforcement learning refers to
learning optimal behavior indirectly by learning
a model of the environment by taking actions and
observing the outcomes that include the next state
and the immediate reward. The models predict
the outcomes of actions and are used in lieu of or
in addition to interaction with the environment to
learn optimal policies.

Motivation and Background

�Reinforcement Learning (RL) refers to learning
to behave optimally in a stochastic environment
by taking actions and receiving rewards (Sutton
and Barto 1998). The environment is assumed
Markovian in that there is a fixed probability
of the next state given the current state and
the agent’s action. The agent also receives an
immediate reward based on the current state and
the action. Models of the next-state distribution
and the immediate rewards are referred to as
“action models” and, in general, are not known
to the learner. The agent’s goal is to take actions,
observe the outcomes including rewards and next

http://dx.doi.org/10.1007/978-1-4899-7687-1_413
http://dx.doi.org/10.1007/978-1-4899-7687-1_100211
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Model-Based Reinforcement Learning 853

M

states, and learn a policy or a mapping from
states to actions that optimizes some performance
measure. Typically the performance measure is
the expected total reward in episodic domains
and the expected average reward per time step
or expected discounted total reward in infinite-
horizon domains.

The theory of �Markov Decision Processes
(MDPs) implies that under fairly general condi-
tions, there is a stationary policy, i.e., a time-
invariant mapping from states to actions, which
maximizes each of the above reward measures.
Moreover, there are MDP solution algorithms,
e.g., value iteration and policy iteration (Puter-
man 1994), which can be used to solve the MDP
exactly given the action models. Assuming that
the number of states is not exceedingly high, this
suggests a straightforward approach for model-
based reinforcement learning. The models can
be learned by interacting with the environment
by taking actions, observing the resulting states
and rewards, and estimating the parameters of
the action models through maximum likelihood
methods. Once the models are estimated to a
desired accuracy, the MDP solution algorithms
can be run to learn the optimal policy.

One weakness of the above approach is that
it seems to suggest that a fairly accurate model
needs to be learned over the entire domain to
learn a good policy. Intuitively it seems that we
should be able to get by without learning highly
accurate models for suboptimal actions. A related
problem is that the method does not suggest how
best to explore the domain, i.e., which states to
visit and which actions to execute to quickly learn
an optimal policy. A third issue is one of scaling
these methods, including model learning, to very
large state spaces with billions of states.

The remaining sections outline some of the
approaches explored in the literature to solve
these problems.

Theory and Methods

Systems that solve MDPs using value-based
methods can take advantage of models in at
least two ways. First, with an accurate model,

they can use offline learning algorithms that
directly solve the modeled MDPs. Second, in
an online setting, they can use the estimated
models to guide exploration and action selection.
Algorithms have been developed that exploit
MDP models in each of these ways. We describe
some such algorithms below.

Common approaches to solving MDPs given
a model are value or policy iteration (Sutton
and Barto 1998; Kaelbling et al. 1996). In these
approaches, the algorithms start with a randomly
initialized value function or policy. In value itera-
tion, the algorithm loops through the state space,
updating the value estimates of each state using
Bellman backups, until convergence. In policy
iteration, the algorithm calculates the value of the
current policy and then loops through the state
space, updating the current policy to be greedy
with respect to the backed up values. This is
repeated until the policy converges.

When the model is unknown but being esti-
mated as learning progresses, we could use value
or policy iteration in the inner loop: after updating
our current model estimate using an observed
sample from the MDP, we could solve the up-
dated MDP offline and take an action based on the
solution. However, this is computationally very
expensive. To gain efficiency, algorithms such
as �Adaptive Real-time Dynamic Programming
(ARTDP) (Barto et al. 1995) and DYNA (Sutton
1990) perform one or more Bellman updates
using the action models after each real-world
action and corresponding update to either a state-
based or state-action-based value function. Other
approaches, such as prioritized sweeping (Moore
and Atkeson 1993) and Queue-Dyna (Peng and
Williams 1993), have considered the problem of
intelligently choosing which states to update after
each iteration.

A different approach to discovering the opti-
mal policy is to use algorithms that calculate the
gradient of the utility measure with respect to
some adjustable policy parameters. The standard
policy gradient approaches that estimate the gra-
dient from immediate rewards suffer from high
variance due to the stochasticity of the domain
and the policy. Wang and Dietterich propose a
model-based policy gradient algorithm that alle-

http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_10

854 Model-Based Reinforcement Learning

viates this problem by learning a partial model
of the domain (Wang and Dietterich 2003). The
partial model is solved to yield the value function
of the current policy and the expected number of
visits to each state, which are then used to derive
the gradient of the policy in closed form. The
authors observe that their approach converges
in many fewer exploratory steps compared with
model-free policy gradient algorithms in a num-
ber of domains including a real-world resource-
controlled scheduling problem.

One of the many challenges in model-based
reinforcement learning is that of efficient explo-
ration of the MDP to learn the dynamics and the
rewards. In the “Explicit Explore and Exploit”
or E3 algorithm, the agent explicitly decides
between exploiting the known part of the MDP
and optimally trying to reach the unknown part of
the MDP (exploration) (Kearns and Singh 2002).
During exploration, it uses the idea of “balanced
wandering,” where the least executed action in
the current state is preferred until all actions are
executed a certain number of times. In contrast,
the R-Max algorithm implicitly chooses between
exploration and exploitation by using the prin-
ciple of “optimism under uncertainty” (Brafman
and Tennenholtz 2002). The idea here is to ini-
tialize the model parameters optimistically so that
all unexplored actions in all states are assumed
to reach a fictitious state that yields maximum
possible reward from then on regardless of which
action is taken. Both these algorithms are guaran-
teed to find models whose approximate policies
are close to the optimal with high probability in
time polynomial in the size and mixing time of
the MDP.

Since a table-based representation of the
model is impractical in large state spaces,
efficient model-based learning depends on com-
pact parameterization of the models. Dynamic
Bayesian networks offer an elegant way to
represent action models compactly by exploiting
conditional independence relationships and have
been shown to lead to fast convergence of models
(Tadepalli and Ok 1998). In some cases, choosing
an appropriate prior distribution over model
parameters can be important and lead to faster
learning. In recent work, the acquisition of a

model prior has been investigated in a multitask
setting (Wilson et al. 2007). In this work, the
authors use a hierarchical Bayesian model to
represent classes of MDPs. Given observations
from a new MDP, the algorithm uses the model
to infer an appropriate class (creating a new
class if none seem appropriate). It then uses the
distributions governing the inferred class as a
prior to guide exploration in the new MDP. This
approach is able to significantly speed up the
rate of convergence to optimal policy as more
environments are seen.

In recent work, researchers have explored the
possibility of using approximate models cou-
pled with policy gradient approaches to solve
hard control problems (Abbeel et al. 2006). In
this work, the approximate model is used to
calculate gradient directions for the policy pa-
rameters. When searching for an improved pol-
icy, however, the real environment is used to
calculate the utility of each intermediate policy.
Observations from the environment are also used
to update the approximate model. The authors
show that their approach improves upon model-
based algorithms which only used the approxi-
mate model while learning.

Applications

In this section, we describe some domains where
model-based reinforcement learning has been ap-
plied.

Model-based approaches have been com-
monly used in RL systems that play two-player
games (Tesauro 1995; Baxter et al. 1998).
In such systems, the model corresponds to legal
moves in the game. Such models are easy to
acquire and can be used to perform lookahead
search on the game tree. For example, the TD-
LEAF.�/ system (Baxter et al. 1998) uses the
values at the leaves of an expanded game tree at
some depth to update the estimate of the value
of the current state. After playing a few hundred
chess games, this algorithm was able to reach the
play level of a US Master.

Model-based reinforcement learning has been
used in a spoken dialog system (Singh et al.

Model-Based Reinforcement Learning 855

M

1999). In this application, a dialog is modeled as a
turn-based process, where at each step the system
speaks a phrase and records certain observations
about the response and possibly receives a re-
ward. The system estimates a model from the ob-
servations and rewards and uses value iteration to
compute optimal policies for the estimated MDP.
The authors show empirically that, among other
things, the system finds sensible policies and is
able to model situations that involve “distress
features” that indicate the dialog is in trouble.

It was shown that in complex real-world con-
trol tasks such as pendulum swing-up task on
a real anthropomorphic robot arm, model-based
learning is very effective in learning from demon-
strations (Atkeson and Schaal 1997). A model is
learned from the human demonstration of pendu-
lum swing up, and an optimal policy is computed
using a standard approach in control theory called
linear quadratic regulation. Direct imitation of
the human policy would not work in this case
due to the small differences in the tasks and the
imperfections of the robot controller. On the other
hand, model-based learning was able to learn suc-
cessfully from short demonstrations of pendulum
swing up. However, on a more difficult swing-up
task that includes pumping, model-based learning
by itself was inadequate due to the inaccuracies
in the model. They obtained better results by
combining model-based learning with learning
appropriate task parameters such as the desired
pendulum target angle at an intermediate stage
where the pendulum was at its highest point.

In more recent work, model-based RL has
been used to learn to fly a remote-controlled
helicopter (Abbeel et al. 2007). Again, the use of
model-free approaches is very difficult, because
almost any random exploratory action results in
an undesirable outcome (i.e., a crash). To learn
a model, the system bootstraps from a trajectory
that is observed by watching an expert human fly
the desired maneuvers. In each step, the system
learns a model with the observed trajectory and
finds a controller that works in simulation with
the model. This controller is then tried with the
real helicopter. If it fails to work well, the model
is refined with the new observations and the pro-
cess is repeated. Using this approach, the system

is able to learn a controller that can repeatedly
perform complex aerobatic maneuvers, such as
flips and rolls.

Model-based RL has also been applied to
other domains, such as robot juggling (Schaal and
Atkeson 1994) and job-shop scheduling (Zhang
and Dietterich 1995). Some work has also been
done that compares model-free and model-based
RL methods (Atkeson and Santamaria 1997).
From their experiments, the authors conclude
that, for systems with reasonably simple dynam-
ics, model-based RL is more data efficient, finds
better policies, and handles changing goals better
than model-free methods. On the other hand,
model-based methods are subject to errors due to
inaccurate model representations.

Future Directions

Representing and learning richer action models
for stochastic domains that involve relations, nu-
meric quantities, and parallel, hierarchical, and
durative actions is a challenging open problem.
Efficient derivation of optimal policies from such
rich representations of action models is another
problem that is partially explored in � symbolic
dynamic programming. Constructing good policy
languages appropriate for a given action model
or class of models might be useful to accelerate
learning near-optimal policies for MDPs.

Cross-References

�Adaptive Real-Time Dynamic Programming
�Autonomous Helicopter Flight Using Rein-

forcement Learning
�Bayesian Reinforcement Learning
�Efficient Exploration in Reinforcement Learn-

ing
� Symbolic Dynamic Programming

Recommended Reading

Abbeel P, Coates A, Quigley M, Ng AY (2007) An
application of reinforcement learning to aerobatic
helicopter flight. In: Advances in neural informa-

http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_10
http://dx.doi.org/10.1007/978-1-4899-7687-1_16
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_806

856 Modularity Detection

tion processing systems, vol 19. MIT, Cambridge,
pp 1–8

Abbeel P, Quigley M, Ng AY (2006) Using inaccurate
models in reinforcement learning. In: Proceedings
of the 23rd international conference on machine
learning, Pittsburgh. ACM, New York, pp 1–8

Atkeson CG, Santamaria JC (1997) A comparison
of direct and model-based reinforcement learning.
In: Proceedings of the international conference
on robotics and automation, Albuquerque. IEEE,
pp 20–25

Atkeson CG, Schaal S (1997) Robot learning from
demonstration. In: Proceedings of the fourteenth
international conference on machine learning,
Nashville, vol 4. Morgan Kaufmann, San Francisco,
pp 12–20

Barto AG, Bradtke SJ, Singh SP (1995) Learning to act
using real-time dynamic programming. Artif Intell
72(1):81–138

Baxter J, Tridgell A, Weaver L (1998) TDLeaf(�):
combining temporal difference learning with game-
tree search. In: Proceedings of the ninth Australian
conference on neural networks (ACNN’98), Bris-
bane, pp 168–172

Brafman RI, Tennenholtz M (2002) R-MAX –
a general polynomial time algorithm for near-
optimal reinforcement learning. J Mach Learn Res
2:213–231

Kaelbling LP, Littman ML, Moore AP (1996) Re-
inforcement learning: a survey. J Artif Intell Res
4:237–285

Kearns M, Singh S (2002) Near-optimal reinforce-
ment learning in polynomial time. Mach Learn
49(2/3):209–232

Moore AW, Atkeson CG (1993) Prioritized sweeping:
reinforcement learning with less data and less real
time. Mach Learn 13:103–130

Peng J, Williams RJ (1993) Efficient learning and
planning within the Dyna framework. Adapt Behav
1(4):437–454

Puterman ML (1994) Markov decision processes: dis-
crete dynamic stochastic programming. Wiley, New
York

Schaal S, Atkeson CG (1994) Robot juggling: imple-
mentation of memory-based learning. IEEE Control
Syst Mag 14(1):57–71

Singh S, Kearns M, Litman D, Walker M (1999) Rein-
forcement learning for spoken dialogue systems. In:
Advances in neural information processing systems,
Denver, vol 11. MIT, pp 956–962

Sutton RS (1990) Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. In: Proceedings of the sev-
enth international conference on machine learning,
Austin. Morgan Kaufmann, San Francisco, pp 216–
224

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Tadepalli P, Ok D (1998) Model-based average-reward
reinforcement learning. Artif Intell 100:177–224

Tesauro G (1995) Temporal difference learning and
TD-Gammon. Commun ACM 38(3):58–68

Wang X, Dietterich TG (2003) Model-based policy
gradient reinforcement learning. In: Proceedings of
the 20th international conference on machine learn-
ing, Washington, DC. AAAI, pp 776–783

Wilson A, Fern A, Ray S, Tadepalli P (2007) Multi-
task reinforcement learning: a hierarchical Bayesian
approach. In: Proceedings of the 24th international
conference on machine learning, Corvalis. Omni-
press, Madison, pp 1015–1022

Zhang W, Dietterich TG (1995) A reinforcement learn-
ing approach to job-shop scheduling. In: Proceed-
ings of the international joint conference on artificial
intelligence, Montréal. Morgan Kaufman, pp 1114–
1120

Modularity Detection

�Group Detection

MOO

�Multi-objective Optimization

Morphosyntactic Disambiguation

� POS Tagging

Most General Hypothesis

Synonyms

Maximally general hypothesis

Definition

A hypothesis, h, is a most general hypothesis if
it covers none of the negative examples and there
is no other hypothesis h0 that covers no negative
examples, such that h is strictly more specific
than h0.

http://dx.doi.org/10.1007/978-1-4899-7687-1_355
http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_643
http://dx.doi.org/10.1007/978-1-4899-7687-1_100290

Multi-agent Learning 857

M

Cross-References

�Learning as Search

Most Similar Point

�Nearest Neighbor

Most Specific Hypothesis

Synonyms

Maximally specific hypothesis

Definition

A hypothesis, h, is a most specific hypothesis if
it covers none of the negative examples and there
is no other hypothesis h0 that covers no negative
examples, such that h is strictly more general
than h0.

Cross-References

�Learning as Search

Multi-agent Learning

Yoav Shoham and Rob Powers
Stanford University, Stanford, CA, USA

Definition

Multi-agent learning (MAL) refers to settings in
which multiple agents learn simultaneously. Usu-
ally defined in a game theoretic setting, specifi-
cally in repeated games or stochastic games, the

key feature that distinguishes multi-agent learn-
ing from single-agent learning is that in the for-
mer the learning of one agent impacts the learning
of others. As a result, neither the problem defini-
tion for multi-agent learning nor the algorithms
offered follow in a straightforward way from the
single-agent case. In this first of two entries on
the subject, we focus on the problem definition.

Background

The topic of multi-agent learning (MAL hence-
forth) has a long history in game theory, almost
as long as the history of game theory itself (an-
other more recent term for the area within game
theory is interactive learning). In artificial intelli-
gence (AI), the history of single-agent learning
is of course as rich if not richer; one need not
look further than this encyclopedia for evidence.
And while it is only in recent years that AI has
branched into the multi-agent aspects of learning,
it has done so with something of a vengeance.
If in 2003 one could describe the AI literature
on MAL by enumerating the relevant articles,
today this is no longer possible. The leading
conferences routinely feature articles on MAL, as
do the journals (We acknowledge a simplification
of history here. There is definitely MAL work
in AI that predates the last few years, though
the relative deluge is indeed recent. Similarly, we
focus on AI since this is where most of the action
is these days, but there are also other areas in
computer science that feature MAL material; we
mean to include that literature here as well).

While the AI literature maintains a certain
flavor that distinguishes it from the game the-
oretic literature, the commonalities are greater
than the differences. Indeed, alongside the area of
mechanism design and perhaps the computational
questions surrounding solution concepts such as
the Nash equilibrium, MAL is today arguably one
of the most fertile interaction grounds between
computer science and game theory. The key as-
pect of MAL, which ties the work together and
which distinguishes it from single-agent learning,
is the fact that in MAL one cannot separate the
process of learning from the process of teaching.

http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_100291
http://dx.doi.org/10.1007/978-1-4899-7687-1_444

858 Multi-agent Learning

The learning of one agent causes it to change
its behavior; this causes other agents to adapt
their behavior, which in turn causes the first
agent to keep adapting too. Such reciprocal – or
interactive – learning calls not only for different
types of learning algorithms but also for different
yardsticks by which to evaluate learning. For this
reason, the literature on MAL can be confusing.
Not only do the learning techniques vary, but the
goal of learning and the evaluation measures are
diverse and often left only implicit.

We will couch our discussion in the formal
setting of stochastic games (aka Markov games).
Most of the MAL literature adopts this setting,
and indeed most of it focuses on the even more
narrow class of repeated games. Furthermore,
stochastic games also generalize Markov decision
problems (MDPs), the setting from which much
of the relevant learning literature in AI originates.
These are defined as follows.

A stochastic game can be represented as a
tuple: .N; S; EA; ER; T /. N is a set of agents in-
dexed 1; : : : ; n. S is a set of n-agent stage games.
EA D A1; : : : ; An, with Ai the set of actions

(or pure strategies) of agent i (note that we
assume the agent has the same strategy space in
all games; this is a notational convenience, but
not a substantive restriction). ER D R1; : : : ; Rn,
with Ri W S � EA ! R giving the immediate
reward function of agent i for stage game S .
T W S � EA ! ˘.S/ is a stochastic transition
function, specifying the probability of the next
stage game to be played based on the game just
played and the actions taken in it.

We also need to define a way for each agent to
aggregate the set of immediate rewards received
in each state. For finitely repeated games, we
can simply use the sum or average, while for
infinite games, the most common approaches are
to use either the limit average or the sum of
discounted awards

P1
tD1 ıt rt , where rt is the

reward received at time t .
A repeated game is a stochastic game with

only one stage game, while an MDP is a stochas-
tic game with only one agent. (Note: While most
of the MAL literature lives happily in this setting,
we would be remiss not to acknowledge the liter-
ature that does not. Certainly, one could discuss

learning in the context of extensive-form games
of incomplete and/or imperfect information. Even
farther afield, interesting studies of learning exist
in large population games and evolutionary mod-
els, particularly replicator dynamics (RD) and
evolutionary stable strategies (ESS).)

What is there to learn in stochastic games?
Here we need to be explicit about some aspects of
stochastic games that were glossed over so far. Do
the agents know the stochastic game, including
the stage games and the transition probabilities?
If not, do they at least know the specific game
being played at each stage, or only the actions
available to them? What do they see after each
stage game has been played – only their own
rewards, or also the actions played by the other
agent(s)? Do they perhaps magically see the other
agent(s)’ mixed strategy in the stage game? And
so on.

In general, games may be known or not, play
may be observable or not, and so on. We will fo-
cus on known, fully observable games, where the
other agent’s strategy (or agents’ strategies) is not
known a priori (though in some cases, there is a
prior distribution over it). In our restricted setting,
there are two possible things to learn. First, the
agent can learn the opponent’s (or opponents’)
strategy (or strategies), so that the agent can then
devise the best (or at least a good) response.
Alternatively, the agent can learn a strategy of his
own that does well against the opponents, without
explicitly learning the opponent’s strategy. The
first is sometimes called model-based learning
and the second model-free learning.

In broader settings, there is more to learn. In
particular, with unknown games, one can learn
the game itself. Some will argue that the re-
stricted setting is not a true learning setting, but
(a) much of the current work on MAL, particu-
larly in game theory, takes place in this setting,
and (b) the foundational issues we wish to tackle
surface already here. In particular, our comments
are intended to also apply to the work in the
AI literature on games with unknown payoffs,
work which builds on the success of learning
in unknown MDPs. We will have more to say
about the nature of “learning” in the setting of
stochastic games in the following sections.

Multi-agent Learning 859

M

Problem Definition

When one examines the MAL literature, one can
identify several distinct agendas at play, which
are often left implicit and conflated. A prerequi-
site for success in the field is to be very explicit
about the problem being addressed. Here we list
five distinct coherent goals of MAL research.
They each have a clear motivation and a success
criterion. They can be caricatured as follows:

1. Computational
2. Descriptive
3. Normative
4. Prescriptive, cooperative
5. Prescriptive, noncooperative

The first agenda is computational in nature.
It views learning algorithms as an iterative way
to compute properties of the game, such as so-
lution concepts. As an example, fictitious play
was originally proposed as a way of computing
a sample Nash equilibrium for zero-sum games,
and replicator dynamics has been proposed for
computing a sample Nash equilibrium in sym-
metric games. These tend not to be the most
efficient computation methods, but they do some-
times constitute quick-and-dirty methods that can
easily be understood and implemented.

The second agenda is descriptive – it asks
how natural agents learn in the context of other
learners. The goal here is to investigate formal
models of learning that agree with people’s be-
havior (typically, in laboratory experiments) or
possibly with the behaviors of other agents (e.g.,
animals or organizations). This problem is clearly
an important one and when taken seriously calls
for strong justification of the learning dynamics
being studied. One approach is to apply the ex-
perimental methodology of the social sciences.

The centrality of equilibria in game theory
underlies the third agenda we identify in MAL,
which for lack of a better term we called nor-
mative and which focuses on determining which
sets of learning rules are in equilibrium with each
other. More precisely, we ask which repeated
game strategies are in equilibrium; it just so
happens that in repeated games, most strategies

embody a learning rule of some sort. For ex-
ample, we can ask whether fictitious play and
Q-learning, appropriately initialized, are in equi-
librium with each other in a repeated Prisoner’s
Dilemma game.

The last two agendas are prescriptive; they
ask how agents should learn. The first of these
involves distributed control in dynamic systems.
There is sometimes a need or desire to decen-
tralize the control of a system operating in a
dynamic environment, and in this case, the local
controllers must adapt to each other’s choices.
This direction, which is most naturally modeled
as a repeated or stochastic common-payoff (or
“team”) game. Proposed approaches can be eval-
uated based on the value achieved by the joint
policy and the resources required, whether in
terms of computation, communication, or time
required to learn the policy. In this case, there is
rarely a role for equilibrium analysis; the agents
have no freedom to deviate from the prescribed
algorithm.

In our final agenda, termed “prescriptive, non-
cooperative,” we ask how an agent should act to
obtain high reward in the repeated (and, more
generally, stochastic) game. It thus retains the
design stance of AI, asking how to design an
optimal (or at least effective) agent for a given
environment. It just so happens that this envi-
ronment is characterized by the types of agents
inhabiting it, agents who may do some learning
of their own. The objective of this agenda is to
identify effective strategies for environments of
interest. An effective strategy is one that achieves
a high reward in its environment, where one of
the main characteristics of this environment is the
selected class of possible opponents. This class
of opponents should itself be motivated as being
reasonable and containing opponents of interest.
Convergence to an equilibrium is not a goal in
and of itself.

Recommended Reading

Requisite background in game theory can be
obtained from the many introductory texts
and most compactly from Leyton-Brown and

860 Multi-agent Learning Algorithms

Shoham (2008). Game theoretic work on multi-
agent learning is covered in Fudenberg and
Levine (1998) and Young (2004). An expanded
discussion of the problems addressed under the
header of MAL can be found in Shoham et al.
(2007) and the responses to it in Vohra and
Wellman (2007). Discussion of MAL algorithms,
both traditional and more novel ones, can be
found in the above references, as well as in
Greenwald and Littman (2007).

Fudenberg D, Levine D (1998) The theory of learning
in games. MIT, Cambridge

Greenwald A, Littman ML (eds) (2007) Special issue
on learning and computational game theory. Mach
Learn 67(1–2):3–6

Leyton-Brown K, Shoham Y (2008) Essentials of game
theory. Morgan and Claypool, San Rafael

Shoham Y, Powers WR, Grenager T (2007) If multi-
agent learning is the answer, what is the question?
Artif Intell 171(1):365–377. Special issue on foun-
dations of multiagent learning

Vohra R, Wellman MP (eds) (2007) Special issue
on foundations of multiagent learning. Artif Intell
171(1)

Young HP (2004) Strategic learning and its limits.
Oxford University Press, Oxford

Multi-agent Learning Algorithms

Yoav Shoham and Rob Powers
Stanford University, Stanford, CA, USA

Definition

Multi-agent learning (MAL) refers to settings in
which multiple agents learn simultaneously. Usu-
ally defined in a game theoretic setting, specifi-
cally in repeated games or stochastic games, the
key feature that distinguishes MAL from single-
agent learning is that in the former the learning
of one agent impacts the learning of others. As
a result, neither the problem definition for multi-
agent learning nor the algorithms offered follow
in a straightforward way from the single-agent
case. In this second of two entries on the subject,
we focus on algorithms.

Some MAL Techniques

We will discuss three classes of techniques – one
representative of work in game theory, one more
typical of work in artificial intelligence (AI), and
one that seems to have drawn equal attention
from both communities.

Model-Based Approaches
The first approach to learning we discuss, which
is common in the game theory literature, is the
model-based one. It adopts the following general
scheme:

1. Start with some model of the opponent’s strat-
egy.

2. Compute and play the best response.
3. Observe the opponent’s play and update your

model of his/her strategy.
4. Go to step 2.

Among the earliest, and probably the best-
known, instance of this scheme is fictitious play.
The model is simply a count of the plays by
the opponent in the past. The opponent is as-
sumed to be playing a stationary strategy, and the
observed frequencies are taken to represent the
opponent’s mixed strategy. Thus after five rep-
etitions of the Rochambeau game (R) in which
the opponent played .R; S; P; R; P /, the current
model of his/her mixed strategy is R D 0:4; P D

0:4; S D 0:2.
There exist many variants of the general

scheme, for example, those in which one does
not play the exact best response in step 2. This is
typically accomplished by assigning a probability
of playing each pure strategy, assigning the best
response the highest probability, but allowing
some chance of playing any of the strategies.
A number of proposals have been made of
different ways to assign these probabilities such
as smooth fictitious play and exponential fictitious
play.

A more sophisticated version of the same
scheme is seen in rational learning. The model is
a distribution over the repeated-game strategies.
One starts with some prior distribution; for ex-
ample, in a repeated Rochambeau game, the prior

Multi-agent Learning Algorithms 861

M

could state that with probability 0.5 the opponent
repeatedly plays the equilibrium strategy of the
stage game, and, for all k > 1, with probability
2�k she plays R k times and then reverts to the
repeated equilibrium strategy. After each play,
the model is updated to be the posterior obtained
by Bayesian conditioning of the previous model.
For instance, in our example, after the first non-
R play of the opponent, the posterior places
probability 1 on the repeated equilibrium play.

Model-Free Approaches
An entirely different approach that has been com-
monly pursued in the AI literature is the model-
free one, which avoids building an explicit model
of the opponent’s strategy. Instead, over time
one learns how well one’s own various possible
actions fare. This work takes place under the
general heading of reinforcement learning (we
note that the term is used somewhat differently in
the game theory literature), and most approaches
have their roots in the Bellman equations. We
start our discussion with the familiar single-agent
Q-learning algorithm for computing an optimal
policy in an unknown Markov Decision Problem
(MDP).

Q.s; a/ .1 � ˛t /Q.s; a/C ˛t ŒR.s; a/

C �V.s0/�

V .s/ max
a2A

Q.s; a/:

As is well known, with certain assumptions
about the way in which actions are selected at
each state over time and constraints on the learn-
ing rate schedule, ˛t , Q-learning can be shown to
converge to the optimal value function V �.

The Q-learning algorithm can be extended to
the multi-agent stochastic game setting by having
each agent simply ignore the other agents and
pretend that the environment is passive:

Qi .s; ai / .1 � ˛t /Qi .s; ai /C ˛t ŒRi .s; a/

C �Vi .s
0/�

Vi .s/ max
ai 2Ai

Qi .s; ai /:

Several authors have tested variations of the
basic Q-learning algorithm for MAL. However,
this approach ignores the multi-agent nature of
the setting entirely. The Q-values are updated
without regard for the actions selected by the
other agents. While this can be justified when the
opponents’ distributions of actions are station-
ary, it can fail when an opponent may adapt its
choice of actions based on the past history of the
game.

The first step in addressing this problem is
to define the Q-values as a function of all the
agents’ actions:

Qi .s; a/ .1 � ˛/Qi .s; a/

C ˛ŒRi .s; a/C �Vi .s
0/�:

We are, however, left with the question of how
to update V , given the more complex nature of
the Q-values.

For (by definition, two-player) zero-sum
stochastic games (SGs), the minimax-Q learning
algorithm updates V with the minimax of the
Q-values:

V1.s/ max
P12˘.A1/

min
a22A2

X
a12A1

P1.a1/

Q1.s; .a1; a2//:

Later work proposed other update rules for the
Q and V functions focusing on the special case
of common-payoff (or “team”) games. A stage
game is common-payoff if at each outcome all
agents receive the same payoff. The payoff is,
in general, different in different outcomes, and
thus the agents’ problem is that of coordina-
tion; indeed, these are also called games of pure
coordination.

The work on zero-sum and common-payoff
games continues to be refined and extended;
much of this work has concentrated on probably
optimal trade-offs between exploration and ex-
ploitation in unknown, zero-sum games. Another
work attempted to extend the “Bellman heritage”
to general-sum games (as opposed to zero-sum or
common-payoff games), but the results here have
been less conclusive.

862 Multi-agent Learning Algorithms

Regret Minimization Approaches
Our third and final example of prior work in
MAL is no-regret learning. It is an interesting
example for two reasons. First, it has some
unique properties that distinguish it from
the work above. Second, both the AI and
game theory communities appear to have
converged on it independently. The basic
idea goes back to early work on how to
evaluate the success of learning rules in the
mid-1950s and has since been extended and
rediscovered numerous times over the years
under the names of universal consistency,
no-regret learning, and the Bayes’ envelope.
The following algorithm is a representative
of this body of work. We start by defining
the regret, r t

i .aj ; si / of agent i for playing
the sequence of actions si instead of playing
action aj , given that the opponents played the
sequence s�i .

r t
i .aj ; si js�i / D

tX
kD1

R

aj ; sk

�i

�
�R

sk

i ; sk
�i

�
:

The agent then selects each of its actions with
probability proportional to max

�
r t

i .aj ; si /; 0

at
each time step t C 1.

Some Typical Results

One sees at least three kinds of results in the liter-
ature regarding the learning algorithms presented
above and others similar to them. These are:

1. Convergence of the strategy profile to an (e.g.,
Nash) equilibrium of the stage game in self-
play (i.e., when all agents adopt the learning
procedure under consideration).

2. Successful learning of an opponent’s strategy
(or opponents’ strategies).

3. Obtaining payoffs that exceed a specified
threshold.

Each of these types comes in many flavors;
here are some examples. The first type is perhaps
the most common in the literature, in both game

theory and AI. For example, while fictitious play
does not in general converge to a Nash equilib-
rium of the stage game, the distribution of its
play can be shown to converge to an equilibrium
in zero-sum games, 2 � 2 games with generic
payoffs, or games that can be solved by iterated
elimination of strictly dominated strategies. Sim-
ilarly in AI, minimax-Q learning is proven to
converge in the limit to the correct Q-values for
any zero-sum game, guaranteeing convergence
to a Nash equilibrium in self-play. This result
makes the standard assumptions of infinite ex-
ploration and the conditions on learning rates
used in proofs of convergence for single-agent Q-
learning.

Rational learning exemplifies results of the
second type. The convergence shown is to cor-
rect beliefs about the opponent’s repeated game
strategy; thus it follows that, since each agent
adopts a best response to their beliefs about the
other agent, in the limit the agents will converge
to a Nash equilibrium of the repeated game. This
is an impressive result, but it is limited by two
factors: the convergence depends on a very strong
assumption of absolute continuity; and the beliefs
converged to are correct only with respect to the
aspects of history that are observable given the
strategies of the agents. This is an involved topic,
and the reader is referred to the literature for more
details.

The literature on no-regret learning provides
an example of the third type of result and has
perhaps been the most explicit about the criteria
for evaluating learning rules. For example, one
pair of criteria that have been suggested is as
follows. The first criterion is that the learning
rule should be “safe,” which is defined as the
requirement that the learning rule must guarantee
at least the minimax payoff of the game. (The
minimax payoff is the maximum expected value
a player can guarantee against any possible oppo-
nent.) The second criterion is that the rule should
be “consistent.” In order to be “consistent,” the
learning rule must guarantee that it does at least
as well as the best response to the empirical distri-
bution of play when playing against an opponent
whose play is governed by independent draws
from a fixed distribution. “Universal consistency”

MultiBoosting 863

M

is then defined as the requirement that a learning
rule does at least as well as the best response to
the empirical distribution regardless of the actual
strategy the opponent is employing (this implies
both safety and consistency). The requirement
of “universal consistency” is in fact equivalent
to requiring that an algorithm exhibits no-regret,
generally defined as follows, against all oppo-
nents.

8� > 0;

�
limt!inf

�
1

t
max

aj 2Ai

r t
i .aj ; si js�i /

�
< �

�

In both game theory and artificial intelligence,
a large number of algorithms have been shown to
satisfy universal consistency or no-regret require-
ments.

Recommended Reading

Requisite background in game theory can be
obtained from the many introductory texts, and
most compactly from Leyton-Brown and Shoham
(2008). Game theoretic work on multiagent learn-
ing is covered in Fudenberg and Levine (1998)
and Young (2004). An expanded discussion of
the problems addressed under the header of MAL
can be found in Shoham et al. (2007), and the
responses to it in Vohra and Wellman (2007).
Discussion of MAL algorithms, both traditional
and more novel ones, can be found in the above
references, as well as in Greenwald and Littman
(2007).

Fudenberg D, Levine D (1998) The theory of learning
in games. MIT, Cambridge

Greenwald A, Littman ML (eds) (2007) Special issue
on learning and computational game theory. Mach
Learn 67(1–2):3–6

Leyton-Brown K, Shoham Y (2008) Essentials of
game theory. Morgan and Claypool, San Rafael

Shoham Y, Powers WR, Grenager T (2007) If multi-
agent learning is the answer, what is the question?
Artif Intell 171(1):365–377. Special issue on foun-
dations of multiagent learning

Vohra R, Wellman MP (eds) (2007) Special issue
on foundations of multiagent learning. Artif Intell
171(1)

Young HP (2004) Strategic learning and its limits.
Oxford University Press, Oxford

Multi-armed Bandit

� k-Armed Bandit

Multi-armed Bandit Problem

� k-Armed Bandit

MultiBoosting

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

MultiBoosting (Webb 2000) is an approach to
�multistrategy ensemble learning that combines
features of �AdaBoost and �Bagging. The in-
sight underlying MultiBoosting is that the pri-
mary effect of AdaBoost is � bias reduction,
while the primary effect of bagging is � variance
reduction. By combining the two techniques, it is
possible to obtain both bias and variance reduc-
tion, the cumulative effect often being a greater
reduction in error than can be obtained with the
equivalent amount of computation by either Ad-
aBoost or Bagging alone. Viewed from another
perspective, as the size of an ensemble formed
by either AdaBoost or Bagging is increased, each
successive addition to the ensemble has decreas-
ing effect. Thus, if the benefit of the first few ap-
plications of AdaBoost can be combined with the
benefit of the first few applications of Bagging,
the combined benefit may be greater than simply
increasing the number of applications of one or
the other.

Algorithm

MultiBoosting operates by dividing the ensemble
of classifiers that is to be created into a number
of subcommittees. Each of these subcommittees
is formed by Wagging (Baner and Kohavi 1999),

http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_574
http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_74

864 Multi-criteria Optimization

MultiBoosting. Tablel MultiBoost Algorithm
MultiBoost
input:

• S0, a sequence of m labeled examples
h.x1; y1/; : : : ; .xm; ym/i with labels yj 2 Y .

• base learning algorithm BaseLearn.
• integer T specifying the number of iterations.
• vector of integers Ii specifying the iteration at which

each subcommittee i � 1 should terminate.

1. S1 D S0 with instance weights assigned to be 1.
2. set k D 1.
3. For t D 1 to T
4. If Ik D t then
5. reweight St .
6. increment k.
7. Ct D BaseLearn.S 0/.

8. �t D
˙xj 2St WCt .xj /¤yj

weight.xj /

m
.

9. if �t > 0:5 then
10. reweight St .
11. increment k.
12. go to 7.
13. otherwise if �t D 0 then
14. set ˇt to 10�10

15. reweight St .
16. increment k.
17. otherwise,
18. ˇt D �t

.1��t /
.

19. StC1 D St .
20. For each xj 2 StC1,
21. divide weight .xj / by 2�t if Ct .xj / ¤ yj and

2 .1 � �t / otherwise.
22. if weight .xj / < 10�8, set weight .xj / to 10�8

Output the final classifier: C �.x/ D
argmaxy2Y

P
tICt .x/Dy log 1

ˇt
.

a variant of Bagging that utilizes weighted in-
stances and, hence, is more readily integrated
with AdaBoost. The ensemble is formed by ap-
plying AdaBoost to these subcommittees. The
resulting algorithm is presented in Table 1. The
learned ensemble classifier is C , and the t th
member of the ensemble is Ct . Each St is a vector
of n weighted training objects whose weights
always sum to n. The weights change from turn to
turn (the turns indicated by the subscript t). The
base training algorithm BaseLearn should more
heavily penalize errors on training instances with
higher weights. "t is the weighted error of Ct on
Si . ˇt is a weight assigned to the t th classifier,

C t . The operation rewieght St sets the weights
of the objects in St to random values drawn
from the continuous Poisson distribution and then
standardizes them to sum to n. The code set with
a grey background is the code added to AdaBoost
in order to create MultiBoost.

Cross-References

�AdaBoost
�Bagging
�Ensemble Learning
�Multistrategy Ensemble Learning

Recommended Reading

Bauer E, Kohavi R (1999) An empirical comparison of
voting classification algorithms: bagging, boosting,
and variants. Mach Learn 36(1):105–139

Webb GI (2000) MultiBoosting: a technique for
combining boosting and wagging. Mach Learn
40(2):159–196

Multi-criteria Optimization

�Multi-objective Optimization

Multi-Instance Learning

Soumya Ray1, Stephen Scott2, and
Hendrik Blockeel3;4

1Case Western Reserve University, Cleveland,
OH, USA
2University of Nebraska, Lincoln, NE, USA
3Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
4Leiden Institute of Advanced Computer
Science, Heverlee, Belgium

Synonyms

Multiple-instance learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_574
http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_578

Multi-Instance Learning 865

M

Definition

Multiple-Instance (MI) learning is an extension
of the standard supervised learning setting. In
standard supervised learning, the input consists
of a set of labeled instances each described by
an attribute vector. The learner then induces a
concept that relates the label of an instance to
its attributes. In MI learning, the input consists
of labeled examples (called “bags”) consisting
of multisets of instances, each described by an
attribute vector, and there are constraints that
relate the label of each bag to the unknown labels
of each instance. The MI learner then induces a
concept that relates the label of a bag to the at-
tributes describing the instances in it. This setting
contains supervised learning as a special case: if
each bag contains exactly one instance, it reduces
to a standard supervised learning problem.

Motivation and Background

The MI setting was introduced by Dietterich et al.
(1997) in the context of drug activity prediction.
Drugs are typically molecules that fulfill some
desired function by binding to a target. If we
wish to learn the characteristics responsible for
binding, a possible representation of the problem
is to represent each molecule as a set of low
energy shapes or conformations, and describe
each conformation using a set of attributes. Each
such bag of conformations is given a label cor-
responding to whether the molecule is active
or inactive. To learn a classification model, an
algorithm assumes that every instance in a bag
labeled negative is actually negative, whereas at
least one instance in a bag labeled positive is
actually positive with respect to the underlying
concept.

From a theoretical viewpoint, MI learning oc-
cupies an intermediate position between standard
propositional supervised learning and first-order
relational learning. Supervised learning is a spe-
cial case of MI learning, while MI learning is a
special case of first-order learning. It has been
argued that the MI setting is a key transition be-
tween standard supervised and relational learning

DeRaedt (1998). At the same time, theoretical
results exist that show that, under certain assump-
tions, certain concept classes that are probably
approximately correct (PAC)-learnable (see PAC
Learning) in a supervised setting remain PAC-
learnable in an MI setting. Thus, the MI setting is
able to leverage some of the rich representational
power of relational learners while not sacrificing
the efficiency of propositional learners. Figure 1
illustrates the relationships between standard su-
pervised learning, MI learning, and relational
learning.

Since its introduction, a wide variety of tasks
have been formulated as MI learning problems.
Many new algorithms have been developed, and
well-known supervised learning algorithms ex-
tended, to learn MI concepts. A great deal of
work has also been done to understand what kinds
of concepts can and cannot be learned efficiently
in this setting. In the following sections, we
discuss the theory, methods, and applications of
MI learning in more detail.

Structure of the Problem

The general MI classification task in shown in
Fig. 2. The MI regression task is defined analo-
gously by substituting a real-valued response for
the classification label. In this case, the constraint
used by the learning algorithm is that the response
of any bag is equal to the response of at least
one of the instances in it, for example, it could
be equal to the largest response over all the
instances.

Notice the following problem characteris-
tics:

• The number of instances in each bag can vary
independently of other bags. This implies in
particular that an MI algorithm must be able to
handle bags with as few as one instance (this
is a supervised learning setting) to bags with
large numbers of instances.

• The number of instances in any positive bag
that are “truly positive” could be many more
than one – in fact, the definition does not rule

866 Multi-Instance Learning

Multi-Instance Learning,
Fig. 1 The relationship
between supervised,
multiple-instance (MI), and
relational learning. (a) In
supervised learning, each
example (geometric figure)
is labeled. A possible
concept that explains the
example labels shown is
“the figure is a rectangle.”
(b) In MI learning, bags of
examples are labeled. A
possible concept that
explains the bag labels
shown is “the bag contains
at least one figure that is a
rectangle.” (c) In relational
learning, objects of
arbitrary structure are
labeled. A possible concept
that explains the object
labels shown is “the object
is a stack of three figures
and the bottom figure is a
rectangle”

a b c

Multi-Instance Learning, Fig. 2 Statement of the multiple-instance classification problem

out the case where all instances in a positive
bag are “truly positive.”

• The problem definition does not specify how
the instances in any bag are related to each
other.

Theory and Methods

In this section we discuss some of the key al-
gorithms and theoretical results in MI learning.
We first discuss the methods and results for MI
classification. Then we discuss the work on MI
regression.

Multiple-Instance Classification
Axis-Parallel Rectangles (APRs) are a concept
class that early work in MI classification focused
on. These generative concepts specify upper and
lower bounds for all numeric attributes describing
each instance. An APR is said to “cover” an
instance if the instance lies within it. An APR
covers a bag if it covers at least one instance
within it. The learning algorithm tries to find an
APR such that it covers all positive bags and does
not cover any negative bags.

An algorithm called “iterated-discrimination”
was proposed by Dietterich et al. (1997) to learn
APRs from MI data. This algorithm has two
phases. In the first phase, it iteratively chooses

Multi-Instance Learning 867

M

a set of “relevant” attributes and grows an APR
using this set. This phase results in the construc-
tion of a very “tight” APR that covers just positive
bags. In the second phase, the algorithm expands
this APR so that with high probability a new
positive instance will fall within the APR. The
key steps of the algorithm are outlined below.
Note that initially, all attributes are considered to
be “relevant.”

The algorithm starts by choosing a random
instance in a positive bag. Let us call this instance
I1. The smallest APR covering this instance is
a point. The algorithm then expands this APR
by finding the smallest APR that covers any
instance from a yet uncovered positive bag; call
the newly covered instance I2. This process is
continued, identifying new instances I3, . . . , Ik ,
until all positive bags are covered. At each step,
the APR is “backfitted” in a way that is reminis-
cent of the later Expectation-Maximization (EM)
approaches: each earlier choice is revisited, and
Ij is replaced with an instance from the same bag
that minimizes the current APR (which may or
may not be the same as the one that minimized it
at step j).

This process yields an APR that imposes max-
imally tight bounds on all attributes and covers
all positive bags. Based on this APR, a new set of
“relevant” attributes is selected as follows. An at-
tribute’s relevance is determined by how strongly
it discriminates against negative instances, i.e.,
given the current APR bounds, how many neg-
ative instances the attribute excludes. Features
are then chosen iteratively and greedily accord-
ing to how relevant they are until all negative
instances have been excluded. This yields a sub-
set of (presumably relevant) attributes. The APR
growth procedure in the previous paragraph is
then repeated, with the size of an APR redefined
as its size along relevant attributes only. The APR
growth and attribute selection phases are repeated
until the process converges.

The APR thus constructed may still be too
tight, as it fits narrowly around the positive
bags in the dataset. In the second phase of the
algorithm, the APR bounds are further expanded
using a kernel density estimate approach. Here,
a probability distribution is constructed for each

relevant attribute using Gaussian distributions
centered at each instance in a positive bag. Then,
the bounds on that attribute are adjusted so that
with high probability, any positive instance will
lie within the expanded APR.

Theoretical analyses of APR concepts have
been performed along with the empirical ap-
proach, using Valiant’s “probably approximately
correct” (PAC) learning model (Valiant 1984). In
early work (Long and Tan 1998), it was shown
that if each instance was drawn according to
a fixed, unknown product distribution over the
rational numbers, independently from every other
instance, then an algorithm could PAC-learn
APRs. Later, this result was improved in two
ways (Auer et al. 1998). First, the restriction that
the individual instances in each bag come from
a product distribution was removed. Instead,
each instance is generated by an arbitrary
probability distribution (though each instance
in a bag is still generated independently and
identically distributed (iid) according to that
one distribution). Second, the time and sample
complexities for PAC-learning APRs were
improved. Specifically, the algorithm described
in this work PAC-learns APRs in

O

�
d 3n2

�2
log

nd log.1=ı/

�
log

d

ı

�

using

O

�
d 2n2

�2
log

d

ı

�

time-labeled training bags. Here, d is the dimen-
sion of each instance, n is the (largest) number
of instances per training bag, and " and ı are
parameters to the algorithm. A variant of this
algorithm was empirically evaluated and found to
be successful (Auer 1997).

Diverse Density (Maron 1998; Maron and
Lozano-Pérez 1998) is a probabilistic generative
framework for MI classification. The idea behind
this framework is that, given a set of positive
and negative bags, we wish to learn a concept
that is “close” to at least one instance from each
positive bag, while remaining “far” from every

868 Multi-Instance Learning

instance in every negative bag. Thus, the concept
must describe a region of instance space that is
“dense” in instances from positive bags, and is
also “diverse” in that it describes every positive
bag. More formally, let

DD.t/ D
1

Z

 Y
i

Pr.t jBC
i /
Y

i

Pr.t jB�
i /

!
;

where t is a candidate concept, BC
i represents

the i th positive bag, and B�
i represents the i th

negative bag. We seek a concept that maximizes
DD(t). The concept generates the instances of
a bag, rather than the bag itself. To score a
concept with respect to a bag, we combine t ’s
probabilities for instances using a function based
on noisy-OR Pearl (1998):

Pr.t jBC
i /1.1 �

Y
j

.1 � Pr.BC
ij 2 t /// (1)

Pr.t jB�
i /1

Y
j

.1 � Pr.B�
ij 2 t // (2)

Here, the instances BC
ij and B�

ij belonging to t are
the “causes” of the “event” that “t is the target.”
The concept class investigated by Maron (1998)
is the class of generative Gaussian models, which
are parameterized by the mean � and a “scale”
s D 1

2�2 :

Pr.Bij 2 t /1e�
P

k.sk.Bijk��k/2/;

where k ranges over attributes. Figure 3 illus-
trates a concept that Diverse Density might learn
when applied to an MI dataset.

Diverse Density with k disjuncts is a variant
of Diverse Density that has also been investi-
gated (Maron 1998). This is a class of disjunctive
Gaussian concepts, where the probability of an
instance belonging to a concept is given by the
maximum probability of belonging to any of the
disjuncts.

EM-DD (Zhang and Goldman 2001) is an ex-
ample of a class of algorithms that try to identify
the “cause” of a bag’s label using EM. These al-
gorithms sometimes assume that there is a single

instance in each bag that is responsible for the
bag’s label (though variants using “soft EM” are
possible). The key idea behind this approach is
as follows: from each positive bag, we take a
random instance and assume that this instance
is the relevant one. We learn a hypothesis from
these relevant instances and all negative bags.
Next, for each positive bag, we replace the current
relevant instance by the instance most consistent
with the learned hypothesis (which will initially
not be the chosen instance in general). We then
relearn the hypothesis with these new instances.
This process is continued until the set of chosen
instances does not change (or alternatively, the
objective function of the classifier reaches a fixed
point). This procedure has the advantage of being
computationally efficient, since the learning algo-
rithm only uses one instance from each positive
bag. This approach has also been used in MI
regression described later.

“Upgraded” supervised learning algorithms
can be used in a MI setting by suitably modifying
their objective functions. Below, we summarize
some of the algorithms that have been derived in
this way.

1. �Decision Tree induction algorithms have
been adapted to the MI setting (Blockeel et al.
2005). The standard algorithm measures the
quality of a split on an attribute by considering
the class label distribution in the child nodes
produced. In the MI case, this distribution is
uncertain, because the true instance labels
in positive bags are unknown. However,
some rules have been identified that lead
to empirically good MI trees: (1) use an
asymmetric heuristic that favors early creation
of pure positive (rather than negative) leaves,
(2) once a positive leaf has been created,
remove all other instances of the bags covered
by this leaf; (3) abandon the depth-first or
breadth-first order in which nodes are usually
split, adopting a best-first strategy instead
(indeed, because of (2), the result of tree
learning is now sensitive to the order in which
the nodes are split).

2. �Artificial Neural Networks have been
adapted to the MI setting by representing

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_921

Multi-Instance Learning 869

M

A

B

C

f 1

f 2

Multi-Instance Learning, Fig. 3 An illustration of the
concept that Diverse Density searches for on a simple
MI dataset with three positive bags and one negative
bag, where each instance (represented by the geometric
figures) is described by two attributes, f1 and f2. Each
type of figure represents one bag, i.e., all triangles belong
to one bag, all circles belong to a second bag, and so
forth. The bag containing the red circles is negative, while
the other bags are positive. Region C is a region of high

density, because several instances belong to that region.
Region A is a region of high “Diverse Density,” because
several instances from different positive bags belong to
that region, and no instances from negative bags are
nearby. Region B shows a concept that might be learned if
the learning algorithm assumed that all instances in every
positive bag are positive (Figure adapted from Maron
1998)

the bag classifier as a network that combines
several copies of a smaller network, which
represents the instance classifier, with a
smooth approximation of the max combining
function (Ramon and DeRaedt 2000). Weight
update rules for a backpropagation algorithm
working on this network have been derived.
Later work on MI neural networks has been
performed independently by others (Zhou and
Zhang 2002).

3. �Logistic Regression has been adapted to
the MI setting by using it as an instance-
based classifier and combining the instance-
level probabilities using functions like soft-
max (Ray and Craven 2005) and arithmetic
and geometric averages (Xu and Frank 2004).

4. The k-Nearest Neighbor algorithm has been
adapted to the MI setting by using set-based
distance metrics, such as variants based on the
Hausdorff distance. However, this alone does

not solve the problem – it is possible for a pos-
itive bag to be mistakenly classified negative if
it contains a “true negative” instance that hap-
pens to be much closer to negative instances in
other negative bags. To solve this, a “Citation-
kNN” (Wang and Zucker 2000) approach has
been proposed that also considers, for each
bag B , the labels of those bags for which B

is a nearest neighbor.
5. �Support Vector Machines have been adapted

to the MI setting in several ways. In one
method, the constraints in the quadratic pro-
gram for SVMs is modified to account for the
fact that certain instance labels are unknown
but have constraints relating them (Andrews
et al. 2003). In another method, new kernels
are designed for MI data by modifying stan-
dard supervised SVM kernels (Gartner et al.
2002) or designing new kernels (Tao et al.
2004). The modification allows these MI ker-

http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

870 Multi-Instance Learning

nels to distinguish between positive and nega-
tive bags if the supervised kernel could distin-
guish between (“true”) positive and negative
instances.

6. �Rule learning algorithms have been adapted
to the MI setting in two ways. One method
has investigated upgrading a supervised rule-
learner, the ripper system (Cohen 1995), to the
MI setting by modifying its objective function
to account for bags and addressing several
issues that resulted. Another method has in-
vestigated using general purpose relational al-
gorithms, such as foil (Quinlan 1990) and tilde
(Blockeel and De Raedt 1998), and providing
them with an appropriate � inductive bias so
that they learn the MI concepts. Further, it has
been observed that techniques from MI learn-
ing can also be used inside relational learning
algorithms (Alphonse and Matwin 2002).

A large-scale empirical analysis of several
such propositional supervised learning algo-
rithms and their MI counterparts has been
performed (Ray and Craven 2005). This analysis
concludes that (1) no single MI algorithm
works well across all problems. Thus, different
inductive biases are suited to different problems,
(2) some MI algorithms consistently perform
better than their supervised counterparts but
others do not (hence for these biases there seems
room for improvement), and (3) assigning a
larger weight to false positives than to false
negatives is a simple but effective method to
adapt supervised learning algorithms to the MI
setting. It was also observed that the advantages
of MI learners may be more pronounced if
they would be evaluated on the task of labeling
individual instances rather than bags.

Along with “upgrading” supervised learning
algorithms, a theoretical analysis of supervised
learners learning with MI data has been carried
out (Blum and Kalai 1998). In particular, the MI
problem has been related to the problem of learn-
ing in the presence of classification noise (i.e.,
each training example’s label is flipped with some
probability < 1=2). This implies that any concept
class that is PAC-learnable in the presence of
such noise is also learnable in the MI learning

model when each instance of a bag is drawn
iid. Since many concept classes are learnable
under this noise assumption (using e.g., statistical
queries Kearns 1998), Blum and Kalai’s result
implies PAC learnability of many concept classes.
Further, they improved on previous learnability
results (Auer et al. 1998) by reducing the number
of training bags required for PAC learning by
about a factor of n with only an increase in time
complexity of about logn=".

Besides these positive results, a negative
learnability result describing when it is hard
to learn concepts from MI data is also known
(Auer et al. 1998). Specifically, if the instances of
each bag are allowed collectively to be generated
according to an arbitrary distribution, learning
from MI examples is as hard as PAC-learning
disjunctive normal form (DNF) formulas from
single-instance examples, which is an open
problem in learning theory that is believed to
be hard. Further, it has been showed that if
an efficient algorithm exists for the non-iid
case that outputs as its hypothesis an axis-
parallel rectangle, then NP = RP (Randomized
Polynomial time, see e.g., Papadimitriou 1994),
which is very unlikely.

Learning from structured MI data has received
some attention (McGovern and Jensen 2003). In
this work, each instance is a graph, and a bag
is a set of graphs (e.g., a bag could consist of
certain subgraphs of a larger graph). To learn the
concepts in this structured space, the authors use
a modified form of the Diverse Density algorithm
discussed above. As before, the concept being
searched for is a point (which corresponds to
a graph in this case). The main modification
is the use of the size of the maximal common
subgraph to estimate the probability of a concept
– i.e., the probability of a concept given a bag
is estimated as proportional to the size of the
maximal common subgraph between the concept
and any instance in the bag.

Multiple-Instance Regression
Regression problems in an MI setting have
received less attention than the classification
problem. Two key directions have been explored
in this setting. One direction extends the well-

http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_390

Multi-Instance Learning 871

M

known standard � linear regression method to
the MI setting. The other direction considers
extending various MI classification methods to a
regression setting.

In MI Linear Regression (Ray and Page 2001)
(referred to as multiple-instance regression in the
cited work), it is assumed that the hypothesis
underlying the data is a linear model with Gaus-
sian noise on the value of the dependent variable
(which is the response). Further, it is assumed
that it is sufficient to model one instance from
each bag, i.e., that there is some primary instance
which is responsible for the real-valued label.
Ideally, one would like to find a hyperplane that
minimizes the squared error with respect to these
primary instances. However, these instances are
unknown during training. The authors conjecture
that, given enough data, a good approximation to
the ideal is given by the “best-fit” hyperplane,
defined as the hyperplane that minimizes the
training set squared error by fitting one instance
from each bag such that the response of the fitted
instance most closely matches the bag response.
This conjecture will be true if the nonprimary in-
stances are not a better fit to a hyperplane than the
primary instances. However, exactly finding the
“best-fit” hyperplane is intractable. It is shown
that the decision problem “Is there a hyperplane
which perfectly fits one instance from each bag?”
is NP-complete for arbitrary numbers of bags,
attributes, and at most three instances per bag.
Thus, the authors propose an approximation algo-
rithm which iterates between choosing instances
and learning linear regression models that best fit
them, similar to the EM-DD algorithm described
earlier.

Another direction has explored extending MI
classification algorithms to the regression setting.
This approach (Dooly et al. 2002) uses algo-
rithms like Citation-kNN and Diverse Density
to learn real-valued concepts. To predict a real
value, the approach uses the average of the near-
est neighbor responses or interprets the Gaussian
“probability” as a real number for Diverse Den-
sity.

Recent work has analyzed the Diverse
Density-based regression in the online model
(Angluin 1988; Littlestone 1988) (see � online

learning). In the online model, learning proceeds
in trials, where in each trial a single example is
selected adversarially and given to the learner
for classification. After the learner predicts a
label, the true label is revealed and the learner
incurs a loss based on whether its prediction
was correct. The goal of the online learner is to
minimize the loss over all trials. Online learning
is harder than PAC learning in that there are some
PAC-learnable concept classes that are not online
learnable.

In the regression setting above (Dooly et al.
2006), there is a point concept, and the label of
each bag is a function of the distance between
the concept and the point in the bag closest to
the target. It is shown that similar to Auer et
al.’s lower bound, learning in this setting using
labeled bags alone is as hard as learning DNF.
They then define an MI membership query (MI-
MQ) in which an adversary defines a bag B D

fp1; : : : ; png and the learner is allowed to ask
an oracle for the label of bag B C Ev D fp1 C

Ev; : : : ; pn C Evg for any d -dimensional vector Ev.
Their algorithm then uses this MI-MQ oracle to
online learn a real-valued MI concept in time
O.dn2/.

Applications

In this section, we describe domains where MI
learning problems have been formulated.

Drug activity was the motivating application
for the MI representation (Dietterich et al. 1997).
Drugs are typically molecules that fulfill some
desired function by binding to a target. In this
domain, we wish to predict how strongly a given
molecule will bind to a target. Each molecule is
a three-dimensional entity and takes on multiple
shapes or conformations in solution. We know
that for every molecule showing activity, at least
one of its low energy conformations possesses
the right shape for interacting with the target.
Similarly, if the molecule does not show drug-like
activity, none of its conformations possess the
right shape for interaction. Thus, each molecule is
represented as a bag, where each instance is a low
energy conformation of the molecule. A well-

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_618

872 Multi-Instance Learning

known example from this domain is the MUSK
dataset. The positive class in this data consists of
molecules that smell “musky.” This dataset has
two variants, MUSK1 and MUSK2, both with
similar numbers of bags, with MUSK2 having
many more instances per bag.

Content-Based Image Retrieval is another do-
main where the MI representation has been used
(Maron and Lozano-Pérez 1998; Zhang et al.
2002). In this domain, the task is to find images
that contain objects of interest, such as tigers, in
a database of images. An image is represented
by a bag. An instance in a bag corresponds to
a segment in the image, obtained by some seg-
mentation technique. The underlying assumption
is that the object of interest is contained in (at
least) one segment of the image. For example, if
we are trying to find images of mountains in a
database, it is reasonable to expect most images
of mountains to have certain distinctive segments
characteristic of mountains. An MI learning algo-
rithm should be able to use the segmented images
to learn a concept that represents the shape of a
mountain and use the learned concept to collect
images of mountains from the database.

The identification of protein families has been
framed as an MI problem (Tao et al. 2004). The
objective in that work is to classify given protein
sequences according to whether they belong to
the family of thioredoxin-fold proteins. The given
proteins are first aligned with respect to a motif
that is known to be conserved in the members
of the family. Each aligned protein is represented
by a bag. A bag is labeled positive if the protein
belongs to the family, and negative otherwise.
An instance in a bag corresponds to a position
in a fixed length sequence around the conserved
motif. Each position is described by a vector of
attributes; each attribute describes the properties
of the amino acid at that position, and is smoothed
using the same properties from its neighbors.

Text Categorization is another domain that
has used the MI representation (Andrews et al.
2003; Ray and Craven 2005). In this domain,
the task is to classify a document as belonging
to a certain category or not. Often, whether the
document belongs to the specified category is
the function of a few passages in the document.

These passages are however not labeled with the
category information. Thus, a document could
be represented as a set of passages. We assume
that each positive document (i.e., that belongs to
the specified category) has at least one passage
that contains words that indicate category mem-
bership. On the other hand, a negative document
(that does not belong to the category) has no
passage that contain words indicating category
membership. This formulation has been used to
classify whether MEDLINE documents should
be annotated with specific MeSH terms (Andrews
et al.) and to determine if specific documents
should be annotated with terms from the Gene
Ontology (Ray and Craven 2005).

Time-series data from the hard drives have
been used to define an MI problem (Murray et al.
2005). The task here is to distinguish drives that
fail from others. Each hard drive is a bag. Each
instance in the bag is a fixed-size window over
timepoints when the drive’s state was measured
using certain attributes. In the training set, each
drive is labeled according to whether it failed
during a window of observation. An interesting
aspect to prediction in this setting is that it is done
online, i.e., the algorithm learns a classifier for
instances, which is applied to each instance as it
becomes available in time. The authors learn a
naı̈ve Bayes model using an EM-based approach
to solve this problem.

Discovering useful subgoals in reinforcement
learning has been formulated as an MI problem
(McGovern and Barto 2001). Imagine that a robot
has to get from one room to another by passing
through a connecting door. If the robot knew of
the existence of the door, it could decompose
the problem into two simpler subproblems to be
solved separately: getting from the initial location
in the first room to the door, and then getting from
the door to its destination. How could the robot
discover such a “useful subgoal?” One approach
formulates this as an MI problem. Each trajectory
of the robot, where the robot starts at the source
and then moves for some number of time steps, is
considered to be a bag. An instance in a bag is a
state of the world, that records observations such
as, “is the robot’s current location a door?” Tra-
jectories that reach the destination are positive,

Multi-Instance Learning 873

M

while those that do not are negative. Given this
data, we can learn a classifier that predicts which
states are more likely to be seen on successful tra-
jectories than on unsuccessful ones. These states
are taken to be useful subgoals. In the previous
example, the MI algorithm could learn that the
state “location is a door” is a useful subgoal,
since it appears on all successful trajectories, but
infrequently on unsuccessful ones.

Future Directions

MI learning remains an active research area.
One direction that is being explored relaxes the
“Constraints” in Fig. 2 in different ways (Tao
et al. 2004; Weidmann et al. 2003). For example,
one could consider constraints where at least a
certain number (or fraction) of instances have
to be positive for a bag to be labeled positive.
Similarly, it may be the case that a bag is labeled
positive only if it does not contain a specific
instance. Such relaxations are often studied as
“generalized multiple-instance learning.”

One such generalization of MI learning has
been formally studied under the name “geomet-
ric patterns.” In this setting, the target concept
consists of a collection of APRs, and a bag is
labeled positive if and only if (1) each of its points
lies in a target APR, and (2) every target APR
contains a point. Noise-tolerant PAC algorithms
(Goldman and Scott 1999) and online algorithms
(Goldman et al. 2001) have been presented for
such concept classes. These algorithms make no
assumptions on the distribution used to generate
the bags (e.g., instances might not be generated
by an iid process). This does not violate Auer et
al.’s lower bound since these algorithms do not
scale with the dimension of the input space.

Another recent direction explores the con-
nections between MI and semi-supervised learn-
ings. Semi-supervised learning generally refers
to learning from a setting where some instance
labels are unknown. MI learning can be viewed as
one example of this setting. Exploiting this con-
nection between MI learning and other methods
for semi-supervised learning, recent work (Rah-
mani and Goldman 2006) proposes an approach

where an MI problem is transformed into a semi-
supervised learning problem. An advantage of the
approach is that it automatically also takes into
account unlabeled bags.

Cross-References

�Artificial Neural Networks
�Attribute
�Classification
�Data Set
�Decision Tree
�Expectation Maximization Clustering
� First-Order Logic
�Gaussian Distribution
� Inductive Logic Programming
�Kernel Methods
�Linear Regression
�Nearest Neighbor
�Noise
�Online Learning
� PAC Learning
�Relational Learning
� Supervised Learning

Recommended Reading

Alphonse E, Matwin S (2002) Feature subset selection
and inductive logic programming. In: Proceedings
of the 19th international conference on machine
learning, pp 11–18. Morgan Kaufmann, San Fran-
cisco

Andrews S, Tsochantaridis I, Hofmann T (2003) Sup-
port vector machines for multiple-instance learning.
In Becker S, Thrun S, Obermayer K (eds) Advances
in neural information processing systems, vol 15.
MIT Press, Cambridge, MA, pp 561–568

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

Auer P (1997) On learning from multi-instance exam-
ples: empirical evaluation of a theoretical approach.
In: Proceeding of 14th international conference on
machine learning, pp 21–29. Morgan Kaufmann,
San Francisco

Auer P, Long PM, Srinivasan A (1998) Approximating
hyper-rectangles: learning and pseudorandom sets. J
Comput Syst Sci 57(3):376–388

Blockeel H, De Raedt L (1998) Top-down induction
of first order logical decision trees. Artif Intell
101(1–2):285–297

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

874 Multi-Instance Learning

Blockeel H, Page D, Srinivasan A (2005) Multi-
instance tree learning. In: Proceedings of 22nd in-
ternational conference on machine learning, Bonn,
pp 57–64

Blum A, Kalai A (1998) A note on learning
from multiple-instance examples. Mach Learn J
30(1):23–29

Cohen WW (1995) Fast effective rule induction. In:
Proceedings of the 12th international conference on
machine learning. Morgan Kaufmann, San Fran-
cisco

DeRaedt L (1998) Attribute-value learning versus in-
ductive logic programming: the missing links. In:
Proceedings of the eighth international conference
on inductive logic programming. Springer, New
York, pp 1–8

Dietterich T, Lathrop R, Lozano-Perez T (1997) Solv-
ing the multiple-instance problem with axis-parallel
rectangles. Artif Intell 89(1–2):31–71

Dooly DR, Goldman SA, Kwek SS (2006) Real-valued
multiple-instance learning with queries. J Comput
Syst Sci 72(1):1–15

Dooly DR, Zhang Q, Goldman SA, Amar RA (2002)
Multiple-instance learning of real-valued data. J
Mach Learn Res 3:651–678

Gartner T, Flach PA, Kowalczyk A, Smola AJ (2002)
Multi-instance kernels. In: Sammut C, Hoffmann
A (eds) Proceedings of the 19th international con-
ference on machine learning, pp 179–186. Morgan
Kaufmann, San Francisco

Goldman SA, Kwek SK, Scott SD (2001) Agnostic
learning of geometric patterns. J Comput Syst Sci
6(1):123–151

Goldman SA, Scott SD (1999) A theoretical and em-
pirical study of a noise-tolerant algorithm to learn
geometric patterns. Mach Learn 37(1):5–49

Kearns M (1998) Efficient noise-tolerant learning from
statistical queries. J ACM 45(6):983–1006

Long PM, Tan L (1998) PAC learning axis-aligned
rectangles with respect to product distributions from
multiple-instance examples. Mach Learn 30(1):7–
21

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maron O (1998) Learning from ambiguity. PhD thesis,
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA

Maron O, Lozano-Pérez T (1998) A framework for
multiple-instance learning. In: Jordan MI, Kearns
MJ, Solla SA (eds) Advances in neural information
processing systems, vol 10. MIT Press, Cambridge,
MA, pp 570–576

McGovern A, Barto AG (2001) Automatic discovery
of subgoals in reinforcement learning using diverse
density. In: Proceedings of the 18th international
conference on machine learning. Morgan Kauf-
mann, San Francisco, pp 361–368

McGovern A, Jensen D (2003) Identifying predic-
tive structures in relational data using multiple in-

stance learning. In: Proceedings of the 20th interna-
tional conference on machine learning. AAAI Press,
Menlo Park, pp 528–535

Murray JF, Hughes GF, Kreutz-Delgado K (2005)
Machine learning methods for predicting failures in
hard drives: A multiple-instance application. J Mach
Learn Res 6:783–816

Papadimitriou C (1994) Computational complexity.
Addison-Wesley, Boston

Pearl J (1998) Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann, San Mateo

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Rahmani R, Goldman SA (2006) MISSL: Multiple-
instance semi-supervised learning. In: Proceedings
of the 23rd international conference on machine
learning, pp 705–712. ACM Press, New York

Ramon J, DeRaedt L (2000) Multi instance neural
networks. In: Proceedings of ICML-2000 workshop
on attribute-value and relational learning

Ray S, Craven M (2005) Supervised versus multiple-
instance learning: an empirical comparison. In: Pro-
ceedings of the 22nd international conference on
machine learning. ACM Press, New York, pp 697–
704

Ray S, Page D (2001) Multiple instance regression.
In: Proceedings of the 18th international confer-
ence on machine learning. Morgan Kaufmann,
Williamstown

Tao Q, Scott SD, Vinodchandran NV (2004) SVM-
based generalized multiple-instance learning via
approximate box counting. In: Proceedings of the
21st international conference on machine learn-
ing. Morgan Kaufmann, San Francisco, pp 779–
806

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Wang J, Zucker JD (2000) Solving the multiple-
instance problem: a lazy learning approach. In: Pro-
ceedings of the 17th international conference on ma-
chine learning. Morgan Kaufmann, San Francisco,
pp 1119–1125

Weidmann N, Frank E, Pfahringer B (2003) A
two-level learning method for generalized multi-
instance problems. In: Proceedings of the Euro-
pean conference on machine learning. Springer,
Berlin/Heidelberg, pp 468–479

Xu X, Frank E (2004) Logistic regression and boosting
for labeled bags of instances. In: Proceedings of
the Pacific-Asia conference on knowledge discovery
and data mining, Sydney, pp 272–281

Zhang Q, Goldman S (2001) EM-DD: an im-
proved multiple-instance learning technique. In:
Advances in Neural Information Processing Sys-
tems. MIT Press, Cambridge, MA, pp 1073–
1080

Zhang Q, Yu W, Goldman S, Fritts J (2002) Content-
based image retrieval using multiple-instance learn-
ing. In: Proceedings of the 19th international confer-

Multi-label Learning 875

M

ence on machine learning. Morgan Kaufmann, San
Francisco, pp 682–689

Zhou ZH, Zhang ML (2002) Neural networks for
multi-instance learning. Technical Report, Nanjing
University, Nanjing

Multi-label Learning

Zhi-Hua Zhou1 and Min-Ling Zhang2

1National Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing,
China
2School of Computer Science and Engineering,
Southeast University, Nanjing, China

Abstract

Multi-label learning is an important machine
learning setting where each example is associ-
ated with multiple class labels simultaneously.
Firstly, definition, motivation and background,
and learning system structure for multi-label
learning are introduced. Secondly, multi-
label evaluation measures and the issue
of label correlation are discussed. Thirdly,
basic ideas and technical details on four
representative multi-label learning algorithms
are considered. Lastly, theory, extensions, and
future challenges on multi-label learning are
introduced.

Definition

Multi-label learning is an extension of the stan-
dard supervised learning setting. In contrast to
standard supervised learning where one training
example is associated with a single class label,
in multi-label learning, one training example is
associated with multiple class labels simultane-
ously. The multi-label learner induces a function
that is able to assign multiple proper labels (from
a given label set) to unseen instances. Multi-label
learning reduces to standard supervised learning
by restricting the number of class labels per
instance to one.

Motivation and Background

Most classification learning approaches treat the
class values as disjoint – each object may belong
only to a single class, such as on or off. Some ap-
plications, however, have categories that are not
mutually exclusive – a single object may belong
to multiple classes (Zhang and Zhou 2014). For
instance, in text categorization, a news document
on presidential election can cover multiple topics
such as politics, economics, diplomacy, and TV
debate (Schapire and Singer 2000); in image
classification, a natural scene image can contain
multiple sceneries such as the sky, sea, boat, and
beach (Boutell et al. 2004). Actually, multi-label
objects are often encountered in many applica-
tions such as bioinformatics, multimedia content
annotation, information retrieval, and web mining
(Zhang and Zhou 2014).

The goal of multi-label learning is to induce
a function that can predict a subset of labels
for an unseen instance from a given label set.
Research into this important problem emerged in
early 2000 and significant research progress has
followed (Zhang and Zhou 2014).

Structure of Learning System

Let X D Rd denote the d -dimensional instance
space and Y D fy1; y2; : : : ; yqg denote the label
space consisting of q class labels. Given the
multi-label training set D D f.xi ; Yi / j 1 � i �

mg, the task of multi-label learning is to learn a
function h W X 7! 2Y mapping from the instance
space to the powerset of the label space. For each
multi-label training example .xi ; Yi /, xi 2 X is
a d -dimensional feature vector and Yi � Y is the
set of class labels associated with xi . The learned
function h. � / predicts the proper label set for any
unseen instance x as h.x/ � Y .

An alternative model to h. � / returned by most
multi-label learning systems corresponds to a
real-valued function f W X � Y 7! R. Here,
f .x; y/ can be regarded as the predictive confi-
dence of y 2 Y being a proper label for x. In
other words, for the multi-label example .x; Y /,
the predictive output f .x; y0/ on relevant label

876 Multi-label Learning

y0 2 Y should be larger than the predictive
output f .x; y00/ on irrelevant label y00 … Y ,
i.e., f .x; y0/ > f .x; y00/. By referring to a
threshold function t W X 7! R, h. � / can be
derived from the real-valued function f . � ; � / by:
h.x/ D fy j f .x; y/ > t.x/; y 2 Yg.

Evaluation Measures
In standard supervised learning, popular mea-
sures used to evaluate the learning performance
include accuracy, precision, recall, etc. In
multi-label learning, however, these single-
label evaluation measures cannot be adopted
directly due to the multi-label nature of the data.
Therefore, a number of evaluation measures
have been designed for multi-label learning.
These measures can be roughly categorized
into two groups, i.e., example-based measures
and label-based measures (Zhang and Zhou
2014). Example-based measures evaluate the
generalization performance of the learned multi-
label predictor on each test example separately
and then return the mean value across the
test set; label-based measures evaluate the
generalization performance of the predictor on
each class label separately and then return the
macro-/micro-averaging value across all class
labels.

Let S D f.xi ; Yi / j 1 � i � pg denote
the multi-label test set, and h. � / (or equivalently
f . � ; � /) denote the learned multi-label predictor.
Typical example-based measures include:

• Subset Accuracy: 1
p

Pp
iD1ŒŒh.xi / D Yi ��. This

measure evaluates the proportion of test exam-
ples whose predicted label set coincides with
the ground-truth label set. Here, ŒŒ��� returns 1
if predicate � holds and 0 otherwise.

• Hamming Loss: 1
p

Pp
iD1

1
q
jh.xi /ΔYi j. This

measure evaluates the proportion of misclas-
sified instance-label pairs, i.e., a relevant label
is missed or an irrelevant label is predicted.
Here, Δ stands for the symmetric difference
between two sets and j � j measures the cardi-
nality of a set.

• One-Error: 1
p

Pp
iD1ŒŒarg maxy2Y f .xi ; y/ …

Yi ��. This measure evaluates the proportion of

test examples whose top-1 predicted label fails
to be a relevant label.

• Coverage: 1
p

Pp
iD1maxy2Yi

rankf .xi ; y/�1.
This measure evaluates the number of steps
needed to move down the ranked label list
so as to cover all relevant labels of the test
example. Here, rankf .x; y/ returns the rank
of class label y within label space Y according
to the descending order specified by f .x; � /.

• Ranking Loss: 1
p

Pp
iD1

1
jYi jj NYi j

jf.y0; y00/j

f .x; y0/ � f .xi ; y00/; .y0; y00/ 2 Yi � NYigj.
This measure evaluates the proportion of
incorrectly ordered label pairs, i.e., an
irrelevant label yields larger output value than
a relevant label. Here, NYi is the complementary
set of Yi in Y .

• Average Precision: 1
p

Pp
iD1

1
jYi j

P
y2Yi

jfy0jrankf .xi ;y0/�rankf .xi ;y/;y02Yi gj

rankf .xi ;y/
.

This measure evaluates the average proportion
of labels ranked higher than a relevant label
y 2 Yi that are also relevant.

For hamming loss, one-error, coverage, and rank-
ing loss, the smaller the value, the better the
generalization performance. For other example-
based measures, the larger the value, the better
the performance.

For label-based measures, to characterize the
binary classification performance of the predictor
on each label yj 2 Y , four basic quantities
regarding the test examples are commonly used:
TPj (#true positive), FPj (#false positive), TNj

(#true negative), and FNj (#false negative). It
is evident that most binary classification mea-
sures can be derived based on these quantities.
Let B.TPj ; FPj ; TNj ; FNj / denote a certain
binary classification measure, label-based multi-
label measures can be defined in either of the
following ways:

• Macro-B: 1
q

Pq
j D1 B.TPj ; FPj ; TNj ; FNj /.

This multi-label measure is derived by assum-
ing equal importance for each label.

• Micro-B: B.
Pq

j D1 TPj ;
Pq

j D1 FPj ;
Pq

j D1

TNj ;
Pq

j D1 FNj /. This multi-label measure
is derived by assuming equal importance for
each example.

Multi-label Learning 877

M

Among popular choices of B 2 faccuracy;

precision; recal l; F g, the larger the macro-
/micro-B value, the better the performance.

Label Correlation
The major challenge of learning from multi-
label data lies in the potentially tremendous-sized
output space. Here, the number of possible label
sets to be predicted grows exponentially as the
number of class labels increases. For example,
a label space with a moderate number of 20
class labels will lead to more than 1 million
(i.e., 220) possible label sets. Thus, many label
sets will rarely have examples appearing in the
training set, leading to poor performance if they
are learned separately.

To deal with the challenge of huge output
space, a common practice is to exploit the la-
bel correlation to facilitate the learning process
(Zhang and Zhou 2014). For instance, the prob-
ability of an image having label Africa would be
high if we know it already has labels grassland
and lions; a document is unlikely to be labeled as
recreation if it is related to legislation and police.
Actually, the fundamental issue distinguishing
multi-label learning from traditional supervised
learning lies in the fact that in multi-label learning
it is crucial to exploit the label relations.

A widely-used strategy is to estimate the cor-
relation among labels directly from the train-
ing examples based on the assumed correlation
model. Based on the order of correlations be-
ing modeled, the estimation techniques can be
roughly categorized into three categories:

(a) First-order techniques tackling multi-label
learning task in a label-by-label style and
thus ignoring the coexistence of other labels,
such as decomposing the multi-label learning
problem into a number of independent
binary classification problems (one per label)
(Boutell et al. 2004; Zhang and Zhou 2007)

(b) Second-order techniques tackling multi-label
learning task by considering pairwise corre-
lations between labels, such as the ranking
between relevant and irrelevant labels (Elis-
seeff and Weston 2002; Schapire and Singer
2000)

(c) High-order techniques tackling multi-label
learning task by considering high-order
correlations among labels, such as assuming
the correlations among all labels (Read
et al. 2011) or random subsets of labels
(Tsoumakas et al. 2011)

Another strategy is to adopt domain knowledge
about label relations as input to the multi-label
learning algorithms. One conventional source of
domain knowledge corresponds to the label hi-
erarchies (or taxonomies) available in some ap-
plications such as text classification (Rousu et al.
2005). There is also a recent strategy which tries
to discover and exploit label relations during the
procedure of learning the multi-label predictors
(Zhang and Zhou 2014).

Learning Algorithms
To design learning algorithms for multi-label
data, two complementary philosophies naturally
arise. On one hand, algorithm adaptation
methods work by fitting algorithms to data,
i.e., adapting popular standard supervised
learning algorithms to deal with multi-label
data. On the other hand, problem transformation
methods work by fitting data to algorithms, i.e.,
transforming multi-label data to accommodate
other well-established learning frameworks.
During the past decade, lots of algorithms have
been developed following these philosophies
(Zhang and Zhou 2014). This section briefly
introduces four representative algorithms,
including algorithm adaptation methods ML-
KNN (multi-label k-nearest neighbor) (Zhang and
Zhou 2007) and RANK-SVM (ranking support
vector machine) (Elisseeff and Weston 2002),
as well as problem transformation methods CC
(classifier chain) (Read et al. 2011) and RAKEL

(random k-labelsets) (Tsoumakas et al. 2011).
These algorithms are simply chosen to manifest
the essentials of two key design philosophies,
which by no means exclude the importance of
other multi-label learning algorithms.

ML-KNN adapts the k-nearest neighbor tech-
nique to deal with multi-label data (Zhang and
Zhou 2007). Specifically, the maximum a posteri-
ori (MAP) rule is utilized to make prediction for

878 Multi-label Learning

unseen instance by reasoning with the labeling
information from its neighbors. Given the multi-
label training set D and unseen instance x, let
N .x/ denote the set of k nearest neighbors of
x identified in D. Accordingly, the following
statistics can be calculated based on the labeling
information of the neighbors in N .x/: Cj DP

.xi ;Yi /2N .x/ŒŒyj 2 Yi ��. Namely, Cj records the
number of neighbors which take the j -th class
label yj as their relevant label. Let P.Hj j Cj /

represent the posterior probability that the event
of Hj (i.e., x has yj as its relevant label) holds
under the condition of Cj (i.e., x has exactly Cj

neighbors with relevant label yj). Similarly, let
P.:Hj j Cj / represent the posterior probability
that Hj does not hold under the same condition.
Based on the MAP rule, the label set for x is
predicted by

Y D fyj j P.Hj j Cj /

> P.:Hj j Cj /; 1 � j � qg (1)

According to the Bayes rule, we have P.Hj j

Cj / / P.Hj / �P.Cj j Hj / and P.:Hj j

Cj / / P.:Hj / �P.Cj j :Hj /. Therefore,
it suffices to make prediction by estimating the
prior probabilities fP.Hj /, P.:Hj /g and the
likelihoods fP.Cj j Hj /, P.Cj j :Hj /g.
These probabilistic terms can be estimated from
the training set via the frequency counting strat-
egy (Zhang and Zhou 2007). In general, ML-
KNN assumes label independence in its learning
procedure and optimizes the evaluation measure
of hamming loss (or equivalently macro-/micro-
accuracy).

RANK-SVM adapts large margin methods to
deal with multi-label data (Elisseeff and Weston
2002). Specifically, a set of linear classifiers are
optimized to minimize the empirical ranking loss.
Given the learning system with q linear classifiers
W D f.wj ; bj / j 1 � j � qg, its margin
over each multi-label training example .xi ; Yi /

corresponds to

�i D min
.yj ;yk/2Yi � NYi

hwj � wk ; xi i C bj � bk

jjwj � wkjj

(2)

Here, h � ; � i returns the inner product between
two vectors. Conceptually, Eq. (2) considers the
signed L2-distance of xi to the decision hy-
perplane of every relevant-irrelevant label pair
.yj ; yk/: hwj � wk ; xi C bj � bk D 0, and then
returns the minimum as the margin on .xi ; Yi /.
Accordingly, the margin of the learning system
on the whole training set D is min.xi ;Yi /2D �i .
Under the ideal case that the learning system
can properly rank every relevant-irrelevant label
pair for each training example, the large margin
optimization problem turns out to be

min
W

max
1�j <k�q

jjwj � wkjj
2

s:t: W hwj � wk ; xi i C bj � bk � 1

1 � i � m; .yj ; yk/ 2 Yi � NYi (3)

By approximating max by sum and intro-
ducing slack variables to accommodate violated
constraints, Eq. (3) can be re-formulated as

min
fW;Ξg

qX
j D1

jjwj jj
2CC

mX
iD1

1

jYi jj NYi j

X
.yj ;yk/2Yi � NYi

ijk

s:t: W hwj � wk ; xi i C bj � bk � 1 �
ijk

ijk � 0; 1 � i � m; .yj ; yk/ 2 Yi � NYi

(4)

Here, Ξ D f
ijk j 1 � i � m; .yj ; yk/ 2 Yi � NYig

is the set of slack variables. The first objective
term in Eq. (4) corresponds to the margin of the
learning system, whereas the second objective
term corresponds to the empirical ranking loss.
The solution to Eq. (4) can be found by invoking
standard quadratic programming (QP) procedure
in its primal form or incorporating kernel trick
in its dual form. The label set for unseen in-
stance is predicted by thresholding the output of
each classifier in W . In general, RANK-SVM as-
sumes second-order label correlations (relevant-
irrelevant label pair) in its learning procedure and
optimizes the evaluation measure of ranking loss.

CC transforms the multi-label learning prob-
lem into a chain of binary classification prob-
lems. Specifically, subsequent classifiers in the

Multi-label Learning 879

M

chain are built upon the predictions of preceding
ones. Without loss of generality, suppose all the
class labels in Y are ordered in a chain: y1

y2 � � � yq . For the j -th class label yj in
the chain, a corresponding binary training set can
be constructed by taking the relevancy of each
preceding label as an extra feature to the instance:

Dj D
˚�

Œxi ; prei
j �; �.Yi ; yj /

j 1 � i � m

�
where prei

j D .�.Yi ; y1/; : : : ; �.Yi ; yj �1//T

(5)

Here, �.Y; y/ D ŒŒy 2 Y �� represents the binary
assignment of class label y w.r.t. label set Y . As
shown in Eq. (5), each instance xi is appended
with an extra feature vector prei

j representing
the relevancy of those labels preceding yj . After
that, a binary classifier gj W X � f0; 1gj �1 7!

f0; 1g can be induced for yj by utilizing some
binary learning algorithm B, i.e., gj � B.Dj /.
For unseen instance x, its label set is predicted
by traversing the classifier chain iteratively. The
predicted binary assignment of yj on x, denoted
as �x

j , are recursively determined by

�x
1 D g1.x/

�x
j D gj .Œx; �x

1 ; : : : ; �x
j �1�/ .2 � j � q/ (6)

Therefore, the predicted label set corresponds
to: Y D fyj j �x

j D 1; 1 � j � qg.
Evidently, the chaining order over the class labels
has significant influence on the effectiveness of
CC. To account for the effect of chaining order,
an ensemble of classifier chains can be built with
diverse random chaining orders. In general, CC
assumes high-order label correlations (among all
labels) in its learning procedure and optimizes the
evaluation measure of hamming loss (or equiva-
lently macro-/micro-accuracy).

RAKEL transforms the multi-label learning
problem into an ensemble of multi-class classi-
fication problems. Specifically, each component
learner in the ensemble is generated by consider-
ing a random subset of Y . Let Sk � Y denote a
k-labelset which contains k random class labels
in Y . Accordingly, let 	Sk

W 2Sk 7! N denote

the injective function mapping from the power
set of Sk to natural numbers. In view of Sk ,
a corresponding multi-class training set can be
constructed by shrinking the original label space
Y into Sk :

DSk
D
˚�

xi ; 	Sk
.Yi \ Sk/

j 1 � i � m

�
(7)

Here, the set of newly transformed labels in DSk

corresponds to ΓSk
D f	Sk

.Yi \ Sk/ j 1 �
i � mg. As shown in Eq. (7), each instance
xi is transformed into a multi-class single-label
example by mapping the intersection between
Yi and Sk into a new label in ΓSk

. After that,
a multi-class classifier gSk

W X 7! ΓSk
can

be induced for Sk by utilizing some multi-class
learning algorithm M, i.e., gSk

 � M.DSk
/. To

entirely explore the original label space Y with
k-labelsets, an ensemble of n random k-labelsets
S.r/

k
.1 � r � n/ can be created where each

of them leads to a multi-class classifier gS.r/

k

. � /.

For unseen instance x, its label set is predicted by
referring to the following two quantities:

�.x; yj / D

nX
rD1

hh
yj 2 S.r/

k

ii

�.x; yj / D

nX
rD1

��
yj 2 	�1

S.r/

k

gS.r/

k

.x/
���

(8)

Conceptually, �.x; yj / counts the maximum
number of votes that yj can receive from the
ensemble, whereas �.x; yj / counts the actual
number of votes that yj does receive from the
ensemble. Therefore, the predicted label set cor-
responds to: Y D fyj j �.x; yj /=�.x; yj / >

0:5; 1 � j � qg. In general, CC assumes
high-order label correlations (among subsets of
labels) in its learning procedure and optimizes the
evaluation measure of subset accuracy (measured
w.r.t. k-labelset).

It is worth mentioning that many multi-label
learning algorithms mainly work under the sce-
narios where the label space Y contains mod-
erate number (tens or hundreds) of class labels.
Nonetheless, in many applications the number
of class labels in Y can be huge. For instance,

880 Multi-label Learning

a web page may be annotated with relevant la-
bels from the pool of more than one million
Wikipedia categories. In such case, the compu-
tational complexity of many multi-label learn-
ing algorithms might be prohibitively high. Even
for binary decomposition, which is the simplest
way to learn from multi-label data, building one
independent classifier for each label is still too
computational demanding given the huge number
of class labels. Therefore, specific strategies need
to be employed to handle huge number of labels.
One feasible strategy is to find a low-dimensional
embedding of the original label space by ex-
ploiting the sparsity of relevant labels, where the
classification model is built within the embedded
label space (Weston et al. 2011). Another strat-
egy is to partition the original label space into
different clusters based on tree structure, where
the classification model is built within each leaf
node (Agrawal et al. 2013).

Theory

Multi-label loss functions are usually non-convex
and discontinuous, making them difficult to opti-
mize directly. Therefore, in practice, most learn-
ing algorithms resort to optimizing (convex) sur-
rogate loss functions. There are several theoret-
ical studies about the consistency of surrogate
loss functions, i.e., whether the expected risk of
surrogate loss of a learner converges to the Bayes
risk of multi-label loss as the training set size
increases. Recently, a necessary and sufficient
condition has been provided for the consistency
of multi-label learning based on surrogate loss
functions (Gao and Zhou 2011).

For hamming loss, the state-of-the-art multi-
label learning approaches are proven to be incon-
sistent (Gao and Zhou 2011). For ranking loss, it
has been shown that none pairwise convex surro-
gate loss defined on label pairs can be consistent;
therefore, the partial ranking loss is introduced
for multi-label learning, and some pairwise con-
sistent surrogate loss function are provided (Gao
and Zhou 2011). The univariate convex surrogate
loss defined on single label can be consistent with
partial ranking loss based on a reduction to the

bipartite ranking problem (Dembczyński et al.
2012) although the reduction relaxes the original
target.

Extensions

Multi-instance multi-label learning (MIML)
(Zhou et al. 2012) tries to induce a function
hMIML W 2X 7! 2Y from a training set f.Xi ; Yi / j

1 � i � mg, where Xi � X is a set of instances
and Yi is the set of class labels associated with Xi .
The major difference between MIML and multi-
label learning lies in the fact that each example
in MIML is represented by a set of instances
rather than a single instance. This framework is
suitable to tasks involving complicated objects
with inherent structures; e.g., a text document
can be represented by a set of instances each
corresponds to a section or paragraph. In addition
to exploit the structural information for learning
the predictor, MIML also offers the possibility
of discovering the relation between semantic
meanings and input patterns; e.g., it is possible
to discover that the document owes a specific tag
because of its several special paragraphs.

Superset label learning (SLL) (Liu and Diet-
terich 2012) tries to induce a function hSLL W

X 7! Y from a training set f.xi ; Si / j 1 �
i � mg, where xi 2 X is an instance and Si �

Y is the set of candidate labels associated with
xi such that the (unknown) ground-truth label
yi belongs to Si . The major difference between
SLL and multi-label learning lies in the fact that
each example in SLL is associated with multiple
candidate labels among which only one label is
valid. This framework is suitable to tasks where
superset labeling information is readily available;
e.g., a face in an image can be associated with all
the names mentioned in the image’s surrounding
texts where only one name is valid.

Label distribution learning (LDL) (Geng et al.
2013) tries to induce a function fLDL W X 7!

P.Y/ from a training set f.xi ;Di / j 1 �

i � mg, where xi is an instance and Di D

fd 1
i ; d 2

i ; � � � ; d
q
i g is the probability mass of the q

labels associated with xi such that d
j
i � 0 .1 �

Multi-objective Optimization 881

M

j � q/ and
Pq

j D1 d
j
i D 1. The major difference

between LDL and multi-label learning lies in the
fact that the associated labeling information for
each example in LDL is real-valued probability
mass rather than discrete-valued binary labels.
This framework is suitable to tasks where the
degree of labeling importance is inherently dif-
ferent; e.g., entities appearing in a natural scene
have different importance in implying its scenic
concepts.

Future Challenges

There are many research challenges to be ad-
dressed in the future. Firstly, label relations play
a critical role in multi-label learning; however,
there lacks principled mechanism for label rela-
tion exploitation. Secondly, it is generally diffi-
cult to get accurate and complete label annota-
tions, particularly when each example has many
labels. Thus, it is important to develop multi-
label learning approaches that can learn from
partially labeled data. Moreover, multi-label data
usually suffers from inherent class imbalance
and unequal misclassification costs; taking these
properties into full consideration is desirable.

Recommended Reading

Agrawal R, Gupta A, Prabhu Y, Varma M (2013)
Multi-label learning with millions of labels: recom-
mending advertiser bid phrases for web pages. In:
Proceedings of the 22nd international conference on
world wide web, Rio de Janeiro, pp 13–24

Boutell MR, Luo J, Shen X, Brown CM (2004) Learn-
ing multi-label scene classification. Pattern Recog-
nit 37(9):1757–1771

Dembczyński K, Kotłowski W, Hüllermeier E (2012)
Consistent multilabel ranking through univariate
loss minimization. In: Proceedings of the 29th in-
ternational conference on machine learning, Edin-
burgh, pp 1319–1326

Elisseeff A, Weston J (2002) A kernel method
for multi-labelled classification. In: Dietterich TG,
Becker S, Ghahramani Z (eds) Advances in neural
information processing systems, vol 14. MIT Press,
Cambridge, pp 681–687

Gao W, Zhou Z-H (2011) On the consistency of multi-
label learning. In: Proceedings of the 24th annual

conference on learning theory, Budapest, pp 341–
358

Geng X, Yin C, Zhou Z-H (2013) Facial age estimation
by label distribution learning. IEEE Trans Pattern
Anal Mach Intell 35(10):2401–2412

Liu L, Dietterich T (2012) A conditional multino-
mial mixture model for superset label learning.
In: Bartlett P, Pereira FCN, Burges CJC, Bottou
L, Weinberger KQ (eds) Advances in neural in-
formation processing systems, vol 25. MIT Press,
Cambridge, pp 557–565

Read J, Pfahringer B, Holmes G, Frank E (2011)
Classifier chains for multi-label classification. Mach
Learn 85(3):333–359

Rousu J, Saunders C, Szedmak S, Shawe-Taylor J
(2005) Learning hierarchical multi-category text
classification models. In: Proceedings of the 22nd
international conference on machine learning,
Bonn, pp 774–751

Schapire RE, Singer Y (2000) Boostexter: a boosting-
based system for text categorization. Mach Learn
39(2/3):135–168

Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-
labelsets for multi-label classification. IEEE Trans
Knowl Data Eng 23(7):1079–1089

Weston J, Bengio S, Usunier N (2011) WSABIE:
scaling up to large vocabulary image annotation. In:
Proceedings of the 22nd international joint confer-
ence on artificial intelligence, Barcelona, pp 2764–
2770

Zhang M-L, Zhou Z-H (2007) ML-kNN: a lazy learn-
ing approach to multi-label learning. Pattern Recog-
nit 40(7):2038–2048

Zhang M-L, Zhou Z-H (2014) A review on multi-label
learning algorithms. IEEE Trans Knowl Data Eng
26(8):1819–1837

Zhou Z-H, Zhang M-L, Huang S-J, Li Y-F (2012)
Multi-instance multi-label learning. Artif Intell
176(1):2291–2320

Multi-objective Optimization

Synonyms

MOO; Multi-criteria optimization; Vector opti-
mization

Definition

Multi-criteria optimization is concerned with the
optimization of a vector of objectives, which can
be the subject of a number of constraints or

http://dx.doi.org/10.1007/978-1-4899-7687-1_100312
http://dx.doi.org/10.1007/978-1-4899-7687-1_100317
http://dx.doi.org/10.1007/978-1-4899-7687-1_100501

882 Multiple Classifier Systems

bounds. The goal of multi-objective optimization
is usually to find or to approximate the set of
Pareto-optimal solutions. A solution is Pareto-
optimal if it cannot be improved in one objective
without getting worse in another one.

Multiple Classifier Systems

�Ensemble Learning

Multiple-Instance Learning

Soumya Ray1, Stephen Scott2, and
Hendrik Blockeel3;4

1Case Western Reserve University, Cleveland,
OH,
USA
2University of Nebraska, Lincoln, NE, USA
3Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
4Leiden Institute of Advanced Computer
Science, Heverlee, Belgium

Definition

Multiple-instance (MI) learning is an extension
of the standard supervised learning setting. In
standard supervised learning, the input consists
of a set of labeled instances each described by
an attribute vector. The learner then induces a
concept that relates the label of an instance to
its attributes. In MI learning, the input consists
of labeled examples (called “bags”) consisting
of multisets of instances, each described by an
attribute vector, and there are constraints that
relate the label of each bag to the unknown labels
of each instance. The MI learner then induces
a concept that relates the label of a bag to the
attributes describing the instances in it. This
setting contains supervised learning as a special
case: if each bag contains exactly one instance,
it reduces to a standard supervised learning
problem.

Motivation and Background

The MI setting was introduced by Dietterich et al.
(1997) in the context of drug activity prediction.
Drugs are typically molecules that fulfill some
desired function by binding to a target. If we
wish to learn the characteristics responsible for
binding, a possible representation of the prob-
lem is to represent each molecule as a set of
low-energy shapes or conformations and describe
each conformation using a set of attributes. Each
such bag of conformations is given a label cor-
responding to whether the molecule is active or
inactive. To learn a classification model, an algo-
rithm assumes that every instance in a bag labeled
negative is actually negative, whereas at least
one instance in a bag labeled positive is actually
positive with respect to the underlying concept.

From a theoretical viewpoint, MI learning
occupies an intermediate position between stan-
dard propositional supervised learning and first-
order relational learning. Supervised learning is a
special case of MI learning, while MI learning is
a special case of first-order learning. It has been
argued that the MI setting is a key transition
between standard supervised and relational
learning (DeRaedt 1998). At the same time,
theoretical results exist that show that, under
certain assumptions, certain concept classes
that are probably approximately correct (PAC)-
learnable (see PAC learning) in a supervised
setting remain PAC-learnable in an MI setting.
Thus, the MI setting is able to leverage some
of the rich representational power of relational
learners while not sacrificing the efficiency
of propositional learners. Figure 1 illustrates
the relationships between standard supervised
learning, MI learning, and relational learning.

Since its introduction, a wide variety of tasks
have been formulated as MI learning problems.
Many new algorithms have been developed, and
well-known supervised learning algorithms ex-
tended, to learn MI concepts. A great deal of
work has also been done to understand what kinds
of concepts can and cannot be learned efficiently
in this setting. In the following sections, we
discuss the theory, methods, and applications of
MI learning in more detail.

http://dx.doi.org/10.1007/978-1-4899-7687-1_252

Multiple-Instance Learning 883

M

a b c

Multiple-Instance Learning, Fig. 1 The relationship
between supervised, multiple-instance (MI), and rela-
tional learning. (a) In supervised learning, each example
(geometric figure) is labeled. A possible concept that
explains the example labels shown is “the figure is a
rectangle.” (b) In MI learning, bags of examples are

labeled. A possible concept that explains the bag labels
shown is “the bag contains at least one figure that is a
rectangle.” (c) In relational learning, objects of arbitrary
structure are labeled. A possible concept that explains the
object labels shown is “the object is a stack of three figures
and the bottom figure is a rectangle”

Structure of the Problem

The general MI classification task is shown
in Fig. 2. The MI regression task is defined
analogously by substituting a real-valued
response for the classification label. In this

case, the constraint used by the learning
algorithm is that the response of any bag
is equal to the response of at least one of
the instances in it, for example, it could be
equal to the largest response over all the
instances.

884 Multiple-Instance Learning

Multiple-Instance Learning, Fig. 2 Statement of the multiple-instance classification problem

Notice the following problem characteris-
tics:

• The number of instances in each bag can vary
independently of other bags. This implies in
particular that an MI algorithm must be able to
handle bags with as few as one instance (this
is a supervised learning setting) to bags with
large numbers of instances.

• The number of instances in any positive bag
that are “truly positive” could be many more
than one – in fact, the definition does not rule
out the case where all instances in a positive
bag are “truly positive.”

• The problem definition does not specify how
the instances in any bag are related to each
other.

Theory and Methods

In this section, we discuss some of the key al-
gorithms and theoretical results in MI learning.
We first discuss the methods and results for MI
classification. Then we discuss the work on MI
regression.

Multiple-Instance Classification
Axis-parallel rectangles (APRs) are a concept
class that early work in MI classification focused
on. These generative concepts specify upper and
lower bounds for all numeric attributes describing
each instance. An APR is said to “cover” an
instance if the instance lies within it. An APR
covers a bag if it covers at least one instance
within it. The learning algorithm tries to find an

APR such that it covers all positive bags and does
not cover any negative bags.

An algorithm called “iterated discrimination”
was proposed by Dietterich et al. (1997) to learn
APRs from MI data. This algorithm has two
phases. In the first phase, it iteratively chooses
a set of “relevant” attributes and grows an APR
using this set. This phase results in the construc-
tion of a very “tight” APR that covers just positive
bags. In the second phase, the algorithm expands
this APR so that with high probability, a new
positive instance will fall within the APR. The
key steps of the algorithm are outlined below.
Note that initially, all attributes are considered to
be “relevant.”

The algorithm starts by choosing a random
instance in a positive bag. Let us call this instance
I1. The smallest APR covering this instance is
a point. The algorithm then expands this APR
by finding the smallest APR that covers any
instance from a yet uncovered positive bag; call
the newly covered instance I2. This process is
continued, identifying new instances I3; : : : ; Ik ,
until all positive bags are covered. At each step,
the APR is “backfitted” in a way that is reminis-
cent of the later Expectation-Maximization (EM)
approaches: each earlier choice is revisited, and
Ij is replaced with an instance from the same bag
that minimizes the current APR (which may or
may not be the same as the one that minimized it
at step j).

This process yields an APR that imposes max-
imally tight bounds on all attributes and covers
all positive bags. Based on this APR, a new set of
“relevant” attributes is selected as follows. An at-
tribute’s relevance is determined by how strongly

Multiple-Instance Learning 885

M

it discriminates against negative instances, i.e.,
given the current APR bounds, how many neg-
ative instances the attribute excludes. Features
are then chosen iteratively and greedily accord-
ing to how relevant they are until all negative
instances have been excluded. This yields a sub-
set of (presumably relevant) attributes. The APR
growth procedure in the previous paragraph is
then repeated, with the size of an APR redefined
as its size along relevant attributes only. The APR
growth and attribute selection phases are repeated
until the process converges.

The APR thus constructed may still be too
tight, as it fits narrowly around the positive
bags in the dataset. In the second phase of the
algorithm, the APR bounds are further expanded
using a kernel density estimate approach. Here,
a probability distribution is constructed for each
relevant attribute using Gaussian distributions
centered at each instance in a positive bag. Then,
the bounds on that attribute are adjusted so that
with high probability, any positive instance will
lie within the expanded APR.

Theoretical analyses of APR concepts have
been performed along with the empirical ap-
proach, using Valiant’s “probably approximately
correct” (PAC)-learning model (Valiant 1984). In
early work (Long and Tan 1998), it was shown
that if each instance was drawn according to
a fixed, unknown product distribution over the
rational numbers, independently from every other
instance, then an algorithm could PAC-learn
APRs. Later, this result was improved in two
ways (Auer et al. 1998). First, the restriction that
the individual instances in each bag come from
a product distribution was removed. Instead,
each instance is generated by an arbitrary
probability distribution (though each instance
in a bag is still generated independently and
identically distributed (iid) according to that
one distribution). Second, the time and sample
complexities for PAC-learning APRs were
improved. Specifically, the algorithm described
in this work PAC-learns APRs in

O

�
d 3n2

�2
log

nd log.1=ı/

�
log

d

ı

�

using

O

�
d 2n2

�2
log

d

ı

�

time-labeled training bags. Here, d is the dimen-
sion of each instance, n is the (largest) number
of instances per training bag, and � and ı are
parameters to the algorithm. A variant of this
algorithm was empirically evaluated and found to
be successful (Auer 1997).

Diverse Density (Maron 1998; Maron and
Lozano-Pérez 1998) is a probabilistic generative
framework for MI classification. The idea behind
this framework is that, given a set of positive
and negative bags, we wish to learn a concept
that is “close” to at least one instance from each
positive bag, while remaining “far” from every
instance in every negative bag. Thus, the concept
must describe a region of instance space that is
“dense” in instances from positive bags and is
also “diverse” in that it describes every positive
bag. More formally, let

DD.t/ D
1

Z

 Y
i

Pr
�
t jBC

i

Y
i

Pr
�
t jB�

i

!
;

where t is a candidate concept, BC
i represents

the i th positive bag, and B�
i represents the i th

negative bag. We seek a concept that maximizes
DD.t/. The concept generates the instances of
a bag, rather than the bag itself. To score a
concept with respect to a bag, we combine t ’s
probabilities for instances using a function based
on noisy-OR (Pearl 1998):

Pr.t jBC
i / /

0
@1 �

Y
j

1 � Pr

BC

ij 2 t
��1A

(1)

Pr
�
t jB�

i

/
Y

j

�
1 � Pr

�
B�

ij 2 t

(2)

Here, the instances BC
ij and B�

ij belonging to t are
the “causes” of the “event” that “t is the target.”
The concept class investigated by Maron (1998)
is the class of generative Gaussian models, which

886 Multiple-Instance Learning

A

B

C

f1

f2

Multiple-Instance Learning, Fig. 3 An illustration of
the concept that Diverse Density searches for on a simple
MI dataset with three positive bags and one negative
bag, where each instance (represented by the geometric
figures) is described by two attributes, f1 and f2. Each
type of figure represents one bag, i.e., all triangles belong
to one bag, all circles belong to a second bag, and so
forth. The bag containing the red circles is negative, while
the other bags are positive. Region C is a region of high

density, because several instances belong to that region.
Region A is a region of high “Diverse Density,” because
several instances from different positive bags belong to
that region, and no instances from negative bags are
nearby. Region B shows a concept that might be learned if
the learning algorithm assumed that all instances in every
positive bag are positive (Figure adapted from Maron and
Lozano-Pérez (1998))

are parameterized by the mean � and a “scale”
s D 1

2�2 :

Pr.Bij 2 t / / e�
P

k.sk.Bijk��k/2/;

where k ranges over attributes. Figure 3 illus-
trates a concept that Diverse Density might learn
when applied to an MI dataset.

Diverse Density with k disjuncts is a variant
of Diverse Density that has also been investi-
gated (Maron 1998). This is a class of disjunctive
Gaussian concepts, where the probability of an
instance belonging to a concept is given by the
maximum probability of belonging to any of the
disjuncts.

EM-DD (Zhang and Goldman 2001) is an ex-
ample of a class of algorithms that try to identify
the “cause” of a bag’s label using EM. These al-
gorithms sometimes assume that there is a single
instance in each bag that is responsible for the

bag’s label (though variants using “soft EM” are
possible). The key idea behind this approach is
as follows: from each positive bag, we take a
random instance and assume that this instance
is the relevant one. We learn a hypothesis from
these relevant instances and all negative bags.
Next, for each positive bag, we replace the current
relevant instance by the instance most consistent
with the learned hypothesis (which will initially
not be the chosen instance in general). We then
relearn the hypothesis with these new instances.
This process is continued until the set of chosen
instances does not change (or alternatively, the
objective function of the classifier reaches a fixed
point). This procedure has the advantage of being
computationally efficient, since the learning algo-
rithm only uses one instance from each positive
bag. This approach has also been used in MI
regression described later.

Multiple-Instance Learning 887

M

“Upgraded” supervised learning algorithms
can be used in an MI setting by suitably modi-
fying their objective functions. Below, we sum-
marize some of the algorithms that have been
derived in this way.

1. �Decision Tree induction algorithms have
been adapted to the MI setting (Blockeel et al.
2005). The standard algorithm measures the
quality of a split on an attribute by considering
the class label distribution in the child nodes
produced. In the MI case, this distribution is
uncertain, because the true instance labels
in positive bags are unknown. However,
some rules have been identified that lead
to empirically good MI trees: (1) use an
asymmetric heuristic that favors early creation
of pure positive (rather than negative) leaves;
(2) once a positive leaf has been created,
remove all other instances of the bags covered
by this leaf; (3) abandon the depth-first or
breadth-first order in which nodes are usually
split, adopting a best-first strategy instead
(indeed, because of (2), the result of tree
learning is now sensitive to the order in which
the nodes are split).

2. �Artificial Neural Networks have been
adapted to the MI setting by representing
the bag classifier as a network that combines
several copies of a smaller network, which
represents the instance classifier, with a
smooth approximation of the max combining
function (Ramon and DeRaedt 2000). Weight
update rules for a backpropagation algorithm
working on this network have been derived.
Later work on MI neural networks has been
performed independently by others (Zhou and
Zhang 2002).

3. �Logistic Regression has been adapted
to the MI setting by using it as an
instance-based classifier and combining the
instance-level probabilities using functions
like softmax (Ray and Craven 2005) and
arithmetic and geometric averages (Xu and
Frank 2004).

4. The � k-Nearest Neighbor algorithm has been
adapted to the MI setting by using set-based
distance metrics, such as variants based on the

Hausdorff distance. However, this alone does
not solve the problem – it is possible for a pos-
itive bag to be mistakenly classified negative if
it contains a “true negative” instance that hap-
pens to be much closer to negative instances in
other negative bags. To solve this, a “Citation-
kNN” (Wang and Zucker 2000) approach has
been proposed that also considers, for each
bag B , the labels of those bags for which B

is a nearest neighbor.
5. � Support Vector Machines have been adapted

to the MI setting in several ways. In one
method, the constraints in the quadratic pro-
gram for SVMs is modified to account for the
fact that certain instance labels are unknown
but have constraints relating them (Andrews
et al. 2003). In another method, new kernels
are designed for MI data by modifying stan-
dard supervised SVM kernels (Gartner et al.
2002) or designing new kernels (Tao et al.
2004). The modification allows these MI ker-
nels to distinguish between positive and nega-
tive bags if the supervised kernel could distin-
guish between (“true”) positive and negative
instances.

6. �Rule learning algorithms have been adapted
to the MI setting in two ways. One method
has investigated upgrading a supervised rule-
learner, the RIPPER system (Cohen 1995), to
the MI setting by modifying its objective func-
tion to account for bags and addressing sev-
eral issues that resulted. Another method has
investigated using general-purpose relational
algorithms, such as FOIL (Quinlan 1990) and
TILDE (Blockeel and De Raedt 1998), and pro-
viding them with an appropriate � inductive
bias so that they learn the MI concepts. Fur-
ther, it has been observed that techniques from
MI learning can also be used inside relational
learning algorithms (Alphonse and Matwin
2002).

A large-scale empirical analysis of several
such propositional supervised learning algo-
rithms and their MI counterparts has been
performed (Ray and Craven 2005). This analysis
concludes that (1) no single MI algorithm works
well across all problems (thus, different inductive

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_390

888 Multiple-Instance Learning

biases are suited to different problems), (2) some
MI algorithms consistently perform better than
their supervised counterparts but others do not
(hence, for these biases, there seems room for
improvement), and (3) assigning a larger weight
to false positives than to false negatives is a
simple but effective method to adapt supervised
learning algorithms to the MI setting. It was also
observed that the advantages of MI learners may
be more pronounced if they would be evaluated
on the task of labeling individual instances rather
than bags.

Along with “upgrading” supervised learning
algorithms, a theoretical analysis of supervised
learners learning with MI data has been carried
out (Blum and Kalai 1998). In particular, the MI
problem has been related to the problem of learn-
ing in the presence of classification noise (i.e.,
each training example’s label is flipped with some
probability <1/2). This implies that any concept
class that is PAC-learnable in the presence of
such noise is also learnable in the MI learning
model when each instance of a bag is drawn
iid. Since many concept classes are learnable un-
der this noise assumption (using, e.g., statistical
queries Kearns 1998), Blum and Kalai’s result
implies PAC learnability of many concept classes.
Further, they improved on previous learnability
results (Auer et al. 1998) by reducing the number
of training bags required for PAC learning by
about a factor of n with only an increase in time
complexity of about log n=�.

Besides these positive results, a negative
learnability result describing when it is hard to
learn concepts from MI data is also known (Auer
et al. 1998). Specifically, if the instances of each
bag are allowed collectively to be generated
according to an arbitrary distribution, learning
from MI examples is as hard as PAC-learning
disjunctive normal form (DNF) formulas from
single-instance examples, which is an open
problem in learning theory that is believed to be
hard. Further, it has been shown that if an efficient
algorithm exists for the non-iid case that outputs
as its hypothesis an axis-parallel rectangle,
then NP = RP (Randomized Polynomial time;
see, e.g., Papadimitriou 1994), which is very
unlikely.

Learning from structured MI data has received
some attention (McGovern and Jensen 2003). In
this work, each instance is a graph, and a bag
is a set of graphs (e.g., a bag could consist of
certain subgraphs of a larger graph). To learn the
concepts in this structured space, the authors use
a modified form of the Diverse Density algorithm
discussed above. As before, the concept being
searched for is a point (which corresponds to
a graph in this case). The main modification
is the use of the size of the maximal common
subgraph to estimate the probability of a concept
– i.e., the probability of a concept given a bag
is estimated as proportional to the size of the
maximal common subgraph between the concept
and any instance in the bag.

Multiple-Instance Regression
Regression problems in an MI setting have
received less attention than the classification
problem. Two key directions have been explored
in this setting. One direction extends the well-
known standard � linear regression method to
the MI setting. The other direction considers
extending various MI classification methods to a
regression setting.

In MI linear regression (Ray and Page 2001)
(referred to as multiple-instance regression in the
cited work), it is assumed that the hypothesis
underlying the data is a linear model with Gaus-
sian noise on the value of the dependent variable
(which is the response). Further, it is assumed
that it is sufficient to model one instance from
each bag, i.e., that there is some primary instance
which is responsible for the real-valued label.
Ideally, one would like to find a hyperplane that
minimizes the squared error with respect to these
primary instances. However, these instances are
unknown during training. The authors conjecture
that, given enough data, a good approximation to
the ideal is given by the “best-fit” hyperplane,
defined as the hyperplane that minimizes the
training set squared error by fitting one instance
from each bag such that the response of the fitted
instance most closely matches the bag response.
This conjecture will be true if the nonprimary in-
stances are not a better fit to a hyperplane than the
primary instances. However, exactly finding the

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Multiple-Instance Learning 889

M

“best-fit” hyperplane is intractable. It is shown
that the decision problem “Is there a hyperplane
which perfectly fits one instance from each bag?”
is NP -complete for arbitrary numbers of bags,
attributes, and at most three instances per bag.
Thus, the authors propose an approximation algo-
rithm which iterates between choosing instances
and learning linear regression models that best fit
them, similar to the EM-DD algorithm described
earlier.

Another direction has explored extending MI
classification algorithms to the regression setting.
This approach (Dooly et al. 2002) uses algo-
rithms like Citation-kNN and Diverse Density
to learn real-valued concepts. To predict a real
value, the approach uses the average of the near-
est neighbor responses or interprets the Gaussian
“probability” as a real number for Diverse Den-
sity.

Recent work has analyzed the Diverse
Density-based regression in the online model (An-
gluin 1988; Littlestone 1988) (see �Online
Learning). In the online model, learning proceeds
in trials, where in each trial a single example is
selected adversarially and given to the learner
for classification. After the learner predicts a
label, the true label is revealed and the learner
incurs a loss based on whether its prediction
was correct. The goal of the online learner is to
minimize the loss over all trials. Online learning
is harder than PAC learning in that there are some
PAC-learnable concept classes that are not online
learnable.

In the regression setting above (Dooly et al.
2006), there is a point concept, and the label of
each bag is a function of the distance between
the concept and the point in the bag closest
to the target. It is shown that similar to Auer
et al.’s lower bound, learning in this setting using
labeled bags alone is as hard as learning DNF.
They then define an MI membership query (MI-
MQ) in which an adversary defines a bag B D

fp1; : : : ; png and the learner is allowed to ask
an oracle for the label of bag B C Ev D fp1 C

Ev; : : : ; pn C Evg for any d -dimensional vector Ev.
Their algorithm then uses this MI-MQ oracle to
online learn a real-valued MI concept in time
O.dn2/.

Applications

In this section, we describe domains where MI
learning problems have been formulated.

Drug activity was the motivating application
for the MI representation (Dietterich et al. 1997).
Drugs are typically molecules that fulfill some
desired function by binding to a target. In this
domain, we wish to predict how strongly a given
molecule will bind to a target. Each molecule is
a three-dimensional entity and takes on multiple
shapes or conformations in solution. We know
that for every molecule showing activity, at least
one of its low-energy conformations possesses
the right shape for interacting with the target.
Similarly, if the molecule does not show drug-like
activity, none of its conformations possess the
right shape for interaction. Thus, each molecule
is represented as a bag, where each instance
is a low-energy conformation of the molecule.
A well-known example from this domain is the
MUSK dataset. The positive class in this data
consists of molecules that smell “musky.” This
dataset has two variants, MUSK1 and MUSK2,
both with similar numbers of bags, with MUSK2
having many more instances per bag.

Content-Based Image Retrieval is another do-
main where the MI representation has been used
(Maron and Lozano-Pérez 1998; Zhang et al.
2002). In this domain, the task is to find images
that contain objects of interest, such as tigers, in
a database of images. An image is represented
by a bag. An instance in a bag corresponds to
a segment in the image, obtained by some seg-
mentation technique. The underlying assumption
is that the object of interest is contained in (at
least) one segment of the image. For example, if
we are trying to find images of mountains in a
database, it is reasonable to expect most images
of mountains to have certain distinctive segments
characteristic of mountains. An MI learning algo-
rithm should be able to use the segmented images
to learn a concept that represents the shape of a
mountain and use the learned concept to collect
images of mountains from the database.

The identification of protein families has been
framed as an MI problem (Tao et al. 2004). The
objective in that work is to classify given protein

http://dx.doi.org/10.1007/978-1-4899-7687-1_618

890 Multiple-Instance Learning

sequences according to whether they belong to
the family of thioredoxin-fold proteins. The given
proteins are first aligned with respect to a motif
that is known to be conserved in the members
of the family. Each aligned protein is represented
by a bag. A bag is labeled positive if the protein
belongs to the family, and negative otherwise.
An instance in a bag corresponds to a position
in a fixed length sequence around the conserved
motif. Each position is described by a vector of
attributes; each attribute describes the properties
of the amino acid at that position and is smoothed
using the same properties from its neighbors.

Text Categorization is another domain that
has used the MI representation (Andrews et al.
2003; Ray and Craven 2005). In this domain,
the task is to classify a document as belonging
to a certain category or not. Often, whether the
document belongs to the specified category is
the function of a few passages in the document.
These passages are however not labeled with the
category information. Thus, a document could
be represented as a set of passages. We assume
that each positive document (i.e., that belongs to
the specified category) has at least one passage
that contains words that indicate category mem-
bership. On the other hand, a negative document
(that does not belong to the category) has no
passage that contains words indicating category
membership. This formulation has been used to
classify whether MEDLINE documents should
be annotated with specific MeSH terms (Andrews
et al.) and to determine if specific documents
should be annotated with terms from the Gene
Ontology (Ray and Craven 2005).

Time-series data from the hard drives have
been used to define an MI problem (Murray et al.
2005). The task here is to distinguish drives that
fail from others. Each hard drive is a bag. Each
instance in the bag is a fixed-size window over
timepoints when the drive’s state was measured
using certain attributes. In the training set, each
drive is labeled according to whether it failed
during a window of observation. An interesting
aspect to prediction in this setting is that it is done
online, i.e., the algorithm learns a classifier for
instances, which is applied to each instance as it
becomes available in time. The authors learn a

naı̈ve Bayes model using an EM-based approach
to solve this problem.

Discovering useful subgoals in reinforcement
learning has been formulated as an MI prob-
lem (McGovern and Barto 2001). Imagine that
a robot has to get from one room to another by
passing through a connecting door. If the robot
knew of the existence of the door, it could decom-
pose the problem into two simpler subproblems
to be solved separately: getting from the initial
location in the first room to the door and then
getting from the door to its destination. How
could the robot discover such a “useful subgoal?”
One approach formulates this as an MI problem.
Each trajectory of the robot, where the robot
starts at the source and then moves for some
number of time steps, is considered to be a bag.
An instance in a bag is a state of the world,
which records observations such as “is the robot’s
current location a door?” Trajectories that reach
the destination are positive, while those that do
not are negative. Given this data, we can learn
a classifier that predicts which states are more
likely to be seen on successful trajectories than
on unsuccessful ones. These states are taken to
be useful subgoals. In the previous example, the
MI algorithm could learn that the state “location
is a door” is a useful subgoal, since it appears
on all successful trajectories, but infrequently on
unsuccessful ones.

Future Directions

MI learning remains an active research area.
One direction that is being explored relaxes the
“constraints” in Fig. 2 in different ways (Tao et al.
2004; Weidmann et al. 2003). For example, one
could consider constraints where at least a certain
number (or fraction) of instances have to be
positive for a bag to be labeled positive. Similarly,
it may be the case that a bag is labeled positive
only if it does not contain a specific instance.
Such relaxations are often studied as “generalized
multiple-instance learning.”

One such generalization of MI learning has
been formally studied under the name “geometric
patterns.” In this setting, the target concept con-

Multiple-Instance Learning 891

M

sists of a collection of APRs, and a bag is labeled
positive if and only if (1) each of its points lies in
a target APR and (2) every target APR contains
a point. Noise-tolerant PAC algorithms (Goldman
and Scott 1999) and online algorithms (Goldman
et al. 2001) have been presented for such concept
classes. These algorithms make no assumptions
on the distribution used to generate the bags
(e.g., instances might not be generated by an iid
process). This does not violate Auer et al.’s lower
bound since these algorithms do not scale with
the dimension of the input space.

Another recent direction explores the con-
nections between MI and semi-supervised learn-
ings. Semi-supervised learning generally refers
to learning from a setting where some instance
labels are unknown. MI learning can be viewed as
one example of this setting. Exploiting this con-
nection between MI learning and other methods
for semi-supervised learning, recent work (Rah-
mani and Goldman 2006) proposes an approach
where an MI problem is transformed into a semi-
supervised learning problem. An advantage of the
approach is that it automatically also takes into
account unlabeled bags.

Cross-References

�Artificial Neural Network
�Attribute
�Classification
�Data Set
�Decision Tree
�Expectation Maximization Clustering
� First-Order Logic
�Gaussian Distribution
� Inductive Logic Programming
�Kernel Methods
�Linear Regression
�Multi-Instance Learning
�Nearest Neighbor
�Noise
�Online Learning
� PAC Learning
�Relational Learning
� Supervised Learning

Recommended Reading

Alphonse E, Matwin S (2002) Feature subset selection
and inductive logic programming. In: Proceedings
of the 19th international conference on machine
learning, Sydney. Morgan Kaufmann, San Fran-
cisco, pp 11–18

Andrews S, Tsochantaridis I, Hofmann T (2003) Sup-
port vector machines for multiple-instance learning.
In: Becker S, Thrun S, Obermayer K (eds) Advances
in neural information processing systems, vol 15.
MIT, Cambridge, pp 561–568

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

Auer P (1997) On learning from multi-instance exam-
ples: empirical evaluation of a theoretical approach.
In: Proceedings of the 14th international conference
on machine learning, Nashville. Morgan Kaufmann,
San Francisco, pp 21–29

Auer P, Long PM, Srinivasan A (1998) Approximating
hyper-rectangles: learning and pseudorandom sets. J
Comput Syst Sci 57(3):376–388

Blockeel H, De Raedt L (1998) Top-down induction of
first order logical decision trees. Artif Intell 101(1–
2):285–297

Blockeel H, Page D, Srinivasan A (2005) Multi-
instance tree learning. In: Proceedings of 22nd in-
ternational conference on machine learning, Bonn,
pp 57–64

Blum A, Kalai A (1998) A note on learning
from multiple-instance examples. Mach Learn J
30(1):23–29

Cohen WW (1995) Fast effective rule induction. In:
Proceedings of the 12th international conference on
machine learning, Tahoe City. Morgan Kaufmann,
San Francisco

DeRaedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links.
In: Proceedings of the eighth international confer-
ence on inductive logic programming, Madison.
Springer, New York, pp 1–8

Dietterich T, Lathrop R, Lozano-Perez T (1997) Solv-
ing the multiple-instance problem with axis-parallel
rectangles. Artif Intell 89(1–2):31–71

Dooly DR, Goldman SA, Kwek SS (2006) Real-valued
multiple-instance learning with queries. J Comput
Syst Sci 72(1):1–15

Dooly DR, Zhang Q, Goldman SA, Amar RA (2002)
Multiple-instance learning of real-valued data. J
Mach Learn Res 3:651–678

Gartner T, Flach PA, Kowalczyk A, Smola AJ
(2002) Multi-instance kernels. In: Sammut C, Hoff-
mann A (eds) Proceedings of the 19th inter-
national conference on machine learning, Syd-
ney. Morgan Kaufmann, San Francisco, pp 179–
186

Goldman SA, Kwek SK, Scott SD (2001) Agnostic
learning of geometric patterns. J Comput Syst Sci
6(1):123–151

http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_955
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

892 Multi-relational Data Mining

Goldman SA, Scott SD (1999) A theoretical and em-
pirical study of a noise-tolerant algorithm to learn
geometric patterns. Mach Learn 37(1):5–49

Kearns M (1998) Efficient noise-tolerant learning from
statistical queries. J ACM 45(6):983–1006

Long PM, Tan L (1998) PAC learning axis-aligned
rectangles with respect to product distributions from
multiple-instance examples. Mach Learn 30(1):7–
21

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maron O (1998) Learning from ambiguity. PhD thesis,
Department of Electrical Engineering and Computer
Science, MIT, Cambridge

Maron O, Lozano-Pérez T (1998) A framework for
multiple-instance learning. In: Jordan MI, Kearns
MJ, Solla SA (eds) Advances in neural information
processing systems, Denver, vol 10. MIT, Cam-
bridge, pp 570–576

McGovern A, Barto AG (2001) Automatic discovery
of subgoals in reinforcement learning using diverse
density. In: Proceedings of the 18th international
conference on machine learning, Williamstown.
Morgan Kaufmann, San Francisco, pp 361–368

McGovern A, Jensen D (2003) Identifying predictive
structures in relational data using multiple instance
learning. In: Proceedings of the 20th international
conference on machine learning, Washington, DC.
AAAI, Menlo Park, pp 528–535

Murray JF, Hughes GF, Kreutz-Delgado K (2005)
Machine learning methods for predicting failures in
hard drives: a multiple-instance application. J Mach
Learn Res 6:783–816

Papadimitriou C (1994) Computational complexity.
Addison-Wesley, Boston

Pearl J (1998) Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
Kaufmann, San Mateo

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Rahmani R, Goldman SA (2006) MISSL: multiple-
instance semi-supervised learning. In: Proceedings
of the 23rd international conference on machine
learning, Pittsburgh. ACM, New York, pp 705–712

Ramon J, DeRaedt L (2000) Multi instance neural
networks. In: Proceedings of ICML-2000 workshop
on attribute-value and relational learning

Ray S, Craven M (2005) Supervised versus multiple-
instance learning: an empirical comparison. In: Pro-
ceedings of the 22nd international conference on
machine learning, Bonn. ACM, New York, pp 697–
704

Ray S, Page D (2001) Multiple instance regression.
In: Proceedings of the 18th international conference
on machine learning, Williamstown. Morgan Kauf-
mann

Tao Q, Scott SD, Vinodchandran NV (2004) SVM-
based generalized multiple-instance learning via
approximate box counting. In: Proceedings of the

21st international conference on machine learning,
Banff. Morgan Kaufmann, San Francisco, pp 779–
806

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Wang J, Zucker JD (2000) Solving the multiple-
instance problem: a lazy learning approach. In:
Proceedings of the 17th international conference on
machine learning, Stanford. Morgan Kaufmann, San
Francisco, pp 1119–1125

Weidmann N, Frank E, Pfahringer B (2003) A two-
level learning method for generalized multi-instance
problems. In: Proceedings of the European con-
ference on machine learning, Cavtat-Dubrovnik.
Springer, Berlin/Heidelberg, pp 468–479

Xu X, Frank E (2004) Logistic regression and boosting
for labeled bags of instances. In: Proceedings of
the Pacific-Asia conference on knowledge discovery
and data mining, Sydney, pp 272–281

Zhang Q, Goldman S (2001) EM-DD: an improved
multiple-instance learning technique. In: Advances
in neural information processing systems, Vancou-
ver. MIT, pp 1073–1080

Zhang Q, Yu W, Goldman S, Fritts J (2002) Content-
based image retrieval using multiple-instance learn-
ing. In: Proceedings of the 19th international con-
ference on machine learning, Sydney. Morgan Kauf-
mann, San Francisco, pp 682–689

Zhou ZH, Zhang ML (2002) Neural networks for
multi-instance learning. Technical report, Nanjing
University, Nanjing

Multi-relational Data Mining

Luc De Raedt
Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium

Synonyms

Inductive logic programming; Relational learn-
ing; Statistical relational learning

Definition

Multi-relational data mining is the subfield of
knowledge discovery that is concerned with
the mining of multiple tables or relations in a
database. This allows it to cope with structured
data in the form of complex data that cannot

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_786

Must-Link Constraint 893

M

easily be represented using a single table, or an
� attribute as is common in machine learning.

Relevant techniques of multi-relational data
mining include those from relational learning,
statistical relational learning, and inductive logic
programming.

Cross-References

� Inductive Logic Programming

Recommended Reading

Dzeroski S, Lavrac N (eds) (2001) Relational data
mining. Springer, Berlin

Multistrategy Ensemble Learning

Definition

Every � ensemble learning strategy might be
expected to have unique effects on the base
learner. Combining multiple ensemble learning
algorithms might hence be expected to provide
benefit. For example, �Multi-Boosting combines
�AdaBoost and a variant of �Bagging,
obtaining most of AdaBoost’s � bias reduction
coupled with most of Bagging’s � variance

reduction. Similarly, �Random Forests combines
Bagging’s variance reduction with �Random
Subspaces’ bias reduction.

Cross-References

�Ensemble Learning
�MultiBoosting
�Random Forests

Recommended Reading

Webb GI, Zheng Z (2004) Multistrategy ensemble
learning: reducing error by combining ensemble
learning techniques. IEEE Trans Knowl Data Eng
16(8): 980–991

Multitask Learning

� Inductive Transfer

Must-Link Constraint

A pairwise constraint between two items indi-
cating that they should be placed into the same
cluster in the final partition.

http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_567
http://dx.doi.org/10.1007/978-1-4899-7687-1_917
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_567
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_138

N

Naı̈ve Bayes

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Idiot’s Bayes; Simple Bayes

Definition

Naı̈ve Bayes is a simple learning algorithm that
utilizes �Bayes’ rule together with a strong as-
sumption that the attributes are conditionally in-
dependent given the class. While this indepen-
dence assumption is often violated in practice,
naı̈ve Bayes nonetheless often delivers compet-
itive classification accuracy. Coupled with its
computational efficiency and many other desir-
able features, this leads to naı̈ve Bayes being
widely applied in practice.

Motivation and Background

Naı̈ve Bayes provides a mechanism for using
the information in sample data to estimate the
posterior probability P.yjx/ of each class y given
an object x. Once we have such estimates, we

can use them for � classification or other decision
support applications.

Naı̈ve Bayes’ features include the following:

• Computational efficiency: � training time
is linear with respect to both the number
of � training examples and the number of
� attributes, and � classification time is linear
with respect to the number of attributes
and unaffected by the number of training
examples.

• Low variance: because naı̈ve Bayes does not
directly fit the posterior distribution, it has low
variance, albeit at the cost of high � bias.

• Incremental learning: naı̈ve Bayes operates
from estimates of low-order probabilities that
are derived from the training data. These can
readily be updated as new training data are
acquired.

• Direct prediction of posterior probabilities.
• Robustness in the face of noise: naı̈ve Bayes

always uses all attributes for all predictions
and hence is relatively insensitive to � noise in
the examples to be classified. Because it uses
probabilities, it is also relatively insensitive to
noise in the training data.

• Robustness in the face of missing values: be-
cause naı̈ve Bayes always uses all attributes
for all predictions, if one attribute value is
missing, information from other attributes is
still used, resulting in graceful degradation in
performance. It is also relatively insensitive to

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_100204
http://dx.doi.org/10.1007/978-1-4899-7687-1_100429
http://dx.doi.org/10.1007/978-1-4899-7687-1_21
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_975
http://dx.doi.org/10.1007/978-1-4899-7687-1_100480
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_957

896 NCL

missing attribute values in the training data
due to its probabilistic framework.

Structure of Learning System

Naı̈ve Bayes is a form of Bayesian network
classifier based on �Bayes’ rule:

P.yjx/ D P.y/P.xjy/=P.x/ (1)

together with an assumption that the attributes
are conditionally independent given the class. For
� attribute-value data, this assumption entitles

P(xjy) =
nY

iD1

P(xi jy/ (2)

where xi is the value of the i th attribute in x and
n is the number of attributes:

P(x/ =
kY

iD1

P(ci)P(xjci / (3)

where k is the number of classes and ci is the i th
class. Thus, (1) can be calculated by normalizing
the numerators of the right-hand side of the equa-
tion.

The resulting classifier uses a linear model,
equivalent to that used by � logistic regression,
differing only in the manner in which the param-
eters are chosen.

For � categorical attributes, the required prob-
abilities P(y/ and P(xi jy/ are normally derived
from frequency counts stored in arrays whose
values are calculated by a single pass through the
training data at training time. These arrays can
be updated as new data are acquired, supporting
� incremental learning. Probability estimates are
usually derived from the frequency counts using
smoothing functions such as the �Laplace esti-
mate or an m-estimate.

For � numeric attributes, either the data are
discretized (see � discretization) or probability
density estimation is employed.

In � text mining, two variants of naı̈ve Bayes
are often employed (McCallum and Nigam
1998). The multivariate Bernoulli model utilizes
naı̈ve Bayes as described above, with each
document represented as a vector of binary
variables, each representing the presence or
absence of a specific word. However, only
the words that are present in a document are
considered when calculating the probabilities for
that document.

In contrast, the multinomial model uses infor-
mation about the number of times a word appears
in a document. It treats each occurrence of a word
in a document as a separate event. These events
are assumed independent of each other. Hence
the probability of a document given a class is the
product of the probabilities of each word event
given the class.

Cross-References

�Bayesian Methods
� Semi-naive Bayesian Learning

Recommended Reading

Lewis D (1998) Naive Bayes at forty: the independence
assumption in information retrieval. In: Proceed-
ings of the 10th European conference on machine
learning (ECML-98), Chemnitz. Springer, Berlin,
pp 4–15

McCallum A, Nigam K (1998) A comparison of
event models for Naive Bayes text classification. In:
AAAI-98 workshop on learning for text categoriza-
tion. AAAI Press, Menlo Park, pp 41–48

NCL

�Negative Correlation Learning

NC-Learning

�Negative Correlation Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_21
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_98
http://dx.doi.org/10.1007/978-1-4899-7687-1_130
http://dx.doi.org/10.1007/978-1-4899-7687-1_100240
http://dx.doi.org/10.1007/978-1-4899-7687-1_604
http://dx.doi.org/10.1007/978-1-4899-7687-1_221
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_956
http://dx.doi.org/10.1007/978-1-4899-7687-1_956

Negative Correlation Learning 897

N

Nearest Neighbor

Eamonn Keogh
University of California-Riverside, Riverside,
CA, USA

Synonyms

Closest point; Most similar point

Definition

In a data collection M , the nearest neighbor to
a data object q is the data object Mi , which
minimizes dist (q, Mi), where dist is a distance
measure defined for the objects in question. Note
that the fact that the object Mi is the nearest
neighbor to q does not imply that q is the nearest
neighbor to Mi .

Motivation and Background

Nearest neighbors are useful in many machine
learning and data mining tasks, such as
� classification, � anomaly detection and motif
discovery and in more general tasks such as
spell checking, vector quantization, plagiarism
detection, web search, and recommender
systems.

The naive method to find the nearest neighbor
to a point q requires a linear scan of all objects
in M . Since this may be unacceptably slow for
large datasets and/or computationally demanding
distance measures, there is a huge amount of lit-
erature on speeding up nearest neighbor searches
(query-by-content). The fastest methods depend
on the distance measure used, whether the data
is disk resident or in main memory, and the
structure of the data itself. Many methods are
based on the R-tree (Guttman 1984) or one of its
variants (Manolopoulos et al. 2005). However, in
recent years there has been an increased aware-
ness that for many applications approximate near-
est neighbors may suffice. This has led to the

development of techniques like locality sensitive
hashing, which finds high-quality approximate
nearest neighbors in constant time.

The definition of nearest neighbor allows for
the definition of one of the simplest classification
schemes, the nearest neighbor classifier.

The major database (SIGMOD, VLDB, and
PODS) and data mining (SIGKDD, ICDM, and
SDM) conferences typically feature several pa-
pers on novel distance measures and techniques
for speeding up nearest neighbor search. Pavel
et al.’s book provides an excellent overview on
the state-of-the-art techniques in nearest neighbor
searching.

Recommended Reading

Guttman A (1984) R-trees: a dynamic index structure
for spatial searching. In: Proceedings of the 1984
ACM SIGMOD international conference on man-
agement of data. ACM, New York, pp 47–57. ISBN:
0-89791-128-8

Manolopoulos Y, Nanopoulos A, Papadopoulos AN,
Theodoridis Y (2005) R-trees: theory and applica-
tions. Springer, Berlin

Zezula P, Amato G, Dohnal V, Batko M (2005) Similar-
ity search: the metric space approach. In: Advances
in database systems, vol 32. Springer, New York,
p 220. ISBN:0-387-29146-6

Nearest Neighbor Methods

� Instance-Based Learning

Negative Correlation Learning

Synonyms

NC-learning; NCL

Definition

Negative correlation learning (Liu and Yao 1999)
is an � ensemble learning technique. It can be

http://dx.doi.org/10.1007/978-1-4899-7687-1_100057
http://dx.doi.org/10.1007/978-1-4899-7687-1_100314
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_912
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_100324
http://dx.doi.org/10.1007/978-1-4899-7687-1_100323
http://dx.doi.org/10.1007/978-1-4899-7687-1_252

898 Negative Predictive Value

used for regression or classification problems,
though with classification problems the models
must be capable of producing posterior probabil-
ities. The model outputs are combined with a
uniformly weighted average. The squared error is
augmented with a penalty term which takes into
account the diversity of the ensemble. The error
for the i th model is,

E.fi .x// D
1

2
.fi .x/ � d/2 � �.fi .x/ � Nf .x//2:

(1)

The coefficient � determines the balance be-
tween optimizing individual accuracy, and opti-
mizing ensemble diversity. With � D 0, the mod-
els are trained independently, with no emphasis
on diversity. With � D 1, the models are tightly
coupled, and the ensemble is trained as a single
unit. Theoretical studies (Brown et al. 2006) have
shown that NC works by directly optimizing
the � bias-variance-covariance trade-off, thus it
explicitly manages the ensemble diversity. When
the complexity of the individuals is sufficient to
have high individual accuracy, NC provides little
benefit. When the complexity is low, NC with
a well-chosen � can provide significant perfor-
mance improvements. Thus the best situation to
make use of the NC framework is with a large
number of low accuracy models.

Recommended Reading

Brown G, Wyatt JL, Tino P (2006) Managing diversity
in regression ensembles. J Mach Learn Res 6:1621–
1650

Liu Y, Yao X (1999) Ensemble learning via negative
correlation. Neural Netw 12(10):1399–1404

Negative Predictive Value

Negative Predictive Value (NPV) is defined as
a ratio of true negatives to the total number of
negatives predicted by a model. This is defined
with reference to a special case of the � confusion
matrix with two classes – one designated the

Negative Predictive Value, Table 1 The outcomes of
classification into positive and negative classes

Assigned class

Positive Negative

Actual
class

Positive True positive (TP) False negative
(FN)

Negative False positive (FP) True negative
(TN)

positive class and the other the negative class –
as indicated in Table 1.

NPV can then be defined in terms of true
negatives and false negatives as follows.

NPV D TN=.TN C FN/

Net Lift Modeling

�Uplift Modeling

Network Analysis

�Link Mining and Link Discovery

Network Clustering

�Graph Clustering

Networks with Kernel Functions

�Radial Basis Function Networks

Neural Networks

Neural networks are learning algorithms based
on a loose analogy of how the human brain
functions. Learning is achieved by adjusting the

http://dx.doi.org/10.1007/978-1-4899-7687-1_932
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_911
http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_698

Neuroevolution 899

N

weights on the connections between nodes, which
are analogous to synapses and neurons.

Cross-References

�Radial Basis Function Networks

Neuro-Dynamic Programming

�Value Function Approximation

Neuroevolution

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Abstract

Neuroevolution is a method for modifying
neural network weights, topologies, or ensem-
bles in order to learn a specific task. Evolution-
ary computation is used to search for network
parameters that maximize a fitness function
that measures performance in the task. Com-
pared to other neural network learning meth-
ods, neuroevolution is highly general, allow-
ing learning without explicit targets, with non-
differentiable activation functions, and with
recurrent networks. It can also be combined
with standard neural network learning to, e.g.,
model biological adaptation. Neuroevolution
can also be seen as a policy search method
for reinforcement learning problems, where
it is well suited to continuous domains and
to domains where the state is only partially
observable.

Synonyms

Evolving neural networks; Genetic neural net-
works

Motivation and Background

The primary motivation for neuroevolution is to
be able to train neural networks in sequential
decision tasks with sparse reinforcement infor-
mation. Most neural network learning is con-
cerned with supervised tasks, where the desired
behavior is described in terms of a corpus of
input-output examples. However, many learning
tasks in the real world do not lend themselves to
the supervised learning approach. For example,
in game playing, vehicle control, and robotics,
the optimal actions at each point in time are
not always known; only after performing several
actions it is possible to get information about how
well they worked, such as winning or losing the
game. Neuroevolution makes it possible to find
a neural network that optimizes such behavior
given only sparse information about how well the
networks are doing, without direct information
about what exactly they should be doing.

The main benefit of neuroevolution compared
to other reinforcement learning (RL) methods is
that it allows representing continuous state and
action spaces and disambiguating hidden states
naturally. Network activations are continuous,
and the network generalizes well between contin-
uous values, largely avoiding the state explosion
problem that plagues many reinforcement learn-
ing approaches. Recurrent networks can encode
memories of past states and actions, making it
possible to learn in partially observable Markov
decision process (POMDP) environments that are
difficult for many RL approaches.

Compared to other neural network learning
methods, neuroevolution is highly general. As
long as the performance of the networks can
be evaluated over time and the behavior of the
network can be modified through evolution, it
can be applied to a wide range of network archi-
tectures, including those with nondifferentiable
activation functions and recurrent and higher-
order connections. While most neural learning
algorithms focus on modifying the weights only,
neuroevolution can be used to optimize other as-
pects of the networks as well, including activation
functions and network topologies.

http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100155
http://dx.doi.org/10.1007/978-1-4899-7687-1_100187

900 Neuroevolution

Neuroevolution allows combining evolution
over a population of solutions with lifetime learn-
ing in individual solutions: the evolved networks
can each learn further through, e.g., backprop-
agation or Hebbian learning. The approach is
therefore well suited to understanding biolog-
ical adaptation and for building artificial life
systems.

Structure of the Learning System

Basic Methods
In neuroevolution, a population of genetic encod-
ings of neural networks is evolved in order to find
a network that solves the given task. Most neu-
roevolution methods follow the usual generate-
and-test loop of evolutionary algorithms (Fig. 1).
Each encoding in the population (a genotype) is
chosen in turn and decoded into the correspond-
ing neural network (a phenotype). This network
is then employed in the task and its performance
over time measured, obtaining a fitness value for
the corresponding genotype. After all members
of the population have been evaluated in this
manner, genetic operators are used to create the
next generation of the population. Those encod-

ings with the highest fitness are mutated and
crossed over with each other, and the resulting
offspring replaces the genotypes with the lowest
fitness in the population. The process therefore
constitutes an intelligent parallel search toward
better genotypes and continues until a network
with a sufficiently high fitness is found.

Several methods exist for evolving neural net-
works depending on how the networks are en-
coded. The most straightforward encoding, some-
times called conventional neuroevolution (CNE),
is formed by concatenating the numerical values
for the network weights (either binary or floating
point) (Floreano et al. 2008; Yao 1999; Schaffer
et al. 1992). This encoding allows evolution to
optimize the weights of a fixed neural network ar-
chitecture, an approach that is easy to implement
and is practical in many domains.

In more challenging domains, the CNE
approach suffers from three problems: The
method may cause the population to converge
before a solution is found, making further
progress difficult (i.e., premature convergence);
similar networks, such as those where the
order of nodes is different, may have different
encodings, and much effort is wasted in trying
to optimize them in parallel (i.e., competing
conventions); a large number of parameters need

Neural Network

action

Environment

Genetic
Algorithm

fitness

observation

Neuroevolution, Fig. 1 Evolving Neural Networks. A
population of genetic neural network encodings (geno-
types) is first created. At each iteration of evolution (gen-
eration), each genotype is decoded into a neural network

(phenotype), which is evaluated in the task, resulting in
a fitness value for the genotype. Crossover and mutation
among the genotypes with the highest fitness are then used
to generate the next generation

Neuroevolution 901

N

to be optimized at once, which is difficult through
evolution.

More sophisticated encodings have been de-
vised to alleviate these problems. One approach
is to run the evolution at the level of solution
components instead of full solutions. That is,
instead of a population of complete neural net-
works, a population of network fragments, neu-
rons, or connection weights is evolved (Moriarty
et al. 1999; Gomez et al. 2008; Potter and Jong
2000). Each individual is evaluated as part of
a full network, and its fitness reflects how well
it cooperates with other individuals in forming
a full network. Specifications for how to com-
bine the components into a full network can be
evolved separately, or the combination can be
based on designated roles for subpopulations. In
this manner, the complex problem of finding a
solution network is broken into several smaller
subproblems; evolution is forced to maintain di-
verse solutions, and competing conventions and
the number of parameters is drastically reduced.

Another approach is to evolve the network
topology, in addition to the weights. The idea is
that topology can have a large effect on function
and evolving appropriate topologies can achieve
good performance faster than evolving weights
only (Angeline et al. 1994; Floreano et al. 2008;
Yao 1999; Stanley and Miikkulainen 2004). Since
topologies are explicitly specified, competing
conventions are largely avoided. It is also
possible to start evolution with simple solutions
and gradually make them more complex, a
process that takes place in biology and is
a powerful approach in machine learning in
general. Speciation according to the topology
can be used to avoid premature convergence and
to protect novel topological solutions until their
weights have been sufficiently optimized.

All of the above methods map the genetic
encoding directly to the corresponding neural
network, i.e., each part of the encoding corre-
sponds to a part of the network and vice versa.
Indirect encoding, in contrast, specifies a process
through which the network is constructed, such
as cell division or generation through a gram-
mar or through patterns generated by another
neural network (Floreano et al. 2008; Yao 1999;

Stanley and Miikkulainen 2003; Gruau and Whit-
ley 1993; Stanley et al. 2009). Such an encoding
can be highly compact and also take advantage
of modular solutions. The same structures can be
repeated with minor modifications, as they often
are in biology. It is, however, difficult to optimize
solutions produced by indirect encoding, and re-
alizing its full potential is still future work.

Another approach is to evolve an ensemble
of neural networks to solve the task together,
instead of a single network (Liu et al. 2000).
This approach takes advantage of the diversity in
the population: Different networks learn different
parts or aspects of the training data, and together
the whole ensemble can perform better than a
single network. Diversity can be created through
speciation and negative correlation, encouraging
useful specializations to emerge. The approach
can be used to design ensembles for classification
problems, but it can also be extended to control
tasks.

Extensions
The basic mechanisms of neuroevolution can be
augmented in several ways, making the process
more efficient and extending it to various applica-
tions. One of the most basic ones is incremental
evolution or shaping: Evolution is began on a
simple task, and once that is mastered, the solu-
tions are evolved further on a more challenging
task and, through a series of such transfer steps,
eventually on the actual goal task itself (Gomez
et al. 2008). Shaping can be done by changing
the environment, such as increasing the speed of
the opponents, or by changing the fitness func-
tion, e.g., by rewarding gradually more complex
behaviors. It is often possible to solve challenging
tasks by approaching them incrementally even
when they cannot be solved directly.

Many extensions to evolutionary computation
methods apply particularly well to neuroevo-
lution. First, intelligent mutation techniques
such as those employed in evolutionary
strategies are effective because the weights
often have suitable correlations (Igel 2003).
Second, networks can be evolved through
coevolution (Stanley and Miikkulainen 2004;
Chellapilla and Fogel 1999). A coevolutionary

902 Neuroevolution

arms race can be established, e.g., based on
complexification of network topology: As the
network becomes gradually more complex,
evolution is likely to elaborate on existing
behaviors instead of replacing them. Third,
behavioral diversity and novelty can be defined
naturally in terms of network behavior, leading to
methods that discover novel solutions (Lehman
and Stanley 2010; Mouret and Doncieux
2012).

On the other hand, several extensions utilize
the special properties of the neural network phe-
notype. For instance, neuron activation functions,
initial states, and learning rules can be evolved
to fit the task (Floreano et al. 2008; Yao 1999;
Schaffer et al. 1992). It is possible to evolve mod-
ular network architectures, e.g., as a separate mu-
tation or through minimizing wiring length, and
thus discover how complex behavior arises from
a combination of low-level behaviors (Clune et al.
2013; Schrum 2014). Most significantly, evo-
lution can be combined with other neural net-
work learning methods (Floreano et al. 2008).
In such approaches, evolution usually provides
the initial network, which then adapts further
during its evaluation in the task. The adaptation
can take place through Hebbian learning, thereby
strengthening those existing behaviors that are
invoked often during evaluation. Alternatively,
supervised learning such as backpropagation can
be used, provided targets are available. Even
if the optimal behaviors are not known, such
training can be useful: Networks can be trained
to imitate the most successful individuals in the
population, or part of the network can be trained
in a related task such as predicting the next
inputs or evaluating the utility of actions based on
values obtained through Q-learning. The weight
changes may be encoded back into the geno-
type, implementing Lamarckian evolution; alter-
natively, they may affect selection through the
Baldwin effect, i.e., networks that learn well will
be selected for reproduction even if the weight
changes themselves are not inherited (Ackley and
Littman 1992; Gruau and Whitley 1993; Bryant
and Miikkulainen 2007).

There are also several ways to bias and direct
the learning system using human knowledge. For

instance, human-coded rules can be encoded in
partial network structures and incorporated into
the evolving networks as structural mutations.
Such knowledge can be used to implement ini-
tial behaviors in the population, or it can serve
as advice during evolution (Miikkulainen et al.
2006). In cases where rule-based knowledge is
not available, it may still be possible to obtain
examples of human behavior. Such examples can
then be incorporated into evolution, either as
components of fitness or by explicitly training
the evolved solutions toward human behavior
through, e.g., backpropagation (Bryant and Mi-
ikkulainen 2007). Similarly, knowledge about the
task and its components can be utilized in de-
signing effective shaping strategies. In this man-
ner, human expertise can be used to bootstrap
and guide evolution in difficult tasks, as well
as direct it toward the desired kinds of solu-
tions.

Applications

Neuroevolution methods are powerful especially
in continuous domains of reinforcement learning
and those that have partially observable states.
For instance, in the benchmark task of balancing
the inverted pendulum without velocity infor-
mation (making the problem partially observ-
able), the advanced methods have been shown
to find solutions two orders of magnitude faster
than value function-based reinforcement learning
methods (measured by number of evaluations,
Gomez et al. 2008). They can also solve harder
versions of the problem, such as balancing two
poles simultaneously.

The method is powerful enough to make
many real-world applications of reinforcement
learning possible. The most obvious area
is adaptive, nonlinear control of physical
devices. For instance, neural network controllers
have been evolved to drive mobile robots,
automobiles, and even rockets (Valsalam et al.
2013; Togelius and Lucas 2006; Gomez and
Miikkulainen 2003; Nolfi and Floreano 2000;
Bongard 2011). The control approach have
been extended to optimize systems such as

Neuroevolution 903

N

chemical processes, manufacturing systems,
and computer systems. A crucial limitation
with current approaches is that the controllers
usually need to be developed in simulation
and transferred to the real system. Evolution
is strongest as an off-line learning method
where it is free to explore potential solutions
in parallel.

Evolution of neural networks is a natural tool
for problems in artificial life. Because networks
implement behaviors, it is possible to design
neuroevolution experiments on how behaviors
such as foraging, pursuit and evasion, hunting and
herding, collaboration, and even communication
may emerge in response to environmental pres-
sure (Werner and Dyer 1992; Nolfi and Flore-
ano 2000). It is possible to evolve the morphol-
ogy and control together to create agents with
natural movement (Lessin et al. 2013; Bongard
2011) and to analyze the evolved circuits and
understand how they map to function, leading to
insights into biological networks (Keinan et al.
2006). The evolutionary behavior approach is
also useful for constructing characters in artifi-
cial environments, such as games and simulators.
Non-player characters in current video games are
usually scripted and limited; neuroevolution can
be used to evolve complex behaviors for them and
even adapt them in real time (Miikkulainen et al.
2006; Risi and Togelius 2014).

Programs and Data

Software for the NEAT method for evolving net-
work weights and topologies, and for the ESP
and CoSyNE methods for evolving neurons and
weights to form networks, is available at nn.cs.
utexas.edu/?neuroevolution. Software for Hyper-
NEAT indirect neuroevolution method is avail-
able at eplex.cs.ucf.edu/hyperNEATpage.

PyBrain (pybrain.org) and Sferes2 (github.
com/jbmouret/sferes2) are general machine
learning and evolutionary computation packages
that include neuroevolution methods.

The OpenNERO software for evolving intel-
ligent multiagent behavior in simulated environ-
ments is at http://opennero.googlecode.com.

Cross-References

�Evolutionary Computation
�Reinforcement Learning

Recommended Reading

Ackley D, Littman M (1992) Interactions between
learning and evolution. In: Langton CG, Taylor C,
Farmer JD, Rasmussen S (eds) Artificial life II.
Addison-Wesley, Reading, pp 487–509

Angeline PJ, Saunders GM, Pollack JB (1994) An evo-
lutionary algorithm that constructs recurrent neural
networks. IEEE Trans Neural Netw 5:54–65

Bongard J (2011) Morphological change in machines
accelerates the evolution of robust behavior. Proc
Natl Acad Sci USA 108:1234–1239

Bryant BD, Miikkulainen R (2007) Acquiring visi-
bly intelligent behavior with example-guided neu-
roevolution. In: Proceedings of the twenty-second
national conference on artificial intelligence. AAAI,
Menlo Park

Chellapilla K, Fogel DB (1999) Evolution, neu-
ral networks, games, and intelligence. Proc IEEE
87:1471–1496

Clune J, Mouret J-B, Lipson H (2013) The evolution-
ary origins of modularity. Proc R Soc B Biol Sci
280(1755):20122863

Floreano D, Dürr P, Mattiussi C (2008) Neuroevo-
lution: from architectures to learning. Evol Intell
1:47–62

Gomez F, Miikkulainen R (2003) Active guidance for a
finless rocket using neuroevolution. In: Proceedings
of the genetic and evolutionary computation confer-
ence. Morgan Kaufmann, San Francisco, pp 2084–
2095

Gomez F, Schmidhuber J, Miikkulainen R (2008)
Accelerated neural evolution through cooperatively
coevolved synapses. J Mach Learn Res 9:937–965

Gruau F, Whitley D (1993) Adding learning to the
cellular development of neural networks: evolution
and the Baldwin effect. Evol Comput 1:213–233

Igel C (2003) Neuroevolution for reinforcement
learning using evolution strategies. In: Sarker R,
Reynolds R, Abbass H, Tan KC, McKay B, Essam
D, Gedeon T (eds) Proceedings of the 2003 congress
on evolutionary computation. IEEE, Piscataway,
pp 2588–2595

Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Rup-
pin E (2006) Axiomatic scalable neurocontroller
analysis via the Shapley value. Artif Life 12:333–
352

Lehman J, Stanley KO (2010) Abandoning objectives:
evolution through the search for novelty alone. Evol
Comput 2011:189–223

Lessin D, Fussell D, Miikkulainen R (2013) Open-
ended behavioral complexity for evolved virtual

nn.cs.utexas.edu/?neuroevolution
nn.cs.utexas.edu/?neuroevolution
eplex.cs.ucf.edu/hyperNEATpage
pybrain.org
github.com/jbmouret/sferes2
github.com/jbmouret/sferes2
http://opennero.googlecode.com.
http://dx.doi.org/10.1007/978-1-4899-7687-1_100149
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

904 Neuron

creatures. In: Proceedings of the genetic and evo-
lutionary computation conference, Amsterdam

Liu Y, Yao X, Higuchi T (2000) Evolutionary ensem-
bles with negative correlation learning. IEEE Trans
Evol Comput 4:380–387

Miikkulainen R, Bryant BD, Cornelius R, Karpov
IV, Stanley KO, Yong CH (2006) Computational
intelligence in games. In: Yen GY, Fogel DB (eds)
Computational intelligence: principles and prac-
tice, Piscataway. IEEE Computational Intelligence
Society

Moriarty DE, Schultz AC, Grefenstette JJ (1999) Evo-
lutionary algorithms for reinforcement learning. J
Artif Intell Res 11:199–229

Mouret J-B, Doncieux S (2012) Encouraging behav-
ioral diversity in evolutionary robotics: an empirical
study. Evol Comput 20:91–133

Nolfi S, Floreano D (2000) Evolutionary robotics.
MIT, Cambridge

Potter MA, Jong KAD (2000) Cooperative coevolu-
tion: an architecture for evolving coadapted sub-
components. Evol Comput 8:1–29

Risi S, Togelius J (2014) Neuroevolution in games:
state of the art and open challenges ArXiv e-prints.
E-print no. 1410.7326

Schaffer JD, Whitley D, Eshelman LJ (1992) Combi-
nations of genetic algorithms and neural networks:
a survey of the state of the art. In: Whitley D,
Schaffer J (eds) Proceedings of the international
workshop on combinations of genetic algorithms
and neural networks. IEEE Computer Society Press,
Los Alamitos, pp 1–37

Schrum J (2014) Evolving multimodal behavior
through modular multiobjective neuroevolution.
Ph.D. thesis, The University of Texas at Austin,
Austin. Technical report TR-14-07

Stanley KO, D’Ambrosio DB, Gauci J (2009) A
hypercube-based encoding for evolving large-scale
neural networks. Artif Life 15(2):185–212

Stanley KO, Miikkulainen R (2003) A taxonomy for
artificial embryogeny. Artif Life 9(2):93–130

Stanley KO, Miikkulainen R (2004) Competitive co-
evolution through evolutionary complexification. J
Artif Intell Res 21:63–100

Togelius J, Lucas SM (2006) Evolving robust and spe-
cialized car racing skills. In: IEEE congress on evo-
lutionary computation. IEEE, Piscataway, pp 1187–
1194

Valsalam V, Hiller J, MacCurdy R, Lipson H, Mi-
ikkulainen R (2013) Constructing controllers for
physical multilegged robots using the enso neu-
roevolution approach. Evol Intell 14:303–331

Werner GM, Dyer MG (1992) Evolution of com-
munication in artificial organisms. In: Langton
CG, Taylor C, Farmer JD, Rasmussen S (eds)
Proceedings of the workshop on artificial life
(ALIFE ’90). Addison-Wesley, Reading, pp 659
–687

Yao X (1999) Evolving artificial neural networks. Proc
IEEE 87(9):1423–1447

Neuron

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Node; Unit

Definition

Neurons carry out the computational operations
of a network; together with connections (see
�Topology of a Neural Network, �Weight), they
constitute the neural network. Computational
neurons are highly abstracted from their
biological counterparts. In most cases, the neuron
forms a weighted sum of a large number of
inputs (activations of other neurons), applies
a nonlinear transfer function to that sum, and
broadcasts the resulting output activation to a
large number of other neurons. Such activation
models the firing rate of the biological neuron,
and the nonlinearity is used to limit it to a certain
range (e.g., 0 or 1 with a threshold, (0; 1) with
a sigmoid, (�1; 1) with a hyperbolic tangent,
or (0; 1) with an exponential function). Each
neuron may also have a bias weight, i.e., a weight
from a virtual neuron that is always maximally
activated, which the learning algorithm can use
to adjust the input sum quickly into the most
effective range of the nonlinearity. Alternatively
to firing rate neurons, the firing events (i.e.,
spikes or action potentials) of the neuron can
be represented explicitly. In such an integrate-
and-fire approach, each spike causes a change in
the neuron’s membrane potential that decays over
time; an output spike is generated if the potential
exceeds a threshold (see �Biological Learning:
Synaptic Plasticity, Hebb Rule and Spike Timing
Dependent Plasticity). In contrast, networks such
as � self-organizing maps and � radial basis
function networks abstract the firing rate further
into a measure of similarity (or distance) between

http://dx.doi.org/10.1007/978-1-4899-7687-1_100332
http://dx.doi.org/10.1007/978-1-4899-7687-1_100495
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_698

Nonparametric Cluster Analysis 905

N

the neuron’s input weight vector and the vector
of input activities. Learning in neural networks
usually takes place by adjusting the weights on
the input connections of the neuron, and can also
include adjusting the parameters of the nonlinear
transfer function, or the neuron’s connectivity
with other neurons. In this manner, the neuron
converges information from other neurons, makes
a simple decision based on it, broadcasts the
result widely, and adapts.

Node

�Neuron

No-Free-Lunch Theorem

A theorem establishing that performance on test
data cannot be deduced from performance on
training data. It follows that the justification for
any particular learning algorithm must be based
on an assumption that nature is uniform in some
way. Since different machine learning algorithms
make such different assumptions, no-free-lunch
theorems have been used to argue that it not pos-
sible to deduce that any algorithm is superior to
any other from first principles. Thus “good” algo-
rithms are those whose � inductive bias matches
the way the world happens to be.

Further Reading

Wolpert DH, Macready WG (1997) No free lunch the-
orems for optimization. IEEE Trans Evol Comput
1(1):67–82

Nogood Learning

Nogood learning is a � deductive learning tech-
nique used for the purpose of � intelligent back-
trackings in constraint satisfaction. The approach
analyzes failures at backtracking points and de-
rives sets of variable bindings, or nogoods, that

will never lead to a solution. These nogood con-
straints can then be used to prune later search
nodes.

Noise

The training data for a learning algorithm is said
to be noisy if the data contain errors. Errors can
be of two types:

• A measurement error occurs when some at-
tribute values are incorrect or inaccurate. Note
that measurement of physical properties by
continuous values is always subject to some
error.

• In supervised learning, classification error
means that a training example has an incorrect
class label.

In addition to errors, training examples may
have �missing attribute values. That is, the val-
ues of some attribute values are not recorded.

Noisy data can cause learning algorithms to
fail to converge to a concept description or to
build a concept description that has poor classifi-
cation accuracy on unseen examples. This is often
due to � over fitting.

For methods to minimize the effects of noise,
see �Overfitting.

Nominal Attribute

A nominal attribute assumes values that classify
data into mutually exclusive (nonoverlapping),
exhaustive, unordered categories. See �Attribute
and �Measurement Scales.

Nonparametric Bayesian

�Gaussian Process

Nonparametric Cluster Analysis

�Density-Based Clustering

http://dx.doi.org/10.1007/978-1-4899-7687-1_595
http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_206
http://dx.doi.org/10.1007/978-1-4899-7687-1_411
http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_108
http://dx.doi.org/10.1007/978-1-4899-7687-1_70

906 Non-Parametric Methods

Non-Parametric Methods

� Instance-Based Learning

Nonstandard Criteria in Evolutionary
Learning

Michele Sebag
CNRS – INRIA – Université Paris-Sud, Orsay,
France

Introduction

Machine learning (ML), primarily concerned
with extracting models or hypotheses from data,
comes into three main flavors: � supervised
learning also known as � classification or
� regression (Bishop 2006; Duda et al. 2001;
Han and Kamber 2000), � unsupervised learning
also known as � clustering (Ben-David et al.
2005), and � reinforcement learning (Sutton and
Barto 1998).

All three types of problems can be viewed
as optimization problems. The ML core task is
to define a learning criterion (i.e., the func-
tion to be optimized) such that it enforces (i)
the statistical relevance of the solution; (ii) the
well-posedness of the underlying optimization
problem. Since evolutionary computation (see
�Evolutionary Algorithms) makes it possible to
handle ill-posed optimization problems, the field
of evolutionary learning (Holland 1986) has in-
vestigated quite a few nonstandard learning cri-
teria and search spaces. Only supervised ML
will be considered in the following. Unsupervised
learning has hardly been touched upon in the evo-
lutionary computation (EC) literature; regarding
reinforcement learning, the interested reader is
referred to the entries related to � evolutionary
robotics and control.

The entry will first briefly summarize the
formal background of supervised ML and
its two mainstream approaches for the last
decade, namely support vector machines (SVMs)

Nonstandard Criteria in Evolutionary
Learning, Table 1 Excerpt of a dataset in a failure
identification problem (binary classification). Instance
space X is the cross product of all attribute domains:
for example, attribute Temperature ranges in R, attribute
Material ranges in fNi, Fe, . . . g. Label space Y is binary

Temperature Material Aging Label
x1 118:2 Ni No Failure
x2 76:453 Fe Yes OK

(Cristianini and Shawe-Taylor 2000; Schölkopf
et al. 1998; Vapnik 1995) and ensemble learning
(Breiman 1998; Dietterich 2000; Schapire
1990). Thereafter and without pretending to
exhaustivity, this entry will illustrate some
innovative variants of these approaches in
the literature, building upon the evolutionary
freedom of setting and tackling optimization
problems.

Formal Background
Supervised learning exploits a dataset E D

f.xi ; yi /; xi 2 X; yi ; 2 Y; i D 1 : : : ng, where
X stands for the instance space (e.g., Rd /, Y is
the label space, and .xi ; yi / is a labeled example,
as depicted in Table 1. Supervised learning
is referred to as classification (respectively
regression) when Y is a finite set (respectively
when Y D R/.

The ML goal is to find a hypothesis or clas-
sifier h : X 7! Y such that h.x/ is “sufficiently
close” to the true label y of x for any x ranging
in the instance domain. It is generally assumed
that the available examples are independently
and identically distributed (iid) after a probability
distribution PXY on X�Y . Letting `.y0; y/ denote
the loss incurred by labeling x as y0 instead of
its true label y, the learning criterion is most
naturally defined as the expectation of the loss,
or generalization error, to be minimized, where
H denotes the hypothesis space:

Find h� D arg minfF.h/

D

Z
`.h.x/; y/dP.x; y/; h 2 Hg

The generalization error however is not com-
putable, since the joint distribution PXY of in-

http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_94

Nonstandard Criteria in Evolutionary Learning 907

N

For an iid. sample x1 , . . . xn , for g ∈

∫ g (x)dx < 1
n ∑ n

i= 1 g(xi) + C(n,)

Nonstandard Criteria in Evolutionary Learning, Fig. 1 Bounding the integral from the empirical average depend-
ing on the uniform sample size and the class of functions G at hand

stances and labels is unknown; only its approxi-
mation on the training set, referred to as empirical
error, can be computed as follows:

Fe.h/ D
1

n

nX

iD1

`.h.xi /; yi /

Using results from the theory of measure and
integration, the generalization error is upper
bounded by the empirical error, plus a term
reflecting the number of examples and the
regularity of the hypothesis class (Fig. 1).

Note that minimizing the empirical error alone
leads to the infamous overfitting problem: while
the predictive accuracy on the training set is
excellent, the error on a (disjoint) test set is much
higher. All learning criteria thus involve a trade-
off between the empirical error and a so-called
regularization term, providing good guarantees
(upper bound) on the generalization error.

In practice, learning algorithms also involve
hyper-parameters (e.g., the weight of the regu-
larization term). These are adjusted using cross-
validation using a grid search (EC approaches
have also been used to find optimal learning
hyperparameters, ranging from the topology of
neural nets (Miikkulainen et al. 2003), to the
kernel parameters in SVM (Friedrichs and Igel
2005; Mierswa 2006) The dataset is divided into
K subsets with same class distribution; hypoth-

esis hi is learned from the training set made
of all subsets except the i -th and the empiri-
cal error of hi is measured on the i th subset.
An approximation of the generalization error is
provided by the average of the hi errors when
i D 1 : : : K, referred to as cross-fold error, and
the hyperparameter setting is empirically deter-
mined to minimize the cross-fold error.

Support Vector Machines
Considering a real-valued instance space
(X D R

D/, a linear � support vector machine
(SVM) (Boser et al. 1992) constructs the
separating hyperplane (where < a; b > stands
for the dot product of vectors a and b/:

h.x/ D< w; x > Cb

which maximizes the margin that is, the minimal
distance between the examples and the hyper-
plane, when such separating hyperplanes exists
(Fig. 2). A slightly more complex formulation,
involving the so-called slack variables xii , is
defined to deal with noise (Cortes and Vapnik
1995).

The function to be optimized, the L2 norm
of the hyperplane normal vector w, is quadratic;
using Lagrange multipliers to account for the
constraints gives rise to the so-called dual formu-
lation. Let us call support vectors those examples

http://dx.doi.org/10.1007/978-1-4899-7687-1_810

908 Nonstandard Criteria in Evolutionary Learning

+

+

+

+

+

−

−

−

−
−

Optimal hyperplane

Separating hyperplane

Margin

without noise

Minimize 1
2 w 2

s.t. for i = 1 to n

yi(< w, xi > +b) ≥ 1

with noise
Minimize 1

2 w 2 + C∑n
i=1 xii

s.t. for i = 1 to n

yi(< w, xi > +b) ≥ 1 − xii; xii ≥ 0

Nonstandard Criteria in Evolutionary Learning, Fig. 2 Linear support vector machines. The optimal hyperplane
is the one maximizing the minimal distance to the examples

for which the constraint is active (Lagrange mul-
tiplier ˛i > 0), then it becomes

h.x/ D
X

yi ˛i < xi ; x > Cb with ˛i > 0I

X
˛i yi D 0

As will be seen in section “Evolutionary Regular-
ization” this formulation defines a search space,
which can be directly explored by EC (Mierswa
2007).

Obviously however, linear classifiers are
limited. The power of SVMs comes from the
so-called kernel trick, naturally exporting the
SVM approach to nonlinear hypothesis spaces.
Let us map the instance space X onto some
feature space X 0 via mapping ˚ . If the scalar
product on X 0 can be computed in X (e.g.,
< ˚.x/; ˚.x0/ >Ddef K.x; x0)) then a linear
classifier in X 0 (nonlinear with reference to X)
is given as h.x/ D

P
i yi ˛i K.xi ; x/ C b. The

only requirement is to use a positive definite
kernel (ensuring that the underlying optimization
problem is well posed). Again, this requirement
can be relaxed in the evolutionary learning
framework (Mierswa 2006).

Among the most widely used kernels are the

Gaussian kernel
�
K.x; x0/ D exp

n
� jjx�x0jj2

�2

o�

and the polynomial kernel (K.x; x0/ D

.< x; x0 > Cc/d /. The kernel parameters �; c; d ,
referred to as learning hyper-parameters, have

been tuned by some authors using EC, as well as
the kernel itself (see among others Friedrichs and
Igel 2005; Gagné et al. 2006; Mierswa 2006).

Ensemble Methods
The other mainstream approach in supervised
learning, � ensemble learning (EL), relies
on somewhat different principles. Schapire’s
seminal paper, The strength of weak learnability,
exploring the relationship between weak
learnability (ability of building a hypothesis
slightly better than random guessing, whatever
the distribution of the dataset is (C)) and strong
learnability (ability of building a hypothesis with
arbitrarily high predictive accuracy), established
a major and counterintuitive result: strong and
weak learnability are equivalent (Schapire 1990).
The idea behind the proof is that combining
many weak hypotheses learned under different
distributions yields an arbitrarily accurate
hypothesis. As the errors of the weak hypotheses
should not concentrate in any particular region of
the instance space (for condition C to hold), the
law of large numbers states that averaging them
leads to exponentially decrease the empirical
error.

Two main EL approaches have been investi-
gated in the literature. The first one, � bagging
(Breiman 1998), builds a large number of inde-
pendent hypotheses; the source of variations is
bootstrapping (uniformly selecting the training
set with replacement from the initial dataset); or

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_925

Nonstandard Criteria in Evolutionary Learning 909

N

varying the parameters of the learning algorithm;
or subsampling the features considered at each
step of the learning process (Amit et al. 1997;
Breiman 2001). The final classifier is usually
obtained by averaging these solutions.

The other EL approach, � boosting (Freund
and Shapire 1996), iteratively builds a sequence
of hypotheses, where each hi somehow is in
charge of correcting the mistakes of h1; : : : hi�1.
Specifically, a distribution Wt is defined on the
training set at step t , with W0 being the uniform
distribution. At step t , the weight of every exam-
ple misclassified by ht is increased (multiplied
by expf �ht .xi /. hi g; then a normalization step
follows to ensure that WtC1 still sums to 1);
hypothesis htC1 will thus focus on the examples
misclassified by ht . Finally, the classifier is de-
fined as the weighted vote of all ht .

The intuition behind boosting is that not all
examples are equal: some examples are more
difficult than others (more hypotheses misclas-
sify them) and the learning process should thus
focus on these examples (with the caveat that a
difficult example might be so because it is noisy).
Interestingly, the intuition that examples are not
equal has been formalized in terms of coevolution
(When designing a program, the fitness of the
candidate solutions is computed after some test
cases; for the sake of accuracy and feasability, the
difficulty and number of test cases must be com-
mensurate with the competence of the current
candidate solutions. Hillis defined a competitive
coevolution setting between the program species
and the test case species: while programs aim
at solving test cases, test cases aim at defeating
candidate programs. This major line of research
however is outside the scope of evolutionary
learning as it assumes that the whole distribution
P XY is known.) by D. Hillis in the early 1990s
(Hillis 1990).

Many empirical studies suggest that boosting
is more effective than bagging (with some caveat
in the case of noisy domains), thanks to the higher
diversity of the boosting ensemble (Dietterich
2000; Margineantu and Dietterich 1997).

In the ensemble learning framework, the mar-
gin of an example x is defined as the difference
between the (cumulated weight or number) of hy-

potheses labeling x as positive, and those labeling
x as negative. Like in the SVM framework, the
margin of an example reflects the confidence of
its classification (how much this example should
be perturbed for its label to be modified).

Learning Criteria

Learning criterion and fitness function will be
used interchangeably in the following. Since Hol-
land’s seminal papers on evolutionary learning
(Holland 1975, 1986), the most used learning cri-
terion is the predictive accuracy on the available
dataset. After the early 1990s however, draw-
backs related to either learning or evolutionary
issues motivated the design of new fitness func-
tions.

Evolutionary Regularization
In the � genetic programming field, the early
use of more sophisticated learning criteria was
motivated by the so-called bloat phenomenon
(Banzhaf and Langdon 2002; Poli 2008), that is,
the uncontrolled growth of the solution size as
evolution goes on. Two main approaches have
been considered. The first one boils down to reg-
ularization (section “Formal Background”): the
fitness function is composed of the predictive ac-
curacy plus an additional term meant to penalize
large-sized solutions (Blickle 1996). The tricky
issue of course is how to adjust the weight of
the penalization term; the statistical ML theory
offers no principled solution to this issue (except
in an asymptotic perspective, when the number
of training examples goes to infinity (Gelly et al.
2006)); thus, the weight is adjusted empirically
using cross-validation (section “Formal Back-
ground”).

Another approach (Blickle 1996) is based
on the use of two fitness functions during the
same evolution run, after the so-called behavioral
memory paradigm (Schoenauer and Xanthakis
1993). In a first phase, the population is evolved
to maximize the predictive accuracy. In a
second phase, the optimization goal becomes
to minimize the solution size while preserving
the predictive accuracy reached in the former

http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_376

910 Nonstandard Criteria in Evolutionary Learning

phase. As could have been expected, this second
approach also depends upon the careful empirical
adjustment of hyper-parameters (when to switch
from one phase to another one).

Another approach is to consider regularized
learning as a multi-objective optimization prob-
lem, avoiding the computationally heavy tuning
of the regularization weight (Note however that
in the case where the regularization involves
the L1 norm of the solution, the Pareto front
can be analytically derived using the celebrated
LASSO algorithm (Hastie et al. 2004; Tibshirani
1996).). Mierswa (2007) applies multi-objective
evolutionary optimization, specifically NSGA-II
((Deb et al. 2000); see the Multi-Objective Evolu-
tionary Optimization entry in this encyclopedia),
to the simultaneous optimization of the margin
and the error. The search space is nicely and ele-
gantly derived from the dual form of SVMs (sec-
tion “Support Vector Machines”): it consists of
vectors (˛1; : : : ˛n), where most ˛i are zero andP

i ˛i yi D 0. A customized mutation operator,
similar in spirit to the sequential minimization
optimization proposed by Platt (1999), enables to
explore the solutions with few support vectors.
The Pareto front shows the trade-off between
the regularization term and the training error. At
some point however, a hold-out (test set) needs
be used to detect and avoid overfitting solutions,
boiling down to cross-validation. Another multi-
objective optimization learning is proposed by
Suttorp and Igel (2006) (see section “AUC: Area
Under the ROC Curve”).

Ensemble Learning and Boosting
Ensemble learning and evolutionary computation
share two main original features. Firstly, both rely
on a population of candidate solutions; secondly,
the diversity of these solutions commands the
effectiveness of the approach. It is no surprise
therefore that evolutionary ensemble learning,
tightly coupling EC and EL, has been intensively
investigated in the last decade (Another exploita-
tion of the hypotheses built along independent
evolutionary learning runs concerns feature selec-
tion (Jong et al. 2004), which is outside the scope
of this entry.)

A family of diversity-oriented learning criteria
has been investigated by Xin Yao and collab-
orators, switching the optimization goal from
“learning the best hypothesis” toward “learn-
ing the best ensemble” Monirul Islam and Yao
(2008). The hypothesis space is that of neural
networks (NNs). Nonparametric and parametric
operators are used to simultaneously optimize
the neural topology and the NN weights. Among
parametric operators is the gradient-based back-
propagation (BP) algorithm to locally optimize
the weights (Rumelhart and McClelland 1990),
combined with simulated annealing to escape BP
local minima.

Liu et al. (2000) enforce the diversity of the
networks using a negative correlation learning
criterion. Specifically, the BP algorithm is mod-
ified by replacing the error of the t -th NN on the
i -th example with a weighted sum of this error
and the error of the ensemble of the other NNs;
denoting H�t the ensemble made of all NNs but
the t th one:

.ht .xi / � yi /
2 !.1 � �/.ht .xi / � yi /

2

C �.H�t .xi / � yi /
2

Moreover, ensemble negative correlation–based
learning exploits the fact that not all examples
are equal, along the same line as boosting (sec-
tion “Ensemble Methods”): to each training ex-
ample is attached a weight, reflecting the num-
ber of hypotheses that misclassify it; finally the
fitness associated to each network is the sum of
the weights of all examples it correctly classifies.
While this approach nicely suggests that ensem-
ble learning is a multiple objective optimization
(MOO) problem (minimize the error rate and
maximize the diversity), it classically handles the
MOO problem as a fixed weighted sum of the
objectives (the value of parameter � is fixed by
the user).

The MOO perspective is further investigated
by Chandra and Yao in the DIVACE system,
enforcing the multilevel evolution of ensemble of
classifiers (Chandra and Yao 2006a,b). In (Chan-
dra and Yao 2006b), the top-level evolution si-
multaneously minimizes the error rate (accuracy)

Nonstandard Criteria in Evolutionary Learning 911

N

and maximizes the negative correlation (diver-
sity). In (Chandra and Yao 2006a), the nega-
tive correlation-inspired criterion is replaced by
a pairwise failure crediting; the difference con-
cerns the misclassification of examples that are
correctly classified by other classifiers. Several
heuristics have been investigated to construct the
ensemble from the last population, based on aver-
aging the hypothesis values, using the (weighted)
vote of all hypotheses, or selecting a subset of
hypotheses, for example, by clustering the final
hypothesis population after their phenotypic dis-
tance, and selecting a hypothesis in each cluster.

Gagné et al. (2007) tackle both the construc-
tion of a portfolio of classifiers, and the selection
of a subset thereof, either from the final popu-
lation only as in (Chandra and Yao 2006a,b), or
from all generations. In order to do so, a reference
set of classifiers is used to define a dynamic
optimization problem: the fitness of a candidate
hypothesis reflects whether h improves on the
reference set; in the meantime, the reference set is
updated every generation. Specifically, noting wi

the fraction of reference classifiers misclassifying
the i -th example, F.h/ (h/ is set to the sum of w�

i ,
taken over all examples correctly classified by h.
Parameter � is used to mitigate the influence of
noisy examples.

Boosting and Large-Scale Learning
Another key motivation for designing new learn-
ing criteria is to yield scalable learning algo-
rithms, coping with giga or terabytes of data (see
Sonnenburg et al. 2008).

Song et al. (2003, 2005) presented an elegant
genetic programming approach to tackle the
intrusion detection challenge (Lippmann et al.
2000); this challenge offers a 500,000 pattern
training set, exceeding standard available RAM
capacities. The proposed approach relies on
the dynamic subset selection method first
presented by Gathercole and Ross (1994).
The whole dataset is equally and randomly
divided into subsets Ei with same distribution
as the whole dataset, where each Ei fits within
the available RAM. Iteratively, some subset
Ei is selected with uniform probability, and
loaded in memory; it is used for a number

of generations set to Gmax � Err.i/ where
Gmax is the user-supplied maximum number of
generations, and Err(i) is the minimum number
of patterns in Ei misclassified the previous time
Ei was considered. Within Ei , a competition
is initiated between training patterns to yield
a frugal yet challenging assessment of the
hypotheses. Specifically, every generation or so,
a restricted subset is selected by tournament in
Ei , considering both the difficulty of the patterns
(the difficulty of pattern xj being the number of
hypotheses misclassifying xj last time xj was
selected) and its age (the number of generations
since xj was last selected). With some probability
(30 % in the experiments), the tournament returns
the pattern with maximum age; otherwise, it
returns the pattern with maximum difficulty.

The dynamic selection subset (DSS) heuristics
can thus be viewed as a mixture of uniform sam-
pling (modeled by the age-based selection) and
boosting (corresponding to the difficulty-based
selection). This mixed distribution gets the best
of both worlds: it speeds up learning by putting
the stress on the most challenging patterns, akin
boosting; in the meanwhile, it prevents noisy
examples from leading learning astray as the
training set always includes a sufficient propor-
tion of uniformly selected examples. The authors
report that the approach yields accurate classifiers
(though outperformed by the Challenge winning
entry), while one trial takes 15 min on a mod-
est laptop computer (1 GHz Pentium, 256 MB
RAM).

Gagné et al., aiming at the scalable optimiza-
tion of SVM kernels, proposed another use of
dynamic selection subset in a coevolutionary per-
spective (Gagné et al. 2006). Specifically, any
kernel induces a similarity on the training set

s.x; x0/ D 2K.x; x0/ � K.x; x/ � K.x0; x0/

This similarity directly enables the classification
of examples along the k-nearest neighbor ap-
proach (Duda et al. 2001) (see �Nearest Neigh-
bor), labeling an example after the majority of its
neighbors. Inspired from (Gilad-Bachrach et al.
2004), the margin of an example is defined as
the rank of its closest neighbor in the same class,

http://dx.doi.org/10.1007/978-1-4899-7687-1_579

912 Nonstandard Criteria in Evolutionary Learning

minus the rank of its closest neighbor in the other
class (the closer a neighbor, the higher its rank
is). The larger the margin of an example, the
more confident one can be it will be correctly
classified; the fitness of the kernel could thus
be defined as the sum of the example margins.
Computed naively however, this fitness would be
quadratic in the size of the training set, hindering
the scalability of the approach.

A three-species coevolutionary framework
was thus defined. The first species is that
of kernels; the second species includes the
candidate neighbor instances, referred to as
prototypes; the third species includes the training
instances, referred to as test cases. Kernels and
prototypes undergo a cooperative co-evolution:
they cooperate to yield the underlying metric
(similarity) and the reference points (prototypes)
enabling to classify all training instances. The test
cases, in the meanwhile, undergo a competitive
coevolution with the other two species: they
present the learning process with more and
more difficult training examples, aiming at a
good coverage of the whole instance space. The
approach reportedly yields accurate kernels at a
moderate computational cost.

AUC: Area Under the ROC Curve
The misclassification rate criterion is notably
ill-suited to problem domains with a minority
class. If the goal is to discriminate a rare
disease (<1 % of the training set) from a
healthy state, the default hypothesis (“everyone
is healthy” with 1 % misclassified examples) can
hardly be outperformed in terms of predictive
accuracy. Standard heuristics accommodating ill-
balanced problems involve the oversampling
of the minority class, undersampling of the
majority class, or cost-sensitive loss function
(e.g., misclassifying a healthy person for an ill
one costs 1, whereas the opposite costs 100)
(Domingos 1999).

Another principled approach is based on the
so-called area under the receiver-operating char-
acteristics curve (see �ROC Analysis). Let us
consider a continuous hypothesis h, mapping the
instance space on the real-value space R. For each
threshold � let the binary classifier h� be defined

ROC Curve
1

0.5

0

0.50

False positive rate

T
ru

e
po

si
tiv

e
ra

te

1

ROC Curve
Best Tradeoff

Nonstandard Criteria in Evolutionary Learning,
Fig. 3 The receiver operating characteristic (ROC)
Curve depicts how the true positive (TP) rate increases vs
the false positive (FP) rate. Random guessing corresponds
to the diagonal line. The ROC curve is insensitive
to ill-balanced distributions as TP and FP rates are
normalized

as instance x is positive iff h.x/ > � . To each
� value can be associated the true positive (TP)
rate (fraction of ill persons that are correctly clas-
sified) and the false positive (FP) rate (fraction
of healty persons misclassified as ill ones). In the
(FP,TP) plane, the curve drawn as � varies defines
the ROC curve (Fig. 3).

Noting that the ideal classifier lies in the upper
left corner (0 % false positive rate, 100 % true
positive rate), it comes naturally to optimize the
area under the ROC curve. This criterion, also
referred to as Wilcoxon rank test, has been inten-
sively studied in both theoretical and algorithmic
perspectives (see among many others Cortes and
Mohri 2004; Ferri et al. 2002; Joachims 2005;
Rosset 2004).

The AUC criterion has been investigated in
the EC literature since the 1990s (Fogel et al.
1998), for it defines a combinatorial optimization
problem. Considering the search space of real-
valued functions, mapping instance space X onto
R, the AUC (Wilcoxon) criterion is defined as

F.h/ DP r.h.x/ > h.x0/jy > y0/

Fe.h/ 1 #f.xi ; xj /s:t:h.xi / > h.xj /;

yi D 1; yj D 0g

http://dx.doi.org/10.1007/978-1-4899-7687-1_739

Nonstandard Criteria in Evolutionary Learning 913

N

Specifically, hypothesis h is used to rank the
instances; any ranking such that all positive in-
stances are ranked before the negative ones gets
the optimal AUC. The fitness criterion can be
computed with complexity O.n log n/ where n

stands for the number of training instances, by
showing that

Fe.h/1
X

iD1:::n;yi D1

i � rank.i/

Interestingly, the optimization of the AUC crite-
rion can be dealt with in the SVM framework,
as shown by Joachims (2005), replacing class
constraints by inegality constraints (Fig. 2):

yi .< w; xi > Cb/ � 1 i D 1 : : : n

! < w; xi � xj >� 1 i; j D 1 : : : n; s:t:yi > yi

In practice, the quadratic optimization process in-
troduces gradually the violated constraints only,
to avoid dealing with a quadratic number of
constraints.

The flexibility of EC can still allow for more
specific and application-driven interpretation of
the AUC criterion. Typically in medical appli-
cations, the physician is most interested in the
beginning of the AUC curve, trying to find a
threshold � retrieving a high fraction of ill pa-
tients for a very low false positive rate. The
same situation occurs in customer relationship
management, replacing positive cases by poten-
tial churners. The AUC criterion can be easily
adapted to minimize the number of false positive
within the top k-ranked individuals, as shown by
Mozer et al. (2001).

In a statistical perspective however (and con-
trarily to a common practice in the ML and data
mining communities), it has been argued that
selecting a classifier based on its AUC was not
appropriate (Hand 2009). The objection is that
the AUC maximization yields the best hypothesis
under a uniform distribution of the misclassifica-
tion costs, whereas hypothesis h is used with a
specific threshold � , corresponding to a particular
point of the ROC curve (Fig. 3).

Still, ROC curves convey very clear intuitions
about the trade-off between TP and FP rates;
analogous to a Pareto front, they enable one to
select a posteriori the best trade-off according
to a one’s implicit preferences. An interesting
approach along these lines has been investigated
by Suttorp and Igel (2006) to learn SVMs, using
a multi-objective optimization setting to simul-
taneously minimize the FP rate, and maximize
the TP rate, and maximize the number of support
vectors.

The last objective actually corresponds to a
regularization term: the empirical error plus the
number of support vectors upper-bounds the so-
called leave-one-out error (when the number of
folds in cross-fold validation is set to the number
of examples), since the hypothesis is not modi-
fied when removing a non-support vectors. (see
Zhang (2003) for more detail).

Conclusions

Unsurprisingly, the bottom line of evolutionary
learning matches that of EC: any effort to cus-
tomize the fitness function is highly rewarded; a
good knowledge of the domain application en-
ables to choose appropriate, frugal yet effective,
search space and variation operators.

Another message concerns the validation of
the proposed approaches. In early decades, hy-
potheses were assessed from their training error,
with poor applicative relevance due to overfit-
ting. Better practices are now widely used (e.g.,
training, validation, and test sets); as advocated
by Dietterich (1998), good practices are based
on cross-validation. Taking into account early
remarks about the University of California Irvine
(UCI) repository (Holte 1993), experimental vali-
dation should consider actually challenging prob-
lems.

Due to space limitations, this entry has
excluded some nice and elegant work at the
crossroad of machine learning and evolution-
ary computation, among others, interactive
optimization and modelisation of the user’s
preferences (Llorà et al. 2005), interactive
feature construction (Krawiec and Bhanu 2007;

914 Nonstandard Criteria in Evolutionary Learning

Venturini et al. 1997), or ML-based heuristics for
noisy optimization (Heidrich-Meisner and Igel
2009).

Recommended Reading

Amit Y, Geman D, Wilder K (1997) Joint induction
of shape features and tree classifiers. IEEE Trans
Pattern Anal Mach Intell 19(11):1300–1305

Banzhaf W, Langdon WB (2002) Some considerations
on the reason for bloat. Genet Progr Evolvable Mach
3(1):81–91

ben-David S, von Luxburg U, Shawe-Taylor J, Tishby
N (eds) (2005) Theoretical foundations of cluster-
ing. In: NIPS workshop

bishop C (2006) Pattern recognition and machine
learning. Springer, New York

Blickle T (1996) evolving compact solutions in genetic
programming: a case study. In: Voigt H-M et al (eds)
Proceedings of the 4th international inference on
parallel problem solving from nature. Lecture notes
in computer science, vol 1141. Springer, Berlin,
pp 564–573

boser B, Guyon I, Vapnik V (1992) A training algo-
rithm for optimal margin classifiers. In: Proceedings
of the 5th annual ACM conference on computational
learning theory (COLT’92), Pittsburgh, pp 144–152

Breiman L (1998) Arcing classifiers. Ann Stat
26(3):801–845

Breiman L (2001) Random forests. Mach Learn
45(1):5–32

Chandra A, Yao X (2006a) Ensemble learning us-
ing multi-objective evolutionary algorithms. J Math
Model Algorithm 5(4):417–425

Chandra A, Yao X (2006b) Evolving hybrid ensembles
of learning machines for better generalisation. Neu-
rocomputing 69:686–700

Cortes C, Vapnik VN (1995) Support-vector networks.
Mach Learn 20:273–297

Cortes C, Mohri M (2004) Confidence intervals for the
area under the ROC curve. Adv Neural Inf Process
Syst NIPS 17

Cristianini N, Shawe-Taylor J (2000) An introduction
to support vector machines and other kernel-based
learning methods. Cambridge University Press,
Cambridge

Hand DJ (2009) Measuring classifier performance:
a coherent alternative to the area under the
ROC curve. Mach Learn 77(1):103–123. http://dx.
doi.org/10.1007/S10994-009-5119-5. DBLP http://
dblp.uni-trier.de

Deb K, Agrawal S, Pratab A, Meyarivan T (2000)
A fast elitist non-dominated sorting genetic algo-
rithm for multi-objective optimization: NSGA-II.
In: Schoenauer M et al (eds) Proceedings of the
parallel problem solving from nature VI conference,
Paris. Lecture notes in computer science, vol 1917.
Springer, pp 849–858

Dietterich TG (1998) Approximate statistical tests for
comparing supervised classification learning algo-
rithms. Neural Comput 10:1895–1923

Dietterich T (2000) Ensemble methods in machine
learning. In: Kittler J, Roli F (eds) First international
workshop on multiple classifier systems. Springer,
Berlin, pp 1–15

Domingos P (1999) Meta-cost: a general method for
making classifiers cost sensitive. In: Proceedings of
the 5th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, San
Diego, pp 155–164

Duda RO, Hart PE, Stork DG (2001) Pattern classifica-
tion, 2nd ed. Wiley, New York

Ferri C, Flach PA, Hernndez-Orallo J (2002) Learn-
ing decision trees using the area under the ROC
curve. In: Sammut C, Hoffman AG (eds) Proceed-
ings of the nineteenth international conference on
machine learning (ICML 2002). Morgan Kaufmann,
pp 179–186

Fogel DB, Wasson EC, Boughton EM, Porto VW,
Angeline PJ (1998) Linear and neural models for
classifying breast cancer. IEEE Trans Med Imag
17(3):485–488

Freund Y, Shapire RE (1996) Experiments with a new
boosting algorithm. In: Saitta L (ed) Proceedings of
the thirteenth international conference on machine
learning (ICML 1996). Morgan Kaufmann, Bari,
pp 148–156

Friedrichs F, Igel C (2005) Evolutionary tuning
of multiple SVM parameters. Neurocomputing
64(C):107–117

Gagné C, Schoenauer M, Sebag M, Tomassini
M (2006) Genetic programming for kernel-based
learning with co-evolving subsets selection. In:
Runarsson TP, Beyer H-G, Burke EK, Merelo
Guervós JJ, Whitley LD, Yao X (eds) Parallel
problem solving from nature – PPSN IX. Lecture
notes in computer science, vol 4193, pp 1008–1017.
Springer

Gagné C, Sebag M, Schoenauer M, Tomassini M
(2007) Ensemble learning for free with evolutionary
algorithms? In: Lipson H (ed) Genetic and evo-
lutionary computation conference (GECCO 2007).
ACM, pp 1782–1789

Gathercole C, Ross P (1994) Dynamic training subset
selection for supervised learning in genetic pro-
gramming. In: Parallel problem solving from nature
– PPSN III. Lecture notes in computer science,
vol 866. Springer, pp 312–321

Gelly S, Teytaud O, Bredeche N, Schoenauer M (2006)
Universal consistency and bloat in GP: some the-
oretical considerations about genetic programming
from a statistical learning theory viewpoint. Revue
d’Intell Artif 20(6):805–827

Gilad-Bachrach R, Navot A, Tishby N (2004) Margin
based feature selection – theory and algorithms. In:
Proceedings of the twenty-first international confer-
ence on machine learning (ICML 2009), Montreal.
ACM Press, p 43

http://dx.doi.org/10.1007/S10994-009-5119-5
http://dx.doi.org/10.1007/S10994-009-5119-5
http://dblp.uni-trier.de
http://dblp.uni-trier.de

Nonstandard Criteria in Evolutionary Learning 915

N

Han J, Kamber M (2000) Data mining: concepts and
techniques. Morgan Kaufmann, New York

Hastie T, Rosset S, Tibshirani R, Zhu J (2004) The
entire regularization path for the support vector
machine. Adv Neural Inf Process Syst NIPS 17

Heidrich-Meisner V, Igel C (2009) Hoeffding and
Bernstein races for selecting policies in evolutionary
direct policy search. Proceedings of the twenty-
sixth international conference on machine learning
(ICML 2009), Montreal. ACM, pp 401–408

Hillis WD (1990) Co-evolving parasites improve sim-
ulated evolution as an optimization procedure. Phys
D 42:228–234

Holland J (1986) Escaping brittleness: the possibili-
ties of general purpose learning algorithms applied
to parallel rule-based systems. In: Michalski RS,
Carbonell JG, Mitchell TM (eds) Machine learning:
an artificial intelligence approach, vol 2. Morgan
Kaufmann, Los Altos, pp 593–623

Holland JH (1975) Adaptation in natural and artifi-
cial systems. University of Michigan Press, Ann
Arbor

Holte RC (1993) Very simple classification rules per-
form well on most commonly used datasets. Mach
Learn 11:63–90

Monirul Islam M, Yao X (2008) Evolving artificial
neural network ensembles. In: Fulcher J, Jain LC
(eds) Computational intelligence: a compendium.
Studies in computational intelligence, vol 115.
Springer, pp 851–880

Joachims T (2005) A support vector method for multi-
variate performance measures. In: De Raedt L, Wro-
bel S (eds) Proceedings of the twenty-second in-
ternational conference on machine learning (ICML
2009), Montreal. ACM international conference
proceeding series, vol 119. ACM, pp 377–384

Jong K, Marchiori E, Sebag M (2004) Ensemble learn-
ing with evolutionary computation: application to
feature ranking. In: Yao X et al (eds) Parallel prob-
lem solving from nature – PPSN VIII. Lecture notes
in computer science, vol 3242. Springer, pp 1133–
1142

Miikkulainen R, Stanley KO, Bryant BD (2003) Evolv-
ing adaptive neural networks with and without adap-
tive synapses. Evol Comput 4:2557–2564

Krawiec K, Bhanu B (2007) Visual learning by evolu-
tionary and coevolutionary feature synthesis. IEEE
Trans Evol Comput 11(5):635–650

Lippmann R, Haines JW, Fried DJ, Korba J, Das K
(2000) Analysis and results of the 1999 DARPA on-
line intrusion detection evaluation. In: Debar H, Mé
L, Wu SF (eds) Recent advances in intrusion detec-
tion. Lecture notes in computer science, vol 1907.
Springer, Berlin, pp 162–182

Liu Y, Yao X, Higuchi T (2000) Evolutionary ensem-
bles with negative correlation learning. IEEE Trans
Evol Comput 4(4):380–387

Llorà X, Sastry K, Goldberg DE, Gupta A, Lakshmi
L (2005) Combating user fatigue in IGAS: partial
ordering, support vector machines, and synthetic

fitness. In: Beyer H-G, O’Reilly U-M (eds) Genetic
and evolutionary computation conference (GECCO
05). ACM, New York, pp 1363–1370

Margineantu D, Dietterich TG (1997) Pruning adaptive
boosting. In: Proceedings of the fourteenth inter-
national conference on machine learning (ICML
1996), Bari. Morgan Kaufmann, pp 211–218

Mierswa I (2006) Evolutionary learning with kernels:
a generic solution for large margin problems. In:
Cattolico M (ed) Genetic and evolutionary compu-
tation conference (GECCO 06). ACM, New York,
pp 1553–1560

Mierswa I (2007) Controlling overfitting with multi-
objective support vector machines. In: Lipson H (ed)
Genetic and evolutionary computation conference
(GECCO 07), Philadelphia, pp 1830–1837

Mozer MC, Dodier R, Colagrosso MC, Guerra-
Salcedo C, Wolniewicz R (2001) Prodding the ROC
curve: constrained optimization of classifier perfor-
mance. Adv Neural Inf Process Syst NIPS. MIT
Press

Platt J (1999) Fast training of support vector ma-
chines using sequential minimal optimization. In:
Schölkopf B et al (eds) Advances in kernel methods
– support vector learning. Morgan Kaufmann

Poli R (2008) Genetic programming theory. In: Ryan
C, Keijzer M (eds) Genetic and evolutionary com-
putation conference (GECCO 2008), Atlanta (Com-
panion). ACM, pp 2559–2588

Rosset S (2004) Model selection via the AUC. In: Pro-
ceedings of the twenty-first international conference
on machine learning (ICML 2009), Montreal. ACM
international conference proceeding series, vol 69.
ACM

Rumelhart DE, McClelland JL (1990) Parallel dis-
tributed processing. MIT Press, Cambridge

Schapire RE (1990) The strength of weak learnability.
Mach Learn 5:197

Schoenauer M, Xanthakis S (1993) Constrained GA
optimization. In: Forrest S (ed) Proceedings of the
5th international conference on genetic algorithms.
Morgan Kaufmann, San Mateo, pp 573–580

Schölkopf B, Burges C, Smola A (1998) Advances
in Kernel methods: support vector machines. MIT
Press, Cambridge

Song D, Heywood MI, Nur Zincir-heywood A (2003)
A linear genetic programming approach to intrusion
detection. In: Proceedings of the genetic and evo-
lutionary computation conference (GECCO). Lec-
ture notes in computer science, vol 2724. Springer,
Berlin/New York, pp 2325–2336

Song D, Heywood MI, Nur Zincir-Heywood A (2005)
Training genetic programming on half a million
patterns: an example from anomaly detection. IEEE
Trans Evol Comput 9(3):225–239

Sonnenburg S, Franc V, Yom-Tov E, Sebag M (eds)
(2008) Large scale machine learning challenge. In:
ICML workshop, Helsinki

Sutton RS, Barto AG (1998) Reinforcement learning.
MIT Press, Cambridge

916 Nonstationary Kernels

Suttorp T, Igel C (2006) Multi-objective optimiza-
tion of support vector machines. In: Jin Y (ed)
Multi-objective machine learning. Studies in com-
putational intelligence, vol 16. Springer, Berlin,
pp 199–220

Tibshirani R (1996) Regression shrinkage and selec-
tion via the lasso. R Stat Soc B 58(1):267–288

Vapnik VN (1995) The nature of statistical learning.
Springer, New York

Venturini G, Slimane M, Morin F, Asselin de Beauville
JP (1997) On using interactive genetic algorithms
for knowledge discovery in databases. In: Bäck Th
(ed) International conference on genetic algorithms
(ICGA). Morgan Kaufmann, pp 696–703

Zhang T (2003) Leave-one-out bounds for kernel
methods. Neural Comput 15(6):1397–1437

Nonstationary Kernels

�Local Distance Metric Adaptation
�Locally Weighted Regression for Control

Normal Distribution

�Gaussian Distribution

NP-Completeness

Definition

A decision problem consists in identifying sym-
bol strings, presented as inputs, that have some
specified property. The output consists in a yes/no
or 0/1 answer. A decision problem belongs to the
class P if there exists an algorithm, that is, a de-
terministic procedure, for deciding any instance
of the problem in a length of time bounded by a
polynomial function of the length of the input.

A decision problem is in the class NP if it is
possible for every yes-instance of the problem
to verify in polynomial time, after having been
supplied with a polynomial-length witness, that
the instance is indeed of the desired property.

An example is the problem to answer the
question for two given numbers n and m whether

n has a divisor d strictly between m and n.
This problem is in NP: if the answer is positive,
then such a divisor d will be a witness, since
it can be easily checked that d lies between the
required bounds, and that n is indeed divisible by
d . However, it is not known whether this decision
problem is in P or not, as it may not be easy to find
a suitable divisor d , even if one exists.

The class of NP-complete decision problems
contains such problems in NP for which if
some algorithm decides it, then every problem
in NP can be decided in polynomial time. A
theorem of Stephen Cook and Leonid Levin
states that such decision problems exist. Several
decision problems of this class are problems on
� graphs.

Recommended Reading

Cook S (1971) The complexity of theorem proving
procedures. In: Proceedings of the third annual
ACM symposium on theory of computing, pp 151–
158

Levin L (1973) Universal’nye pereborne zadachi. Probl
Peredachi Inf 9(3):265–266

English translation, Universal Search Problems,
in Trakhtenbrot BA (1984) A survey of
Russian approaches to Perebor (Brute-Force
Searches) algorithms. Ann Hist Comput 6(4):
384–400

Numeric Attribute

Synonyms

Quantitative attribute

Definition

Numeric attributes are attributes that are numeri-
cal in nature. Their values can be ranked in order
and can be subjected to meaningful arithmetic
operations. See �Attribute and �Measurement
Scales.

http://dx.doi.org/10.1007/978-1-4899-7687-1_484
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_352
http://dx.doi.org/10.1007/978-1-4899-7687-1_100387
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529

O

Object

� Instance

Object Consolidation

�Entity Resolution

Object Identification

�Record Linkage

Object Matching

�Record Linkage

Object Space

� Instance Space

Objective Function

� Partitional Clustering

Observation Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
Leiden Institute of Advanced Computer Science,
Heverlee, Belgium

Synonyms

Instance language

Definition

The observation language used by a machine
learning system is the language in which the
observations it learns from are described.

Motivation and Background

Most machine learning algorithms can be seen as
a procedure for deriving one or more hypotheses
from a set of observations. Both the input (the
observations) and the output (the hypotheses)
need to be described in some particular lan-
guage and this language is called the observation
language or the �Hypothesis Language respec-
tively. These terms are mostly used in the context
of symbolic learning, where these languages are
often more complex than in subsymbolic or sta-
tistical learning.

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_637
http://dx.doi.org/10.1007/978-1-4899-7687-1_100219
http://dx.doi.org/10.1007/978-1-4899-7687-1_372

918 Observation Language

The following sections describe some of the
key observation languages.

Attribute-Value Learning

Probably the most used setting in machine
learning is the attribute-value setting (see
�Attribute-Value Learning). Here, an example
(observation) is described by a fixed set of
attributes, each of which is given a value from
the domain of the attribute. Such an observation
is often called a vector or, in relational database
terminology, a tuple. The attributes are usually
atomic (i.e., not decomposable in component
values) and single-valued (i.e., an attribute has
only one value, not a set of values). So we have
an instance space (or space of observations)

O D A1 � � � � � An;

elements of which are denoted using an ob-
servation language that typically has the same
structure:

LO D LA1 � � � � � LAn
;

(the language contains tuples of objects that rep-
resent the attribute values).

The attribute-value framework easily allows
for both supervised and unsupervised learning;
in the supervised learning setting, the label of an
instance is simply included as an attribute in the
tuple, where as for unsupervised learning, it is
excluded.

The attribute-value setting assumes that all
instances can be represented using the same fixed
set of attributes. When instances can be of dif-
ferent types or are variable-sized (e.g., when an
instance is set-valued), this assumption may not
hold, and more powerful languages may have to
be used instead.

Learning from Graphs, Trees, or Sequences
We here consider the case in which a single
instance is a graph, or a node in a graph. Note that
trees and sequences are special cases of graphs.

A graph is defined as a pair (V , E), where V
is a set of vertices and E a set of edges each edge
being a pair of vertices. If the pair is ordered,
the graph is directed; otherwise it is undirected.
For simplicity, we restrict ourselves to undirected
graphs.

A graph can, in practice, not be encoded in
attribute-value format without the loss of infor-
mation. That is, one could use a number of prop-
erties of graphs as attributes in the encoding, but
several graphs may then still map onto the same
representation, which implies loss of information.
In theory, one could imagine defining a total order
on (certain classes of) graphs and representing
each graph by its rank in that order (which is
a single numerical attribute), thus representing
graphs as numbers without loss of information;
but then it is not obvious how to map patterns
in this numerical representation to patterns in the
original representation. No such approaches have
been proposed till now.

Describing the instance space is more difficult
here than in the attribute value case. Consider a
task of graph classification, where in observations
are of the form (G, y) with G a graph and y a
value for a target attribute Y . Then we can define
the instance space as

O D f.V;E/jV � N ^E � V 2g � Y;

where N is the set of all natural numbers. (For
each graph, there exists a graph defined over
N that is isomorphic with it, so O contains all
possible graphs up to isomorphism.)

A straightforward observation language in the
case of graph classification is then

f.G; y/jG

D .V;E/ ^ V � LV ^E � V 2 ^ y 2 Y g;

where LV is some alphabet for representing
nodes.

In learning from graphs, there are essentially
two settings: those where a prediction is made
for entire graphs, and those where a prediction
is made for single nodes in a graph. In the first
case, observations are of the form (G, y/, where

http://dx.doi.org/10.1007/978-1-4899-7687-1_43

Observation Language 919

O

Algebra

Calculus

Databases

Biology

Adams

Baeck

Cools

Adams

Adams Calculus

Baeck

Cools Calculus

DatabasesCools

Biology

Algebra

1999

1998

1999

1999

1998

Anne

Bernard

Celine

Daniel

Elisa

Fabian

1997

1996

1999

1999

1997

1999

Algebra

Calculus

Databases

Biology

Databases

Calculus

1999

2000

1998

A

B

A

B

2000 A

Anne

Anne

Bernard

Celine

Celine

Celine

B

1998

1998

Observation Language, Fig. 1 A small database of students

as, in the second case, they are of the form (G,
v, y), where G D .V;E/ and v 2 V. That is, a
node is given together with the graph in which
it occurs (its “environment”), and a prediction
is to be made for this specific node, using the
information about its environment.

In many cases, the set of observations one
learns from is of the form .G; vi ; yi /, where each
instance is a different node of exactly the same
graph G. This is the case when, for instance,
classifying web pages, we take the whole web as
their environment.

In a labeled graph, labels are associated with
each node or edge. Often these are assumed
atomic, being elements of a finite alphabet or real
numbers, but they can also be vectors of reals.

Relational Learning
In � relational learning, it is assumed that rela-
tionships may exist between different instances of
the instance space, or an instance may internally
consist of multiple objects among which relation-
ships exist.

This essentially corresponds to learning from
graphs, except that in a graph only one binary
relation exists (the edges E), whereas here there
may be multiple relations and they may be non
binary. The expressiveness of the two settings
is the same, however, as any relation can be
represented using only binary relations.

In the attribute-value setting, one typically
uses one table where each tuple represents all the

relevant information for one observation. In the
relational setting, there may be multiple tables,
and information on a single instance is contained
in multiple tuples, possibly belonging to multiple
relations.

Example 1 Assume we have a database about
students, courses, and professors (see Fig. 1). We
can define a single observation as all the infor-
mation relevant to one student, that is: the name,
year of entrance, etc. of the student and also
the courses they take and the professors teaching
these courses.

The most obvious link to the graph represen-
tation is as follows: create one node for each
tuple, labeled with that tuple, and create a link
between two nodes if the corresponding tuples
are connected by a foreign key relationship.

Defining a single observation as a set of tuples
that are connected through foreign keys in the
database corresponds to representing each obser-
vation (G; v; y) as (G0; v; y), where G0 is the
connected component of G that contains v. The
actual links are usually not explicitly written in
this representation, as they are implicit: there is
an edge between two tuples if they have the same
value for a foreign key attribute.

Inductive Logic Programming
In � inductive logic programming, a language
based on first order logic is used to represent
the observations. Typically, an observation is then

http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

920 Occam’s Razor

represented by a ground fact, which basically cor-
responds to a single tuple in a relational database.
In some settings an observation is represented by
an interpretation, a set of ground facts, which
corresponds to the set of tuples mentioned in the
previous subsection.

While the target variable can always be rep-
resented as an additional attribute, ILP systems
often learn from examples and counterexamples
of a concept. The target variable is then implicit:
it is true or false depending on whether the
example is in the positive or negative set, but it
is not explicitly included in the fact.

Typical for the inductive logic programming
setting is that the input of a system may contain,
besides the observations, background knowledge
about the application domain. The advantage of
the ILP setting is that no separate language is
needed for such background knowledge: the same
first order logic-based language can be used for
representing the observations as well as the back-
ground knowledge.

Example 2 Take the following small dataset:

sibling(bart,lisa).
sibling(lisa,bart).
:- sibling(bart, bart).
:- sibling(lisa, lisa).
father(homer, bart).
mother(marge, bart).
father(homer, lisa).
mother(marge, lisa).

There are positive and negative (preceded by
:-) examples of the Sibling relation. The following
hypothesis might be learned:

sibling(X,Y) :- father(Z,X),
father(Z,Y), X ¤ Y.
sibling(X,Y) :- mother(Z,X),
mother(Z,Y), X ¤ Y.

If the following clauses as included as back-
ground knowledge:

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

then the same ILP system might learn the follow-
ing more compact definition:

sibling(X,Y) :- parent(Z,X),
parent(Z,Y), X ¤ Y.

Further Reading

Most of the literature on hypothesis and observa-
tion languages is found in the area of inductive
logic programming. Excellent starting points to
become familiar with this field are Relational
Data Mining by Džeroski and Lavraè (2001) and
Logical and Relational Learning by De Raedt
(2008).

De Raedt (1998) compares a number of dif-
ferent observation and hypothesis languages with
respect to their expressiveness, and indicates re-
lationships between them.

Cross-References

�Hypothesis Language
� Inductive Logic Programming
�Relational Learning

Recommended Reading

De Raedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links
(extended abstract). In: Page D (ed) Proceedings
of the eighth international conference on inductive
logic programming. Lecture notes in artificial intel-
ligence, vol 1446. Springer, Berlin, pp 1–8

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

Džeroski S, Lavraè N (eds) (2001) Relational data
mining. Springer, Berlin.

Occam’s Razor

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Ockham’s Razor

http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_100346

One-Step Reinforcement Learning 921

O

Definition

Occam’s Razor is the maxim that “entities are
not to be multiplied beyond necessity,” or as it
is often interpreted in the modern context “of two
hypotheses H and H’, both of which explain E,
the simpler is to be preferred” (Good 1977)

Motivation and Background

Most attempts to learn a model from data
confront the problem that there will be many
models that are consistent with the data. In order
to learn a single model, a choice must be made
between the available models. The factors taken
into account by a learner in choosing between
models are called its learning biases (Mitchell
1980). A preference for simple models is a
common learning bias and is embodied in many
learning techniques including pruning, minimum
message length, and minimum description length.
Regularization is also sometimes viewed as an
application of Occam’s razor.

Occam’s razor is an imperative, rather than a
proposition. That is, it is neither true nor false.
Rather, it is a call to act in a particular way with-
out making any claim about the consequences
of doing so. In machine learning the so-called
Occam thesis is sometimes assumed that: given a
choice between two plausible classifiers that per-
form identically on the training set, the simpler
classifier is expected to classify correctly more
objects outside the training set. (Webb 1996)

While there are many practical advantages
in having a learning bias toward simple mod-
els, there remains controversy as to whether the
Occam thesis is true (Webb 1996; Domingos
1999; Blumer et al. 1987).

Cross-References

�Learning Bias
�Language Bias
�Minimum Description Length Principle
�Minimum Message Length
� Pruning
�Regularization

Recommended Reading

Blumer A, Ehrenfeucht A, Haussler D, Warmuth
MK (1987) Occam’s razor. Inf Process Lett 24(6):
377–380

Domingos P (1999) The role of Occam’s razor in
knowledge discovery. Data Min Knowl Discov
3(4):409–425

Good IJ (1977) Explicativity: a mathematical theory of
explanation with statistical applications. Proc R Soc
Lond Ser A 354:303–330

Mitchell TM (1980) The need for biases in learning
generalizations. Department of computer science,
Technical report CBM-TR-117, Rutgers University

Webb GI (1996) Further experimental evidence against
the utility Of occams razor. J Artif Intell Res 4:397–
417. AAAI Press, Menlo Park

Ockham’s Razor

�Occam’s Razor

Offline Learning

�Batch Learning

One-Against-All Training

�Class Binarization

One-Against-One Training

�Class Binarization

1-Norm Distance

�Manhattan Distance

One-Step Reinforcement Learning

�Associative Reinforcement Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_100246
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_614
http://dx.doi.org/10.1007/978-1-4899-7687-1_58
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_511
http://dx.doi.org/10.1007/978-1-4899-7687-1_40

922 Online Controlled Experiments and A/B Testing

Online Controlled Experiments and
A/B Testing

Ron Kohavi1 and Roger Longbotham2

1Application Services Group, Microsoft,
Bellevue, WA, USA
2Data and Decision Sciences Group, Microsoft,
Redmond, WA, USA

Abstract

The Internet connectivity of client software
(e.g., apps running on phones and PCs), web-
sites, and online services provide an unprece-
dented opportunity to evaluate ideas quickly
using controlled experiments, also called A/B
tests, split tests, randomized experiments, con-
trol/treatment tests, and online field experi-
ments. Unlike most data mining techniques
for finding correlational patterns, controlled
experiments allow establishing a causal rela-
tionship with high probability. Experimenters
can utilize the scientific method to form a
hypothesis of the form “If a specific change is
introduced, will it improve key metrics?” and
evaluate it with real users.

The theory of a controlled experiment
dates back to Sir Ronald A. Fisher’s
experiments at the Rothamsted Agricultural
Experimental Station in England in the 1920s,
and the topic of offline experiments is well
developed in Statistics (Box et al., Statistics
for experimenters: design, innovation, and
discovery. Wiley, Hoboken, 2005). Online-
controlled experiments started to be used
in the late 1990s with the growth of the
Internet. Today, many large sites, including
Amazon, Bing, Facebook, Google, LinkedIn,
and Yahoo!, run thousands to tens of
thousands of experiments each year testing
user interface (UI) changes, enhancements
to algorithms (search, ads, personalization,
recommendation, etc.), changes to apps,
content management system, etc. Online-
controlled experiments are now considered
an indispensable tool, and their use is growing
for startups and smaller websites. Controlled

experiments are especially useful in com-
bination with Agile software development
(Martin, Clean code: a handbook of Agile
software craftsmanship. Prentice Hall, Upper
Saddle River, 2008; Rubin, Essential scrum:
a practical guide to the most popular Agile
process. Addison-Wesley Professional, Upper
Saddle River, 2012), Steve Blank’s Customer
Development process (Blank, The four steps
to the epiphany: successful strategies for
products that win. Cafepress.com., 2005),
and MVPs (minimum viable products)
popularized by Eric Ries’s Lean Startup (Ries,
The lean startup: how today’s entrepreneurs
use continuous innovation to create radically
successful businesses. Crown Business, New
York, 2011).

Synonyms

A/B Testing; Randomized Experiments; Split
Tests

Motivation and Background

Many good resources are available with moti-
vation and explanations about online-controlled
experiments (Siroker and Koomen 2013; Goward
2012; McFarland 2012b; Schrage 2014; Kohavi
et al. 2009, 2014, 2013).

We provide a motivating visual example of
a controlled experiment that ran at Microsoft’s
Bing. The team wanted to add a feature allowing
advertisers to provide links to the target site. The
rationale is that this will improve ads’ quality
by giving users more information about what
the advertiser’s site provides and allows users
to directly navigate to the subcategory matching
their intent. Visuals of the existing ads layout
(control) and the new ads layout (treatment) with
site links added are shown in Fig. 1.

In a controlled experiment, users are randomly
split between the variants (e.g., the two differ-
ent ads layouts) in a persistent manner (a user
receives the same experience in multiple visits).
Their interactions with the site are instrumented

http://dx.doi.org/10.1007/978-1-4899-7687-1_100507
http://dx.doi.org/10.1007/978-1-4899-7687-1_100394
http://dx.doi.org/10.1007/978-1-4899-7687-1_100439

Online Controlled Experiments and A/B Testing 923

O

Online Controlled Experiments and A/B Testing, Fig. 1 Ads with site link experiment. Treatment (bottom) has site
links. The difference might not be obvious at first but it is worth tens of millions of dollars

and key metrics computed. In this experiment,
the Overall Evaluation Criterion (OEC) was sim-
ple: increasing average revenue per user to Bing
without degrading key user engagement metrics.
Results showed that the newly added site links
increased revenue, but also degraded user metrics
and page load time, likely because of increased
vertical space usage. Even offsetting the space
by lowering the average number of mainline ads
shown per query, this feature improved revenue
by tens of millions of dollars per year with neutral
user impact, resulting in extremely high ROI
(return on investment).

Running online-controlled experiments is not
applicable for every organization. We begin with
key tenets, or assumptions, an organization needs
to adopt (Kohavi et al. 2013).

Tenet 1: The Organization Wants to Make
Data-Driven Decisions and Has Formalized
the Overall Evaluation Criterion (OEC)
You will rarely hear someone at the head of an
organization say that they don’t want to be data-
driven, but measuring the incremental benefit to
users from new features has costs, and objec-
tive measurements typically show that progress
is not as rosy as initially envisioned. In any
organization, there are many important metrics
reflecting revenue, costs, customer satisfaction,
loyalty, etc., and very frequently an experiment
will improve one but hurt another of these met-
rics. Having a single metric, which we call the
Overall Evaluation Criterion, or OEC, that is at a

higher level than these and incorporates the trade-
off among them is essential for organizational
decision-making.

An OEC has to be defined, and it should be
measurable over relatively short durations (e.g.,
2 weeks). The hard part is finding metrics that are
measurable in the short-term that are predictive
of long term goals. For example, “profit” is not
a good OEC, as short-term theatrics (e.g., raising
prices) can increase short-term profit, but hurt it
in the long run. As shown in Trustworthy Online
Controlled Experiments: Five Puzzling Outcomes
Explained (Kohavi et al. 2012), market share can
be a long-term goal, but it is a terrible short-
term criterion: making a search engine worse
forces people to issue more queries to find an
answer, but, like hiking prices, users will find
better alternatives long-term. Sessions per user,
or repeat visits, is a much better OEC for a
search engine. Thinking of the drivers of lifetime
value can lead to a strategically powerful OEC
(Kohavi et al. 2009). We cannot overemphasize
the importance of coming up with a good OEC
that the organization can align behind.

Tenet 2: Controlled Experiments Can Be
Run and Their Results Are Trustworthy
Not every decision can be made with the sci-
entific rigor of a controlled experiment. For ex-
ample, you cannot run a controlled experiment
on the possible acquisition of one company by
another. Hardware devices may have long lead
times for manufacturing, and modifications are

924 Online Controlled Experiments and A/B Testing

hard, so controlled experiments with actual users
are hard to run on a new phone or tablet. For
customer-facing websites and services, changes
are easy to make through software, and running
controlled experiments is relatively easy.

Assuming you can run controlled experiments,
it is important to ensure their trustworthiness.
When running online experiments, getting
numbers is easy; getting numbers you can trust
is hard, and we have had our share of pitfalls
and puzzling results (Kohavi et al. 2012, 2010;
Kohavi and Longbotham 2010).

Tenet 3: We Are Poor at Assessing the
Value of Ideas
Features are built because teams believe they
are useful, yet in many domains, most ideas
fail to improve key metrics. Only one third of
the ideas tested on the Experimentation Platform
at Microsoft improved the metric(s) they were
designed to improve (Kohavi et al. 2009). Success
is even harder to find in well-optimized domains
like Bing. Jim Manzi (2012) wrote that at Google,
only “about 10 percent of these [controlled ex-
periments, were] leading to business changes.”
Avinash Kaushik wrote in his Experimentation
and Testing primer (Kaushik 2006) that “80 % of
the time you/we are wrong about what a customer
wants.” Mike Moran (2007, 240) wrote that Net-
flix considers 90 % of what they try to be wrong.
Regis Hadiaris from Quicken Loans wrote that
“in the five years I’ve been running tests, I’m only
about as correct in guessing the results as a major
league baseball player is in hitting the ball. That’s
right - I’ve been doing this for 5 years, and I can
only “guess” the outcome of a test about 33 %
of the time!” (Moran 2008). Dan McKinley at
Etsy wrote (McKinley 2013) “nearly everything
fails” and “it’s been humbling to realize how rare
it is for them [features] to succeed on the first
attempt. I strongly suspect that this experience is
universal, but it is not universally recognized or
acknowledged.” Finally, Colin McFarland wrote
in the book Experiment! (McFarland 2012b, 20)
“No matter how much you think it’s a no-brainer,
how much research you’ve done, or how many
competitors are doing it, sometimes, more often

than you might think, experiment ideas simply
fail.”

Not every domain has such poor statistics,
but most who have run controlled experiments in
customer-facing websites and applications have
experienced this humbling reality: we are poor at
assessing the value of ideas, and that is the great-
est motivation for getting an objective assessment
of features using controlled experiments.

Structure of an Experimentation
System

Elements of an Experimentation System
The simplest experimental setup is to evaluate a
factor with two levels, a control (version A) and a
treatment (version B). The control is normally the
default version, and the treatment is the change
that is tested. Such a setup is commonly called an
A/B test. It is commonly extended by having sev-
eral levels, often referred to as A/B/n split tests.
An experiment with multiple factors is referred to
as multivariable (or multivariate).

Figure 2 shows the high-level structure of an
A/B experiment. In practice, one can assign any
percentages to the treatment and control, but 50 %
provides the experiment the maximum statistical
power, and we recommend maximally powering
the experiments after a ramp-up period at smaller
percentages to check for egregious errors.

In a general sense, the analysis will test if the
statistical distribution of the treatment is different
from that of the control. In practice, the most
common test is whether the two means are equal
or not. For this case, the effect of version B (or
treatment effect) is defined to be

E.B/ D NXB � NXA (1)

where X is a metric of interest and NXB is the
mean for variant B . However, for interpretability,
the percent change is normally reported with a
suitable (e.g., 95 %) confidence interval. See, for
example, Kohavi et al. (2009).

Control of extraneous factors and randomiza-
tion are two essential elements of any exper-
imentation system. Any factor that may affect

Online Controlled Experiments and A/B Testing 925

O

Online Controlled
Experiments and A/B
Testing, Fig. 2 High-level
structure of an online
experiment

100%
Users

50%
Users

50%
Users

Control:
Existing System

Treatment:
Existing System
with Feature X

Users interactions instrumented,
analyzed & compared

Analyze at the end of the
experiment

an online metric is either a test factor (one you
intentionally vary to determine its effect) or a
non-test factor. Non-test factors could either be
held fixed, blocked, or randomized. Holding a
factor fixed can impact external validity and is
thus not recommended. For example, if week-
end days are known to be different from week
days, you could run the experiment only on
weekdays (or weekends), but it would be better
to have complete weeks in the experiment for
better external validity. Blocking (e.g., pairing)
can reduce the variance relative to randomiza-
tion and is recommended when experimentation
units in each block are more homogenous than
between blocks. For example, if the randomiza-
tion unit is a user page view, then blocking by
weekend/weekday can reduce the variance of the
effect size, leading to higher sensitivity. Time
is a critical non-test factor, and because many
external factors vary with time, it is important to
randomize over time by running the control and
treatment(s) concurrently with a fixed percentage
to each throughout the experiment. (If the rela-
tive percentage changes, you will be subject to
Simpson’s paradox (Malinas and Bigelow 2009;
Kohavi and Longbotham 2010).) Controlling a
non-test factor assures it will have equal influence

on the control and treatment, hence not affecting
the estimate of the treatment effect.

Experimentation Architecture Alternatives
Controlled experiments on the web: survey and
practical guide (Kohavi et al. 2009) provides
a review of many architecture alternatives. The
main three components of an experimentation ca-
pability involve the randomization algorithm, the
assignment method (i.e., how the randomly as-
signed experimental units are given the variants),
and the data path (which captures raw observation
data and processes it). Tang et al. (2010) give
a detailed view of the infrastructure for experi-
ments as carried out by Google.

To validate an experimentation system, we
recommend that A/A tests be run regularly to test
that the experimental setup and randomization
mechanism is working properly. An A/A test,
sometimes called a null test (Peterson 2004),
exercises the experimentation system, assigning
users to one of two groups, but exposes them
to exactly the same experience. An A/A test
can be used to (i) collect data and assess its
variability for power calculations and (ii) test
the experimentation system (the null hypothesis
should be rejected about 5 % of the time when

926 Online Controlled Experiments and A/B Testing

a 95 % confidence level is used) (Kohavi et al.
2009; Martin 2008).

Planning Experiments
Several aspects of planning an experiment are
important: estimating adequate sample size,
gathering the right metrics, tracking the right
users, and randomization unit.

Sample size. Sample size is determined by the
percent of users admitted into the experiment
variants (control and treatments) and how long
the experiment runs. As an experiment runs
longer, more visitors are admitted into the
variants, so sample sizes increase. Experimenters
can choose the relative percent of visitors that
are in the control and treatment which affects
how long you will need to run the experiment.
Several authors (Deng et al. 2013; Kohavi et al.
2009) have addressed the issue of sample size
and length of experiment in order to achieve
adequate statistical power for an experiment,
where statistical power of an experiment is the
probability of detecting a given effect when it
exists (technically, the probability of correctly
rejecting the null hypothesis when it is false). In
addition to planning an experiment for adequate
power, a best practice is to run the experiment for
at least one week (to capture a full weekly cycle)
and then multiple weeks beyond that. When
“novelty” or “primacy” effects are suspected (i.e.,
the initial effect of the treatment is not the same
as the long-term effect), the experiment should
be run long enough to estimate the asymptotic
effect of the treatment. Finally, measuring the
effect on high-variance metric, such as loyalty
(sessions/user), will generally require more users
than for other metrics (Kohavi et al. 2012).

Observations, Metrics, and the OEC. Gath-
ering observations (i.e., logging events) so that
the right metrics can be computed is critical to
successful experimentation. Whenever possible
and economically feasible, one should gather
as many observations as possible that relate to
answering potential questions of interest, whether
user related or performance related (e.g., latency,
utilization, crashes). We recommend computing

many metrics from the observations (e.g., hun-
dreds) because they can give rise to surprising
insights, although care must be taken to correctly
understand and control for the false-positive rate
(Kohavi et al. 2013; Hochberg and Benjamini
1995). While having many metrics is great for
insights, decisions should be made using the
Overall Evaluation Criterion (OEC). See Tenet 1
earlier for a description of the OEC.

Triggering. Some treatments may be relevant to
all users who come to a website. However, for
many experiments, the difference introduced is
relevant for a subset of visitors (e.g., a change
to the checkout process, which only 10 % of
visitors start). In these cases, it is best to include
only those visitors who would have experienced a
difference in one of the variants (this commonly
requires counterfactual triggering for the control).
Some architectures (Kohavi et al. 2009) trigger
users into an experiment either explicitly or using
lazy (or late-bound) assignment. In either case,
the key is to analyze only the subset of the popu-
lation that was potentially impacted. Triggering
reduces the variability in the estimate of treat-
ment effect, leading to more precise estimates.
Because the diluted effect is often of interest, the
effect can then be diluted (Deng and Hu 2015).

Randomization Unit. Most experiments use the
visitor as the randomization unit for several rea-
sons. First, for many changes being tested, it is
important to give the user a consistent online
experience. Second, most experimenters evaluate
metrics at the user level, such as sessions per
user and clicks per user. Ideally, the randomiza-
tion by the experimenter is by a true user, but
in many unauthenticated sites, a cookie stored
by the user’s browser is used, so in effect, the
randomization unit is the cookie. In this case,
the same user will appear to be different users if
she comes to the site using a different browser,
different device, or having deleted her cookie
during the experiment. The next section will
discuss how the choice of randomization unit af-
fects how the analysis of different metrics should
be carried out. The randomization unit can also
affect the power of the test for some metrics.

Online Controlled Experiments and A/B Testing 927

O

For example, Deng et al. (2011) showed that the
variance of page level metrics can be greatly re-
duced if randomization is done at the page level,
but user metrics cannot be computed in such
cases. In social-network settings, spillover effects
violate the standard no-interference assumption,
requiring unique approaches, such as clustering
(Ugander et al. 2013).

Analysis of Experiments
If an experiment is carried out correctly, the
analysis should be a straightforward application
of well-known statistical methods. Of course, this
is much preferred than trying to recover from a
poor experimental design or implementation.

Confidence Intervals. Most reporting systems
will display the treatment effect (actual and per-
cent change) along with suitable confidence inter-
vals. For reasonably large sample sizes, generally
considered to be thousands of users in each vari-
ant, the means may be considered to have normal
distributions (see Kohavi et al. (2014) for detailed
guidance), making the formation of confidence
intervals routine. However, care must be taken to
use the Fieller theorem formula (Fieller 1954) for
percent effect since there is a random quantity in
the denominator.

Decision-making. A common approach to de-
ciding if the treatment is better than the con-
trol is the usual hypothesis-testing procedure,
assuming the normal distribution if the sample
size is sufficient (Kohavi et al. 2009). Alter-
natives to this when normality cannot be as-
sumed are transformations of the data (Bickel
and Doksum 1981) and nonparametric or re-
sampling/permutation methods to determine how
unusual the observed sample is under the null
hypothesis (Good 2005). When conducting a test
of whether the treatment had an effect or not (e.g.,
a test of whether the treatment and control means
are equal), a p value of the statistical test is often
produced as evidence. More precisely, the p value
is the probability to obtain an effect equal to or
more extreme than the one observed, presuming
the null hypothesis of no effect is true (Biau et al.
2010).

Another alternative is to use Bayes’ theorem
to calculate the posterior odds that the treatment
had a positive impact versus the odds it had no
impact (Stone 2013).

Analysis Units. Metrics may be defined with
different analysis units, such as user, session, or
other appropriate bases. For example, an ecom-
merce site may be interested in metrics such as
revenue per user, revenue per session, or revenue
per purchaser. Straightforward statistical methods
(e.g., the usual t-test and variants) apply to any
metric that has user as its analysis unit if users
are the unit of randomization since users may be
considered independent. However, if the analysis
unit is not the same as the randomization unit,
the analysis units may not be considered indepen-
dent, and other methods need to be used to calcu-
late standard deviation or to compare treatment
to control. Bootstrapping (Efron and Tibshirani
1993) and the delta method (Casella and Berger
2001) are two commonly used methods when the
analysis unit is not the same as the randomization
unit.

Variance Reduction. Increasing the sample size
is one way to increase power. However, online
researchers are continually looking for ways to
increase the power of their experiments while
shortening, or at least not extending, the length of
the tests. One way to do this is to use covariates
such as pre-experiment user metrics, user de-
mographics, location, equipment, software, con-
nection speed, etc. (Deng et al. 2013) gave an
example where a 50 % reduction in variance for
a metric could be achieved by using only the pre-
experiment metric values for the users.

Diagnostics. In order to assure the experimen-
tal results are trustworthy, every experimentation
system should have some diagnostic tools built
in. Graphs of the number of users in each variant,
metric means, and treatment effects over time
will help the researcher see unexpected prob-
lems or upsets to the experiment. In addition,
diagnostic tests that trigger an alarm when an
expected condition is not met should be built
in. One critical diagnostic test is the “sample

928 Online Controlled Experiments and A/B Testing

ratio mismatch” or SRM. A simple statistical test
checks if the actual percentage for each variant
is close enough to the planned percentages. We
have found this one diagnostic is frequently the
“canary in the coal mine” for online experiments.
There are many possible ways an experiment can
skew the number of visitors to one variant or
another, and many of them will cause a large bias
in the treatment effect. Another common useful
test is that the performance, or latency, of the
two versions is similar when expected to be so.
It some cases, the treatment may be slower due to
caching issues (e.g., cold start), or if the variant
are unbalanced (e.g., 90/10 %), a shared resource
like an LRU cache (Least Recently Used) will
give an advantage to the larger variant (Kohavi
and Longbotham 2010). When an experimen-
tation platform allows overlapping experiments,
a diagnostic to check for interactions between
overlapping experiments is also helpful. Anytime
an alarm or graph indicates a potential problem,
the researcher should investigate to determine the
source.

Robot Removal. Robots must be removed from
any analysis of web data since their activity can
severely bias experiment results; see Kohavi et al.
(2009). Some robots may slip through robot-
filtering techniques and should be considered
when diagnostics suggest there may be a problem
with the experiment.

Summary

The Internet and online connectivity of client
software, websites, and online services provide
a fertile ground for scientific testing methodol-
ogy. Online experimentation is now recognized
as a critical tool to determine whether a soft-
ware or design change should be made. The
benefit of experimenting online is the ability to
set up a software platform for conducting the
tests, which makes experimentation much more
scalable and efficient and allows evaluating ideas
quickly.

Recommended Reading

Biau DJ, Jolles BM, Porcher R (2010) P value and the
theory of hypothesis testing. Clin Orthop Relat Res
468(3):885–892

Bickel PJ, Doksum KA (1981) An analysis of trans-
formations revisited. J Am Stat Assoc 76(374):296–
311. doi:10.1080/01621459.1981.10477649

Blank SG (2005) The four steps to the epiphany:
successful strategies for products that win. Cafe-
press.com.

Box GEP, Hunter JS, Hunter WG (2005) Statistics for
experimenters: design, innovation, and discovery.
Wiley, Hoboken

Casella G, Berger RL (2001) Statistical inference, 2nd
edn. Cengage Learning. http://www.amazon.com/
Statistical-Inference-George-Casella

Deng A, Hu V (2015) Diluted treatment effect es-
timation for trigger analysis in online controlled
experiments. In: WSDM, Shanghai 2015

Deng A, Xu Y, Kohavi R, Walker T (2013) Improving
the sensitivity of online controlled experiments by
utilizing pre-experiment data. In: WSDM, Rome
2013

Deng S, Longbotham R, Walker T, Xu Y (2011) Choice
of randomization unit in online controlled exper-
iment. In: Joint statistical meetings proceedings,
Miami Beach, pp 4866–4877

Efron B, Tibshirani RJ (1993) An introduction to the
bootstrap. Chapman & Hall, New York

Fieller EC (1954) Some problems in interval es-
timation. J R Stat Soc Ser B 16(2):175–185.
doi:JSTOR2984043

Good PI (2005) Permutation, parametric and bootstrap
tests of hypotheses, 3rd edn. Springer, New York

Goward C (2012) You should test that: conversion
optimization for more leads, sales and profit or the
art and science of optimized marketing. Sybex.
http://www.amazon.com/You-Should-Test-That-Opti
mization/dp/1118301307

Hochberg Y Benjamini Y (1995) Controlling the false
discovery rate: a practical and powerful approach to
multiple testing Series B. J R Stat Soc 57(1):289–
300

Kaushik A (2006) Experimentation and testing: a
primer. Occam’s razor. http://www.kaushik.net/
avinash / 2006 / 05 / experimentation-and-testing-a-
primer.html. Accessed 22 May 2008

Kohavi R, Deng A, Frasca B, Longbotham R, Walker
T, Xu Y (2012) Trustworthy online controlled ex-
periments: five puzzling outcomes explained. In:
Proceedings of the 18th conference on knowledge
discovery and data mining. http://bit.ly/expPuzzling

Kohavi R, Deng A, Frasca B, Walker T, Xu Y,
Pohlmann N (2013) Online controlled experiments
at large scale. In: Proceedings of the 19th ACM
SIGKDD international conference on knowledge
discovery and data mining (KDD 2013). http://bit.
ly/ExPScale

http://www.amazon.com/Statistical-Inference-George-Casella
http://www.amazon.com/Statistical-Inference-George-Casella
http://www.amazon.com/You-Should-Test-That-Optimization/dp/1118301307
http://www.kaushik.net/avinash/2006/05/experimentation-and-testing-a-primer.html
http://bit.ly/expPuzzling
http://bit.ly/ExPScale
http://bit.ly/ExPScale

Online Learning 929

O

Kohavi R, Deng A, Longbotham R, Xu Y (2014) Seven
rules of thumb for web site. In: Proceedings of the
20th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD ’14).
http://bit.ly/expRulesOfThumb

Kohavi R, Longbotham R (2010) Unexpected results
in online controlled experiments. In: SIGKDD Ex-
plorations. http://bit.ly/expUnexpected

Kohavi R, Longbotham R, Walker T (2010) Online ex-
periments: practical lessons. IEEE Comput Sept:82–
85. http://bit.ly/expPracticalLessons

Kohavi R, Longbotham R, Sommerfield D, Henne
RM (2009) Controlled experiments on the web:
survey and practical guide. Data Min Knowl Discov
18:140–181. http://bit.ly/expSurvey

Kohavi R, Crook T, Longbotham R (2009) Online
experimentation at microsoft. In: Third workshop on
data mining case studies and practice prize. http://
bit.ly/expMicrosoft

Malinas G, Bigelow J (2009) Simpson’s paradox.
Stanford Encyclopedia of Philosophy. http://plato.
stanford.edu/entries/paradox-simpson/

Manzi J (2012) Uncontrolled: the surprising payoff
of trial-and-error for business, politics, and
society. Basic Books. https://www.amazon.com/
Uncontrolled-Surprising-Trial-Error-Business-
ebook/dp/B007V2VEQO

Martin RC (2008) Clean code: a handbook of Agile
software craftsmanship. Prentice Hall, Upper Sad-
dle River

McFarland C (2012a) Experiment!: website conversion
rate optimization with A/B and multivariate. New
Riders. http://www.amazon.com/Experiment-
Website-conversion-optimization-multivariate/dp/
0321834607

McFarland C (2012b) Experiment!:
website conversion rate optimization
with A/B and multivariate testing.
New Riders. http://www.amazon.com/Experiment-
Website-conversion-optimization-multivariate/dp/03
21834607

McKinley D (2013) Testing to cull the living flower.
http://mcfunley.com/testing-to-cull-the-living-
flower

Moran M (2007) Do it wrong quickly: how the
web changes the old marketing rules. IBM Press.
http://www.amazon.com/Do-Wrong-Quickly-
Changes-Marketing/dp/0132255960/

Moran M (2008) Multivariate testing in action:
Quicken Loan’s Regis Hadiaris on multivariate
testing. www.biznology.com/2008/12/multivariate
testing in action/

Peterson ET (2004) Web analytics demystified: a
marketer’s guide to understanding how your web
site affects your business. Celilo Group Media
and CafePress. http://www.amazon.com/Web-
Analytics-Demystified-Marketers-Understanding/dp/
0974358428/

Ries E (2011) The lean startup: how today’s en-
trepreneurs use continuous innovation to create rad-

ically successful businesses. Crown Business, New
York

Rubin KS (2012) Essential scrum: a practical guide
to the most popular Agile process. Addison-Wesley
Professional, Upper Saddle River

Schrage M (2014) The innovator’s hypothesis:
how cheap experiments are worth more than
good ideas. MIT Press. http://www.amazon.com/
Innovators-Hypothesis-Cheap-Experiments-Worth/
dp/0262528967

Siroker D, Koomen P (2013) A/B testing: the
most powerful way to turn clicks into cus-
tomers. Wiley. http://www.amazon.com/Testing-
Most-Powerful-Clicks-Customers/dp/1118792416

Stone JV (2013) Bayes’ rule: a tutorial introduction
to Bayesian analysis. Sebtel Press. http://www.
amazon.com/Bayes-Rule-Tutorial-Introduction-
Bayesian/dp/0956372848

Tang D, Agarwal A, O’Brien D, Meyer M (2010)
Overlapping experiment infrastructure: more, better,
faster experimentation. In: KDD 2010: The 16th
ACM SIGKDD international conference on knowl-
edge discovery and data mining, Washington, DC,
25–28 July

Ugander J, Karrer B, Backstrom L, Kleinberg J
(2013) Graph cluster randomization: network expo-
sure to multiple universes. In: Proceedings of the
19th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD ’13),
Chicago

Online Learning

Peter Auer
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Online learning and its variants are one
of the main models of computational
learning theory, complementing statistical
PAC learning and related models. An
online learner needs to make predictions
about a sequence of instances, one after
the other, and receives feedback after each
prediction. The performance of the online
learner is typically compared to the best
predictor from a given class, often in terms
of its excess loss (the regret) over the
best predictor. Some of the fundamen-
tal online learning algorithms and their

http://bit.ly/expRulesOfThumb
http://bit.ly/expUnexpected
http://bit.ly/expPracticalLessons
http://bit.ly/expSurvey
http://bit.ly/expMicrosoft
http://bit.ly/expMicrosoft
http://plato.stanford.edu/entries/paradox-simpson/
http://plato.stanford.edu/entries/paradox-simpson/
https://www.amazon.com/Uncontrolled-Surprising-Trial-Error-Business-ebook/dp/B007V2VEQO
https://www.amazon.com/Uncontrolled-Surprising-Trial-Error-Business-ebook/dp/B007V2VEQO
https://www.amazon.com/Uncontrolled-Surprising-Trial-Error-Business-ebook/dp/B007V2VEQO
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://mcfunley.com/testing-to-cull-the-living-flower
http://mcfunley.com/testing-to-cull-the-living-flower
http://www.amazon.com/Do-Wrong-Quickly-Changes-Marketing/dp/0132255960/
www.biznology.com/2008/12/multivariate_testing_in_action/
www.biznology.com/2008/12/multivariate_testing_in_action/
http://www.amazon.com/Web-Analytics-Demystified-Marketers-Understanding/dp/0974358428/
http://www.amazon.com/Innovators-Hypothesis-Cheap-Experiments-Worth/dp/0262528967
http://www.amazon.com/Testing-Most-Powerful-Clicks-Customers/dp/1118792416
http://www.amazon.com/Testing-Most-Powerful-Clicks-Customers/dp/1118792416
http://www.amazon.com/Bayes-Rule-Tutorial-Introduction-Bayesian/dp/0956372848
http://www.amazon.com/Bayes-Rule-Tutorial-Introduction-Bayesian/dp/0956372848
http://www.amazon.com/Bayes-Rule-Tutorial-Introduction-Bayesian/dp/0956372848

930 Online Learning

variants are discussed: weighted majority,
follow the perturbed leader, follow the
regularized leader, the perceptron algorithm,
the doubling trick, bandit algorithms, and the
issue of adaptive versus oblivious instance
sequences. A typical performance proof of an
online learning algorithm is exemplified for
the perceptron algorithm.

Synonyms

Mistake-bounded learning; Prediction with ex-
pert advice; Sequential learning

Definition

In the online learning model, the learner needs
to make predictions or choices about a sequence
of instances, one after the other, and receives a
loss or reward after each prediction or choice.
Typically, the learner receives a description of the
current instance before making a prediction. The
goal of the learner is to minimize its accumulated
losses (or equivalently maximize the accumulated
rewards).

The performance of the online learner is usu-
ally compared to the best predictor in hindsight
from a given class of predictors. This compar-
ison with a predictor in hindsight allows for
meaningful performance bounds even without
any assumptions on how the sequence of in-
stances is generated. In particular, this sequence
of instances may not be generated by a random
process but by an adversary that tries to prevent
learning.

In this sense performance bounds for online
learning are typically worst-case bounds that hold
for any sequence of instances. This is possible
since the performance bounds are relative to
the best predictor from a given class. Often
these performance guarantees are quite strong,
showing that the learner can do nearly as well
as the best predictor from a large class of
predictors.

Motivation and Background

Online learning is one of the main models of
learning theory, complementing the statistical ap-
proach of the PAC learning model by allowing
a more general process for generating learning
instances. The distinctive properties of the online
learning model are:

• Learning proceeds in trials,
• There is no designated learning phase, the

performance of the learner is evaluated con-
tinuously from the start,

• No assumptions on the generation of the in-
puts to the learner are necessary; they may
depend even adversarially on previous predic-
tions of the learner,

• Sequential predictions model an interaction
between the learner and its environment,

• Performance guarantees for learning al-
gorithms are typically relative to the
performance of the best predictor in hindsight
from some given class.

The first explicit models of online learning
were proposed by Angluin (1988) and Littlestone
(1988), but related work on repeated games by
Hannan (1957) dates back to 1957. Littlestone
proposed online learning as a sequence of trials,
where in each the learner receives some input,
makes a prediction of the associated output, and
receives the correct output. It was assumed that
some function from a known class maps the
inputs to correct outputs. The performance of the
learner is measured by the number of mistakes
made by a learner, before it converges to the
correct predictor. Angluin’s equivalence query
model of learning is formulated differently but is
essentially equivalent to Littlestone’s model.

The restriction that some function from the
class must predict all outputs correctly was then
removed, e.g., Vovk (1990) and Littlestone and
Warmuth (1994). In their setting the learner com-
petes with the best predictor from the given class.
As the class of predictors can be seen as a set
of experts advising the learner about the correct
predictions, this led to the term “prediction with

http://dx.doi.org/10.1007/978-1-4899-7687-1_100303
http://dx.doi.org/10.1007/978-1-4899-7687-1_100371
http://dx.doi.org/10.1007/978-1-4899-7687-1_100426

Online Learning 931

O

expert advice.” A comprehensive treatment of bi-
nary predictions with expert advice can be found
in Cesa-Bianchi et al. (1997). Relations of online
learning to several other fields (e.g., compression,
competitive analysis, game theory, and portfolio
selection) are discussed in the excellent book
on sequential prediction by Cesa-Bianchi and
Lugosi (2006).

Structure of Learning System

The online learning model is formalized as fol-
lows. In each trial t D 1; 2; : : :, the learner

1. Receives input xt 2 X ,
2. Chooses a prediction or output yt 2 Y ,
3. Receives response ´t 2 Z,
4. Incurs loss `t D `.yt ; ´t /,

where ` W Y �Z 7! R is some loss function. The
performance of a learner up to trial T is measured
by its accumulated loss LT D

PT
tD1 `t . For now

it is assumed that inputs xt and responses ´t

are independent from the learner’s predictions yt .
Such sequences of instances are called oblivious
to the learner. Adaptive sequences of instances
will be discussed later.

Performance bounds for online learning
algorithms are typically in respect to the
performance of an optimal predictor (or
expert) E� in hindsight from some class E ,
E� 2 E . A predictor E maps the past given
by .x1; y1; ´1/; : : : ; .xt�1; yt�1; ´t�1/ and the
current input xt to a prediction yE

t . As for
the learner, the performance of a predictor
is measured by its accumulated loss LE

T D
PT

tD1 `
E
t , where `E

t D `.yE
t ; ´t /. Most bounds

for the loss of online algorithms are of the
form

LT � amin
E2E

LE
T C bC.E/;

where the constants a and b depend on the loss
function and C.E/ measures the complexity of
the class of predictors (e.g., the complexity C.E/
could be log jE j for a finite class E .) Often it
is possible to trade the constant a against the
constant b such that bounds

LT � L�
T C o.L�

T /

can be achieved, where L�
T D minE2E L

E
T is the

loss of the best predictor in hindsight up to time
T . These bounds are of particular interest as they
show that the loss of the learning algorithm is
only little larger than the loss of the best predictor.
For such bounds the regret RT of the learning
algorithm,

RT D LT � L�
T ;

is the relevant quantity that measures the cost of
not knowing the best predictor in advance.

The next section makes this general definition
of online learning more concrete by presenting
some important online learning algorithms.

Theory/Solution

The Weighted Majority Algorithm
The weighted majority algorithm developed by
Littlestone and Warmuth (1994) is one of the fun-
damental online learning algorithms, with many
relatives using similar ideas. We will present it for
the basic scenario with a finite set of experts E ,
binary predictions yt 2 f0; 1g, binary responses
´t 2 f0; 1g, and the discrete loss which just
counts mistakes, `.y; ´/ D jy � ´j, such that
`.y; ´/ D 0 if y D ´ and `.y; ´/ D 1 if y ¤ ´.
(We will use the terms experts and predictors
interchangeably. In the literature finite sets of
predictors are often called experts.)

The weighted majority algorithm maintains
a weight wE

t for each expert E 2 E that is
initialized as wE

1 D 1. The weights are used to
combine the predictions yE

t of the experts by a
weighted majority vote: yt D 1 if

P
E wE

t y
E
t �

1
2

P
E wE

t , and yt D 0 otherwise. After receiving
the response ´t , the weights of experts that made
incorrect predictions are reduced by multiplying
with some constant ˇ < 1, wE

tC1 D ˇwE
t if

yE
t ¤ ´t , and wE

tC1 D wE
t if yE

t D ´t . As
a performance bound for the weighted majority
algorithm one can achieve

LT � 2L�
T C 2

q
2L�

T log jE j C 4 log jE j

932 Online Learning

with L�
T D minE2E L

E
T and an appropriate

ˇ. (Better constants on the square root and the
logarithmic term are possible.)

While in this bound the loss of the
deterministic weighted majority algorithm
is twice the loss of the best expert, the
randomized version of the weighted majority
algorithm almost achieves the loss of the
best expert. Instead of using a deterministic
prediction, the randomized weighted majority
algorithm tosses a coin and predicts yt D

1 with probability
P

E wE
t y

E
t =

P
E wE

t .
Below we prove the following bound on
the expected loss of the randomized algo-
rithm:

E ŒLT � �
log.1=ˇ/

1 � ˇ
L�

T C
1

1 � ˇ
log jE j: (1)

Approximately optimizing for ˇ yields ˇ D

1 � ", where " D minf1=2;
p

2.log jE j/=L�
T g,

and

E ŒLT � � L�
T C

q
2L�

T log jE j C 2 log jE j: (2)

The expectation in these bounds is only in
respect to the randomization of the algorithm,
no probabilistic assumptions on the experts or
the sequence of responses are made. These
bounds hold for any set of experts and any
oblivious sequence of responses that does
not depend on the randomization of the
algorithm. It can be even shown that the
following similar bound holds with probability
1 � ı (in respect to the randomization of the
algorithm):

LT � L�
T C

p
T log.jE j=ı/: (3)

The proof of bound (1) shows many of the
ideas used in the proofs for online learning algo-
rithms. Key ingredients are a potential function
and how the changes of the potential function re-
late to losses incurred by the learning algorithm.
For the weighted majority algorithm, a suitable
potential function is the sum of the weights,
Wt D

P
E wE

t . Then, since the losses are
0 or 1,

WtC1

Wt

D

P
E wE

tC1P
E wE

t

D

P
E ˇ

`E
t wE

tP
E wE

t

D

P
E Œ1 � .1 � ˇ/`E

t �w
E
tP

E wE
t

D 1 � .1 � ˇ/

P
E `

E
t wE

tP
E wE

t

: (4)

Since the probability that the randomized
weighted majority algorithm makes a mistake
is given by E Œ`t � D

P
E `

E
t wE

t =
P

E wE
t , we

get by taking logarithms that

logWtC1 � logWt D log.1 � .1 � ˇ/E Œ`t �/

� �.1 � ˇ/E Œ`t � (5)

(since log.1�x/ � �x for x 2 .0; 1/). Summing
over all trials t D 1; : : : ; T , we find

logWT C1 � logW1 � �.1 � ˇ/E ŒLt � :

Since W1 D jE j and WT C1 D
P

E wE
T C1 D

P
E ˇ

LE
T � ˇL�

T , rearranging the terms
gives (1).

Extensions and Modifications of the
Weighted Majority Algorithm
Variants and improved versions of the weighed
majority algorithm have been analyzed for vari-
ous learning scenarios. An excellent coverage of
the material can be found in Cesa-Bianchi and
Lugosi (2006). In this section we mention a few
of them.

General loss functions. The analysis of the
weighted majority algorithm can be generalized
to any convex set of predictions Y and any set of
outcomes Z, as long as the loss function `.y; ´/
is bounded and convex in the first argument.
Typically it is possibly to derive a learning
algorithm with loss bound

LT � aL�
T C b log jE j

for suitable values a and b. Of particular interest
is the smallest b for which a loss bound with a D

Online Learning 933

O

1 can be achieved. Some algorithms for convex
prediction sets Y will be discussed later.

Tracking the best expert and other structured
experts. For a large number of experts, the loss
bound of the weighted majority algorithm is still
interesting since it scales only logarithmically
with the number of experts. Nevertheless, the
weighted majority algorithm and other online
learning algorithms become computationally de-
manding as they need to keep track of the perfor-
mance of all experts (computation time scales lin-
early with the number of experts). If the experts
exhibit a suitable structure, then this computa-
tional burden can be avoided.

As an example we consider the problem of
tracking the best expert. Let E0 be a small set of
base experts. The learning algorithm is required
to compete with the best sequence of at most
S experts from E0: the trials are divided into S
periods, and in each period another expert might
predict optimally. Thus the minimal loss of a
sequence of S experts is given by

L�
T;SD min

0DT0�T1�T2�����TS DT

SX

iD1

min
E2E0

TiX

tDTi�1C1

`E
t ;

where the trials are optimally divided into S

periods ŒTi�1 C 1; Ti �, and the best base expert
is chosen for each period. Such sequences of
base experts can be seen as experts themselves,
but the number of such compound experts is�

T �1
S�1

�
jE0jS and thus computationally prohibitive.

Fortunately, a slightly modified weighted major-
ity algorithm applied to the base experts achieves
almost the same performance as the weighted
majority algorithm applied to the compound ex-
perts. The modification of the weighted majority
algorithm just lower bounds the relative weight of
each base expert. This allows the relative weight
of a base expert to grow large quickly if this
expert predicts best in the current period. Hence,
also the learning algorithm will predict almost
optimally in each period. A recent and improved
version of the weighted majority algorithm with
many related references is given in Luo and
Schapire (2015).

Other examples of structured experts
include tree experts and shortest path problems
(see Cesa-Bianchi and Lugosi (2006) for further
references). For the shortest path problem in a
graph, the learner has to compete with the single
best path in hindsight, while edge costs may
change at each time t . In principle the weighted
majority algorithm could be employed with one
expert for each path, but since the number of
paths is usually exponential in the size of the
graph, this might be computationally infeasible.
Instead, the follow the perturbed leader strategy
can be used as an alternative to the weighted
majority algorithm.

Follow the perturbed leader. This is a simple
prediction strategy that was originally proposed
by Hannan (1957). In each trial t , it generates
identically distributed random values E

t for ev-
ery expert E, adds these random values to the
losses of the experts so far, and predicts with the
expert that achieves the minimum sum,

OEt D arg min
E2E

LE
t�1 C E

t ;

yt D y
OEt

t :

For carefully chosen distributions of the E
t , this

prediction strategy achieves loss bounds similar
to the weighted majority like algorithms.

To apply this strategy to the shortest path
problem described above, it is assumed that all
paths have an equal number of edges (by possibly
adding dummy edges). Then instead of gener-
ating random values E

t for each path E, a
random value for each edge is generated, and
the value E

t for a path is given by the sum
of the random values for its edges. This allows
to find the best path OEt efficiently by a shortest
path calculation according to the accumulated
and randomly modified edge costs.

The doubling trick. The optimal choice of ˇ in
the performance bound (1) requires knowledge
about the loss of the best expert L�

T . If such
knowledge is not available, the doubling trick
can be used. The idea is to start with an initial

934 Online Learning

guess OL� and choose ˇ according to this guess.
When the loss of the best expert exceeds this
guess, the guess is doubled, ˇ is modified, and
the learning algorithm is restarted. The bound (2)
increases only slightly whenL�

T is not known and
the doubling trick is used. It can be shown that
still

E ŒLT � � L�
T C c1

q
L�

T log jE j C c2 log jE j

for suitable constants c1 and c2. A thorough
analysis of the doubling trick can be found in
Cesa-Bianchi et al. (1997). Variations of the dou-
bling trick can be used for many online learn-
ing algorithms to “guess” unknown quantities. A
drawback of the doubling trick is that it restarts
the learning algorithm and forgets about all previ-
ous trials. An alternative approach is an iterative
adaptation of the parameter ˇ, which can be
shown to give better bounds than the doubling
trick. The advantage of the doubling trick is that
its analysis is quite simple.

Prediction with limited feedback and the
multiarmed bandit problem. In the setting
considered so far, the learner has full in-
formation of the past, as all past outcomes
´1; : : : ; ´t�1 2 f0; 1g and all predictions of the
experts yE

1 ; : : : ; y
E
t , E 2 E , are available, before

prediction yt is made. In some learning scenarios,
the learner might not have such full information.
One example is the multiarmed bandit problem,
and a more general case is prediction with partial
monitoring.

In the multiarmed bandit problem the learner
chooses to follow one of K experts, observes
the loss of this expert, and also incurs the loss
of this expert. Formally, the learner chooses an
expert yt D Et 2 E D f1; : : : ; Kg, receives
the loss of the chosen prediction ´t D `t .Et /,
and incurs loss `.yt ; ´t / D ´t D `t .Et /. (Here
`t .E/ denotes the loss of expert E at time t .) The
losses of the other experts, `t .E/, E ¤ Et , are
not revealed to the learner. The goal of the learner
is to compete with the loss of the single best
expert, L�

T D minE2E L
E
T , LE

T D
PT

tD1 `t .E/.
The multiarmed bandit problem looks very much

like the original online learning problem with the
predictions y 2 Y as experts.

Since at each time t the learner observes only
the loss of the chosen expert, it needs to estimate
the unseen losses of the other experts and use
these estimates when choosing an expert. Since
accurate estimates need a sufficient amount of
data, this leads to a trade-off between choosing
the (apparently) best expert to minimize losses
and choosing a different expert for which more
data are needed. This exploration-exploitation
trade-off also appears elsewhere in online learn-
ing, but it is most clearly displayed in the bandit
problem. An algorithm that deals well with this
trade-off is again a simple variant of the weighted
majority algorithm. This algorithm does explo-
ration trials with some small probability, and
in such exploration trials, it chooses an expert
uniformly at random. This algorithm has been
analyzed in Auer et al. (2002) for gains instead
of losses. For losses ` 2 Œ�1; 0� the accumulated
loss of the algorithm can be bounded as

E ŒLT � � L�
T C 3

q
KjL�

T j logK:

Compared with (2), the regret increases only
by a factor of

p
K. Further results, including

lower bounds and results for stochastic bandit
problems, are summarized in Bubeck and Cesa-
Bianchi (2012). For the stochastic multiarmed
bandit problem, it is assumed that the losses of the
experts are generated independently at random
by some distribution for each expert. This allows
for specialized algorithms with substantially im-
proved regret bounds.

A generalization of bandit problems are par-
tial monitoring games (Bartók 2014), where the
learner receives only indirect feedback about the
losses of the experts. Depending on how much the
feedback reveals about the incurred losses, partial
monitoring games can be classified as games with
either 0, ‚.T 1=2/, ‚.T 2=3/, or ‚.T / regret.

The Perceptron Algorithm
In this section we consider an example for an
online learning algorithm that competes with a
continuous set of experts, in contrast to the finite

Online Learning 935

O

sets of experts we have considered so far. This
algorithm—the perceptron algorithm (Rosenblatt
1958)—was among the first online learning al-
gorithms developed. Another of this early on-
line learning algorithms with a continuous set
of experts is the Winnow algorithm by Little-
stone (1988). A unified analysis of these algo-
rithms can be found in Cesa-Bianchi and Lugosi
(2006). This analysis covers a large class of
algorithms, in particular the p-norm perceptrons,
which smoothly interpolate between the percep-
tron algorithm and Winnow.

The perceptron algorithm aims at learning
a linear classification function. Thus inputs are
from a Euclidean space,X D R

d , the predictions
and responses are binary, Y D Z D f0; 1g, and
the discrete misclassification loss is used. Each
expert is a linear classifier, represented by its
weight vector v 2 R

d , whose linear classification
is given by ˆv W X ! f0; 1g, ˆv.x/ D 1 if
v � x � 0 and ˆv;� .x/ D 0 if v � x < 0.

The perceptron algorithm maintains a weight
vector wt 2 R

d that is initialized as w1 D

.0; : : : ; 0/. After receiving input xt , the percep-
tron’s prediction is calculated using this weight,

yt D ˆwt
.xt /;

and the weight vector is updated,

wtC1 D wt C �.´t � yt /xt ;

where � > 0 is a learning rate parameter. Thus,
if the prediction is correct, yt D ´t , then the
weights are not changed. Otherwise, the product
wtC1 � xt is moved into the correct direction: since
wtC1 � xt D wt � xt C�.´t �yt /jjxt jj

2, wtC1 � xt >

wt � xt if yt D 0 but ´t D 1, and wtC1 � xt <

wt � xt if yt D 1 but ´t D 0.
We may assume that the inputs are normal-

ized, jjxt jj D 1, otherwise a normalized xt can be
used in the update of the weight vector. Further-
more, we note that the learning rate � is irrelevant
for the performance of the perceptron algorithm,
since it scales only the size of the weights but
does not change the predictions. Nevertheless, we
keep the learning rate since it will simplify the
analysis.

Analysis of the perceptron algorithm. To com-
pare the perceptron algorithm with a fixed (and
optimal) linear classifier v, we again use a poten-
tial function, jjwt � vjj2. For the change of the
potential function when yt ¤ ´t , we find

jjwtC1 � vjj2 � jjwt � vjj2

D jjwt C �.´t � yt /xt � vjj2 � jjwt � vjj2

D jjwt � vjj2 C 2�.´t � yt /.wt � v/ � xt

C �2.´t � yt /
2 jjxt jj

2 � jjwt � vjj2

D 2�.´t � yt /.wt � xt � v � xt /C �2:

Since wt � xt < 0 if yt D 0 and wt � xt � 0 if
yt D 1, we get .´t � yt /.wt � xt / � 0 and

jjwtC1�vjj2�jjwt �vjj2��2�.´t �yt /.v � xt /C�
2:

Analogously, the linear classifier v makes a mis-
take in trial t if .´t � yt /.v � xt / < 0, and in this
case �.´t � yt /.v � xt / � jjvjj. Hence, summing
over all trials (where yt ¤ ´t) gives

jjwT C1 � vjj2 � jjw1 � vjj2 � �2�
X

t W`t D1;`v
t D0

jv � xt j C 2�jjvjjLv
T C �2LT ; (6)

where the sum is over all trials where the per-
ceptron algorithm makes a mistake but the linear
classifier v makes no mistake. To proceed, we as-
sume that for the correct classifications of the lin-
ear classifier v, the product v � xt is bounded away
from 0 (which describes the decision boundary).
We assume jv � xt j � �v > 0. Then

jjwT C1 � vjj2 � jjw1 � vjj2 � �2��v.LT � Lv
T /

C 2�jjvjjLv
T C �2LT ; (7)

and

LT .2��v � �2/ � jjvjj2 C Lv
T .2��v C 2�jjvjj/;

since jjwT C1 � vjj2 � 0 and w1 D .0; : : : ; 0/.
For � D �v the following loss bound for the
perceptron algorithm is achieved:

936 Online Learning

LT � jjvjj2=�2
v C 2Lv

T .1 C jjvjj=�v/:

Thus the loss of the perceptron algorithm does
not only depend on the loss of an (optimal) linear
classifier v but also on the gap by which the
classifier can separate the inputs with ´t D 0
from the inputs with ´t D 1. The size of this gap
is essentially given by �v=jjvjj.

Relation between the perceptron algorithm
and support vector machines. The gap �v=jjvjj

is the quantity maximized by support vector ma-
chines, and it is the main factor determining the
prediction accuracy (in a probabilistic sense) of
a support vector machine. It is not coincidental
that the same quantity appears in the perfor-
mance bound of the perceptron algorithm, since
it measures the difficulty of the classification
problem.

As for support vector machines, kernels
K. � ; � / can be used in the perceptron algorithm.
For that, the dot product wt � xt is replaced by the
kernel representation

Pt�1
�D1.´� � y� /K.x� ; x/.

Obviously this has the disadvantage that all
previous inputs for which mistakes were made
must be kept available.

Online Convex Optimization
For online convex optimization, the learner has to
choose a prediction yt from some convex set Y ,
receives as feedback a convex loss function Lt W

Y ! R, and suffers loss `t D Lt .yt /. An excel-
lent exposition of online convex optimization is
given in Shalev-Shwartz (2011).

Many online learning problems and algo-
rithms can be cast in the framework of online
convex optimization, in particular also the
weighted majority algorithm and the perceptron
algorithm. While both algorithms make binary
predictions yt 2 f0; 1g and suffer a discrete
loss, they both can be convexified: For the
weighted majority algorithm we can consider
the probability pt for yt D 1 as the prediction
of the algorithm, such that the expected loss is
E`.yt ; ´t / D j´t �pt j which is a convex function
in pt . For the perceptron algorithm, the discrete
loss can be upper bounded by a convex surrogate

loss function, and the loss analysis can be done
in respect to these surrogate loss functions.

Two simple but often effective strategies for
online convex optimization are follow the leader
and follow the regularized leader. The follow the
leader strategy chooses the prediction that would
minimize the accumulated loss so far,

yt D arg min
y2Y

t�1X

iD1

Li .y/:

For some online convex optimization problems,
this gives very good regret bounds, in particular
for online quadratic optimization, where Y D R

d

and Lt .y/ D jjy � ´t jj
2 is the squared Euclidean

distance to some ´t 2 R
d . It can be shown that in

this case, the regret is bounded by

min
y

TX

tD1

jjy � ´t jj
2 �

TX

tD1

jjyt � ´t jj
2

� 4Z2.1 C logT /; (8)

where Z D max1�t�T jj´t jj. This strategy fails,
though, for other loss functions, for example, for
online linear optimization with losses Lt .y/ D

y � ´t , when the regret might be as large as�.T /.
This problem can be avoided by the follow the
regularized leader strategy which chooses pre-
dictions

yt D arg min
y2Y

"
t�1X

iD1

Li .y/CR.y/

#

for some regularization function R W Y !

R. For online linear optimization with quadratic

regularization R.y/ D Z
B

q
T
2 jjyjj2, follow the

regularized leader achieves regret

min
yWjjyjj�B

TX

tD1

.y � ´t / �

TX

tD1

.yt � ´t / � ZB
p

2T ;

if all jj´t jj � Z. Online convex optimization is a
very active field of research, and a good starting
point is the exposition (Shalev-Shwartz 2011).

Ontology Learning 937

O

Oblivious Versus Adaptive Instance
Sequences
So far we have assumed that the sequence of
instances is not influenced by the predictions
of the learner. If the sequence of instances is
adaptive and depends on the predictions of the
learner, additional care is necessary. In particular
the definition of regret is subtle: since the in-
stances depend on the predictions, the instances
encountered by the learner may be very different
from the instances encountered when following
the prediction of a single expert. Therefore, it
is in general not possible to bound the loss of
a learner by the losses the experts would have
incurred when making their predictions. This no-
tion of regret is called policy regret (Dekel 2012),
and it is easy to construct examples where any
learning algorithm suffers �.T / loss while the
predictions of the best expert suffer zero loss. To
obtain nontrivial bounds on the policy regret, the
adaptiveness of the instance sequence needs to
be restricted, for example, by a bounded memory
assumption: the instance at time t may depend
only on the last m predictions of the learner.

In contrast, the loss of the learner can often
be bounded by the loss of the best expert on the
sequence generated in response to the predictions
of the learner. The difference between the loss
of the learner and the loss of the best expert
on the same sequence of instances is called the
external regret. As explained above, the notion
of external regret is not fully satisfactory for
adaptive sequences, but it allows to carry over
many result for oblivious sequences to adaptive
sequences. For an example, the high probability
bound (3) for the weighted majority algorithm,

LT � L�
T C

p
T log.jE j=ı/;

holds also for any adaptive instance sequence that
depends on the past predictions of the learner.

Recommended Reading

Angluin D (1988) Queries and concept learning. Mach
Learn 2:319–342

Auer P, Cesa-Bianchi N, Freund Y, Schapire R
(2002) The nonstochastic multiarmed bandit prob-
lem. SIAM J Comput 32:48–77

Bartók G, Foster D, Pál D, Rakhlin A, Szepesvári
C (2014) Partial monitoring—classification, re-
gret bounds, and algorithms. Math Oper Res 39:
967–997

Bubeck S, Cesa-Bianchi N (2012) Regret analysis
of stochastic and nonstochastic multi-armed bandit
problems. Found Trends Mach Learn 5:1–122

Cesa-Bianchi N, Freund Y, Haussler D, Helmbold D,
Schapire R, Warmuth M (1997) How to use expert
advice. JACM 44:427–485

Cesa-Bianchi N, Lugosi G (2006) Prediction, learn-
ing, and games. Cambridge University Press, Cam-
bridge/New York

Dekel O, Tewari A, Arora R (2012) Online ban-
dit learning against an adaptive adversary: from
regret to policy regret. In: Proceedings of the
29th international conference on machine learning,
Edinburgh

Hannan J (1957) Approximation to Bayes risk in re-
peated play. Contrib Theory Games 3:97–139

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2:285–318

Littlestone N, Warmuth M (1994) The weighted major-
ity algorithm. Inf Comput 108:212–261

Luo H, Schapire RE (2015) Achieving all with no pa-
rameters: Adanormalhedge. In: Proceedings of the
28th conference on learning theory, Paris, pp 1286–
1304

Rosenblatt F (1958) The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychol Rev 65:386–408

Shalev-Shwartz S (2011) Online learning and online
convex optimization. Found Trends Mach Learn 4:
107–194

Vovk V (1990) Aggregating strategies. In: Proceed-
ings of 3rd annual workshop on computational
learning theory, Rochester. Morgan Kaufmann,
pp 371–386

Ontology Learning

Different approaches have been used for building
ontologies, most of them to date mainly using
manual methods (�Text Mining for the Semantic
Web). An approach to building ontologies was
set up in the CYC project, where the main step
involved manual extraction of common sense
knowledge from different sources. Ontology con-
struction methodologies usually involve several
phases including identifying the purpose of the
ontology (why to build it, how will it be used, the
range of the users), building the ontology, evalu-

http://dx.doi.org/10.1007/978-1-4899-7687-1_831

938 Opinion Extraction

ation and documentation. Ontology learning re-
lates to the phase of building the ontology using
semiautomatic methods based on text mining or
machine learning.

Opinion Extraction

� Sentiment Analysis and Opinion Mining

Opinion Mining

� Sentiment Analysis and Opinion Mining

Opinion Stream Mining

Myra Spiliopoulou1, Eirini Ntoutsi2;3, and
Max Zimmermann4

1Otto-von-Guericke University-Magdeburg,
Magdeburg, Germany
2Leibniz Universität Hannover, Hannover,
Germany
3Ludwig Maximilians Universität München,
Munich, Germany
4Swedish Institute of Computer Science (SICS
Swedish ICT), Kista, Sweden

Abstract

Opinion stream mining aims at learning and
adaptation of a polarity model over a stream
of opinionated documents, i.e., documents
associated with a polarity. They comprise a
valuable tool to analyze the huge amounts
of opinions generated nowadays through the
social media and the Web. In this chapter, we
overview methods for polarity learning in a
stream environment focusing especially on
how these methods deal with the challenges
imposed by the stream nature of the data,

Work partially done while with the Ludwig-
Maximilians University, Munich.

namely the nonstationary data distribution and
the single pass constraint.

Synonyms

Mining a Stream of Opinionated Documents;
Polarity Learning on a Stream

Definition

Opinion stream mining is a variant of stream
mining, of text mining and of opinion mining.
Its goal is learning and adaptation of a polarity
model over a stream of opinionated documents.
An “opinionated document” is a text associated
with a “polarity.” Polarity is a value that rep-
resents the “strength” and the “direction” of an
opinion. The strength can be a categorical value
(e.g., C, �) or a ranking value (e.g., zero to
five stars) or a continuous value (e.g., in the
interval Œ0; 1�). The direction refers to whether the
opinion is positive, negative, or neutral. Strength
and direction are often mixed. For example, in a
ranking using stars, five stars may stand for a very
positive opinion, zero stars for a very negative
one, and three stars for a neutral one.

As a variant of stream mining, opinion stream
mining is subject to challenges of learning on a
stream: adapting to changes in the data generating
distribution – a phenomenon often called concept
drift and processing the data as they arrive (in
a single pass), since they cannot be retained
permanently.

As a variant of text mining, opinion stream
mining is subject to challenges of learning
from texts: identifying the parts of speech that
are in the text (e.g., verbs, adjectives, etc.);
bringing the individual words into stem form
(e.g., “opinions”!“opinion”); deciding which
words will constitute the feature space and
which are not informative and should be ignored;
modeling the similarity between texts, taking
(among other issues) differences in the length of
texts into account; extracting the “entities” from

http://dx.doi.org/10.1007/978-1-4899-7687-1_907
http://dx.doi.org/10.1007/978-1-4899-7687-1_907
http://dx.doi.org/10.1007/978-1-4899-7687-1_100301
http://dx.doi.org/10.1007/978-1-4899-7687-1_100363

Opinion Stream Mining 939

O

the text (e.g., persons, products); and detecting
the “topics” of discourse in the texts.

As a variant of opinion mining, opinion stream
mining faces further challenges: distinguishing
between words that bear sentiment (e.g., “nice,”
“ugly”) and those referring to facts (e.g., “sauna,”
“phone”) and discerning different forms of sen-
timent (e.g., anger, joy). For static data, these
challenges are addressed with techniques of nat-
ural language processing (NLP), text mining,
and Sentiment Analysis and Opinion Mining
(cf. lemma).

The aforementioned challenges are exacer-
bated in the stream context. Opinion stream min-
ing provides solutions for learning and adapting
a polarity model in a volatile setting: the topics
in the opinionated documents may change; the
attitude of people toward an entity (e.g., person,
product, event) may change; the words used by
people to express polarity may change; and even
the words used by people, i.e., the vocabulary,
may also evolve over time.

Motivation, Main Tasks, and
Challenges

With the rise of WEB 2.0, more and more people
use social media to upload opinions on essentially
every subject – on products, persons, institutions,
events, and topics of discourse. These accumu-
lating opinionated data are valuable sources of
information that can deliver valuable insights on
the popularity of events; on the properties of
products that are deemed important; on the pos-
itive or negative perception people have toward
a product, person, or institution; on their attitude
toward a specific subject of discourse; etc.

Background: The analysis of opinionated data
is investigated in the research areas of senti-
ment analysis and opinion mining. These two
areas overlap, whereby research on sentiment
analysis puts more emphasis in understanding
different types of “sentiment” (e.g., irony, anger,
sadness, etc.), while opinion mining focuses more
on learning models and discerning trends from
data that simply have positive or negative “polar-

ity” (or are neutral). For an extensive discussion
of the subject, the reader is referred to the lemma
Sentiment Analysis and Opinion Mining.

In Liu (2012), Bing Liu defines four opinion
mining tasks as follows:

1. Entity extraction: “Extract all entity ex-
pressions in a document, and categorize or
group synonymous entity expressions into
entity clusters. Each entity expression cluster
indicates a unique entity ei .”

2. Property extraction: “Extract all property ex-
pressions of the entities, and categorize these
property expressions into clusters. Each prop-
erty expression cluster of entity ei represents
a unique property aij .”

3. Opinion holder extraction: “Extract opinion
holders for opinions from text or structured
data and categorize them. The task is analo-
gous to the above two tasks.”

4. Sentiment classification: “Determine whether
an opinion on a property aij is positive, nega-
tive, or neutral, or assign a numeric sentiment
rating to the property.”

Among these tasks, the first one is not peculiar
to opinion mining: entity extraction (EEX) is
a subtask of document analysis. A widespread
special case of EEX is named-entity recognition
(NER); a minister is an entity, and a specific
minister is a named entity. The goal of EEX and
NER is to identify and annotate all entities in a
document. To this purpose, NLP techniques are
used, as well as collections of “named entities”;
a list of the towns in a country is an example of
such a collection.

The second task can be generalized in two
ways. First, the properties need not be associated
to an explicitly defined entity (e.g., a person
or city); they may also be topics or subtopics
under a subject of discourse (e.g., air pollution
as a subtopic of environment pollution). Further,
clustering is not the only way of identifying
properties/topics: aspect-based opinion mining is
a subdomain of topic modeling (cf. lemma Topic
Models for NLP Applications for the general
domain). In this subdomain, a document is per-
ceived as a mixture of topics and sentiments.

940 Opinion Stream Mining

In opinion stream mining, the collection of
opinionated documents is not perceived as a
static set but as an ongoing stream. While the
first and third of the aformentioned tasks remain
largely unchanged, the second and forth task must
be redefined in the stream context. The task of
property extraction on the stream is addressed
with methods of dynamic topic modeling (see
Blei and Lafferty (2006) for the core concepts)
and with methods of text stream clustering
(Aggarwal and Yu 2006).

The task of sentiment classification becomes
a stream classification problem for an evolving
text stream. Hereafter, we denote this task as
“learning a polarity model” or simpler “polar-
ity model learning,” without referring explic-
itly to the fact that the model is learned on a
stream.

Challenges of opinion stream mining: The
challenges faced in opinion stream mining for
property extraction and polarity learning emanate
from the different aspects of volatility in the
opinionated stream:

(a) The data evolve with respect to the target
variable: The attitude of people toward a
subject of discourse, a person, a product, or
some property of this product may change
over time. This corresponds to a change in the
priors of the polarity class.

(b) The topics evolve: New subjects of discourse
emerge, some product properties become un-
interesting while others gain momentum. The
learning algorithm must recognize that peo-
ple discuss different topics.

(c) The vocabulary evolves: New words show up,
some words fall out of use, and the polarity
of some words may change. This means that
the high-dimensional feature space used by
the learning algorithm changes during the
process of learning and adaption.

(d) Labels are scarce: In conventional stream
classification, it is assumed that fresh
labels are timely available for classifier
adaption. Opinionated streams are fast and
the inspection of opinions is a tedious
task. So, the demand for human interven-

tion/supervision for document labeling must
be limited.

Main tasks of opinion stream mining: In
response to challenges (a) and (c), opinion stream
mining encompasses solutions for polarity model
learning and adaption and also when the class
priors change and when the vocabulary evolves.
Next to fully supervised solutions, there are also
semi-supervised learning methods and active
learning methods, in response to challenge (d).
In the following, we elaborate on supervised,
semi-supervised, and active stream mining
approaches for the classification of opinionated
streams.

For challenge (b), we refer the reader to litera-
ture on text stream clustering, starting, e.g., with
Aggarwal and Yu (2006), and to literature on
dynamic topic modeling, starting with Blei and
Lafferty (2006) and Wang and McCallum (2006).
Dynamic topic modeling for opinionated docu-
ment streams gained momentum in the last years,
resulting in several works on dynamic topic mix-
ture models that capture both aspects (properties)
and sentiment. An example is Fu et al. (2015)
on dynamic nonparametric hierarchical Dirichlet
process topic modeling. An important character-
istic of this work is that the number of topics can
be determined automatically and adjusted over
time. Further, an aging (time-decay) component
is incorporated into the learning process; this
allows for forgetting old topics (Fu et al. 2015).
As we discuss in the next section, the issue of
forgetting is also essential in supervised learning
over the stream, as means of adaptation to con-
cept drift.

Polarity Learning in an Opinionated
Stream

Polarity learning is a supervised task that in-
volves model learning and model adaption over
an opinionated stream, i.e., an infinite sequence
D of arriving instances d1; � � � ; di ; � � � . An in-
stance/opinionated document is a vector over
a word vocabulary V , which is built up and
changes over time.

Opinion Stream Mining 941

O

An instance has a polarity label c. We denote
the class attribute by C . Much of the research on
opinion stream mining considers streams where
documents have positive or negative polarity and
are mixed with neutral documents. We use this
convention in the following, i.e., we assume that
the polarity label is one of positive (C), negative
(�), or neutral (;).

Workflow
The fully supervised stream learning scenario
implies that the model is continuously learned
on arriving, labeled instances. To deal with the
label scarcity challenge, opinion stream mining
research also contributes semi-supervised meth-
ods that learn with only an initial seed of la-
beled instances and active learning methods that
request a label for only some of the arriving
instances. An abstract workflow of the learn-
ing tasks is depicted in Fig. 1, distinguishing
among supervised, semi-supervised, and active
learning.

As can be seen in the figure, an initial classifier
is trained on a starting set of manually labeled
instances Seed. This set can be a small cor-
pus of carefully selected opinionated documents

that are representative of the stream, at least at
the beginning, or the Seed can consist solely
of the first arriving documents in the stream.
Labels delivered by a human expert are denoted
in the figure as “true labels,” as opposed to
the “predicted labels” that are assessed by the
classifier.

In each subsequent step, the classifier pre-
dicts the labels of the arriving documents. For
supervised learning, a human expert immediately
delivers the true labels, which are then used
for model adaption. In semi-supervised learning,
the classifier adapts by using (a selection of)
instances with predicted labels. In active learn-
ing, the expert is asked to deliver true labels
only for some of the arriving documents which
are then used for model adaption. These three
ways of polarity learning are discussed here-
after.

The instances of the stream may be processed
one by one as they arrive, or they may be
stored into “chunks” (also called “blocks” or
“batches”). In the first case, i.e., in “instance-
based” processing, the classifier is adapted
after seeing each new instance. In “chunk-
based” processing, the classifier adapts after
each chunk. A chunk may be a fixed-sized

Opinion Stream Mining, Fig. 1 Polarity learning on a stream of opinionated documents – fully supervised, semi-
supervised, and active learning options

942 Opinion Stream Mining

block of documents or it may be defined
at different levels of temporal granularity,
e.g., hourly, daily, or weekly. Instance-based
processing allows for fast adaption; however, the
processing cost is higher as the model is updated
after each instance. Chunk-based processing is
more appropriate for streams where changes
in the topics and/or vocabulary are manifested
gradually. A detailed discussion of instance- vs
chunk-based methods can be found in the lemma
Stream Classification.

Fully Supervised Opinion Stream
Classification
Fully supervised polarity learning on an opin-
ionated stream is performed in the same way as
stream classification in a conventional stream.
The reader is referred to the lemma Stream
Classification for a detailed elaboration on the
interaction between the classifier and the stream,
the detection of drift, and the adaption of the
model. For opinionated streams, two aspects are
of particular interest: how to choose a classifica-
tion algorithm for polarity learning and how to
deal with changes in the vocabulary.

Stream classification algorithms for polarity
learning. Since there are many stream classifi-
cation algorithms, it is reasonable to investigate
how appropriate they are for learning on an opin-
ionated stream. Several comparative studies have
emerged at the beginning of the decade, including
Bifet and Frank (2010) and Gokulakrishnan et al.
(2012). In Gokulakrishnan et al. (2012), Goku-
lakrishnan et al. study a Twitter stream (i.e., a
stream of short texts) and evaluate multinomial
Naive Bayes (MNB), support vector machines
(SVM), Bayesian logistic regression, sequential
minimal optimization (SMO), and random forests
(RF); they show that Bayesian classifiers, RF, and
SMO outperform the other methods. In Bifet and
Frank (2010), Bifet et al. compare MNB, stochas-
tic gradient descend (SGD), and a Hoeffding tree
(HT) algorithm; they report that MNB and SGD
perform comparably when the stream is stable,
but MNB has difficulties in adapting to drifts. In
terms of efficiency, MNB is the fastest and HT is
the slowest.

In their survey on concept drift adaption
(Gama et al. 2014), Gama et al. elaborate on
how forgetting of old data can be used to adjust
a model to drift, and they discuss different
forgetting strategies. The Hoeffding tree variant
AdaHT (Bifet and Gavaldà 2009) forgets subtrees
if performance degrades. In an opinionated
stream, it is reasonable to also forget words,
i.e., parts of the feature space, since the choice
of words used in the data (here: documents!)
may also change. The MNB variant proposed in
Wagner et al. (2015) quantifies the contribution
of a word to the polarity model by considering
the number of documents containing this word
and the recency of these documents; this variant
is shown to adapt well to changes in the stream.

Stream classification algorithms for an evolv-
ing vocabulary. The problem of vocabulary
evolution is rarely investigated in the context of
stream mining. There are studies on online topic
modeling and clustering on text streams, in which
the model is adapted when the vocabulary – the
feature space – changes (AlSumait et al. 2008;
Gohr et al. 2009; Zimmermann et al. 2016), but
most studies assume that all words are known in
advance, and only their contribution to the model
may change over time.

Among the stream classification algorithms,
adaption to an evolving vocabulary is possible
for some algorithms. The Hoeffding tree variant
AdaHT (Bifet and Gavaldà 2009) can forget dep-
recated words when it forgets parts of the model
(subtrees) and may be able to include new words
when it builds new subtrees. The multinomial
Naive Bayes variant proposed in Wagner et al.
(2015) does modify the vocabulary, by consider-
ing at each timepoint only words that appear often
in recent documents.

Adaption to an evolving vocabulary is an open
problem. Currently, only few stream classifica-
tion algorithms can deal with changes in the
feature space. How to employ other classification
algorithms over the opinionated stream? The fall-
back solution is to extend the workflow by a task
that regularly recomputes the vocabulary/feature
space from the most recent documents and then
re-initializes the polarity model. This solution has

Opinion Stream Mining 943

O

the disadvantage that the old model is completely
forgotten, but the advantage that any stream clas-
sification algorithm can be used for learning.

Semi-supervised Opinion Stream
Classification
Goal of semi-supervised stream learning is to
learn a model on an initial set of manually la-
beled documents, sometimes called the “seed
set” or “initial seed,” and then adapt the model
by using the arriving unlabeled instances. Semi-
supervised methods have the inherent advantage
of not demanding human intervention after the
initialization of the model.

For this family of methods, the initial seed
is the only available ground truth. Hence, it is
essential that the instances comprising the seed
set are a representative sample. Evidently, this
sample ceases being representative, as soon as
concept drift occurs. Semi-supervised learning
algorithms adapt to drift by building a training
set that consists of the initial seed and arriving
unlabeled instances, to which they themselves
assign the labels. There are two strategies for the
selection of unlabeled instances to be labeled by
the classifier and added to the training set. The
first strategy chooses instances on the grounds
of the classifier’s confidence to the predicted
labels. The second strategy chooses instances by
considering their similarity to previously labeled
instances.

First strategy. Chapelle et al. point out that
“Probably the earliest idea about using unla-
beled data in classification is self-learning, which
is also known as self-training, self-labeling, or
decision-directed learning. This is a wrapper-
algorithm that repeatedly uses a supervised learn-
ing method. It starts by training on the labeled
data only. In each step a part of the unlabeled
points is labeled according to the current decision
function; then the supervised method is retrained
using its own predictions as additional labeled
points . . . ” (Chapelle et al. 2006). However, self-
training may lead to performance deterioration,
because erroneous predictions of the classifier
lead to erroneous labels in the training set.

Another approach is the “co-training” of sev-
eral independent classifiers (Blum and Mitchell
1998). In the context of text classification,
Aggarwal and Zhai propose to split the feature
space into subsets and train an independent
classifier on each subset (Aggarwal and Zhai
2014); then, high-confidence predictions of
each single classifier are used to feed the other
classifiers with new labels, so that no classifier is
trained on its own predictions.

An example of co-training on a stream of
tweets is in Liu et al. (2013): the complete feature
space encompasses both text features (such as
adjectives) and non-text features (e.g., emoticons).
Views are built over this feature space, and a
classifier (multiclass SVM) is trained on each
view, using a small set of labeled instances only.

Second strategy. As an alternative to self-
training and co-training, the second semi-
supervised strategy adds to the training set
those instances that are most similar to already
labeled instances. One way to capitalize
on labeled instances under this strategy is to
cluster labeled and unlabeled instances together,
then determine the label of each cluster from
the labeled instances in it, and finally select for
training some unlabeled instances per cluster
(e.g., those closest to the cluster center).

In the context of opinionated semi-supervised
stream learning, a clustering-based strategy
brings two advantages. First, text stream
clustering algorithms can be used, whereupon the
clusters are updated gradually, as new unlabeled
instances arrive. Further, these clusters reflect
the properties/topics in the opinionated stream,
thus addressing challenge (b) of task 2 on
opinionated streams (cf. section on “Motivation,
Main Tasks, and Challenges”). Example methods
have been proposed by Gan et al. (2013) and by
Zimmermann et al. (2015a).

In the previous section on fully supervised
learning, we point out that forgetting (old data,
part of the model, part of the feature space)
may be beneficial for model adaption (cf. Gama
et al. 2014). When learning in a semi-supervised
way, though, forgetting may have negative side
effects: since the seed set is the only ground

944 Opinion Stream Mining

truth provided by the human expert, forgetting
those “precious” data labels is likely to lead to
performance deterioration.

Active Learning for Opinion Stream
Classification
Similarly to semi-supervised approaches, active
learning methods attempt to learn and adapt to
the ongoing stream without demanding a label
for each arriving instance. Instead of re-acting to
the labels that become available, active methods
proactively (thereof the name “active”) request
labels for the instances expected to be most in-
formative for learning.

In active stream learning, there are two ways
of requesting labels for some of the arriving
instances. In the pool-based scenario, unlabeled
instances are collected into a pool; the active
learning algorithm chooses a subset of them and
asks for their labels. In the sequential scenario,
the algorithm decides for each arriving instance
whether it will request a label for it. An overview
of active learning methods for conventional
streams is in Zliobaite et al. (2011).

Active learning is often used for various text
mining tasks, including sentiment classification
(Zhou et al. 2013). Active algorithms for opinion-
ated streams also gain momentum. CloudFlows is
a cloud-based platform for opinion stream mining
that adheres to the pool-based scenario (Saveski
and Grcar 2011; Kranjc et al. 2015): a first model
of the stream is learned from a large corpus of
tweets that contain emoticons; after initialization,
the stream is partitioned into chunks, and an ac-
tive learning algorithm is used to select instances
and store them in a pool. The instances in the
pool are ranked, and the top-ranked positions are
shown to human experts. This approach has the
advantage that human experts (e.g., in crowd-
sourcing) label the opinionated documents shown
to them offline, whereupon these newly labeled
instances are used for classifier adaption.

The algorithm ACOSTREAM (Zimmermann
et al. 2015b) adheres to the sequential scenario, in
the sense that sampling is done for each instance
individually at its arriving time. This algorithm
uses a variant of multinomial naive Bayes for
classification, which (as in Wagner et al. 2015)

deals with changes in the vocabulary of the arriv-
ing documents.

The multiclass active learning algorithm of
Cheng et al. (2013) combines uncertainty and
likelihood sampling to choose instances that are
close to the current decision boundary, as well as
instances from a yet unseen part of the data space.
This algorithm (which adheres to the sequential
scenario) is particularly interesting for learning
on text streams, where some of the most recent
instances may belong to an area of the data space
that did not contain any instances in the past.

Recent Developments

Opinion stream mining builds upon advances
in opinion mining, stream classification, active
stream learning, and semi-supervised stream
learning. Traditional methods in this domain
have not been designed with big data in mind.
However, opinionated streams have big data
characteristics: volume, variability, variety, and
veracity.

Volume refers to the huge number of opinions
uploaded daily in social media and to the high
dimensionality of the opinionated documents.

Variability refers to changes in the data flow rate
and to changes in the data distribution, i.e., to
concept drift.

Variety refers to the heterogeneous data types,
including plain texts, images, and videos.
The graph structure of the social networks, in
which opinion holders are linked to each other,
also adds to the variety of the data relevant to
opinion mining.

Veracity refers to the uncertainty of the polarity
labels provided by the human experts: labeling
an opinionated stream is an inherently diffi-
cult task, since some opinionated documents
(e.g., documents containing subtle irony) may
be perceived differently by different people.

Challenges associated to these four Vs are
not always peculiar to opinion stream mining:
while challenges associated to variability are ex-
acerbated in the opinion stream mining context,
challenges associated to, e.g., volume can benefit

Opinion Stream Mining 945

O

from general-purpose big data solutions. These
include, among others, scalable machine learn-
ing and online NLP algorithms, crowdsourcing
approaches for data labeling, visualization ad-
vances, and visual analytics for the monitoring
and interpretation of activities on social plat-
forms.

Open Problems

Opinion stream mining is a rather young area.
Open problems include:

• How to extend the traditional notion of “con-
cept drift” so that it also cover changes in the
feature space? How to design algorithms that
detect such changes and adapt to them in an
efficient way?

• How to distinguish between concept drift and
“virtual drift” (Gama et al. 2014), i.e., between
changes that do affect the decision boundary
and changes that do not?
Especially in an opinionated stream, many
changes occur at each moment, e.g., new
words appear, and the number of postings
changes with the hour of the day, but not all of
them require model adaption. How to design
algorithms that recognize virtual drift and
only adapt the model when true concept drift
occurs?

• How to capture changes in the semantics and
polarity of words?
If a word’s semantics or polarity change, how
to inform existing resources (e.g., lexica like
SentiWordNet) that a word’s meaning and
polarity are different for old documents than
for recent ones?

• How to deal with label veracity in the stream?
A promising approach is crowdsourcing, s
is done, e.g., in CloudFlows (Kranjc et al.
2015). Amazon Mechanical Turk is a popu-
lar platform, where one can upload tasks for
crowdsourcing. However, crowdsourcing has
not been designed for learning and adaption on
a fast stream, so solutions that also deal with
stream velocity are necessary.

An associated open issue that can also be
found in text stream mining, e.g., in the anal-
ysis of news streams, concerns the description
of bursts. A burst is a rapid increase in social
activity and may also be associated with a rapid
change in the class priors and in the words being
used to express polarity and to express facts. Do
these changes disappear after the burst fades out,
or do people take up the new words/expressions
and use them also when they express opinions
on other subjects? Does a burst lead to (more)
permanent changes in the way people express
opinions, on their perception toward a given en-
tity, or on the topics they discuss?

Impact

Opinions have been always important for
decision making. The opinion deluge we
encounter nowadays mainly due to the WWW
and the widespread usage of social networks
is transforming business, society, and our own
decisions on, e.g., what product to buy, which
movie to watch, etc. Opinion (stream) mining
offers solutions for automatically exploiting such
sort of data for decision making, through, e.g.,
prediction models. Beyond its usage as a “stand-
alone tool” for, e.g., polarity prediction, opinion
(stream) mining has an impact on other areas
of research, an example of which is the area of
recommenders: next to the ratings typically used
by recommenders, it is possible to also capitalize
on the user reviews as more and more users
also provide reviews on the rated items. These
reviews are rich in information: they typically
describe the aspects of the items that the users
like/dislike. Further, if there are no ratings, they
may be inferred from the reviews. A recent work
in this area is McAuley and Leskovec (2013).

Cross-References

�Active Learning
�Concept Drift
�Co-training
� Incremental Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_100094
http://dx.doi.org/10.1007/978-1-4899-7687-1_130

946 Opinion Stream Mining

�Online Learning
� Semi-supervised Learning
� Sentiment Analysis and Opinion Mining

Recommended Reading

Some of the publications cited thus far elaborate
on issues that were only briefly touched in this
lemma. In Liu (2012), Bing Liu gives a thorough
overview of sentiment analysis and opinion min-
ing. For text classification methods, readers are
referred to the recent book chapter of Aggarwal
and Zhai (2014).

References

Aggarwal CC, Yu PS (2006) A framework for cluster-
ing massive text and categorical data. In: Proceed-
ings of 6th SIAM international conference on data
mining (SDM’06), Bethesda. SIAM, pp 479–483

Aggarwal C, Zhai C (2014) Text classification. In:
Aggarwal C (ed) Data classification: algorithms and
applications, chapter 11. Chapman & Hall/CRC,
Boca Raton, pp 287–336

AlSumait L, Barbara D, Domeniconi C (2008) On-line
LDA: adaptive topic models for mining text streams
with applications to topic detection and tracking.
In: Proceedings of 2008 IEEE conference on data
mining (ICDM’08), Pisa. IEEE, pp 373–382

Bifet A, Frank E (2010) Sentiment knowledge discov-
ery in Twitter streaming data. In: Proceedings of the
13th international conference on discovery science
(DS’10), Canberra. Springer, pp 1–15

Bifet A, Gavaldà R (2009) Adaptive learning from
evolving data streams. In: Proceedings of the 8th
international symposium on intelligent data analy-
sis: advances in intelligent data analysis VIII (IDA),
Lyon. Springer, pp 249–260

Blei DM, Lafferty JD (2006) Dynamic topic models.
In: Proceedings of 23rd international conference on
machine learning (ICML’06), Pittsburgh, pp 113–
120

Blum A, Mitchell T (1998) Combining labeled and
unlabeled data with co-training. In: Proceedings of
11th conference on computational learning theory,
Madison. ACM, pp 92–100

Chapelle O, Schölkopf B, Zien A (2006) Semi-
supervised learning. MIT, Cambridge

Cheng Y, Chen Z, Liu L, Wang J, Agrawal A,
Choudhary A (2013) Feedback-driven multiclass
active learning for data streams. In: Proceedings of
22nd international conference on information and
knowledge management (CIKM’13), San Fransisco,
pp 1311–1320

Fu X, Yang K, Huang JZ, Cui L (2015) Dynamic
non-parametric joint sentiment topic mixture model.
Know-Based Syst 82(C):102–114

Gama J, Žliobaitė I, Bifet A, Pechenizkiy M,
Bouchachia A (2014) A survey on concept
drift adaptation. ACM Comput Surv 46(4):44:
1–44:37

Gan H, Sang N, Huang R, Tong X, Dan Z (2013) Us-
ing clustering analysis to improve semi-supervised
classification. Neurocomputing 101:290–298

Gohr A, Hinneburg A, Schult R, Spiliopoulou M
(2009) Topic evolution in a stream of documents.
In: SIAM data mining conference (SDM’09), Reno,
pp 378–385

Gokulakrishnan B, Priyanthan P, Ragavan T, Prasath
N, Perera A (2012) Opinion mining and sentiment
analysis on a Twitter data stream. In: Proceedings
of the 2012 international conference on advances
in ICT for emerging regions (ICTer), Colombo,
pp 182–188

Kranjc J, Smailovic J, Podpecan V, Grcar M, Znidarsic
M, Lavrac N (2015) Active learning for sentiment
analysis on data streams: methodology and work-
flow implementation in the ClowdFlows platform.
Inf Process Manag 51(2):187–203

Liu B (2012) Sentiment analysis and opinion mining.
Synth Lect Hum Lang Technol 5(1):1–167

Liu S, Li F, Li F, Cheng X, Shen H (2013) Adaptive
co-training SVM for sentiment classification on
tweets. In: Proceedings of 22nd international con-
ference on information and knowledge management
(CIKM’13), San Fransisco, pp 2079–2088

McAuley J, Leskovec J (2013) Hidden factors and
hidden topics: understanding rating dimensions with
review text. In: Proceedings of 7th ACM conference
on recommender systems (RecSys’13), Hong Kong.
ACM, pp 165–172

Saveski M, Grcar M (2011) Web services for stream
mining: a stream-based active learning use case. In:
Proceedings of the workshop “Planning to Learn
and Service-Oriented Knowledge Discovery” at
ECML PKDD 2011, Athens

Wagner S, Zimmermann M, Ntoutsi E, Spiliopoulou
M (2015) Ageing-based multinomial naive bayes
classifiers over opinionated data streams. In: Euro-
pean conference on machine learning and principles
and practice of knowledge discovery in databases
(ECMLPKDD’15), Porto, 07–11 Sept 2015. Vol-
ume 9284 of lecture notes in computer science.
Springer International Publishing

Wang X, McCallum A (2006) Topics over time: a non-
Markov continuous-time model of topical trends. In:
Proceedings of 12th ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD’06), Philadelphia, pp 424–433

Zhou S, Chen Q, Wang X (2013) Active deep learning
method for semi-supervised sentiment classifica-
tion. Neurocomputing 120:536–546

Zimmermann M, Ntoutsi E, Spiliopoulou M (2015a)
Discovering and monitoring product features and

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_907

Overfitting 947

O

the opinions on them with OPINSTREAM. Neuro-
computing 150:318–330

Zimmermann M, Ntoutsi E, Spiliopoulou M (2015b)
Incremental active opinion learning over a stream
of opinionated documents. In: WISDOM’15 (work-
shop on issues of sentiment discovery and opinion
mining) at KDD’15, Sydney

Zimmermann M, Ntoutsi E, Spiliopoulou M (2016)
Extracting opinionated (sub)features from a stream
of product reviews using accumulated novelty and
internal re-organization. Inf Sci 329:876–899

Zliobaite I, Bifet A, Pfahringer B, Holmes G (2011)
Active learning with evolving streaming data. In:
Proceedings of ECML PKDD 2011, Athens. Vol-
ume 6913 of LNCS. Springer

Optimal Learning

�Bayesian Reinforcement Learning

Ordered Rule Set

�Decision List

Ordinal Attribute

An ordinal attribute classifies data into cate-
gories that can be ranked. However, the differ-
ences between the ranks cannot be calculated by
arithmetic. See �Attribute and �Measurement
Scales.

Out-of-Sample Data

Out-of-sample data are data that were not used to
learn a model. �Holdout evaluation uses out-of-
sample data for evaluation purposes.

Out-of-Sample Evaluation

Definition

Out-of-sample evaluation refers to � algorithm
evaluation whereby the learned model is
evaluated on � out-of-sample data, which are

data that were not used in the process of learning
the model. Out-of-sample evaluation provides
a less biased estimate of learning performance
than � in-sample evaluation. �Cross valida-
tion, � holdout evaluation and � prospective
evaluation are three main approaches to out-
of-sample evaluation. Cross validation and
holdout evaluation run risks of overestimating
performance relative to what should be expected
on future data, especially if the data set used is
not a true random sample of the distribution on
which the learned models are to be applied in the
future.

Cross-References

�Algorithm Evaluation

Overall and Class-Sensitive
Frequencies

The underlying idea for learning strategies
processing �missing attribute values relies on
the class distribution; i.e., the class-sensitive
frequencies are utilized. As soon as we substitute
a missing value by a suitable one, we take the
desired class of the example into consideration
in order not to increase the noise in the data
set. On the other hand, the overall (class-
independent) frequencies are applied within
classification.

Overfitting

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Clayton, Melbourne, VIC, Australia

Synonyms

Overtraining

http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_620
http://dx.doi.org/10.1007/978-1-4899-7687-1_405
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_978
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_100353

948 Overtraining

Definition

A model overfits the � training data when it
describes features that arise from noise or
variance in the data, rather than the underlying
distribution from which the data were drawn.
Overfitting usually leads to loss of � accuracy on
� out-of-sample data.

Discussion

In general there is a trade-off between the size
of the space of distinct models that a learner can
produce and the risk of overfitting. As the space
of models between which the learner can select
increases, the risk of overfitting will increase.
However, the potential for finding a model that
closely fits the true underling distribution will
also increase. This can be viewed as one facet of
the � bias and variance trade-off.

Figure 1 illustrates overfitting. The points are
drawn randomly from a distribution in which y D

−2−4 0 2 4

−4

−2

0

2

4

x

y

Overfitting, Fig. 1 Linear and polynomial models fitted
to random data drawn from a distribution for which the
linear model is a better fit

x C ", where " is random noise. The best single
line fit to this distribution is y D x. �Linear re-
gression finds a model y D 0:02044 C 0:92978 �

x, shown as the solid line in Fig. 1. In contrast,
second degree polynomial regression finds the
model �0:6311C0:5128�xC0:2386�x2, shown
as the dashed line. The space of second degree
polynomial models is greater than that of linear
models, and so the second degree polynomial
more closely fits the example data, returning the
lower � squared error. However, the linear model
more closely fits the true distribution and is more
likely to obtain lower squared error on future
samples.

While this example relates to � regression, the
same effect also applies to classification prob-
lems. For example, an overfitted � decision tree
may include splits that reflect noise rather than
underlying regularities in the data.

The many approaches to avoiding overfitting
include

• Using low variance learners;
• �Minimum Description Length and �Minimum

Message Length techniques
• � Pruning
• �Regularization

Cross-References

�Bias Variance Decomposition
�Minimum Description Length Principle
�Minimum Message Length
� Pruning
�Regularization

Overtraining

�Overfitting

http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_620
http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_100441
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

P

PAC Identification

� PAC Learning

PAC Learning

Thomas Zeugmann
Hokkaido University, Sapporo, Japan

Synonyms

Distribution-free learning; PAC identification;
Probably approximately correct learning

Motivation and Background

A very important learning problem is the task
of learning a concept. �Concept learning has
attracted much attention in learning theory. For
having a running example, we look at humans
who are able to distinguish between different
“things,” e.g., chair, table, car, airplane, etc. There
is no doubt that humans have to learn how to
distinguish “things.” Thus, in this example, each
concept is a thing. To model this learning task, we
have to convert “real things” into mathematical
descriptions of things. One possibility to do this
is to fix some language to express a finite list of
properties. Afterward, we decide which of these
properties are relevant for the particular things we
want to deal with and which of them have to be

fulfilled or not to be fulfilled, respectively. The
list of properties comprises qualities or traits such
as “has four legs,” “has wings,” “is green,” “has a
backrest,” “has a seat,” etc. So these properties
can be regarded as Boolean predicates, and, pro-
vided the list of properties is large enough, each
thing can be described by a conjunction of these
predicates. For example, a chair is described by
“has four legs and has a backrest and has a seat
and has no wings.” Note that the color is not
relevant and thus, “is green” has been omitted.

Assume that we have n properties, where n is a
natural number. In the easiest case, we can denote
the n properties by Boolean variables x1; : : : ; xn,
where range.xj / � f0; 1g for j D 1; : : : ; n. The
semantics is then obviously defined as follows.
Setting xj D 1 means property j is fulfilled,
while xj D 0 refers to property j is not fulfilled.
Now, setting Ln D fx1; Nx1; x2; Nx2; : : : ; xn; Nxng

(set of literals), we can express each thing as a
conjunction of literals. As usual, we refer to any
conjunction of literals as a monomial.

Therefore, formally we have as learning do-
main (also called � instance space) the set of all
Boolean vectors of length n, i.e., f0; 1gn, and, in
the learner’s world, each thing (concept) is just a
particular subset of f0; 1gn. As far as our example
is concerned, the concept chair is then the set of
all Boolean vectors for which the monomial “has
four legs and has a backrest and has a seat and
has no wings” evaluates to 1.

Furthermore, it is usually assumed that the
concept c to be learned (the target concept) is
taken from a prespecified class C of possible

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_100119
http://dx.doi.org/10.1007/978-1-4899-7687-1_100354
http://dx.doi.org/10.1007/978-1-4899-7687-1_100377
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_408

950 PAC Learning

concepts called the concept class. In our example
above, the concept class is the set of all concepts
describable by a monomial. Consequently, we
see that formally learning a concept is equivalent
to identifying (exact or approximately) a set from
a given set of possibilities by learning a suitable
description (synonymously called representation)
of it.

As in complexity theory, we usually assume
that the representations are reasonable ones. Then
they can be considered as strings over some fixed
alphabet and the set of representations constitutes
the � representation language. Note that a
concept may have more than one representation
in a given representation language (and should
have at least one) and that there may be different
representation languages for one and the same
concept class. For example, every Boolean func-
tion can be expressed as a � conjunctive normal
form (CNF) and as a � disjunctive normal form
(DNF), respectively. For a fixed representation
language, the size of a concept is defined to be
the length of a shortest representation for it. Since
we are interested in a model of efficient learning,
usually the following additional requirements
are made: given any string over the underlying
alphabet, one can decide in time polynomial in
the length of the string whether or not it is a
representation. Furthermore, given any element
x from the underlying learning domain and
a representation r for any concept, one can
uniformly decide in time polynomial in the length
of both inputs whether or not x belongs to the
concept c described by r .

So, we always have a representation language
used to define the concept class. As we shall see
below, it may be advantageous to choose a pos-
sibly different representation language used by
the learner. The class of all sets described by this
representation language is called � hypothesis
space (denoted by H), and the elements of it are
said to be hypotheses (commonly denoted by h).

The learner is specified to be an algorithm.
Further details are given below. We still have
to specify the information source, the criterion
of success, the hypothesis space, and the
prior knowledge in order to define what PAC
learning is.

The abbreviation PAC stands for probably
approximately correct and the corresponding
learning model has been introduced by Valiant
(1984), while its name was dubbed by Angluin
(1988). Valiant’s (1984) pioneering paper
triggered a huge amount of research the results
of which are commonly called computational
learning theory (see also the COLT and ALT
conference series). Comprehensive treatises of
this topic include Anthony and Biggs (1992),
Kearns and Vazirani (1994), as well as Natarajan
(1991).

Informally, this means that the learner has
to find, on input, a randomly drawn set of
labeled examples (called sample), with high
probability a hypothesis such that the error of
it is small. Here the error is measured with
respect to the same probability distribution
D with respect to which the examples are
drawn.

LetX ¤ ; be any learning domain and let C �
}.X/ be any nonempty concept class (here }.X/
denotes the power set of X). If X is infinite, we
need some mild measure theoretic assumptions to
ensure that the probabilities defined below exist.
We refer to such concept classes as well-behaved
concept classes. In particular, each c 2 C has to
be a Borel set. For a more detailed discussion, see
Blumer et al. (1989).

Next, we formally define the information
source. We assume any unknown probability
distribution D over the learning domain X . No
assumption is made concerning the nature of D
and the learner has no knowledge concerning
D. There is a sampling oracle EX. /, which has
no input. Whenever EX. / is called, it draws
an element x 2 X according to D and returns
the element x together with an indication of
whether or not x belongs to the target concept c.
Thus, every example returned by EX. / may be
written as .x; c.x//, where c.x/ D 1 if x 2 c
(positive examples) and c.x/ D 0 otherwise
(negative examples). If we make s calls to the
example EX. /, then the elements x1; : : : ; xs are
drawn independently from one another. Thus,
the resulting probability distribution over all s-
tuples of elements from X is the s-fold product
distribution of D, i.e.,

http://dx.doi.org/10.1007/978-1-4899-7687-1_100412
http://dx.doi.org/10.1007/978-1-4899-7687-1_158
http://dx.doi.org/10.1007/978-1-4899-7687-1_223
http://dx.doi.org/10.1007/978-1-4899-7687-1_373

PAC Learning 951

P

Pr.x1; : : : ; xs/ D

sY

iD1

D.xi / ; (1)

where Pr.A/ denotes the probability of event A.
Hence, the information source for a target con-
cept c is any randomly drawn s-sample S.c; Nx/ D
.x1; c.x1/; : : : ; xs; c.xs// returned by EX. /.

The criterion of success, i.e., probably approx-
imately correct learning, is parameterized with
respect to two quantities, the accuracy parameter
", and the confidence parameter ı, where "; ı 2
.0; 1/. Next, we define the difference between two
sets c; c0 � X with respect to the probability
distribution D as

d.c; c0/ D
X

x2c4c0

D.x/;

where c4c0 denotes the symmetric difference,
i.e., c4c0 D c n c0 [c0 n c. We say that
hypothesis h is an "-approximation of a concept
c, if d.c; h/ � ". A learner is successful, if it
computes an "-approximation of the target con-
cept, and it should do so with probability at least
1 � ı.

The hypothesis space H is any set such that
C � H, and the only prior knowledge is that the
target concept is from the concept class.

A further important feature of the PAC learn-
ing model is the demand to learn efficiently.
Usually, in the PAC learning model, the effi-
ciency is measured with respect to the number of
examples needed and the amount of computing
time needed, and in both cases the requirement
is to learn with an amount that is polynomial
in the “size of the problem.” In order to arrive
at a meaningful definition, one has to discuss
the problem size and, in addition, to look at
the asymptotic difficulty of the learning problem.
That is, instead of studying the complexity of
some fixed learning problem, we always look at
infinite sequences of similar learning problems.
Such infinite sequences are obtained by allowing
the size (dimension) of the learning domain to
grow or by allowing the complexity of the con-
cepts considered to grow. In both cases we use n
to denote the relevant parameter.

Definition

A learning method A is said to probably approx-
imately correctly learn a target concept c with
respect to a hypothesis space H and with sample
complexity s D s."; ı/ (or s D s."; ı; n/), if for
any distributionD overX and for all "; ı 2 .0; 1/,
it makes s calls to the oracle EX. /, and after
having received the answers produced by EX. /
(with respect to the target c), it always stops and
outputs a representation of a hypothesis h 2 H
such that

Pr.d.c; h/ � "/ � 1 � ı:

A learning method A is said to probably ap-
proximately correctly identify a target concept
class C with respect to a hypothesis space H
and with sample complexity s D s."; ı/, if it
probably approximately correctly identifies every
concept c 2 C with respect to H and with sample
complexity s.

A learning method A is said to be efficient,
if there exists a polynomial pol such that the
running time of A and the number s of examples
seen are at most pol.1="; 1=ı; n/.

Remarks
This looks complicated, and so, some explanation
is in order. First, the inequality

Pr.d.c; h/ � "/ � 1 � ı

says that with high probability (quantified by
ı), there is not too much difference (quanti-
fied by ") between the conjectured concept (de-
scribed by h) and the target c. Formally, let A
be any fixed learning method, and let c be any
fixed target concept. For any fixed "; ı 2 .0; 1/,
let s D s."; ı/ be the actual sample size. We
have to consider all possible outcomes of A
when run on every labeled s-sample S.c; Nx/ D
.x1; c.x1/; : : : ; xs; c.xs// returned by EX. /. Let
h.S.c; Nx// be the hypothesis produced by A
when processing S.c; Nx/. Then we have to con-
sider the set W of all s-tuples over X such that
d.c; h.S.c; Nx/// � ". The condition Pr.d.c; h/ �
"/ � 1 � ı can now be formally rewritten as
Pr.W / � 1 � ı. Clearly, one has to require that

952 PAC Learning

Pr.W / is well defined. Note that the sample size
is not allowed to depend on the distribution D.

To exemplify this approach, recall that our set
of all concepts describable by a monomial over
Ln refers to the set of all things. We consider
a hypothetical learner (e.g., a student, a robot)
that has to learn the concept of a chair. Imagine
that the learner is told by a teacher whether
or not particular things visible by the learner
are instances of a chair. What things are visible
depends on the environment the learner is in.
The formal description of this dependence is
provided by the unknown distribution D. For
example, the learner might be led to a kitchen, a
sitting room, a bookshop, a beach, etc. Clearly,
it would be unfair to teach the concept of a
chair in a bookshop and then testing the learning
success at a beach. Thus, the learning success is
measured with respect to the same distribution
D with respect to which the sampling oracle
has drawn its examples. However, the learner is
required to learn with respect to any distribution.
That is, independently of whether the learner is
led to a kitchen, a bookshop, a sitting room, a
beach, etc., it has to learn with respect to the
place it has been led to. The sample complexity
refers to the amount of information needed to
ensure successful learning. Clearly, the smaller
the required distance of the hypothesis produced
and the higher the confidence desired, the more
examples are usually needed. But there might be
atypical situations. To have an extreme example,
the kitchen the learner is led to turned out to
be empty. Since the learner is required to learn
with respect to a typical kitchen (described by
the distribution D), it may well fail under this
particular circumstance. Such failure has to be
restricted to atypical situations, and this is ex-
pressed by demanding the learner to be successful
with confidence 1 � ı.

This corresponds to real-life situations. For
example, a student who has attended a course
in learning theory might well suppose that she
is examined in learning theory and not in graph
theory. However, a good student, say in computer
science, has to pass all examinations successfully,
independently of the particular course attended.
That is, she must successfully pass examinations

in computability theory, complexity theory, cryp-
tology, parallel algorithms, etc. Hence, she has
to learn a whole concept class. The sample com-
plexity refers to the time of interaction performed
by the student and teacher. Also, the student may
come up with a different representation of the
concepts taught than the teacher. If we require
C D H, then the resulting model is referred to
as proper PAC learning.

The Finite Case

Having reached this point, it is natural to ask
which concept classes are (efficiently) PAC learn-
able. We start with the finite case, i.e., learning
domains X of finite cardinality. As before, the
s-sample of c generated by Nx is denoted by
S.c; Nx/ D .x1; c.x1/; : : : ; xs; c.xs//. A hypoth-
esis h 2 H is called consistent for an s-sample
S.c; Nx/, if h.xi / D c.xi / for all 1 � i � s. A
learner is said to be consistent if all its outputs
are consistent hypotheses. Then the following
strategy (also known as �Occam’s razor) may be
used to design a PAC learner:

(1) Draw a sufficiently large sample from the
oracle EX. /, say s examples.

(2) Find some h 2 H that is consistent with all
the s examples drawn.

(3) Output h.

This strategy has a couple of remarkable fea-
tures. First, provided the learner can find a con-
sistent hypothesis, it allows for a uniform bound
of the number of examples needed. That is,

s �
1

"

�
ln jHj C ln

�
1

ı

��
(2)

examples will always suffice (here jS j denotes
the cardinality of any set S).

The first insight obtained here is that increas-
ing the confidence is exponentially cheaper than
reducing the error.

Second, we see why we have to look at the
asymptotic difficulty of the learning problem. If
we fix f0; 1gn as learning domain and define
C to be the set of all concepts describable by

http://dx.doi.org/10.1007/978-1-4899-7687-1_614

PAC Learning 953

P

a Boolean function, then there are 22n
many

concepts over f0; 1gn. Consequently, ln jHj D
O.2n/ resulting in a sample complexity that is for
sure infeasible if n � 50. Thus, we set Xn D

f0; 1gn, consider Cn � }.Xn/, and study the
relevant learning problem for .Xn; Cn/n�1. So,
finite means that all Xn are finite.

Third, using Inequality (2), it is not hard to
see that the set of all concepts over f0; 1gn that
are describable by a monomial is efficiently PAC
learnable. Let Hn be the set of all monomials
containing each literal from Ln at most once plus
the conjunction of all literals (denoted by mall)
(representing the empty concept). Since there are
3n C 1 monomials in Hn, by (2), we see that
O.1=" � .n C ln.1=ı/// many examples suffice.
Note that 2n is also an upper bound for the size
of any concept from Hn.

Thus it remains to deal with the problem to
find a consistent hypothesis. The learning algo-
rithm can be informally described as follows.
After having received the s examples, the learner
disregards all negative examples received and
uses the positive ones to delete all literals from
mall that evaluate to 0 on at least one positive
example. It then returns the conjunction of the
literals not deleted frommall. After a bit of reflec-
tion, one verifies that this hypothesis is consis-
tent. This is essentially Haussler’s (1987) Wholist
algorithm and its running time is O.1=" � .n2 C

ln.1=ı///. Also note that the particular choice
of the representation for the empty concept was
crucial here. It is worth noticing that the sample
complexity is tight up to constant factors.

Using similar ideas one can easily show that
the class of all concepts over f0; 1gn describable
by a k-CNF or k-DNF (where k is fixed) is
efficiently PAC learnable by using as hypothesis
space all k-CNF and k-DNF, respectively (cf.
Valiant 1984). Note that a k-CNF is a conjunctive
normal form in which each clause has at most k
literals, and a k-DNF is a disjunctive normal form
in which each monomial has at most k literals.

So, what can we say in general concerning
the problem to find a consistent hypothesis? An-
swering this question gives us the insight to
understand why it is sometimes necessary to
choose a hypothesis space that is different from

the target concept class. This phenomenon was
discovered by Pitt and Valiant (1988). First, we
look at the case where we have to efficiently PAC
learn any Cn with respect to Cn. Furthermore, an
algorithm is said to solve the consistency problem
for Cn if, on input any s-sample S.c; Nx/, where
c � Xn, it outputs a hypothesis consistent with
S.c; Nx/ provided there is one, and “there is no
consistent hypothesis,” otherwise.

Since we are interested in efficient PAC learn-
ing, we have to make the assumption that jCnj �

2pol.n/ (cf. Inequality (2)). Also, it should be
noted that for the proof of the following result,
the requirement that h.x/ is polynomial time
computable is essential (cf. our discussion of rep-
resentations). Furthermore, we need the notion of
an RP-algorithm (randomized polynomial time).
The input is any s-sample S.c; Nx/, where c �
Xn and the running time is uniformly bounded
by a polynomial in the length of the input. In
addition to its input, the algorithm can flip a coin
in every step of its computation and then branch
in dependence of the outcome of the coin flip.
If there is no hypothesis consistent with S.c; Nx/,
the algorithm must output “there is no consistent
hypothesis,” independently of the sequence of
coin flips made. If there is a hypothesis consistent
with S.c; Nx/, then the RP-algorithm is allowed
to fail with probability at most ı.

Interestingly, under the assumptions made
above, then one can prove the following
equivalence for efficient PAC learning.

PAC learning Cn with respect to Cn is equiva-
lent to solving the consistency problem for Cn by
an RP-algorithm.

We continue by looking at the class of all
concepts describable by a k-term DNFn. A term
is a conjunction of literals from Ln, and a k-
term DNFn is a disjunction of at most k terms.
Consequently, there are .3n C 1/k many k-term
DNFs and thus the condition jCnj � 2pol.n/ is
fulfilled. Then one can show the following (see
Pitt and Valiant 1988).

For all integers k � 2, if there is an algorithm
that efficiently learns k-term DNFnwith respect
to k-term DNFn, then RP D NP .

For a formal definition of the complexity
classes RP and NP , we refer the reader to Arora

954 PAC Learning

and Barak (2009). This result is proved by show-
ing that deciding the consistency problem for
k-term DNFn is NP-complete for every k � 2.
The difference between deciding and solving the
consistency problem is that we only have to de-
cide if there is a consistent hypothesis in k-term
DNFn. However, by the equivalence established
above, we know that an efficient proper PAC
learner for k-term DNFn can be transformed into
an RP-algorithm even solving the consistency
problem. It should be noted that we currently
do not know whether or not RP D NP (only
RP � NP has been shown), but it is widely
believed that RP ¤ NP . On the other hand, it
easy to see that every concept describable by a k-
term DNFn is also describable by a k-CNFn (but
not conversely). Thus, we can finally conclude
that there is an algorithm that efficiently PAC
learns k-term DNFn with respect to k-CNFn.

For more results along this line of research, we
refer the reader to Pitt and Valiant (1988), Blum
and Singh (1990), and Jerrum (1994). As long
as we do not have more powerful lower bound
techniques allowing one to separate the relevant
complexity classes RP and NP or P and NP ,
no unconditional negative result concerning PAC
learning can be shown. Another approach to show
hardness results for PAC learning is based on
cryptographic assumptions (cf., e.g., Kearns and
Valiant 1989, 1994), and recently one has also
tried to base cryptographic assumptions on the
hardness of PAC learning (cf., e.g., Xiao (2009)
and the references therein).

Further positive results comprise the efficient
proper PAC learnability of rank k � decision trees
(cf. Ehrenfeucht and Haussler 1989) and of k-
� decision lists for any fixed k (cf. Rivest 1987).

Finally, it must be noted that the bounds on the
sample size obtained via Inequality (2) are not
the best possible. Sometimes, better bounds can
be obtained by using the �VC dimension (see
Inequality (4) below).

The Infinite Case

Let us start our exposition concerning infinite
concept classes with an example due to Blumer

et al. (1989). Consider the problem of learning
concepts such as “medium built” animals. For the
sake of presentation, we restrict ourselves to the
parameters “weight” and “length.” To describe
“medium built,” we use intervals “from-to.” For
example, a medium built cat might have a weight
ranging from 3 to 7 kg and a length ranging from
25 cm to 50 cm. By looking at a finite database
of randomly chosen animals giving their respec-
tive weight and length and their classification
(medium built or not), we want to form a rule that
approximates the true concept of “medium built”
for each animal under consideration.

This learning problem can be formalized as
follows. Let X D E

2 be the two-dimensional
Euclidean space, and let C � }.E2/ be the
set of all axis-parallel rectangles, i.e., products
of intervals on the x-axis with intervals on the
y-axis. Furthermore, let D be any probability
distribution over X . Next we show that C is
efficiently PAC learnable with respect to C by the
following Algorithm LR (cf. Blumer et al. 1989):

Algorithm LR: “On input any "; ı 2 .0; 1/,
call the oracle EX. / s times, where s D
4=" � ln.4=ı/. Let .r1; c.r1/; r2; c.r2/; : : : ;

rs; c.rs// be the s-sample returned by EX. /,
where ri D .xi ; yi /, i D 1; : : : s.

Compute xminDminfxi j1 � i � s; c.ri /D1g

xmaxDmaxfxi j1 � i � s; c.ri /D1g

yminDminfyi j1 � i � s; c.ri /D1g

ymaxDmaxfyi j1 � i � s; c.ri /D1g

Output h D Œxmin; xmax� � Œymin; ymax�. In case
there is no positive example, return h D ;.
end.”

It remains to show that Algorithm LR PAC learns
the concept class C with respect to C. Let c D
Œa; b� � Œc; d � be the target concept. Since LR
computes its hypothesis from positive examples,
only, we get h � c. That is, h is consistent. We
have to show that d.c; h/ � " with probability
at least 1 � ı. We distinguish the following
cases.

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

PAC Learning 955

P

Case 1. D.c/ � "
Then d.c; h/ D

P
r2c4h

D.r/ D
P

r2cnh

D.r/ �

D.c/ � ".
Hence, in this case we are done.

Case 2. D.c/ > "
We define four minimal side rectangles within
c that each cover an area of probability of at
least "=4. Let
Left = Œa; x� � Œc; d �, where x D inff Qx j
D.Œa; Qx� � Œc; d �/ � "=4g,
Right = Œ´; b� � Œc; d �, where ´ D inff Qx j
D.Œ Qx; b� � Œc; d �/ � "=4g,
Top = Œa; b� � Œy; d �, where y D inff Qx j
D.Œa; b� � Œ Qx; d �/ � "=4g, and
Bottom = Œa; b� � Œc; t �, where t D inff Qx j
D.Œa; b� � Œc; Qx�/ � "=4g.

All those rectangles are contained in c,
since D.c/ > ". If the sample size is s, the
probability that a particular rectangle from
fLeft; Right; Top; Bottomg contains no
positive example is at most .1 � "=4/s . Thus,
the probability that some of those rectangles
does not contain any positive example is at
most 4.1 � "=4/s . Hence, incorporating s D

4=" � ln.4=ı/ gives

4.1 � "=4/s < 4e�."=4/s D 4e� ln.4=ı/ D ı :

Therefore, with probability at least 1 � ı, each
of the four rectangles Left, Right, Top, and Bot-
tom contains a positive example. Consequently,
we get

d.c; h/ D
X

r2c4h

D.r/

D
X

r2cnh

D.r/ D D.c/ �D.h/ :

Furthermore, by construction

D.h/ � D.c/ �D.Left/ �D.Right/

�D.Top/ �D.Bottom/ � D.c/ � " ;

and hence d.c; h/ � ".
Having reached this point, it is only natural

to ask what makes infinite concept classes PAC
learnable. Interestingly, there is a single param-
eter telling us whether or not a concept class
is PAC learnable. This is the so-called Vapnik-
Chervonenkis dimension commonly abbreviated
as �VC dimension. In our example of axis-
parallel rectangles, the VC dimension of C is 4.

In order to state this result, we have to exclude
trivial concept classes. A concept class C is said to
be trivial if jCj D 1 or C D fc1; c2gwith c1\c2 D

; and X D c1 [c2. A concept class C is called
nontrivial if C is not trivial. Then Blumer et al.
(1989) showed the following:

A nontrivial well-behaved concept class is
PAC learnable if and only if its VC dimension is
finite.

Moreover, if the VC dimension is finite, es-
sentially the same strategy as in the finite case
applies, i.e., it suffices to construct a consistent
hypothesis from C (or from a suitably chosen
hypothesis space H which must be well behaved)
in random polynomial time.

So, it remains to estimate the sample complex-
ity. Let d be the VC dimension of H. Blumer
et al. (1989) showed that

s � max

�
4

"
log

2

ı
;

8d

"
log

13

"

�
(3)

examples do suffice. This upper bound has been
improved by Anthony et al. (1990) to

s �
1

".1 �
p
"/

�
log

�
d=.d � 1/

ı

�
C 2d log

�
6

"

��
: (4)

Based on the work of Blumer et al. (1989)
(and the lower bound they gave), Ehrenfeucht
et al. (1988) showed that if C is nontrivial,

then no learning function exists (for any H)
if s < 1�"

2"
log 2

ı
C d�1

64"
. These results give

a precise characterization of the number of

http://dx.doi.org/10.1007/978-1-4899-7687-1_881

956 PAC Learning

examples needed (apart from the gap of a factor
of O.log 1

"
/) in terms of the VC dimension.

Also note the sharp dichotomy here, either any
consistent learner (computable or not) will do or
no learner at all exists.

Two more remarks are in order here. First,
these bounds apply to uniform PAC learning,
i.e., the learner is taking " and ı as input, only.
As outlined in our discussion just before we
gave the formal definition of PAC learning, it is
meaningful to look at the asymptotic difficulty of
learning. In the infinite case, we can increment
the dimension n of the learning domain as we
did in the finite case. We may set Xn D E

n

and then consider similar concept classes Cn �

}.Xn/. For example, the concept classes similar
to axis-parallel rectangles are axis-parallel paral-
lelepipeds in E

n. Then the VC dimension of Cn

is 2n, and all that is left is to add n as input to
the learner and to express d as a function of n
in the bound (4). Clearly, the algorithm LR can
be straightforwardly generalized to a learner for
.Xn; Cn/n�1.

Alternatively, we use n to parameterize the
complexity of the concepts to be learned. As an
example consider X D E and let Cn be the set of
all unions of at most n (closed or open) intervals.
Then the �VC dimension of Cn is 2n, and one
can design an efficient learner for .X; Cn/n�1.
Another example is obtained for X D E

2 by
defining Cn to be the class of all convex poly-
gons having at most n edges (cf. Linial et al.
1991).

Second, all the results discussed so far are
dealing with static sampling, i.e., any sample
containing the necessary examples is drawn be-
fore any computation is performed. So, it is
only natural to ask what can be achieved when
dynamic sampling is allowed. In dynamic sam-
pling mode, a learner alternates between drawing
examples and performing computations. Under
this sampling mode, even concept classes having
an infinite VC dimension are learnable (cf. Linial
et al. 1991 and the references therein). The main
results in this regard are that enumerable concept
classes and decomposable concept classes are
PAC learnable when using dynamic sampling.

Let us finish the general exposition of PAC
learning by pointing to another interesting in-
sight, i.e., learning is in some sense data com-
pression. As we have seen, finding consistent
hypotheses is a problem of fundamental impor-
tance in the area of PAC learning. Clearly, the
more expressive the representation language for
the hypothesis space, the easier it may be to find
a consistent hypothesis, but it may be increas-
ingly difficult to say something concerning its
accuracy (in machine learning this phenomenon
is also known as the over-fitting problem). At
this point, �Occam’s razor comes into play. If
there is more than one explanation for a phe-
nomenon, then Occam’s razor requires to “prefer
simple explanations.” So, an Occam algorithm
is an algorithm which, given a sample of the
target concept, outputs a consistent and relatively
simple hypothesis. That is, it is capable of some
data compression. Let us first look at the Boolean
case, i.e., Xn D f0; 1gn. Then an Occam al-
gorithm is a randomized polynomial time algo-
rithm A such that there is a polynomial p and
a constant ˛ 2 Œ0; 1/ fulfilling the following
demands:

For every n � 1, every target concept c 2 Cn

of size at most m and every " 2 .0; 1/, on input
any s-sample for c, algorithm A outputs with
probability at least 1 � " the representation of a
consistent hypothesis from Cn having size at most
p.n;m; 1="/ � s˛ .

So, the parameter ˛ < 1 expresses the amount
of compression required. If we have such an
Occam algorithm, then .Xn; Cn/ is properly PAC
learnable (cf. Blumer et al. 1987). The proof is
based on the observations that a hypothesis with
large error is unlikely to be consistent with a
large sample and that there are only few short
hypotheses. If we replace in the definition of an
Occam algorithm the demand on the existence of
a short hypothesis by the existence of a hypoth-
esis space having a small VC dimension, then a
similar result can be obtained for the continuous
case (cf. Blumer et al. 1989). To a certain extent,
the converse is also true, that is, under quite
general conditions, PAC learnability implies the
existence of an Occam algorithm. We refer the

http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_614

PAC Learning 957

P

reader to Kearns and Vazirani (1994) for further
details.

Variations

Further variations of PAC learning are possible
and have been studied. So far, we have only
considered one sampling oracle. Hence, a natural
variation is to have two sampling oracles EXC. /
and EX�. / and two distributions DC and D�,
i.e., one for positive examples and one for nega-
tive examples. Clearly, further natural variations
are possible. A larger number of them has been
shown to be roughly equivalent and we refer the
reader to Haussler et al. (1991) for details.

We continue with another natural variation
that turned out to have a fundamental impact to
the whole area of machine learning, i.e., weak
learning.

Weak Learning

An interesting variation of PAC learning is ob-
tained if we weaken the requirements concerning
the confidence and the error. That is, instead of
requiring the PAC learner to succeed for every
" and ı, one may relax this demand as follows.
We only require the learner to succeed for " D
1=2�1=pol.n/ (n is as above) and ı D 1=poly.n/
(n is as above), where pol and poly are any two
fixed polynomials. The resulting model is called
weak PAC learning.

Quite surprisingly, Schapire (1990) could
prove that every weak learner can be efficiently
transformed into an ordinary PAC learner. While
it is not too difficult to boost the confidence,
boosting the error is much more complicated and
has subsequently attracted a lot of attention. We
refer the reader to Schapire (1990, 1999) as well
as Kearns and Vazirani (1994) and the references
therein for a detailed exposition. Interestingly
enough, the techniques developed to prove the
equivalence of weak PAC learnability and PAC
learnability have an enormous impact to machine
learning and may be subsumed under the title
� boosting.

Relations to Other Learning Models

Finally, we point out some relations of PAC
learning to other learning models. Let us start
with the mistake bound model also called online
prediction model. The mistake bound model has
its roots in � inductive inference and was intro-
duced by Littlestone (1988). It is conceptionally
much simpler than the PAC model, since it does
not involve probabilities. For the sake of presen-
tation, we assume a finite learning domainXn and
any Cn � }.Xn/ here.

In this model the following scenario is re-
peated indefinitely. The learner receives an in-
stance x and has to predict c.x/. Then it is given
the true label c.x/. If the learner’s prediction was
incorrect, then a mistake occurred. The learner
is successful, if the total number of mistakes is
finite. In order to make this learning problem
nontrivial, one additionally requires that there is
a polynomial pol such that for every c 2 Cn and
any ordering of the examples, the total number
of mistakes is bounded by pol.n; size.c//. In the
mistake bound model, a learner is said to be
efficient if its running time per stage is uniformly
polynomial in n and size.c/.

Then, the relation to PAC learning is as fol-
lows:

If algorithm A learns a concept class C in the
mistake bound model, then A also PAC learns C.
Moreover, if A makes at most M mistakes, then
the resulting PAC learner needs M

"
� ln M

ı
many

examples.
So, efficient mistake bound learning translates

into efficient PAC learning.

Another interesting relation is obtained when
looking at the � query-based learning model,
where the only queries allowed are equivalence
queries. As pointed out by Angluin (1988,
1992), any learning method that uses equivalence
queries only and achieves exact identification can
be transformed into a PAC learner. The number of
equivalence queries necessary to achieve success
in the query learning model is polynomially
related to the number of calls made to the sample
oracle.

http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_694

958 PAC Learning

However, the converse is not true. This
insight led to the definition of a minimally
adequate teacher (cf. Angluin (1988) and the
references therein). In this setting, the teacher
answers equivalence queries and membership
queries. Maas and Turán (1990) provide a
detailed discussion of the relationship between
the different models.

These results in turn led to another modifica-
tion of the PAC model, where the learner is, in
addition to the s-sample returned, also allowed
to ask membership queries, i.e., PAC learning
with membership queries. This and the original
PAC learning model may be further modified
by restricting the class of probability distribu-
tions, e.g., by considering PAC learning (with
or without membership queries) with respect to
the uniform distribution. Having the additional
power of membership queries allowed for a series
of positive polynomial time learnability results,
e.g., the class of deterministic finite automata
(cf. Angluin 1987), monotone DNF formulae (cf.
Angluin 1988), polynomial size decision trees
(cf. Bshouty 1993), and sparse multivariate poly-
nomials over a field (cf. Schapire and Sellie
1996). Furthermore, Jackson (1997) showed the
class of DNF formulae to be PAC learnable with
membership queries under the uniform distri-
bution, and Bshouty et al. (2004) presented a
modification of Jackson’s (1997) algorithm that
substantially improves its asymptotic efficiency.
Further variations of the PAC learning model are
presented in Bshouty et al. (2005).

Let us finish this entry by mentioning that the
PAC model has been criticized for two reasons.
The first one is the independence assumption,
that is, the requirement to learn with respect to
any distribution. This is, however, also a very
strong part of the theory, since it provides uni-
versal performance guarantees. Clearly, if one has
additional information concerning the underlying
distributions, one may be able to prove better
bounds. The second reason is the “noise-free” as-
sumption, i.e., the requirement to the sample or-
acle to return exclusively correct labels. Clearly,
in practice we never have noise-free data. So, one
has also studied learning in the presence of noise,
and we refer the reader to Kearns and Vazirani

(1994) as well as to conference series COLT and
ALT for results along this line.

Cross-References

� Statistical Machine Translation
� Stochastic Finite Learning
�VC Dimension

Recommended Reading

Angluin D (1987) Learning regular sets from queries
and counterexamples. Inf Comput 75(2):87–106

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

Angluin D (1992) Computational learning theory: sur-
vey and selected bibliography. In: Proceedings of
the 24th annual ACM symposium on theory of
computing. ACM Press, New York, pp 351–369

Anthony M, Biggs N (1992) Computational learning
theory. Cambridge tracts in theoretical computer
science, vol 30. Cambridge University Press, Cam-
bridge

Anthony M, Biggs N, Shawe-Taylor J (1990) The
learnability of formal concepts. In: Fulk MA, Case
J (eds) Proceedings of the third annual workshop on
computational learning theory. Morgan Kaufmann,
San Mateo, pp 246–257

Arora S, Barak B (2009) Computational complexity:
a modern approach. Cambridge University Press,
Cambridge

Blum A, Singh M (1990) Learning functions of k
terms. In: Proceedings of the third annual workshop
on computational learning theory. Morgan Kauf-
mann, San Mateo, pp 144–153

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1987) Occam’s razor. Inf Process Lett 24(6):377–
380

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Bshouty NH (1993) Exact learning via the monotone
theory. In: Proceedings of the 34rd annual sym-
posium on foundations of computer science. IEEE
Computer Society Press, Los Alamitos, pp 302–311

Bshouty NH, Jackson JC, Tamon C (2004) More
efficient PAC-learning of DNF with membership
queries under the uniform distribution. J Comput
Syst Sci 68(1):205–234

Bshouty NH, Jackson JC, Tamon C (2005) Exploring
learnability between exact and PAC. J Comput Syst
Sci 70(4):471–484

Ehrenfeucht A, Haussler D (1989) Learning deci-
sion trees from random examples. Inf Comput
82(3):231–246

Ehrenfeucht A, Haussler D, Kearns M, Valiant L
(1988) A general lower bound on the number of

http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_793
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

Partially Observable Markov Decision Processes 959

P

examples needed for learning. In: Haussler D, Pitt
L (eds) Proceedings of the 1988 workshop on com-
putational learning theory (COLT’88), 3–5 Aug.
MIT/Morgan Kaufmann, San Francisco, pp 139–
154

Haussler D (1987) Bias, version spaces and Valiant’s
learning framework. In: Langley P (ed) Proceedings
of the fourth international workshop on machine
learning. Morgan Kaufmann, San Mateo, pp 324–
336

Haussler D, Kearns M, Littlestone N, Warmuth MK
(1991) Equivalence of models for polynomial learn-
ability. Inf Comput 95(2):129–161

Jackson JC (1997) An efficient membership-query
algorithm for learning DNF with respect to the
uniform distribution. J Comput Syst Sci 55(3):414–
440

Jerrum M (1994) Simple translation-invariant concepts
are hard to learn. Inf Comput 113(2):300–311

Kearns M, Valiant L (1994) Cryptographic limitations
on learning Boolean formulae and finite automata. J
ACM 41(1):67–95

Kearns M, Valiant LG (1989) Cryptographic limi-
tations on learning Boolean formulae and finite
automata. In: Proceedings of the 21st symposium
on theory of computing. ACM Press, New York,
pp 433–444

Kearns MJ, Vazirani UV (1994) An introduction to
computational learning theory. MIT Press, Cam-
bridge

Linial N, Mansour Y, Rivest RL (1991) Results on
learnability and the Vapnik-Chervonenkis dimen-
sion. Inf Comput 90(1):33–49

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maas W, Turán G (1990) On the complexity of learn-
ing from counterexamples and membership queries.
In: Proceedings of the 31st annual symposium on
foundations of computer science (FOCS 1990), St.
Louis, 22–24 Oct 1990. IEEE Computer Society,
Los Alamitos, pp 203–210

Natarajan BK (1991) Machine learning: a theoretical
approach. Morgan Kaufmann, San Mateo

Pitt L, Valiant LG (1988) Computational limitations on
learning from examples. J ACM 35(4):965–984

Rivest RL (1987) Learning decision lists. Mach Learn
2(3):229–246

Schapire RE (1990) The strength of weak learnability.
Mach Learn 5(2):197–227

Schapire RE (1999) Theoretical views of boosting
and applications. In: Algorithmic learning theory,
10th international conference (ALT ’99), Tokyo,
Dec 1999, Proceedings. Lecture notes in artificial
intelligence, vol 1720. Springer, pp 13–25

Schapire RE, Sellie LM (1996) Learning sparse mul-
tivariate polynomials over a field with queries and
counterexamples. J Comput Syst Sci 52(2):201–213

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Xiao D (2009) On basingZK ¤ BPP on the hardness
of PAC learning. In: Proceedings of the 24th an-
nual IEEE conference on computational complexity
(CCC 2009), Paris, 15–18 July 2009. IEEE Com-
puter Society, Los Alamitos, pp 304–315

PAC-MDP Learning

�Efficient Exploration in Reinforcement Learn-
ing

Pairwise Classification

�Class Binarization

Parallel Corpus

A parallel corpus (pl. corpora) is a document
collection composed of two or more disjoint
subsets, each written in a different language, such
that documents in each subset are translations of
documents in each other subset. Moreover, it is
required that the translation relation is known,
i.e., that given a document in one of the subset
(i.e., languages), it is known what documents in
the other subset are its translations. The statistical
analysis of parallel corpora is at the heart of most
methods for � cross-language text mining.

Part of Speech Tagging

� POS Tagging

Partially Observable Markov
Decision Processes

Pascal Poupart
University of Waterloo, Waterloo, ON, Canada

Synonyms

Belief state Markov decision processes; Dual
control; Dynamic decision networks; POMDPs

http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_643
http://dx.doi.org/10.1007/978-1-4899-7687-1_100039
http://dx.doi.org/10.1007/978-1-4899-7687-1_100123
http://dx.doi.org/10.1007/978-1-4899-7687-1_100126
http://dx.doi.org/10.1007/978-1-4899-7687-1_100365

960 Partially Observable Markov Decision Processes

Definition

A partially observable Markov decision process
(POMDP) refers to a class of sequential
decision-making problems under uncertainty.
This class includes problems with partially
observable states and uncertain action effects.
A POMDP is formally defined by a tuple
hS;A;O; T;Z;R; b0; h; �i where S is the set
of states s;A is the set of actions a;O is the set
of observations o, T .s, a, s0/ = Pr(s0js, a/ is the
transition function indicating the probability of
reaching s0 when executing a in s, Z.a, s0; o0/ =
Pr(o0ja, s0/ is the observation function indicating
the probability of observing o0 in state s0 after
executing a, R.s, a/ 2 R is the reward function
indicating the (immediate) expected utility of
executing a in s, b0 = Pr(s0/ is the distribution
over the initial state (also known as initial belief),
h is the planning horizon (which may be finite
or infinite), and � 2 [0, 1] is a discount factor
indicating by how much rewards should be
discounted at each time step. Given a POMDP,
the goal is to find a policy to select actions that
maximize rewards over the planning horizon.

Motivation and Background

Partially observable Markov decision processes
(POMDPs) were first introduced in the Opera-
tions Research community (Drake 1962; Aström
1965) as a framework to model stochastic dynam-
ical systems and to make optimal decisions. This
framework was later considered by the artificial
intelligence community as a principled approach
to planning under uncertainty (Kaelbling et al.
1998). Compared to other methods, POMDPs
have the advantage of a well-founded theory.
They can be viewed as an extension of the well-
known, fully observable �Markov decision pro-
cess (MDP) model (Puterman 1994), which is
rooted in probability theory, utility theory, and
decision theory. POMDPs do not assume that
states are fully observable, but instead that only
part of the state features are observable, or more
generally, that the observable features are sim-
ply correlated with the underlying states. This

naturally captures the fact that in many real-
world problems, the information available to the
decision maker is often incomplete and typically
measured by noisy sensors. As a result, the deci-
sion process is much more difficult to optimize.
POMDP applications include robotics (Pineau
and Gordon 2005), assistive technologies (Hoey
et al. 2010), health informatics (Hauskrecht and
Fraser 2010), spoken dialogue systems (Thomson
and Young 2010), and fault recovery (Shani and
Meek 2009).

Structure of Model and Solution
Algorithms

We describe below the POMDP model, some
policy representations, the properties of optimal
value functions, and some solution algorithms.

POMDP Model
Figure 1 shows the graphical representation of
a POMDP, using the notation of influence di-
agrams: circles denote random variables (e.g.,
state variables St and observation variables Ot),
squares denote decision variables (e.g., action
variables At), and diamonds denote utility vari-
ables (e.g., Ut ’s). The variables are indexed by
time and grouped in time slices, reflecting the fact
that each variable may take a different value at
each time step. Arcs indicate how nodes influence
each other over time. There are two types of arcs:
probabilistic and informational arcs. Arcs point-
ing to a chance node or a utility node indicate

Z2

A1 A2 A3
Z1 Z3

U1 U2 U3

S1 S2 S3

Partially Observable Markov Decision Processes,
Fig. 1 POMDP represented as an influence diagram

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Partially Observable Markov Decision Processes 961

P

a probabilistic dependency between a child and
its parents, whereas arcs pointing to a decision
node indicate the information available to the
decision maker (i.e., which nodes are observable
at the time of each decision). Probabilistic de-
pendencies for the state and observation variables
are quantified by the conditional distributions
Pr(StC1jSt ; At / and Pr(OtC1jStC1; At /, which
correspond to the transition and observation func-
tions. Note that the initial state variable S0 does
not have any parent, hence its distribution Pr(S0/

is unconditioned and corresponds to the initial
belief b0 of the decision maker. Probabilistic de-
pendencies for the utility variables are also quan-
tified by a conditional distribution Pr(Ut jSt ; At /

such that its expectation
P

uPr(ujSt , At /u D
R.St , At / corresponds to the reward function.

Fully observable MDPs are a special case of
POMDPs since they arise when the observation
function deterministically maps each state to a
different unique observation. POMDPs can also
be viewed as � hidden Markov models (HMMs)
(Rabiner 1989) extended with decision and utility
nodes since the transition and observation dis-
tributions essentially define an HMM. POMDPs
also correspond to a special case of decision net-
works called dynamic decision networks (Buede
1999) where it is assumed that the transition,
observation, and reward functions are stationary
(i.e., they do not depend on time) and Markovian
(i.e., the parents of each variable are in the same
time slice or immediately preceding time slice).

Policies
Given a tuple hS;A;O; T;Z;R; b0; h; �i spec-
ifying a POMDP, the goal is to find a policy
� to select actions that maximize the rewards.
The informational arcs indicate that each ac-
tion at can be selected based on the history of
past actions and observations. Hence, in its most
general form, a policy � : hb0; ht i ! at is
a mapping from initial beliefs b0 and histories
ht D ho0; a0; o1; a1; : : : ; ot�1; at�1; ot r to actions
at . For a fixed initial belief, the mapping can be
represented by a tree such as the one in Fig. 2. We
will refer to such policy trees as conditional plans
since in general a policy may consist of several
conditional plans for different initial beliefs. The

a1

a3

a6a5a4 a7

a2

o1

o2

o2

o1 o2
o1

Conditional plan

2

1

3

Stages to go

Partially Observable Markov Decision Processes,
Fig. 2 Three representation of a three-step conditional
plan

a1

a2

o1
o2

o2

o2

o2

o1
o1

o1 a2a1

Partially Observable Markov Decision Processes,
Fig. 3 Finite state controller for a simple POMDP with
two actions and two observations

execution of a conditional plan follows a branch
from the root to some leaf by executing the
actions of the nodes traversed and following the
edges labeled by the observations received.

Unfortunately, as the number of steps
increases, the number of histories grows
exponentially and it is infeasible to represent
mappings over all such histories. Furthermore,
infinite-horizon problems require mappings over
arbitrarily long histories, which limit the use of
trees to problems with a short horizon. Note,
however, that it is possible to have mappings over
infinite cyclic histories. Such mappings can be
represented by a finite state controller (Hansen
1997), which is essentially a cyclic graph of
nodes labeled by actions and edges labeled by
observations (see Fig. 3 for an example). Similar
to conditional plans, finite state controllers are
executed by starting at an initial node, executing
the actions of the nodes traversed, and following
the edges of the observations received.

Alternatively, it is possible to summarize his-
tories by a sufficient statistic that encodes all

http://dx.doi.org/10.1007/978-1-4899-7687-1_124

962 Partially Observable Markov Decision Processes

the relevant information from previous actions
and observations for planning purposes. Recall
that the transition, reward, and observation func-
tions exhibit the Markov property, which means
that the outcome of future states, rewards, and
observations depend only on the current state and
action. If the decision maker knew the current
state of the world, then she would have all the
desired information to make an optimal action
choice. Thus, histories of past actions and obser-
vations are only relevant to the extent that they
provide information about the current state of
the world. Let bt be the belief of the decision
maker about the state of the world at time step t ,
which we represent by a probability distribution
over the state space S . Using Bayes theorem (see
Bayes Rules), one can compute the current belief
bt from the previous belief bt�1, previous action
at�1, and current observation ot :

bt .s
0/Dk

X

s2S
bt�1.s/Pr.s0js; at�1/Pr.ot jat�1; s

0/

(1)

where k denotes a normalizing constant. Hence,
a policy � can also be represented as a mapping
from beliefs bt to actions at . While this gets
around the exponentially large number of
histories, the space of beliefs is an jSj � 1-
dimensional continuous space, which is also
problematic. However, a key result by Smallwood
and Sondik (1973) allows us to circumvent the
continuous nature of the belief space. But first,
let us introduce value functions and then discuss
Smallwood and Sondik’s solution.

Value Functions
Given a set of policies, we need a mechanism to
evaluate and compare them. Roughly speaking,
the goal is to maximize the amount of reward
earned over time. This loosely defined criterion
can be formalized in several ways: one may wish
to maximize total (accumulated) or average re-
ward, expected or worst-case reward, discounted
or undiscounted reward. The rest of this arti-
cle assumes an expected total discounted reward
criterion, since it is by far the most popular in
the literature. We define the value V �.b0/ of
executing some policy � starting at belief b0 to

be the expected sum of the discounted rewards
earned at each time step:

V �.b0/ D

hX

tD0

� t
X

s2S
bt .s/R.s; �; .bt // (2)

where �.bt / denotes the action prescribed by
policy � at belief bt . A policy �� is optimal
when its value function V � is at least as high
as any other policy for all beliefs (i.e., V �.b/ �
V �.b/8b/.

As with policies, representing a value function
can be problematic because its domain is an
.jSj � 1/-dimensional continuous space corre-
sponding to the belief space. However, Small-
wood and Sondik (1973) showed that optimal
value functions for finite-horizon POMDPs are
piecewise-linear and convex. The value of execut-
ing a conditional plan from any state is constant.
If we do not know the precise underlying state,
but instead we have a belief corresponding to
a distribution over states, then the value of the
belief is simply a weighted average (according
to b/ of the values of the possible states. Thus,
the value function V ˇ .b/ of a conditional plan ˇ
is linear with respect to b. This means that V ˇ .b/

can be represented by a vector ˛ˇ of size jSj such
that V ˇ .b/ D †sb.s/˛ˇ .s/.

For a finite horizon h, an optimal policy �h

consists of the best conditional plans for each
initial belief. More precisely, the best conditional
plan ˇ� for some belief b is the one that yields
the highest value: ˇ� = argmaxˇV

ˇ .b/. Although
there are uncountably many beliefs, the set of h-
step conditional plans is finite and therefore an
h-step optimal value function can be represented
by a finite collection �h of ˛-vectors. For infinite
horizon problems, the optimal value function
may require an infinite number of ˛-vectors.

Figure 4 shows an optimal value function for
a simple two-state POMDP. The horizontal axis
represents the belief space and the vertical axis
indicates the expected total reward. Assuming the
two world states are s and Ns, then a belief is
completely determined by the probability of s.
Therefore, the horizontal axis represents a con-
tinuum of beliefs determined by the probability

Partially Observable Markov Decision Processes 963

P

Optimal value function

a3

a4

a5

a2

a1

E
xp

ec
te

d
to

ta
l r

ew
ar

d

10 b(s)

Belief space

Partially Observable Markov Decision Processes,
Fig. 4 Geometric view of value function

b.s/. Each line in the graph is an ˛-vector, which
corresponds to the value function of a conditional
plan. The upper surface of those ˛-vectors is
a piecewise-linear and convex function corre-
sponding to the optimal value function V � D

max˛2�h ˛.b/.
Note that an optimal policy can be recovered

from the optimal value function represented by
a set � of ˛-vector. Assuming that an action is
stored with each ˛-vector (this would typically be
the root action of the conditional plan associated
with each ˛-vector), then the decision maker
simply needs to look up the maximal ˛-vector for
the current belief to retrieve the action. Hence,
value functions represented by a set of ˛-vectors,
each associated with an action, implicitly define
a mapping from beliefs to actions.

Optimal value functions also satisfy Bellman’s
equation

V hC1.b/ D maxaR.b; a/

C �
X

o0

Pr.o0jb; a/V h.bao0

/ (3)

where R.b; a/ D
P

s b.s/R.s; a/, Pr(s0js; a/
Pr(o0js0; a/, and bao0

is the updated belief after
executing a and observing b according to Bayes
theorem (Eq. 1). Intuitively, this equation says
that the optimal value for h C 1 steps to go
consists of the highest sum of the current reward
with the future rewards for the remaining h steps.
Since we do not know exactly what rewards will
be earned in the future, an expectation (with
respect to the observations) is used to estimate

future rewards. For discounted infinite horizon
problems, the optimal value function V � is a
fixed point of Bellman’s equation:

V �.b/DmaxaR.b; a/C�
X

o0

Pr.o0jb; a/V �.bao0

/

Solution Algorithms
There are two general classes of solution al-
gorithms to optimize a policy. The first class
consists of online algorithms that plan while exe-
cuting the policy by growing a search tree. The
second class consists of offline algorithms that
precompute a policy which can be executed with
minimal online computation. In practice, it is best
to combine online and offline techniques since
we may as well obtain the best policy possible in
an offline phase and then refine it with an online
search at execution time.

Forward Search
Online search techniques generally optimize a
conditional plan for the current belief by per-
forming a forward search from that belief. They
essentially build an expecti-max search tree such
that expectations over observations and maxi-
mizations over actions are performed in alterna-
tion. Figure 5 illustrates such a tree for a two-
step horizon (i.e., two alternations of actions and
observations). An optimal policy is obtained by
computing the beliefs associated with each node
in a forward pass, followed by a backward pass
that computes the optimal value at each node.
A recursive form of this approach is described
in Algorithm 1. Beliefs are propagated forward
according to Bayes theorem, while rewards are
accumulated backward according to Bellman’s
equation.

Since the expecti-max search tree grows ex-
ponentially with the planning horizon h, in prac-
tice, the computation can often be simplified by
pruning suboptimal actions by branch and bound
and sampling a small set of observations instead
of doing an exact expectation (Ross et al. 2008).
Also, the depth of the search can be reduced by
using an approximate value function at the leaves
instead of 0.

964 Partially Observable Markov Decision Processes

1

Stages to go

2

Expecti-max search tree

o1 o2o2o1

a2a1

a1 a2 a1 a2a1 a2 a1 a2

o1 o2o1 o2o1 o2o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

max

expexp

maxmax max max

expexpexp pxepxepxepxepxe

Partially Observable Markov Decision Processes,
Fig. 5 Two-step expecti-max search tree

Algorithm 1 Forward search
Inputs: Belief b and horizon h
Outputs: Optimal value V �.
if h D 0 then

V � 0
else

for all a; o do
bao0

.s0/ k
P

s b.s/Pr.s0js; a/Pr.o0js0; a0/8s0

V ao0

 forward Search.bao0

; h� 1/
end for
V � maxa R.b; a/C �

P
o0 Pr.o0jb; a/V ao0

end if

The value functions computed by of-
fline techniques can often be used for this
purpose.

Value Iteration
Value iteration algorithms form an important
class of offline algorithms that iteratively
estimate the optimal value function according to
Bellman’s equation (3). Most algorithms exploit
the piecewise-linear and convex properties
of optimal value functions to obtain a finite
representation. In other words, optimal value
functions V h are represented by a set �h of
˛-vectors that correspond to conditional plans.
Algorithm 2 shows how to iteratively compute
� t by dynamic programming for an increasing
number of time steps t .

Algorithm 2 Value iteration
Inputs: horizon h
Outputs: Optimal value function �h.
�0 f0g
for t D 1 to h do

for all a 2 A; < ˛1; : : : ; ˛jOj >2 .�t�1/jOj do
˛0.s/ R.s; a/C
�

P
o0;s0 Pr.s0js; a/Pr.o0js0; a/˛o0 .s0/8s

�t �t [f˛0g
end for

end for

Algorithm 3 Point based value iteration
Inputs: Horizon h and set of beliefs B
Outputs: Value function �h.
�0 f0g
for t D 1 to h do

for all b 2 B do
for all a 2 A; o0 2 O do

bao0

.s0/ k
P

s b.s/Pr.s0js; a/Pr.o0js0; a/8s0

˛ao0

 argmaxalpha2�t�1 ˛.bao0

/
end for
a� argmaxaR.b; a/C �

P
o0 Pr.s0js; a/Pr˛ao0

˛0.s/R.s; a/C �
P

o0;s0 Pr.s0js; a/Pr.o0js0; a/
˛o0 .s0/8s
�t �t [f˛0g

end for
end for

Unfortunately, the number of ˛-vectors in
each � t increases exponentially with O and
doubly exponentially with t . While several
approaches can be used to prune ˛-vectors that
are not maximal for any belief, the number of
˛-vectors still grows exponentially for most
problems. Instead, many approaches compute
a parsimonious set of ˛-vectors, which defines
a lower bound on the optimal value function.
The class of point-based value iteration (Pineau
et al. 2006) algorithms computes the maximal
˛-vectors only for a set B of beliefs. Algorithm 3
describes how the parsimonious set �h of
˛-vectors associated with a given set B of beliefs
can be computed in time linear with h and jOj
by dynamic programming. Most point-based
techniques differ in how they choose B (which
may vary at each iteration), but the general rule
of thumb is to include beliefs reachable from the
initial belief b0 since these are the beliefs that are
likely to be encountered at execution time.

Partially Observable Markov Decision Processes 965

P

Policy Search
Another important class of offline algo-
rithms consists of policy search techniques.
These techniques search for the best pol-
icy in a predefined space of policies. For
instance, finite state controllers are a pop-
ular policy space due to their generality
and simplicity. The search for the best
(stochastic) controller of N nodes can be
formulated as a non-convex quadratically
constrained optimization problem (Amato et al.
2007):

max
x;y;´

X

s

b0.s/ ˛0.s/„ƒ‚…
x

s.t. ˛n.s/„ƒ‚…
x

D
X

a

ŒPr.ajn/„ ƒ‚ …
y

R.S; a/

C �
X

s0;00;n0

Pr.s0js; a/

Pr.00js0; a/Pr.a; n0jn; 00/„ ƒ‚ …
´

˛n0.s0/�„ ƒ‚ …
x

8s; n

Pr.a; n0jn; 00/„ ƒ‚ …
x

� 08a; n0; n; 00

X

n0a

Pr.a; n0jn; 0/„ ƒ‚ …
´

D 18n; 0

X

n0

Pr.a; n0jn; 00/„ ƒ‚ …
´

D Pr.ajn/„ ƒ‚ …
y

8a; n; 00

The variables of the optimization problem
are the ˛-vectors and the parameters of the
controller (Pr(ajn/ and Pr(a, n0jn; o0//. Here,
Pr(ajn/ is the action distribution for each node
n and Pr(a, n0jn; o0/ D Pr(ajn/Pr(n0ja; n; o0/
is the product of the action distribution and
successor node distribution for each n; o0-pair.
While there does not exist any algorithm that
reliably finds the global optimum due to the non-
convex nature of the problem, several techniques
can be used to find locally optimal policies,
including sequential quadratic programming,
bounded policy iteration, expectation maxi-
mization, stochastic local search, and gradient
descent.

Related Work
Although this entry assumes that states, actions,
and observations are defined by a single variable,
multiple variables can be used to obtain a fac-
tored POMDP (Boutilier and Poole 1996). As a
result, the state, observation, and action spaces
often become exponentially large. Aggregation
(Shani et al. 2008; Sim et al. 2008) and compres-
sion techniques (Poupart and Boutilier 2004; Roy
et al. 2005) are then used to speed up computa-
tion. POMDPs can also be defined for problems
with continuous variables. The piecewise-linear
and convex properties of optimal value functions
still hold in continuous spaces, which allows
value iteration algorithms to be easily extended
to continuous POMDPs (Porta et al. 2006). When
a planning problem can naturally be thought as
a hierarchy of subtasks, hierarchical POMDPs
(Theocharous and Mahadevan 2002; Pineau et al.
2003; Toussaint et al. 2008) can be used to exploit
this structure.

In this article, we also assumed that the
transition, observation, and reward functions
are known, but in many domains they may be
(partially) unknown and therefore the decision
maker needs to learn about them while acting.
This is a problem of reinforcement learning.
While several policy search techniques have been
adapted to simultaneously learn and act (Meuleau
et al. 1999; Aberdeen and Baxter 2002), it turns
out that one can treat the unknown parameters of
the transition, observation, and reward functions
as hidden state variables, which lead to a Bayes-
adaptive POMDP (Ross et al. 2007; Poupart and
Vlassis 2008). We also assumed a single decision
maker, however POMDPs have been extended for
multiagent systems. In particular, decentralized
POMDPs (Amato et al. 2009) can model multiple
cooperative agents that share a common goal
and interactive POMDPs (Gmytrasiewicz and
Doshi 2005) can model multiple competing
agents.

Cross-References

�Markov Decision Processes

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

966 Partially Observable Markov Decision Processes

Recommended Reading

Aberdeen D, Baxter J (2002) Scalable internal-state
policygradient methods for POMDPs. In: Interna-
tional conference on machine learning, Sydney,
pp 3–10

Amato C, Bernstein DS, Zilberstein S (2009) Optimiz-
ing fixed-size stochastic controllers for POMDPs
and decentralized POMDPs. J Auton Agents Multi-
agent Syst 21:293–320

Amato C, Bernstein DS, Zilberstein S (2007) Solv-
ing POMDPs using quadratically constrained lin-
ear programs. In: International joint conferences
on artificial intelligence, Hyderabad, pp 2418–
2424

Aström KJ (1965) Optimal control of Markov decision
processes with incomplete state estimation. J Math
Anal Appl 10:174–2005

Boutilier C, Poole D (1996) Computing optimal poli-
cies for partially observable decision processes us-
ing compact representations. In: Proceedings of the
thirteenth national conference on artificial intelli-
gence, Portland, pp 1168–1175

Buede DM (1999) Dynamic decision networks: an ap-
proach for solving the dual control problem. Spring
INFORMS, Cincinnati

Drake A (1962) Observation of a Markov Process
through a noisy channel. PhD thesis, Massachusetts
Institute of Technology

Hansen E (1997) An improved policy iteration algo-
rithm for partially observable MDPs. In: Neural
information processing systems, Denver, pp 1015–
1021

Hauskrecht M, Fraser HSF (2010) Planning treatment
of ischemic heart disease with partially observ-
able Markov decision processes. Artif Intell Med
18:221–244

Hoey J, Poupart P, von Bertoldi A, Craig T, Boutilier
C, Mihailidis A (2010) Automated handwashing
assistance for persons with dementia using video
and a partially observable Markov decision process.
Comput Vis Image Underst 114:503–519

Kaelbling LP, Littman M, Cassandra A (1998) Plan-
ning and acting in partially observable stochastic
domains. Artif Intell 101:99–134

Meuleau N, Peshkin L, Kim K-E, Kaelbling LP
(1999) Learning finite-state controllers for partially
observable environments. In: Uncertainty in artifi-
cial intelligence, Stockholm, pp 427–436

Pineau J, Gordon G (2005) POMDP planning for
robust robot control. In: International symposium on
robotics research, San Francisco, pp 69–82

Pineau J, Gordon GJ, Thrun S (2003) Policy-
contingent abstraction for robust robot control.
In: Uncertainty in artificial intelligence, Acapulco,
pp 477–484

Pineau J, Gordon G, Thrun S (2006) Anytime point-
based approximations for large POMDPs. J Artif
Intell Res 27:335–380

Gmytrasiewicz PJ, Doshi P (2005) A framework for
sequential planning in multi-agent settings. J Artif
Intell Res 24:49–79

Porta JM, Vlassis NA, Spaan MTJ, Poupart P
(2006) Point-based value iteration for continuous
POMDPs. J Mach Learn Res 7:2329–2367

Poupart P, Boutilier C (2004) VDCBPI: an approx-
imate scalable algorithm for large POMDPs. In:
Neural information processing systems, Vancouver,
pp 1081–1088

Poupart P, Vlassis N (2008) Model-based Bayesian
reinforcement learning in partially observable do-
mains. In: International symposium on artificial
intelligence and mathematics (ISAIM), Fort Laud-
erdale

Puterman ML (1994) Markov decision processes. Wi-
ley, New York

Rabiner LR (1989) A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proc IEEE 77:257–286

Ross S, Chaib-Draa B, Pineau J (2007) Bayes-adaptive
POMDPs. In: Advances in neural information pro-
cessing systems (NIPS), Vancouver

Ross S, Pineau J, Paquet S, Chaib-draa B (2008)
Online planning algorithms for POMDPs. J Artif
Intell Res 32:663–704

Roy N, Gordon GJ, Thrun S (2005) Finding approxi-
mate POMDP solutions through belief compression.
J Artif Intell Res 23:1–40

Shani G, Meek C (2009) Improving existing fault
recovery policies. In: Neural information processing
systems, Vancouver

Shani G, Brafman RI, Shimony SE, Poupart P (2008)
Efficient ADD operations for point-based algo-
rithms. In: International conference on automated
planning and scheduling, Sydney, pp 330–337

Sim HS, Kim K-E, Kim JH, Chang D-S, Koo M-W
(2008) Symbolic heuristic search value iteration for
factored POMDPs. In: Twenty-third national con-
ference on artificial intelligence (AAAI), Chicago,
pp 1088–1093

Smallwood RD, Sondik EJ (1973) The optimal
control of partially observable Markov decision
processes over a finite horizon. Oper Res 21:1071–
1088

Theocharous G, Mahadevan S (2002) Approxi-
mate planning with hierarchical partially observ-
able Markov decision process models for robot
navigation. In: IEEE international conference on
robotics and automation, Washington, DC, pp 1347–
1352

Thomson B, Young S (2010) Bayesian update of
dialogue state: a POMDP framework for spoken
dialogue systems. Comput Speech Lang 24:562–
588

Toussaint M, Charlin L, Poupart P (2008) Hierarchical
POMDP controller optimization by likelihood max-
imization. In: Uncertainty in artificial intelligence,
Helsinki, pp 562–570

Particle Swarm Optimization 967

P

Particle Swarm Optimization

James Kennedy
U.S. Bureau of Labor Statistics, Washington,
DC, USA

The Canonical Particle Swarm

The particle swarm is a population-based
stochastic algorithm for optimization which is
based on social–psychological principles. Unlike
� evolutionary algorithms, the particle swarm
does not use selection; typically, all population
members survive from the beginning of a trial
until the end. Their interactions result in iterative
improvement of the quality of problem solutions
over time.

A numerical vector of D dimensions, usually
randomly initialized in a search space, is concep-
tualized as a point in a high-dimensional Carte-
sian coordinate system. Because it moves around
the space testing new parameter values, the point
is well described as a particle. Because a number
of them (usually 10 < N < 100) perform this
behavior simultaneously, and because they tend
to cluster together in optimal regions of the search
space, they are referred to as a particle swarm.

Besides moving in a (usually) Euclidean prob-
lem space, particles are typically enmeshed in a
topological network that defines their communi-
cation pattern. Each particle is assigned a number
of neighbors to which it is linked bidirectionally.

The most common type of implementation
defines the particles’ behaviors in two formulas.
The first adjusts the velocity or step size of the
particle, and the second moves the particle by
adding the velocity to its previous position.

On each dimension d :

v
.tC1/

id
 ˛v

.t/

id
C U.0; ˇ/

�
pid � x

.t/

id

	

C U.0; ˇ/
�
pgd � x

.t/

id

	
(1)

x
.tC1/

id
 x

.t/

id
C v

.tC1/

id
(2)

where i is the target particle’s index, d is the
dimension, Exi is the particle’s position, Evi is the
velocity, Epi is the best position found so far by
i; g is the index of i ’s best neighbor, ˛ and ˇ
are constants, and U (0, ˇ) is a uniform random
number generator.

Though there is variety in the implementations
of the particle swarm, the most standard version
uses ˛ D 0:7298 and ˇ D = 2, where D
2:9922, following an analysis published in Clerc
and Kennedy (2002). The constant ˛ is called an
inertia weight or constriction coefficient, and ˇ is
known as the acceleration constant.

The program evaluates the parameter vector of
particle i in a function f .Ex/ and compares the
result to the best result attained by i thus far,
called pbesti . If the current result is i ’s best so far,
the vector Epi is updated with the current position
Exi , and the previous best function result pbesti is
updated with the current result.

When the system is run, each particle cycles
around a region centered on the centroid of the
previous bests Epi and Epg ; as these variables are
updated, the particle’s trajectory shifts to new
regions of the search space, the particles begin
to cluster around optima, and improved function
results are obtained.

The Social–Psychological Metaphor
Classical social psychology theorists considered
the pursuit of cognitive consistency to be an
important motivation for human behavior (Heider
1958; Festinger 1957; Abelson et al. 1968). Cog-
nitive elements might have emotional or logical
aspects to them which could be consistent or
inconsistent with one another; several theorists
identified frameworks for describing the degree
of consistency and described the kinds of pro-
cesses that an individual might use to increase
consistency or balance, or decrease inconsistency
or cognitive dissonance.

Contemporary social and cognitive psycholo-
gists frequently cast these same concepts in terms
of connectionist principles. Cognitive elements
are conceptualized as a network with positive
and negative vertices among a set of nodes. In
some models, the elements are given and the
task is to reduce error by adjusting the signs

http://dx.doi.org/10.1007/978-1-4899-7687-1_270

968 Particle Swarm Optimization

and values of the connections between them,
and in other models the connections are given
and the goal of optimization is to find activation
values that maximize coherence (Thagard 2000),
harmony (Smolensky 1986), or some other mea-
sure of consistency. Typically, this optimization
is performed by gradient-descent programs which
psychologically model processes that are private
to the individual and are perfectly rational, that is,
the individual always decreases error or increases
consistency among elements. The particle swarm
simulates the optimization of these kinds of struc-
tures through social interaction; it is commonly
observed, not only in the laboratory but in ev-
eryday life, that a person faced with a problem
typically solves it by talking with other people.

A direct precursor of the particle swarm is
seen in Nowak et al. (1990) cellular automaton
simulation of social impact theory’s predictions
about interaction in human social populations.
Social impact theory predicted that an individual
was influenced to hold an attitude or belief in
proportion to the Strength, Immediacy, and Num-
ber of sources of influence holding that position,
where Strength was a measure of the persua-
siveness or prestige of an individual, Immediacy
was their proximity, and Number was literally
the number of sources of influence holding a
particular attitude or belief. In the simulation,
individuals iteratively interacted, taking on the
prevalent state of a binary attitude in their neigh-
borhood, until the system reached equilibrium.

The particle swarm extends this model by
supposing that various states can be evaluated,
for instance, that different patterns of cognitive
elements may be more or less dissonant; it as-
sumes that individuals hold more than one atti-
tude or belief, and that they are not necessarily
binary; and Strength is replaced with a measure
of self-presented success. One feature usually
found in particle swarms and not in the paper by
Nowak et al. is the phenomenon of persistence or
momentum, the tendency of an individual to keep
changing or moving in the same direction from
one time-step to the next.

Thus, the particle swarm metaphorically rep-
resents the interactions of a number of individu-
als, none knowing what the goal is, each knowing

its immediate state and its best performance in
the past, each presenting its neighbors with its
best success-so-far at solving a problem, each
functioning as both source and target of influ-
ence in the dynamically evolving system. As
individuals emulate the successes of their neigh-
bors, the population begins to cluster in optimal
regions of a search space, reliably discovering
good solutions to difficult problems featuring, for
instance, nonlinearity, high dimension, deceptive
gradients, local optima, etc.

The Population Topology
Several kinds of topologies have been most
widely used in particle swarm research; the topic
is a current focus of much research. In the gbest
topology, the population is conceptually fully
connected; every particle is linked to every other.
In practice, with the best neighbor canonical
version, this is simpler to implement than it
sounds, as it only means that every particle
receives influence from the best performing
member of the population.

The lbest topology of degree Ki comprises
a ring lattice, with the particle linked to its Ki

nearest neighbors on both sides in the wrapped
population array.

Another structure commonly used in particle
swarm research is the von Neumann or “square”
topology. In this arrangement, the population is
laid out in rows and columns, and each individual
is connected to the neighbors above, below, and
on each side of it in the toroidally wrapped
population. Numerous other topologies have been
used, including random (Suganthan 1999), hi-
erarchical (Janson and Middendorf 2005), and
adaptive ones (Clerc 2006).

The most important effect of the population
topology is to control the spread of proposed
problem solutions through the population. As
a particle finds a good region of the search
space, it may become the best neighbor to one of
the particles it is connected to. That particle
then will tend to explore in the vicinity of
the first particle’s success, and may eventually
find a good solution there, too; it could then
become the best neighbor to one of its other
neighbors. In this way, information about good

Particle Swarm Optimization 969

P

regions of the search space migrates through the
population.

When connections are parallel, e.g., when the
mean degree of particles is relatively high, then
information can spread quickly through the popu-
lation. On unimodal problems this may be accept-
able, but where there are local optima there may
be a tendency for the population to converge too
soon on a suboptimal solution. The gbest topol-
ogy has repeatedly been shown to be vulnerable
to the lure of locally optimal attractors.

On the other hand, where the topology is
sparse, as in the lbest model, problem solutions
spread slowly, and subpopulations may search
diverse regions of the search space in parallel.
This increases the probability that the population
will end up near the global optimum. It also
means that convergence will be slower.

Vmax and Convergence
The particle swarm has evolved very much since
it was first reported by Kennedy and Eberhart
(1995) and Eberhart and Kennedy (1995). Early
versions required a system constant Vmax to limit
the velocity. Without this limit, the particles’
trajectories would swing wildly out of control.

Following presentation of graphical represen-
tations of a deterministic form of the particle
swarm by Kennedy (1998), early analyses by
Ozcan and Mohan (1999) led to some under-
standing of the nature of the particle’s trajectory.
Analytical breakthroughs by Clerc (reported in
Clerc and Kennedy (2002)), and empirical dis-
coveries by Shi and Eberhart (1998), resulted in
the application of the ˛ constant in concert with
appropriate values of the acceleration constant
ˇ. These parameters brought the particle under
control, allowed convergence under appropriate
conditions, and made Vmax unnecessary. It is still
used sometimes, set to very liberal values such
as a half or third of the initialization range of a
variable for more efficient swarm behavior, but it
is not necessary.

Step Size and Consensus
Step size in the particle swarm is inherently
scaled to consensus among the particles. A par-
ticle goes in one direction on each dimension

until the sign of its velocity is reversed by the
accumulation of (p � x) differences; then it turns
around and goes the other way. As it searches
back and forth, its oscillation on each dimension
is centered on the mean of the previous bests
(pid C pgd /=2, and the standard deviation of the
distribution of points that are tested is scaled to
the difference between them. In fact this func-
tion is a very simple one: the standard deviation
of a particle’s search, when pid and pgd are
constants, is approximately j.pid � pgd /j. This
means that when the particles’ previous best
points are far from one another in the search
space, the particles will take big steps, and when
they are nearer the particles will take little steps.

Over time, this usually means that exploring
behavior is seen in early iterations and exploiting
behavior later on as particles come to a state of
consensus. If it happens, however, that a particle
that has begun to converge in one part of the
search space receives information about a good
region somewhere else, it can return to the ex-
ploratory mode of behaving.

The Fully Informed Particle Swarm (FIPS)
Mendes (2004) reported a version of swarm that
featured an alternative to the best neighbor strat-
egy. While the canonical particle is influenced
by its own previous success and the previous
success of its best neighbor, the fully informed
particle swarm (FIPS) allowed influence by all of
a particle’s neighbors. The acceleration constants
were set to ˇ D = 2 in the traditional version;
it was defined in this way because what mattered
was their sum, which could be distributed among
any number of difference terms. In the standard
algorithm there were two of them, and thus the
sum was divided by 2. In FIPS a particle of Ki

degree has coefficients ˇ D =Ki .
The FIPS particle swarm removed two aspects

that were considered standard features of the
algorithm. First of all, the particle i no longer
influenced itself directly, e.g., there is no Epi in
the formula. Second, the best neighbor is now
averaged in with the others; it was not necessary
to compare the successes of all neighbors to find
the best one.

970 Particle Swarm Optimization

Mendes found that the FIPS swarm was more
sensitive than the canonical versions to the differ-
ences in topology. For instance, while in the stan-
dard versions the fully connected gbest topology
meant influence by the best solution known to the
entire population, in FIPS gbest meant that the
particle was influenced by a stochastic average of
the best solutions found by all members of the
population; the result tended to be near-random
search.

The lesson to be learned is that the meaning of
a topology depends on the mode of interaction.
Topological structure (and Mendes tested more
than 1,340 of them) affects performance, but the
way it affects the swarm’s performance depends
on how information is propagated from one par-
ticle to another.

Generalizing the Notation

Equation 2 above shows that the position is de-
rived from the previous iteration’s position plus
the current iteration’s velocity. By rearranging the
terms, it can be shown that the current iteration’s
velocity Ev.tC1/

i is the difference between the new

position and the previous one: Ev.tC1/
i D Ex

.tC1/
i �

Ex
.t/
i . Since this happened on the previous time-

step as well, it can be shown that Ev.t/
i D Ex

.t/
i �

Ex
.t�1/
i ; this fact makes it possible to combine the

two formulas into one:

x
.tC1/

id
 x

.t/

id
C ˛

�
x

.t/

id
� x

.t�1/

id

	

C
X

U

�
0;

Ψ

Ki

� �
pkd � x

.t/

id

	
(3)

whereKi is the degree of node i; k is the index of
i ’s kth neighbor, and adapting Clerc’s (Clerc and
Kennedy 2002) scheme ˛ D 0:7298 and D
2:9922.

In the canonical best neighbor particle swarm,
Ki D 2;8i W i D 1; 2; : : : ; N and k 2 .i; g/, that
is, k takes the values of the particle’s own index
and its best neighbor’s index. In FIPS, Ki may
vary, depending on the topology, and k takes on
the indexes of each of i ’s neighbors. Thus, Eq.3

is a generalized formula for the trajectories of the
particles in the particle swarm.

This notation can be interpreted verbally as:

NEW POSITION

D CURRENT POSITION

C PERSISTENCE

C SOCIALINFLUENCE (4)

That is, on every iteration, every particle on every
dimension starts at the point it last arrived at,
persists some weighted amount in the direction
it was previously going, then makes some ad-
justments based on the differences between the
best previous positions of its sources of influ-
ence and its own current position in the search
space.

The Evolving Paradigm

The particle swarm paradigm is young, and inves-
tigators are still devising new ways to understand,
explain, and improve the method. A divergence
or bifurcation of approaches is observed: some
researchers seek ways to simplify the algorithm
(Peña et al. 2006; Owen and Harvey 2007), to find
its essence, while others improve performance
by adding features to it, e.g., Clerc (2006). The
result is a rich unfolding research tradition with
innovations appearing on many fronts.

Although the entire algorithm is summarized
in one simple formula, it is difficult to understand
how it operates or why it works. For instance,
while the Social Influence terms point the particle
in the direction of the mean of the influencers’
successes, the Persistence term offsets that move-
ment, causing the particle to bypass what seems
to be a reasonable target. The result is a spiral-like
trajectory that goes past the target and returns to
pass it again, with the spiral tightening as the
neighbors come to consensus on the location of
the optimum.

Further, while authors often talk about the
particle’s velocity carrying it “toward the previ-
ous bests,” in fact the velocity counterintuitively

Particle Swarm Optimization 971

P

carries it away from the previous bests as often
as toward them. It is more accurate to say the
particle “explores around” the previous bests,
and it is hard to describe this against-the-grain
movement as “gradient descent,” as some writers
would like.

It is very difficult to visualize the effect of
ever-changing sources of influence on a parti-
cle. A different neighbor may be best from one
iteration to the next; the balance of the ran-
dom numbers may favor one or another or some
compromise of sources; the best neighbor could
remain the same one, but may have found a better
Epi since the last turn; and so on. The result is
that the particle is pulled and pushed around in
a complex way, with many details changing over
time.

The paradoxical finding is that it is best not
to give the particle information that is too good,
especially early in the search trial. Premature
convergence is the result of amplified consensus
resulting from too much communication or over-
reliance on best neighbors, especially the pop-
ulation best. Various researchers have proposed
ways to slow the convergence or clustering of
particles in the search space, such as occasional
reinitialization or randomization of particles, re-
pelling forces among them, etc., and these tech-
niques typically have the desired effect. In many
cases, however, implicit methods work as well
and more parsimoniously; the effect of topology
on convergence rate has been mentioned here, for
instance.

Binary Particle Swarms
A binary particle swarm is easily created by
treating the velocity as a probability threshold
(Kennedy and Eberhart 1997). Velocity vector
elements are squashed in a sigmoid or other
function, for instance S.�/ D 1=.1C exp.��//,
producing a result in (0..1). A random number is
generated and compared to S.�id / to determine
whether xid will be a 0 or a 1. Though discrete
systems of higher cardinality have been proposed,
it is difficult to define such concepts as distance
and direction in a meaningful way within nominal
data.

Alternative Probability Distributions
As was noted above, the particle’s search is cen-
tered around the mean of the previous bests that
influence it, and its variance is scaled to the differ-
ences among them. This has suggested to several
researchers that perhaps the trajectory formula
can be replaced, wholly or partly, by some type of
random number generator that directly samples
the search space in a desirable way.

Kennedy (2003) suggested simple Gaussian
sampling, using a random number generator
(RNG) G(mean, s.d .) with the mean centered
between Epi and Epg , and with the standard
deviation defined on each dimension as s:d: D
j.pid � pgd /j. This “bare bones” particle swarm
eliminated the velocity component; it performed
rather well on a set of test functions, but not as
well as the usual version.

Krohling (2004) simply substituted the
absolute values of Gaussian-distributed random
numbers for the uniformly distributed values
in the canonical particle swarm. He and his
colleagues have had success on a range of prob-
lems using this approach. Richer and Blackwell
(2006) replaced the Gaussian distribution of
bare bones with a Lévy distribution. The Lévy
distribution is bell-shaped like the Gaussian
but with fatter tails. It has a parameter ˛

which allows interpolation between the Cauchy
distribution (˛ D 1) and Gaussian (˛ D 2)
and can be used to control the fatness of the
tails. In a series of trials, Richer and Blackwell
(2006) were able to emulate the performance
of a canonical particle swarm using ˛ D 1:4.
Kennedy (2005) used a Gaussian RNG for
the social influence term of the usual formula,
keeping the “persistence” term found in the
standard particle swarm. Variations on this format
produced results that were competitive with the
canonical version.

Numerous other researchers have begun ex-
ploring ways to replicate the overall behavior
of the particle swarm by replacing the tradi-
tional formulas with alternative probability distri-
butions. Such experiments help theorists under-
stand what is essential to the swarm’s behavior
and how it is able to improve its performance on
a test function over time.

972 Particle Swarm Optimization

Simulation of the canonical trajectory behav-
ior with RNGs is a topic that is receiving a great
deal of attention at this time, and it is impossi-
ble to predict where the research is leading. As
numerous versions have been published showing
that the trajectory formulas can be replaced by al-
ternative strategies for selecting a series of points
to sample, it becomes apparent that the essence of
the paradigm is not to be found in the details of
the movements of the particles, but in the nature
of their interactions over time, the structure of
the social network in which they are embedded,
and the function landscape with which they in-
teract, with all these factors working together
gives the population the ability to find problem
solutions.

Recommended Reading

Abelson RP, Aronson E, McGuire WJ, Newcomb TM,
Rosenberg MJ, Tannenbaum RH (eds) (1968) The-
ories of cognitive consistency: a sourcebook. Rand
McNally, Chicago

Clerc M (2006) Particle swarm optimization. Hermes
Science Publications, London

Clerc M, Kennedy J (2002) The particle swarm:
explosion, stability, and convergence in a multi-
dimensional complex space. IEEE Trans Evol Com-
put 6:58–73

Eberhart RC, Kennedy J (1995) A new optimizer
using particle swarm theory. In: Proceedings of
the 6th international symposium on micro machine
and human science, Nagoya. IEEE Service Center,
Piscataway, pp 39–43

Festinger L (1957) A theory of cognitive dissonance.
Stanford University Press, Stanford

Heider F (1958) The psychology of interpersonal rela-
tions. Wiley, New York

Janson S, Middendorf M (2005) A hierarchical particle
swarm optimizer and its adaptive variant. IEEE
Trans Syst Man Cybern Part B Cybern 35(6):1272–
1282

Kennedy J (1998) The behavior of particles. In: Porto
VW, Saravanan N, Waagen D, Eiben AE (eds) Evo-
lutionary programming VII. Proceedings of the 7th
annual conference on evolutionary programming,
San Diego

Kennedy J (2003) Bare bones particle swarms. In:
Proceedings of the IEEE swarm intelligence sym-
posium, Indianapolis, pp 80–87

Kennedy J (2005) Dynamic-probabilistic particle
swarms. In: Proceedings of the genetic and evo-

lutionary computation conference (GECCO-2005),
Washington, DC, pp 201–207

Kennedy J, Eberhart RC (1995) Particle swarm op-
timization. In: Proceedings of the 1995 IEEE in-
ternational conference on neural networks, Perth.
IEEE Service Center, Piscataway, pp 1942–
1948

Kennedy J, Eberhart RC (1997) A discrete binary
version of the particle swarm algorithm. In: Pro-
ceedings of the 1997 conference on systems, man,
and cybernetics. IEEE Service Center, Piscataway,
pp 4104–4109

Krohling RA (2004) Gaussian Swarm. A novel particle
swarm optimization algorithm. Proc 2004 IEEE
Conf Cybern Intell Syst 1:372–376

Mendes R (2004) Population topologies and their
influence in particle swarm performance. Doc-
toral thesis, Escola de Engenharia, Universidade do
Minho

Nowak A, Szamrej J, Latané B (1990) From private
attitude to public opinion: a dynamic theory of
social impact. Psychol Rev 97:362–376

Owen A, Harvey I (2007) Adapting particle swarm
optimisation for fitness landscapes with neutrality.
In: Proceedings of the 2007 IEEE Swarm intelli-
gence symposium. IEEE Press, Honolulu, pp 258–
265

Ozcan E, Mohan CK (1999) Particle swarm opti-
mization: surfing the waves. In: Proceedings of the
congress on evolutionary computation, Mayflower
hotel, Washington, DC. IEEE Service Center, Pis-
cataway, pp 1939–1944

Peña J, Upegui A, Eduardo Sanchez E (2006) Particle
Swarm optimization with discrete recombination:
an online optimizer for evolvable hardware. In:
Proceedings of the 1st NASA/ESA conference on
adaptive hardware and systems (AHS-2006), Is-
tanbul. IEEE Service Center, Piscataway, pp 163–
170

Richer TJ, Blackwell TM (2006) The Levy particle
Swarm. In: Proceedings of the 2006 congress on
evolutionary computation (CEC-2006). IEEE Ser-
vice Center, Piscataway

Shi Y, Eberhart RC (1998) Parameter selection in parti-
cle Swarm optimization. In: Evolutionary program-
ming VII: proceedings EP98. Springer, New York,
pp 591–600

Smolensky P (1986) Information processing in dy-
namical systems: foundations of harmony theory.
In: Rumelhart DE, McClelland JL, the PDP Re-
search Group (eds) Parallel distributed processing:
explorations in the microstructure of cognition,
vol 1, Foundations. MIT Press, Cambridge, pp 194–
281

Suganthan PN (1999) Particle Swarm optimisation
with a neighbourhood operator. In: Proceedings of
congress on evolutionary computation, Washington
DC

Thagard P (2000) Coherence in thought and action.
MIT Press, Cambridge

Partitional Clustering 973

P

Partitional Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Abstract

Partitional clustering is a type of clustering
algorithms that divide a set of data points into
disjoint subsets. Each data point is in exactly
one subset.

Synonyms

Objective function

Definition

Partitional clustering (Han et al. 2011) decom-
poses a data set into a set of disjoint clusters.
Given a data set of N points, a partitioning
method constructs K (N � K) partitions of the
data with each partition representing a cluster.
That is, it classifies the data into K groups by
satisfying the following requirements: (1) each
group contains at least one point, and (2) each
point belongs to exactly one group. For fuzzy
partitioning, a point can belong to more than one
group. The quality of the solution is measured by
clustering criteria.

Some partitional clustering algorithms work
by minimizing an objective function. For exam-
ple, in K-means and K-medoids, the function
(also referred as the distortion function) is

KX

iD1

jCi jX

jD1

Dist.xj ; center.i// (1)

where jCi j is the number of points in cluster i
andDist.xj ; center.i// is the distance between
point xj and center i . Depending on the need of
the applications, different distance functions can
be used, such as Euclidean distance and L1 norm.

Major Algorithms

Many algorithms can be used to perform parti-
tional data clustering; representative technologies
include K-means (Lloyd 1957), K-medoids
(Kaufman and Rousseeuw 2005), quality
threshold (QT) (Heyer et al. 1999), expectation-
maximization (EM) (Dempster et al. 1977),
mean shift (Comaniciu and Meer 2002), locality-
sensitive hashing (LSH) (Gionis et al. 1999),
K-way spectral clustering (Luxburg 2007),
etc. In the K-means algorithm, each cluster is
represented by the mean value of the points in
the cluster. For the K-medoids algorithm, each
cluster is represented by one of the points located
near the center of the cluster. Instead of setting
the cluster number K, the QT algorithm uses the
maximum cluster diameter as a parameter to find
clusters with guaranteed quality. Expectation-
maximization clustering performs expectation-
maximization analysis based on statistical
modeling of the data distribution, and it has
more parameters. Mean shift is a nonparameter
algorithm to find any shape of clusters using
density estimator. Locality-sensitive hashing-
based method performs clustering by hashing
similar points to the same bin. K-way spectral
clustering algorithm represents the data as a
graph and performs graph partitioning to find
clusters.

Cross-References

�K-Means Clustering
�K-Medoids Clustering
�K-Way Spectral Clustering
�Quality Threshold Clustering

Recommended Reading

Comaniciu D, Meer P (2002) Mean shift: a robust
approach toward feature space analysis. IEEE Trans
Pattern Anal Mach Intell 24(5):603–619

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

Gionis A, Indyk P, Motwani R (1999) Similarity search
in high dimensions via hashing. In: proceedings of
the 25th international conference on very large data

http://dx.doi.org/10.1007/978-1-4899-7687-1_100345
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_432
http://dx.doi.org/10.1007/978-1-4899-7687-1_433
http://dx.doi.org/10.1007/978-1-4899-7687-1_692

974 Passive Learning

bases (VLDB’99), San Francisco. Morgan Kauf-
mann Publishers Inc, pp 518–529

Han J, Kamber M, Pei J (2011) Data mining: concepts
and techniques, 3rd edn. Morgan Kaufmann, San
Francisco

Heyer L, Kruglyak S, Yooseph S (1999) Exploring
expression data: identification and analysis of coex-
pressed genes. Genome Res 9:1106–1115

Kaufman L, Rousseeuw PJ (2005) Finding groups in
data: an introduction to cluster analysis. Wiley se-
ries in probability and statistics. Wiley-Interscience,
Hoboken

Lloyd SP (1957) Least squares quantization in PCM.
Technical report RR-5497, Bell Lab

Luxburg U (2007) A tutorial on spectral clustering. Stat
Comput 17(4):395–416

Passive Learning

A � passive learning system plays no role in the
selection of its � training data. Passive learning
stands in contrast to � active learning.

PCA

� Principal Component Analysis

PCFG

� Probabilistic Context-Free Grammars

Phase Transitions in Machine
Learning

Lorenza Saitta1 and Michele Sebag2

1Università del Piemonte Orientale, Alessandria,
Italy
2CNRS � INRIA � Université Paris-Sud, Orsay,
France

Synonyms

Statistical physics of learning; Threshold phe-
nomena in learning; Typical complexity of learn-
ing

Definition

Phase transition (PT) is a term originally used in
physics to denote a sudden transformation of a
system from one state to another, such as from
liquid to solid or to gas state (phase). It is used, by
extension, to describe any abrupt change in one
of the order parameters describing an arbitrary
system, when a control parameter approaches a
critical value.

Far from being limited to physical systems,
PTs are ubiquitous in sciences, notably including
computational science. Typically, hard combina-
torial problems display a PT with regard to the
probability of existence of a solution. Note that
the notion of PT cannot be studied in relation
to single-problem instances: it refers to emergent
phenomena in an ensemble of problem instances,
governed by a given probability distribution.

Motivation and Background

Cheeseman et al. (1991) were most influential in
starting the study of PTs in artificial intelligence,
experimentally showing the presence of a PT
containing the most difficult instances for various
NP-complete problems. Since then, the literature
flourished both in breadth and depth, witnessing
an increasing transfer of knowledge and results
between statistical physics and combinatorics.

As far as machine learning (ML) can be for-
mulated as a combinatorial optimization problem
(Mitchell 1982), it is no surprise that PTs emerge
in many of its facets. Early results have been
obtained in the field of relational learning, either
logic (Botta et al. 2003; Giordana and Saitta
2000) or kernel (Gaudel et al. 2008) based. PTs
have been studied in neural networks (Demon-
geot and Sené 2008; Engel and Van den Broeck
2001), grammatical inference (Cornuéjols and
Sebag 2008), propositional classification (Bask-
iotis and Sebag 2004; Rückert and De Raedt
2008), and sparse regression (Donoho and Tanner
2005).

Two main streams of research emerge from the
study of PT in computational problems. On the
one hand, locating the PT enables very difficult

http://dx.doi.org/10.1007/978-1-4899-7687-1_632
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_669
http://dx.doi.org/10.1007/978-1-4899-7687-1_100447
http://dx.doi.org/10.1007/978-1-4899-7687-1_100473
http://dx.doi.org/10.1007/978-1-4899-7687-1_100494

Phase Transitions in Machine Learning 975

P

problem instances to be generated, those which
are most relevant to benchmarks and comparative
assessment of new algorithms. On the other hand,
PT studies stimulate the analysis of algorithmic
typical case complexity, as opposed to the stan-
dard worst-case analysis of algorithmic complex-
ity. It is well known that while many algorithms
require exponential resources in the worst case,
they are effective for a vast majority of problem
instances. Studying their typical runtime thus
makes sense in a probabilistic perspective. The
typical runtime not only reflects the most proba-
ble runtime; overall, the probability of deviating
from this typical complexity goes to zero as the
problem size increases.

Relational Learning

In a seminal paper, Mitchell characterized ML as
a search problem (Mitchell 1982). Much attention
has ever since been devoted to every component
of a search problem: the search space, the search
goal, and the search engine.

The search space H reflects the language
L chosen to express the target knowledge,
termed � hypothesis language. The reader is
referred to other entries of the encyclopedia
(�Attribute-value representation, �First-order
logic, �Relational learning, and � Inductive
Logic Programming) for a comprehensive
presentation of the hypothesis languages and
related learning approaches.

Typically, a learner proceeds iteratively: given
a set E of examples labeled after a target concept
!, the learner maintains a list of candidate hy-
potheses, assessing their completeness (the pro-
portion of positive examples they cover) and their
consistency (the proportion of negative examples
they do not cover) using a � covering test. The
covering test, checking whether some hypothesis
h covers some example e, is thus a key com-
ponent of the learning process, launched a few
hundred thousand times in each learning run on
medium-size problems.

While in propositional learning the covering
test is straightforward and computationally effi-
cient, in first-order logics, one must distinguish

between learning from interpretation (h covers
a set of facts e iff e is a model for h) and
learning from entailment (h covers a clause e
iff h entails e) (De Raedt 1997). A correct, but
incomplete covering test, the � � -subsumption
test defined by Plotkin (1970), is most often used
for its decidability properties, and much attention
has been paid to optimizing it (Maloberti and
Sebag 2004).

As shown by Giordana and Saitta (2000), the
� -subsumption test is equivalent to a constraint
satisfaction problem (CSP). A finite CSP is a
tuple (X, R, D), where X D fx1; : : : xng is
a set of variables, R D fR1; : : : Rcg is a set
of constraints (relations), and D is the variable
domain. Each relation Rh involves a subset of
variables xi1 ; : : : ; xik in X; it specifies all tuples
of values .ai1 ; : : : ; aik / in Dk such that the as-
signment (Œxi1 D ai1 � ^ : : : ^ Œxik D aik �)
satisfies Rh. A CSP is satisfiable if there exists a
tuple .a1; : : : ; an/ 2 D

n such that the assignment
.Œxi D ai �; i D 1; : : : ; n/ satisfies all relations in
R. Solving a CSP amounts to finding such a tuple
(solution) or showing that none exists.

The probability for a random CSP instance
to be satisfiable shows a PT with respect to
the constraint density (control parameter p1 D

2c
n.n�1/

) and constraint tightness (p2 D 1 � N
L2),

where N denotes the cardinality of each con-
straint (assumed to be equal for all constraints)
and L is the number of constants in the example
(the universe).

The relational covering test being a CSP, a
PT was expected and has been confirmed by
empirical evidence (Botta et al. 1999; Giordana
and Saitta 2000). The order parameter is the
probability of hypothesis h to cover example
e; the control parameters are the number m of
predicates and the number n of variables in h,
on the one hand, and the number N of literals
built on each predicate symbol (relation) and the
number L of constants in the example e, on the
other hand. As shown in Fig. 1a, the covering
probability is close to 1 (YES region) when h is
general comparatively to e; it abruptly decreases
to 0 (NO region) as the number m of predicates
in h increases and/or the number L of constants
in e decreases. In the PT region, a high peak

http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_800

976 Phase Transitions in Machine Learning

Psol

100

50

0

5000

10000

0

15 20 25 30
M

a b

L
35 40 45 15

20
25

30
35

40
45

15 20 25
30

M

L

35
40

45
15

20
25

30
35

40
45

Phase Transitions in Machine Learning, Fig. 1 PT of
the covering test .h; e/ versus the number m of predicates
in h and the number L of constants in e. The number
n of variables is set to 10, and the number N of literals

per predicate is set to 100. (a) Percentage of times the
covering test succeeds. (b) Runtime of the covering test,
averaged over 100 pairs .h; e/ independently generated
for each pair .m; L/

of empirical complexity of the covering test is
observed (Fig. 1b).

The PT of the covering test has deep and
far-reaching effects on relational learning. By
definition, nontrivial hypotheses (covering some
examples but not all) mostly belong to the PT
region. The learner, searching for hypotheses
covering the positive and rejecting the negative
examples, must explore this region and thus
cannot avoid the associated computational cost.
More generally, the PT region acts as an attractor
for any learner aimed at complete and consistent
hypotheses.

Secondly, top-down learners must traverse the
plateau of overly general hypotheses (YES re-
gion) before arriving at the PT region. In the YES
region, as all hypotheses cover most examples,
the learner does not have enough information to
make relevant choices; the chance of gradually
arriving at an accurate description of the target
concept thus becomes very low. Actually, a blind
spot has been identified close to the PT (Botta
et al. 2003): when the target concept lies in
this region (relatively to the available examples),
every state-of-the-art top-down relational learner
tends to build random hypotheses, that is, the
learned hypotheses behave like random guessing
on the test set (Fig. 2).

This negative result has prompted the design
of new relational learners aimed at learning in the
PT region and using either prior knowledge about
the size of the target concept (Ales Bianchetti
et al. 2002) or near-miss examples (Alphonse and
Osmani 2008).

Relational Kernels and MIL Problems

Relational learning has been revisited through
the so-called kernel trick (Cortes and Vapnik
1995), first pioneered in the context of �Support
Vector Machines. Relational kernels, inspired
from Haussler’s convolutional kernels (Haussler
1999), have been developed for, e.g., strings,
trees, or graphs. For instance, K.x; x0/ might
count the number of patterns shared by relational
structures x and x0. Relational kernels thus
achieve a particular type of � propositionalization
(Kramer et al. 2001), mapping every relational
example onto a propositional space defined after
the training examples.

The question of whether relational kernels
enable to avoid the PT faced by relational
learning, described in the previous section, was
investigated by Gaudel et al. (2007), focusing
on the so-called �multi-instance learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_955

Phase Transitions in Machine Learning 977

P

45

40

35

30

L

m

25

20

15

10
5 10 15 20 25 30

Phase Transitions in Machine Learning, Fig. 2
Competence map of FOIL versus number m of predicates
in the target concept and number L of constants in the
examples. The target concept involves n D 4 variables
and each example contains N D 100 literals built on
each predicate symbol. For each pair .m; L/, a target
concept ! has been generated independently, balanced

200-example training, and test sets have been generated
and labeled after !. FOIL has been launched on the
training set, and the predictive accuracy of the hypothesis
has been assessed on the test set. Symbol “�” indicates
a predictive accuracy greater than 90 %; symbol “�”
indicates a predictive accuracy close to 50 % (akin random
guessing)

(MIL) setting. The MIL setting, pioneered
by Dietterich et al. (1997), is considered to
be the “missing link” between relational and
propositional learning (De Raedt 1998).

Multi-instance Learning: Background and
Kernels
Formally, an MI example x is a bag of (propo-
sitional) instances noted x.1/, : : :, x.N /, where
x. j / 2 IRd . In the original MI setting (Dietterich
et al. 1997), an example is labeled positive iff
it includes at least one instance satisfying some
target concept C :

pos.x/ iff 9 i 2 1 : : : N s:t: C.x.i//:

More generally, in application domains such as
image categorization, the example label might
depend on the properties of several instances:

pos.x/ iff 8 j D 1 : : : m; 9 ij 2 1 : : : N s:t: Cj

.x.ij //:

In this more general setting, referred to as
presence-based setting, it has been shown that
MIL kernels also have a PT (Gaudel et al. 2007).

Let us consider bag kernelsK, built on the top
of propositional kernels k on IRd as follows:

K.x; x0/ D f .x/:f .x0/
NX

kD1

N 0X

`D1

k.x.k/; x0 .`//

(1)
where x D .x.1/; : : : ; x.N // and x0 D

.x0 .1/; : : : ; x0 .N
0// denote two MI examples and

f .x/ corresponds to a normalization term, e.g.,
f .x/ D 1 or 1=N or 1=

p
K.x; x/.

By construction, such MI-kernels thus con-
sider the average similarity among the exam-

978 Phase Transitions in Machine Learning

ple instances, while relational learning is usually
concerned with finding existential concepts.

The MI-SVM PT
After Botta et al. (2003) and Giordana and Saitta
(2000), the competence of MI-kernels was ex-
perimentally assessed using artificial problems.
Each problem involves m sub-concept s Ci : a
given sub-concept corresponds to a region of the
d -dimensional space, and it is satisfied by an MI
example x if at least one instance in x belongs to
this region. An instance is said to be relevant if it
belongs to some Ci region.

Let n (respectively n0) denote the number of
relevant instances in positive (respectively nega-
tive) examples. Let further � denote the number
of sub-concept s not satisfied by negative exam-
ples (by definition, a positive example satisfies all
sub-concept s).

Empirical investigations (Gaudel et al. 2007)
show that:

• The n D n0 region is a failure region, where
hypotheses learned by relational MI-SVMs do
no better than random guessing (Fig. 3). In
other words, while MI-SVMs grasp the notion
of relevant instances, they still fail in the “truly
relational region” where positive and negative
examples only differ in the distribution of the
relevant instances.

• The width of the failure region increases as
� increases, i.e., when fewer sub-concept s
are satisfied by negative examples. This un-
expected result is explained from the variance

of the kernel-based propositionalization: the
larger � , the more the distribution of the pos-
itive and negative propositionalized examples
overlap, hindering the discrimination.

Propositional Learning and Sparse
Coding

Interestingly, the emergence of a PT is not limited
to relational learning. In the case of (context-free)
grammar induction, for instance (Cornuéjols and
Sebag 2008), the coverage of the candidate gram-
mar was found to abruptly go to 1 along (uni-
form) generalization, as depicted in Fig. 4.

Propositional learning also displays some PTs
both in the classification (Baskiotis and Sebag
2004; Rückert and De Raedt 2008) and in the re-
gression (Cands 2008; Donoho and Tanner 2005)
context.

Propositional Classification
Given a target hypothesis language, classifica-
tion in discrete domains most often aims at the
simplest expression complying with the training
examples.

Considering randomly generated positive and
negative examples, Rückert and De Raedt (2008)
investigated the existence of k-term DNF so-
lutions (disjunction of at most k conjunctions
of literals) and showed that the probability of
solution abruptly drops as the number of negative
examples increases. They proposed a combinato-
rial optimization algorithm to find a k-term DNF

Phase Transitions in
Machine Learning, Fig. 3
MI-SVM failure region in
the (n, n0) plane. Each (n,
n0) point reports the test
error, averaged on 40
artificial problems

0
0.1
0.2
0.3
0.4
0.5

n

n

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Phase Transitions in Machine Learning 979

P

Phase Transitions in
Machine Learning, Fig. 4
Gap emerging during
learning in the relationship
between the number of
nodes of the inferred
grammar and the coverage
rate

100

90

80

70

60

50

40

30

20

10

0

Number of states PTAUA

Generalization

C
ov

er
ag

e
ra

te

0 200 400 600 800 1000 1200

Coverage P_c

C
4.

5
E

rr
or

0.1

a b

0.3 0.5 0.7 0.9
0

10

20

30
k=10
k=15
k=20
k=25

Error vs coverage (K=10)

Average term coverage

C
4.

5
E

rr
or

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30
k=10
k=15
k=20
k=25

Error vs average term coverage (K=100)

Phase Transitions in Machine Learning, Fig. 5 C4.5
error versus concept coverage (a) and average term cov-
erage (b) in k-term DNF languages. The reported curve

is obtained by Gaussian convolution with empirical data
(15,000 learning problems, each one involving a 800-
example dataset)

complying with the training examples except at
most "% of them (Rückert and De Raedt 2008).

Considering positive and negative examples
generated after some k-term DNF target concept
!, Baskiotis and Sebag examined the solutions
built by C4.5 Rules (Quinlan 1993), among the
oldest and still most used discrete learning al-
gorithms. The observed variable is the general-
ization error on a test set; the order variables
are the coverage of ! and the average coverage
of the conjuncts in !. Interestingly, C4.5 dis-
plays a PT behavior (Fig. 5): the error abruptly

increases as the coverage and average coverage
decrease.

Propositional Regression
�Linear regression aims at expressing the target
variable as the weighted sum of theN descriptive
variables according to some vector w. When the
number N of variables is larger than the num-
ber n of examples, one is interested in finding
the most sparse w complying with the training
examples (s.t. < w; xi >D yi). The sparsity
criterion consists of minimizing the L0 norm of

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

980 Phase Transitions in Machine Learning

w (number of nonzero coefficients in w), which
defines an NP optimization problem. A more
tractable formulation is obtained by minimizing
the L1 norm instead:

Find arg minw2IRN fjjwjj1 subject to < w; xi >

D yi; i D 1 : : : ng: (2)

A major result in the field of sparse coding can
be stated as: Let w� be the solution of Eq. (2); if
it is sufficiently sparse, w� also is the most sparse
vector subject to < w; xi > D yi (Donoho and
Tanner 2005). In such cases, the L0 norm mini-
mization can be solved by L1 norm minimization
(an NP optimization problem is solved using
linear programming). More generally, the equiv-
alence between L0 and L1 norm minimization
shows a PT behavior: when the sparsity of the
solution is lower than a given threshold w.r.t the
problem size (lower curve in Fig. 6), the NP/LP
equivalence holds strictly; further, there exists a
region (between the upper and lower curves in
Fig. 6) where the NP/LP equivalence holds with
high probability.

This highly influential result bridges the gap
between the statistical and algorithmic objectives.
On the statistical side, the importance of sparsity
in terms of robust coding (hence learning) is
acknowledged since the beginnings of informa-
tion theory; on the algorithmic side, the sparsity
criterion cannot be directly tackled as it boils
down to solving a combinatorial optimization
problem (minimizing a L0 norm). The above

result reconciles sparsity and tractability by not-
ing that under some conditions, the solution of
the L0 minimization problem can be found by
solving the (tractable) L1 minimization problem:
whenever the solution of the latter problem is
“sufficiently” sparse, it is also the solution of the
former problem.

Perspectives

Since the main two formulations of ML involve
constraint satisfaction and constrained optimiza-
tion, it is no surprise that CSP PTs manifest
themselves in ML. The diversity of these mani-
festations, ranging from relational learning (Botta
et al. 2003) to sparse regression (Donoho and
Tanner 2005), has been illustrated in this entry,
without pretending exhaustivity.

Along this line, the research agenda and
methodology of ML can benefit from the lessons
learned in the CSP field. Firstly, algorithms must
be assessed on problems lying in the PT region;
results obtained on problems in the easy regions
are likely to be irrelevant (playing in the sandbox
Hogg et al. 1996).

In order to do so, the PT should be localized
through defining control and order parameters,
thus delineating several regions in the control
parameter space (ML landscape). These regions
expectedly correspond to different types of ML
difficulty, beyond the classical computational
complexity perspective.

1

0.9

0.8

0.7

0.6

0.5
k–n

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n /N

Phase Transitions in Machine Learning, Fig. 6 Strong
and weak PT in sparse regression (Donoho and Tanner
2005). The x-axis is the ratio between the number n of

constraints and the number N of variables; the y-axis is
the ratio between the number k of variables involved in
the solution and n

Phase Transitions in Machine Learning 981

P

Secondly, the response of a given algorithm to
these difficulties can be made available through
a competence map, depicting its average perfor-
mance conditionally to the value of the control
parameters as shown in Figs. 2 and 3.

Finally, such competence maps can be used to
determine whether a given algorithm is a priori
relevant in a given region of the control parameter
space and support the algorithm selection
task (a.k.a. meta-learning; see, e.g., http://
www.cs.bris.ac.uk/Research/MachineLearning/
metal.html).

Recently, phase transitions have also emerged
in learning more complex structures, such
as complex networks. For instance, Xhang
et al. (Zhang et al. 2014), following previous
work, investigated the transitions occurring
in the possibility of discovering communities
in sparse networks using a semisupervised
clustering approach. In their approach, the
control parameter is the fraction ˛ of nodes in
the network, whose label is known, and they
found both a first-order and a second-order phase
transition.

Recommended Reading

Ales Bianchetti J, Rouveirol C, Sebag M (2002)
Constraint-based learning of long relational con-
cepts. In: Sammut C (ed) Proceedings of interna-
tional conference on machine learning, ICML’02.
Morgan Kauffman, San Francisco, pp 35–42

Alphonse E, Osmani A (2008) On the connection
between the phase transition of the covering test and
the learning success rate. Mach Learn 70(2–3):135–
150

Baskiotis N, Sebag M (2004) C4.5 competence map: a
phase transition-inspired approach. In: Proceedings
of international conference on machine learning.
Morgan Kaufman, Banff, pp 73–80

Botta M, Giordana A, Saitta L (1999) An experimental
study of phase transitions in matching. In: Proceed-
ings of the 16th international joint conference on
artificial intelligence, Stockholm, pp 1198–1203

Botta M, Giordana A, Saitta L, Sebag M (2003) Rela-
tional learning as search in a critical region. J Mach
Learn Res 4:431–463

Cands EJ (2008) The restricted isometry property and
its implications for compressed sensing. Compte
Rendus de l’Academie des Sciences, Paris, Serie I
346:589–592

Cheeseman P, Kanefsky B, Taylor W (1991) Where
the really hard problems are. In: Myopoulos R,
Reiter J (eds) Proceedings of the 12th international
joint conference on artificial intelligence, Sydney.
Morgan Kaufmann, San Francisco, pp 331–340

Cornuéjols A, Sebag M (2008) A note on phase tran-
sitions and computational pitfalls of learning from
sequences. J Intell Inf Syst 31(2):177–189

Cortes C, Vapnik VN (1995) Support-vector networks.
Mach Learn 20:273–297

De Raedt L (1997) Logical setting for concept-
learning. Artif Intell 95:187–202

De Raedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links.
In: Proceedings inductive logic programming, ILP.
LNCS, vol 2446. Springer, London, pp 1–8

Demongeot J, Sené S (2008) Boundary conditions and
phase transitions in neural networks. Simulation
results. Neural Netw 21(7):962–970

Dietterich T, Lathrop R, Lozano-Perez T (1997) Solv-
ing the multiple-instance problem with axis-parallel
rectangles. Artif Intell 89(1–2):31–71

Donoho DL, Tanner J (2005) Sparse nonnegative solu-
tion of underdetermined linear equations by linear
programming. Proc Natl Acad Sci 102(27):9446–
9451

Engel A, Van den Broeck C (2001) Statistical me-
chanics of learning. Cambridge University Press,
Cambridge

Gaudel R, Sebag M, Cornuéjols A (2007) A phase
transition-based perspective on multiple instance
kernels. In: Proceedings of international conference
on inductive logic programming, ILP, Corvallis,
pp 112–121

Gaudel R, Sebag M, Cornuéjols A (2008) A phase
transition-based perspective on multiple instance
kernels. Lect Notes Comput Sci 4894:112–121

Giordana A, Saitta L (2000) Phase transitions in rela-
tional learning. Mach Learn 41(2):17–251

Haussler D (1999) Convolutional kernels on discrete
structures. Technical report, Computer Science De-
partment, University of California at Santa Cruz

Hogg T, Huberman BA, Williams CP (eds) (1996)
Artificial intelligence: special issue on frontiers in
problem solving: phase transitions and complexity,
vol 81(1–2). Elsevier

Kramer S, Lavrac N, Flach P (2001) Propositional-
ization approaches to relational data mining. In:
Dzeroski S, Lavrac N (eds) Relational data mining.
Springer, New York, pp 262–291

Maloberti J, Sebag M (2004) Fast theta-subsumption
with constraint satisfaction algorithms. Mach Learn
J 55:137–174

Mitchell TM (1982) Generalization as search. Artif
Intell 18:203–226

Plotkin G (1970) A note on inductive generalization.
In: Machine intelligence, vol 5. Edinburgh Univer-
sity Press, Edinburgh

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Francisco

http://www.cs.bris.ac.uk/Research/MachineLearning/metal.html

982 Piecewise Constant Models

Rückert U, De Raedt L (2008) An experimental eval-
uation of simplicity in rule learning. Artif Intell
172(1):19–28

Zhang P, Moore C, Zdeborova L (2014) Phase tran-
sitions in semisupervised clustering of sparse net-
works. CoRR vol abs/1404.7789

Piecewise Constant Models

�Regression Trees

Piecewise Linear Models

�Model Trees

Plan Recognition

� Inverse Reinforcement Learning

Polarity Learning on a Stream

�Opinion Stream Mining

Policy Gradient Methods

Jan Peters1;2;4 and J. Andrew Bagnell3
1Department of Empirical Inference,
Max-Planck Institute for Intelligent Systems,
Tübingen, Germany
2Intelligent Autonomous Systems, Computer
Science Department, Technische Universität
Darmstadt, Darmstadt, Hessen, Germany
3Carnegie Mellon University, Pittsburgh, PA,
USA
4Max Planck Institute for Biological
Cybernetics, Tübingen, Germany

Abstract

Already Richard Bellman suggested that
searching in policy space is fundamen-
tally different from value function-based

reinforcement learning — and frequently
advantageous, especially in robotics and
other systems with continuous actions. Policy
gradient methods optimize in policy space
by maximizing the expected reward using a
direct gradient ascent. We discuss their basics
and the most prominent approaches to policy
gradient estimation.

Definition

A policy gradient method is a � reinforcement
learning approach that directly optimizes a
parametrized control policy by a variant of
gradient descent. These methods belong to the
class of � policy search techniques that maximize
the expected return of a policy from a fixed class,
in contrast with � value function approximation
approaches that derive policies indirectly from
an estimated value function. Policy gradient
approaches have various advantages: they enable
the straightforward incorporation of domain
knowledge in policy parametrization; often an
optimal policy is more compactly represented
than the corresponding value function; many
such methods guarantee to convergence to at
least a locally optimal policy; the methods
naturally handle continuous states and actions
and often even imperfect state information. The
countervailing drawbacks include difficulties in
off-policy settings, the potential for very slow
convergence and high sample complexity, as well
as identifying local optima that are not globally
optimal.

Structure of the Learning System

Policy gradient methods center around a
parametrized policy �� , also known as a � direct
controller, with parameters � that defines the
selection of actions a given the state s. Such a
policy may either be deterministic a D �� .s/ or
stochastic a � �� .ajs/. This choice also affects
the class of policy gradient algorithms applicable
(stochastic policies often lead to smooth

http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_905
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100113

Policy Gradient Methods 983

P

differentiable objective with gradients that can be
estimated via likelihood ratio methods (Williams
1992), where a deterministic policy may lead to a
non-smooth optimization problem), influences
how the exploration-exploitation dilemma is
addressed (e.g., a stochastic policy naturally
chooses novel actions while a deterministic
policy requires the perturbation of policy
parameters or sufficient stochasticity in the
system to achieve exploration), and may affect
the quality of optimal solution (e.g., for a time-
invariant or stationary policy, the optimal policy
can be stochastic Sutton et al. 2000). Frequently
used policy classes include Gibbs distributions
�� .ajs/ D exp.	.s; a/T �/=

P
b exp.	.s; b/T �/

for discrete problems (Sutton et al. 2000; Bagnell
2004) and, for continuous problems, Gaussian
policies �� .ajs/ D N .	.s; a/T �1; �2/ with an
exploration parameter �2 (Williams 1992; Peters
and Schaal 2008).

Expected Return
Policy gradient methods seek to optimize the
expected return of a policy �� ,

J.�/ D Z�E

(
HX

kD0

�krk

)
;

where � 2 Œ0; 1� denotes a discount factor, a
normalization constant Z� , and H the planning
horizon. For finite H , we have an episodic rein-
forcement learning scenario where the truly opti-
mal policy is nonstationary and the normalization
does not matter. For an infinite horizon H D1 ,
we choose the normalization to be Z� 	 .1 � �/
for � < 1 and Z1 	 lim�!1.1 � �/ D 1=H for
� average reward reinforcement learning problem
where � D 1.

Gradient Descent in Policy Space
Policy gradient methods follow an estimate the
gradient of the expected return

�kC1 D �k C ˛kg.�k/;

where g.�k/
 r�J.�/j�D�k
is a gradient esti-

mate for the policy with parameters � D �k after

update k (with an initial policy �0) and ˛k denotes
a learning rate. If the gradient estimator is unbi-
ased,

P1
kD0 ˛k ! 1 while

P1
kD0 ˛

2
k

remains
bounded, convergence to a local minimum can
be guaranteed. In optimal control, model-based
gradient methods have been used for optimizing
policies since the 1960s (Pontryagin et al. 1962).
While these are used machine learning commu-
nity (e.g., differential dynamic programming with
learned models), they may be numerically brittle
and must rely on accurate, deterministic models.
Hence, they may suffer significantly from opti-
mization biases (i.e., if possible, they will reach a
higher average return on the approximate model
than possible on the real system by exploiting the
shortcomings of the model) and are not generally
applicable as learning problems often include
discrete elements and maybe very difficult to
learn effective predictive models.

Several model-free alternatives can be found
in the simulation-based optimization literature
(Fu 2006), including, e.g., finite-difference
gradients, likelihood ratio approaches, response-
surface methods, and mean-valued, weak
derivatives. The advantages and disadvantages
of these different approaches remain a fiercely
debated topic (Fu 2006). In machine learning,
the first two approaches have largely dominated
gradient-based approaches to � policy search,
although response surface methods are arriving
especially in the context of Bayesian optimization
for policy search.

Finite Difference Gradients
The simplest policy gradient approaches with
perhaps the most practical applications (see Bag-
nell (2004) and Peters and Schaal (2008) for
robotics application of this method) estimate the
gradient by perturbing the policy parameters. For
a current policy �k with expected return J.�k/,
this approach will create perturbed policies O�i D

�k C ı�i with the approximated expected re-
turns given by J. O�i /
 J.�k/ C ı�T

i g where
g D r�J.�� /j�D�k

: Such returns are typically
estimated by simulation. The gradient can then
be estimated by linear regression; i.e., we obtain

g D .
‚T
‚/�1
‚T
J;

http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364

984 Policy Gradient Methods

with parameter perturbations
‚DŒı�1; : : : ; ı�n�

and mean-subtracted roll-out returns ıJn D

J. O�i / � J.�k/ form
J D ŒıJ1; : : : ; ıJn�. The
choice of the parameter perturbation largely
determines the performance of the approach
(Spall 2003). Limitations particular to this
approach include the need for many exploratory
samples, the sensitivity of the system with respect
to each parameter may differs by orders of
magnitude, small changes in a single parameter
may render a system unstable, and stochasticity
requires particular care in optimization (e.g.,
multiple samples, fixed random seeds, etc.), see
Glynn (1990) and Spall (2003). This method is
additionally referred to as the naive Monte-Carlo
policy gradient.

Likelihood Ratio Gradients
The likelihood ratio method relies upon the
stochasticity of either the policy for model-free
approaches, or the system in the model-based
case. Hence, it requires no explicit parameter
exploration and may cope better with noise
as well as parameter perturbation sensitivity
problems. Moreover, in the model-free setting,
in contrast with naive Monte-Carlo estimation,
it potentially benefits from more assumptions on
the policy parameterization. Denoting a time-
indexed sequence of states, actions, and rewards
of the joint system composed of the policy
and environment as a path, a parameter setting
induces a path distribution p� .�/ and rewards
R.�/ D Z�

PH
kD0 �

krk along a path � . Thus, we
may write the gradient of the expected return as

r�J.�/ D r�

Z
p� .�/R.�/d�

D

Z
p� .�/r� logp� .�/R.�/d�

D Efr� logp� .�/R.�/g:

If our system p.s0js; a/ is Markovian, we may use
p� .�/ D p.s0/

QH
hD0 p.skC1jsk ; ak/�� .akjsk/

for a stochastic policy a � �� .ajs/ to obtain
the model-free policy gradient estimator known
as Episodic REINFORCE (Williams 1992)

r�J.�/ D Z�E

(
HX

hD0

�kr� log�� .akjsk/

HX

kDh

�k�hrk

)
;

and for the deterministic policy a D �� .s/, the
model-based policy gradient

r�J.�/ D Z�E

(
HX

hD0

�k
�
ra logp.skC1jsk ; ak/

T

r��� .s/
	 HX

kDh

�k�hrk

)
;

follows from p� .�/ D p.s0/
QH

hD0 p.skC1jsk ;

�� .sk//.
Note that all rewards preceding an action

may be omitted as the cancel out in expec-
tation. Using a state-action value function

Q�� .s; a; h/ D E
nPH

kDh �
k�hrk

ˇ̌
ˇ s; a; ��

o

(see � value function approximation), we can
rewrite REINFORCE in its modern form

r�J.�/ D Z�E

(
HX

hD0

�kr� log�� .akjsk/

.Q�� .s; a; h/ � b.s; h//

)
;

known as the policy gradient theorem where the
baseline b.s; h/ is an arbitrary function that may
be used to reduce the variance, and Q�� .s; a; h/

represents the action-� value function.
While likelihood ratio gradients have been

known since the late 1980s, they have recently
experienced an upsurge of interest due to their
demonstrated effectiveness in applications;
see, e.g., Peters and Schaal (2008)), progress
toward variance reduction using optimal
baselines (Lawrence et al. 2003), rigorous
understanding of the relationships between value
functions and policy gradients (Sutton et al.
2000), policy gradients in reproducing kernel
Hilbert space (Bagnell 2004), as well as faster,

http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_876

POS Tagging 985

P

more robust convergence using natural policy
gradients (Bagnell 2004; Peters and Schaal 2008)

A recent major development (Silver et al.
2014) demonstrates that many of the key results
from model-free stochastic policy search can be
transferred to deterministic policy classes by con-
sidering the limiting case of a likelihood ratio
method. Importantly, this estimation of a deter-
ministic policy gradient can be much more sam-
ple efficient than existing techniques; the caveat
remains that the total return may indeed fail to be
differentiable and both practical performance and
theory in such settings are poorly understood.

Cross-References

� Policy Search
�Reinforcement Learning
�Value Function Approximation

Recommended Reading

Bagnell JA (2004) Learning decisions: robustness,
uncertainty, and approximation. Doctoral disserta-
tion, Robotics institute, Carnegie Mellon University,
Pittsburgh

Fu MC (2006) Stochastic gradient estimation. In: Hen-
derson SG, Nelson BL (eds) Handbook on opera-
tions research and management science: simulation,
vol 19. Elsevier, Burlington, pp 575–616

Glynn P (1990) Likelihood ratio gradient estimation
for stochastic systems. Commun ACM 33(10):75–
84

Lawrence G, Cowan N, Russell S (2003) Efficient
gradient estimation for motor control learning. In:
Proceedings of the international conference on un-
certainty in artificial intelligence (UAI), Acapulco

Peters J, Schaal S (2008) Reinforcement learning of
motor skills with policy gradients. Neural Netw
21(4):682–697

Pontryagin LS, Boltyanskii VG, Gamkrelidze RV,
Mishchenko E (1962) The mathematical theory of
optimal processes. International series of mono-
graphs in pure and applied mathematics. Inter-
science publishers, New York

Silver D, Lever G, Heess N, Degris T, Wierstra D,
Riedmiller M (2014) Deterministic policy gradient
algorithms. In: Proceedings of the 31st international
conference on Machine learning (ICML), Bejing

Spall JC (2003) Introduction to stochastic search and
optimization: estimation, simulation, and control.
Wiley, Hoboken

Sutton RS, McAllester D, Singh S, Mansour Y (2000)
Policy gradient methods for reinforcement learning
with function approximation. In: Solla SA, Leen
TK, Mueller KR (eds) Advances in neural informa-
tion processing systems (NIPS). MIT, Denver

Williams RJ (1992) Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach Learn 8:229–256

Policy Search

�Markov Decision Processes

POMDPs

� Partially Observable Markov Decision
Processes

POS Tagging

Walter Daelemans
CLIPS University of Antwerp, Antwerpen,
Belgium

Synonyms

Grammatical tagging; Morphosyntactic disam-
biguation; Part of speech tagging; Tagging

Definition

Part-of-speech tagging (POS tagging) is a process
in which each word in a text is assigned its
appropriate morphosyntactic category (for exam-
ple noun-singular, verb-past, adjective, pronoun-
personal, and the like). It therefore provides in-
formation about both morphology (structure of
words) and syntax (structure of sentences). This
disambiguation process is determined both by
constraints from the lexicon (what are the pos-
sible categories for a word?) and by constraints
from the context in which the word occurs (which

http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_100191
http://dx.doi.org/10.1007/978-1-4899-7687-1_100313
http://dx.doi.org/10.1007/978-1-4899-7687-1_100357
http://dx.doi.org/10.1007/978-1-4899-7687-1_100463

986 POS Tagging

of the possible categories is the right one in this
context?). For example, a word like table can be
a noun-singular, but also a verb-present (as in I
table this motion). This is lexical knowledge. It
is the context of the word that should be used to
decide which of the possible categories is the cor-
rect one. In a sentence like Put it on the table, the
fact that table is preceded by the determiner the,
is a good indication that it is used as a noun here.
Systems that automatically assign parts of speech
to words in text should take into account both
lexical and contextual constraints, and they are
typically found in implementations as a lookup
module and a disambiguation module.

Motivation and Background

In most natural language processing (NLP) ap-
plications, POS tagging is one of the first steps
to allow abstracting away from individual words.
It is not to be confused with lemmatization, a
process that reduces morphological variants of
words to a canonical form (the citation form,
for example, infinitive for verbs and singular for
nouns). Whereas lemmatization allows abstrac-
tion over different forms of the same word, POS
tagging abstracts over sets of different words that
have the same function in a sentence. It should
also not be confused with tokenization, a process
that detects word forms in text, stripping off
punctuation, handling abbreviations, and so on.
For example, the string don’t could be converted
to do not. Normally, a POS tagging system would
take tokenized text as input. More advanced to-
kenizers may even handle multiword items, for
example treating in order to not as three separate
words but as a single lexical item.

Applications. A POS tagger is the first dis-
ambiguation module in text analysis systems. In
order to determine the syntactic structure of a
sentence (and its semantics), we have to know
the parts of speech of each word. In earlier
approaches to syntactic analysis (parsing), POS
tagging was part of the parsing process. However,
individually trained and optimized POS taggers
have increasingly become a separate module in
shallow or deep syntactic analysis systems. By

extension, POS tagging is also a foundational
module in text mining applications ranging from
information extraction and terminology/ontology
extraction to summarization and question an-
swering.

Apart from being one of the first modules in
any text analysis system, POS tagging is also
useful in linguistic studies (corpus linguistics) –
for example for computing frequencies of dis-
ambiguated words and of superficial syntactic
structures. In speech technology, knowing the
part of speech of a word can help in speech
synthesis (the verb “subJECT” is pronounced
differently from the noun “SUBject”), and in
speech recognition, POS taggers are used in some
approaches to language modeling. In spelling and
grammar checking, POS tagging plays a role in
increasing the precision of such systems.

Part-of-speech tag sets. The inventory of POS
tags can vary from tens to hundreds depending
on the richness of morphology and syntax that
is represented and on the inherent morphological
complexity of a language. For English, the tag
sets most used are those of the Penn Treebank
(45 tags; Marcus et al. 1993), and the CLAWS C7
tag set (146 tags; Garside and Smith 1997). Tag
sets are most often developed in the context of
the construction of annotated corpora. There have
been efforts to standardize the construction of tag
sets to increase translatability between different
tag sets, such as Eagles. (http://www.ilc.cnr.it/
EAGLES96/browse.html) and ISO/TC 37/SC 4.
(http://www.tc37sc4.org/)

The following example shows both tag sets.
By convention, a tagged word is represented by
attaching the POS tag to it, separated by a slash.

Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS
old/JJ ,/, will/MD join/VB the/DT board/NN
as/IN a/DT nonexecutive/JJ director/NN
Nov./NNP 29/CD ./. [Penn Treebank]

Pierre/NP1 Vinken/NP1 ,/, 61/MC years/NNT2
old/JJ ,/, will/VM join/VVI the/AT Board/NN1
as/II a/AT1 nonexecutive/JJ director/NN1
Nov./NPM1 29/MC ./. [CLAWS C7]

As can be seen, the tag sets differ in level
of detail. For example, NNT2 in the C7 tag set
indicates a plural temporal noun (as a specializa-
tion of the word class noun), whereas the Penn

http://www.ilc.cnr.it/EAGLES96/browse.html
http://www.ilc.cnr.it/EAGLES96/browse.html
http://www.tc37sc4.org/

POS Tagging 987

P

Treebank tag set only specializes to plural noun
(NNS).

Like most tasks in NLP, POS tagging is a dis-
ambiguation task, and both linguistic knowledge-
based handcrafting methods and corpus-based
learning methods have been proposed for this
task. We will restrict our discussion here to the
statistical and machine learning approaches to
the problem, which have become mainstream
because of the availability of large POS tagged
corpora and because of better accuracy in gen-
eral than handcrafted systems. A state of the
art system using a knowledge-based approach is
described in Karlsson et al. (1995).

A decade old now, but still a complete and
informative book-length introduction to the field
of POS tagging is van Halteren (1999). It dis-
cusses many important issues that are not covered
in this article (performance evaluation, history,
handcrafting approaches, tag set development is-
sues, handling unknown words, and more.). A
more recent introductory overview is Chap. 5 in
Jurafsky and Martin (2008).

Statistical and Machine Learning
Approaches to Tagging

In the late 1970s, statistical approaches based on
n-gram probabilities (probabilities that sequences
of n tags occur in a corpus) computed on fre-
quencies in tagged corpora have already been
proposed by the UCREL team at the University of
Lancaster (Garside and Smith 1997). These early
models lacked a precise mathematical framework
and a principled solution to working with zero-
or low probability frequencies. It was realized
that Hidden Markov Models (HMM) in use in
speech recognition were applicable to the tagging
problem as well.

HMMs

HMMs are probabilistic finite state automata
that are flexible enough to combine n-gram
information with other relevant information to
a limited extent. They allow supervised learning

by computing the probabilities of n-grams from
tagged corpora, and unsupervised learning using
the Baum-Welch algorithm. Finding the most
probable tag sequence given a sequence of words
(decoding) is done using the Viterbi search.
In combination with smoothing methods for
low-frequency events and special solutions for
handling unknown words, this approach results
in a state-of-the-art tagging performance. A good
implementation is TnT (Trigrams’n Tags Brants
2000).

Transformation-Based Error-Driven
Learning (Brill-Tagging)

Transformation-based learning is an eager learn-
ing method in which the learner extracts a series
of rules, each of which transforms a tag into
another tag given a specific context. Learning
starts with an initial annotation (e.g., tag each
word in a text by the POS tag it is most fre-
quently associated with in a training corpus), and
compares this annotation with a gold standard
annotation (annotated by humans). Discrepancies
trigger the generation of rules (constrained by
templates), and in each cycle, the best rule is
chosen. The best rule is the one that most often
leads to a correct transformation in the whole
training corpus (Brill 1995a). An unsupervised
learning variant (using a lexicon with word-tag
probabilities) is described in Brill (1995b). Fully
unsupervised POS tagging can also be achieved
using distributional clustering techniques, as pio-
neered by Schutze (1995). However, these meth-
ods are hard to evaluate and compare to super-
vised approaches. The best way to evaluate them
is indirectly, in an application-oriented way, as in
Ushioda (1996).

Other Supervised Learning Methods

As a supervised learning task, POS tagging has
been handled mostly as in a sliding window
representation. Instances are created by making
each word in each sentence a focus feature of an
instance, and adding the left and right context as

988 POS Tagging

additional features. The class to be predicted is
the POS tag of the focus word. Instead of using
the words themselves as features, information
about them can be used as features as well (e.g.,
capitalized or not, hyphenated or not, the POS tag
of the word for left context words as predicted
by the tagger previously, a symbol representing
the possible lexical categories of the focus word
and right context words, first and last letters of the
word in each position, and so on.).

The following table lists the structure of in-
stance representations for part of the sentence
shown earlier. In this case the words themselves
are feature values, but most often other derived
features would replace these because of sparse-
ness problems.

Focus Class

= = Pierre Vinken NNP

= Pierre Vinken 61 NNP

Pierre Vinken 61 years

Vinken 61 years old CD

Most classification-based, supervised machine
learning methods can be, and have been applied
to this problem, including decision tree learning
(Schmid 1994b), memory-based learning (Daele-
mans et al. 1996), maximum entropy models
(Ratnaparkhi 1996), neural networks (Schmid
1994a), ensemble methods (van Halteren et al.
2001), and many others. All these methods seem
to converge to a 96–97 % accuracy rate on the
Wall Street Journal corpus using the Penn Tree-
bank tag set. In a systematic comparison of some
of the methods listed here, van Halteren et al.
(2001) found that TnT outperforms maximum
entropy and memory-based learning methods,
which in turn outperform Brill tagging. Non-
propositional supervised learning methods have
been applied to the task as well (Cussens 1997)
with grammatical structure as background knowl-
edge with similar results. The best results re-
ported on the WSJ corpus so far is bidirectional
perceptron learning (Shen et al. 2007) with a
97.33 % accuracy.

Because of these high scores, POS tagging (at
least for English) is considered by many a solved

problem. However, as for most machine-learning
based NLP systems, domain adaptation is still
a serious problem for POS tagging. A tagger
trained to high accuracy on newspaper language
will fail miserably on other types of text, such as
medical language.

Cross-References

�Classification
�Clustering
�Decision Tree
�Document Categorization
� Inductive Logic Programming
� Information Retrieval
�Lazy Learning
�Maxent Models
�Text Mining

Recommended Reading

Brants T (2000) TnT – a statistical part-of-speech
tagger. In: Proceedings of the sixth applied natural
language processing conference ANLP-2000, Seat-
tle

Brill E (1995a) Transformation-based error-driven
learning and natural language processing: a case
study in part-of-speech tagging. Comput Linguist
21(4):543–565

Brill E (1995b) Unsupervised learning of disambigua-
tion rules for part of speech tagging. In: Proceedings
of the third workshop on very large corpora. Ohio
State University, Ohio, pp 1–13

Cussens J (1997) Part-of-speech tagging using progol.
In: Lavrac N, Dzeroski S (eds) Proceedings of the
seventh international workshop on inductive logic
programming. Lecture notes in computer science,
vol 1297. Springer, London, pp 93–108

Daelemans W, Zavrel J, Berck P, Gillis S (1996) MBT:
a memory-based part of speech tagger generator. In:
Proceedings of the fourth workshop on very large
corpora, Copenhagen, pp 14–27

Garside R, Smith N (1997) A hybrid grammatical
tagger: CLAWS4. In: Garside R, Leech G, McEnery
A (eds) Corpus annotation: linguistic information
from computer text corpora. Longman, London,
pp 102–121

Jurafsky D, Martin J (2008) Speech and language
processing: an introduction to natural language
processing, computational linguistics, and speech
recognition, 2nd edn. Prentice Hall, Upper Saddle
River

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100120
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_100289
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

Posterior Probability 989

P

Karlsson F, Voutilainen A, Heikkilä J, Anttila A (1995)
Constraint grammar. A language-independent sys-
tem for parsing unrestricted text. Mouton de
Gruyter, Berlin/New York, p 430

Marcus M, Santorini B, Marcinkiewicz M (1993)
Building a large annotated corpus of English: the
Penn Treebank. Comput Linguist 19(2):313–330

Ratnaparkhi A (1996) A maximum entropy part of
speech tagger. In: Proceedings of the ACL-SIGDAT
conference on empirical methods in natural lan-
guage processing, Philadelphia, pp 17–18

Schmid H (1994a) Part-of-speech tagging with neural
networks. In: Proceedings of COLING-94, Kyoto,
pp 172–176

Schmid H (1994b) Probabilistic part-of-speech tagging
using decision trees. In: Proceedings of the inter-
national conference on new methods in language
processing (NeMLaP), Manchester, pp 44–49

Schutze H (1995) Distributional part-of-speech tag-
ging. In: Proceedings of EACL 7, Dublin, pp 141–
148

Shen L, Satta G, Joshi A (2007) Guided learning for
bidirectional sequence classification. In: Proceed-
ings of the 45th annual meetings of the association
of computational linguistics (ACL 2007), Prague,
pp 760–767

Ushioda A (1996) Hierarchical clustering of words and
applications to NLP tasks. In: Proceedings of the
fourth workshop on very large corpora, Somerset,
pp 28–41

van Halteren H (ed) (1999) Syntactic wordclass tag-
ging. Kluwer Academic Publishers, Boston

van Halteren H, Zavrel J, Daelemans W (2001)
Improving accuracy in NLP through combination
of machine learning systems. Comput Linguist
27(2):199–229

Positive Definite

� Positive Semidefinite

Positive Predictive Value

� Precision

Positive Semidefinite

Synonyms

Positive definite

Definition

A symmetric m � m matrix K satisfying 8x 2
cm W x� Kx � 0 is called positive semidefinite. If
the equality only holds for x D E0 the matrix is
positive definite.

A function k W X � X ! c;X ¤ Ø, is
positive (semi-) definite if for all m 2 n and
all x1; : : : ; xm 2 X the m � m matrix EK with
elements Kij WD k.xi ; xj / is positive (semi-)
definite.

Sometimes the term strictly positive definite
is used instead of positive definite, and positive
definite refers then to positive semidefiniteness.

Posterior

� Posterior Probability

Posterior Probability

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Posterior

Definition

In Bayesian inference, a posterior probability of
a value x of a random variable X given a context
a value y of a random variable Y , P(X D xjY D
y/, is the probability of X assuming the value x
in the context of Y D y. It contrasts with the
� prior probability, P(X D x/, the probability
of X assuming the value x in the absence of
additional information.

For example, it may be that the prevalence of
a particular form of cancer, exoma, in the popu-
lation is 0.1 %, so the prior probability of exoma,

http://dx.doi.org/10.1007/978-1-4899-7687-1_961
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_100366
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_100368
http://dx.doi.org/10.1007/978-1-4899-7687-1_962

990 Post-pruning

P(exoma = true), is 0.001. However, assume 50 %
of people who have skin discolorations of greater
than 1 cm width (sd > 1 cm) have exoma. It fol-
lows that the posterior probability of exoma given
sd >1 cm, P(exomaD true j sd >1 cmD true), is
0.500.

Cross-References

�Bayesian Methods

Post-pruning

Definition

Post-pruning is a �Pruning mechanism that first
learns a possibly �Overfitting hypothesis and
then tries to simplify it in a separate learning
phase.

Cross-References

�Overfitting
� Pre-pruning
� Pruning

Postsynaptic Neuron

The neuron that receives signals via a synap-
tic connection. A chemical synaptic connection
between two neurons allows to transmit signals
from a presynaptic neuron to a postsynaptic neu-
ron.

Precision

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Synonyms

Positive predictive value

Precision, Table 1 The outcomes of classification into
positive and negative classes

Assigned class

Positive Negative

A
ct

ua
l

cl
as

s Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Definition

Precision is defined as the ratio of true positives
(TP) and the total number of positives predicted
by a model. This is defined with reference to a
special case of the � confusion matrix, with two
classes: one designated the positive class and the
other the negative class, as indicated in Table 1.

Precision can then be defined in terms of true
positives and false positives (FP) as follows.

PrecisionDTP/(TPC FP)

Cross-References

� Precision and Recall

Precision and Recall

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Definition

� Precision and recall are the measures used in
the information retrieval domain to measure how
well an information retrieval system retrieves
the relevant documents requested by a user. The
measures are defined as follows:

PrecisionDTotal number of documents re-
trieved that are relevant/total number of docu-
ments that are retrieved

RecallDTotal number of documents retrieved
that are relevant/total number of relevant docu-
ments in the database

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_663
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_100367
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_659

Predicate Logic 991

P

Precision and Recall, Table 1 The outcomes of classifi-
cation into positive and negative classes

Assigned class

Positive Negative

A
ct

ua
l

cl
as

s Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

We can employ the same terminology used in a
� confusion matrix to define these two measures.
Let relevant documents be positive examples and
irrelevant documents, negative examples. The
two measures can be redefined with reference to
a special case of the confusion matrix, with two
classes: one designated the positive class and the
other the negative class, as indicated in Table 1.

PrecisionDTrue positives/total number of
positives predictedDTP/(TPCFP)

RecallD True positives/total number of actual
positivesDTP/(TPCFN)

Instead of two measures, they are often com-
bined to provide a single measure of retrieval
performance called the � F-measure as follows:

F-measure = 2 * recall * precision/(recall +
precision)

Cross-References

�Confusion Matrix

Predicate

A predicate or predicate symbol is used in logic
to denote properties and relationships. Formally,
if P is a predicate with arity n, and t1; : : : ; tn is
a sequence of n terms (i.e., constants, variables,
or compound terms built from function symbols),
then P.t1; : : : ; tn/ is an atomic formula or atom.
Such an atom represents a statement that can be
either true or false. Using logical connectives,
atoms can be combined to build well-formed
formulae in �first-order logic or � clauses in
� logic programs.

Cross-References

�Clause
� First-Order Logic
�Logic Program

Predicate Calculus

� First-Order Logic

Predicate Invention

Definition

Predicate invention is used in � inductive logic
programming to refer to the automatic introduc-
tion of new relations or predicates in the hypoth-
esis language. Inventing relevant new predicates
is one of the hardest tasks in machine learning,
because there are so many possible ways to in-
troduce such predicates and because it is hard
to judge their quality. As an example, consider
a situation where in the predicates fatherof
and motherof are known. Then it would make
sense to introduce a new predicate that is true
whenever fatherof or motherof is true. The
new predicate that would be introduced this way
corresponds to the parentof predicate. Predi-
cate invention has been introduced in the context
of inverse resolution.

Cross-References

� Inductive Logic Programming
�Logic of Generality

Predicate Logic

� First-Order Logic

http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_298
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_103

992 Prediction with Expert Advice

Prediction with Expert Advice

�Online Learning

Predictive Software Models

� Predictive Techniques in Software Engineering

Predictive Techniques in Software
Engineering

Jelber Sayyad Shirabad
University of Ottawa, Ottawa, ON, Canada

Synonyms

Predictive software models

Introduction

Software engineering (SE) is a knowledge- and
decision-intensive activity. From the initial stages
of the software life cycle (i.e., requirement anal-
ysis), to the later stage of testing the system,
and finally maintaining the software through its
operational life, decisions need to be made which
impact both its success and failure. For instance,
during project planning one needs to be able to
forecast or predict the required resources to build
the system. At the later stages such as testing or
maintenance it is desirable to know which parts of
the system may be impacted by a change, or are
more risky or will require more intensive testing.

The process of developing software can poten-
tially create a large amount of data and domain
knowledge. The nature of the data, of course,
depends on the phase in which the data were
generated. During the requirement analysis, this
data most times is manifested in the form of
documentations. As the process moves forward,
other types of artifacts such as code and test
cases are generated. However, what, when, how
accurately, and how much is recorded varies from

one organization to the next. More mature or-
ganizations have a tendency to maintain larger
amount of data about the software systems they
develop.

The data generated as part of the software
engineering process captures a wide range of
latent knowledge about the system. Having such
a source of information, the question one needs
to ask is that whether there is any technology
that can leverage this potentially vast amount of
data to:

• Better understand a system
• Make more informative decisions as needed

through the life of an existing system
• Apply lessons learned from building other

systems to the creation of a new system

As this chapter will show, machine learning
(ML), which provides us with a host of algo-
rithms and techniques to learn from data, is such a
technology. In preparing this entry we have drawn
from over two decades of research in applying
ML to various software engineering problems.
The number of potential uses of ML in SE is
practically enormous and the list of applications
is expanding over time. The focus of this chapter
is a subset of these applications, namely the ones
that aim to create models for the purpose of
making a prediction regarding some aspect of a
software system. One could dedicate a separate
article for some of these prediction tasks, as there
is a large body of research covering different
aspects of interest, such as algorithms, estimation
methods, features used, and the like. However,
due to space constraints, we will only mention a
few representative research examples. The more
general topic of the application of ML in SE can
be studied from different points of view. A good
discussion of many such aspects and applications
can be found in Zhang and Tsai (2003).

Traditionally, regression-based techniques
have been used in software engineering for
building predictive models. However, this
requires making a decision as to what kind of
regression method should be used (e.g., linear or
quadratic), or alternatively what kind of curve
should be fit to the data. This means that the

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_661
http://dx.doi.org/10.1007/978-1-4899-7687-1_100372

Predictive Techniques in Software Engineering 993

P

general shape of the function is determined first,
and then the model is built. Some researcher, have
used ML as a way to delegate such decisions to
the algorithm. In other words, it is the algorithm
that would produce the best fit to the data. Some
of the most common replacements in the case of
regression problems have been neural networks
(NN) and genetic programming (GP). However,
obviously the use of such methods still requires
other types of decisions, such as the topology of
the network, the number of generations, or the
probability of mutations to be made by humans.
Sometimes, a combination of different methods
such as genetic algorithms and neural networks
are used, where one method explores possible
parameters for the actual method used to build
the model.

Software engineering-related datasets, similar
to many other real world datasets, are known to
contain noise. Another justification for the use of
ML in software engineering applications is that
it provides algorithms that are less sensitive to
noise.

The Process of Applying ML to SE

To apply ML to SE, similar to other applications,
one needs to follow certain steps, which include:
Understanding the problem. This is an essen-
tial step that heavily influences the decisions
to follow. Examples of typical problems in the
software engineering domain are the need to be
able to estimate the cost or effort involved in de-
veloping a software, or to be able to characterize
the quality of a software system, or to be able to
predict what modules in a system are more likely
to have a defect.

Casting the original problem as a learning prob-
lem. To use ML technology, one needs to decide
on how to formulate the problem as a learning
task. For instance, the problem of finding mod-
ules that are likely to be faulty can be cast as a
classification problem, (e.g., is the module faulty
or not) or a numeric prediction problem (e.g.,
what the estimated fault density of a module is).
This mapping is not always straightforward, and

may require further refinement of the original
problem statement or breaking down the original
problem into sub-problems, for some of them ML
may provide an appropriate solution.

Collection of data and relevant background
knowledge. Once the ML problem for a particular
SE application is identified, one needs to collect
the necessary data and background knowledge
in support of the learning task. In many SE
applications data is much more abundant or easier
to collect than the domain theory or background
knowledge relevant to a particular application.
For instance, collecting data regarding faults
discovered in a software system and changes
applied to the source to correct a fault is a
common practice in software projects. On the
other hand, there is no comprehensive and agreed
upon domain theory describing software systems.
Having said that, in the case of some applications,
if we limit ourselves to incomplete background
knowledge, then it can be automatically
generated by choosing a subset that is considered
to be relevant. For instance, in Cohen and
Devanbu (1999), the authors apply inductive
logic programming to the task of predicting faulty
modules in a software system. They describe
the software system in terms of cohesion and
coupling-based relations between classes, which
are generated by parsing the source code.

Data preprocessing and encoding. Preprocessing
the data includes activities such as reducing the
noise, selecting appropriate subsets of the col-
lected data, and determining a proper subset of
features that describe the concept to be learned.
This cleaner data will be input to a specific al-
gorithm and implementation. Therefore, the data
and background knowledge, if any, may need
to be described and formatted in a manner that
complies with the requirements of the algorithm
used.

Applying machine learning and evaluating the
results. Running a specific ML algorithm is fairly
straightforward. However, one needs to measure
the goodness of what is learned. For instance, in
the case of classification problems, models are
frequently assessed in terms of their accuracy

994 Predictive Techniques in Software Engineering

by using methods such as holdout and cross-
validation. In case of numeric prediction, other
standard measures such as mean magnitude of
relative error (MMRE) are commonly used. Ad-
ditionally, software engineering researchers have
sometimes adopted other measures for certain
applications. For instance PRED(x), which is
percentage of the examples (or samples) with
magnitude of relative error (MRE)� x. Accord-
ing to Pfleeger and Atlee (2003), most man-
agers use PRED(25) to assess cost, effort, and
schedule models, and consider the model to func-
tion well if the value of PRED(25) is greater
than 75 %. As for MMRE, a value of less than
25 % is considered to be good; however, other
researchers, such as Boehm, would recommend
a value of 10 % or less. Assessing the usefulness
of what is learned sometimes requires feedback
from domain experts or from end users. If what
is learned is determined to be inadequate, one
may need to either retry this step by adjusting the
parameters of the algorithms used, or reconsider
the decisions made in earlier stages and proceed
accordingly.

Field testing and deployment. Once what is
learned is assessed to be of value, it needs to
actually be used by the intended users (e.g.,
project managers and software engineers).
Unfortunately, despite the very large body of
research in software engineering in general and
use of ML in specific applications in SE, the
number of articles discussing the actual use and
impact of the research in industry is relatively
very small. Very often, the reason for this is the
lack of desire to share what the industry considers
to be confidential information. However, there
are numerous research articles that are based
on industrial data, which is an indication of the
practical benefits of ML in real-world SE.

Applications of Predictive Models
in SE

The development of predictive models is proba-
bly the most common application of ML in soft-
ware engineering. This observation is consistent

with findings of previous research (Zhang and
Tsai 2003). In this section, we mention some
of the predictive models one can learn from
software engineering data. Our goal is to provide
examples of both well established and newer
applications. It should be noted that the termi-
nology used by researchers in the field is not
always consistent. As such, one may argue that
some of these examples belong to more than one
category. For instance, in Fenton and Neil (1999)
the authors consider predicting faults as a way
of estimating software quality and maintenance
effort. The paper could potentially belong to any
of the categories of fault, quality, or maintenance
effort prediction.

Software Size Prediction
Software size estimation is the process of predict-
ing the size of a software system. As software
size is usually an input to models that estimate
project cost schedule and planning, an accurate
estimation of software size is essential to proper
estimation of these dependent factors. Software
size can be measured in different ways, most
common of which is the number of lines of
code (LOC); however, other alternatives, such as
function points, which are primarily for effort
estimation, also provide means to convert the
measure to LOC. There are different methods for
software sizing, one of which is the component-
based method (CBM). In a study to validate the
CBM method, Dolado (2000) compared models
generated by multiple � linear regression (MLR)
with the ones obtained by neural networks and
genetic programming. He concluded that both
NN- and GP-based models perform as well or
better than the MLR models. One of the cited
benefits of NN was its ability to capture non-
linear relations, which is one of the weaknesses of
MLR, while GP was able to generate models that
were interpretable. Regolin et al. (2003) also used
NN- and GP-based models to predict software
size in terms of LOC. They use both function
points and number of components metrics for
this task. Pendharkar (2004) uses decision tree
regression to predict the size of OO components.
The total size of the system can be calculated
after the size of its components is determined.

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Predictive Techniques in Software Engineering 995

P

Software Quality Prediction
The ISO 9126 quality standard decomposes qual-
ity to functionality, reliability, efficiency, usabil-
ity, maintainability, and portability factors. Other
models such as McCall’s, also define quality in
terms of factors that are themselves composed of
quality criteria. These quality criteria are further
associated with measurable attributes called qual-
ity metrics, for instance fault or change counts
(Fenton and Pfleeger 1998) However, as stated
in Fenton and Pfleeger (1998), many software
engineers have a narrower view of quality as the
lack of software defects. A de facto standard for
software quality is fault density. Consequently, it
is not surprising to see that in many published
articles the problem of predicting the quality of
a system is formulated as prediction of faults. To
that end, there has been a large body of work over
the years that has applied various ML techniques
to build models to assess the quality of a system.
For instance, Evett and Khoshgoftar (1998) used
genetic programming to build models that predict
the number of faults expected in each module.
Neural networks have appeared in a number of
software quality modeling applications such as
Khoshgoftaar et al. (1997), which applied the
technique to a large industrial system to clas-
sify modules as fault-prone or not fault-prone,
or Quah and Thwin (2003) who used object-
oriented design metrics as features in developing
the model. In El Emam et al. (2001) the authors
developed fault prediction models for the purpose
of identifying high-risk modules. In this study,
the authors investigated the effect of various pa-
rameter settings on the accuracy of these models.
The models were developed using data from a
large real-time system. More recently, Xing et al.
(2005) used SVMs and Seliya and Khoshgoftaar
(2007) used an EM semi-supervised learning al-
gorithm to develop software quality models. Both
these works cite the ability of these algorithms
to generate models with good performance in the
presence of a small amount of labeled data.

Software Cost Prediction
Software cost prediction typically refers to the
process of estimating the amount of effort needed
to develop a software system. As this definition

suggests, cost and effort estimations are often
used interchangeably. Various kinds of cost esti-
mations are needed throughout the software life
cycle. Early estimation allows one to determine
the feasibility of a project. More detailed esti-
mation allows managers to better plan for the
project. As there is less information available in
the early stages of the project, early predictions
have a tendency to be the least accurate. Software
cost and effort estimation models are among
some of the oldest software process prediction
models. There are different methods of estimat-
ing costs including:

(1) Expert opinion; (2) analogy based on sim-
ilarity to other projects; (3) decomposition of the
project in terms of components to deliver or tasks
to accomplish, and to generate a total estimate
from the estimates of the cost of individual com-
ponents or activities; and (4) the use of estimation
models (Fenton and Pfleeger 1998).

In general, organization-specific cost estima-
tion datasets tend to be small, as many organi-
zations deal with a limited number of projects
and do not systematically collect process level
data, including the actual time and effort ex-
penditure for completion of a project. As cost
estimation models are numeric predictors, many
of the original modeling techniques were based
on regression methods.

The study in Briand et al. (1999) aims to
identify methods that generate more accurate
cost models, as well as to investigate the ef-
fects of the use of organization-specific versus
multi-organization datasets. The authors com-
pared the accuracy of models generated by us-
ing ordinary least squares regression, stepwise
ANOVA, CART, and analogy. The measures used
were MMRE, median of MRE (MdMRE), and
PRED(25). While their results did not show a sta-
tistical difference between models obtained from
these methods, they suggest that CART models
are of particular interest due to their simplicity of
use and interpretation.

Shepperd and Schofield (1997) describes
the use of analogies for effort prediction.
In this method, projects are characterized in
terms of attributes such as the number of
interfaces, the development method, or the size

996 Predictive Techniques in Software Engineering

of the functional requirements document. The
prediction for a specific project is made based
on the characteristics of projects most similar
to it. The similarity measure used in Shepperd
and Schofield (1997) is Euclidean distance in
n-dimensional space of project features. The
proposed method was validated on nine different
industrial datasets, covering a total of 275
projects. In all cases, the analogy-based method
outperforms algorithmic models based upon
stepwise regression when measured in terms
of MMRE. When results are compared using
PRED(25) the analogy-based method generates
more accurate models in seven out of nine
datasets. Decision tree and neural network-based
models are also used in a number of studies on
effort estimation models.

In a more recent paper, (Oliveira 2006), a
comparative study of support vector regression
(SVR), radial basis function � neural networks
(RBFNs), and � linear regression-based models
for estimation of a software project effort is
presented. Both linear as well as RBF kernels
were used in the construction of SVR models.
Experiments using a dataset of software projects
from NASA showed that SVR significantly out-
performs RBFNs and linear regression in this
task.

Software Defect Prediction
In research literature one comes across different
definitions for what constitutes a defect: fault and
failure. According to Fenton and Pfleeger (1998)
a fault is a mistake in some software product due
to a human error. Failure, on the other hand, is the
departure of the system from its required behav-
ior. Very often, defects refer to faults and failures
collectively. In their study of defect prediction
models, Fenton and Neil observed that, depend-
ing on the study, defect count could refer to a
post-release defect, the total number of known
defects, or defects that are discovered after some
arbitrary point in the life cycle. Additionally,
they note that defect rate, defect density, and
failure rate are used almost interchangeably in
the literature (Fenton and Neil 1999). The lack
of an agreed-upon definition for such a funda-
mental measure makes comparison of the models

or published results in the literature difficult.
Two major reasons cited in research literature for
developing defect detection models are assessing
software quality and focusing testing or other
needed resources on modules that are more likely
to be defective. As a result, we frequently find
ourselves in a situation where a model could be
considered both a quality prediction model and a
defect prediction model. Therefore, most of the
publications we have mentioned under software
quality prediction could also be referred to in
this subsection. Fenton and Neil suggest using
Bayesian Belief Networks as an alternative to
other existing methods (Fenton and Neil 1999).

Software Reliability Prediction
The ANSI Software Reliability Standard defines
software reliability as:

“the probability of failure-free operation of a com-
puter program for a specified time in a specified
environment.”

Software reliability is an important attribute
of software quality. There are a number of
publications on the use of various neural network-
based reliability prediction models, including
Sitte (1999) where NN-based software reliability
growth models are compared with models
obtained through recalibration of parametric
models. Results show that neural networks
are not only much simpler to use than the
recalibration method, but that they are equal
or better trend predictors. In Pai and Hong
(2006) the authors use SVMs to predict software
reliability. They use simulated annealing to
select the parameters of the SVM model. Results
show that an SVM-based model with simulated
annealing performs better than existing Bayesian
models.

Software Reusability Prediction
The use of existing software artifacts or software
knowledge is known as software reuse. The aim
of software reuse is to increase the productivity of
software developers, and increase the quality of
end product, both of which contribute to overall
reduction in software development costs. While
the importance of software reuse was recognized

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Predictive Techniques in Software Engineering 997

P

as early as 1968 by Douglas McIlroy, applica-
tions of ML in predicting reusable components
are relatively few and far between. The typical
approach is to label the reusable piece of code
(i.e., a module or a class) as one of reusable or
non-reusable, and to then use software metrics to
describe the example of interest. An early work
by Esteva (1990) used ID3 to classify Pascal
modules from different application domains as
either reusable or not-reusable. These modules
contained different number of procedures. Later
work in Mao et al. (1998) uses models built using
C4.5 as a means to verify three hypothesis of
correlation between reusability and the quantita-
tive attributes of a piece of software: inheritance,
coupling, and complexity. For each hypothesis, a
set of relevant metrics (e.g., complexity metrics
for a hypothesis on the relation between com-
plexity and reuse) is used to describe examples.
Each example is labeled as one of four classes
of reusability, ranging from “totally reusable” to
“not reusable at all.” If the learned model per-
forms well then this is interpreted as the existence
of a hypothesized relation between reuse and one
of the abovementioned quantitative attributes.

Other Applications
In this section, we discuss some of the more re-
cent uses of ML techniques in building predictive
models for software engineering applications that
do not fall into one the above widely researched
areas.

In Padberg et al. (2004) models are learned
to predict the defect content of documents after
software inspection. Being able to estimate how
many defects are in a software document (e.g.,
specifications, designs) after the inspection, al-
lows managers to decide whether to re-inspect the
document to find more defects or pass it on to the
next development step. To capture the non-linear
relation between the inspection process metrics,
such as total number of defects found by the
inspection team and the number of defects in
the document, the authors train a neural network.
They conclude that these models yield much
more accurate estimates than standard estimation
methods such as capture-recapture and detection
profile.

Predicting the stability of object-oriented soft-
ware, defined as the ease by which a software
system or component can be changed while main-
taining its design, is the subject of research in
Grosser et al. (2002). More specifically, stability
is defined as preservation of the class interfaces
through evolution of the software. To accomplish
the above task, the authors use Cased-Base Rea-
soning. A class is considered stable if its public
interface in revision J is included in revision
J C 1. Each program class or case is represented
by structural software metrics, which belong to
one of the four categories of coupling, cohesion,
inheritance, and complexity.

Models that predict which defects will be es-
calated are developed in Ling et al. (2006). Esca-
lated defects are the ones that were not addressed
prior to release of the software due to factors such
as deadlines and limited resources. However, af-
ter the release, these defects are escalated by the
customer and must be immediately resolved by
the vendor at a very high cost. Therefore, the
ability to predict the risk of escalation for existing
defect reports will prevent many escalations, and
result in large savings for the vendor. The authors
in this paper show how the problem of maximiz-
ing net profit (the difference in cost of follow-
ing predictions made by the escalation predic-
tion model versus the existing alternative policy)
can be converted to cost-sensitive learning. The
assumption here is that net profit can be repre-
sented as a linear combination of true positive,
false positive, true negative, and false negative
prediction counts, as is done for cost-sensitive
learning that attempts to minimize the weighted
cost of the abovementioned four factors. The re-
sults of the experiments performed by the authors
show that an improved version of the CSTree
algorithm can produce comprehensible models
that generate a large positive unit net profit.

Most predictive models developed for soft-
ware engineering applications, including the ones
cited in this article, make prediction regarding a
single entity – for instance, whether a module is
defective, how much effort is needed to develop
a system, is a piece of code reusable, and so
on. Sayyad Shirabad et al. (2007) introduced
the notion of relevance relations among multiple

998 Predictive Techniques in Software Engineering

entities in software systems. As an example of
such relations, the authors applied historic prob-
lem report and software change data to learned
models for the Co-update relation among files in
a large industrial telecom system. These models
predict whether changing one source file may
require a change in another file. Different sets of
attributes, including syntax-based software met-
rics as well as textual attributes such as source
file comments and problem reports, are used to
describe examples of the Co-update relation. The
C5.0 decision tree induction algorithm was used
to learn these predictive models. The authors
concluded that text-based attributes outperform
syntactic attributes in this model-building task.
The best results are obtained for text-based at-
tributes extracted from problem reports. Addi-
tionally, when these attributes are combined with
syntactic attributes, the resulting models perform
slightly better.

Future Directions

As we mentioned earlier due to its decision-
intensive nature, there is potential for learning
a large number of predictive models for
software engineering tasks. A very rich area
of research for future applications of predictive
models in software engineering is in Autonomic
Computing. Autonomic computing systems, as
was put forward in Ganek and Corbi (2003),
should be:

• Self-configuring: able to adapt to changes in
the system in a dynamic fashion.

• Self-optimizing: able to improve performance
and maximize resource allocation and utiliza-
tion to meet end users’ needs while minimiz-
ing human intervention.

• Self-healing: able to recover from mistakes by
detecting improper operations proactively or
reactively and then initiate actions to remedy
the problem without disrupting system appli-
cations.

• Self-protecting: able to anticipate and take ac-
tions against intrusive behaviors as they occur,

so as to make the systems less vulnerable to
unauthorized access.

Execution of actions in support of the capabil-
ities mentioned above follows the detection of a
triggering change of state in the environment. In
some scenarios, this may entail a prediction about
the current state of the system; in other scenarios,
the prediction may be about the future state of the
system. In a two-state scenario, the system needs
to know whether it is in a normal or abnormal
(undesired) state. Examples of undesired states
are needs optimization or needs healing. The
detection of the state of a system can be cast as
a classification problem. The decision as to what
attributes should be used to represent each ex-
ample of a normal or an abnormal state depends
on the specific prediction model that we would
like to build and on the monitoring capabilities of
the system. Selecting the best attributes among a
set of potential attributes will require empirical
analysis. However, the process can be further
aided by:

• Expert knowledge: Based on their past experi-
ence, hardware and software experts typically
have evidence or reasons to believe that some
attributes are better indicators of desired or
undesired states of the system.

• Documentation: System specification and
other documents sometimes include the range
of acceptable values for certain parameters of
the system. These parameters could be used
as attributes.

• Feature selection: This aims to find a subset
of available features or attributes that result in
improving a predefined measure of goodness,
such as the accuracy of the model. Reducing
the number of features may also result in a
simpler model. One of the benefits of such
simpler models is the higher prediction speed,
which is essential for timely responses by the
autonomic system to changes in the environ-
ment.

Obviously, given enough examples of different
system states, one can build multi-class models,

Predictive Techniques in Software Engineering 999

P

which can make finer predictions regarding the
state of the system.

In the context of autonomic computing, be-
sides classification models, numeric predictors
can also be used for resource estimation (e.g.,
what is the appropriate database cache size con-
sidering the current state of the system). Fur-
thermore, an autonomic system can leverage the
ability to predict the future value of a variable
of interest, such as the use of a particular re-
source based on its past values. This can be
accomplished through � time series predictions.
Although researchers have used neural networks
and support vector machines for time series pre-
diction in various domains, we are not aware of
an example of the usage of such algorithms in
autonomic computing.

Recommended Reading

Briand L, El Emam K, Surmann D, Wieczorek I (1999)
An assessment and comparison of common software
cost estimation modeling techniques. In: Proceed-
ings of 21st international conference on software
engineering, Los Angeles, pp 313–322

Cohen W, Devanbu P (1999) Automatically exploring
hypotheses about fault prediction: a comparative
study of inductive logic programming methods. Int
J Softw Eng Knowl Eng 9(5):519–546

Dolado JJ (2000) A validation of the component-based
method for software size estimation. IEEE Trans
Softw Eng 26(10):1006–1021

El Emam K, Benlarbi S, Goel N, Rai S (2001) Compar-
ing case-based reasoning classifiers for predicting
high risk software components. J Syst Softw 55(3):
301–320

Esteva JC (1990) Learning to recognize reusable soft-
ware modules using an inductive classification sys-
tem. In: Proceedings of the fifth Jerusalem confer-
ence on information technology, Jerusalem, pp 278–
285

Evett M, Khoshgoftar T (1998) GP-based software
quality prediction. In: Proceedings of the third an-
nual conference on genetic programming, pp 60–65

Fenton N, Neil M (1999) A critique of software
defect prediction models. IEEE Trans Softw Eng
25(5):675–689

Fenton NE, Pfleeger SL (1998) Software metrics: a
rigorous and practical approach, 2nd edn. PWS,
Boston

Ganek AG, Corbi TA (2003) The dawning of auto-
nomic computing era. IBM Syst J 42(1):5–18

Grosser D, Sahraoui HA, Valtchev P (2002) Predicting
software stability using case-based reasoning. In:

Proceedings of 17th IEEE international conference
on automated software engineering (ASE), Edin-
burgh, pp 295–298

Khoshgoftaar T, Allen E, Hudepohl J, Aud S (1997)
Applications of neural networks to software quality
modeling of a very large telecommunications sys-
tem. IEEE Trans Neural Netw 8(4):902–909

Ling C, Sheng V, Bruckhaus T, Madhavji N (2006)
Maximum profit mining and its application in soft-
ware development. In: Proceedings of the 12th
ACM international conference on knowledge dis-
covery and data mining (SIGKDD), Philadelphia,
pp 929–934

Mao Y, Sahraoui H, Lounis H (1998) Reusability
hypothesis verification using machine learning tech-
niques: a case study. In: Proceedings of the 13th
IEEE international conference on automated soft-
ware engineering, Honolulu, pp 84–93

Oliveira A (2006) Estimation of software project effort
with support vector regression. Neurocomputing
69(13–15):1749–1753

Padberg F, Ragg T, Schoknecht R (2004) Using ma-
chine learning for estimating the defect content after
an inspection. IEEE Trans Softw Eng 30(1):17–28

Pai PF, Hong WC (2006) Software reliability fore-
casting by support vector machines with simulated
annealing algorithms. J Syst Softw 79(6):747–755

Pendharkar PC (2004) An exploratory study of object-
oriented software component size determinants and
the application of regression tree forecasting mod-
els. Inf Manag 42(1):61–73

Pfleeger SL, Atlee JM (2003) Software engineering:
theory and practice. Prentice-Hall, Upper Saddle
River

Quah TS, Thwin MMT (2003) Application
of neural networks for software quality
prediction using object-oriented metrics.
In: Proceedings of international conference
on software maintenance, Amsterdam,
pp 22–26

Regolin EN, de Souza GA, Pozo ART, Vergilio SR
(2003) Exploring machine learning techniques for
software size estimation. In: Proceedings of the 23rd
international conference of the Chilean computer
science society (SCCC), Chillan, pp 130–136

Sayyad Shirabad J, Lethbridge TC, Matwin S (2007)
Modeling relevance relations using machine learn-
ing techniques. In: Tsai J, Zhang D (eds) Advances
in machine learning applications in software engi-
neering. IGI, pp 168–207

Seliya N, Khoshgoftaar TM (2007) Software quality
estimation with limited fault data: a semi-supervised
learning perspective. Softw Qual J 15(3):327–344

Shepperd M, Schofield C (1997) Estimating software
project effort using analogies. IEEE Trans Softw
Eng 23(11):736–743

Sitte R (1999) Comparison of software-reliability-
growth predictions: neural networks vs parametric-
recalibration. IEEE Trans Reliab 48(3):285–
291

http://dx.doi.org/10.1007/978-1-4899-7687-1_972

1000 Preference Learning

Xing F, Guo P, Lyu MR (2005) A novel method for
early software quality prediction based on support
vector machine. In: Proceedings of IEEE interna-
tional conference on software reliability engineer-
ing, Chicago, pp 213–222

Zhang Du, Tsai JP (2003) Machine learning and soft-
ware engineering. Softw Qual J 11(2):87–119

Preference Learning

Johannes Fürnkranz1;3 and Eyke Hüllermeier2

1Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
2Department of Computer Science, Paderborn
University, Paderborn, Germany
3Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Preference learning refers to the task of learn-
ing to predict (contextualized) preferences on
a collection of alternatives, which are often
represented in the form of an order relation,
on the basis of observed or revealed preference
information. Supervision in preference learn-
ing is typically weak, in the sense that only
partial information about sought structures or
indirect information about an underlying value
function are provided; a common example is
feedback in the form of pairwise comparisons
between alternatives. Especially important in
preference learning are ranking problems, in
which preferences are represented in terms of
total or partial order relations. Such problems
can be approached in two fundamentally dif-
ferent ways, either by learning binary prefer-
ences on pairs of alternatives or by inducing
an underlying (latent) value function on single
alternatives.

Synonyms

Comparison training; Constraint classification;
Learning from preferences

Motivation and Background

Preference information plays a key role in au-
tomated decision-making and appears in vari-
ous guises in artificial intelligence (AI) research
(Domshlak et al. 2011). In particular, the for-
mal modeling of preferences can be considered
an essential aspect of autonomous agent design.
Yet, in spite of the existence of formalisms for
representing preferences in a compact way, such
as CP-networks (Boutilier et al. 2004), modeling
preferences by hand is a difficult task. This is
an important motivation for preference learning,
which is meant to support and partly automatize
the design of preference models. Roughly speak-
ing, preference learning is concerned with the
automated acquisition of preference models from
observed or revealed preference information, that
is, data from which (possibly uncertain) prefer-
ence representations can be deduced in a direct
or indirect way.

Computerized methods for revealing the
preferences of individuals (users) are useful not
only in AI but also in many other fields showing
a tendency for personalization of products and
services, such as computational advertising, e-
commerce, and information retrieval, where
such techniques are also known as � learning
to rank (Liu 2011). Correspondingly, a number
of methods and tools have been proposed with
the goal of leveraging the manifold information
that users provide about their preferences,
either explicitly via ratings, written reviews,
etc. or implicitly via their behavior (shopping
decisions, websites visited, and so on). Typical
examples include � recommender systems and
� collaborative filtering, which can be viewed
as special cases of preference learning. A first
attempt at setting a common framework for this
emerging subfield of machine learning was made
by Fürnkranz and Hüllermeier (2010).

Ranking is one of the key tasks in the realm of
preference learning. One can distinguish between
two important types of ranking problems, namely,
learning from object and learning from label pref-
erences. A ranking is a special type of preference
structure, namely, a strict total order, that is, a
binary relation � on a set A of alternatives that

http://dx.doi.org/10.1007/978-1-4899-7687-1_100073
http://dx.doi.org/10.1007/978-1-4899-7687-1_100080
http://dx.doi.org/10.1007/978-1-4899-7687-1_100256
http://dx.doi.org/10.1007/978-1-4899-7687-1_893
http://dx.doi.org/10.1007/978-1-4899-7687-1_964
http://dx.doi.org/10.1007/978-1-4899-7687-1_945

Preference Learning 1001

P

is total, irreflexive, and transitive. In agreement
with our preference semantics, a � b suggests
that alternative a is preferred to alternative b.
However, in a wider sense, the term “preference”
can simply be interpreted as any kind of order
relation. For example, a � b can also mean that
a is an algorithm that outperforms b on a certain
problem or that a is a student finishing her studies
before another student b.

Structure of the Learning System

An important difference between object and label
ranking concerns the formal representation of
the preference context and the alternatives to be
ordered. In object ranking, the alternatives them-
selves are characterized by properties, typically
in terms of a feature vector (attribute-value rep-
resentation). Thus, the learner has the possibility
to generalize via properties of the alternatives,
whence a ranking model can be applied to arbi-
trary sets of such alternatives. In label ranking,
the alternatives to be ranked are labels as in clas-
sification learning, i.e., mere identifiers without
associated properties. Instead, the ranking con-
text is characterized in terms of an instance from
a given instance space, and the task of the model
is to rank alternatives depending on properties of
the context. Thus, the context may change (as
opposed to object ranking, where it is implicitly
fixed), but the objects to be ranked remain the
same. Stated differently, object ranking is the
problem to rank varying sets of objects under
invariant preferences, whereas label ranking is
the problem to rank an invariant set of objects
under varying preferences.

Both problems can be approached in two prin-
cipal ways, either by learning a value function
that induces the sought ranking by evaluating
individual alternatives or by comparing pairs of
alternatives, that is, learning a binary prefer-
ence relation. Note that the first approach implic-
itly assumes an underlying total order relation,
since numerical (or at least totally ordered) utility
scores enforce the comparability of alternatives.
The second approach is more general in this
regard, as it also allows for partial order relations.

On the other hand, this approach may lead to
additional complications, since a set of hypothet-
ical binary preferences induced from empirical
data may exhibit inconsistencies in the form of
preferential cycles.

Learning from Object Preferences
The most frequently studied problem in learning
from preferences is to induce a ranking function
r. � / that is able to order any (finite) subset O
of an underlying (possibly infinite) class X of
objects. That is, r. � / assumes as input a subset
O � X of objects and returns as output a
permutation � of f1; : : : ; jOjg. The interpretation
of this permutation is that, for objects xi ; xj 2 O,
the former is preferred to the latter whenever
�.i/ < �.j /. The objects themselves are typi-
cally characterized by a finite set of features as in
conventional attribute-value learning. The train-
ing data consists of a set of exemplary pairwise
preferences x � x0 with x; x0 2 X . A survey of
object ranking approaches is given by Kamishima
et al. (2010).

Note that, in order to evaluate the predictive
performance of a ranking algorithm, an accuracy
measure (or loss function) is needed that com-
pares a predicted ranking with a given reference
ranking. To this end, one can refer, for example,
to statistical measures of � rank correlation.
Expected or empirical loss minimization is a
difficult problem for measures of that kind,
especially because they are not (instance-wise)
decomposable.

Many � learning to rank problems may be
viewed as object ranking problems. For example,
Joachims (2002) studies a scenario where the
training information could be provided implicitly
by the user who clicks on some of the links in a
query result and not on others. This information
can be turned into binary preferences by assum-
ing a preference of the selected pages over those
nearby pages that are not clicked on. Applications
in information retrieval typically suggest loss
functions that put more emphasis on the top and
less on the bottom of a ranking; for this purpose,
specific measures have been proposed, such as
the (normalized) discounted cumulative gain (Liu
2011).

http://dx.doi.org/10.1007/978-1-4899-7687-1_705
http://dx.doi.org/10.1007/978-1-4899-7687-1_893

1002 Preference Learning

Learning from Label Preferences
In label ranking, preferences are contextualized
by elements x of an instance space X , and the
goal is to learn a ranking function X �! Sm

for a fixed m � 2. Thus, for any instance x 2
X (e.g., a person), a prediction in the form of
an associated ranking �x of a finite set L D
f�1; : : : ; �mg of labels or alternatives is sought,
where �i �x �j means that instance x prefers
�i to �j . Again, the quality of a prediction of
that kind is typically captured in terms of a rank
correlation measure (or an associated loss func-
tion). The training information consists of a set of
instances for which (partial) knowledge about the
associated preference relation is available. More
precisely, each training instance x is associated
with a subset of all pairwise preferences. Thus,
despite the assumption of an underlying (“true”)
target ranking, the training data is not expected
to provide full information about such rankings
(and may even contain inconsistencies, such as
pairwise preferences that are conflicting due to
observation errors).

The above formulation essentially follows
Fürnkranz and Hüllermeier (2010), though
similar formalizations have been proposed
independently by several authors; for an
overview, see the survey papers by Vembu
and Gärtner (2010) and Zhou et al. (2014).
Label ranking contributes to the general trend of
extending machine learning methods to complex
and structured output spaces (Tsochantaridis
et al. 2005). Moreover, label ranking can be
viewed as a generalization of several standard
learning problems. In particular, the following
well-known problems are special cases of
learning label preferences: (i) � classification,
where a single class label � is assigned to
each instance x; this is equivalent to the set
of preferences f� �x �j j�j 2 L n f�gg, and (ii)
�multi-label classification, where each training
example x is associated with a subset L � L of
possible labels. This is equivalent to the set of
preferences f�i �x �j j�i 2 L; �j 2 L n Lg.
In each of the former scenarios, the sought
prediction can be obtained by post-processing
the output of a ranking model f W X �! Sm

in a suitable way. For example, in multi-class

classification, where only a single label is
requested, it suffices to project a label ranking
to the top-ranked label.

Applications of this general framework can be
found in various fields, for example, in marketing
research; here, one might be interested in discov-
ering dependencies between properties of clients
and their preferences for products. Another ap-
plication scenario is �meta-learning, where the
task is to rank learning algorithms according
to their suitability for a new dataset, based on
the characteristics of this dataset (Schäfer and
Hüllermeier 2015). Moreover, every preference
statement in the well-known CP-nets approach
(Boutilier et al. 2004), a qualitative graphical rep-
resentation that reflects conditional dependence
and independence of preferences under a ceteris
paribus interpretation, formally corresponds to a
label ranking function that orders the values of
a certain attribute depending on the values of the
parents of this attribute (predecessors in the graph
representation).

Other Settings
A number of variants of the above ranking prob-
lems have been proposed and studied in the
literature. For example, a setting referred to as
instance ranking is very similar to object ranking.
However, instead of relative (pairwise) compar-
isons, training data consists of absolute ratings
of alternatives; typically these ratings are taken
from an ordinal scale, such as 1 to 5 stars. More-
over, a predicted ranking is not compared with
another (ground-truth) ranking but with the multi-
partition induced by the rating of the alternatives
(Fürnkranz et al. 2009).

Attempts have also been made at combining
object and label ranking, that is, to exploit feature
representations of both the preference context and
the alternatives to be ranked. One approach is to
combine both pieces of information by means of
a joint feature map 	 W X � Y �! Z and to
learn a value function f W Z �! R; here, Y
is a parametric or structured space of alternatives
and Z � R

d a joint feature space (Tsochantaridis
et al. 2005; Schäfer and Hüllermeier 2015).

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_910
http://dx.doi.org/10.1007/978-1-4899-7687-1_543

Preference Learning 1003

P

Learning Utility Functions
Evaluating alternatives in terms of a value or
utility function is a very natural way of repre-
senting preferences, which has a long tradition in
economics and decision theory (Fishburn 1969).
In the object preferences scenario, such a function
is a mapping f W X �! R that assigns a utility
degree f .x/ to each object x and, thereby, in-
duces a linear order on X . In the label preferences
scenario, a utility function fi W X �! U is
needed for every label �i , i D 1; : : : ; m. Here,
fi .x/ is the utility assigned to alternative �i in
the context x. To obtain a ranking for x, the
alternatives are ordered according to their utility
scores, i.e., a ranking �x is derived such that
�i �x �j implies fi .x/ � fj .x/.

If the training data offers the utility scores
directly, preference learning essentially reduces
to a standard � regression or an ordinal regres-
sion problem, depending on the underlying utility
scale. This information can rarely be assumed,
however. Instead, usually only constraints derived
from comparative preference information of the
form “this alternative should have a higher utility
score than that alternative” are given. Thus, the
challenge for the learner is to find a value function
that is as much as possible in agreement with a set
of such constraints.

For object ranking approaches, this idea has
first been formalized by Tesauro (1989) under
the name comparison training. He proposed a
symmetric neural-network architecture that can
be trained with representations of two states and
a training signal that indicates which of the two
states is preferable. The elegance of this approach
comes from the property that one can replace
the two symmetric components of the network
with a single network, which can subsequently
provide a real-valued evaluation of single states.
Similar ideas have also been investigated for
training other types of classifiers, in particular
support vector machines. We already mentioned
Joachims (2002) who analyzed “click-through
data” in order to rank documents retrieved by a
search engine according to their relevance. Ear-
lier, Herbrich et al. (1998) proposed an algorithm
for training SVMs from pairwise preference rela-
tions between objects.

For the case of label ranking, a corresponding
method for learning the functions fi . � /, i D
1; : : : ; m, from training data has been proposed in
the framework of constraint classification, which
allows for reducing a label ranking to a single
binary classification problem (Har-Peled et al.
2002). The learning method proposed in this
work constructs two training examples, a positive
and a negative one, for each given preference
�i �x �j , where the original N -dimensional
training example (feature vector) x is mapped
into an .m�N/-dimensional space. In this space,
the learner finds a linear model (hyperplane)
f that separates the positive from the negative
examples. Finally, the model f is “split” into m
linear value functions f1; : : : ; fm, one for each
label.

Learning Preference Relations
An alternative to learning latent utility functions
consists of learning binary preference relations,
which essentially amounts to reducing prefer-
ence learning to binary classification. For object
ranking, the pairwise approach has been pursued
in Cohen et al. (1999). The authors propose
to solve object ranking problems by learning
a binary preference predicate Q.x; x0/, which
predicts whether x is preferred to x0 or vice versa.
A final ordering is found in a second phase by
deriving a ranking that is maximally consistent
with these (possibly conflicting) predictions.

For label ranking, the pairwise approach has
been introduced in Hüllermeier et al. (2008) as
a natural extension of pairwise classification, a
well-known � class binarization technique. The
idea is to train a separate model (base learner)
Mi;j for each pair of labels .�i ; �j / 2 L, 1 �
i < j � m; thus, a total number of m.m � 1/=2
models are needed. For training, a preference
information of the form �i �x �j is turned into
a (classification) example .x; y/ for the learner
Ma;b , where a D min.i; j / and b D max.i; j /.
Moreover, y D 1 if i < j and y D 0 otherwise.
Thus, Ma;b is intended to learn the mapping
that outputs 1 if �a �x �b and 0 if �b �x

�a. This mapping can be realized by any binary
classifier. Instead of a f0; 1g-valued classifier, one
can of course also employ a scoring classifier. For

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_915

1004 Preference Learning

example, the output of a probabilistic classifier
would be a number in the unit interval Œ0; 1�
that can be interpreted as a probability of the
preference �a �x �b .

At classification time, a query x0 2 X is
submitted to the complete ensemble of binary
learners. Thus, a collection of predicted pairwise
preference degrees Mi;j .x/, 1 � i; j � m,
is obtained. The problem, then, is to turn these
pairwise preferences into a ranking of the label
set L. To this end, different ranking procedures
can be used. The simplest approach is to extend
the (weighted) voting procedure that is often
applied in pairwise classification: For each label
�i , a score

Si D
X

1�j¤i�m

Mi;j .x0/

is derived (where Mi;j .x0/ D 1 �Mj;i .x0/ for
i > j), and then the labels are ordered accord-
ing to these scores. Despite its simplicity, this
ranking procedure has several appealing proper-
ties. Apart from its computational efficiency, it
turned out to be relatively robust in practice, and,
moreover, it possesses some provable optimality
properties in the case where Spearman’s rank
correlation is used as an underlying accuracy
measure. Roughly speaking, if the binary learners
are unbiased probabilistic classifiers, the simple
“ranking by weighted voting” procedure yields a
label ranking that maximizes the expected Spear-
man rank correlation (Hüllermeier and Fürnkranz
2010). Finally, it is worth mentioning that, by
changing the ranking procedure, the pairwise ap-
proach can also be adjusted to accuracy measures
other than Spearman’s rank correlation.

Other Approaches

Referring to the type of training data and the loss
function to be minimized on this data, learning
value functions and learning preference relations
are sometimes called the “pointwise” and “pair-
wise” approach to preference learning, respec-
tively. This is distinguished from the “listwise”
approach, in which a loss is defined on a predicted

ranking directly. This can be done, for example,
on the basis of probabilistic models of ranking
data, such as the Plackett-Luce model. The idea,
then, is to learn the parameters of a probabilistic
model using statistical methods such as maxi-
mum likelihood estimation (or, equivalently, min-
imizing logarithmic loss). Methods of this kind
have been proposed both for object ranking (Cao
et al. 2007) and label ranking (Cheng et al. 2010).

Yet another alternative is to resort to the idea
of local estimation techniques as prominently
represented, for example, by the � nearest
neighbor estimation principle: Considering
the rankings observed in similar situations as
representative, a ranking for the current situation
is estimated on the basis of these neighbor
rankings, namely, by finding a suitable consensus
among them; essentially, this is a problem of rank
aggregation (Cheng et al. 2009).

Future Directions

As already said, preference learning is an emerg-
ing branch of machine learning and still de-
veloping quite dynamically. In particular, new
settings or variants of existing frameworks will
certainly be proposed and studied in the future.
As for ranking problems, for example, an obvious
idea and reasonable extension is to go beyond
strict total order relations and instead allow for
incomparability or indifference between alter-
natives and for representing uncertainty about
predicted relations (Cheng et al. 2012). Another
interesting direction is to combine preference
learning with � online learning, i.e., to predict
preferences in an online setting. First steps in the
direction of online preference learning have re-
cently been made with a preference-based variant
of the �multiarmed bandit problem (Busa-Fekete
and Hüllermeier 2014).

Cross-References

�Class Binarization
�Classification
�Metalearning

http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_100316
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_543

Pre-pruning 1005

P

�Multi-armed bandit
�Online Learning
�Rank Correlation
�Regression

Recommended Reading

Boutilier C, Brafman R, Domshlak C, Hoos H, Poole
D (2004) CP-nets: a tool for representing and rea-
soning with conditional ceteris paribus preference
statements. J AI Res 21:135–191

Busa-Fekete R, Hüllermeier E (2014) A survey of
preference-based online learning with bandit algo-
rithms. In: Proceedings of ALT, 25th international
conference on algorithmic learning theory, Bled.
Springer, pp 18–39

Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning
to rank: from pairwise approach to listwise ap-
proach. In: Proceedings of ICML, 24th international
conference on machine learning, pp 129–136

Cheng W, Hühn J, Hüllermeier E (2009) Decision
tree and instance-based learning for label rank-
ing. In: Proceedings of ICML–2009, 26th interna-
tional conference on machine learning, Montreal,
pp 161–168

Cheng W, Dembczynski K, Hüllermeier E (2010) La-
bel ranking based on the Plackett-Luce model. In:
Proceedings of ICML–2010, international confer-
ence on machine learning, Haifa, pp 215–222

Cheng W, Hüllermeier E, Waegeman W, Welker
V (2012) Label ranking with partial abstention
based on thresholded probabilistic models. In: Pro-
ceedings of NIPS–2012, 26th annual conference
on neural information processing systems, Lake
Tahoe

Cohen WW, Schapire RE, Singer Y (1999) Learning to
order things. J Artif Intell Res 10(1):243–270

Domshlak C, Hüllermeier E, Kaci S, Prade H (2011)
Preferences in AI: an overview. Artif Intell 175(7–
8):1037–1052

Fishburn PC (1969) Utility-theory for decision mak-
ing. Wiley, New York

Fürnkranz J, Hüllermeier E (eds) (2010) Preference
learning. Springer, Heidelberg/New York

Fürnkranz J, Hüllermeier E (2010) Preference learn-
ing: an introduction. In: Preference learning.
Springer, Heidelberg/New York, pp 1–18

Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Bi-
nary decomposition methods for multipartite rank-
ing. In: Proceedings of ECML/PKDD–2009, Euro-
pean conference on machine learning and knowl-
edge discovery in databases, Bled

Har-Peled S, Roth D, Zimak D (2002) Constraint
classification: a new approach to multiclass classi-
fication. In: Proceedings of 13th international con-
ference on algorithmic learning theory, Lübeck.
Springer, pp 365–379

Herbrich R, Graepel T, Bollmann-Sdorra P, Ober-
mayer K (1998) Supervised learning of preference
relations. In: Proceedings des Fachgruppentreffens
Maschinelles Lernen (FGML-98), pp 43–47

Hüllermeier E, Fürnkranz J (2010) On predictive accu-
racy and risk minimization in pairwise label rank-
ing. J Comput Syst Sci 76(1):49–62

Hüllermeier E, Fürnkranz J, Cheng W, Brinker K
(2008) Label ranking by learning pairwise prefer-
ences. Artif Intell 172:1897–1917

Joachims T (2002) Optimizing search engines us-
ing clickthrough data. In: Proceedings of KDD–
02, 8th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM Press,
pp 133–142

Kamishima T, Kazawa H, Akaho S (2010) A survey
and empirical comparison of object ranking meth-
ods. In: Fürnkranz J, Hüllermeier E (eds) Pref-
erence learning. Springer, Heidelberg/New York,
pp 181–202

Liu TY (2011) Learning to rank for information re-
trieval. Springer, Berlin/Heidelberg/New York

Schäfer D, Hüllermeier E (2015) Dyad ranking us-
ing a bilinear Plackett-Luce model. In: Proceed-
ings of ECML/PKDD–2015, European conference
on machine learning and knowledge discovery in
databases, Porto

Tesauro G (1989) Connectionist learning of expert
preferences by comparison training. In: Advances in
neural information processing systems 1 (NIPS-88).
Morgan Kaufmann, pp 99–106

Tsochantaridis I, Joachims T, Hofmann T, Altun Y
(2005) Large margin methods for structured and
interdependent output variables. J Mach Learn Res
6:1453–1484

Vembu S, Gärtner T (2010) Label ranking: a survey.
In: Fürnkranz J, Hüllermeier E (eds) Preference
learning. Springer, Heidelberg/New York

Zhou Y, Lui Y, Yang J, He X, Liu L (2014) A taxonomy
of label ranking algorithms. J Comput 9(3):557

Pre-pruning

Synonyms

Stopping criteria

Definition

Pre-pruning is a �Pruning mechanism that mon-
itors the learning process and prevents further
refinements if the current hypothesis becomes too
complex.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100315
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_705
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_100449
http://dx.doi.org/10.1007/978-1-4899-7687-1_687

1006 Presynaptic Neuron

Cross-References

�Overfitting
� Post-pruning
� Pruning

Presynaptic Neuron

The neuron that sends signals across a synap-
tic connection. A chemical synaptic connection
between two neurons allows to transmit signals
from a presynaptic neuron to a postsynaptic neu-
ron.

Principal Component Analysis

Synonyms

PCA

Definition

Principal Component Analysis (PCA) is a
� dimensionality reduction technique. It is
described in � covariance matrix.

Prior

� Prior Probability

Prior Probability

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Prior

Definition

In Bayesian inference, a prior probability of a
value x of a random variable X , P(X D x/, is
the probability of X assuming the value x in the
absence of (or before obtaining) any additional
information. It contrasts with the � posterior
probability, P(X D xjY D y), the probability of
X assuming the value x in the context of Y D y.

For example, it may be that the prevalence of
a particular form of cancer, exoma, in the popu-
lation is 0.1 %, so the prior probability of exoma,
P(exomaD true), is 0.001. However, assume
50 % of people who have skin discolorations
of greater than 1 cm width (sd > 1 cm) have
exoma. It follows that the posterior probability
of exoma given sd > 1 cm, P(exomaD true j
sd > 1 cmD true), is 0.500.

Cross-References

�Bayesian Methods

Privacy-Preserving Data Mining

� Privacy-Related Aspects and Techniques

Privacy-Related Aspects and
Techniques

Stan Matwin
University of Ottawa, Ottawa, ON, Canada
Polish Academy of Sciences, Warsaw, Poland

Synonyms

Privacy-preserving data mining

Definition

The privacy-preserving aspects and techniques of
machine learning cover the family of methods

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_649
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_100358
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_57
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_100373
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_668
http://dx.doi.org/10.1007/978-1-4899-7687-1_100375

Privacy-Related Aspects and Techniques 1007

P

and architectures developed to protect the pri-
vacy of people whose data are used by machine
learning (ML) algorithms. This field, also known
as privacy-preserving data mining (PPDM), ad-
dresses the issues of data privacy in ML and data
mining. Most existing methods and approaches
are intended to hide the original data from the
learning algorithm, while there is emerging inter-
est in methods ensuring that the learned model
does not reveal private information. Another re-
search direction contemplates methods in which
several parties bring their data into the model-
building process without mutually revealing their
own data.

Motivation and Background

The key concept for any discussion of the privacy
aspects of data mining is the definition of privacy.
After Alan Westin, we understand privacy as
the ability “of individuals : : : to determine for
themselves when, how, and to what extent infor-
mation about them is communicated to others”
(Westin 1967). One of the main societal con-
cerns about modern computing is that the storing,
keeping, and processing of massive amounts of
data may jeopardize the privacy of individuals
whom the data represent. In particular, ML and
its power to find patterns and infer new facts
from existing data makes it difficult for people to
control information about themselves. Moreover,
the infrastructure normally put together to con-
duct large-scale model building (e.g., large data
repositories and data warehouses), is conducive
to misuse of data. Personal data, amassed in
large collections that are easily accessed through
databases and often available online to the entire
world, become – as phrased by Moor in an apt
metaphor (Moor 2004) – “greased.” It is difficult
for people to control the use of this data.

Theory/Solutions

Basic Dimensions of Privacy Techniques
Privacy-related techniques can be characterized
by: (1) the kind of source data modification they

perform, e.g., data perturbation, randomization,
generalization, and hiding; (2) the ML algorithm
that works on the data and how is it modified to
meet the privacy requirements imposed on it; and
(3) whether the data are centralized or distributed
among several parties, and – in the latter case –
on what the distribution is based. But even at
a more basic level, it is useful to view privacy-
related techniques along just two fundamental
dimensions.

The first dimension defines what is protected
as private – is it the data itself, or the model (the
results of data mining)? As we show below, the
knowledge of the latter can also lead to identify-
ing and revealing information about individuals.
The second dimension defines the protocol of the
use of the data: are the data centralized and owned
by a single owner, or are the data distributed
among multiple parties? In the former case, the
owner needs to protect the data from revealing
information about individuals represented in the
data when that data is being used to build a model
by someone else. In the latter case, we assume
that the parties have limited trust in each other:
they are interested in the results of data mining
performed on the union of the data of all the
parties, while not trusting the other parties to see
their own data without first protecting it against
disclosure of information about individuals to
other parties.

Moreover, work in PPDM has to apply a
framework that is broader than the standard ML
methodology. When privacy is an important goal,
what matters in performance evaluation is not
only the standard ML performance measures, but
also some measure of the privacy achieved, as
well as some analysis of the robustness of the
approach to attacks.

In this article, we structure our discussion of
the current work on PPDM in terms of the taxon-
omy proposed above. This leads to the following
bird’s-eye view of the field.

Protecting Centralized Data
This subfield emerged in 2000 with the seminal
paper by Agrawal and Srikant (2000). They stated
the problem as follows: given data in the stan-
dard � attribute-value representation, how can an

http://dx.doi.org/10.1007/978-1-4899-7687-1_43

1008 Privacy-Related Aspects and Techniques

accurate � decision tree be built so that, instead
of using original attribute values xi , the decision
tree induction algorithm takes input values xiCr ,
where r belongs to a certain distribution (Gaus-
sian or uniform). This is a data perturbation tech-
nique: the original values are changed beyond
recognition, while the distributional properties of
the entire data set that decision tree � induction
uses remain the same, at least up to a small (em-
pirically, less than 5 %) degradation in accuracy.
There is a clear trade-off between the privacy
assured by this approach and the quality of the
model compared to the model obtained from
the original data. This line of research has been
continued in Evfimievski et al. (2002) where the
approach is extended to association rule mining.
As a note of caution about these results, Kar-
gupta et al. (2003) have shown, in 2003, how the
randomization approaches are sensitive to attack.
They demonstrate how the noise that randomly
perturbs the data can be viewed as a random ma-
trix, and that the original data can be accurately
estimated from the perturbed data using a spectral
filter that exploits some theoretical properties of
random matrices.

The simplest and most widely used privacy
preservation technique is anonymization of data
(also called de-identification). In the context of
de-identification, it is useful to distinguish three
types of attributes.

Explicit identifiers allow direct linking of
an instance to a person (e.g., a cellular phone
number or a driver’s license number to its
holder).

Quasi-identifiers, possibly combined with
other attributes, may lead to other data sources
capable of unique identification. For instance,
Sweeney (2001) shows that the quasi-identifier
triplet <date of birth, 5 digit postal code,
gender>, combined with the voters’ list (publicly
available in the USA) uniquely identifies 87 % of
the population of the country. As a convincing
application of this observation, using quasi-
identifiers, Sweeney was able to obtain health
records of the governor of Massachusetts from
a published dataset of health records of all state
employees in which only explicit identifiers have
been removed.

Finally, non-identifying attributes are those for
which there is no known inference linking to
an explicit identifier. Usually performed as part
of data preparation, anonymization removes all
explicit identifiers from the data.

While anonymization is by far the most com-
mon privacy-preserving technique used in prac-
tice, it is also the most fallible one. In August
2006, for the benefit of the Web Mining Research
community, AOL published 20 million search
records (queries and URLs the members had
visited) from 658,000 of its members. AOL had
performed what it believed was anonymization,
in the sense that it removed the names of the
members. However, based on the queries – which
often contained information that would identify a
small set of members or a unique person – it was
easy, in many cases, to manually re-identify the
AOL member using secondary public knowledge
sources. An inquisitive New York Times journal-
ist identified one member and interviewed her.

L. Sweeney is to be credited with sensitizing
the privacy community to the fallacy of
anonymization: “Shockingly, there remains a
common incorrect belief that if the data look
anonymous, it is anonymous” (Sweeney 2001).
Even if information is de-identified today, future
data sources may make re-identification possible.
As anonymization is very commonly used prior
to model building from medical data, it is
interesting that this type of data is prone to
specific kinds of re-identification, and therefore
anonymization of medical data should be done
with particular skill and understanding of the
data. Malin (2005) shows how the four main de-
identification techniques used in anonymization
of genomic data are prone to known, published
attacks that can re-identify the data. Moreover,
he points out that there will never be certainty
about de-identification for quasi-identifiers, as
new attributes and data sources that can lead to
a linkage to explicitly identifying attributes are
constantly being engineered as part of genetics
research.

Other perturbation approaches targeting
binary data involve changing (flipping) values
of selected attributes with a given probability
(Du and Zhan 2003; Zhan and Matwin 2004), or

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_388

Privacy-Related Aspects and Techniques 1009

P

replacing the original attribute with a value that
is more general in some pre-agreed taxonomy
(Iyengar 2002). Generalization approaches often
use the concept of k-anonymity: any instance in
the database is indistinguishable from other k�1
instances (for every row in the database there are
k � 1 identical rows). Finding the least general
k-anonymous generalization of a database (i.e.,
moving the least number of edges upward in
a given taxonomy) is an optimization task,
known to be NP-complete. There are heuristic
solutions proposed for it; e.g., Iyengar (2002)
uses a � genetic algorithm for this task. Friedman
et al. (2006) shows how to build k-anonymity
into the decision tree induction. Lately, PPDM
researchers have pointed out some weaknesses of
the k-anonymity approach. In particular, attacks
on data with some properties (e.g., skewed
distribution of values of a sensitive attribute,
or specific background knowledge) have been
described, and techniques to prevent such attacks
have been proposed. The notion of p-sensitivity
or l-diversity proposed in Machanavajjhala
et al. (2007) addresses these weaknesses
of k-anonymity by modifying k-anonymity
techniques so that the abovementioned attacks
do not apply. Furthermore, t -closeness (Ninghui
et al. 2007) shows certain shortcomings of these
techniques and the resulting potential attacks,
and proposes a data perturbation technique which
ensures that the distribution of the values of the
sensitive attribute in any group resulting from
anonymization is close to its distribution in the
original table. Some authors, e.g., Domingo-
Ferrer et al. (2008), propose the integration of
several techniques addressing shortcomings of k-
anonymity into a single perturbation technique.
The drawback of these solutions is that they
decrease the utility of the data more than the
standard k-anonymity approaches.

Protecting the Model (Centralized Data)
Is it true that when the data are private, there will
be no violation of privacy? The answer is no. In
some circumstances, the model may reveal pri-
vate information about individuals. Atzori et al.
(2005) gives an example of such a situation for
association rules: suppose the � association rule

a1 ^ a2 ^ a3) a4 has support sup = 80, confi-
dence conf = 98.7 %. This rule is 80-anonymous,
but considering that

sup.fa1; a2; a3g/ D
sup.fa1; a2; a3; a4g/

conf

D
80

0:0987

 81:05

and given that the pattern a1^a2^a3^a4 holds for
80 individuals, and the pattern a1 ^ a2 ^ a3 holds
for 81 individuals, clearly the pattern a1^a2^a3^

:a4 holds for just one person. Therefore, the rule
unexpectedly reveals private information about a
specific person. Atzori et al. (2005) proposes to
apply k-anonymity to patterns instead of data,
as in the previous section. The authors define
inference channels as � itemsets from which it
is possible to infer other itemsets that are not
k-anonymous, as in the above example. They
then show an efficient way to represent and com-
pute inference channels, which, once known, can
be blocked from the output of an association
rule finder. The inference channel problem is
also discussed in Oliveira et al. (2004), where
itemset “sanitization” removes itemsets that lead
to sensitive (non-k-anonymous) rules.

This approach is an interesting continuation
of Sweeney’s classical work (Sweeney 2001),
and it addresses an important threat to privacy
ignored by most other approaches based on data
perturbation or cryptographic protection of the
data.

Distributed Data
Most of the work mentioned above addresses the
case of centralized data. The distributed situation,
however, is often encountered and has important
applications. Consider, for example, several hos-
pitals involved in a multi-site medical trial that
want to mine the data describing the union of
their patients. This increases the size of the popu-
lation subject to data analysis, thereby increasing
the scope and the importance of the trial. In
another example, a car manufacturer performing
data analysis on the set of vehicles exhibiting
a given problem wants to represent data about
different components of the vehicle originating in

http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_317

1010 Privacy-Related Aspects and Techniques

databases of the suppliers of these components. In
general, if we abstractly represent the database as
a table, there are two collaborative frameworks in
which data is distributed. Horizontally partitioned
data is distributed by rows (all parties have the
same attributes, but different instances – as in the
medical study example). Vertically partitioned
data is distributed by columns (all parties have the
same instances; some attributes belong to specific
parties, and some, such as the class, are shared
among all parties – as in the vehicle data analysis
example).

An important branch of research on learning
from distributed data while parties do not reveal
their data to each other is based on results from
computer security, specifically from cryptogra-
phy and from the secure multiparty computa-
tion (SMC). Particularly interesting is the case
when there is no trusted external party – all
the computation is distributed among parties that
collectively hold the partitioned data. SMC has
produced constructive results showing how any
Boolean function can be computed from inputs
belonging to different parties, so that the parties
never get to know input values that do not belong
to them. These results are based on the idea of
splitting a single data value between two parties
into “shares,” so that none of them knows the
value but they can still do computation on the
shares using a gate such as exclusive or Yao
(1986). In particular, there is an SMC result
known as secure sum: k parties have private
values xi and they want to compute �Ixi without
disclosing their xi to any other party. This result,
and similar results for value comparison and
other simple functions, are the building blocks of
many privacy-preserving ML algorithms. On that
basis, a number of standard � classifier induction
algorithms, in their horizontal and vertical parti-
tioning versions, have been published, including
decision tree (ID3) induction (Friedman et al.
2006), Naı̈ve Bayes, the �Apriori association
rule mining algorithm (Kantarcioglu and Clifton
2004; Vaidya and Clifton 2002), and many others.

We can observe that data privacy issues extend
to the use of the learned model. For horizontal
partitioning, each party can be given the model
and apply it to the new data. For vertical partition-

ing, however, the situation is more difficult: the
parties, all knowing the model, have to compute
their part of the decision that the model delivers,
and have to communicate with selected other par-
ties after this is done. For instance, for decision
trees, a node n applies its test and contacts the
party holding the attribute in the child c chosen
by the test, giving c the test to perform. In this
manner, a single party n only knows the result
of its test (the corresponding attribute value) and
the tests of its children (but not their outcomes).
This is repeated recursively until the leaf node is
reached and the decision is communicated to all
parties.

A different approach involving cryptographic
tools other than Yao’s circuits is based on the
concept of homomorphic encryption (Paillier
1999). Encryption e is homomorphic with respect
to some operation � in the message space if
there is a corresponding operation �0 in the
ciphertext space, such that for any messages m1,
m2, e(m1)�0 e(m2) D e(m1�m2). The standard
RSA encryption is homomorphic with �0 being
logical multiplication and � logical addition on
sequences of bytes. To give a flavor of the use of
homomorphic encryption, let us see in detail how
this kind of encryption is used in computing the
scalar product of two binary vectors.

Assume just two parties, Alice and Bob. They
both have their private binary vectors A1;:::N ,
B1;:::;N . In association rule mining, Ai and Bi

represent A’s and B’s transactions projected on
the set of items whose frequency is being com-
puted. In our protocol, one of the parties is ran-
domly chosen as a key generator. Assume Alice
is selected as the key generator. Alice generates
an encryption key (e/ and a decryption key (d/.
She applies the encryption key to the sum of each
value of A and a digital envelope Ri

�X of Ai

(i.e., e.Ai i C Ri
�X//, where Ri is a random

integer and X is an integer that is greater than
N . She then sends e.Ai C Ri

�X/s to Bob. Bob
computes the multiplicationM D

QN
jD1 [e.AjC

Ri
�X/ � Bj] when Bj D 1 (as when Bj D 0,

the result of multiplication does not contribute to
the frequency count). Now, M D e.A1 C A2 C

� � � CAj C .R1 CR2 C � � � CR1/
�X/ due to the

property of homomorphic encryption. Bob sends

http://dx.doi.org/10.1007/978-1-4899-7687-1_112
http://dx.doi.org/10.1007/978-1-4899-7687-1_27

Privacy-Related Aspects and Techniques 1011

P

Privacy-Related Aspects
and Techniques, Table 1
Classification taxonomy to
systematize the discussion
of the current work in
PPDM

Data centralized Data distributed

Protecting the data Agrawal and Srikant (2000),
Evfimievski et al. (2002), Du
and Zhan (2003), and Iyengar
(2002)

Vaidya and Clifton (2002),
Vaidya et al. (2008), and
Kantarcioglu and Clifton
(2004)

Protecting the model Oliveira et al. (2004), At-
zori et al. (2005), Felty and
Matwin (2002), and Fried-
man et al. (2006)

Jiang and Atzori (2006)

the result of this multiplication to Alice, who
computes [d.e.A1CA2C� � �CAj C.R1CR2C

� � � CR1/
�X/]) mod X = (A1 CA2 C � � � CA1 +

(R1 C R2 C � � � C Rj /
�X/ mod X and obtains

the scalar product. This scalar product is directly
used in computing the frequency count of an
itemset, where N is the number of items in the
itemset, and Ai , Bi are Alice’s and Bob’s trans-
actions projected on the itemset whose frequency
is computed.

While more efficient than the SMC-based ap-
proaches, homomorphic encryption methods are
more prone to attack, as their security is based
on a weaker security concept (Paillier 1999) than
Yao’s approach. In general, cryptographic solu-
tions have the advantage of protecting the source
data while leaving it unchanged: unlike data mod-
ification methods, they have no negative impact
on the quality of the learned model. However,
they have a considerable cost impact in terms
of complexity of the algorithms, computation
cost of the cryptographic processes involved, and
the communication cost for the transmission of
partial computational results between the parties
(Subramaniam et al. 2004). Their practical appli-
cability on real-life-sized datasets still needs to be
demonstrated.

The discussion above focuses on protecting
the data. In terms of our diagram in Table 1, we
have to address its right column. Here, methods
have been proposed to mainly address mainly
the north-east entry of the diagram. In partic-
ular, in Vaidya and Clifton (2002) propose a
method to compute association rules in an envi-
ronment where data is distributed. In particular,
their method addresses the case of vertically
partitioned data, where different parties hold dif-
ferent attribute sets for the same instances. The

problem is solved without the existence of a
trusted third party, using SMC. Independently,
we have obtained a different solution to this
task using homomorphic encryption techniques
(Zhan et al. 2007). Many papers have presented
solutions for both vertically and horizontally par-
titioned data, and for different data mining tasks,
e.g., Friedman et al. (2006) and Vaidya et al.
(2006).

Moreover, Jiang and Atzori (2006) have ob-
tained a solution for the model-protection case
in a distributed setting (south-east quadrant in
Table 1). Their work is based on a cryptographic
technique, and addresses the case of vertical par-
titioning of the data among parties.

Evaluation
The evaluation of privacy-related techniques
must be broader than standard ML evaluation.
Besides evaluating the performance of the ML
component using the appropriate tool (e.g.,
� accuracy, �ROC, support/confidence), one
also needs to evaluate the various privacy
aspects of a learned model. This is difficult,
as there is no commonly accepted definition of
privacy. Even if there were one, it would not
be in quantitative, operational terms that can
be objectively measured, but most certainly
with references to moral and social values.
For instance, Clifton (2005) points out that
a definition of privacy as the “freedom from
unauthorized intrusion” implies that we need
to understand what constitutes an intrusion
and that we can measure its extent. For these
reasons, most definitions in current privacy-
preserving data mining research are method-
specific, without any comparison between

http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_739

1012 Privacy-Related Aspects and Techniques

different methods. For example, the classic work
of Agrawal and Srikant (2000) measures privacy
after data perturbation as the size of the interval
to which the original value can be estimated. If
we know that the original value was 0.5, and
following a perturbation its best estimate is, with
95 % confidence, within the interval [0.3, 0.7],
then the amount of privacy is the size of this
interval, (i.e., 0.4, with a confidence of 95 %).
Later, Agrawal and Aggarwal (2001) proposed a
more general measure of data privacy measuring
this property of a dataset that has been subject
to one of the data perturbation techniques. The
idea is that if noise from a random variable A is
added to the data, we can measure the uncertainty
of the perturbed values using differential entropy
inherent in A. Specifically, if we add noise from
a random variable A, the privacy is

Y
.A/ D 2�f

fA.a/ log2 fA.a/da

�A ;

where A is the domain of A. Privacy is 0 if the
exact value is known (the entropy is 1); if it is
known that the data is in the interval of length
a;

Q
.A/ D a.

Clifton (2005) argues that if disclosure is only
possible to a group of people rather than a single
person, then the size of the group is a natural mea-
sure of privacy. This is the case for k-anonymity
methods. He further argues that a good evaluation
measure should not only capture the likelihood
of linking an ML result to an individual, but
should also capture how intrusive this linking is.
For instance, an association rule with a support
value of 50 and a confidence level of 100 % is
50-anonymous, but it also reveals the consequent
of the rule to all 50 participants.

Finally, the style of evaluation needs to take
into account attack analysis, as in Malin (2005).

Future Directions

One of the most pressing challenges for the com-
munity is to work out a quantifiable and socially
comprehensible definition of privacy for the pur-
pose of privacy-preserving techniques. This is
clearly a difficult problem, likely not solvable by

ML or even computer science alone. As privacy
has basic social and economic dimensions, eco-
nomics may contribute to an acceptable defini-
tion, as already explored in Rossi (2004).

Another important question is the ability to
analyze data privacy, including inference from
data using ML, in the context of specific rules
and regulations, e.g., HIPAA (Health and Ser-
vices 2003) or the European Privacy Directive
(1995). First forays in this direction using formal
methods have already been made, e.g., Barth et al.
(2006) and Felty and Matwin (2002).

Finally, the increasing abundance and avail-
ability of data tracking mobile devices will bring
new challenges to the field. People will become
potentially identifiable by knowing the trajecto-
ries their mobile devices leave in fixed times
and time intervals. Clearly such data, already
collected, present an important asset from the
public security point of view, but also a very
considerable threat from a privacy perspective.
There is early work in this area (Gianotti and
Pedreschi 2008). Such data are already being
collected. This is an important asset for public
security, but also a considerable threat for privacy.

Recommended Reading

Agrawal D, Aggarwal CC (2001) On the design
and quantification of privacy preserving data min-
ing algorithms. In: Proceedings of the 20th ACM
SIGMOD-SIGACT-SIGART symposium on princi-
ples of database systems. ACM, Santa Barbara

Agrawal R, Srikant R (2000) Privacy-preserving data
mining. ACM SIGMOD Rec. 29(Part 2):439–450

Atzori M, Bonchi F, Giannotti F, Pedreschi D (2005)
k-Anonymous patterns. In: Proceedings of the ninth
European conference on principles and practice
of knowledge discovery in databases (PKDD 05),
Porto

Barth A, Datta A, Mitchell JC, Nissenbaum H (2006)
Privacy and contextual integrity: framework and
applications. IEEE Symp Secur Priv 184–198

Clifton CW (2005) What is privacy? Critical steps
for privacy-preserving data mining, workshop on
privacy and security aspects of data mining

Directive (1995) Directive 95/46/EC of the European
Parliament on the protection of individuals with
regard to the processing of personal data and on
the free movement of such data. Off J Eur Commun
38(L281):0031–0050

Probabilistic Context-Free Grammars 1013

P

Domingo-Ferrer J, Sebé F, Solanas A (2008) An
anonymity model achievable via microaggregation.
In: VLDB workshop on secure data management,
Auckland. Springer, pp 209–218

Du W, Zhan Z (2003) Using randomized response
techniques for privacy-preserving data mining. In:
Proceedings of the ninth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining, Washington, DC, vol 510

Evfimievski A, Srikant R, Agrawal R, Gehrke J (2002)
Privacy preserving mining of association rules. In:
Proceedings of the eighth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining, Edmonton, pp 217–228

Felty A, Matwin S (2002) Privacy-oriented data mining
by proof checking. In: Sixth European conference
on principles of data mining and knowledge discov-
ery, Helsink, vol 2431, pp 138–149

Friedman A, Schuster A, Wolff R (2006) k-anonymous
decision tree induction. In: PKDD 2006, Berlin,
pp 151–162

Health UDo, Services H (eds) (2003) Summary of
HIPAA privacy rule. US Department of Health and
Human Services, Washington, DC

Gianotti F, Pedreschi D (2008) Mobility, data min-
ing and privacy: geographic knowledge discovery.
Springer, Berlin

Iyengar VS (2002) Transforming data to satisfy pri-
vacy constraints. In: Proceedings of the eighth
ACM SIGKDD international conference on knowl-
edge discovery and data mining, Edmonton,
pp 279–288

Jiang W, Atzori M (2006) Secure distributed
k-Anonymous pattern mining. In: Proceedings
of the sixth international conference on data
mining, Hong Kong. IEEE Computer Society

Kantarcioglu M, Clifton C (2004) Privacy-preserving
distributed mining of association rules on horizon-
tally partitioned data. IEEE Trans Knowl Data Eng
16:1026–1037

Kargupta H, Datta S, Wang Q (2003) On the privacy
preserving properties of random data perturbation
techniques. In: Third IEEE international conference
on data mining (ICDM 2003), Melbourne, pp 99–
106

Machanavajjhala A, Kifer D, Gehrke J, Venkitasub-
ramaniam M (2007) L-diversity: privacy beyond
k-anonymity. ACM Trans Knowl Discov Data 1:3

Malin BA (2005) An evaluation of the current state of
genomic data privacy protection technology and a
roadmap for the future. J Am Med Inf Assoc 12:28

Moor J (2004) Towards a theory of privacy in the
information age. In: Bynum T, Rodgerson S (eds)
Computer ethics and professional responsibility.
Blackwell, Malden

Ninghui L, Tiancheng L, Venkatasubramanian S
(2007) t-closeness: privacy beyond k-anonymity and
l-diversity. In: IEEE 23rd international conference
on data engineering (ICDE 2007), Istanbul, pp 106–
115

Oliveira SRM, Zaı̈ane OR, Saygin Y (2004) Secure as-
sociation rule sharing. In: Proceedings of the eighth
PAKDD and advances in knowledge discovery and
data mining, Sydney, pp 74–850

Paillier P (1999) The 26th international conference on
privacy and personal data protection, advances in
cryptography (EUROCRYPT’99), Prague, pp 23–
38

Rossi G (2004) Privacy as quality in modern economy.
In: The 26th international conference on privacy and
personal data protection, Wroclaw

Subramaniam H, Wright RN, Yang Z (2004) Ex-
perimental analysis of privacy-preserving statistics
computation. In: Proceedings of the VLDB work-
shop on secure data management, Toronto, pp 55–
66

Sweeney L (2001) Computational disclosure con-
trol: a primer on data privacy protection. Mas-
sachusetts Institute of Technology, Deptartment
of Electrical Engineering and Computer Science,
Cambridge

Vaidya J, Clifton C (2002) Privacy preserving associ-
ation rule mining in vertically partitioned data. In:
Proceedings of the eighth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining. ACM, Edmonton, pp 639–644

Vaidya J, Clifton C, Kantarcioglu M, Patterson AS
(2008) Privacy-preserving decision trees over ver-
tically partitioned data. ACM Trans Knowl Discov
Data 2:1–27

Vaidya J, Zhu YM, Clifton CW (2006) Privacy preserv-
ing data mining. Springer, New York

Website of the GeoPKDD Project (2006)
Westin A (1967) Privacy and freedom. Atheneum, New

York
Yao A (1986) How to generate and exchange secrets.

In: 27th FOCS, Toronto
Zhan J, Matwin S, Chang L (2007) Privacy-preserving

collaborative association rule mining. J Netw Com-
put Appl 30:1216–1227

Zhan JZ, Matwin S (2004) Privacy-prteserving data
mining in electronic surveys. In: ICEB 2004, Bei-
jing, pp 1179–1185

Probabilistic Context-Free
Grammars

Yasubumi Sakakibara
Keio University, Hiyoshi, Kohoku-ku, Japan

Synonyms

PCFG

http://dx.doi.org/10.1007/978-1-4899-7687-1_100359

1014 Probabilistic Context-Free Grammars

Definition

In formal language theory, formal grammar
(phrase-structure grammar) is developed to
capture the generative process of languages
(Hopcroft and Ullman 1979). A formal grammar
is a set of productions (rewriting rules) that
are used to generate a set of strings, that is, a
language. The productions are applied iteratively
to generate a string, a process called derivation.
The simplest kind of formal grammar is a regular
grammar.

Context-free grammars (CFG) form a more
powerful class of formal grammars than regu-
lar grammars and are often used to define the
syntax of programming languages. Formally, a
CFG consists of a set of nonterminal symbols N ,
a terminal alphabet †, a set P of productions
(rewriting rules), and a special nonterminal S
called the start symbol. For a nonempty set X
of symbols, let X� denote the set of all finite
strings of symbols in X . Every CFG production
has the form S ! ˛, where S 2 N and
˛ 2 .N [†/�. That is, the left-hand side
consists of one nonterminal and there is no re-
striction on the number or placement of non-
terminals and terminals on the right-hand side.
The language generated by a CFG G is denoted
L.G/.

A probabilistic context-free grammar (PCFG)
is obtained by specifying a probability for each
production for a nonterminal A in a CFG, such
that a probability distribution exists over the set
of productions for A.

A CFG G D (N , ˙ , P , S/ is in Chomsky
normal form if each production rule is of the form
A ! BC or A ! a, where A, B , C 2 N and
a 2 †.

Given a PCFG G and a string w D a1 : : : am,
there are three basic problems:

1. Calculating the probability Pr(wjG/ that the
grammar G assigns to w

2. Finding the most likely derivation (parse tree)
of w by G

3. Estimating the parameters of G to maximize
Pr(wjG/

The first two problems, calculating the proba-
bility Pr(wjG/ of a given string w assigned by a
PCFGG and finding the most likely derivation of
w by G, can be solved using dynamic program-
ming methods analogous to the Cocke-Younger-
Kasami or Early parsing methods. A polynomial-
time algorithm for solving the second problem is
known as Viterbi algorithm, and a polynomial-
time algorithm for the third problem is known
as the inside-outside algorithm (Lari and Young
1990).

Derivation Process

A derivation is a rewriting of a string in (N [†/�

using the production rules of a CFG G. In each
step of the derivation, a nonterminal from the
current string is chosen and replaced with the
right-hand side of a production rule for that non-
terminal. This replacement process is repeated
until the string consists of terminal symbols only.
If a derivation begins with a nonterminal A and
derives a string ˛ 2 .N [†/�, we write A) ˛.

For example, the grammar in Fig. 1 generates
an RNA sequence AGAAACUUGCUGGCCU
by the following derivation: Beginning with the
start symbol S , any production with S left of
the arrow can be chosen to replace S . If the
production S ! AX1U is selected (in this case,
this is the only production available), the effect is
to replace S with AX1U. This one derivation step
is written S) AX1U, where the double arrow
signifies application of a production. Next, if the
production X1 ! GX2C is selected, the deriva-
tion step is AX1U) AGX2CU. Continuing with
similar derivation operations, each time choosing
a nonterminal symbol and replacing it with the
right-hand side of an appropriate production, we
obtain the following derivation terminating with
the desired sequence:

S) AX1U) AGX2CU) AGX3X4CU

) AGAX5UX4CU) AGAAX6UUX4CU

) AGAAACUUX4CU

Probabilistic Context-Free Grammars 1015

P

Probabilistic Context-Free Grammars, Fig. 1 This set
of productions P generates RNA sequences with a certain
restricted structure. S; X1; : : : ; X16 are nonterminals; A,

U, G, and C are terminals representing the four nu-
cleotides. Note that only for X6 is there a choice of
productions

) AGAAACUUGX15CCU

) AGAAACUUGCX16GCCU

) AGAAACUUGCUGGCCU:

Such a derivation can be arranged in a tree struc-
ture called a parse tree.

The language generated by a CFG G is de-
noted L.G/, that is, L.G/= fwjS) w;w 2
†�g. Two CFGs G and G0 are said to be equiv-
alent if and only if L.G/ D L.G0/.

Probability Distribution

A PCFG assigns a probability to each string
which it derives and hence defines a probability
distribution on the set of strings. The probability
of a derivation can be calculated as the product
of the probabilities of the productions used to
generate the string. The probability of a string
w is the sum of probabilities over all possi-
ble derivations that could generate w, written as
follows:

Pr.wjG/ D
X

all derivations d

Pr.S
d
) wjG/

D
X

˛1;:::;˛n

Pr.S) ˛1jG/ � Pr.˛1) ˛2jG/

: : : Pr.˛n) wjG/:

Parsing Algorithm

Efficiently computing the probability of a string
w, Pr(sjG/, presents a problem because the num-

ber of possible derivations for w is exponential
in the length of the string. However, a dynamic
programming technique analogous to the Cocke-
Kasami-Young or Earley methods for nonproba-
bilistic CFGs can accomplish this task efficiently
(in time proportional to the cube of the length
of w).

The CYK algorithm is a polynomial time
algorithm for solving the parsing (membership)
problem of CFGs using dynamic programming.
The CYK algorithm assumes Chomsky normal
form of CFGs, and the essence of the algorithm
is the construction of a triangular parse table T.
Given a CFG GD (N , †, P , S/ and an input
string w D a1a2 . . . an in †� to be parsed
according to G, each element of T , denoted ti;j ,
for 1 � i � n and 1 � j � n � i C 1, has
a value which is a subset of N . The interpre-
tation of T is that a nonterminal A is in ti;j if
and only if A) aiaiC1 : : : aiCj�1, that is, A
derives the substring of w beginning at position
i and of length j . To determine whether the
string w is in L.G/, the algorithm computes the
parse table T and look to see whether S is in
entry t1;n.

In the first step of constructing the parse table,
the CYK algorithm sets ti;1 D f AjA ! ai is
in P g. In the j th step, the algorithm assumes
that ti;j 0 has been computed for 1 � i � n

and 1 � j 0 < j , and it computes ti;j by exam-
ining the nonterminals in the following pairs of
entries:

.ti;1; tiC1;j�1/;.ti;2; tiC2;j�2/; : : : ;

.ti;j�1; tiCj�1;1/;

1016 Probabilistic Context-Free Grammars

S A
S A S A
S A S S A
S A S S

j A S A A A

i
a b a a a

Probabilistic Context-Free Grammars, Fig. 2 The
parse table T of G for “abaaa”

and if B is in ti;k and C is in tiCk;j�k for some k
(1 � k < j) and the production A!BC is in P ,
A is added to ti;j .

For example, we consider a simple CFG
G = (N , †, P , S/ of Chomsky normal form
where N = fS , Ag, †= fa, bg and

P D fS ! AA; S ! AS; S ! b;

A! SA;A! ag:

This CFG generates a string “abaaa,” that is,
S) abaaa, and the parse table T for abaaa is
shown in Fig. 2. The parse table can efficiently
store all possible parse trees of G for abaaa.

Learning

The problem of learning PCFGs from exam-
ple strings has two aspects: determining a dis-
crete structure (topology) of the target grammar
and estimating probabilistic parameters in the
grammar (Sakakibara 1997). Based on the max-
imum likelihood criterion, an efficient estima-
tion algorithm for probabilistic parameters has
been proposed: the inside-outside algorithm for
PCFGs. On the other hand, finding an appropri-
ate discrete structure of a grammar is a harder
problem.

The procedure to estimate the probabilistic
parameters of a PCFG is known as the inside-
outside algorithm. Just like the forward-backward
algorithm for HMMs, this procedure is an
expectation-maximization (EM) method for
obtaining maximum likelihood of the grammar’s
parameters. However, it requires the grammar to

be in Chomsky normal form, which is inconve-
nient to handle in many practical problems (and
requires more nonterminals). Further, it takes
time at least proportional to n3, whereas the
forward-backward procedure for HMMs takes
time proportional to n2, where n is the length of
the string w. There are also many local maxima
in which the method can get caught. Therefore,
the initialization of the iterative process is crucial
since it affects the speed of convergence and the
goodness of the results.

Application to Bioinformatics

An effective method for learning and building
PCFGs has been applied to modeling a family
of RNA sequences (Durbin et al. 1998; Sakak-
ibara 2005). In RNA, the nucleotides adenine
(A), cytosine (C), guanine (G), and uracil (U)
interact in specific ways to form characteristic
secondary-structure motifs such as helices, loops,
and bulges. In general, the folding of an RNA
chain into a functional molecule is largely gov-
erned by the formation of intramolecular A-U
and G-C Watson–Crick pairs. Such base pairs
constitute the so-called biological palindromes in
a genome and can be clearly described by a CFG.
In particular, productions of the forms X ! A Y

U, X ! U Y A, X ! G Y C, and X ! C Y

G describe a structure in RNA due to Watson–
Crick base pairing. Using productions of this
type, a CFG can specify a language of biological
palindromes.

For example, the application of productions
in the grammar shown in Fig. 1 generates the
RNA sequence CAUCAGGGAAGAUCUCUUG
and the derivation can be arranged in a tree
structure of a parse tree (Fig. 3, left). A parse
tree represents the syntactic structure of a se-
quence produced by a grammar. For the RNA
sequence, this syntactic structure corresponds to
the physical secondary structure (Fig. 3, right).
PCFGs are applied to perform three tasks in
RNA sequence analysis: to discriminate RNA-
family sequences from nonfamily sequences, to
produce multiple alignments, and to ascertain the
secondary structure of new sequences.

Programming by Demonstration 1017

P

A U

G C

A U

A U

A U

G C

A

U G

G C

C G

U G

G C

A U

A

G C

X1

X9

X10

X11

X12

X13

X14

X15

X16

X5

X3 X4

X6

X7 X8

X2

S

CG

U

A
A

A

A
C

G

C

C

G

C

G

G

U
U

U

U

U

U

A

A

A

G

G

G

C

X8

S

X7
X9

X10
X11

X12

X1

X2
X3 X4X5

X6

X13
X14

X15

X16

Probabilistic Context-Free Grammars, Fig. 3 A parse
tree (left) generated by a simple context-free grammar
(CFG) for RNA molecules and the physical secondary

structure (right) of the RNA sequence which is a reflection
of the parse tree

Recommended Reading

Durbin R, Eddy S, Krogh A, Mitchison G (1998)
Biological sequence analysis. Cambridge University
Press, Cambridge

Hopcroft JE, Ullman JD (1979) Introduction to
automata theory, languages and computation.
Addison-Wesley, Reading

Lari K, Young SJ (1990) The estimation of stochastic
context-free grammars using the inside-outside al-
gorithm. Comput Speech Lang 4:35–56

Sakakibara Y (1997) Recent advances of grammatical
inference. Theor Comput Sci 185:15–45

Sakakibara Y (2005) Grammatical inference in bioin-
formatics. IEEE Trans Pattern Anal Mach Intell
27:1051–1062

Probability Calibration

�Classifier Calibration

Probably Approximately Correct
Learning

� PAC Learning

Process-Based Modeling

� Inductive Process Modeling

Program Synthesis from Examples

� Inductive Programming

Programming by Demonstration

Pierre Flener1 and Ute Schmid2

1Department of Information Technology,
Uppsala University, Uppsala, Sweden
2Faculty of Information Systems and Applied
Computer Science, University of Bamberg,
Bamberg, Germany

Abstract

Programming by demonstration (PBD) is in-
troduced as family of approaches to teach a
computer system new behavior by demonstrat-
ing it in the context of a concrete example.

Most of the work by this author was done while on
leave of absence in 2006/2007 as a Visiting Faculty
Member and Erasmus Exchange Teacher at Sabancı
University, Turkey.

http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_397
http://dx.doi.org/10.1007/978-1-4899-7687-1_137

1018 Programming by Example (PBE)

References to classical and current PBD sys-
tems are given.

Synonyms

Programming by example (PBE)

Definition

Programming by demonstration (PBD) describes
a collection of approaches for the support of end-
user programming with the goal of making the
power of computers fully accessible to all users.
The general objective is to teach computer sys-
tems new behavior by demonstrating (repetitive)
actions on concrete examples. A user provides
examples of how a program should operate, either
by demonstrating trace steps or by showing ex-
amples of the inputs and outputs, and the system
infers a generalized program that achieves those
examples and can be applied to new examples.
Typical areas of application are macro generation
(e.g., for text editing), simple arithmetic functions
in spreadsheets, simple shell programs, XML
transformations, or query-replace commands, as
well as the generation of helper programs for
web agents, geographic information systems, or
computer-aided design. The most challenging ap-
proach to PBD is to obtain generalizable ex-
amples by minimal intrusion, where the user’s
ongoing actions are recorded without an explicit
signal for the start of an example and without
explicit confirmation or rejection of hypotheses.
An early example of such a system is EAGER

(Cypher 1993a).
Current PBD approaches incorporate some

simple forms of generalization learning, but
typically no or only highly problem-dependent
methods for the induction of loops or recursion
from examples or traces of repetitive commands.
Introducing inductive programming or trace-
based programming methods into PBD applica-
tions could significantly increase the possibilities
of end-user programming support. This is
demonstrated impressively with the Microsoft
Excel plug-in Flash Fill (Gulwani et al. 2012).

Cross-References

� Inductive Programming
�Trace-Based Programming

Recommended Reading

Cypher A (1993a) Programming repetitive tasks by
demonstration. In: Cypher A (ed) Watch what I do:
programming by demonstration. MIT, Cambridge,
pp 205–217

Cypher A (ed) (1993b) Watch what I do: programming
by demonstration. MIT, Cambridge

Gulwani S, Harris WR, Singh R (2012) Spreadsheet
data manipulation using examples. Commun ACM
55(8):97–105

Lieberman H (ed) (2001) Your wish is my command:
programming by example. Morgan Kaufmann, San
Francisco

Programming by Example (PBE)

� Programming by Demonstration

Programming by Examples

� Inductive Programming

Programming from Traces

�Trace-Based Programming

Projective Clustering

Cecilia M. Procopiuc
AT&T Labs, NJ, USA

Synonyms

Local feature selection; Subspace clustering

http://dx.doi.org/10.1007/978-1-4899-7687-1_100380
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_844
http://dx.doi.org/10.1007/978-1-4899-7687-1_679
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_844
http://dx.doi.org/10.1007/978-1-4899-7687-1_100272
http://dx.doi.org/10.1007/978-1-4899-7687-1_100453

Projective Clustering 1019

P

Definition

Projective clustering is a class of problems in
which the input consists of high-dimensional
data, and the goal is to discover those subsets
of the input that are strongly correlated in
subspaces of the original space. Each subset of
correlated points, together with its associated
subspace, defines a projective cluster. Thus,
although all cluster points are close to each
other when projected on the associated subspace,
they may be spread out in the full-dimensional
space. This makes projective clustering al-
gorithms particularly useful when mining or
indexing datasets for which full-dimensional
clustering is inadequate (as is the case for
most high-dimensional inputs). Moreover, such
algorithms compute projective clusters that
exist in different subspaces, making them more
general than global dimensionality-reduction
techniques.

Motivation and Background

Projective clustering is a type of data mining
whose main motivation is to discover correlations
in the input data that exist in subspaces of
the original space. This is an extension of
traditional full-dimensional clustering, in which
one tries to discover point subsets that are
strongly correlated in all dimensions. Figure 1a
shows an example of input data for which full-
dimensional clustering cannot discover the three
underlying patterns. Each pattern is a projective
cluster.

It is well known (Beyer et al. 1999) that
for a broad class of data distributions, as the
dimensionality increases, the distance to the near-
est neighbor of a point approaches the distance
to its farthest neighbor. This implies that full-
dimensional clustering will fail to discover sig-
nificantly correlated subsets on such data, since
the diameter of a cluster is almost the same as
the diameter of the entire dataset. In practice,
many applications from text and image process-
ing generate data with hundreds or thousands of
dimensions, which makes them extremely bad

candidates for full-dimensional clustering meth-
ods.

One popular technique to classify high-
dimensional data is to first project it onto a much
lower-dimensional subspace, and then employ
a full-dimensional clustering algorithm in that
space. The projection subspace is the same for
all points, and is computed so that it best “fits”
the data. A widely used dimensionality-reduction
technique, called � principal component analysis
(PCA), defines the best projection subspace to be
the one that minimizes least-square error. While
this approach has been proven successful in
certain areas such as text mining, its effectiveness
depends largely on the characteristics of the
data. The reason is that there may be no way
to choose a single projection subspace without
encountering a significant error; or alternatively,
setting a maximum bound on the error results in
a subspace with high dimensionality. Figure 1b
shows the result of PCA on a good candidate set.
The points are projected on the subspace spanned
by vectors V1 and V2, along which they have
greatest variance. However, for the example in
Fig. 1a, no plane or line fits the data well enough.
Projective clustering can thus be viewed as a
generalized dimensionality-reduction method, in
which different subsets of the data are projected
on different subspaces.

There are many variants of projective clus-
tering, depending on what quality measure one
tries to optimize for the clustering. Most such
measures, however, are expressed as a function of
the distances between points in the clusters. The
distance between two cluster points is computed
with respect to the subspace associated with that
cluster. Alternative quality measures consider the
density of cluster points inside the associated
subspace.

Megiddo and Tamir (1982) showed that it is
NP-Hard to decide whether a set of n points in the
plane can be covered by k lines. This early result
implies not only that most projective clustering
problems are NP-Complete even in the planar
case, but also that approximating the objective
function within a constant factor is NP-Complete.
Nevertheless, several approximation algorithms
have been proposed, with running time polyno-

http://dx.doi.org/10.1007/978-1-4899-7687-1_665

1020 Projective Clustering

V3
V1 V2

ba

Projective Clustering, Fig. 1 Dimensionality reduction via (a) projective clustering and (b) principal component
analysis

mial in the number of points n and exponen-
tial in the number of clusters k. Agrawal et al.
(1998) proposed a subspace clustering method
based on density measure that computes clusters
in a bottom-up approach (from lower to higher
dimensions). Aggarwal et al. (1999) designed a
partitioning-style algorithm.

Theory

Many variants of projective clustering problems
use a distance-based objective function and thus
have a natural geometric interpretation. In gen-
eral, the optimization problem is stated with re-
spect to one or more parameters that constrain
the kind of projective clusters one needs to in-
vestigate. Examples of such parameters are: the
number of clusters, the dimensionality (or aver-
age dimensionality) of the clusters, the maximum
size of the cluster in its associated subspace, the
minimum density of cluster points, etc. Below we
present the most frequently studied variants for
this problem.

Distance-Based Projective Clustering
Given a set S of n points in R

d and two inte-
gers k < n and q � d , find kq-dimensional
flats h1; : : : ; hk and partition S into k subsets
C1; : : : ; Ck so that one of the following objective
functions is minimized:

max
1�i�k

max
p2Ci

d.p; hi / .k � center/

X

1�i�k

X

p2Ci

d.p; hi / .k �median/

X

1�i�k

X

p2Ci

d.p; hi / .k �means/

These types of problems are also referred to as
geometric clustering problems. They require all
cluster subspaces to have the same dimensional-
ity, i.e., d � q (the subspace associated with Ci is
orthogonal to hi). The number of clusters is also
fixed, and the clustering must be a partitioning of
the original points.

Further variants are defined by introducing
slight modifications in the above framework. For
example, one can allow the existence of outliers,
i.e., points that do not belong to any projec-
tive cluster. This is generally done by providing
an additional parameter, which is the maximum
percentage of outliers. The problems can also
be changed to a dual formulation, in which a
maximum value for the objective function is
specified, and the goal is to minimize the number
of clusters k.

Special cases for the k-center objective func-
tion are q D d � 1 and q D 1. In the first
case, the problem is equivalent to finding k hyper-
strips that contain S so that the maximum width
of a hyper-strip is minimized. If q D 1, then

Projective Clustering 1021

P

the problem is to cover S by k congruent hyper-
cylinders of smallest radius. Since this is equiv-
alent to finding the k lines that are the axes of
the hyper-cylinders, this problem is also referred
to as k-line-center. Figure 1a is an example of
3-line-center.

In addition, k-median problems have also been
studied when cluster subspaces have different di-
mensionalities. In that case, distances computed
in each cluster are normalized by the dimension-
ality of the corresponding subspace.

Density-Based Projective Clustering
A convex region in a subspace is called dense if
the number of data points that project inside it
is larger than some user-defined threshold. For a
fixed subspace, the convex regions of interest in
that subspace are defined in one of several ways,
as detailed below. Projective clusters are then
defined to be connected unions of dense regions
of interest. The different variants for defining
regions of interest can be broadly classified in
three classes:

("-Neighborhoods) Regions of interest are
Lp-balls of radius " centered at the data points.
In general, Lp is either L2 (hyper-spheres) or
L1 (hyper-cubes).

(Regular Grid Cells) Regions of interest are
cells defined by an axis-parallel grid in the
subspace. The grid hyper-planes are equidistant
along each dimension.

(Irregular Grid Cells) Regions of interest are
cells defined by an irregular grid in the sub-
space. Parallel grid hyper-planes are not neces-
sarily equidistant, and they may also be arbitrarily
oriented.

Another variant of projective clustering de-
fines a so-called quality measure for a projective
cluster, which depends both on the number of
cluster points and the number of dimensions in
the associated subspace. The goal is to compute
the clusters that maximize this measure. Projec-
tive clusters are required to be Lp-balls of fixed
radius in their associated subspace, which means
that clusters in higher dimensions tend to have
fewer points, and vice-versa. Hence, the quality
measure provides a way to compare clusters that

exist in different number of dimensions. It is
related to the notion of dense "-neighborhoods.

Many other projective clustering problems are
application driven and do not easily fit in the
above classification. While they follow the gen-
eral framework of finding correlations among
data in subspaces of the original space, the notion
of projective cluster is specific to the application.
One such example is presented later in this sec-
tion.

Algorithms
Distance-based projective clustering problems
are NP-Complete when the number of clusters
k is an input parameter. Moreover, k-center
problems cannot be approximated within a
constant factor, unless P = NP. This follows
from the result of Meggido and Tamir (1982),
who showed that it is NP-Hard to decide whether
a set of n points in the plane can be covered by k
lines.

Agarwal and Procopiuc (2003) first proposed
approximation algorithms for k-center projective
clustering in two and three dimensions. The algo-
rithms achieve constant factor approximation by
generating more clusters than required.

Subsequent work by several other authors led
to the development of a general framework in
which (1 C ")-approximate solutions can be de-
signed for several types of full-dimensional and
projective clustering. In particular, k-center and
k-means projective clustering can be approxi-
mated in any number of dimensions. The idea is
to compute a so-called coreset, which is a small
subset of the points, such that the optimal projec-
tive clusters for the coreset closely approximate
the projective clusters for the original set. Com-
puting the optimal solution for the coreset has
(super) exponential dependence on the number
of clusters k, but it is significantly faster than
computing the optimal solution for the original
set of points. The survey by Agarwal et al. (2005)
gives a comprehensive overview of these results.

While the above algorithms have approxima-
tion guarantees, they are not practical even for
moderate values of n, k, and d . As a result,
heuristic methods have also been developed for
these problems. The general approach is to iter-

1022 Projective Clustering

atively refine a current set of clusters, either by
re-assigning points among them, or by merging
nearby clusters. When the set of points in a cluster
changes, the new subspace associated with the
cluster is also recomputed, in a way that tries to
optimize the objective function for the new clus-
tering. Aggarwal et al. (1999) proposed the PRO-
CLUS algorithm for k-median projective clus-
tering with outliers. The cluster subspaces can
have different dimensionalities, but they must be
orthogonal to coordinate axes. Aggarwal and Yu
(2000) subsequently extended the algorithm to ar-
bitrarily oriented clusters, but with the same num-
ber of dimensions. Agarwal and Mustafa (2004)
proposed a heuristic approach for k-means pro-
jective clustering with arbitrary orientation and
different dimensionalities.

The first widely used method for density-
based projective clustering was proposed by
Agrawal et al. (1998). The algorithm, called
CLIQUE, computes projective clusters based
on regular grid cells in orthogonal subspaces,
starting from the lowest-dimensional subspaces
(i.e., the coordinate axes) and iterating to higher
dimensions. Pruning techniques are used to skip
subspaces in which a large fraction of points
lie outside dense regions. Subsequent strategies
improved the running time and accuracy by
imposing irregular grids and using different
pruning criteria.

Böhm et al. (2004) designed an algorithm
called 4C for computing density-connected "-
neighborhoods in arbitrarily oriented subspaces.
The method is agglomerative: It computes the lo-
cal dimensionality around each point p by using
PCA on all points inside the (full-dimensional) "-
neighborhood of p. If the dimensionality is small
enough and the neighborhood is dense, then p
and its neighbors form a projective cluster. Con-
nected projective clusters with similarly oriented
subspaces are then repeatedly merged.

The OptiGrid algorithm by Hinneburg and
Keim (1999) was the first method to propose
irregular grid cells of arbitrary (but fixed) orienta-
tion. Along each grid direction, grid hyper-planes
are defined to pass through the local minima of
a probability density function. This significantly
reduces the number of cells compared with a reg-

ular grid that achieves similar overall accuracy.
The probability density function is defined using
the kernel-density estimation framework. Input
points are projected on the grid direction, and
their distribution is extrapolated to the entire line
by the density function

f .x/ D
1

nh

nX

iD1

K
�x � si

h

	
;

where s1; : : : ; sn denote the projections of the
input points, and h is a parameter. The function
K.x/, called the kernel, is usually the Gaussian
function, although other kernels can also be used.

The DOC algorithm proposed by Procopiuc
et al. (2002) approximates optimal clusters for
a class of quality measures. Orthogonal projec-
tive clusters are computed iteratively via random
sampling. If a sample is fully contained in a
cluster then it can be used to determine the
subspace of that cluster, as well as (a superset
of) the other cluster points. Such a sample is
called a discriminating set. Using the properties
of the quality measure, the authors show that a
discriminating set is found with high probability
after a polynomial number of trials.

An overview of most of these practical
methods, as well as of subsequent work
expanding their results, can be found in the
survey by Parsons et al. (2004).

Applications
Similar to full-dimensional clustering, projective
clustering methods provide a way to efficiently
organize databases for searching, as well as for
pattern discovery and data compression. In a
broad sense, they can be used in any application
that handles high-dimensional data, and which
can benefit from indexing or mining capabilities.
In practice, additional domain-specific informa-
tion is often necessary. We present an overview of
the generic database usage first, and then discuss
several domain-specific applications.

Data Indexing
An index tree is a hierarchical structure defined
on top of a data set as follows. The root corre-

Projective Clustering 1023

P

sponds to the entire data set. For each internal
node, the data corresponding to that node is
partitioned in some pre-defined manner, and there
is a child of the node corresponding to each
subset in the partition. Often, the partitioning
method is a distance-based clustering algorithm.
In addition, each node stores the boundary of
a geometric region that contains its points, to
make searching the structure more efficient. For
many popular indexes, the geometric region is
the minimum axis-parallel bounding box. Index
trees built with full-dimensional clustering meth-
ods become inefficient for dimensionality about
10 or higher, due to the large overlap in the
geometric regions of sibling nodes. Chakrabarti
and Mehrotra (2000) first proposed an index tree
that uses projective clustering as a partitioning
method. In that case, each node also stores the
subspace associated with the cluster.

Pattern Discovery
A projective cluster, by definition, is a pattern in
the data, so any of the above algorithms can be
used in a pattern discovery application. However,
most applications restrict the projective clusters
to be orthogonal to coordinate axes, since the axes
have special interpretations. For example, in a
database of employees, one axis may represent
salary, another the length of employment, and
the third one the employees’ age. A projective
cluster in the subspace spanned by salary and em-
ployment length has the following interpretation:
there is a correlation between salaries in range A
and years of employment in range B, which is
independent of employees’ age.

Data Compression
As discussed in the introduction, projective clus-
ters can be used as a dimensionality-reduction
technique, by replacing each point with its projec-
tion on a lower dimensional subspace. The pro-
jection subspace is orthogonal to the subspace of
the cluster that contains the point. In general, this
method achieves smaller information loss and
higher compression ratio than a global technique
such as PCA.

Image Processing
A picture can be represented as a high-
dimensional data point, where each pixel
represents one dimension, and its value is
equal to the RGB color value of the pixel.
Since this representation loses pixel adjacency
information, it is generally used in connection
with a smoothing technique, which replaces the
value of a pixel with a function that depends
both on the old pixel value, and the values of its
neighbors. A projective cluster groups images
that share some similar features, while they differ
significantly on others. The DOC algorithm has
been applied to the face detection problem as
follows: Projective clusters were computed on
a set of (pre-labeled) human faces, then used in
a classifier to determine whether a new image
contained a human face.

Document Processing
Text documents are often represented as sparse
high-dimensional vectors, with each dimension
corresponding to a distinct word in the document
collection. Several methods are used to reduce
the dimensionality, e.g., by eliminating so-called
stop words such as “and,” “the,” and “of.” A
non zero entry in a vector is usually a function
of the corresponding word’s frequency in the
document. Because of the inherent sparsity of the
vectors, density-based clustering, as well as k-
center methods, are poor choices for such data.
However, k-means projective clustering has been
successfully applied to several document corpora
(Li et al. 2004).

DNA Microarray Analysis
A gene-condition expression matrix, generated
by a DNA microarray, is a real-valued matrix,
such that each row corresponds to a gene, and
each column corresponds to a different condition.
An entry in a row is a function of the relative
abundance of the mRNA of the gene under that
specific condition. An orthogonal projective clus-
ter thus represents several genes that have similar
expression levels under a subset of conditions.
Genetics researchers can infer connections be-
tween a disease and the genes in a cluster. Due
to the particularities of the data, different notions

1024 Projective Clustering

of similarity are often required. For example,
order preserving clusters group genes that have
the same tendency on a subset of attributes, i.e.,
an attribute has the same rank (rather than similar
value) in each projected gene. See the results of
Liu and Wang (2003).

Principal Component Analysis

PCA also referred to as the Karhunen-Loève
Transform, is a global � dimensionality reduction
technique, as opposed to projective clustering,
which is a local dimensionality reduction method.
PCA is defined as an orthogonal linear transfor-
mation with the property that it transforms the
data into a new coordinate system, such that the
projection of the data on the first coordinate has
the greatest variance among all projections on
a line, the projection of the data on the second
coordinate has the second greatest variance, and
so on. Let X denote the data matrix, with each
point written as a column vector in X , and mod-
ified so that X has empirical mean zero (i.e., the
mean vector is subtracted from each data point).
Then the eigenvectors of the matrix XX T are
the coordinates of the new system. To reduce
the dimensionality, keep only the eigenvectors
corresponding to the largest few eigenvalues.

Coresets

Let P � R
d be a set of points, and � be a

measure function defined on subsets of Rd , such
that � is monotone (i.e., for P1 � P2, �.P1/ �

�.P2//. A subset Q � P is an "-coreset with
respect to � if (1 � "/�.P / � �.Q/. The
objective functions for k-center, k-median, and
k-means projective clustering are all examples of
measure functions �.

Cross-References

�Clustering
�Curse of Dimensionality
�Dimensionality Reduction

�Kernel Methods
�K-Means Clustering
� Principal Component Analysis

Recommended Reading

Agarwal PK, Mustafa N (2004) k-means projective
clustering. In: Proceeding of ACM SIGMOD-
SIGACT-SIGART symposium principles of
database systems, pp 155–165

Agarwal PK, Procopiuc CM (2003) Approximation
algorithms for projective clustering. J Algorithms
46(2):115–139

Agarwal PK, Har-Peled S, Varadarajan KR (2005) Ge-
ometric approximation via coresets. In: Goodman
JE, Pach J, Welzl E (eds) Combinatorial and com-
putational geometry. Cambridge University Press,
Cambridge/New York, pp 1–30

Aggarwal CC, Yu PS (2000) Finding generalized pro-
jected clusters in high dimensional spaces. In: Pro-
ceeding of ACM SIGMOD international conference
management of data, pp 70–81

Aggarwal CC, Procopiuc CM, Wolf JL, Yu PS, Park JS
(1999) Fast algorithms for projected clustering. In:
Proceeding of ACM SIGMOD international confer-
ence management of data, pp 61–72

Agrawal R, Gehrke J, Gunopulos D, Raghavan P
(1998) Automatic subspace clustering of high di-
mensional data for data mining applications. In: Pro-
ceeding of ACM SIGMOD international conference
management of data, pp 94–105

Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999)
When is “nearest neighbour” meaningful? In: Pro-
ceeding of 7th international conference data theory,
vol 1540, pp 217–235

Böhm C, Kailing K, Kröger P, Zimek A (2004) Com-
puting clusters of correlation connected objects. In:
Proceeding of ACM SIGMOD international confer-
ence management of data, pp 455–466

Chakrabarti K, Mehrotra S (2000) Local dimension-
ality reduction: a new approach to indexing high
dimensional spaces. In: Proceeding of 26th interna-
tional conference very large data bases, pp 89–100

Hinneburg A, Keim DA (1999) Optimal grid-
clustering: towards breaking the curse of dimension-
ality in high-dimensional clustering. In: Proceeding
of 25th international conference very large data
bases, pp 506–517

Li T, Ma S, Ogihara M (2004) Document clustering via
adaptive subspace iteration. In: Proceeding of 27th
international ACM SIGIR conference research and
development in information retrieval, pp 218–225

Liu J, Wang W (2003) Op-cluster: clustering by ten-
dency in high dimensional space. In: Proceeding of
international conference on data mining, pp 187–
194

http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_665

Propositionalization 1025

P

Megiddo N, Tamir A (1982) On the complexity of
locating linear facilities in the plane. Oper Res Lett
1:194–197

Parsons L, Haque E, Liu H (2004) Subspace clustering
for high dimensional data: a review. ACM SIGKDD
Explor Newslett 6(1):90–105

Procopiuc CM, Jones M, Agarwal PK, Murali TM
(2002) A Monte Carlo algorithm for fast projective
clustering. In: Proceeding of ACM SIGMOD inter-
national conference management of data, pp 418–
427

Prolog

Prolog is a declarative programming language
based on logic. It was conceived by French and
British computer scientists in the early 1970s.
A considerable number of public-domain and
commercial Prolog interpreters are available to-
day. Prolog is particularly suited for applications
requiring pattern matching or search. Prolog pro-
grams are also referred to as � logic programs.

In machine learning, classification rules for
structured individuals can be expressed using
a subset of Prolog. Learning Prolog programs
from examples is called � inductive logic pro-
gramming (ILP). ILP systems are sometimes –
but not always – implemented in Prolog. This
has the advantage that classification rules can be
executed directly by the Prolog interpreter.

Cross-References

�Clause
� First-Order Logic
� Inductive Logic Programming
�Logic Program

Recommended Reading

Colmerauer A, Kanoui H, Pasero R, Roussel P (1973)
Un système de communication homme-machine an
Français. Report, Groupè d’Intelligence Artificielle,
University d’Aix Marseille II, Luminy

Kowalski RA (1972) The predicate calculus as a pro-
gramming language. In: Proceedings of the interna-

tional symposium and summer school on mathemat-
ical foundations of computer science, Jablonna

Roussel P (1975) Prolog: Manual de reference
et d’utilization. Technical report, Groupe
d’Intelligence Artificielle, Marseille-Luminy

Property

�Attribute

Propositional Logic

Propositional logic is the logic of propositions,
i.e., expressions that are either true or false. Com-
plex propositions are built from propositional
atoms using logical connectives. Propositional
logic is a special case of predicate logic, where
all � predicates have zero arity; see the entry on
first-order logic for details.

Cross-References

� First-Order Logic
� Propositionalization

Propositionalization

Nicolas Lachiche
University of Strasbourg, Strasbourg, France

Abstract

Propositionalization is the process of explic-
itly transforming a � relational dataset into a
propositional dataset.

Definition

The input data consists of examples represented
by structured terms (cf. � learning from struc-
tured data), several predicates in �first-order
logic, or several tables in a relational database.
We will jointly refer to these as relational
representations. The output is an � attribute-
value representation in a single table, where

http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_653
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_923

1026 Propositionalization

each example corresponds to one row and
is described by its values for a fixed set of
attributes. New attributes are often called features
to emphasize that they are built from the original
attributes. The aim of propositionalization is to
preprocess relational data for subsequent analysis
by attribute-value learners. There are several
reasons for doing this, the most important of
which are to reduce the complexity and speed
up the learning, to separate modeling the data
from hypothesis construction, or to use familiar
attribute-value (or propositional) learners.

Motivation and Background

Most domains are naturally modeled by several
tables in a relational database or several classes
in an object-oriented language, for example, cus-
tomers and their transactions; molecules, their
atoms, and bonds; or patients and their exami-
nations. A proper relational dataset involves at
least two tables linked together. Typically, one
table of the relational representation corresponds
to the individuals of interest for the machine
learning task, and the other tables contain related
information that could be useful. The first table
is the individual or the primary table; the other
tables are complementary tables.

Example 1 Let us consider a simplified medical
domain as an example. This is inspired by a
real medical dataset (Tomečková et al. 2002). It
consists of four tables.

The patient table is the primary table. It con-
tains data on each patient such as the patient
identifier (pid), name, date of birth, height, job,
the identifier of the company where the patient
works, etc.

Patient

pid Name Birth Height Job Company . . .

I Smith 15/06/1956 1:67 Manager a . . .

II Blake 13/02/1968 1:82 Salesman a . . .
:::

:::
:::

:::
:::

::: . . .

The company table contains its name, its lo-
cation, and so on. There is a many-to-one rela-

tionship from the patient table to the company
table: A patient works for a single company, but
a company may have several employees.

Company

cid Name Location . . .

a Eiffel Paris . . .
:::

:::
::: . . .

The examination table contains the informa-
tion on all examinations of all patients. For each
examination, its identifier (eid), the patient iden-
tifier (pid), the date, the patient’s weight, whether
the patient smokes, his or her blood pressure, etc.
are recorded. Of course, each examination cor-
responds to a single patient, and a given patient
can have several examinations, i.e., there is a one-
to-many relationship from the patient table to the
examination table.

Examination

eid pid Date Weight Smokes BP . . .

1 I 10/10/1991 60 Yes 10 . . .

2 I 04/06/1992 64 Yes 12 . . .
:::

:::
:::

:::
:::

::: . . .

23 II 20/12/1992 80 Yes 10 . . .

24 II 15/11/1993 78 No 11 . . .
:::

:::
:::

:::
:::

::: . . .

Additional tests can be prescribed at each ex-
amination. Their identifiers (tid), corresponding
examinations (eid), names, values, and interpre-
tations are recorded in the additional test table.

Additional test

tid eid Date Name Value Interpretation

t237 1 19/10/1991 Red blood cells 35 Bad

t238 1 23/10/1991 Radiography Nothing Good
:::

:::
:::

:::
:::

:::

t574 2 07/06/1992 Red blood cells 43 Good
:::

:::
:::

:::
:::

:::

Propositionalization 1027

P

Several approaches exist to deal directly with
relational data, e.g., � inductive logic program-
ming, � relational data mining (Džeroski and
Lavrač 2001), or � statistical relational learning.
However relational hypotheses can be trans-
formed into propositional
expressions.

Generally, a richer representation language
permits the description of more complex con-
cepts; however, the cost of this representational
power is that the search space for learning greatly
increases. Therefore, mapping a relational rep-
resentation into a propositional one generally
reduces search complexity.

A second motivation of propositionalization
is to focus on the construction of features before
combining them into a hypothesis (Srinivasan
et al. 1996). This is related to � feature
construction and to the use of background
knowledge. One could say that proposition-
alization aims at building an intermediate
representation of the data in order to simplify the
hypothesis subsequently found by a propositional
learner.

A third motivation is pragmatic. Most avail-
able machine learning systems deal with propo-
sitional data only, but tend to include a range
of algorithms in a single environment, whereas
relational learning systems tend to concentrate
on a single algorithm. Propositional systems are
therefore often more versatile and give users the
possibility to work with the algorithms they are
used to.

Solutions

There are various ways to propositionalize
relational data consisting of at least two tables
linked together through a relationship. We will
first focus on a single relationship between two
tables. Most approaches can then iteratively
deal with several relationships as explained
below.

Propositionalization mechanisms depend on
whether that relationship is functional or nonde-
terminate. This distinction explains most com-
mon mistakes made by newcomers.

Functional Relationship (Many-to-One,
One-to-One)
When the primary table has a many-to-one or
one-to-one relationship to the complementary ta-
ble, each row of the primary table links to one
row of the complementary table. A simple join
of the two tables results in a single table where
each row of the primary table is completed with
the information derived from the complementary
table.

Example 2 In our simplified medical domain,
there is a many-to-one relationship from each pa-
tient to his or her company. Let us focus on those
two tables only. A join of the two tables results in
a single table where each row describes a single
patient and the company he or she works for.

Patient and his/her company

pid Name Birth Height Job cid Company Location . . .

I Smith 15/06/ 1.67 Mana- a Eiffel Paris . . .

1956 ger

II Blake 13/02/ 1.82 Sales- a Eiffel Paris . . .

1968 man
:::

:::
:::

:::
:::

:::
:::

::: . . .

The resulting table is suitable for any attribute-
value learner

Nondeterminate Relationship
(One-to-Many, Many-to-Many)
Propositionalization is less trivial in a nonde-
terminate context, when there is a one-to-many
or many-to-many relationship from the primary
table to the complementary table, i.e., when one
individual of the primary table is associated with
a set of rows of the complementary table.

A propositional attribute is built by apply-
ing an aggregation function to a column of the
complementary table over a selection of rows.
Of course a lot of conditions can be used to
select the rows. Those conditions can involve
other columns than the aggregated column. Any
aggregation function can be used, e.g., to check
whether the set is not empty, to count how many
elements there are, to find the mean (for numeri-
cal) or the mode (for categorical) values, etc.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_100405
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_100

1028 Propositionalization

Example 3 In our simplified medical domain,
there is a one-to-many relationship from the pa-
tient to his or her examinations. Let us focus
on those two tables only. Many features can
be constructed. Simple features are aggregation
functions applied to a scalar (numerical or cate-
gorical) column. The number of occurrences of
the different values of every categorical attributes
can be counted. For instance, the f60 feature in
the table below counts in how many examinations
the patient stated he or she smoked. The maxi-
mum, minimum, average, and standard deviation
of every numerical column can be estimated,
e.g., the f84 and f85 features in the table below,
respectively, estimate the average and the maxi-
mum blood pressure of the patient over his or her
examinations. The aggregation functions can be
applied to any selection of rows, e.g., the f135
feature in the table below estimates the average
blood pressure over the examinations when the
patient smoked.

Patient and his/her examinations

pid Name . . . f60 . . . f84 f85 . . . f135 . . .

I Smith . . . 2 . . . 11 12 . . . 11 . . .

II Blake . . . 1 . . . 10.5 11 . . . 10 . . .
:::

::: . . .
::: . . .

:::
::: . . .

::: . . .

From this example it is clear that nondeterminate
relationships can easily lead to a combinatorial
explosion of the number of features.

Common Mistakes and Key Rules to Avoid
Them
Two mistakes are frequent when machine learn-
ing practitioners face a propositionalization prob-
lem, i.e., when they want to apply a propositional
learner to an existing relational dataset (Lachiche
2005).

The first mistake is to misuse the (universal)
join. Join is valid in a functional context, as ex-
plained earlier. When applied to a nondeterminate
relationship, it produces a table where several
rows correspond to a single individual, leading
to a multiple-instance problem (Dietterich et al.
1997) (cf. �multi-instance learning).

Example 4 In our simplified medical domain,
there is a one-to-many relationship from the pa-
tient table to the examination table. If a join is
performed, each row of the examination table is
completed with the information on the examined
patient, i.e., there are as many rows as examina-
tions.

Examination and its patient

eid Date Weight Smokes BP . . . pid Name . . .

1 10/10/1991 60 Yes 10 . . . I Smith . . .

2 04/06/1992 64 Yes 12 . . . I Smith . . .
:::

:::
:::

:::
::: . . .

:::
::: . . .

23 20/12/1992 80 Yes 10 . . . II Blake . . .

24 15/11/1993 78 No 11 . . . II Blake . . .
:::

:::
:::

:::
::: . . .

:::
::: . . .

In this example, the joined table deals with
the examinations rather than with the patients.
An attribute-value learner could be used to learn
hypotheses about the examinations, not about the
patients

This example reinforces a key representation
rule in attribute-value learning: “Each row
corresponds to a single individual, and vice-
versa.”

The second mistake is a meaningless column
concatenation. This is more likely when a
one-to-many relationship can be misinter-
preted as several one-to-one relationships,
i.e., when the practitioner is led to think
that a nondeterminate relationship is actually
functional.

Example 5 In our simplified medical domain,
let us assume that the physician numbered the
successive examinations (1, 2, 3, and so on) of
each patient. Then given that each patient has
a first examination, it is tempting to consider
that there is a functional relationship from the
patient to his or her “first” examination, “second”
examination, and so on. This would result in
a new patient table with concatenated columns:
weight at the first examination, whether he or she
smoked at the first examination, . . . , weight at the
second examination, etc. This could easily lead

http://dx.doi.org/10.1007/978-1-4899-7687-1_955

Propositionalization 1029

P

Patient and his/her examinations (incorrect representa-
tion!)

pidName. . .
“First” examination“Second” examination. . .

WeightSmokes. . . WeightSmokes.

I Smith. . . 60 Yes . . . 64 Yes

II Blake . . . 80 Yes . . . 78 No
:::

::: . . .
::: . . .

:::
:::

:::

to an attribute-value learner generalizing over a
patient’s weight at their i th examination, which
is very unlikely to be meaningful

Two aspects should warn the user of such
a representation problem: first, the number of
columns depends on the dataset, and as a con-
sequence, lots of columns are not defined for all
individuals. Moreover, when the absolute num-
bering does not make sense, there is no functional
relationship. Such a misunderstanding can be
avoided by remembering that in an attribute-value
representation, “each column is uniquely defined
for each row.”

Further Relationships
The first complementary table can itself have a
nondeterminate relationship with another com-
plementary table and so on. Two approaches are
available.

A first approach is to consider the first com-
plementary table, the one having a one-to-many
relationship, as a new primary table in a recursive
propositionalization.

Example 6 In our simplified medical domain, the
examination table has a one-to-many relationship
with the additional test table. The proposition-
alization of the examination and additional test
tables will lead to a new examination table com-
pleted with new features, such as a count of how
many tests were bad.

Examination and its additional tests

eid pid Date Weight Smokes BP . . . Bad tests . . .

1 I 10/10/1991 60 Yes 10 . . . 1 . . .

2 I 04/06/1992 64 Yes 12 . . . 0 . . .
:::

:::
:::

:::
:::

::: . . .
::: . . .

Then the propositionalization of the patient
table and the already propositionalized examina-
tion tables is performed, producing a new patient
table completed with new features such as the
mean value for each patient of the number of bad
tests among all his or her examinations (f248)

Patient, his/her examinations and additional tests

pid name . . . f60 . . . f248 . . .

I Smith . . . 2 . . . 1 . . .
:::

::: . . .
::: . . .

::: . . .

It is not necessarily meaningful to aggregate
at an intermediate level. An alternative is to
join complementary tables first and apply the
aggregation at the individual level only. A variant
consists in replacing the join by a propagation
of the identifier, i.e., adding the identifier of the
individual into all related tables. Both lead to a
kind of “star schema” where the individual is
directly linked to all complementary tables.

Example 7 In our simplified medical domain,
it is perhaps more interesting to first relate all
additional tests to their patients, then aggregate
on similar tests. First the complementary tables
are joined

Additional test and its examination

tid Name Value InterpretationeidpidWeight. . .

t237Red blood
cells

35 Bad 1 I 60 . . .

t238Radiography NothingGood 1 I 60 . . .
:::

:::
:::

:::
:::

:::
::: . . .

t574Red blood
cells

43 Good 2 I 64 . . .

:::
:::

:::
:::

:::
:::

::: . . .

Let us emphasize the difference with
the propositionalized examination and its
additional tests table of Example 6

1030 Propositionalization

There is a one-to-many relationship from the
patient table to that new additional test and its
examination table. Aggregation functions can be
used to build features such as the minimum per-
centage of red blood cells (f352)

Patient, his/her additional tests and examinations

pid Name . . . f60 . . . f352 . . .

I Smith . . . 2 . . . 35 . . .
:::

::: . . .
::: . . .

::: . . .

Finally, different propositionalization ap-
proaches can be combined, by a simple join.

Future Directions

Propositionalization explicitly aims at leaving
attribute selection to the propositional learner ap-
plied afterward. The number of potential features
is large. No existing propositionalization system
is able to enumerate all imaginable features. His-
torically existing approaches have focused on
a subset of potential features, e.g., numerical
aggregation functions without selection (Knobbe
et al. 2001) and selection based on a single
elementary condition and existential aggregation
(Flach and Lachiche 1999; Kramer et al. 2001).
Most approaches can be combined to provide
more features. The propositionalization should be
guided by the user.

Propositionalization is closely related to
knowledge representation. Specific representa-
tional issues require appropriate propositionaliza-
tion techniques, e.g., Perlich and Provost (2006)
introduce new propositionalization operators to
deal with high-cardinality categorical attributes.
New data sources, such as geographical or
multimedia data, will need an appropriate
representation and perhaps appropriate propo-
sitionalization operators to apply off-the-shelf
attribute-value learners.

Propositionalization raises three fundamental
questions. The first question is related to knowl-
edge representation. That question is whether the
user should adapt to existing representations, and
accept a need to propositionalize, or whether data
can be mined from the data sources, requiring
the algorithms to be adapted or invented. The
second question is whether propositionalization
is needed. Propositionalization explicitly allows
the user to contribute to the feature elaboration
and invites him or her to guide the search,
thanks to that language bias. It separates feature
elaboration from model extraction. Conversely,
relational data mining techniques automate the
elaboration of the relevant attributes during
the model extraction, but at the same time
leave less opportunity to select the features
by hand.

The third issue is one of efficiency. A more ex-
pressive representation necessitates a more com-
plex search. Relational learning algorithms face
the same dilemma as attribute-value learning in
the form of a choice between an intractable search
in the complete search space and an ad hoc
heuristic/search bias (cf. � search bias). They
only differ in the size of the search space (cf.
� hypothesis space). Propositionalization is con-
cerned with generating the search space. Gener-
ating all potential features is usually impossible.
So practitioners have to constrain the proposi-
tionalization, e.g., by choosing the aggregation
functions, the complexity of the selections, etc.;
by restricting the numbers of operations; and so
on. Different operators fit different problems and
might lead to differences in performance (Krogel
et al. 2003).

Cross-References

�Attribute
� Feature Construction in Text Mining
� Feature Selection
� Inductive Logic Programming
�Language Bias

http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_440

Pruning 1031

P

�Learning from Structured Data
�Multi-instance Learning
�Relational Learning
� Statistical Relational Learning

Recommended Reading

Dietterich TG, Lathrop RH, Lozano-Pérez T(1997)
Solving the multiple-instance problem with axis-
parallel rectangles. Artif Intell 89(1–2):31–71

Džeroski S, Lavrač N (eds) (2001) Relational data
mining. Springer, New York

Flach P, Lachiche N (1999) 1BC: a first-order Bayesian
classifier. In: Džeroski S, Flach P (eds) Proceedings
of the ninth international workshop on inductive
logic programming (ILP’99). Volume 1634 of lec-
ture notes in computer science. Springer, pp 92–
103

Knobbe AJ, de Haas M, Siebes A (2001) Propo-
sitionalisation and aggregates. In: Proceedings
of the sixth European conference on principles of
data mining and knowledge discovery. Volume 2168
of lecture notes in artificial intelligence. Springer,
pp 277–288

Kramer S, Lavrač N, Flach P (2001) Proposi-
tionalization approaches to relational data mining.
In: Džeroski S, Lavrač N (eds) Relational data
mining. Springer, New York, chap 11, pp 262–
291

Krogel M-A, Rawles S, Železný F, Flach PA, Lavrač
N, Wrobel S (2003) Comparative evaluation of
approaches to propositionalization. In: Horváth T,
Yamamoto A (eds) Proceedings of the thirteenth
international conference on inductive logic pro-
gramming. volume 2835 of lecture notes in artificial
intelligence. Springer, pp 197–214

Lachiche N (2005) Good and bad practices in propo-
sitionalisation. In: Bandini S, Manzoni S (eds)
Proceedings of advances in artificial intelligence,
ninth congress of the Italian association for artificial
intelligence (AI*IA’05). Volume 3673 of lecture
notes in computer science. Springer, pp 50–61

Perlich C, Provost F (2006) Distribution-based ag-
gregation for relational learning with identifier at-
tributes. Mach Learn 62:62–105

Srinivasan A, Muggleton S, King RD, Stenberg M
(1996) Theories for mutagenicity: a study of first-
order and feature based induction. Artif Intell 85(1–
2):277–299

Tomečková M, Rauch J, Berka P (2002) Stulong –
data from longitudinal study of atherosclerosis risk
factors. In: Berka P (ed) Discovery challenge
workshop notes, ECML/PKDD’02.

Prospective Evaluation

Prospective evaluation is an approach to
�Out-Of-Sample Evaluation whereby a model
learned from historical data is evaluated by
observing its performance on new data as they
become available. Prospective evaluation is likely
to provide a less biased estimation of future
performance than evaluation on historical data.

Cross-References

�Algorithm Evaluation

Pruning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Pruning describes the idea of avoiding
�Overfitting by simplifying a learned
concept, typically after the actual induction
phase.

Method

The term originates from decision tree learning,
where the idea of improving the decision tree by
cutting some of its branches may be viewed as an
analogy to the concept of pruning in gardening.

Commonly, one distinguishes two types of
pruning:

Pre-pruning monitors the learning process and
prevents further refinements if the current hy-
pothesis becomes too complex.

Post-pruning first learns a possibly overfitting
hypothesis and then tries to simplify it in a
separate learning phase.

http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_955
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_621
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

1032 Pruning Set

Pruning techniques are particularly important
for state-of-the-art �Decision Tree and �Rule
Learning algorithms (see there for more details).

The key idea of pruning is essentially the same
as �Regularization in statistical learning, with
the key difference that regularization incorporates
a complexity penalty directly into the learning
heuristic, whereas pruning uses a separate prun-
ing criterion or pruning algorithm.

Cross-References

�Decision Tree
�Regularization
�Rule Learning

Pruning Set

Definition

A pruning set is a subset of a � training set
containing data that are used by a learning sys-
tem to evaluate models that are learned from a
� growing set.

Cross-References

�Data Set

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_357
http://dx.doi.org/10.1007/978-1-4899-7687-1_196

Q

Q-Learning

Peter Stone
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Abstract

Definition of Q-learning.

Definition

Q-learning is a form of � temporal differ-
ence learning. As such, it is a model-free
� reinforcement learning method combining
elements of � dynamic programming with Monte
Carlo estimation. Due in part to Watkins’ (1989)
proof that it converges to the optimal value
function, Q-learning is among the most
commonly used and well-known � reinforcement
learning algorithms.

Cross-References

�Reinforcement Learning
�Temporal Difference Learning

Recommended Reading

Watkins CJCH (1989) Learning from delayed rewards.
PhD thesis. King’s College, Cambridge

Quadratic Loss

�Mean Squared Error

Qualitative Attribute

�Categorical Attribute

Quality Threshold

�Quality Threshold Clustering

Quality Threshold Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Abstract

Quality Threshold is a clustering algorithm
without specifying the number of clusters. It
uses the maximum cluster diameter as the
parameter to control the quality of clusters.

Synonyms

Quality threshold

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_98
http://dx.doi.org/10.1007/978-1-4899-7687-1_692
http://dx.doi.org/10.1007/978-1-4899-7687-1_100386

1034 Quantitative Attribute

Definition

Quality Threshold (QT) clustering (Heyer et al.
1999) is a partitioning clustering algorithm orig-
inally proposed for gene clustering. The focus of
the algorithm is to find clusters with guaranteed
quality. Instead of specifying K, the number of
clusters, QT uses the maximum cluster diameter
as the parameter.

The basic idea of QT is as follows: form a
candidate cluster by starting with a random point
and iteratively add other points, with each itera-
tion adding the point that minimizes the increase
in cluster diameter. The process continues until
no point can be added without surpassing the
diameter threshold. If surpassing the threshold,
a second candidate cluster is formed by starting
with a point and repeating the procedure. In order
to achieve reasonable clustering quality, already
assigned points are available for forming another
candidate cluster.

For data partition, QT selects the largest
candidate cluster and removes the points which
belong to the cluster from consideration and
repeats the procedure on the remaining set of
data.

The advantage of QT clustering is that it can
guarantee cluster quality and does not require the
prior knowledge of the cluster number. The dis-
advantage is that the algorithm is computationally
expensive as much as O.N 3/.

Softwares

The following softwares have implementations
of the Quality Threshold (QT) clustering algo-
rithm:

• Flexclust: Flexible Cluster Algorithms.
R package. http://cran.r-project.org/web/
packages/flexclust/index.html

• FinMath. A numerical library that provides
components for the development of mathe-
matical, scientific, and financial applications
on the .NET platform. https://www.rtmath.
net

Recommended Reading

Heyer L, Kruglyak S, Yooseph S (1999) Exploring
expression data: identification and analysis of coex-
pressed genes. Genome Res 9:1106–1115

Quantitative Attribute

�Numeric Attribute

Quantum Machine Learning

Maria Schuld1 and Francesco Petruccione2

1Quantum Research Group, School of Chemistry
& Physics, University of KwaZulu-Natal,
Durban, South Africa
2National Institute of Theoretical Physics
(NITheP), KwaZulu-Natal, South Africa

Abstract

Quantum machine learning is a young re-
search area investigating which consequences
the emerging technology of quantum comput-
ing has for machine learning. This article in-
troduces into basic concepts of quantum infor-
mation and summarises some major strategies
of implementing machine learning algorithms
on a quantum computer.

Definition

Quantum machine learning (QML) is a
subdiscipline of quantum information processing
research, with the goal of developing quantum
algorithms that learn from data in order to
improve existing methods in machine learning.
A quantum algorithm is a routine that can be
implemented on a quantum computer, a device
that exploits the laws of quantum theory in order
to process information.

A number of quantum algorithms have
been proposed for various machine learning
models such as neural networks, support

http://cran.r-project.org/web/packages/flexclust/index.html
http://cran.r-project.org/web/packages/flexclust/index.html
https://www.rtmath.net
https://www.rtmath.net
http://dx.doi.org/10.1007/978-1-4899-7687-1_604

Quantum Machine Learning 1035

Q

vector machines, and graphical models, some
of which claim runtimes that under certain
conditions grow only logarithmic with the size
of the input space and/or dataset compared
to conventional methods. A crucial point for
runtime considerations is to find a procedure
that efficiently encodes classical data into
the properties of a quantum system. QML
algorithms are often based on well-known
quantum subroutines (such as quantum phase
estimation or Grover search) or exploit fast
annealing techniques through quantum tunneling
and can make use of an exponentially compact
representation of data through the probabilistic
description of quantum systems.

Besides finding quantum algorithms for pat-
tern recognition and data mining, QML also in-
vestigates more fundamental questions about the
concept of learning from the perspective of quan-
tum theory. Sometimes the definition of QML
is extended by research that applies machine
learning to quantum information, such as is fre-
quently done when the full evolution or state of
a quantum system has to be reconstructed from
limited experimental data.

Motivation and Background

The accurate solution of many learning problems
is known to be NP-hard, such as the training of
Boltzmann machines or inference in graphical
models. But also methods for which tractable
algorithms are known suffer from the increasing
size of datasets available in today’s applications.
The idea behind QML is to approach these prob-
lems from the perspective of quantum informa-
tion and harvest the power of quantum computers
for applications in artificial intelligence and data
mining.

The motivation to find quantum analogues for
“classical” machine learning algorithms derives
from the success of the dynamic research field of
quantum information. Some speedups compared
to the best or best-known classical algorithms
have already been shown, the most prominent
being Shor’s factorization algorithm (Shor 1997)
(providing an exponential speedup compared to

the best classical algorithm known) and Grover’s
search algorithm for unsorted databases (Grover
1996) (providing a quadratic speedup to the
best possible classical algorithm). Although
it is still an open question whether “true”
exponential speedups are possible, the number
of quantum algorithms is constantly growing.
Also the technological implementation of large-
scale universal quantum computers makes
steady progress, and many proof-of-principle
experiments have confirmed the theoretical
predictions (The reader can get a first impression
of the current progress in Wikipedia’s “timeline
of quantum computing” https://en.wikipedia.org/
wiki/Timeline of quantum computing.) The first
realizations of quantum annealing devices,
which solve a very specific type of optimization
problem and are thus not universal, are already
commercially available (e.g., http://www.
dwavesys.com/).

Proposals that apply quantum computing to
data mining in general and learning tasks in
particular have been sporadically put forward
since quantum computing became a well-
established research area in the 1990s. A
specifically large share of attention has been
devoted to so-called quantum neural network
models which simulate the behavior of artificial
neural networks based on quantum information.
They were initially motivated by questions of
whether quantum mechanics can help to explain
the functioning of our brain (Kak 1995) and vary
in the degree of a rigorous application of quantum
theory (Schuld et al. 2015). Since around
2012, there has been a rapid increase in other
contributions to QML, consisting of proposals
for quantum versions of hidden Markov models
(Barry et al. 2014), Boltzmann machines (Wiebe
et al. 2014; Adachi and Henderson 2015), belief
nets (Low et al. 2014), support vector machines
(Rebentrost et al. 2014), linear regression (Schuld
et al. 2016), Gaussian processes (Zhao et al.
2015) and many more. Several collaborations
between IT companies and academic institutions
have been created and promise to advance the
field of QML in future. For example, Google
and NASA founded the Quantum Artificial
Intelligence Lab in 2013, the University of

https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
http://www.dwavesys.com/
http://www.dwavesys.com/

1036 Quantum Machine Learning

Oxford and Nokia set up a Quantum Optimisation
and Machine Learning program in 2015, and the
University of Southern California collaborates
with Lockheed Martin on machine learning
applications through the Quantum Computation
Center.

Quantum Computing

In order to present the major approaches to QML
research below, it is necessary to introduce some
basic concepts of quantum information. The in-
terested reader shall be referred to the excellent
introduction by Nielsen and Chuang (2010).

In conventional computers, the state of a phys-
ical system represents bits of information and is
manipulated by the Newtonian laws of physics
(e.g., the presence of a current in a circuit rep-
resents 0 and 1 and is manipulated by the laws of
electrodynamics). A quantum computer follows
a very similar concept, only that the underly-
ing physical system is governed by the laws of
quantum theory and is therefore called a quantum
system.

Quantum theory is a mathematical apparatus
describing physical objects on very small scales
(i.e., electrons, atoms, photons). More precisely,
it is a probabilistic description of the results
of physical measurements on quantum systems,
and although confirmed in many experiments, it
shows a number of features distinct to classical
or Newtonian mechanics. Quantum computers
exploit these features through information pro-
cessing based on the rules of quantum theory.
Although a number of exciting results have been
achieved, it is still unknown whether BQP, the
class of decision problems solvable by a quantum
computer in polynomial time, is larger than BPP,
its classical analogue. In short, quantum comput-
ing is a very dynamic research area with many
promising results and open questions.

The quantum information community uses a
variety of computational models that have been
shown to be equivalent, but which constitute
different building blocks of universal quantum
computation. The following will give a short
introduction to the most influential model, the

circuit model, to clarify important concepts on
which QML algorithms are based.

The Concept of a Qubit
A central concept in the major quantum compu-
tational models is the qubit, an abstraction of a
quantum system that has two possible configura-
tions or states. As long as certain properties are
fulfilled (DiVincenzo 2000), such a two-level sys-
tem can have many possible physical realizations
(just like bits may be encoded in currents of cir-
cuits or the pits and lands of CDs), for example,
a hydrogen atom in the energetic ground or first
excited state, the current in a superconducting
circuit or the path a light photon chooses through
a semitransparent mirror.

Qubits are often introduced as “bits that can
be in states 0 and 1 at the same time,” which
mystifies rather than explains the concept. In fact,
qubits can be compared to a probabilistic de-
scription of a classical physical system with two
different states, say a coin with the states “heads”
and “tails.” As illustrated in Table 1, the prob-
abilities p00; p01; p10; and p11 with

P
i pi D 1

describe our expectation to get the respective
result “head and head,” “head and tail,” “tail and
head,” and “tail and tail” after tossing two coins.
Note that the coin tosses do not necessarily need
to be statistically independent events.

The probabilistic description of a qubit shows
a significant difference (see Table 2). The four
configurations “00,” “01,” “10,” and “11” of a
two-qubit system such as two simplified atoms

Quantum Machine Learning, Table 1
Probabilistic description of a classical system of
two coins. Each of the four possible outcomes
or configurations after tossing both coins is
associated with a probability.

Quantum Machine Learning 1037

Q

Quantum Machine Learning, Table 2 Important el-
ements in the description of a two-qubit system. An
example is two atoms that can each be in the ground and
first excited state, so that the system has four possible
abstract configurations. Quantum theory associates each

configuration (or potential measurement outcome) with an
amplitude, and the absolute square of the amplitude is the
probability of measuring this state. In the mathematical
notation, each configuration corresponds to a unit basis
vector or, in Dirac notation, a Dirac basis state

are each associated with a complex number called
amplitude, and the probability of observing the
two qubits in one of the four possible joint states
is given by the absolute square of the amplitude.
The sum of absolute squares of the amplitudes
ai ; i D 1; : : : ; 2n of an n-qubit system conse-
quently has to add up to one,

P
i jai j

2 D 1. In
both the classical and the quantum case, once the
coins or atoms are observed in one of the joint
configurations, their state is fully determined,
and repeated observations will only confirm the
result. As will be explained below, this concept
of complex amplitudes is central to quantum
information and has up to the present – 100 years
after the beginning of quantum theory – still not
found a satisfying interpretation for our everyday
intuition.

Algorithmic Manipulations of Qubits
Information processing is about the manipulation
of bits by elementary logic gates such as AND
or XOR, and quantum information processing
likewise needs to define elementary operations on
qubit systems (of course derived from the laws of
quantum theory), from which algorithms with a
well-defined output can be constructed.

In a probabilistic description, manipulating
information corresponds to a transformation of
the system’s probability distribution. For exam-
ple, in the case of the two coins, this could
mean drawing a “heads” over the “tails” symbol,
causing the coin to only toss “heads.” Using
the mathematical language of Markov chains,

changes of a classical probability distribution can
be expressed by a linear transformation applied to
the vector of probabilities, written as a stochastic
matrix S D .sij / multiplied from the left. The
stochastic matrix has the properties that its entries
are nonnegative and all columns sum up to one,
in order to guarantee that the resulting vector on
the right side is again a probability distribution.
In our two-coin example, this reads

S

0

B
B
@

p00

p01

p10

p11

1

C
C
A D

0

B
B
@

p0
00
p0

01
p0

10
p0

11

1

C
C
A ;

sij � 0;
P

i sij D 1:
(1)

For quantum systems, any physically possible
evolution can be mathematically represented by a
unitary matrix U D .uij / applied to the vector of
amplitudes, which in the two-qubit example reads

U

0

B
B
@

a00

a01

a10

a11

1

C
C
A D

0

B
B
@

a0
00
a0

01
a0

10
a0

11

1

C
C
A ;

uij 2 C;

S�S D 1:
(2)

A unitary matrix has orthogonal column vectors,
guaranteeing that the resulting vector on the right
side is again a quantum amplitude vector. Equa-
tion (2) describes in fact any possible closed evo-
lution of a two-qubit system in quantum theory.

Quantum algorithms (as well as QML algo-
rithms) are usually formulated using the Dirac
notation, in which one decomposes the amplitude

1038 Quantum Machine Learning

vector into a linear combination of unit vectors
and rewrites the unit vectors as Dirac vectors:

a D a1

0

B
B
B
@

1
0
:::

0

1

C
C
C
A

C : : :C a2n

0

B
B
B
@

0
0
:::

1

1

C
C
C
A

(3)

m (4)

j i D a1 j0 : : : 0i C : : :C a2n j1 : : : 1i : (5)

Dirac notation is very handy as it visualizes
the actual measurement result of the n qubits
corresponding to an amplitude.

Similarly to elementary gates, the circuit
model defines elementary unitary transforma-
tions as building blocks to manipulate the
quantum state of a qubit system. For example,
consider a single qubit described by the complex
amplitude vector .a1; a2/

T . If the quantum
system is in state .1; 0/T , we know with certainty
that a measurement will produce the state 0 (since
the probability of measuring the 0 state is given
by p0 D ja1j2 D 1:0, while p1 D ja2j2 D 0:0).
The unitary transformation

Ux D

�
0 1
1 0

�

then transforms this state into .0; 1/T , which will
certainly result in a measurement of state 1. Ux

hence effectively performs a bit flip or NOT
gate on the state of the qubits. In a similar
fashion, other quantum gates can be defined that
together form a set of universal gates for quantum
computation.

Why Is Quantum Computing Different?
Returning to the question why complex ampli-
tudes change the rules of classical information
processing, consider another elementary quan-
tum gate that has no classical equivalent since it
cannot be expressed as a stochastic matrix with
positive entries. The Hadamard gate

UH D
1

p
2

�
1 1
1 �1

�

;

will, applied to a state .1; 0/T , produce
. 1p

2
; 1p

2
/T , which is called a superposition of

states 0 and 1. A classical equivalent would be a
state of maximum uncertainty, as the probability
of measuring the qubit in state 0 or 1 is j 1p

2
j2 D 1

2

each. However, the difference of a superposition
becomes apparent when applying UH once more,
which transforms the state back into .1; 0/T as
the minus in UH cancels the two amplitudes
with each other when calculating the second
entry of the resulting amplitude vector. In other
words, amplitudes can annihilate each other, a
phenomenon called interference which is often
mentioned as the crucial resource of quantum
computing. Beyond this illustration, the elegant
theory of quantum Turing machines allows a
more sophisticated comparison between quantum
and classical computing (Deutsch 1985), but goes
beyond our scope here.

Quantum Machine Learning
Algorithms

Most existing QML algorithms solve problems of
supervised or unsupervised pattern classification
and regression, although first advancements to
reinforcement learning have been made (e.g.,
Paparo et al. 2014). Given a (classical) dataset
D and a new instance Qx for which we would
make a prediction, a QML algorithm usually
consists of three parts: First, the input has to
be encoded into a quantum system through a
state preparation routine. Second, the quantum
algorithm is executed by unitary transformations
(Note that nonunitary evolutions are possible in
so-called open quantum systems, but correspond
to a unitary evolution of a larger system.) Third,
the result is read out by measuring the quantum
system (see Fig. 1). The encoding and readout
steps are often the bottlenecks of a QML algo-
rithm; for example, reading out an amplitude in
a quantum state that is in a uniform superposi-
tion of all possibilities will on average take a
number of measurements that is exponential in
the number of qubits. In particular, claims of
quantum algorithms that run in time logarithmic
in the size of the dataset and input vectors often
ignore the resources it takes for the crucial step of
encoding the information carried by a dataset into

Quantum Machine Learning 1039

Q

ML algorithm

Dataset D, new instance x̃

Machine learning
algorithm

Prediction

QML algorithm

Dataset D, new instance x̃

Encoding

Quantum machine
learning algorithm

Read out

Prediction

Quantum system

state preparation

unitary evolution

measurement

Quantum Machine Learning, Fig. 1 Comparison of
the basic scheme of classical (left) and quantum (center)
machine learning algorithms for pattern classification, to-
gether with the operations on the quantum system (right).
In order to solve machine learning tasks based on classical

datasets, the quantum algorithm requires an information
encoding and readout step that are in general highly non-
trivial procedures, and it is important to consider them in
the runtime

a quantum system. Such algorithms can still be
valuable for pure quantum information process-
ing, i.e., if the “quantum data” is generated by
previous routines or experiments.

The QML algorithm and readout step depend
heavily on the way information is encoded into
the quantum system; one can distinguish three
ways of information encoding into an n-qubit
system:

1. Interpreting the possible measurement out-
comes of a qubit system as a bit sequence.

2. Interpreting the amplitude vector as (i) a 2n-
dimensional classical real vector or (ii) a prob-
ability distribution over n binary variables.

3. Encoding the result to an optimization prob-
lem into the ground state (state of the lowest
energy) of a quantum system.

These strategies help to distinguish different ap-
proaches to develop QML algorithms.

Associating Qubits with Bits
The most straightforward method of information
encoding into quantum systems is to associate
bits with qubits. For example, the two-qubit state
.1; 0; 0; 0/T in the example in Table 2 represents
the bit string Œ00�, since the system has unit
probability of being measured in the ‘00’ state.

To encode a full dataset in this fashion, it
needs to be given in binary form, meaning that

every feature vector (and, if applicable, its la-
bel) has been translated into an n-bit binary
sequence. For example, the dataset D [D D8
<

:

0

@
0
0
1

1

A ;

0

@
0
1
1

1

A ;

0

@
1
1
0

1

A

9
=

;
] can be encoded into the

quantum state aD D 1p
3
.01010010/T :

In this case, the Dirac notation introduced
above is helpful as it explicitly contains the en-
coded feature vectors:

jDi D
1

p
3
.j001i C j011i C j110i/:

An early example of a QML algorithm based
on such a “quantum dataset” has been developed
for pattern completion (finding feature vectors
containing a given bit sequence) by an associative
memory mechanism as known from Hopfield
models (Ventura and Martinez 2000). The authors
suggest a routine to construct the state aD effi-
ciently and use a modified Grover search algo-
rithm, in which the amplitudes corresponding to
the desired measurement outcomes are marked
in one single step, after which the amplitudes
of the marked states are amplified. The resulting
quantum state has a high probability of being
measured in one of the basis states containing the
desired bit sequence.

An example of a QML algorithm for
supervised pattern classification is a quantum

1040 Quantum Machine Learning

version of k-nearest neighbor (Schuld et al.
2014b). Beginning with a superposition as in
Eq. (6) where some selected qubits encode
the class label, the idea is to weigh the
amplitudes by the Hamming distance between
each corresponding training vector and the
new input. Only the “class-label qubits” get
measured, so that close inputs contribute more
to the probability of measuring their class label
than distant ones. An alternative is presented by
Wiebe et al. (2015), who also prepare a quantum
state with distance-weighted amplitudes and then
performed a subroutine based on the Grover
search to find the basis state representing the
closest neighbor.

Encoding Information into Amplitudes
Another way to encode information is to asso-
ciate the quantum amplitude vector with a real
classical vector:

0

B
@

a1
:::

a2n

1

C
A $

0

B
@

x1
:::

x2n

1

C
A ;

X

i

jxi j
2 D 1; xi 2 R:

Note that since amplitude vectors are normal-
ized, the classical vector has to be preprocessed
accordingly. A quantum system of n qubits can
therefore in principle encode 2n real numbers,
which is an exponentially compact representa-
tion. There are some vectors for which state
preparation can be done in time that grows only
linear with the number of qubits, and if the
QML algorithm and readout step have the same
property, an algorithm which is logarithmic in the
input dimension is found.

Two different strategies to use this encoding
for QML can be distinguished, one that asso-
ciates the amplitude vector with one or all feature
vectors in order to use the power of eigenvalue
decomposition inherent in the formalism of quan-
tum theory, and the other in which amplitudes are
used to encode classical probability distributions.

Quantum Eigenvalue Decompositions
An important branch of QML research is based
on the intrinsic feature of quantum theory to

evaluate eigenvalues of operators, which has been
exploited in an important quantum algorithm for
the solution of systems of linear equations (Har-
row et al. 2009). The routine takes a quantum
state described by the amplitude vector b which
corresponds to the (normalized) right side of a
classical linear system of equations Ax D b.
Through a set of involved operations (including
the Hamiltonian simulation of an operator corre-
sponding to A, a quantum phase estimation algo-
rithm and a selective measurement that has to be
repeated until a certain result was obtained), the
quantum state is transformed into

P
j �

�1
j uT

j b uj

with eigenvalues �j and eigenvectors uj of A,
which equals the correct solution x. Due to the
exponentially compact representation of informa-
tion, the complexity of the algorithm depends
only logarithmically on the size of b when we
ignore the encoding and readout step. However,
its running time depends sensibly on other param-
eters such as the condition number and sparsity of
A, as well as the desired accuracy in the result.
This makes the linear systems algorithm only
applicable to very special problems (Aaronson
2015). QML researchers have tried to find such
applications in different areas of machine learn-
ing that rely on matrix inversion.

The first full QML example exploiting the
ideas of the linear systems algorithm was the
quantum support vector machine (Rebentrost
et al. 2014). The main idea is to take the dual
formulation of support vector machines written
as a least squares problem, in which a linear
system of equations with the kernel matrix
Kij D xi xj and xi ; xj 2 D has to be solved,
and apply the above quantum routine. By making
use of a trick, the linear systems algorithm can
take a quantum state encoding Kij (instead of
a quantum operator as in the original version).
Creating a quantum version ofKij is surprisingly
elegant if one can prepare a quantum state:

.x1
1 ; : : : ; x

1
N ; : : : ; x

M
1 ; : : : ; xM

N / (6)

whose amplitudes encode the MN features of
all training vectors xm D .xm

1 ; : : : ; x
m
N /

T m D

1; : : : ;M . The statistics of a specific subset of the
qubits in state Eq. (6) include a covariance matrix

Quantum Machine Learning 1041

Q

(in quantum theory known as density matrix) that
is entrywise equivalent to the kernel and which
can be accessed by further processing.

Data fitting by linear regression has been ap-
proached by means of the quantum linear systems
algorithm by Wiebe et al. (2012) to obtain the
well-known least squares solution:

w D XCy

for the linear regression parameters w with the
pseudoinverse XC D .XCX/�1XC where the
columns of X are the training inputs. Schuld et al.
(2016), propose another version of the quantum
algorithm that is suited for prediction. The al-
gorithm is based on a quantum computation of
the singular value decomposition of XC which in
the end encodes the result of the prediction of a
new input into the measurement result of a single
qubit.

Other QML algorithms based on the principle
of matrix inversion and eigenvalue estimation
on a quantum computer have been proposed for
Gaussian processes (Zhao et al. 2015) as well as
to find topological and geometric features of data
(Lloyd et al. 2016). The routines discussed here
specify the core algorithm as well as the readout
step in the scheme of Fig. 1 and are logarithmic
in the dimension of the feature vectors. However,
they leave the crucial encoding step open, which
might merely “hide” the complexity for all but
some selected problems as has been critically
remarked by Aaronson (2015).

Quantum Probability Distributions
Since quantum theory defines probability distri-
butions over measurement results, it is immedi-
ately apparent that probability distributions over
binary variables can very genuinely be repre-
sented by the amplitudes of a qubit system.

More precisely, given n random binary
variables, an amplitude vector can be used to
encode the square roots of 2n probabilities of
the different realizations of these variables.
For example, the probability distribution over
the possible results of the two-coin toss in
Table 1 could be encoded into an amplitude
vector

�p
p00;

p
p01;

p
p10;

p
p11

�
of the two-

qubit system in Table 2. Despite the efficient
representation of probability distributions, also
the marginalization of variables, which is
intractable in classical models, corresponds to the
simple step of excluding the qubits corresponding
to these variables from measurements and
considering the resulting statistics.

While these advantages sound impressive, it
turns out that the problem of statistical inference
remains prohibitive: Conditioning the qubit prob-
ability distribution on the state of all but one
qubit, p.x1; : : : ; xN / ! p.xN jx1; : : : ; xN �1/,
requires measuring these qubits in exactly the
desired state, which has in general an exponen-
tially small probability. Measuring the state can
be understood as sampling from the probability
distribution, and one has to do an unfeasibly large
number of measurements to obtain the condi-
tional statistics, while after each measurement a
new quantum state has to be prepared. It has
in fact been shown that the related problem of
Bayesian updating through quantum distribution
is intractable (Wiebe and Granade 2015), as it
corresponds to a Grover search which can only
be quadratically faster than classically possible.

Even without the ability for efficient infer-
ence, quantum systems can still be interesting
for probabilistic machine learning models. Low
et al. (2014) exploit the quadratic speedup for
a problem of inference with “quantum Bayesian
nets.” Hidden Markov models have been shown
to have an elegant formal generalization in the
language of open quantum systems (Barry et al.
2014). Wiebe et al. (2014) show how quantum
states that approximate Boltzmann distributions
can be prepared to get samples for the train-
ing of Boltzmann machines through contrastive
divergence. The same authors propose a semi-
classical routine for Bayesian updating (Wiebe
and Granade 2015). These contributions suggest
that a lot of potential lies in approaches that
exploit the genuinely stochastic structure of quan-
tum theory for probabilistic machine learning
methods.

Optimization and Quantum Annealing
Another branch of QML research is based on
techniques of quantum annealing, which can be

1042 Quantum Machine Learning

understood as an analogue version of quantum
computing (Das and Chakrabarti 2008). Similar
to the metaheuristic of simulated annealing, the
idea is to drive a physical system into its energetic
ground state which encodes the desired result of
an optimization problem. To associate each basis
state of a qubit with an energy, one has to intro-
duce externally controllable physical interactions
between the qubits.

The main difference between classical and
quantum annealing is that “thermal fluctuations”
are replaced by quantum fluctuations which
enable the system to tunnel through high and
thin energy barriers (the probability of quantum
tunneling decreases exponentially with the
barrier width, but is independent of its height).
That makes quantum annealing especially fit
for problems with a “sharply ragged” objective
function (see Fig. 2). Quantum annealing can be
understood as a heuristic version of the famous
computational model of quantum adiabatic
computation, which is why some authors speak
of adiabatic quantum machine learning.

The significance of quantum annealing lies in
its relatively simple technological implementa-
tion, and quantum annealing devices are available
commercially. Current machines are limited to
solving quadratic unconstrained binary optimiza-
tion (QUBO) problems:

E

x

Quantum Machine Learning, Fig. 2 Illustration of
quantum annealing in an energy landscape over (here
continuous) states or configurations x. The ground state
is the configuration of the lowest energy (black dot).
Quantum tunneling allows the system state to transgress
high and thin energy barriers (gray dot on the left), while
in classical annealing technique stochastic fluctuations
have to be large enough to allow for jumps over peaks
(gray dot on the right)

argmin
.x1;:::;xN /

X

ij

wij xixj with xi ; xj 2 Œ0; 1�:

(7)
An important step is therefore to translate the
problem into QUBO form, which has been
done for simple binary classifiers or perceptrons
(Pudenz and Lidar 2013; Denchev et al. 2012),
image matching problems (Neven et al. 2008) and
Bayesian network structure learning (O’Gorman
et al. 2015). Other machine learning models
naturally relate to the form of Eq. (7). For
example, a number of contributions investigate
quantum annealing for the sampling step required
in the training of Boltzmann machines via
contrastive divergence (Adachi and Henderson
2015; Amin et al. 2016). Another example is
the Hopfield model for pattern recognition via
associative memory, which has been investigated
from the perspective of adiabatic quantum
computation with nuclear magnetic resonance
systems (Neigovzen et al. 2009).

Measuring the performance of quantum
annealing compared to classical annealing
schemes is a non-trivial problem, and although
advantages of the quantum schemes have been
demonstrated in the literature mentioned above,
general statements about speedups are still
controversial.

Experimental Realizations

The reason why one rarely finds classical com-
puter simulations of quantum machine learning
algorithms in the literature is that the description
of quantum systems is classically intractable due
to the exponential size of the amplitude vectors.
Until a large-scale universal quantum computer
is built, only QML algorithms based on quan-
tum annealing can be tested on real devices and
benchmarked against classical machine learning
algorithms. Some proof-of-principle experiments
have nevertheless implemented few-qubit exam-
ples of proposed QML algorithms in the lab.
Among those are experimental realizations of the
quantum support vector machine (Cai et al. 2015)
as well as quantum clustering algorithms (Li et al.
2015; Neigovzen et al. 2009).

Quasi-Interpolation 1043

Q

Further Reading

The interested reader may be referred to existing
reviews on quantum machine learning research
(Schuld et al. 2014a, 2015; Adcock et al. 2015).

Recommended Reading

Aaronson S (2015) Read the fine print. Nat Phys
11(4):291–293

Adachi SH, Henderson MP (2015) Application of
quantum annealing to training of deep neural net-
works. arXiv preprint arXiv:1510.06356

Adcock J, Allen E, Day M, Frick S, Hinchliff J,
Johnson M, Morley-Short S, Pallister S, Price A,
Stanisic S (2015) Advances in quantum machine
learning. arXiv preprint arXiv:1512.02900

Amin MH, Andriyash E, Rolfe J, Kulchytskyy B,
Melko R (2016) Quantum boltzmann machine.
arXiv preprint arXiv:1601.02036

Barry J, Barry DT, Aaronson S (2014) Quantum par-
tially observable markov decision processes. Phys
Rev A 90:032311

Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L,
Liu N-L, Lu C-Y, Pan J-W (2015) Entanglement-
based machine learning on a quantum computer.
Phys Rev Lett 114(11):110504

Das A, Chakrabarti BK (2008) Colloquium: quantum
annealing and analog quantum computation. Rev
Mod Phys 80(3):1061

Denchev V, Ding N, Neven H, Vishwanathan S (2012)
Robust classification with adiabatic quantum opti-
mization. In: Proceedings of the 29th international
conference on machine learning (ICML-12), Edin-
burgh, pp 863–870

Deutsch D (1985) Quantum theory, the church-turing
principle and the universal quantum computer. Proc
R Soc Lond A: Math Phys Eng Sci 400:97–117. The
Royal Society

DiVincenzo DP (2000) The physical implementation
of quantum computation. Fortschritte der Physik
48(9–11):771–783 ISSN 1521–3978

Grover LK (1996) A fast quantum mechanical algo-
rithm for database search. In: Proceedings of the
twenty-eighth annual ACM symposium on theory of
computing. ACM, New York, pp 212–219

Harrow AW, Hassidim A, Lloyd S (2009) Quantum
algorithm for linear systems of equations. Phys Rev
Lett 103(15):150502

Kak SC (1995) Quantum neural computing. Adv
Imaging Electron Phys 94:259–313

Li Z, Liu X, Xu N, Du J (2015) Experimental
realization of a quantum support vector machine.
Phys Rev Lett 114(14):140504

Lloyd S, Garnerone S, Zanardi P (2016) Quantum
algorithms for topological and geometric analysis of
data. Nat Commun 7:10138

Low GH, Yoder TJ, Chuang IL (2014) Quantum infer-
ence on Bayesian networks. Phys Rev A 89:062315

Neigovzen R, Neves JL, Sollacher R, Glaser SJ
(2009) Quantum pattern recognition with liquid-
state nuclear magnetic resonance. Phys Rev A
79(4):042321

Neven H, Rose G, Macready WG (2008) Image
recognition with an adiabatic quantum computer
i. Mapping to quadratic unconstrained binary opti-
mization. arXiv preprint arXiv:0804.4457

Nielsen MA, Chuang IL (2010) Quantum computation
and quantum information. Cambridge University
Press, Cambridge

O’Gorman B, Babbush R, Perdomo-Ortiz A, Aspuru-
Guzik A, Smelyanskiy V (2015) Bayesian network
structure learning using quantum annealing. Eur
Phys J Spec Top 224(1):163–188

Paparo GD, Dunjko V, Makmal A, Martin-Delgado
MA, Briegel HJ (2014) Quantum speedup for active
learning agents. Phys Rev X 4(3):031002

Rebentrost P, Mohseni M, Lloyd S (2014) Quantum
support vector machine for big data classification.
Phys Rev Lett 113:130503

Schuld M, Sinayskiy I, Petruccione F (2014a) The
quest for a quantum neural network. Q Inf Process
13 (11):2567–2586

Schuld M, Sinayskiy I, Petruccione F (2014b) Quan-
tum computing for pattern classification. Pham,
Duc-Nghia, Park, Seong-Bae (Eds.) Springer Inter-
national Publishing In: Lecture notes in computer
science, vol 8862. Springer, pp 208–220

Schuld M, Sinayskiy I, Petruccione F (2015) Introduc-
tion to quantum machine learning. Contemp Phys
56(2):172–185

Schuld M, Sinayskiy I, Petruccione F (2016) Predic-
tion by linear regression on a quantum computer.
Phys Rev A 94(2):022342

Shor PW (1997) Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM J Comput 26(5):1484–1509

Ventura D, Martinez T (2000) Quantum associative
memory. Inf Sci 124(1):273–296

Wiebe N, Granade C (2015) Can small quantum
systems learn? arXiv preprint arXiv:1512.03145

Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm
for data fitting. Phys Rev Lett 109(5):050505

Wiebe N, Kapoor A, Svore K (2014) Quantum deep
learning. arXiv: 1412.3489v1

Wiebe N, Kapoor A, Svore K (2015) Quantum nearest-
neighbor algorithms for machine learning. Q Inf
Comput 15:0318–0358

Zhao Z, Fitzsimons JK, Fitzsimons JF (2015) Quantum
assisted Gaussian process regression. arXiv preprint
arXiv:1512.03929

Quasi-Interpolation

�Radial Basis Function Networks

http://dx.doi.org/10.1007/978-1-4899-7687-1_698

1044 Quasi-Interpolation

Query-Based Learning

Sanjay Jain1 and Frank Stephan2

1School of Computing, National University of
Singapore, Singapore, Singapore
2Department of Mathematics, National
University of Singapore, Singapore, Singapore

Abstract

Query learning models the learning process
as a dialogue between a pupil (learner) and a
teacher; the learner has to figure out the target
concept by asking questions of certain types
and whenever the teacher answers these ques-
tions correctly, the learner has to learn within
the given complexity bounds. Complexity can
be measured by both, the number of queries
as well as the computational complexity of the
learner. Query learning has close connections
to statistical models like PAC learning.

Definition

Most learning scenarios consider learning as a
relatively passive process where the learner ob-
serves more and more data and eventually formu-
lates a hypothesis that explains the data observed.
Query-based learning is an � active learning pro-
cess where the learner has a dialogue with a
teacher, which provides on request useful infor-
mation about the concept to be learned.

Detail

This article will mainly focus on query-based
learning of finite classes and of parameterized
families of finite classes. In some cases, an in-
finite class has to be learned where then the
behavior of the learner is measured in terms of a
parameter belonging to the concept. For example,
when learning the class of all singletons fxg with
x 2 f0; 1g�, the parameter would be the length
n of x, and an algorithm based on membership
queries would need up to 2n � 1 queries of the

form “Is y in L?” to learn an unknown set L D

fxg with x 2 f0; 1gn. In Query-based learning,
the questions asked are similar to the following:
Which classes can be learned using queries of this
or that type? If queries of a given type are used to
learn a parameterized class

S
Cn, is it possible to

make a learner which (with or without knowledge
of n) succeeds to learn every L 2 Cn with a
number of queries that is polynomial in n? What
is the exact bound on queries needed to learn
a finite class C in dependence of the topology
of C and the cardinality of C ? If a query-based
learner using polynomially many queries exists
for a parameterized class

S
Cn, can this learner

also be implemented such that it is computable in
polynomial time?

In the following, let C be the class of concepts
to be learned and the concepts L 2 C are
subsets of some basic set X . Now the learning
process is a dialogue between a learner and a
teacher in order to identify a language L 2 C ,
which is known to the teacher but not to the
learner. The dialogue goes in turns and follows a
specific protocol that goes over a finite number of
rounds. Each round consists of a query placed by
the learner to the teacher and the answer of the
teacher to this query. The query and the answer
have to follow a specific format (see Table 1) and
there are the following common types, where a 2

X andH 2 C are data items and concepts chosen
by the learner and b 2 X is a counterexample
chosen by the teacher:

While for subset queries and superset queries
it is not required by all authors that the teacher
provides a counterexample in the case that the
answer is “no,” this requirement is quite stan-
dard for the case of equivalence queries. With-
out counterexamples, a learner would not have
any real benefit from these queries in settings
where faster convergence is required, than by just
checking “Is H0 D L?,” “Is H1 D L?,” “Is
H2 D L?,” : : :, which would be some trivial kind
of algorithm.

Here is an example: Given the class C of all
finite subsets of f0; 1g�, a learner using superset
queries could just work as given in Table 2 to
learn each set of the form L D fx1; x2; : : : ; xng

with nC 1 queries.

http://dx.doi.org/10.1007/978-1-4899-7687-1_916

Query-Based Learning 1045

Q

Query-Based Learning, Table 1 Types of Queries

Query name Precise Query Answer if true Answer if false

Membership query Is a 2 L? “Yes” “No”

Equivalence query Is H D L? “Yes” “No” plus b (where b 2 H � L [L � H)

Subset query Is H � L? “Yes” “No” plus b (where b 2 H � L)

Superset query Is H � L? “Yes” “No” plus b (where b 2 L � H)

Disjointness query Is H \ L D ;? “Yes” “No” plus b (where b 2 H \ L)

Query-Based Learning, Table 2 Learning finite sets using superset queries

Round Query Answer Counterexample
1 Is L � ;? “No” x1

2 Is L � fx1g? “No” x2

3 Is L � fx1; x2g? “No” x3

:::
:::

:::
:::

n Is L � fx1; x2; : : : ; xn�1g? “No” xn

n C 1 Is L � fx1; x2; : : : ; xn�1; xng? “Yes” —

Here, of course, the order on how the coun-
terexamples come up does not matter; the given
order was just preserved for the reader’s con-
venience. Note that the same algorithm works
also with equivalence queries in place of superset
queries. In both cases, the algorithm stops with
outputting “L D fx1; x2; : : : ; xng” after the last
query. However, the given class is not learnable
using membership and subset queries which can
be seen as follows: Assume that such a learner
learns ; using the subset queries “Is H0 � L?,”
“IsH1 � L?,” “IsH2 � L?,” : : : , “IsHm � L?”
and the membership queries “Is y0 2 L?,” “Is
y1 2 L?,” “Is y2 2 L?,” : : : , “Is yk 2 L?” Fur-
thermore, let D be the set of all counterexamples
provided by the learner to subset queries. Now let
E D D[H0 [H1 [: : :[Hm [fy0; y1; : : : ; ykg.
Note that E is a finite set and let x be an element
of f0; 1g� � E. If L D fxg, then the answers to
these queries are the same to the case that L D ;.
Hence, the learner cannot distinguish between the
sets ; and fxg; therefore, the learner is incorrect
on at least one of these sets.

In the case that C is finite, one could just ask
what is the number of queries needed to deter-
mine the target L in the worst case. This depends
on the types of queries permitted and also on the
topology of the class C . For example, if C is the
power set of fx1; x2; : : : ; xng, then nmembership
queries are enough; but if C is the set of all

singleton sets fxg with x 2 f0; 1gn, then 2n � 1
membership queries are needed to learn the con-
cept, although in both cases the cardinality ofC is
2n. One can do with log.jC j/ many equivalence
queries with counterexamples in the case that a
class-comprising hypothesis space is permitted.
For this, each conjecture H has that for all x,
H.x/ follows the majority of those L 2 C which
are consistent with all previous counterexamples.
Then each counterexample would invalidate the
majority of the still valid/consistent members of
C and thus give the logarithmic bound.

Angluin (2004) provides a survey of the prior
results on questions like how many queries are
needed to learn a given finite class. Maass and
Turán (1992) showed that usage of membership
queries in addition to equivalence queries does
not speed up learning too much compared to
the case of using equivalence queries alone. If
EQ is the number of queries needed to learn
C from equivalence queries alone (with coun-
terexamples) and EMQ is the number of queries
needed to learn C with equivalence queries and
membership queries, then

EQ

log.EQC 1/
� EMQ � EQI

here the logarithm is base 2. This result is
based on a result of Littlestone (1988) who

1046 Query-Based Learning

characterized the number of queries needed
to learn from equivalence queries alone and
provided a “standard optimal algorithm” for
this task. Note that these two results used
class-comprising hypothesis spaces, where
one can make an equivalence query with a
hypothesis which is not in the class to be learned
– this technique permits to get meaningful
counterexample.

Angluin (1987) showed that the class of all
regular languages can be learned in polynomial
time using queries and counterexamples. Here
the learning time is measured in terms of two
parameters: the number n of states that the small-
est deterministic finite automaton generating the
language has and the numberm of symbols in the
longest counterexample provided by the teacher.
Ibarra and Jiang (1988) showed that the algorithm
can be improved to need at most dn3 equiva-
lence queries when the teacher always returns the
shortest counterexample; Birkendorf et al. (2000)
improved the bound to dn2. In these bounds, d
is the size of the alphabet used for defining the
regular languages to be learned.

Much attention has been paid to the following
question: Which classes of Boolean formulas
over n variables can be learned with polyno-
mially many queries, uniformly in n (see, e.g.,
Aizenstein et al. 1992; Aizenstein and Pitt 1995;
Angluin et al. 1993; Hellerstein et al. 1996)?
Angluin et al. (1993) showed that read-once for-
mulas, in which every variable occurs only once,
are learnable in polynomial time using member-
ship and equivalence queries. On the other hand,
read-thrice DNF (disjunctive normal form) for-
mulas cannot be learned in polynomial time using
the same queries (Aizenstein et al. 1992) unless
P D NP. In other words, such a learner would
not succeed because of the limited computational
power of a polynomial time learner; hence, equip-
ping the learner with an additional oracle that
can provide this power would permit to build
such a learner. Here an oracle – in contrast to a
teacher – does not know the task to be learned but
gives information which is difficult or impossible
to compute. Such an oracle could, for example,
be the set SAT of all satisfiable formulas, and
thus the learner could gain additional power by

asking the oracle whether certain formulas are
satisfiable. A special class of Boolean formulas
is that of Horn clauses (see, e.g., Angluin et al.
1992; Arias 2004; Arias and Balcázar 2009; Arias
and Khardon 2002).

There are links to other fields. Angluin (1988,
1990) investigated the relation between query
learning and � PAC Learning. She found that
every class which is learnable using member-
ship queries and equivalence queries is also PAC
learnable (Angluin 1988); the PAC learner also
works in polynomial time and needs at most
polynomially many examples. More recent re-
search on learning Boolean formulas also com-
bines queries with probabilistic aspects (Jack-
son 1997). Furthermore, query learning has also
been applied to � Inductive Inference (see, e.g.,
Gasarch and Lee 2008; Gasarch and Smith 1992;
Jain et al. 2007; Lange and Zilles 2005). Here
the power of the learner depends not only on the
type of queries permitted but also on whether
queries of the corresponding type can be asked
finitely often or infinitely often; the latter applies
of course only to learning models where the
learner converges in the limit and may revise
the hypothesis from time to time. Furthermore,
queries to oracles have been studied widely; see
the entry on �Complexity of Inductive Inference.

Acknowledgements Sanjay Jain was supported in part
by NUS grant numbers C252-000-087-001, R146-000-
181-112, and R252-000-534-112. Frank Stephen was sup-
ported in part by NUS grant numbers R146-000-181-112
and R252-000-534-112.

Recommended Reading

Aizenstein H, Pitt L (1995) On the learnability of
disjunctive normal form formulas. Mach Learn
19(3):183–208

Aizenstein H, Hellerstein L, Pitt L (1992) Read-thrice
DNF is hard to learn with membership and equiv-
alence queries. In: Thirty-third annual symposium
on foundations of computer science, Pittsburgh, 24–
27 Oct 1992. IEEE Computer Society, Washington,
DC, pp 523–532

Angluin D (1987) Learning regular sets from queries
and counterexamples. Info Comput 75(2):87–106

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_46

Query-Based Learning 1047

Q

Angluin D (1990) Negative results for equivalence
queries. Mach Learn 5:121–150

Angluin D (2004) Queries revisited. Theor Comput Sci
313:175–194

Angluin D, Frazier M, Pitt L (1992) Learning conjunc-
tions of Horn clauses. Mach Learn 9:147–164

Angluin D, Hellerstein L, Karpinski M (1993) Learn-
ing read-once formulas with queries. J Assoc Com-
put Mach 40:185–210

Arias M (2004) Exact learning of first-order Horn
expressions from queries. Ph.D. thesis, Tufts Uni-
versity

Arias M, Balcázar JL (2009) Canonical Horn represen-
tations and query learning. In: Algorithmic learn-
ing theory: twentieth international conference ALT
2009. LNAI, vol 5809. Springer, Berlin, pp 156–170

Arias M, Khardon R (2002) Learning closed Horn
expressions. Info Comput 178(1):214–240

Birkendorf A, Böker A, Simon HU (2000) Learning
deterministic finite automata from smallest coun-
terexamples. SIAM J Discret Math 13(4):465–491

Hellerstein L, Pillaipakkamnatt K, Raghavan VV,
Wilkins D (1996) How many queries are needed to
learn? J Assoc Comput Mach 43:840–862

Gasarch W, Lee ACY (2008) Inferring answers to
queries. J Comput Syst Sci 74(4):490–512

Gasarch W, Smith CH (1992) Learning via queries. J
Assoc Comput Mach 39(3):649–674

Ibarra OH, Jiang T (1988) Learning regular languages
from counterexamples. In: Proceedings of the first
annual workshop on computational learning the-
ory. MIT, Cambridge/Morgan Kaufmann, San Fran-
cisco, pp 371–385

Jackson J (1997) An efficient membership-query algo-
rithm for learning DNF with respect to the uniform
distribution. J Comput Syst Sci 55(3):414–440

Jain S, Lange S, Zilles S (2007) A general compari-
son of language learning from examples and from
queries. Theor Comput Sci 387(1):51–66

Lange S, Zilles S (2005) Relations between Gold-
style learning and query learning. Infor Comput
203:211–237

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: A new linear threshold algorithm.
Mach Learn 2:285–318

Maass W, Turán G (1992) Lower bound methods and
separation results for on-line learning models. Mach
Learn 9:107–145

R

Radial Basis Function Approximation

�Radial Basis Function Networks

Radial Basis Function Networks

Martin D. Buhmann
Justus-Liebig University, Gießen, Germany

Synonyms

Kernel methods; Networks with kernel functions;
Neural networks; Quasi-interpolation; Radial ba-
sis function approximation; Radial basis function
neural networks; Regularization networks; Sup-
port vector machines

Definition

Radial basis function networks are a means of
approximation by algorithms using linear com-
binations of translates of a rotationally invariant
function, called the radial basis function. The
coefficients of these approximations usually solve
a minimization problem and can also be com-
puted by interpolation processes. Sometimes the
very useful approach of quasi-interpolation is
also applied where approximations are computed
that do not necessarily match the target functions

pointwise but satisfy certain smoothness and de-
cay conditions. The radial basis functions con-
stitute so-called reproducing kernels on certain
Hilbert spaces or – in a slightly more general
setting – semi-Hilbert spaces. In the latter case,
the aforementioned approximation also contains
an element from the null-space of the semi-
norm of the semi-Hilbert space. That is usually
a polynomial space.

Motivation and Background

Radial basis function networks are a method to
approximate functions and data in a way which is
related to the idea of neural networks and learning
with kernels. More specifically, approximations
of functions or data via algorithms that make
use of networks (or neural networks) can be in-
terpreted as either interpolation or minimization
problems using kernels of certain shapes, called
radial basis functions in the form in which we
wish to consider them in this entry. In all cases,
they are usually high-dimensional approxima-
tions, that is, the number of unknowns n in the
argument of the kernel may be very large. On
the other hand, the number of learning examples
(“data”) may be quite small. The name neural net-
works comes from the idea that this learning pro-
cess simulates the natural functioning of neurons.

At any rate, the purpose of this approach will
be the modelization of the learning process by
mathematical methods. In most practical cases of

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100329
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_100388
http://dx.doi.org/10.1007/978-1-4899-7687-1_100389
http://dx.doi.org/10.1007/978-1-4899-7687-1_100390
http://dx.doi.org/10.1007/978-1-4899-7687-1_100403
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1050 Radial Basis Function Networks

networks, the data from which we will learn in the
method are rare, i.e., we have few data “points.”
We will consider this learning approach as an
approximation problem in this description; essen-
tially it is a minimizing (regression) problem.

Structure of the Network/Learning
System

To begin with, let ' W RC ! R be a univariate
continuous function and k � k be the Euclidean
norm on R

n for some n 2 N, as used for ap-
proximation in the seminal paper by Schoenberg
(1938). Here, RC denotes the set of nonnegative
reals. Therefore

'.k � k/ W Rn ! R;

.x1; x2; : : : ; xn/T 7! '

�q
x2

1 C x2
2 C � � � C x2

n

�
;

is a multivariate function and here the number
n of unknowns may be very large in practice.
This function is rotationally invariant. Inciden-
tally, much of what is going to be said here will
work if we replace this function by a general, n-
variate function which needs no longer be rota-
tionally invariant, but then, strictly speaking, we
are no longer talking about radial basis functions.
Then other conditions may replace the restriction
to radiality. Nonetheless we stick to the simple
case (which is entirely sufficient for many prac-
tical applications) when the function really is
radially symmetric.

We also require for the time being that this n-
variate function be positive definite, that is, for all
finite sets Ξ of pairwise different so-called centers
or data sites � 2 Ξ � R

n, the symmetric matrix

A D f'.k� � �k/g�;�2Ξ

is a positive definite matrix. The condition of
pairwise different data in Ξ may of course
in practice not be necessarily met. For quasi-
interpolation, no linear systems need to be
solved that depend on the target data, but
other conditions that guarantee localness and

polynomial accuracy of the approximants are
required.

This property is usually obtained by requir-
ing that '.k � k/ be absolutely integrable, and its
Fourier transform – which thereby exists and is
continuous – is positive everywhere (“Bochner’s
theorem”). An example for such a useful function
is the exponential (the “Gauß-kernel”) '.r/ D

exp.�c2r2/, r � 0, where c is a positive pa-
rameter. For this the above positive definiteness
is guaranteed for all positive c and all n. Another
example is the Poisson-kernel '.r/ D exp.�cr/.
However, we may also take the non-integrable
“inverse multiquadrics” '.r/ D 1=

p
r2 C c2

which has a Fourier transform in the generalized
or distributional sense that is also positive every-
where except at zero. There it has a singularity.
Nonetheless, the aforementioned matrices of the
form A are still always positive definite for these
exponentials and the inverse multiquadrics so
long as c > 0 and n D 1; 2; : : :. Still further ex-
amples come from the so-called Dagum class of
radial basis functions '.r/ D 1� .rˇ =.1C rˇ //�

which give positive definiteness for a variety of
choices of parameters ˇ and � .

This requirement of positive definiteness guar-
antees that for all given finite sets Ξ and “data”
f� 2 R, � 2 Ξ, there is a unique linear combina-
tion:

s.x/ D
X
�2Ξ

��'.kx � �k/; x 2 R
n;

which satisfies the linear interpolation conditions:

s.�/ D f� ; 8 � 2 Ξ:

This is because the interpolation matrix which is
used to compute the coefficients �� is just the
matrix A above which is positive definite, thus
regular. The expression in the penultimate display
is the network that approximates the data given
by the user. Of course the interpolation conditions
are just what is meant by learning from examples,
the data being the jΞj examples. Here as always,
jΞj denotes the cardinality of the set Ξ. In the
learning theory, the linear space spanned by the

Radial Basis Function Networks 1051

R

above translates of '.k � k/ by � 2 Ξ is called the
feature space with ' as activation function.

Incidentally, it is straightforward to generalize
the approximation method to an approximation to
data in R

m, m 2 N, by approximating the data
f� 2 R

m componentwise by m such expressions
as the above, call them s1; s2; : : : ; sm.

Applications

Applications include classification of data,
pattern recognition, time series analysis, picture
smoothing similar to diffusion methods, and
optimization.

Theory/Solution

Returning to interpolation, the problem may also
be reinterpreted as a minimization problem. If we
define the weighted L2-integral

kgk' WD
1

.2�/n=2

sZ
Rn

1

O'.kxk/
j Og.x/j2 dx

with O' still being the above positive Fourier trans-
form, for all g W Rn ! R for which the Fourier
transform in the sense of L2.Rn/ is well defined
and for which the above integral is finite, we may
ask for the approximant to the above data – which
still must satisfy the aforementioned interpolation
conditions – that minimizes k � k' . As Duchon
noted, for example, for the thin-plate spline case
'.r/ D r2 log r in this seminal paper, this is just
the above interpolant, i.e., that linear combination
s of translates of radial basis functions, albeit in
the thin-plate spline case with a linear polynomial
added as we shall see below.

This works immediately both for the two ex-
amples of exponential functions and the inverse
multiquadrics. Note that the fact that the latter
has a Fourier transform with a singularity at the
origin does not matter since its reciprocal appears
as a weight function in the integral above. The
important requirement is that the Fourier trans-
form has no zero. It also works for the positive

definite radial basis functions of compact support,
for instance, in Buhmann (1998).

Regularization and Generalizations

Since, generally, the interpolation problem to data
may be ill conditioned or unsuitable in the face
of data errors, smoothing or regularization is
appropriate as an alternative. Indeed, the interpo-
lation problem may be replaced by a smoothing
problem which is of the form

1

jΞj

X
�2Ξ

�
s.�/ � f�

�2
C �ksk2

' D min
s

Š:

Here the L2-integral is still the one used in the
description above and � is a positive smoothing
parameter.

However, when there is only a trivial null-
space of the k � k' , i.e., g D 0 is the only g with
kgk' D 0, then it is a norm, and the solution of
this problem will have the form

s.x/ D
X
�2Ξ

��'.kx � �k/; x 2 R
n:

This is where the name regularization network
comes from, regularization and smoothing being
used synonymously. The form used in the penul-
timate display is a classical regularizing network
problem or in the spline terminology a smoothing
spline problem. For so-called support vector ma-
chines, the square of the residual term s.�/ � f�

should be replaced by another expression, for
example, the one by Vapnik (1996):

js.�/�f� j"WD

(
f� � s.�/� " if jf� � s.�/j� ";

0 otherwise;

and for the support vector machines classification
by the truncated power function . � /�

C which is a
positive power for positive argument and other-
wise zero.

In the case of a classical regularizing net-
work, the coefficients of the solution may be
found by solving a similar linear system to the

1052 Radial Basis Function Networks

standard interpolation linear system mentioned
above, namely,

.AC �I/� D f;

where f is the vector .f�/�2Ξ in R
Ξ of the data

given and � D .��/�2Ξ. The I denotes the jΞj �
jΞj identity matrix and A is still the same matrix
as above. Incidentally, also scaling mechanisms
may be introduced into the radial basis function
by replacing the simple translate '.kx � �k/ by
'.kx � �k=ı/ for a positive ı which may even
depend on � .

The ideas of regularization and smoothing are
of course not new; for instance, regularization
goes back to Tichonov and Arsenin (1977) (“Ti-
chonov regularization”) and spline smoothing to
Wahba (1985), especially when the smoothing
parameter is adjusted via cross-validation or
GCV (generalized cross-validation).

Now to the case of semi-norms k � k' with
nontrivial null-spaces: indeed, the same idea can
be carried through for other radial basis functions
as well. In particular we are thinking here of those
ones that do not provide positive definite radial
basis interpolation matrices but strictly condi-
tionally positive definite ones. We have strictly
positive definite radial basis functions of order
k C 1, k � �1, if the above interpolation
matrices A are still positive definite but only on
the subspace of those nonzero vectors � D .��/

in R
Ξ which satisfy

X
�2Ξ

��p.�/ D 0 8 p 2 P
k
n;

where Pk
n denotes the linear space of polynomials

in n variables with total degree at most k. In
other words, the quadratic form �T A� need only
be positive for such � ¤ 0. For simplicity of
the presentation, we shall let P�1

n denote f0g. In
particular, if the radial basis function is condition-
ally positive definite of order 0, its interpolation
matrices A are always positive definite, that is,
without condition. Also, we have the minimal
requirement that the sets of centers Ξ are uni-
solvent for this polynomial space, i.e., the only

polynomial p 2 P
k
n that vanishes identically on Ξ

is the zero polynomial.
The connection of this with a layered neural

network is that the approximation above is a
weighted sum (weighted by the coefficients ��)
over usually nonlinear activation functions '. The
entries in the sum are the radial basis function
neurons and there are usually many of them. The
number of nodes in the model is n. The hidden
layer of “radial basis function units” consists
of jΞj nodes, i.e., the number of centers in our
radial basis function approximation. The output
layer has m responses if the radial basis function
approximation above is generalized to m-variate
data, i.e., then we get s1; s2; : : : ; sm instead of
just s, as already described. This network here
is of the type of a nonlinear, layered, feedfor-
ward network. More than one hidden layer is
unusual. The choice of the radial basis functions
(its smoothness, for instance) and the flexibility
in the positioning of the centers in clusters, grids
(e.g., Buhmann 1990), or otherwise provide much
of the required freedom for good approximations.

The properties of conditional positive
definiteness are fulfilled now for a much larger
realm of radial basis functions which have
still nowhere vanishing generalized Fourier
transforms but with higher-order singularities
at the origin. (Remember that this creates no
problem for the well definedness of k � k' .) For
instance, the above properties are true for the
thin-plate spline function '.r/ D r2 log r , for the
shifted logarithm '.r/ D .r2 C c2/ log.r2 C c2/,
and for the multiquadric '.r/ D �

p
r2 C c2.

Here we still have a parameter c which may
now be arbitrary real. The order of the above is
one for the multiquadric and two for the thin-
plate spline. Another commonly used radial basis
function which gives rise to conditional positive
definiteness is the '.r/ D r3.

Hence the norm becomes a semi-norm with
null-space P

k
n, but it still has the same form

as a square integral with the reciprocal of the
Fourier transform of the radial basis function as a
weight.

Therefore we have to include a polynomial
from the null-space of the semi-norm to the
approximant which becomes

Radial Basis Function Networks 1053

R

s.x/ D
X
�2Ξ

��'.kx � �k/C q.x/; x 2 R
n;

where q 2 P
k
n and the side conditions on the

coefficients

X
�2Ξ

��p.�/ D 0; 8 p 2 P
k
n:

When quasi-interpolation is used, this inclu-
sion of polynomials is not because they are not
formed by interpolation condition, and the repro-
duction of polynomials (thus their presence in
the linear space) is directly guaranteed by their
construction.

If we consider the regularization network
problem with the smoothing parameter � again,
then we have to solve the linear system with a
smoothing parameter �:

.AC �I/�C P T b D f; P � D 0;

where P D .pi .�//iD1;:::;L;�2Ξ and pi form a
basis of P

k
n, bi being the components of b, and

q.x/ D
PL

iD1 bi pi .x/ is the expression of the
polynomial added to the radial basis function
sum. So in particular P is a matrix with as many
rows as the dimension L D

�
nCk

n

�
of Pk

n is and
jΞj columns.

In all cases, the radial basis functions com-
posed of the Euclidean norm can be regarded as
reproducing kernels in the semi-Hilbert spaces
defined by the set X of distributions f for which
kgk' is finite and the semi-inner product

.h; g/ D
1

.2�/n

Z
Rn

1

O'.kxk/
Oh.x/ Og.x/ dx;

h; g;2 X:

In particular, kgk2
' D .g; g/. If the evaluation

functional is continuous (bounded) on that space
X , there exists a reproducing kernel, i.e., there is
a K W X �X ! R such that

g.x/ D .g; K. � ; x//; 8 x 2 R
n; g 2 X;

See, for example, Wahba (1990). If the semi-
inner product is actually an inner product, then
the reproducing kernel is unique. The kernel gives
rise to positive definite matrices fK.�; �/g�;�2Ξ

if and only if it is a positive operator. For the
spaces X defined by our radial basis functions,
it turns out that K.x; y/ WD '.kx � yk/; see,
e.g., the overview in Buhmann (2003). Then the
matrices A are positive definite if O'.k � k/ is well
defined and positive, but if it has a singularity at
zero, the A may be only conditionally positive
definite. Note here that O'.k � k/ denotes the n-
variate Fourier transform of '.k � k/, both being
radially symmetric.

Advantages of the Approach

Why are we interested in using radial basis func-
tions for networks? The radial basis functions
have many excellent approximation properties
which make them useful as general tools for
approximation. Among them are the variety of
more or less smoothness as required (e.g., multi-
quadrics is C1 for positive c and just continuous
for c D 0), the fast evaluation and computa-
tion methods available (see, e.g., Beatson and
Powell 1994), the aforementioned nonsingularity
properties and their connection with the theory
of reproducing kernel Hilbert spaces, and finally
their excellent convergence properties (see, e.g.,
Buhmann 2003). Generally, neural networks are a
tried and tested approach to approximation, mod-
eling, and smoothing by methods from learning
theory.

Limitations

The number of applications where the radial basis
function approach has been used is vast. Also,
the solutions may be computed efficiently by far-
field expansions, approximated Lagrange func-
tions, and multipole methods. However, there
are still some limitations with these important
computational methods when the dimension n

is large. So far, most of the multipole and far-

1054 Radial Basis Function Neural Networks

field methods have been implemented only for
medium-sized dimensions.

Cross-References

�Neural Networks
�Regularization

Recommended Reading

Beatson RK, Powell MJD (1994) An iterative method
for thin plate spline interpolation that employs ap-
proximations to Lagrange functions. In: Griffiths
DF, Watson GA (eds) Numerical analysis 1993.
Longman, Burnt Mill, pp 17–39

Broomhead D, Lowe D (1988) Radial basis functions,
multi-variable functional interpolation and adaptive
networks. Complex Syst 2:321–355

Buhmann MD (1990) Multivariate cardinal-
interpolation with radial-basis functions. Construct
Approx 6:225–255

Buhmann MD (1993) On quasi-interpolation with ra-
dial basis functions. J Approx Theory 72:103–130

Buhmann MD (1998) Radial functions on compact
support. Proc Edinb Math Soc 41:33–46

Buhmann MD (2003) Radial basis functions: theory
and implementations. Cambridge University Press,
Cambridge

Buhmann MD, Porcu E, Daley D, Bevilacqua M
(2013) Radial basis functions for multivariate
geostatistics. Stoch Env Res Risk Assess 27(4):
909–922

Duchon J (1976) Interpolation des fonctions de deux
variables suivant le principe de la flexion des
plaques minces. RAIRO 10:5–12

Evgeniou T, Poggio T, Pontil M (2000) Regularization
networks and support vector machines. Adv Comput
Math 13:1–50

Hardy RL (1990) Theory and applications of the
multiquadric-biharmonic method. Comput Math
Appl 19:163–208

Micchelli CA (1986) Interpolation of scattered data:
distance matrices and conditionally positive definite
functions. Construct Approx 1:11–22

Pinkus A (1996) TDI-subpaces of C.Rd / and some
density problems from neural networks. J Approx
Theory 85:269–287

Schoenberg IJ (1938) Metric spaces and completely
monotone functions. Ann Math 39:811–841

Tichonov AN, Arsenin VY (1977) Solution of Ill-
posed problems. W.H. Winston, Washington, DC

Vapnik VN (1996) Statistical learning theory. Wiley,
New York

Wahba G (1985) A comparison of GCV and GML for
choosing the smoothing parameter in the general-
ized splines smoothing problem. Ann Stat 13:1378–
1402

Wahba G (1990) Spline models for observational
data. Series in applied mathematics, vol 59. SIAM,
Philadelphia

Radial Basis Function Neural
Networks

�Radial Basis Function Networks

Random Decision Forests

�Random Forests

Random Forests

Synonyms

Random decision forests

Definition

Random Forests is an � ensemble learning tech-
nique. It is a hybrid of the �Bagging algorithm
and the � random subspace method, and uses
� decision trees as the base classifier. Each tree
is constructed from a bootstrap sample from the
original dataset. An important point is that the
trees are not subjected to pruning after construc-
tion, enabling them to be partially overfitted to
their own sample of the data. To further diversify
the classifiers, at each branch in the tree, the
decision of which feature to split on is restricted
to a random subset of size n, from the full feature
set. The random subset is chosen anew for each
branching point. n is suggested to be log2.NC1/,
where N is the size of the whole feature set.

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_100391
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_100392
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

Rank Correlation 1055

R

Random Subspace Method

Synonyms

Random subspaces; RSM

Definition

The random subspace method is an � ensemble
learning technique. The principle is to increase
diversity between members of the ensemble by
restricting classifiers to work on different random
subsets of the full feature space. Each classifier
learns with a subset of size n, chosen uniformly
at random from the full set of size N . Empiri-
cal studies have suggested good results can be
obtained with the rule-of-thumb to choose n D

N=2 features. The method is generally found to
perform best when there are a large number of
features (large N), and the discriminative infor-
mation is spread across them. The method can un-
derperform in the converse situation, when there
are few informative features, and a large number
of noisy/irrelevant features. �Random Forests is
an algorithm combining RSM with the �Bagging
algorithm, which can provide significant gains
over each used separately.

Random Subspaces

�Random Subspace Method

Randomized Decision Rule

�Markovian Decision Rule

Randomized Experiments

�Online Controlled Experiments and A/B Test-
ing

Rank Correlation

Johannes Fürnkranz1;2 and Eyke Hüllermeier3

1Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
2Department of Information Technology,
University of Leoben, Leoben, Austria
3Department of Computer Science, Paderborn
University, Paderborn, Germany

Abstract

Rank correlation measures the correspondence
between two rankings, � and � 0, of a set of m

objects.

Method

Various proposals for such measures have been
made, especially in the field of statistics. Two
of the best-known measures are Spearman’s rank
correlation and Kendall’s tau.
Spearman’s rank correlation (Spearman 1904)
calculates the sum of squared rank distances and
is normalized such that it evaluates to �1 for re-
versed and toC1 for identical rankings. Formally,
it is defined as follows:

.�; � 0/ 7! 1 �
6
Pm

iD1.�.i/ � � 0.i//2

m.m2 � 1/
(1)

Kendall’s tau (Kendall 1938) is the number of
pairwise rank inversions between � and � 0, again
normalized to the range Œ�1;C1	:

.�; � 0/ 7! 1

�
4
ˇ̌
f.i; j / j i <j; �.i/ <�.j / ^ � 0.i/>� 0.j /g

ˇ̌
m.m � 1/

(2)

http://dx.doi.org/10.1007/978-1-4899-7687-1_100392
http://dx.doi.org/10.1007/978-1-4899-7687-1_100414
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_518
http://dx.doi.org/10.1007/978-1-4899-7687-1_891

1056 Ratio Scale

Spearman’s rank correlation and Kendall’s tau
give equal weight to all ranking positions, which
is not desirable for all applications. For exam-
ple, ranking problems in information retrieval
are often evaluated with the (normalized) dis-
counted cumulative gain (NDCG), which assigns
more weight to the lower-ranking positions (cf.
� learning to rank).

Cross-References

�Learning to Rank
� Preference Learning
�ROC Analysis

Recommended Reading

Kendall M (1938) A new measure of rank correlation.
Biometrika 30(1):81–89

Spearman C (1904) The proof and measurement of
association between two things. Am J Psychol 15:
2–101

Ratio Scale

A ratio measurement scale possesses all the char-
acteristics of interval measurement, and there
exists a zero that, the same as arithmetic zero,
means “nil” or “nothing.” See �Measurement
Scales.

Real-Time Dynamic Programming

Real-Time Dynamic Programming (RTDP) is the
same as �Adaptive Real-Time Dynamic Pro-
gramming (ARTDP) without the system iden-
tification component. It is applicable when an
accurate model of the problem is available. It
converges to an optimal policy of a stochastic
optimal path problem under suitable conditions.
RTDP was introduced by Barto et al. (1995) in
their paper Learning to Act Using RTDP.

Recall

Recall is a measure of information retrieval
performance. Recall is the total number of
documents retrieved that are elevant/Total
number of relevant documents in the database.
See �Precision and Recall.

Cross-References

� Sensitivity

Receiver Operating Characteristic
Analysis

�ROC Analysis

Recognition

�Classification

Recommender Systems

Prem Melville and Vikas Sindhwani
IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA

Definition

The goal of a recommender system is to generate
meaningful recommendations to a collection of
users for items or products that might inter-
est them. Suggestions for books on Amazon, or
movies on Netflix, are real-world examples of
the operation of industry-strength recommender
systems. The design of such recommendation
engines depends on the domain and the particular

http://dx.doi.org/10.1007/978-1-4899-7687-1_893
http://dx.doi.org/10.1007/978-1-4899-7687-1_893
http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_10
http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_111

Recommender Systems 1057

R

characteristics of the data available. For example,
movie watchers on Netflix frequently provide
ratings on a scale of 1 (disliked) to 5 (liked). Such
a data source records the quality of interactions
between users and items. Additionally, the sys-
tem may have access to user-specific and item-
specific profile attributes such as demographics
and product descriptions, respectively. Recom-
mender systems differ in the way they analyze
these data sources to develop notions of affinity
between users and items, which can be used
to identify well-matched pairs. �Collaborative
Filtering systems analyze historical interactions
alone, while �Content-based Filtering systems
are based on profile attributes; and hybrid tech-
niques attempt to combine both of these designs.
The architecture of recommender systems and
their evaluation on real-world problems is an
active area of research.

Motivation and Background

Obtaining recommendations from trusted sources
is a critical component of the natural process of
human decision making. With burgeoning con-
sumerism buo-yed by the emergence of the web,
buyers are being presented with an increasing
range of choices while sellers are being faced
with the challenge of personalizing their adver-
tising efforts. In parallel, it has become common
for enterprises to collect large volumes of trans-
actional data that allows for deeper analysis of
how a customer base interacts with the space of
product offerings. Recommender systems have
evolved to fulfill the natural dual need of buyers
and sellers by automating the generation of rec-
ommendations based on data analysis.

The term “collaborative filtering” was
introduced in the context of the first commercial
recommender system, called Tapestry (Goldberg
et al. 1992), which was designed to recommend
documents drawn from newsgroups to a
collection of users. The motivation was to
leverage social collaboration in order to prevent
users from getting inundated by a large volume
of streaming documents. Collaborative filtering,

which analyzes usage data across users to find
well-matched user-item pairs, has since been
juxtaposed against the older methodology of
content filtering, which had its original roots
in information retrieval. In content filtering,
recommendations are not “collaborative” in
the sense that suggestions made to a user
do not explicitly utilize information across
the entire user-base. Some early successes
of collaborative filtering on related domains
included the GroupLens system (Resnick et al.
1994b).

As noted in Billsus and Pazzani (1998), initial
formulations for recommender systems were
based on straightforward correlation statistics
and predictive modeling, not engaging the wider
range of practices in statistics and machine
learning literature. The collaborative filtering
problem was mapped to classification, which
allowed dimensionality reduction techniques
to be brought into play to improve the quality
of the solutions. Concurrently, several efforts
attempted to combine content-based methods
with collaborative filtering, and to incorporate
additional domain knowledge in the architecture
of recommender systems.

Further research was spurred by the public
availability of datasets on the web, and the in-
terest generated due to direct relevance to e-
commerce. Netflix, an online streaming video
and DVD rental service, released a large-scale
dataset containing 100 million ratings given by
about half-a-million users to thousands of movie
titles, and announced an open competition for
the best collaborative filtering algorithm in this
domain. Matrix Factorization (Bell et al. 2009)
techniques rooted in numerical linear algebra and
statistical matrix analysis emerged as a state-of-
the-art technique.

Currently, recommender systems remain an
active area of research, with a dedicated ACM
conference, intersecting several subdisciplines of
statistics, machine learning, data mining, and
information retrievals. App-lications have been
pursued in diverse domains ranging from recom-
mending webpages to music, books, movies, and
other consumer products.

http://dx.doi.org/10.1007/978-1-4899-7687-1_945
http://dx.doi.org/10.1007/978-1-4899-7687-1_167

1058 Recommender Systems

Structure of Learning System

The most general setting in which recommender
systems are studied is presented in Fig. 1. Known
user preferences are represented as a matrix of
n users and m items, where each cell ru;i corre-
sponds to the rating given to item i by the user
u. This user ratings matrix is typically sparse,
as most users do not rate most items. The rec-
ommendation task is to predict what rating a
user would give to a previously unrated item.
Typically, ratings are predicted for all items that
have not been observed by a user, and the highest
rated items are presented as recommendations.
The user under current consideration for recom-
mendations is referred to as the active user.

The myriad approaches to recommender sys-
tems can be broadly categorized as:

• Collaborative Filtering (CF): In CF systems, a
user is recommended items based on the past
ratings of all users collectively.

• Content-based recommending: These ap-
proaches recommend items that are similar
in content to items the user has liked in the
past, or matched to pre-defined attributes of
the user.

• Hybrid approaches: These methods com-
bine both collaborative and content-based
approaches.

Items
1 2 ... i ... m

Users

1 5 3 1 2
2 2 4
: 5
u 3 4 2 1
: 4
n 3 2

a 3 5 ? 1

Recommender Systems, Fig. 1 User ratings matrix,
where each cell ru;i corresponds to the rating of user u
for item i . The task is to predict the missing rating ra;i

for the active user a

Collaborative Filtering
Collaborative filtering (CF) systems work by
collecting user feedback in the form of ratings
for items in a given domain and exploiting
similarities in rat-ing behavior amongst several
users in determining how to recommend an
item. CF methods can be further subdivided
into neighborhood-based and model-based
approaches. Neighborhood-based methods are
also commonly referred to as memory-based
approaches (Breese et al. 1998).

Neighborhood-Based Collaborative Filtering
In neighborhood-based techniques, a subset of
users are chosen based on their similarity to the
active user, and a weighted combination of their
ratings is used to produce predictions for this
user. Most of these approaches can be generalized
by the algorithm summarized in the following
steps:

1. Assign a weight to all users with respect to
similarity with the active user.

2. Select k users that have the highest similarity
with the active user – commonly called the
neighborhood.

3. Compute a prediction from a weighted combi-
nation of the selected neighbors’ ratings.

In step 1, the weight wa;u is a measure of sim-
ilarity between the user u and the active user a.
The most commonly used measure of similarity
is the Pearson correlation coefficient between the
ratings of the two users (Resnick et al. 1994a),
defined below:

wa;u D
Σi2I .ra;i � Nra/.ru;i � Nru/p

Σi2I .ra;i � Nra/2Σi2I .ru;i � Nru/2
(1)

where I is the set of items rated by both users,
ru;i is the rating given to item i by user u, and Nru

is the mean rating given by user u.
In step 3, predictions are generally computed

as the weighted average of deviations from the
neighbor’s mean, as in:

pa;i D Nra C
Σu2K.ru;i � Nru/ � wa;u

Σu2Kwa;u
(2)

Recommender Systems 1059

R

where pa;i is the prediction for the active user a

for item i , wa;u is the similarity between users a

and u, and K is the neighborhood or set of most
similar users.

Similarity based on Pearson correlation mea-
sures the extent to which there is a linear depen-
dence between two variables. Alternatively, one
can treat the ratings of two users as a vector in
an m-dimensional space, and compute similarity
based on the cosine of the angle between them,
given by:

Wa;u D cos.ra; ru/ D
ra � ru

krak2 � kruk2

D

Pm
iD1 ra;i ru;iq

Σm
iD1r2

a;i

q
Σm

iD1r2
u;i

(3)

When computing cosine similarity, one cannot
have negative ratings, and unrated items are
treated as having a rating of zero. Empirical
studies (Breese et al. 1998) have found that
Pearson correlation generally performs better.
There have been several other similarity measures
used in the literature, including Spearman rank
correlation, Kendall’s � correlation, mean
squared differences, entropy, and adjusted
cosine similarity (Herlocker et al. 1999; Su and
Khoshgoftaar 2009).

Several extensions to neighborhood-based CF,
which have led to improved performance are
discussed below.

Item-based Collaborative Filtering: When ap-
plied to millions of users and items, conventional
neighborhood-based CF algorithms do not scale
well, because of the computational complexity
of the search for similar users. As a alternative,
Linden et al. (2003) proposed item-to-item col-
laborative filtering where rather than matching
similar users, they match a user’s rated items
to similar items. In practice, this approach leads
to faster online systems, and often results in
improved recommendations (Linden et al. 2003;
Sarwar et al. 2001).

In this approach, similarities between pairs
of items i and j are computed off-line using
Pearson correlation, given by:

wi;j D
Σu2U .ru;i � Nri /.ru;j � Nrj /p

Σu2U .ru;i � Nri /2
p
Σu2U .ru;j � Nrj /2

(4)

where U is the set of all users who have rated
both items i and j , ru;i is the rating of user u on
item i , and j; ru;i is the average rating of the i th
item across users.

Now, the rating for item i for user a can be
predicted using a simple weighted average, as in:

pa;i D
Σj2Kra;j wi;j

Σj2K jwi;j j
(5)

where K is the neighborhood set of the k items
rated by a that are most similar to i .

For item-based collaborative filtering too, one
may use alternative similarity metrics such as ad-
justed cosine similarity. A good empirical com-
parison of variations of item-based methods can
be found in Sarwar et al. (2001).

Significance Weighting: It is common for the
active user to have highly correlated neighbors
that are based on very few co-rated (overlapping)
items. These neighbors based on a small number
of overlapping items tend to be bad predictors.
One approach to tackle this problem is to multiply
the similarity weight by a significance weighting
factor, which devalues the correlations based on
few co-rated items (Herlocker et al. 1999).

Default Voting: An alternative approach to
dealing with correlations based on very few
co-rated items is to assume a default value
for the rating for items that have not been
explicitly rated. In this way one can now compute
correlation (Eq. 1) using the union of items
rated by users being matched as opposed to the
intersection. Such a default voting strategy has
been shown to improve collaborative filtering by
Breese et al. (1998).

Inverse User Frequency: When measuring the
similarity between users, items that have been
rated by all (and universally liked or disliked)
are not as useful as less common items. To
account for this Breese et al. (1998) introduced

1060 Recommender Systems

the notion of inverse user frequency, which is
computed as fi D log n=ni , where ni is the
number of users who have rated item i out of the
total number of n users. To apply inverse user
frequency while using similarity-based CF, the
original rating is transformed for i by multiplying
it by the factor fi . The underlying assumption of
this approach is that items that are universally
loved or hated are rated more frequently than
others.

Case Amplification: In order to favor users
with high similarity to the active user, Breese
et al. (1998) introduced case amplification which
transforms the original weights in Eq. (2) to

w0a;u D wa;u � jwa;uj
��1

where
 is the amplification factor, and
 � 1.
Other notable extensions to similarity-based

collaborative filtering include weighted major-
ity prediction (Nakamura and Abe 1998) and
imputation-boosted CF (Su et al. 2008).

Model-based Collaborative Filtering: Model-
based techniques provide recommendations by
estimating parameters of statistical models for
user ratings. For example, Billsus and Pazzani
(1998) describe an early approach to map CF to a
classification problem, and build a classifier for
each active user representing items as features
over users and available ratings as labels, pos-
sibly in conjunction with dimensionality reduc-
tion techniques to overcome data sparsity issues.
Other predictive modeling techniques have also
been applied in closely related ways.

More recently, � latent factor and matrix fac-
torization models have emerged as a state-of-the-
art methodology in this class of techniques (Bell
et al. 2009). Unlike neighborhood based methods
that generate recommendations based on statis-
tical notions of similarity between users, or be-
tween items, latent factor models assume that the
similarity between users and items is simultane-
ously induced by some hidden lower-dimensional
structure in the data. For example, the rating that a
user gives to a movie might be assumed to depend
on few implicit factors such as the user’s taste

across various movie genres. Matrix factorization
techniques are a class of widely successful latent
factor models where users and items are simulta-
neously represented as unknown feature vectors
(column vectors) wu, hi 2 R

k along k latent
dimensions. These feature vectors are learnt so
that inner products wT

u hi approximate the known
preference ratings ru;i with respect to some loss
measure. The squared loss is a standard choice
for the loss function, in which case the following
objective function is minimized,

j.W; H/ D
X

.u;i/2L

.ru;i � wT
u hi /

2 (6)

where W D Œw1 : : : wn	T is an n � k matrix,
H D Œh1 : : : hm] is a k � m matrix, and L is
the set of user-item pairs for which the ratings
are known. In the impractical limit where all user-
item ratings are known, the above objective func-
tion is J.W; H/ D kR � WHk2

f ro
where R

denotes the n �m fully known user-item matrix.
The solution to this problem is given by taking the
truncated SVD of R, R = UDVT and setting W D

UKD
1
2
k

; H D D
1
2
k

V T
k

where Uk , Dk , Vk contain
the k largest singular triplets of R. However, in
the realistic setting where the majority of user-
item ratings are unknown and insufficient number
of matrix entries are observed, such a nice glob-
ally optimal solution cannot in general be directly
obtained, and one has to explicitly optimize the
non-convex objective function J.W , H/. Note
that in this case, the objective function is a par-
ticular form of weighted loss, that is, J.W; H/ D

kS ˇ .R �WH/k2
f ro

where ˇ denotes elemen-
twise products, and S is a binary matrix that
equals one over known user-item pairs L, and
0 otherwise. Therefore, weighted low-rank ap-
proximations are pertinent to this discussion (Sre-
bro and Jaakkola 2003). Standard optimization
procedures include gradient-based techniques, or
procedures like alternating least squares where H

is solved keeping W fixed and vice versa until a
convergence criterion is satisfied. Note that fixing
either W or H turns the problem of estimating the
other into a weighted � linear regression task. In
order to avoid learning a model that overfits, it is

http://dx.doi.org/10.1007/978-1-4899-7687-1_887
http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Recommender Systems 1061

R

common to minimize the objective function in the
presence of � regularization terms, J.W; H/ C

�kW k2 C �kHk2, where �; � are regulariza-
tion parameters that can be determined by cross-
validation. Once W , H are learnt, the product
WH provides an approximate reconstruction of
the rating matrix from where recommendations
can be directly read off.

Different choices of loss functions, regulariz-
ers, and additional model constraints have gener-
ated a large body of literature on matrix factor-
ization techniques. Arguably, for discrete ratings,
the squared loss is not the most natural loss
function. The maximum margin matrix factor-
ization (Rennie and Srebro 2005) approach uses
margin-based loss functions such as the hinge
loss used in �SVM classification, and its ordinal
extensions for handling multiple ordered rating
categories. For ratings that span over K values,
this reduces to finding K � 1 thresholds that
divide the real line into consecutive intervals
specifying rating bins to which the output is
mapped, with a penalty for insufficient margin
of separation. Rennie and Srebro (2005) sug-
gest a nonlinear conjugate gradient algorithm to
minimize a smoothed version of this objective
function.

Another class of techniques is the nonnega-
tive matrix factorization popularized by the work
of Lee and Seung (1999) where nonnegativity
constraints are imposed on W , H . There are
weighted extensions of NMF that can be ap-
plied to recommendation problems. The rating
behavior of each user may be viewed as being
a manifestation of different roles, for example, a
composition of prototypical behavior in clusters
of users bound by interests or community. Thus,
the ratings of each user are an additive sum
of basis vectors of ratings in the item space.
By disallowing subtractive basis, nonnegativity
constraints lend a part-based interpretation to
the model. NMF can be solved with a variety
of loss functions, but with the generalized KL-
divergence loss defined as follows,

J.W; H/ D
X

u;i2L

ru;i log
ru;i

wT
u hi

� ru;i C wT
u hi

NMF is in fact essentially equivalent to prob-
abilistic latent semantic analysis (pLSA) which
has also previously been used for collaborative
filtering tasks (Hofmann 2004).

The recently concluded million-dollar Netflix
competition has catapulted matrix factorization
techniques to the forefront of recommender tech-
nologies in collaborative filtering settings (Bell
et al. 2009). While the final winning solution was
a complex ensemble of different models, several
enhancements to basic matrix factorization mod-
els were found to lead to improvements. These
included:

1. The use of additional user-specific and item-
specific parameters to account for systematic
biases in the ratings such as popular movies re-
ceiving higher ratings on average.

2. Incorporating temporal dynamics of rating be-
havior by introducing time-dependent vari-
ables.

In many settings, only implicit preferences are
available, as opposed to explicit like–dislike rat-
ings. For example, large business organizations,
typically, meticulously record transactional de-
tails of products purchased by their clients. This
is a one-class setting since the business domain
knowledge for negative examples that a client has
no interest in buying a product ever in the future
is typically not available explicitly in corporate
databases. Moreover, such knowledge is difficult
to gather and maintain in the first place, given the
rapidly changing business environment. Another
example is recommending TV shows based on
watching habits of users, where preferences are
implicit in what the users chose to see without
any source of explicit ratings. Recently, matrix
factorization techniques have been advanced to
handle such problems (Pan and Scholz 2009) by
formulating confidence weighted objective func-
tion, J.W; H/ D Σ.u;i/cu;i .ru;i � wT

u hi /
2, under

the assumption that unobserved user-item pairs
may be taken as negative examples with a certain
degree of confidence specified via cu;i .

The problem of recovering missing values
in a matrix from a small fraction of observed
entries is also known as the Matrix Comple-

http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1062 Recommender Systems

tion problem. Recent work by Candès and Tao
(2009) and Recht (2009) has shown that under
certain assumptions on the singular vectors of
the matrix, the matrix completion problem can be
solved exactly by a convex optimization problem
provided with a sufficient number of observed
entries. This problem involves finding among all
matrices consistent with the observed entries, the
one with the minimum nuclear norm (sum of
singular values).

Content-Based Recommending
Pure collaborative filtering recommenders only
utilize the user ratings matrix, either directly,
or to induce a collaborative model. These ap-
proaches treat all users and items as atomic units,
where predictions are made without regard to
the specifics of individual users or items. How-
ever, one can make a better personalized recom-
mendation by knowing more about a user, such
as demographic information (Pazzani 1999), or
about an item, such as the director and genre of a
movie (Melville et al. 2002). For instance, given
movie genre information, and knowing that a user
liked “Star Wars” and “Blade Runner,” one may
infer a predilection for science fiction and could
hence recommend “Twelve Monkeys.” Content-
based recommenders refer to such approaches,
that provide recommendations by comparing rep-
resentations of content describing an item to
representations of content that interests the user.
These approaches are sometimes also referred to
as content-based filtering.

Much research in this area has focused on
recommending items with associated textual
content, such as web pages, books, and movies;
where the web pages themselves or associated
content like descriptions and user reviews are
available. As such, several approaches have
treated this problem as an information retrieval
(IR) task, where the content associated with
the user’s preferences is treated as a query,
and the unrated documents are scored with
relevance/similarity to this query (Balabanovic
and Shoham 1997). In NewsWeeder (Lang 1995),
documents in each rating category are converted
into tf-idf word vectors, and then averaged to get
a prototype vector of each category for a user.

To classify a new document, it is compared with
each prototype vector and given a predicted rating
based on the cosine similarity to each category.

An alternative to IR approaches, is to treat
recommending as a classification task, where
each example represents the content of an
item, and a user’s past ratings are used as
labels for these examples. In the domain of
book recommending, Mooney and Roy (2000)
use text from fields such as the title, author,
synopses, reviews, and subject terms, to train a
multinomial naive Bayes classifier. Ratings on
a scale of 1 to k can be directly mapped to k

classes (Melville et al. 2002), or alternatively, the
numeric rating can be used to weight the training
example in a probabilistic binary classification
setting (Mooney and Roy 2000). Other
classification algorithms have also been used for
purely content-based recommending, including
k-nearest neighbor, � decision trees, and � neural
networks (Pazzani and Billsus 1997).

Hybrid Approaches
In order to leverage the strengths of content-based
and collaborative recommenders, there have been
several hybrid approaches proposed that combine
the two. One simple approach is to allow both
content-based and collaborative filtering methods
to produce separate ranked lists of recommen-
dations, and then merge their results to produce
a final list (Cotter and Smyth 2000). Claypool
et al. (1999) combine the two predictions using
an adaptive weighted average, where the weight
of the collaborative component increases as the
number of users accessing an item increases.

Melville et al. (2002) proposed a general
framework for content-boosted collaborative
filtering, where content-based predictions are
applied to convert a sparse user ratings matrix
into a full ratings matrix, and then a CF method is
used to provide recommendations. In particular,
they use a Naı̈ve Bayes classifier trained on
documents describing the rated items of each
user, and replace the unrated items by predictions
from this classifier. They use the resulting pseudo
ratings matrix to find neighbors similar to
the active user, and produce predictions using
Pearson correlation, appropriately weighted to

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586

Recommender Systems 1063

R

account for the overlap of actually rated items,
and for the active user’s content predictions.
This approach has been shown to perform better
than pure collaborative filtering, pure content-
based systems, and a linear combination of the
two. Within this content-boosted CF framework,
Su et al. (2007) demonstrated improved results
using a stronger content-predictor, TAN-ELR,
and unweighted Pearson collaborative filtering.

Several other hybrid approaches are based on
traditional collaborative filtering, but also main-
tain a content-based profile for each user. These
content-based profiles, rather than co-rated items,
are used to find similar users. In Pazzani’s ap-
proach (Pazzani 1999), each user-profile is rep-
resented by a vector of weighted words derived
from positive training examples using the Win-
now algorithm. Predictions are made by applying
CF directly to the matrix of user-profiles (as
opposed to the user-ratings matrix). An alter-
native approach, Fab (Balabanovic and Shoham
1997), uses � relevance feedback to simultane-
ously mold a personal filter along with a commu-
nal “topic” filter. Documents are initially ranked
by the topic filter and then sent to a user’s per-
sonal filter. The user’s relevance feedback is used
to modify both the personal filter and the originat-
ing topic filter. Good et al. (1999) use collabora-
tive filtering along with a number of personalized
information filtering agents. Predictions for a user
are made by applying CF on the set of other users
and the active user’s personalized agents.

Several hybrid approaches treat recommend-
ing as a classification task, and incorporate col-
laborative elements in this task. Basu et al. (1998)
use Ripper, a � rule induction system, to learn a
function that takes a user and movie and predicts
whether the movie will be liked or disliked. They
combine collaborative and content information,
by creating features such as comedies liked by
user and users who liked movies of genre X.
In other work, Soboroff and Nicholas (1999)
multiply a term-document matrix representing
all item content with the user-ratings matrix to
produce a content-profile matrix. Using latent
semantic Indexing, a rank-k approximation of the
content-profile matrix is computed. Term vectors
of the user’s relevant documents are averaged to

produce a user’s profile. Then, new documents
are ranked against each user’s profile in the LSI
space. Some hybrid approaches attempt to di-
rectly combine content and collaborative data
under a single probabilistic framework. Popescul
et al. (2001) extended Hofmann’s aspect model
(Hofmann 1999) to incorporate a three-way co-
occurrence data among users, items, and item
content. Their generative model assumes that
users select latent topics, and documents and their
content words are generated from these topics.
Schein et al. (2002) extend this approach, and
focus on making recommendations for items that
have not been rated by any user.

Evaluation Metrics
The quality of a recommender system can be
evaluated by comparing recommendations to a
test set of known user ratings. These systems
are typical measured using predictive accuracy
metrics (Herlocker et al. 2004), where the pre-
dicted ratings are directly compared to actual user
ratings. The most commonly used metric in the
literature is �Mean Absolute Error (MAE) – de-
fined as the average absolute difference between
predicted ratings and actual ratings, given by:

MAE D
Σfu;igjPu;i � ru;i j

N
(7)

Where pu;i is the predicted rating for user u on
item i; ru;i is the actual rating, and N is the total
number of ratings in the test set.

A related commonly used metric, Root Mean
Squared Error (RMSE), puts more emphasis on
larger absolute errors, and is given by:

RMSE D

s
Σfu;ig.pu;i � ru;i /2

N
(8)

Predictive accuracy metrics treat all items
equally. However, for most recommender
systems the primary concern is accurately
predict the items a user will like. As such,
researchers often view recommending as
predicting good, that is, items with high ratings
versus bad or poorly rated items. In the context
of information retrieval (IR), identifying the

http://dx.doi.org/10.1007/978-1-4899-7687-1_724
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_953

1064 Recommender Systems

good from the background of bad items can
be viewed as discriminating between “relevant”
and “irrelevant” items; and as such, standard
IR measures, like �Precision, �Recall and
�Area Under the ROC Curve (AUC) can be
utilized. These, and several other measures,
such as F1-measure, Pearson’s product-moment
correlation, Kendall’s � , mean average precision,
half-life utility, and normalized distance-based
performance measure are discussed in more
detail by Herlocker et al. (2004).

Challenges and Limitations
This section, presents some of the common hur-
dles in deploying recommender systems, as well
as some research directions that address them.

Sparsity: Stated simply, most users do not rate
most items and, hence, the user ratings matrix
is typically very sparse. This is a problem for
collaborative filtering systems, since it decreases
the probability of finding a set of users with
similar ratings. This problem often occurs when
a system has a very high item-to-user ratio, or
the system is in the initial stages of use. This
issue can be mitigated by using additional do-
main information (Melville et al. 2002; Su et al.
2007) or making assumptions about the data
generation process that allows for high-quality
imputation (Su et al. 2008).

The Cold-Start Problem: New items and
new users pose a significant challenge to
recommender systems. Collectively these
problems are referred to as the cold-start
problem (Schein et al. 2002). The first of these
problems arises in collaborative filtering systems,
where an item cannot be recommended unless
some user has rated it before. This issue applies
not only to new items, but also to obscure items,
which is particularly detrimental to users with
eclectic tastes. As such the new-item problem is
also often referred to as the first-rater problem.
Since content-based approaches (Mooney and
Roy 2000; Pazzani and Billsus 1997) do not rely
on ratings from other users, they can be used to
produce recommendations for all items, provided
attributes of the items are available. In fact, the

content-based predictions of similar users can
also be used to further improve predictions for
the active user (Melville et al. 2002).

The new-user problem is difficult to tackle,
since without previous preferences of a user it
is not possible to find similar users or to build
a content-based profile. As such, research in this
area has primarily focused on effectively select-
ing items to be rated by a user so as to rapidly
improve recommendation performance with the
least user feedback. In this setting, classical tech-
niques from � active learning can be leveraged to
address the task of item selection (Harpale and
Yang 2008; Jin and Si 2004).

Fraud: As recommender systems are being in-
creasingly adopted by commercial websites, they
have started to play a significant role in affect-
ing the profitability of sellers. This has led to
many unscrupulous vendors engaging in differ-
ent forms of fraud to game recommender sys-
tems for their benefit. Typically, they attempt
to inflate the perceived desirability of their own
products (push attacks) or lower the ratings of
their competitors (nuke attacks). These types of
attack have been broadly studied as shilling at-
tacks (Lam and Riedl 2004) or profile injection
attacks (Burke et al. 2005). Such attacks usually
involve setting up dummy profiles, and assume
different amounts of knowledge about the system.
For instance, the average attack (Lam and Riedl
2004) assumes knowledge of the average rating
for each item; and the attacker assigns values
randomly distributed around this average, along
with a high rating for the item being pushed.
Studies have shown that such attacks can be quite
detrimental to predicted ratings, though item-
based collaborative filtering tends to be more
robust to these attacks (Lam and Riedl 2004).
Obviously, content-based methods, which only
rely on a users past ratings, are unaffected by
profile injection attacks.

While pure content-based methods avoid some
of the pitfalls discussed above, collaborative fil-
tering still has some key advantages over them.
Firstly, CF can perform in domains where there
is not much content associated with items, or
where the content is difficult for a computer to

http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_918
http://dx.doi.org/10.1007/978-1-4899-7687-1_916

Recommender Systems 1065

R

analyze, such as ideas, opinions, etc. Secondly, a
CF system has the ability to provide serendipi-
tous recommendations, that is, it can recommend
items that are relevant to the user, but do not
contain content from the user’s profile.

Recommended Reading

Good surveys of the literature in the field can
be found in Adomavicius and Tuzhilin (2005),
Su (2009), Bell et al. (2009). For extensive empir-
ical comparisons on variations of Collaborative
Filtering refer to Breese et al. (1998), Herlocker
et al. (1999), and Sarwar et al. (2001).

Adomavicius G, Tuzhilin A (2005) Toward the next
generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE Trans
Knowl Data Eng 17(6):734–749

Balabanovic M, Shoham Y (1997) Fab: content-
based, collaborative recommendation. Commun As-
soc Comput Mach 40(3):66–72

Basu C, Hirsh H, Cohen W (July 1998) Recommenda-
tion as classification: using social and content-based
information in recommendation. In: Proceedings of
the fifteenth national conference on artificial intelli-
gence (AAAI-98), Madison, pp 714–720

Bell R, Koren Y, Volinsky C (2009) Matrix factor-
ization techniques for recommender systems. IEEE
Comput 42(8):30–37

Billsus D, Pazzani MJ (1998) Learning collabora-
tive information filters. In: Proceedings of the fif-
teenth international conference on machine learn-
ing (ICML-98), Madison. Morgan Kaufmann, San
Francisco, pp 46–54

Breese JS, Heckerman D, Kadie C (1998) Empirical
analysis of predictive algorithms for collaborative
filtering. In: Proceedings of the fourteenth confer-
ence on uncertainty in artificial intelligence, Madi-
son

Burke R, Mobasher B, Bhaumik R, Williams C (2005)
Segment-based injection attacks against collabora-
tive filtering recommender systems. In: ICDM ’05:
proceedings of the fifth IEEE international con-
ference on data mining, Houston. IEEE Computer
Society, Washington, DC, pp 577–580

Candès EJ, Tao T (2009) The power of convex relax-
ation: near-optimal matrix completion. IEEE Trans
Inf Theory 56(5):2053–2080

Claypool M, Gokhale A, Miranda T (1999) Com-
bining content-based and collaborative filters in an
online newspaper. In: Proceedings of the SIGIR-99
workshop on recommender systems: algorithms and
evaluation, Berkeley

Cotter P, Smyth B (2000) PTV: intelligent personal-
ized TV guides. In: Twelfth conference on inno-

vative applications of artificial intelligence, Austin,
pp 957–964

Goldberg D, Nichols D, Oki B, Terry D (1992).
Using collaborative filtering to weave an informa-
tion tapestry. Commun Assoc Comput Mach 35(12):
61–70

Good N, Schafer JB, Konstan JA, Borchers A, Sarwar
B, Herlocker J et al (1999) Combining collaborative
filtering with personal agents for better recommen-
dations. In: Proceedings of the sixteenth national
conference on artificial intelligence (AAAI-99), Or-
lando, pp 439–446

Harpale AS, Yang Y (2008) Personalized active learn-
ing for collaborative filtering. In: SIGIR ’08: pro-
ceedings of the 31st annual international ACM SI-
GIR conference on research and development in
information retrieval, Singapore. ACM, New York,
pp 91–98

Herlocker J, Konstan J, Borchers A, Riedl J (1999) An
algorithmic framework for performing collaborative
filtering. In: Proceedings of 22nd international ACM
SIGIR conference on research and development in
information retrieval, Berkeley. ACM, New York,
pp 230–237

Herlocker JL, Konstan JA, Terveen LG, Riedl JT
(2004) Evaluating collaborative filtering recom-
mender systems. ACM Trans Inf Syst 22(1):
5–53

Hofmann T (1999) Probabilistic latent semantic anal-
ysis. In: Proceedings of the fifteenth conference on
uncertainty in artificial intelligence, Stockholm, 30
July–1 Aug 1999. Morgan Kaufmann

Hofmann T (2004) Latent semantic analysis for col-
laborative filtering. ACM Trans Inf Syst 22(1):
89–115

Jin R, Si L (2004) A Bayesian approach toward active
learning for collaborative filtering. In: UAI ’04:
proceedings of the 20th conference on uncertainty in
artificial intelligence, Banff. AUAI Press, Arlington,
pp 278–285

Lam SK, Riedl J (2004) Shilling recommender systems
for fun and profit. In: WWW ’04: proceedings of the
13th international conference on World Wide Web,
New York. ACM, New York, pp 393–402

Lang K (1995) NewsWeeder: learning to filter net-
news. In: Proceedings of the twelfth international
conference on machine learning (ICML-95), Tahoe
City. Morgan Kaufmann, San Francisco, pp 331–
339. ISBN 1-55860-377-8.

Lee DD, Seung HS (1999) Learning the parts of
objects by non-negative matrix factorization. Nature
401:788

Linden G, Smith B, York J (2003) Amazon.com rec-
ommendations: item-to-item collaborative filtering.
IEEE Internet Comput 7(1):76–80

Melville P, Mooney RJ, Nagarajan R (2002) Content-
boosted collaborative filtering for improved recom-
mendations. In: Proceedings of the eighteenth na-
tional conference on artificial intelligence (AAAI-
02), Edmonton, pp 187–192

1066 Record Linkage

Mooney RJ, Roy L (2000) Content-based book recom-
mending using learning for text categorization. In:
Proceedings of the fifth ACM conference on digital
libraries, San Antonio, pp 195–204

Nakamura A, Abe N (1998) Collaborative filtering
using weighted majority prediction algorithms. In:
ICML ’98: proceedings of the fifteenth international
conference on machine learning, Madison. Morgan
Kaufmann, San Francisco, pp 395–403

Pan R, Scholz M (2009) Mind the gaps: weighting
the unknown in large-scale one-class collaborative
filtering. In: 15th ACM SIGKDD conference on
knowledge discovery and data mining (KDD), Paris

Pazzani MJ (1999) A framework for collaborative,
content-based and demographic filtering. Artif Intell
Rev 13(5–6):393–408

Pazzani MJ, Billsus D (1997) Learning and revising
user profiles: the identification of interesting web
sites. Mach Learn 27(3):313–331

Popescul A, Ungar L, Pennock DM, Lawrence S
(2001) Probabilistic models for unified collaborative
and content-based recommendation in sparse-data
environments. In: Proceedings of the seventeenth
conference on uncertainity in artificial intelligence.
University of Washington, Seattle

Recht B (2009, to appear) A simpler approach to
matrix completion. J Mach Learn Res

Rennie J, Srebro N (2005) Fast maximum margin
matrix factorization for collaborative prediction.
In: International conference on machine learning,
Bonn

Resnick P, Iacovou N, Sushak M, Bergstrom P, Reidl
J (1994a) GroupLens: an open architecture for
collaborative filtering of netnews. In: Proceedings
of the 1994 computer supported cooperative work
conference, New York. ACM, New York

Resnick P, Neophytos I, Bergstrom P, Mitesh S, Riedl
J (1994b) Grouplens: an open architecture for col-
laborative filtering of netnews. In: CSCW94 – con-
ference on computer supported cooperative work,
Chapel Hill. Addison-Wesley, pp 175–186

Sarwar B, Karypis G, Konstan J, Reidl J (2001) Item-
based collaborative filtering recommendation algo-
rithms. In: WWW ’01: proceedings of the tenth
international conference on World Wide Web, Hong
Kong. ACM, New York, pp 285–295

Schein AI, Popescul A, Ungar LH, Pennock DM
(2002) Methods and metrics for cold-start recom-
mendations. In: SIGIR ’02: proceedings of the 25th
annual international ACM SIGIR conference on
research and development in information retrieval,
Tampere. ACM, New York, pp 253–260

Soboroff I, Nicholas C (1999) Combining content
and collaboration in text filtering. In: Joachims T
(ed) Proceedings of the IJCAI’99 workshop on ma-
chine learning in information filtering, Stockholm,
pp 86–91

Srebro N, Jaakkola T (2003) Weighted low-rank ap-
proximations. In: International conference on ma-
chine learning (ICML), Washington, DC

Su X, Khoshgoftaar TM (2009) A survey of collab-
orative filtering techniques. Adv Artif Intell 2009:
1–20

Su X, Greiner R, Khoshgoftaar TM, Zhu X
(2007) Hybrid collaborative filtering algorithms us-
ing a mixture of experts. In: Web intelligence,
pp 645–649

Su X, Khoshgoftaar TM, Zhu X, Greiner R (2008)
Imputation-boosted collaborative filtering using ma-
chine learning classifiers. In: SAC ’08: proceedings
of the 2008 ACM symposium on applied comput-
ing. ACM, New York, pp 949–950

Record Linkage

Peter Christen1 and William E. Winkler2

1Research School of Computer Science, The
Australian National University, Canberra, ACT,
Australia
2US Census Bureau, Suitland, MD, USA

Abstract

Many data mining and machine learning
projects require information from various data
sources to be integrated and linked before
they can be used for further analysis. A crucial
task of such data integration is to identify
which records refer to the same real-world
entities across databases when no common
entity identifiers are available and when
records can contain errors and variations. This
process of record linkage therefore has to
rely upon the attributes that are available in
the databases to be linked. For databases that
contain personal information, for example,
of customers, taxpayers, or patients, these
are commonly their names, addresses, phone
numbers, and dates of birth.

To improve the scalability of the linkage
process, blocking or indexing techniques are
commonly applied to limit the comparison
of records to pairs or groups that likely
correspond to the same entity. Records are
compared using a variety of comparison
functions, most commonly approximate string
comparators that account for typographical
errors and variations in textual attributes.

Record Linkage 1067

R

The compared records are then classified
into matches, non-matches, and potential
matches, depending upon the decision model
used. If training data in the form of true
matches and non-matches are available,
supervised classification techniques can be
employed. However, in many practical record
linkage applications, no ground truth data
are available, and therefore unsupervised
approaches are required. An approach known
as probabilistic record linkage is commonly
employed. In this article we provide an
overview of record linkage with an emphasis
on the classification aspects of this process.

Synonyms

Authority control; Citation or reference matching
(when applied to bibliographic data); Co-refer-
ence resolution; Data linkage; Data matching;
Data reconciliation; Deduplication or duplicate
detection (when applied to one database only);
Entity resolution; Field scrubbing; Identity uncer-
tainty; List washing; Merge-purge; Object identi-
fication; Object matching; Reference reconcilia-
tion

Definition

Identifying and linking records that correspond
to the same real-world entity in one or more
databases is an increasingly important task in
many data mining and machine learning projects.
The aim of record linkage is to compare records
within one (known as deduplication) or across
two databases and classify the compared pairs of
records as matches (pairs where both records are
assumed to refer to the same real-world entity)
and non-matches (pairs where the two records are
assumed to refer to different entities).

Formally, let us consider two databases (or
files), A and B, and record pairs in the product
space A � B (for the deduplication of a single
database A, the product space is A � A). The
aim of record linkage is to classify these record
pairs into the classes of matches (links) and non-

matches (non-links) (Christen 2012). Depending
upon the decision model used (Fellegi and Sunter
1969; Herzog et al. 2007), a third class of po-
tential matches (potential links) might be used.
These are difficult to classify record pairs that
will need to be manually assessed and classified
as matches or non-matches in a manual clerical
review process.

Each record pair in A � B is assumed to
correspond to either a true match or a true non-
match. The space A � B is therefore partitioned
into the set M of true matches and the set U of
true non-matches. The objective of record linkage
is to correctly classify record pairs from M into
the class of matches and pairs from U into the
class of non-matches.

Motivation and Background

Increasingly, information systems and data min-
ing projects require data from multiple sources to
be integrated and linked in order to improve data
quality, enrich existing data sources, or facilitate
data analysis that is not feasible on an individ-
ual database. Compared to analyzing databases
in isolation, the analysis of data linked across
disparate sources, either within a single or be-
tween different organizations, can lead to much
improved benefits. Integrated data can also al-
low types of analyses that are not feasible on
individual databases, for example, the detection
of fraud or terrorism suspects through the anal-
ysis of certain suspicious patterns of activities
or the identification of adverse drug reactions in
particular patient groups (Christen 2012). Record
linkage has been employed in a wide range of
domains as we discuss in section “Applications”
below.

In most cases the databases to be linked (or
deduplicated) do not contain unique entity iden-
tifiers or keys. Therefore, attributes (fields) that
are common across the databases need to be
used to identify similar records that likely corre-
spond to the same entity. If the databases contain
information about people, then these common
attributes can be names, addresses, dates of birth,
and other partially identifying personal details.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100026
http://dx.doi.org/10.1007/978-1-4899-7687-1_100053
http://dx.doi.org/10.1007/978-1-4899-7687-1_100087
http://dx.doi.org/10.1007/978-1-4899-7687-1_100097
http://dx.doi.org/10.1007/978-1-4899-7687-1_100098
http://dx.doi.org/10.1007/978-1-4899-7687-1_100101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100106
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_100172
http://dx.doi.org/10.1007/978-1-4899-7687-1_100203
http://dx.doi.org/10.1007/978-1-4899-7687-1_100270
http://dx.doi.org/10.1007/978-1-4899-7687-1_100299
http://dx.doi.org/10.1007/978-1-4899-7687-1_100342
http://dx.doi.org/10.1007/978-1-4899-7687-1_100343
http://dx.doi.org/10.1007/978-1-4899-7687-1_100402

1068 Record Linkage

However, often the quality of such information
is low, as personal details can be entered or
recorded wrongly, be incomplete, or be out of
date. Record linkage based on “dirty data” is
challenging as ambiguities, errors, variations, and
value changes can lead to both false matches
(record pairs wrongly classified as referring to
the same entity) and false non-matches (missed
true matching pairs of records classified as non-
matches).

The term record linkage was used in 1946
by Halbert Dunn to describe the idea of assem-
bling a book of life for all individuals in the
world (Dunn 1946). Each such book would begin
with a birth record and end with a death record
and in between would contain marriage and di-
vorce records, as well as records about a person’s
contacts with the health and social security sys-
tems. Dunn realized that having such books of
life for a full population would provide a wealth
of information that would allow governments to
improve national statistics, better plan services,
and also help to identify individuals.

The first computer-based linkage techniques
were proposed in the 1950s and early 1960s
by Howard Newcombe et al. (1959), who also
developed the basic ideas of the successful prob-
abilistic record linkage approach described in the
following section. Based on Newcombe’s ideas,
Fellegi and Sunter in 1969 published their sem-

inal paper on a theory for probabilistic record
linkage (Fellegi and Sunter 1969). They proved
that an optimal probabilistic decision rule can be
found under the assumption of independence of
the attributes used in the comparison of records.
This influential work has been the basis for many
record linkage systems and software products,
and it is still widely used today.

Theory/Solution

We now describe the steps involved in the record
linkage process, followed by a more detailed
discussion of techniques used to classify record
pairs into matches and non-matches. Note that for
the deduplication of a single database, all steps of
the record linkage process are still applicable.

The Record Linkage Process
Figure 1 provides an overview of the steps in-
volved in the general record linkage process. We
assume two databases that contain details about
the same types of entities (such as people, busi-
nesses, scientific publications, and so on). The
first step of data cleaning and standardization is
important to convert the input data into the same
format so they are more suitable for compari-
son. This step involves, for example, converting
all letters into lower or upper case, removing

Record Linkage, Fig. 1
The general process of
linking two databases (As
adapted from Christen
2012)

Non−
matches

Possible
matches

Database A

Database B

Cleaning and
standardisation

Cleaning and
standardisation

Record pair
comparison

Similarity vector
classification

Clerical
review

Evaluation

Blocking /
Indexing

Matches

Record Linkage 1069

R

certain punctuations and words, and splitting at-
tributes into specific fields (such as title, first
name, middle name, and last name for personal
names).

The second step of blocking or indexing is
aimed at reducing the number of record pairs
that need to be compared from the full pair-
wise comparison space of jAj � jBj, where j � j
is the number of records in a database. The
idea is to only compare records in detail that
likely refer to matches. This is accomplished by
splitting the databases into blocks according to
some criteria and then only comparing records
in the same block across the two databases. An
example criteria can, for example, be a post-
or zip code attribute, resulting in only records
being compared that have the same post- or zip
code value. Various such blocking or indexing
techniques have been developed in the past few
decades (Christen 2012).

In the comparison step, candidate record pairs
generated in the blocking/indexing step are then
compared in detail using a variety of attribute and
record comparison functions. As many attributes
used in record linkage to compare records con-
tain textual values (like names and addresses),
approximate string comparison functions such
as Jaro-Winkler or edit distance are commonly
used (Christen 2012). Specific comparison func-
tions have also been developed for values such as
ages, dates, or phone numbers (Christen 2012).
Generally all these comparison functions return a
numerical similarity, s, that is normalized in 0 �
s � 1, with s D 1 if two attribute values are the
same (like “geoff” and “geoff”), s D 0 if they are
completely different (like “claude” and “geoff”),
and 0 < s < 1 if they are somehow similar (like
“geoff” and “jeff”). For each compared record
pair, a similarity vector (also known as weight
vector) is formed that contains the similarities of
all compared attributes of that pair.

In the classification step (as we discuss in
more details below), each compared candidate
record pair is classified into one of the classes of
matches, non-matches, and possibly also poten-
tial matches, depending upon the decision model
used (Fellegi and Sunter 1969; Herzog et al.
2007). Various classification techniques (both su-

pervised and unsupervised) have been developed
in the past nearly five decades.

If candidate record pairs have been classi-
fied into potential matches, a manual clerical
review process is required to decide their final
match status (match or non-match). These man-
ual classifications can flow back into the classi-
fication model when an active learning approach
is employed. Several active learning approaches
have been developed for record linkage (Christen
2012).

In the final evaluation step, the complexity,
completeness, and quality of the linked records
are evaluated using a variety of measures (Chris-
ten 2012). The complexity of a linkage can be
measured by the number of candidate record pairs
generated by an indexing or blocking technique.
Measuring completeness and linkage quality re-
quires truth data in the form of known true match-
ing and non-matching record pairs. Linkage qual-
ity is generally measured using precision and
recall, while completeness is similar to recall but
measures how many of all known true matches
are included in the set of candidate record pairs
(i.e., how many true matches are not removed in
the indexing/blocking step).

Record Linkage Model of Fellegi and
Sunter
Fellegi and Sunter (1969) provided a formal
mathematical model for ideas that had been
introduced by Newcombe et al. (1959). Fellegi
and Sunter (1969) also provided ways of
estimating key parameters without training data.
Generally, training data have not been available
for most record linkage applications.

Following the notation used in section “Defini-
tion” above, Fellegi and Sunter, making rigorous
concepts introduced by Newcombe et al. (1959),
considered ratios of probabilities of the form:

R D
P.� 2 Γ jM/

P.� 2 Γ jU /
; (1)

where � is an arbitrary agreement pattern in a
comparison space Γ . For instance, Γ might consist
of eight patterns representing simple agreement
or not on the largest name component, street

1070 Record Linkage

name, and street number (Herzog et al. 2007).
Alternatively, each � 2 Γ might additionally
account for the relative frequency with which
specific values of name components such as
“Smith”, “Zabrinsky”, “AAA”, and “Capitol”

occur. The ratio R or any monotonically
increasing function of it (such as the natural log)
is referred to as a matching weight (or score). The
decision rule is given by:

If R � T�; then designate pair as a match.

If T� < R < T�; then designate pair as a possible match (2)

and hold for clerical review.

If R � T�; then designate pair as a non-match.

The cutoff thresholds T� and T� are deter-
mined by a priori error bounds on false matches
and false non-matches. The thresholds are often
called lower and upper cutoffs. Rule (2) agrees
with intuition. If � 2 Γ consists primarily of
agreements, then it is intuitive that � 2 Γ would
be more likely to occur among matches than non-
matches, and the ratio (1) would be large. On
the other hand, if � 2 Γ consists primarily of
disagreements, then the ratio (1) would be small.
Rule (2) partitions the set � 2 Γ into three
disjoint subregions. The region fT� < R < T�g

is referred to as the no-decision region or clerical
review region (Herzog et al. 2007). In some
situations, resources are available to review pairs
clerically.

Figure 2 provides an illustration of the curves
of log frequency versus log weight for matches
and non-matches, respectively. The data used in
Fig. 2 are based on information obtained while
matching name and address files from one of the
sites for the 1988 US Dress Rehearsal Census.
The clerical review region consists of individuals
within the same household that are missing both
name and age. Figure 2 shows hypothetical cutoff
thresholds that we denote with the symbols L

(lower) and U (upper) in this figure, respectively.

Learning Parameters via the Methods of
Fellegi and Sunter
Fellegi and Sunter (1969) were the first to provide
very general methods for computing the probabil-
ities in the ratio (1). As the methods are useful, we
describe what they introduced and then show how
the ideas led into more general methods that can

be used for unsupervised learning (i.e., without
training data) in a large number of situations.

Fellegi and Sunter observed several things.
Firstly,

P.S/ D P.S jM/P.M/C P.S jU /P.U / (3)

for any set S of pairs in A � B. The probability
on the left can be computed directly from the
set of pairs. In Equation (3), M and U are
restricted to S . Secondly, if sets Ax represent
simple agreement/disagreement, under the condi-
tional independence assumption (CI) (i.e., naive
Bayes), we obtain

P.Ax
1 \ Ax

2 \ Ax
3 jD/

D P.Ax
1 jD/P.Ax

2 jD/P.Ax
3 jD/: (4)

Here D is either M or U . Then (3) and (4) pro-
vide seven equations and seven unknowns (as x
represents agree or disagree) that yield quadratic
equations that they solved. Equation (or set of
equations) (4) can be expanded to K fields.

The expectation-maximization (EM) algo-
rithm (Dempster et al. 1977) can be used to
estimate the probabilities in Eqs. (3) and (4) when
there are more than K fields or when condition
(CI) may not hold.

For the 1990 US Decennial Census, Winkler
(1988) introduced an EM algorithm that found
the best naive Bayes approximation of a general
Bayes net model where interactions between
fields were accounted for. This type of EM was
necessary because “optimal” parameters were
used for each of the �500 regions into which the

Record Linkage 1071

R

Record Linkage, Fig. 2
Log frequency versus
weight, matches and
non-matches combined

8

7

6

5

4

3

2

1

0
−28 −20 −12 −4 4

o=nonmatch, *=match

cutoff “L” = 0 and cutoff “U” = 6

12 20

Weight

L
o
g

F
r
e
q
u
e
n
c
y

USA was divided, the entire matching operations
needed to be completed in less than 6 weeks to
provide estimates required under the US law, and
it was impossible to obtain training data.

Herzog et al. (2010) provide many of the
details of the EM procedures used in the 1990 US
Decennial Census production matching systems
that we do not cover here. We provide two high-
lights that were in Herzog et al. (2010). Firstly,
the EM algorithm in this particular application
was able to adapt automatically to increasing
missing data. During 1 week in one of seven
processing offices, it was discovered that the cler-
ical review region increased significantly. Upon
follow-up, it was determined that two clerks had
managed to bypass keypunch edits on the year-
of-birth field, and all records keyed by them
disagreed on the computed age. Age and first
name were the only fields that would allow dis-
tinguishing true matches within households.

Secondly, the probabilities from the un-
supervised learning yielded better matching
results than results from an iterative refinement
procedure (a type of active learning) that was

in widespread use for matching. In the iterative
refinement procedure, a subset of clerical pairs
were followed up to determine matches and non-
matches, the matching probabilities were re-
estimated, an additional set of clerical pairs were
followed up, and parameters were reestimated,
with the entire interactive learning procedure
being repeated on the order of five cycles until
the matching probabilities stabilized.

Superficially, the EM algorithm (Winkler
1988) considers different orderings of the form

P.Ax
�;1 \ � � � \ Ax

�;kjD/

D ΠK
iD1P.Ax

�;i jA
x
�;i�1; � � � ; Ax

�;1; D/; (5)

where
; i represents the i th entry in a permuta-
tion
 of the integers 1 thru K. The greater gen-
erality of (5) in comparison to (4) can yield better
fits to the data. It can be reasonably assumed that
the EM algorithm under the conditional indepen-
dence assumption (as the actual computational
methods work) simultaneously chooses the best
permutation and the best parameters.

1072 Record Linkage

Because training data are seldom available
and can be exceptionally expensive to obtain,
some authors (Larsen and Rubin 2001) recom-
mend semi-supervised learning where a small
amount of judiciously chosen training data are
combined with a large amount of unlabeled data
for which true matching status is unknown. The
semi-supervised methods generally outperform
the unsupervised methods.

Some commercial record linkage software
uses rule-based methods, which employ
strategies such as if these three fields are the same
in a pair of records, call the pair a designated
match, designated link, or possible same entity.
Ferrante and Boyd (2012), in a large comparison,
showed that one rule-based commercial package
was outperformed by one commercial package
and several shareware packages that each applied
variants of the Fellegi-Sunter model.

Applications

Record linkage has been used in a wide range of
domains (Christen 2012; Herzog et al. 2007). In
the following we briefly describe some example
applications:

• Linking personal data: Traditionally
the most common use of record linkage
is to identify and link records about
the same person across two databases.
Examples of such linkages occur in national
censuses (linking people between two census
collections), in the health domain (linking
patient records between different hospital and
healthcare providers or over time with the
aim to compile patient-oriented longitudinal
data sets for public health studies), or between
government agencies to, for example, identify
people who commit welfare fraud.

In the health domain, population informat-
ics (Kum et al. 2014), the study of populations
by linking and analyzing large databases that
contain detailed information about a large pro-
portion of individuals in a population (such
as their health, education, financial, census,
location, shopping, employment, or social net-

working records), has recently attracted in-
creasing interest.

• Deduplication of customer databases: A
common data quality problem for many busi-
nesses is that a customer might be recorded
in their databases more than once due to ad-
dress or name changes and variations. Such
duplicates can incur significant costs for a
business, for example, when sending out ad-
vertisement mail. The task of deduplicating
a single database is in principle the same as
when linking two databases. Each record in
the database potentially needs to be compared
with all others (indexing or blocking is gener-
ally also applied to speed up the deduplication
process).

• Linking historical population data: The
quantitative social sciences are currently
seeing a shift toward the use of large-scale
data collections for studying a diverse range
of aspects of the human society. Often
these are historical data such as census,
birth, death, and marriage registries that
span several decades (or even centuries)
and that need to be linked to reconstruct
historical populations (Bloothooft et al.
2015). The major challenges when linking
such data include data quality (as such data
have to be transcribed from hand-written
forms, a process that is error-prone and
labor-intensive), the dynamics of people’s
characteristics over time, and the complexity
of roles and relationships for each individual
as they change over time.

• Consumer product comparison shop-
ping: With the increasing popularity of
online comparison shopping Web sites, the
challenging task of identifying which descrip-
tions of products across diverse shopping sites
correspond to the same real-world product
has attracted interest from various domains.
Compared to personal data, such as names
and addresses, different consumer products
might only be distinguishable by a single digit
(such as the Canon 600D and Canon 650D
digital cameras). To improve linkage quality
in this domain, novel similarity calculation
functions and machine learning approaches

Record Linkage 1073

R

that learn the characteristic features that
distinguish consumer products have been
developed (Christen 2012).

• Linking bibliographic data: Research is
increasingly being published through online
databases such as Springer Link or the ACM
Digital Library. These databases facilitate a
much faster dissemination of knowledge, and
they allow government funding agencies to
calculate numerical metrics to assess the im-
pact of researchers, research groups, and even
institutions. This requires to link all records of
an individual researcher with high accuracy.
A major challenge with bibliographic data is
that there can be several researchers with the
same name details in a database, some even
working in the same research domain. Even
if full given names are provided, it can be
unclear if two publications were written by the
same individual or not. Journal and conference
names are also often abbreviated and do not
follow standardized formats.

Future Directions

Most research in record linkage in the past
decade has concentrated on improving either
the scalability of the linkage process through
the development of advanced indexing or
blocking techniques (Christen 2012) or linkage
quality by employing sophisticated classification
techniques. Most of these techniques assume
the databases to be linked are static and the
linkage can be done off-line and in batch mode.
In the following we summarize areas of ongoing
research that aim to address various practical
problems in record linkage.

• Collective classification: Traditional record
linkage techniques classify each compared
record pair individually (Herzog et al. 2007).
This can lead to violations of transitivity (if
record A is classified as a match with record
B, and record B as a match with record C, then
records A and C must also be a match). With
traditional approaches, transitivity is often
addressed in a post-linkage process (Christen
2012).

Recently developed graph-based and
collective entity resolution techniques (Bhat-
tacharya and Getoor 2007) instead aim to find
an overall optimal assignment of records to
entities. These techniques take both attribute
similarities and relationship information
into account. They generally build a graph
where nodes are records and edges connect
records that have a similarity above a certain
minimum threshold. The task then becomes
one of splitting such a graph into individual
subgraphs such that each subgraph contains
the records of one entity only, and each entity
is represented by one subgraph.

While such techniques have been shown
to achieve high linkage quality (mainly on
bibliographic data), their computational com-
plexity (quadratic or larger in the number of
records to be linked) makes the application of
these techniques to large-scale record linkage
problems challenging. Furthermore, how to
employ such collective linkage techniques in
domains where only limited relational infor-
mation is available (such as for data about
people) is an open question.

• Group linkage: Related to the previous topic
is the challenge of linking groups of records
instead of individual pairs. Groups can, for
example, represent the people in a household
or family or the coauthors of a scientific pub-
lication. Group linkage (On et al. 2007) is
generally a two-step process, where in the
first step, individual record pairs are linked,
followed by the linkage of groups using some
form of bipartite graph matching. The chal-
lenges in group linkage occur when groups
do not have the same number of members,
when group membership changes over time,
and when groups can split or merge, such as
does happen in families and households.

• Linking temporal data: Most personal de-
tails of people change over time, such as their
addresses, names, employments, and relation-
ships. If records with such details have time
stamps attached (such as the dates when the
information was recorded), then considering
such temporal information might help im-
prove linkage quality (Li et al. 2011). For ex-

1074 Record Linkage

ample, if it is known that a certain proportion
of people in a population move their address
between two census collections 5 years apart,
then less weight should be assigned to ad-
dress similarities when the overall similarities
between records are calculated. Some initial
work has investigated how such adjustment of
similarity weights can help improve overall
linkage quality for bibliographic data (assum-
ing authors change their institutions); how-
ever more research is needed to investigate
if and how such techniques can be employed
when, for example, linking census or health
data.

• Statistical analysis across multiple files:
Economists and demographers want to
analyze (X; Y) – data where multivariate X
is taken from one file A and multivariate Y is
taken from another file B. The common data
for linking the files are typically nonunique
identifiers such as name, address, and date
of birth. Lahiri and Larsen (2005) provide
such a model that can adjust certain statistical
analyses such as regression under modest
assumptions for linkage error. Others have
considered (X; Y) – data where X and Y are
each composed of discrete or continuous data
but under very strong assumptions.

• Real-time linkage: As services in the public
and private sectors move online, organizations
increasingly require real-time linkage in ap-
plications such as online identity verification
based on personal details or web and docu-
ment search where duplicates in the set of
retrieved records or documents need to be
identified. Compared to the batch linkage of
two databases, real-time linkage considers a
stream of query records that need to be linked
in sub-second time with a potentially large
database that contains entity records. Often
these databases are also dynamic, where new
records are added and existing records are
modified.

Novel indexing techniques are required that
allow the efficient and effective retrieval of

candidate records that are likely to be match-
ing with a query record (Ramadan et al. 2015),
as well as fast classification and ranking tech-
niques that are adaptive to changes in the
underlying entity database.

• Privacy-preserving record linkage: In many
application domains, record linkage relies on
personal details, such as names and addresses,
to conduct the linkage. Privacy and confi-
dentiality issues can be of great concern, es-
pecially when databases are linked between
organizations. Many countries have privacy
legislation that limits the sharing and use of
personal information. Linking records, for ex-
ample, between a private hospital and a gov-
ernment health department might therefore be
limited or even prohibited.

The past decade has seen the emergence
of research that aims to develop techniques
that allow the linking of databases across
organizations while ensuring that no sensitive
private or confidential information is being
revealed (Vatsalan et al. 2013). Using encod-
ing techniques such as one-way hashing and
Bloom filters, and cryptographic approaches
such as secure multiparty computation,
privacy-preserving record linkage techniques
encode records at the data sources in
such ways that similarity calculations and
approximate matching of string values are
feasible, while still allowing the linkage
of large databases in efficient and effective
ways.

Cross-References

�Classification
�Data Preparation
�Entity Resolution
�Expectation Maximization Clustering
�Link Mining and Link Discovery
�Link Prediction
� Similarity Measures
�Unsupervised Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://dx.doi.org/10.1007/978-1-4899-7687-1_486
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_976

Regression 1075

R

Recommended Reading

Bhattacharya I, Getoor L (2007) Collective entity reso-
lution in relational data. ACM Trans Knowl Discov
Data 1(1), 5-es, pp 1–35

Bloothooft G, Christen P, Mandemakers K, Schraa-
gen M (2015) Population reconstruction. Springer,
Cham

Christen P (2012) Data matching – concepts and
techniques for record linkage, entity resolution, and
duplicate detection. Data-centric systems and appli-
cations. Springer, Berlin/New York

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B 19:380–393

Dunn H (1946) Record linkage. Am J Publ Health
36(12):1412

Fellegi IP, Sunter AB (1969) A theory for record
linkage. J Am Stat Assoc 64(328):1183–1210

Ferrante A, Boyd J (2012) A transparent and trans-
portable methodology for evaluating data linkage
software. J Biomed Inf 45(1):165–172

Herzog TN, Scheuren FJ, Winkler WE (2007) Data
quality and record linkage techniques. Springer,
New York/London

Herzog TN, Scheuren FJ, Winkler WE (2010) Record
linkage. Wiley Interdiscip Rev Comput Stat 2(5):
535–543

Kum HC, Krishnamurthy A, Machanavajjhala A, Ahalt
SC (2014) Social genome: putting big data to work
for population informatics. IEEE Comput 47(1):56–
63

Lahiri P, Larsen M (2005) Regression analysis with
linked data. J Am Stat Assoc 100:222–230

Larsen MD, Rubin DB (2001) Iterative automated
record linkage using mixture models. J Am Stat
Assoc 96(453):32–41

Li P, Dong XL, Maurino A, Srivastava D (2011)
Linking temporal records. The VLDB conference
was in Seattle, WA. In: Proceedings of the VLDB
endowment, Seattle, vol 4, issue 11

Newcombe H, Kennedy J, Axford S, James A
(1959) Automatic linkage of vital records. Science
130(3381):954–959

On BW, Koudas N, Lee D, Srivastava D (2007) Group
linkage. In: IEEE international conference on data
engineering, Istanbul, pp 496–505

Ramadan B, Christen P, Liang H, Gayler RW (2015)
Dynamic sorted neighborhood indexing for real
time entity resolution. ACM J Data Inf Qual 6(4):15

Vatsalan D, Christen P, Verykios VS (2013) A tax-
onomy of privacy-preserving record linkage tech-
niques. Elsevier Inf Syst 38(6):946–969

Winkler WE (1988) Using the EM algorithm for
weight computation in the Fellegi-Sunter model of
record linkage. The American Statistical Associa-

tion that is located in Alexandria, VA publishes the
proceedings. In: Proceedings of the section on sur-
vey research methods, New Orleans, Washington,
pp 667–671

Recurrent Associative Memory

�Hopfield Network

Recursive Partitioning

�Divide-and-Conquer Learning

Reference Reconciliation

�Entity Resolution
�Record Linkage

Regression

Novi Quadrianto1 and Wray L. Buntine2;3

1Department of Informatics, SMiLe CLiNiC,
University of Sussex, Brighton, UK
2Statistical Machine Learning Program, NICTA,
Canberra, ACT, Australia
3Faculty of Information Technology, Monash
University, Clayton, VIC, Australia

Definition

Regression is a fundamental problem in statistics
and machine learning. In regression studies,
we are typically interested in inferring a real-
valued function (called a regression function)
whose values correspond to the mean of a
dependent (or response or output) variable
conditioned on one or more independent (or
input) variables. Many different techniques
for estimating this regression function have
been developed, including parametric, semi-
parametric, and nonparametric methods.

http://dx.doi.org/10.1007/978-1-4899-7687-1_127
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712

1076 Regression

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

Sinusoidal observations
Degree–1 polynomial
Degree–5 polynomial
Degree–20 polynomial

x

y

Regression, Fig. 1 Twentyfive data points (one-
dimensional input x and output y variables) with a
Gaussian-corrupted sinusoidal input–output relationship,
yD sin.2	x/ C
 where
 is the normally distributed

noise. The task is to learn the functional relationship
between x and y. Various lines show the inferred
relationship based on a linear regression model with
polynomial basis functions having various degrees

Motivation and Background

Assume that we are given a set of data points
sampled from an underlying but unknown dis-
tribution, each of which includes input x and
output y. An example is given in Fig. 1. The
task of regression is to learn a hidden functional
relationship between x and y from observed and
possibly noisy data points. In Fig. 1, the input–
output relationship is a Gaussian-corrupted sinu-
soidal relationship, that is, y D sin.2�x/ C �

where � is the normally distributed noise. Var-
ious lines show the inferred relationship based
on a linear parametric regression model with
polynomial basis functions. The higher the de-
gree of the polynomial, the more complex is
the inferred relationship, as shown in Fig. 1, as
the function tries to better fit the observed data
points.

While the most complex polynomial here is
an almost perfect reconstruction of observed
data points (it has “low bias”), it gives a very
poor representation of the true underlying
function sin.2�x/ that can change significantly

with the change of a few data points (it has
“high variance”). This phenomenon is called
the � bias-variance dilemma, and selecting a
complex model with too high a variance is
called � overfitting. Complex parametric models
(like polynomial regression) lead to low bias
estimators with a high variance, while simple
models lead to low variance estimators with
high bias. To sidestep the problem of trying
to estimate or select the model complexity
represented, for instance, by the degree of the
polynomial, so-called nonparametric methods
allow a rich variety of functions from the outset
(i.e., a function class not finitely parameterizable)
and usually provide a hyperparameter that tunes
the regularity, curvature, or complexity of the
function.

Theory/Solution

Formally, in a regression problem, we are in-
terested in recovering a functional dependency
yi Df .xi / C �i from N -observed training data

http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

Regression 1077

R

points f.xi ; yi /g
N
iD1, where yi 2R is the noisy

observed output at input location xi 2R
d . For

� linear regression, we represent the regression
function f ./ by a parameter w 2 R

H in the form
f .xi / WD h�.xi /; wi for H fixed basis functions
f�h.xi /g

H
hD1. With general basis functions such

as polynomials, exponentials, sigmoids, or even
more sophisticated Fourier or wavelets bases, we
can obtain a regression function which is non-
linear with regard to the input variables although
still linear with regard to the parameters.

In regression, many more methods are pos-
sible. Some variations on these standard linear
models are piecewise linear models, trees, and
splines (roughly, piecewise polynomial models
joined up smoothly) (Hastie et al. 2003). These
are called semi-parametric models, because they
have a linear parametric component as well as a
nonparametric component.

Fitting
In general, regression fits a model to data using an
objective function or quality criterion in a form
such as

E.f / D

NX
iD1

�.yi ; f .xi // ;

where smaller E.f / implies better quality. This
might be derived as an error/loss function or as
a negative log likelihood or log probability. The
squared error function is the most convenient
(leading to a least squares calculation), but many
possibilities exist. In general, methods are distin-
guished by three aspects: (1) the representation
of the function f ./, (2) the form of the term
�.yi ; f .xi //, and (3) the penalty term discussed
next.

Regularized/Penalized Fitting
The issue of overfitting, as mentioned already
in the section Motivation and Background, is
usually addressed by introducing a regulariza-
tion or penalty term to the objective function.
The regularized objective function is now in the
form of:

Ereg D E.f /C �R.f /: (1)

Here, E.f / measures the quality of the solu-
tion for f ./ on the observed data points, R.f /

penalizes complexity of f ./, and � is called
the regularization parameter which controls the
relative importance between the two. Measures
of function curvature, for instance, can be used
for R.f /. In standard � support vector machines,
the term E.f / measures the hinge loss, and
penalty R.f / is the sum of squares of the param-
eters, also used in ridge regression (Hastie et al.
2003).

Bias-Variance Dilemma
As we have seen in the previous section, the
introduction of the regularization term can help
avoid overfitting. However, this raises the ques-
tion of determining an optimal value for the
regularization parameter �. The specific choice
of � controls the bias-variance tradeoff (Geman
et al. 1992).

Recall that we try to infer a latent regression
function f .x/ based on N -observed training data
points D D f.xi ; yi /g

N
iD1. The notation f .xID/

explicitly shows the dependence of f on the
data D. The mean squared error (MSE) which
measures the effectiveness of f as a predictor of
y is

EŒ.y � f .xID//2jx;D	

D EŒ.y � EŒyjx	/2jx;D	C .f .xID/ � EŒyjx	/2

(2)

where EŒ:	 means expectation with respect to a
conditional distribution p.yjx/. The first term
of (2) does not depend on f .xID/, and it rep-
resents the intrinsic noise on the data. The MSE
of f as an estimator of the regression EŒyjx	 is

EDŒ.f .xID/ � EŒyjx	/2	 (3)

where ED means expectation with respect to the
training set D. The estimation error in (3) can
be decomposed into a bias and a variance terms,
that is,

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1078 Regression

EDŒ.f .xID/ � EŒyjx	/2	 D EDŒ.f .xID/

� EDŒf .xID/	C EDŒf .xID/	 � EŒyjx	/2	

D EDŒ.f .xID/ � EDŒf .xID/	/2	

C .EDŒf .xID/	 � EŒyjx	/2 C 2EDŒ.f .xID/

� EDŒf .xID/	/	.EDŒf .xID/	 � EŒyjx	/

D EDŒ.f .xID/ � EDŒf .xID/	/2	

C .EDŒf .xID/	 � EŒyjx	/2

D varianceC bias2:

The bias term measures the difference between
the average predictor over all datasets and the
desired regression function. The variance term
measures the adaptability of the predictor to a
particular dataset. There is a tradeoff between the
bias and variance contributions to the estimation
error, with very flexible models having low bias
but high variance (overfitting) and relatively rigid
models having low variance but high bias (un-
derfitting). Typically, variance is reduced through
“smoothing,” that is, an introduction of the regu-
larization term. This, however, will introduce bias
as peaks and valleys of the regression function
will be blurred. To achieve an optimal predictive
capability, an estimator with the best balance
between bias and variance is chosen by varying
the regularization parameter �. It is crucial to
note that bias-variance decomposition albeit pow-
erful is based on averages of datasets; however,
in practice only a single dataset is observed.
In this regard, a Bayesian treatment of regres-
sion, such as Gaussian process regression which
will avoid overfitting problem of maximum like-
lihood and which will also lead to automatic
methods of determining model complexity using
the training data alone, could be an attractive
alternative.

Nonparametric Regression
In the parametric approach, an assumption on
the mathematical form of the functional rela-
tionship between input x and output y such as
linear, polynomial, exponential, or combination
of them needs to be chosen a priori. Subsequently,
parameters are placed on each of the chosen

forms and the optimal values learned from the
observed data. This is restrictive both in the fixed
functional form and in the ability to vary the
model complexity. Nonparametric approaches try
to derive the functional relationship directly from
the data, that is, they do not parameterize the
regression function.

�Gaussian Processes for regression, for in-
stance, are well developed. Another approach is
the kernel method, of which a rich variety exists
(Hastie et al. 2003). These can be viewed as a re-
gression variant of nearest neighbor classification
where the function is made up of a local element
for each data point:

f .x/ D

P
i yi K�.xi ; x/P

i K�.xi ; x/
;

where the function K�.xi ; / is a nonnegative
“bump” in x space centered at its first argument
with diameter approximately given by �. Thus,
the function has a variable contribution from
each data point and � controls the bias-variance
tradeoff.

Generalized Linear Models
The previous discussion about regression focuses
on continuous output/dependent variables. While
this type of regression problem is ubiquitous,
there are however some interests in cases of
restricted output variables:

1. The output variable consists of two categories
(called binomial regression).

2. The output variable consists of more than two
categories (called multinomial regression).

3. The output variable consists of more than two
categories which can be ordered in a meaning-
ful way (called ordinal regression). and

4. The output variable is a count of the repetition
of the occurrence of an event (called poisson
regression).

Nelder and Wedderburn (1972) introduced the
generalized linear model (GLM) by allowing the
linear model to be related to the output vari-
ables via a link function. This is a way to unify
different cases of response variables under one

http://dx.doi.org/10.1007/978-1-4899-7687-1_100178

Regression 1079

R

Regression, Table 1 A table of various link functions
associated with the assumed distribution on the output
variable

Distribution of
dependent variable

Name Link function

Gaussian Identity link g.�/ D �

Poisson Log link g.�/ D log.�/

Binomial
multinomial

Logit link g.�/ D log
�

�

1��

�

Exponential
gamma

Inverse link g.�/ D ��1

Inverse Gaussian Inverse
squared link

g.�/ D ��2

framework, each only differs in the choice of the
link function. Specifically, in GLM, each output
variable is assumed to be generated from the
exponential family of distributions. The mean of
this distribution depends on the input variables
through

EŒy	 D g.�/ D w0Cw1�1.xi /C: : :CwD�D.xi /;

(4)
where g.�/ is the link function (Table 1). The pa-
rameters of the generalized linear model can then
be estimated by the maximum likelihood method,
which can be found by iterative reweighted least
squares (IRLS), an instance of the expectation
maximization (EM) algorithm.

Other Variants of Regression
So far, we have focused on the problem of pre-
dicting a single output variable y from an input
variable x. Some studies look at predicting multi-
ple output variables simultaneously. The simplest
approach for the multiple outputs problem would
be to model each output variable with a different
set of basis functions. The more common ap-
proach uses the same set of basis functions to
model all of the output variables. Not surpris-
ingly, the solution to the multiple outputs problem
decouples into independent regression problems
with shared basis functions.

For some other studies, the focus of regres-
sion is on computing several regression functions
corresponding to various percentage points or
quantiles (instead of the mean) of the conditional
distribution of the dependent variable given the

independent variables. This type of regression is
called quantile regression (Koenker 2005). The
sum of tilted absolute loss (called pinball loss)
is being optimized for this type of regression.
Quantile regression has many important appli-
cations within econometrics, data mining, social
sciences, and ecology, among other domains.

Instead of inferring one regression function
corresponding to the mean of a response variable,
k regression functions can be computed with
the assumption that the response variable is
generated by a mixture of k components. This
is called the mixture of regressions problem
(Gaffney and Smyth 1999). Applications include
trajectory clustering, robot planning, and motion
segmentation.

Another important variant is the heteroscedas-
tic regression model where the noise variance
on the data is a function of the input variable
x. The Gaussian process framework can be used
conveniently to model this noise-dependent case
by introducing a second Gaussian process to
model the dependency of noise variance on the
input variable (Goldberg et al. 1998). There are
also attempts to make the regression model more
robust to the presence of a few problematic data
points called outliers. The sum of absolute loss
(instead of the sum of squared loss) or student’s
t-distribution (instead of Gaussian distribution)
can be used for robust regression.

Cross-References

�Gaussian Processes
�Linear Regression
� Support Vector Machines

Recommended Reading

Machine learning textbooks such as Bishop
(2006), among others, introduce different
regression models. For a more statistical
introduction including an extensive overview
of the many different semi-parametric methods
and non-parametric methods such as kernel
methods, see Hastie et al. (2003). For a coverage

http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1080 Regression Trees

of key statistical issues including nonlinear
regression, identifiability, measures of curvature,
autocorrelation, and such, see Seber and Wild
(1989). For a large variety of built-in regression
techniques, refer to R (http://www.r-project.org/).

Bishop C (2006) Pattern recognition and machine
learning. Springer, New York

Gaffney S, Smyth P (1999) Trajectory clustering with
mixtures of regression models. In: ACM SIGKDD,
vol 62. ACM, New York, pp 63–72

Geman S, Bienenstock E, Doursat R (1992) Neural
networks and the bias/variance dilemma. Neural
Comput 4:1–58

Goldberg P, Williams C, Bishop C (1998) Regression
with input-dependent noise: a Gaussian process
treatment. In: Neural information processing sys-
tems, vol 10. MIT

Hastie T, Tibshirani R, Friedman J (Corrected
ed) (2003) The elements of statistical learning:
data mining, inference, and prediction. Springer,
New York

Koenker R (2005) Quantile regression. Cambridge
University Press, Cambridge

Nelder JA, Wedderburn RWM (1972) General-
ized linear models. J R Stat Soc: Ser A 135:
370–384

Seber G, Wild C (1989) Nonlinear regression. Wiley,
New York

Regression Trees

Luı́s Torgo
University of Porto, Porto, Portugal

Synonyms

Decision trees for regression; Piecewise constant
models; Tree-based regression

Definition

Regression trees are supervised learning methods
that address multiple regression problems. They
provide a tree-based approximation Of , of an
unknown regression function Y D f .x/C " with
Y 2 < and " 	 N.0; 2/, based on a given
sample of data D D fhx1

i ; � � � ; x
p
i ; yi ig

n
iD1. The

obtained models consist of a hierarchy of logical
tests on the values of any of the p predictor vari-

ables. The terminal nodes of these trees, known
as the leaves, contain the numerical predictions
of the model for the target variable Y .

Motivation and Background

Work on regression trees goes back to the
AID system by Morgan and Sonquist (1963).
Nonetheless, the seminal work is the book
Classification and Regression Trees by Breiman
and colleagues (1984). This book has established
several standards in many theoretical aspects
of tree-based regression, including over-fitting
avoidance by post-pruning, the notion of
surrogate splits for handling unknown variable,
and estimating variable importance.

Regression trees have several features that
make them a very interesting approach to several
multiple regression problems. Namely, regression
trees provide (i) automatic variable selection
making them highly insensitive to irrelevant
variables, (ii) computational efficiency that
allows addressing large problems, (iii) handling
of unknown variable values, (iv) handling of
both numerical and nominal predictor variables,
(v) insensitivity to predictors’ scales, and (vi)
interpretable models for most domains. In spite
of all these advantages, regression trees have poor
prediction accuracy in several domains because
of the piecewise constant approximation they
provide, and they are also unstable with respect
to small changes on the training data.

Structure of Learning System

The most common regression trees are binary
with logical tests in each node (an example is
given on the left graph of Fig. 1). Tests on nu-
merical variables usually take the form xi < ˛,
with ˛ 2 <, while tests on nominal variables
have the form xj 2 fv1; � � � ; vmg. Each path
from the root (top) node to a leaf can be seen
as a logical assertion defining a region on the
predictors’ space. Any regression tree provides a
full mutually exclusive partition of the predictor
space into L regions with boundaries that are

http://www.r-project.org/
http://dx.doi.org/10.1007/978-1-4899-7687-1_100103
http://dx.doi.org/10.1007/978-1-4899-7687-1_100360
http://dx.doi.org/10.1007/978-1-4899-7687-1_100489

Regression Trees 1081

R

Example of a Regression Tree

x2 < 3.1

x1 < 3.4

x2 < 6.1

x1 >= 6.6

x2 >= 3.1

x1 >= 3.4

x2 >= 6.1

x1 < 6.6

y = 3.6
n=20 100%

y = 0.75
n=2 10%

y = 4
n=18 90%

y = 2.2
n=6 30%

y = 4.8
n=12 60%

y = 3.8
n=7 35%

y = 2.3
n=3 15%

y = 4.9
n=4 20%

y = 6.3
n=5 25%

y = 0.75

y = 2.2

y = 2.3y = 4.9

y = 6.3

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
4

6

8

2 4 6 8
x1

x2

Partitioning of the Predictors' Space

Regression Trees, Fig. 1 A regression tree and the partitioning it provides

parallel to the predictors’ axes due to the form
of the tests. Figure 1 illustrates these ideas with
a tree and the respective partitioning on the right
side of the graph.

Using a regression tree for obtaining predic-
tions for new observations is straightforward. For
each new observation, we follow a path from the
root node to a leaf selecting the branches accord-
ing to the variable values of the observation. All
observations falling in a partition are predicted
with the same constant value, and that is the rea-
son for regression trees sometimes being referred
to as piecewise constant models. In effect, the
approximation provided by a regression tree is
given by

Y D
X

l 2 L
kl � I.Pl / (1)

where L is the set of L leaves, the ks are the
constants at each leaf, I./ is an indicator func-
tion, and Pi is a logical assertion formed by the
conjunction of conditions from the root node till
the leaf i . For instance, the rightmost leaf of the
tree in Fig. 1 is described by the logical assertion
x2 � 3:1 ^ x1 � 3:4 ^ x2 � 6:1, which is
equivalent to x1 � 3:4 ^ x2 � 6:1.

Learning a Regression Tree
A binary regression tree is obtained by a very ef-
ficient algorithm known as recursive partitioning
(Algorithm 1).

If the termination criterion is not met by the
input sample D, the algorithm selects the best
logical test on one of the predictor variables
according to some criterion. This test divides the
current sample in two partitions: the one with
the cases satisfying the test and the remaining.
The algorithm proceeds by recursively apply-
ing the same method to these two partitions to
obtain the left and right branches of the node.
Algorithm 1 has three main components that
characterize the type of regression tree we are
obtaining: (i) the termination criterion, (ii) the
constant k, and (iii) the method to find the best
test on one of the predictors. The choices for
these components are related to the preference
criteria that are used to build the trees. The most
common criterion is the minimization of the sum
of the square errors, known as the least squares
(LS) criterion. Using this criterion it can be eas-
ily proven (e.g., Breiman et al. 1984) that the
constant k should be the average target variable
value of the cases in the leaf. With respect to

1082 Regression Trees

Algorithm 1 Recursive partitioning
1: function RECURSIVEPARTITIONING(D)

Input W D, a sample of cases, fhx1
i
; � � � ; x

p

i
; yi ig

Output W t , a tree node

2: if <TERMINATION CRITERION> then
3: Return a leaf node with <CONSTANT K>
4: else
5: t new tree node
6: t:split <FIND THE BEST TEST ON ONE OF THE VARIABLES>
7: t:lef tNode RecursivePartitioning(fx 2D W x � t:splitg)
8: t:rightNode RecursivePartitioning(fx 2D W x ² t:splitg)
9: Return the node t

10: end if
11: end function

the termination criterion, usually very relaxed
settings are selected so that an overly large tree
is grown. The reasoning is that the trees will
be pruned afterward with the goal of overcom-
ing the problem of over-fitting of the training
data.

According to the LS criterion, the error in a
given node is given by

Err.t/ D
1

nt

X
hxi ;yi i2Dt

.yi � kt /
2 (2)

where Dt is the sample of cases in node t , nt is
the cardinality of this set, and kt is the average
target variable value of the cases in Dt .

Any logical test s divides the cases in Dt

in two partitions, DtL and DtR . The resulting
pooled error is given by

Err.t; s/ D
ntL

nt

�Err.tL/C
ntR

nt

�Err.tR/

(3)
where ntL=nt (ntR =nt) is the proportion of cases
going to the left (right) branch of t .

In this context, we can estimate the value of
the split s by the respective error reduction, and
this can be used to evaluate all candidate splits
test for a node:

Δ.s; t/ D Err.t/ �Err.t; s/ (4)

Finding the best split test for a node t in-
volves evaluating all possible tests for this node
using Eq. 4. For each predictor of the problem,

one needs to evaluate all possible splits in that
variable. For continuous variables, this requires
a sorting operation on the values of this variable
occurring in the node. After this sorting, a fast
incremental algorithm can be used to find the best
cut point value for the test (e.g., Torgo 1999).
With respect to nominal variables, Breiman and
colleagues (1984) have proved a theorem that
avoids trying all possible combinations of values,
reducing the computational complexity of this
task from O.2v�1 � 1/ to O.v � 1/, where v

is the number of values of the nominal vari-
able.

Departures from the standard learning pro-
cedure described above include, among others,
the use of multivariate split nodes (e.g., Breiman
et al. 1984, Li et al. 2000, and Gama 2004) to
overcome the axis parallel representation limita-
tion of partitions, the use of different criteria to
find the best split node (e.g., Robnik-Sikonja and
Kononenko 1996, Buja and Lee 2001, and Loh
2002), the use of different preference criteria to
guide the tree growth (e.g., Breiman et al. 1984,
Torgo 1999, Buja and Lee 2001, and Torgo and
Ribeiro 2003), and the use of both regression
and split nodes (e.g., Lubinsky 1995 and Malerba
et al. 2004).

Pruning Regression Trees
As most nonparametric modeling techniques, re-
gression trees may over-fit the training data which
will inevitably lead to poor out of the sample

Regression Trees 1083

R

predictive performance. The standard procedure
to fight this undesirable effect is to grow an overly
large tree and then to use some reliable error
estimation procedure to find the “best” sub-tree
of this large model. This procedure is known as
post-pruning a tree (Breiman et al. 1984). An
alternative is to stop tree growth sooner in a
process known as pre-pruning which again needs
to be guided by reliable error estimation to known
when over-fitting is starting to occur. Although
more efficient in computational terms, this latter
alternative may lead to stop tree growth too soon
even with look-ahead mechanisms.

Post-pruning is usually carried out in a three-
stage procedure: (i) a set of sub-trees of the initial
tree is generated, (ii) some reliable error esti-
mation procedure is used to obtain estimates for
each member of this set, and (iii) some method
based on these estimates is used to select one
of these trees as the final tree model. Different
methods exist for each of these steps. A common
setup (e.g., Breiman et al. 1984) is to use error-
complexity pruning to generate a sequence of
nested sub-trees, whose error is then estimated by
cross validation. The final tree is selected using
the x-SE rule which starts with the lowest esti-
mated error sub-tree and then selects the smallest
tree within the interval of x standard errors of the
lowest estimated error tree (a frequent setting is
to use 1 standard error).

Variations on the subject of pruning regression
trees include, among others, pre-pruning
alternatives (e.g., Breiman and Meisel 1976
and Friedman 1979), the use of different tree error
estimators (see Torgo (1998) for a comparative
study and references to different alternatives),
and the use of the MDL principle to guide
the pruning (Robnik-Sikonja and Kononenko
1998).

Cross-References

�Model Trees
�Random Forests
�Regression
� Supervised Learning

Recommended Reading

Breiman L, Friedman J, Olshen R, Stone C
(1984) Classification and regression trees.
Statistics/probability series. Wadsworth &
Brooks/Cole Advanced Books & Software,
Belmont

Breiman L, Meisel WS (1976) General estimates of the
intrinsic variability of data in nonlinear regression
models. J Am Stat Assoc 71:301–307

Buja A, Lee Y-S (2001) Data mining criteria for tree-
based regression and classification. In: Proceed-
ings of ACM SIGKDD international conference on
knowledge discovery and data mining, San Fran-
cisco, pp 27–36

Friedman JH (1979) A tree-structured approach to
nonparametric multiple regression. In: Gasser T,
Rosenblatt M (eds) Smoothing techniques for curve
estimation. Lecture notes in mathematics, vol 757.
Springer, Berlin/New York, pp 5–22

Gama J (2004) Functional trees. Mach Learn
55(3):219–250

Li KC, Lue H, Chen C (2000) Interactive tree-
structured regression via principal Hessians direc-
tion. J Am Stat Assoc 95:547–560

Loh W (2002) Regression trees with unbiased variable
selection and interaction detection. Stat Sin 12:
361–386

Lubinsky D (1995) Tree structured interpretable re-
gression. In: Proceedings of the workshop on AI &
statistics, Key West

Malerba D, Esposito F, Ceci M, Appice A (2004)
Top-down induction of model trees with regression
and splitting nodes. IEEE Trans Pattern Anal Mach
Intell 26(5):612–625

Morgan JN, Sonquist JA (1963) Problems in the anal-
ysis of survey data, and a proposal. J Am Stat Assoc
58(302):415–434

Robnik-Sikonja M, Kononenko I (1996) Context-
sensitive attribute estimation in regression. In: Pro-
ceedings of the ICML-96 workshop on learning in
context-sensitive domains, Bari

Robnik-Sikonja M, Kononenko I (1998) Pruning re-
gression trees with MDL. In: Proceedings of ECAI-
98, Brighton

Torgo L (1998) Error estimates for pruning regression
trees. In: Nedellec C, Rouveirol C (eds) Proceedings
of the 10th European conference on machine learn-
ing, Chemnitz. LNAI, vol 1398. Springer

Torgo L (1999) Inductive learning of tree-based re-
gression models. PhD thesis, Faculty of Sciences,
Department of Computer Science, University of
Porto

Torgo L, Ribeiro R (2003) Predicting outliers.
In: Lavrac N, Gamberger D, Todorovski L,
Blockeel H (eds) Proceedings of principles of
data mining and knowledge discovery (PKDD’03),
Cavtat/Dubronik. LNAI, vol 2838. Springer,
pp 447–458

http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

1084 Regularization

Regularization

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Regularization plays a key role in many ma-
chine learning algorithms. Exactly fitting a
model to the training data is generally undesir-
able, because it will fit the noise in the training
examples (� overfitting), and is doomed to
predict (generalize) poorly on unseen data. In
contrast, a simple model that fits the training
data well is more likely to capture the reg-
ularities in it and generalize well. A number
of regularizers have been proposed for various
applications, and theoretical tools that charac-
terize their complexity are also available.

Definition

In general, a regularizer a quantifier of the com-
plexity of a model, and many successful machine
learning algorithms fall in the framework of reg-
ularized risk minimization:

.How well the model fits the training data/

(1)

C� � .complexity/regularization of the model/;
(2)

where the positive real number � controls the
trade-off.

There is a variety of regularizers, which yield
different statistical and computational properties.
In general, there is no universally best regularizer,
and a regularization approach must be chosen
depending on the dataset.

Motivation and Background

The main goal of machine learning is to induce a
model from the observed data and use this model
to make predictions and decisions. This is also
largely the goal of general natural science and
is commonly called inverse problems (“forward
problem” means using the model to generate
observations). Therefore, it is no surprise that
regularization had been well studied before the
emergence of machine learning.

Inverse problems are typically ill posed, e.g.,
having only a finite number of samples drawn
from an uncountable space or having a finite
number of measurements in an infinite dimen-
sional space. In machine learning, we often need
to induce a classifier for the whole feature-label
space, while only a finite number of feature-label
pairs are available for training. In practice, the set
of candidate models is often flexible enough to
precisely fit all the training examples. However,
this can lead to significant overfitting when the
training data is noisy, and the real challenge is
how to generalize well on the unseen data in the
whole feature-label space.

Many techniques have been proposed to tackle
ill-posed inverse problems. Almost all of them
introduce an additional measure on how much a
model is preferred a priori (i.e., without observ-
ing the training data). This extra belief on the
desirable form of the model reflects the external
knowledge of the model designer. It cannot be
replaced by the data itself according to the “no
free lunch theorem,” which states that if there
is no assumption on the mechanism of labeling,
then it is impossible to generalize, and any model
can be inferior to another on some distribution of
the feature-label pair (Devroye et al. 1996).

A commonly used prior is the so-called
�Occam’s razor, which prefers “simple” models.
It asserts that among all the models which fit
the training data well, the simplest one is more
likely to capture the “regularities” in it and hence
has a larger chance to generalize well to the
unseen data. Then an immediate question is
how to quantify the complexity of a model,
which is often called a regularizer. Intuitively,
a regularizer can encode preference for a sparse

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_614

Regularization 1085

R

model (few features are relevant for prediction),
a large margin model (two classes have a wide
margin), or a smooth model with weak high-
frequency components. A general framework of
regularization was given by Tikhonov (1943).

Theory

Suppose n feature-label pairs f.xi ; yi /g
n
iD1 are

drawn iid from a certain joint distribution P

on X � Y , where X and Y are the spaces of
feature and label, respectively. Let the marginal
distribution on X and Y be Px and Py respec-
tively. For convenience, let X be R

p (Euclidean
space). Denote X WD .x1; : : : ; xn/ and y WD
.y1; : : : ; yn/>.

An Illustrative Example: Ridge Regression
Ridge regression is illustrative of the use
of regularization. It tries to fit the label y

by a linear model hw; xi (inner product).
So we need to solve a system of linear
equations in w: .x1; : : : ; xn/>w D y, which
is equivalent to a linear least square problem:
minw2Rp

��X>w � y
��2

. If the rank of X is less
than the dimension of w, then it is overdetermined
and the solution is not unique.

To approach this ill-posed problem, one
needs to introduce additional assumptions on
what models are preferred, i.e., the regularizer.
One choice is to pick a matrix Γ and
regularize w by kΓwk2. As a result we solve
minw2Rp

��X>w � y
��2
C �

��Γ>w
��2

, and the
solution has a closed form w� D .XX> C

�ΓΓ>/Xy. Γ can be simply the identity matrix
which encodes our preference for small norm
models.

The use of regularization can also be justified
from a Bayesian point of view. Treating w as a
multivariate random variable and the likelihood
as exp

�
�
��X>w � y

��2
�

, then the minimizer of��X>w � y
��2

is just a maximum likelihood es-
timate of w. However, we may also assume a
prior distribution over w, e.g., a Gaussian prior

p.w/ � exp
�
��

��Γ>w
��2
�

. Then the solution

of the ridge regression is simply the maximum
a posterior estimate of w.

Examples of Regularization
A common approach to regularization is to penal-
ize a model by its complexity measured by some
real-valued function, e.g., a certain “norm” of w.
We list some examples below.

L1 regularization L1 regularizer, kwk1 WDP
i jwi j, is a popular approach to finding sparse

models, i.e., only a few components of w are
nonzero, and only a corresponding small number
of features are relevant to the prediction. A
well-known example is the LASSO algorithm
(Tibshirani 1996), which uses a L1-regularized
least square:

min
w2Rp

��X>w � y
��2
C � kwk1 :

L2 regularization The L2 regularizer, kwk2 WDqP
i jwi j

2, is popular due to its self-dual proper-
ties. In all Lp spaces, only the L2 space is Hilber-
tian and self-adjoint, so it affords much conve-
nience in studying and exploiting the dual proper-
ties of the L2-regularized models. A well-known
example is the support vector machines (SVMs),
which minimize the L2-regularized hinge loss:

1

n

nX
iD1

max f0; 1 � hw; xi ig C � kwk2
2 :

Lp regularization In general, all Lp norms

kwkp WD
�P

i jwi j
p
�1=p

(p � 1) can be used

for regularization. When p < 1,
�P

i jwi j
p
�1=p

is
no longer convex. A specially interesting case is
when p D 0, and kwk0 is defined as the number
of nonzero elements in w (the sparseness of w).
But explicitly optimizing the L0 norm leads to a
combinatorial problem which is hard to solve. In
some cases, the L1 regularizer can approximately
recover the solution of L0 regularization (Candes
and Tao 2005).

Lp;q regularizer The Lp;q regularizer is pop-
ular in the context of multitask learning (Tropp
2006). Suppose there are T tasks, and each train-
ing example xi has a label vector yi 2 R

T

with each component corresponding to a task.

1086 Regularization

For each task t , we seek for a linear regressor
hwt ; xi such that for each training example xi ,
hwt ; xi i fits the t -th component of yi . Of course,
the wt could be determined independently from
each other. But in many applications, the T tasks
are somehow related, and it will be advantageous
to learn them as a whole. Stack wt ’s into a
matrix W WD .w1; : : : ; wT / where each column
corresponds to a task and each row corresponds to
a feature. Then the intuition of multitask learning
can be concretized by regularizing W with the
Lp;q compositional norm (p; q � 1):

kW kp;q WD

0
@X

i

 X
t

jwit j
p

! q
p

1
A

1
q

;

where wit is the i -th component of wt . When
q D 1, it becomes the L1 norm of the Lp norm
of the rows, and the sparse inducing property of
L1 norm encourages the rows to have Lp norm 0,
i.e., the corresponding feature is not used by any
task. Other choices of p and q are also possible.

Entropy regularizer The entropy regularizer is
useful in boosting, and it works in a slightly dif-
ferent way from the above regularizers. Boosting
aims to find a convex combination of hypotheses,
such that the training data is accurately classified
by the ensemble. At each step, the boosting al-
gorithm maintains a distribution d (di > 0 andP

i di D 1) over the training examples, feeds d
to an oracle which returns a new hypothesis, and
then updates d and go on. As a “simple” ensem-
ble means a small number of weak hypotheses,
the boosting algorithm is expected to find an
accurate ensemble by taking as few steps as
possible. This can be achieved by exponentiated
gradient descent (Kivinen and Warmuth 1997),
which stems from the relative entropy regularizerP

i di log di

1=n
applied at each step. It also attracts

d toward the uniform distribution, which helps
avoid overfitting the noise, i.e., trying hard to
match the (incorrect) label of a few training
examples.

Miscellaneous Instead of using a function that
directly measures the complexity of the model w,
regularization can also be achieved by penalizing
the complexity of the output of the model on the
training data. This is called value regularization
(Rifkin and Lippert 2007). It not only yields neat
derivations of standard algorithms but also pro-
vides much convenience in studying the learning
theory and optimization.

Furthermore, the regularized risk minimiza-
tion framework in (1) is not the only approach
to regularization. For example, in online learning
where the model is updated iteratively, early stop-
ping is an effective form of regularization, and it
has been widely used in training neural networks.
Suppose the available dataset is divided into a
training set and a validation set and the model
is learned online from the training set, then the
algorithm terminates when the performance of
the model on the validation set stops improving.

Measuring the Capacity of Model Class
Besides penalizing the complexity of the model,
we can restrict the complexity of the model class
F in the first place. For example linear regression
is intrinsically “simpler” than quadratic regres-
sion. Decision stumps are “simpler” than linear
classifiers. In other words, regularization can be
achieved by restricting the capacity of the model
class, and the key question is how to quantify this
capacity. Some commonly used measures in the
context of binary classification are the following:

VC dimension The Vapnik-Chervonenkis
dimension (�VC dimension) quantifies how
many data points can be arbitrarily labeled
by using the functions in F (Vapnik and
Chervonenkis 1971). F is said to shatter a set
of data points x1; : : : ; xn if, for any assignment
of labels to these points, there exists a function
f 2 F which yields this labeling. The VC
dimension of F is the maximum n such that any
n data points can be shattered by F . For example,
decision stumps have VC dimension 2, and linear
classifiers (with bias) in a p dimensional space
have VC dimension p C 1.

http://dx.doi.org/10.1007/978-1-4899-7687-1_881

Regularization 1087

R

Covering number The idea of covering number
(Guo et al. 1999) is to characterize the inherent
“dimension” of F , in a way that follows the
standard concept of vector dimension. Given n

data points x1; : : : ; xn, we may endow the model
class F with the following metric:

dn.f; g/ WD
1

n

nX
iD1

ı.f .xi / ¤ g.xi //; 8f; g 2 F ;

where ı. � / D 1 if � is true and 0 otherwise. A set
of functions f1; : : : ; fm is said to be a cover of F
at radius � if, for any function f 2 F , there exists
an fi such that dn.f; fi / < �. Then the covering
number of F at radius � > 0 with respect to dn is
the minimum size of a cover of radius �.

To understand the motivation of the definition,
consider the unit ball in R

p . To cover it by � ra-
dius balls, one needs order N.�; p/ D ��p balls.
Then the dimension p can be estimated from
the rate of growth of log N.�; p/ D �p log �

with respect to �. The covering number is an
analogy of N.�; p/, and the dimension of F can
be estimated in the same spirit.

Rademacher average The Rademacher average
is a soft variant of the VC dimension. Instead
of requiring the model class to shatter n data
points, it allows that the labels be violated at
some cost. Let i 2 f�1; 1g be an arbitrary
assignment of the labels, and assume all functions
in F range in f�1; 1g (this restriction can be
relaxed). Then a model f 2 F is considered
as the most consistent with fig if it maximizes
1
n

Pn
iD1 i f .xi /. This term equals 1 if F does

contain a model consistent with fig. Then we
take an average over all possible assignments of
i , i.e., treating i as a binary random variable
with P.i D 1/ D P.i D �1/ D 0:5 and
calculating the expectation over fig:

Rn.F/ D E
�

"
sup
f 2F

1

n

nX
iD1

i f .xi /

#
:

Furthermore, we may take expectation over the
samples x1; : : : ; xn:

R.F/ D E
xi�Px

E
�

"
sup
f 2F

1

n

nX
iD1

i f .xi /

#
:

Therefore, similar to VC dimension, the
Rademacher average is high if the model class
F is “rich” and can match most assignments of
fig.

Applications

In many applications such as bioinformatics, the
training examples are expensive and the number
of features p is much higher than the number of
labeled examples n. In such cases, regularization
is crucial, e.g., Zhang et al. (2008).

L1 regularization has gained much popularity
recently in the field of compressed sensing, and
it has been widely used in imaging for radar,
astronomy, medical diagnosis, and geophysics.
See an ensemble of publications at http://dsp.rice.
edu/cs.

The main spirit of regularization, namely, a
preference for models with lower complexity,
has been used by some �model evaluation tech-
niques. Examples include Akaike information
criterion (AIC), Bayesian information criterion
(BIC), �minimum description length (MDL),
and the minimum message length (MML).

Cross-References

�Minimum Description Length Principle
�Model Evaluation
�Occam’s Razor
�Overfitting
� Support Vector Machines
�VC Dimension

Recommended Reading

Regularization lies at the heart of statistical
machine learning, and it is indispensable in
almost every learning algorithm. A comprehen-
sive statistical analysis from the computational

http://dsp.rice.edu/cs
http://dsp.rice.edu/cs
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_614
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

1088 Regularization Networks

learning theory perspective can be found in
Bousquet et al. (2005) and Vapnik (1998). Abun-
dant resources on compressed sensing including
both theory and applications are available at
http://dsp.rice.edu/cs. Regularizations related to
SVMs and kernel methods are discussed in
detail by Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004). Anthony
and Bartlett (1999) provide in-depth theoretical
analysis for neural networks.

Anthony M, Bartlett PL (1999) Neural network learn-
ing: theoretical foundations. Cambridge University
Press, Cambridge

Bousquet O, Boucheron S, Lugosi G (2005) Theory of
classification: a survey of recent advances. ESAIM:
Probab Stat 9:323–375

Candes E, Tao T (2005) Decoding by linear
programming. IEEE Trans Inf Theory 51(12):
4203–4215

Devroye L, Györfi L, Lugosi G (1996) A probabilistic
theory of pattern recognition. Applications of math-
ematics, vol 31. Springer, New York

Guo Y, Bartlett PL, Shawe-Taylor J, Williamson RC
(1999) Covering numbers for support vector ma-
chines. In: Proceedings annual conference compu-
tational learning theory. Montreal, Canada

Kivinen J, Warmuth MK (1997) Exponentiated gradi-
ent versus gradient descent for linear predictors. Inf
Comput 132(1):1–64

Rifkin RM, Lippert RA (2007) Value regulariza-
tion and Fenchel duality. J Mach Learn Res 8:
441–479

Schölkopf B, Smola A (2002) Learning with kernels.
MIT Press, Cambridge

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge

Tibshirani R (1996) Regression shrinkage and selec-
tion via the LASSO. J R Stat Soc Ser B Stat
Methodol 58:267–288

Tikhonov AN (1943) On the stability of inverse prob-
lems. Dokl Akad Nauk SSSR 39(5):195–198

Tropp JA (2006) Algorithms for simultaneous sparse
approximation, Part II: convex relaxation. Signal
Process 86(3):589C–602

Vapnik V (1998) Statistical learning theory. Wiley,
New York

Vapnik V, Chervonenkis A (1971) On the uniform
convergence of relative frequencies of events to
their probabilities. Theory Probab Appl 16(2):
264–281

Zhang M, Zhang D, Wells MT (2008) Variable se-
lection for large p small n regression models with
incomplete data: mapping Qtl with epistases. BMC
Bioinf 9:251

Regularization Networks

�Radial Basis Function Networks

Reinforcement Learning

Peter Stone
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Abstract

This entry provides an overview of Reinforce-
ment Learning (RL), with cross-references to
specific RL algorithms.

Reinforcement learning describes a large class of
learning problems characteristic of autonomous
agents interacting in an environment: sequential
decision-making problems with delayed reward.
Reinforcement-learning algorithms seek to learn
a policy (mapping from states to actions) that
maximizes the reward received over time.

Unlike in � supervised learning problems, in
reinforcement-learning problems, there are no
labeled examples of correct and incorrect be-
havior. However, unlike � unsupervised learning
problems, a reward signal can be perceived.

Many different algorithms for solving
reinforcement-learning problems are covered
in other entries. This entry provides just a brief
high-level classification of the algorithms.

Perhaps the most well-known approach to
solving reinforcement-learning problems, as
covered in detail by Sutton and Barto (1998),
is based on learning a value function, which
represents the long-term expected reward of each
state the agent may encounter, given a particular
policy. This approach typically assumes that
the environment is a �Markov decision process
in which rewards are discounted over time,
though it is also possible to optimize for average
reward per time step as in � average-reward
reinforcement learning. If a complete model
of the environment is available, � dynamic
programming, or specifically � value iteration,

http://dsp.rice.edu/cs
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410

Reinforcement Learning 1089

R

can be used to compute an optimal value function,
from which an optimal policy can be derived.

If a model is not available, an optimal
value function can be learned from experience
via model-free techniques such as � temporal
difference learning, which combine elements
of dynamic programming with Monte Carlo
estimation. Partly due to Watkins’ elegant proof
that �Q-learning converges to the optimal value
function (Watkins 1989), temporal difference
methods are currently among the most commonly
used approaches for reinforcement-learning
problems.

Watkins’ convergence proof relies on execut-
ing a policy that visits every state infinitely often.
In practice, Q-learning does converge in small,
discrete domains. However in larger and partic-
ularly in continuous domains, the learning algo-
rithm must generalize the value function across
states, a process known as � value function ap-
proximation. Examples include � instance-based
reinforcement learning, �Gaussian process re-
inforcement learning, and � relational reinforce-
ment learning.

Even when combined with value function
approximation, the most basic value-free
methods, such as Q-learning and SARSA, are
very inefficient with respect to experience:
they are not sample-efficient. With the view
that experience is often more costly than
computation, much research has been devoted
to making more efficient use of experience,
for instance, via � hierarchical reinforcement
learning, � reward shaping, or �model-based
reinforcement learning in which the experience
is used to learn a domain model, which can then
be solved via dynamic programming.

Though these methods make efficient use of
the experience that is presented to them, the goal
of optimizing sample efficiency also motivates
the study of � efficient exploration in reinforce-
ment learning. The study of exploration meth-
ods can be isolated from the full reinforcement-
learning problem by removing the notion of tem-
porally delayed reward as is done in � associative
reinforcement learning or by removing the notion
of states altogether as is done in � k-armed ban-
dits. k-Armed bandit algorithms focus entirely

on the exploration versus exploitation challenge,
without having to worry about generalization
across states or delayed rewards. Back in the
context of the full RL problem, �Bayesian re-
inforcement learning enables optimal exploration
given prior distributions over the parameters of
the learning problem. However, its computational
complexity has limited its use so far to very small
domains.

Although most of the methods above revolve
around learning a value function, reinforcement-
learning problems can also be solved without
learning value functions, by directly searching
the space of potential policies via policy search.
Effective ways of conducting such a search in-
clude � policy gradient reinforcement learning,
� least squares reinforcement-learning methods,
and evolutionary reinforcement learning.

As typically formulated, the goal of a
reinforcement-learning algorithm is to learn an
optimal (or high-performing) policy based on
knowledge of, or experience of, a reward function
(and state transition function). However, it is also
possible to take the opposite perspective that
of trying to learn the reward function based on
observation of the optimal policy. This problem
formulation is known as � inverse reinforcement
learning.

Leveraging this large body of theory and
algorithms, a current focus in the field is
deploying large-scale, successful applications of
reinforcement learning. Two such applications
treated herein are � autonomous helicopter
flight using reinforcement learning and � robot
learning.

Cross-References

�Associative Reinforcement Learning
�Autonomous Helicopter Flight Using Rein-

forcement Learning
�Average-Reward Reinforcement Learning
�Bayesian Reinforcement Learning
�Dynamic Programming
�Efficient Exploration in Reinforcement Learn-

ing
�Gaussian Process Reinforcement Learning
�Hierarchical Reinforcement Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_410
http://dx.doi.org/10.1007/978-1-4899-7687-1_109
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_646
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_16
http://dx.doi.org/10.1007/978-1-4899-7687-1_738
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_16
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_109
http://dx.doi.org/10.1007/978-1-4899-7687-1_363

1090 Reinforcement Learning in Structured Domains

� Instance-Based Reinforcement Learning
� Inverse Reinforcement Learning
�Least-Squares Reinforcement Learning Meth-

ods
�Model-Based Reinforcement Learning
� Policy Gradient Methods
�Q-Learning
�Relational Reinforcement Learning
�Reward Shaping
� Symbolic Dynamic Programming
�Temporal Difference Learning
�Value Function Approximation

Recommended Reading

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Watkins CJCH (1989) Learning from delayed rewards.
PhD thesis, King’s College, Cambridge

Reinforcement Learning in
Structured Domains

�Relational Reinforcement Learning

Relational Data Mining

� Inductive Logic Programming

Relational Dynamic Programming

� Symbolic Dynamic Programming

Relational Learning

Jan Struyf1 and Hendrik Blockeel1;2

1Katholieke Universiteit Leuven, Leuven,
Heverlee, Leuven, Belgium
2Leiden Institute of Advanced Computer
Science, Heverlee, Belgium

Problem Definition

Relational learning refers to learning in a context
where there may be relationships between learn-

ing examples, or where these examples may have
a complex internal structure (i.e., consist of mul-
tiple components and there may be relationships
between these components). In other words, the
“relational” may refer to both an internal or exter-
nal relational structure describing the examples.
In fact, there is no essential difference between
these two cases, as it depends on the definition
of an example whether relations are internal or
external to it. Most methods, however, are clearly
set in one of these two contexts.

Learning from Examples with External
Relationships
This setting considers learning from a set of ex-
amples where each example itself has a relatively
simple description, for instance in the attribute-
value format, and relationships may be present
among these examples.

Example 1 Consider the task of web-page clas-
sification. Each web-page is described by a fixed
set of attributes, such as a bag of words repre-
sentation of the page. Web-pages may be related
through hyperlinks, and the class label of a given
page typically depends on the labels of the pages
to which it links.

Example 2 Consider the Internet Movie
Database (www.imdb.com). Each movie is
described by a fixed set of attributes, such as
its title and genre. Movies are related to other
entity types, such as Studio, Director, Producer,
and Actor, each of which is in turn described by
a different set of attributes. Note that two movies
can be related through the other entity types. For
example, they can be made by the same studio or
star the same well-known actor. The learning task
in this domain could be, for instance, predicting
the opening weekend box office receipts of the
movies.

If relationships are present among examples,
then the examples may not be independent and
identically distributed (i.i.d.), an assumption
made by many learning algorithms. Relational
data that violates this assumption can be
detrimental to learning performance as Jensen
and Neville (2002) show. Relationships among

http://dx.doi.org/10.1007/978-1-4899-7687-1_410
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_646
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://www.imdb.com

Relational Learning 1091

R

examples can, on the other hand, also be
exploited by the learning algorithm. �Collective
classification techniques (Jensen et al. 2004),
for example, take the class labels of related
examples into account when classifying a new
instance.

Learning from Examples with a Complex
Internal Structure
In this setting, each example may have a complex
internal structure, but no relationships exist
that relate different examples to one another.
Learning algorithms typically use individual-
centered representations in this setting, such as
logical interpretations or strongly typed terms
(Lloyd 2003), which store together all data of
a given example. An important advantage of
individual-centered representations is that they
scale better to large datasets. Special cases
of this setting include applications where the
examples can be represented as graphs, trees, or
sequences.

Example 3 Consider a database of candidate
chemical compounds to be used in drugs. The
molecular structure of each compound can be
represented as a graph where the vertices are
atoms and the edges are bonds. Each atom is
labeled with its element type and the bonds
can be single, double, triple, or aromatic bonds.
Compounds are classified as active or inactive
with regard to a given disease and the goal
is to build models that are able to distinguish
active from inactive compounds based on
their molecular structure. Such models can,
for instance, be used to gain insight in the
common substructures, such as binding sites,
that determine a compound’s activity.

Approaches to Relational Learning

Many different kinds of learning tasks have been
defined in relational learning, and an even larger
number of approaches have been proposed for
tackling these tasks. We give an overview of
different learning settings that can be considered
instances of relational learning.

Inductive Logic Programming
In � inductive logic programming (ILP), the in-
put and output knowledge of a learner are de-
scribed in (variants of) first-order predicate logic.
Languages based on first-order logic are highly
expressive from the point of view of knowledge
representation, and indeed, a language such as
Prolog (Bratko 1986) can be used without adap-
tations to represent objects and the relationships
between them, as well as background knowledge
that one may have about the domain.

Example 4 This example is based on the work
by Finn et al. (1998). Consider a data set that
describes chemical compounds. The active com-
pounds in the set are ACE inhibitors, which are
used in treatments for hypertension. The molecu-
lar structure of the compounds is represented as a
set of Prolog facts, such as: atom(m1, a1, o).

atom(m1, a2, c).
. . .
bond(m1, a1, a2, 1).
. . .
coord(m1, a1, 5.91, – 2.44, 1.79).
coord(m1, a2, 0.57, – 2.77, 0.33).
. . .

which states that molecule m1 includes an oxy-
gen atom a1 and a carbon atom a2 that are
single bonded. The coord/5 predicate lists the
3D coordinates of the atoms in the given con-
former. Background knowledge, such as the con-
cepts zinc site, hydrogen donor, and the distance
between atoms, are defined by means of Pro-
log clauses. Figure 1 shows a clause learned by
the inductive logic programming system Progol
(Džeroski and Lavraè 2001, Ch. 7) that makes use
of these background knowledge predicates. This
clause is the description of a pharmacophore, that
is, a submolecular structure that causes a certain
observable property of a molecule.

More details on the theory of inductive logic
programming and descriptions of algorithms
can be found in the entry on � Inductive
Logic Programming in this encyclopedia, or in
references (De Raedt 2008; Džeroski and Lavraè
2001).

http://dx.doi.org/10.1007/978-1-4899-7687-1_44
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

1092 Relational Learning

ACE_inhibitor(A) :-
zincsite(A, B),
hacc(A, C),
dist(A, B, C, 7.9, 1.0),
hacc(A, D),
dist(A, B, D, 8.5, 1.0),
dist(A, C, D, 2.1, 1.0),
hacc(A, E),
dist(A, B, E, 4.9, 1.0),
dist(A, C, E, 3.1, 1.0),
dist(A, D, E, 3.8, 1.0).

Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 1.0Å, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 1.0Å, and
the distance between C and D is 2.1 1.0Å, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 1.0Å, and
the distance between C and E is 3.1 1.0Å, and
the distance between D and E is 3.8 1.0Å.

a

b

c

Relational Learning, Fig. 1 (a) Prolog clause model-
ing the concept of an ACE inhibitor in terms of the
background knowledge predicates zincsite/2, hacc/2, and
dist/5. (b) The inductive logic programming system Pro-

gol automatically translates (a) into the “Sternberg En-
glish” rule, which can be easily read by human experts.
(c) A molecule with the active site indicated by the atoms
B, C, D, and E (Image courtesy of Finn et al. 1998)

Learning from Graphs
A graph is a mathematical structure consisting
of a set of nodes V and a set of edges E
V 2

between those nodes. The set of edges is by def-
inition a binary relation defined over the nodes.
Hence, for any learning problem where the re-
lationships between examples can be described
using a single binary relation, the training set can
be represented straightforwardly as a graph. This
setting covers a wide range of relational learning
tasks, for example, web mining (the set of links
between pages is a binary relation), social net-
work analysis, etc. Non-binary relationships can
be represented as hypergraphs; in a hypergraph,
edges are defined as subsets of V of arbitrary size,
rather than elements of V 2.

In graph-based learning systems, there is a
clear distinction between approaches that learn
from examples with external relationships, where
the whole data set is represented as a single graph
and each node is an example, and individual-
centered approaches, where each example by

itself is a graph. In the first kind of approaches,
the goal is often to predict properties of existing
nodes or edges, to predict the existence or non-
existence of edges (“link discovery”), to predict
whether two nodes actually refer to the same
object (“node identification”), detection of sub-
graphs that frequently occur in the graph, etc.
When learning from multiple graphs, a typical
goal is to learn a model for classifying the graphs,
to find frequent substructures (where frequency
is defined as the number of graphs a subgraphs
occurs in), etc.

Compared to other methods for relational
learning, graph-based methods typically focus
more on the structure of the graph, and less on
properties of single nodes. They may take node
and edge labels into account, but typically do
not allow for more elaborate information to be
associated with each node.

�Graph mining methods are often more
efficient than other relational mining methods
because they avoid certain kinds of overhead,

http://dx.doi.org/10.1007/978-1-4899-7687-1_350

Relational Learning 1093

R

but are typically still NP-complete, as they
generally rely on subgraph isomorphism testing.
Nevertheless, researchers have been able to
significantly improve efficiency or even avoid
NP-completeness by looking only for linear or
tree-shaped patterns, or by restricting the graphs
analyzed to a relatively broad subclass. As an
example, Horváth et al. (2006) show that a large
majority of molecules belong to the class of
outerplanar graphs, and propose an efficient
algorithm for subgraph isomorphism testing in
this class.

More information about mining graph data
can be found in the � graph mining entry in this
encyclopedia, or in Cook and Holder (2007) and
Washio and Motoda (2003).

Multi-relational Data Mining
Multi-relational data mining approaches rela-
tional learning from the relational database point
of view. The term “multi-relational” refers to
the fact that from the database perspective, one
learns from information spread over multiple
tables or relations, as opposed to � attribute-value
learning, where one learns from a single table.

Multi-relational data mining systems tightly
integrate with relational databases. Mainly rule
and decision tree learners have been developed
in this setting. Because practical relational
databases may be huge, most of these systems
pay much attention to efficiency and scalability,
and use techniques such as sampling and pre-
computation (e.g., materializing views). An
example of a scalable and efficient multi-
relational rule learning system is CrossMine (Yin
et al. 2006).

An alternative approach to relational learning
and multi-relational data mining is � proposi-
tionalization. Propositionalization consists of
automatically converting the relational represen-
tation into an attribute-value representation and
then using attribute-value data mining algorithms
on the resulting representation. An important line
of research within multi-relational data mining
investigates how database approaches can be
used to this end. Database oriented proposition-
alization creates a view in which each example
is represented by precisely one row. Information

from related entities is incorporated into this
row by adding derived attributes, computed by
means of aggregation. In the movie database
(Example 2), the view representing movies could
include aggregated attributes such as the number
of actors starring in the movie. A comparison of
propositionalization approaches is presented by
Krogel et al. (2003), and a discussion of them is
also included in this volume.

Finally, note that most inductive logic
programming systems are directly applicable
to multi-relational data mining by representing
each relational table as a predicate. This is
possible because the relational representation is
essentially a subset of first-order logic (known as
datalog). Much research on multi-relational data
mining was developed within the ILP community
(Džeroski and Lavraè 2001).

Statistical Relational
Learning/Probabilistic Logic Learning
Research on relational learning, especially in the
beginning, has largely focused on how to handle
the relational structure of the data, and ignored
aspects such as uncertainty. Indeed, the databases
handled in multi-relational data mining, or the
knowledge assumed given in inductive logic pro-
gramming, are typically assumed to be deter-
ministic. With the rise of probabilistic repre-
sentations and algorithms within machine learn-
ing has come an increased interest in enabling
relational learners to cope with uncertainty in
the input data. This goal has been approached
from at least two different directions: statistical
learning approaches have been extended toward
the relational setting, giving rise to the area of
� statistical relational learning, whereas inductive
logic programming researchers have investigated
how to extend their knowledge representation
and learning algorithms to cater for probabilis-
tic information, referring to this research area
as probabilistic logic learning. While there are
some differences in terminology and approaches,
both research areas essentially address the same
research question, namely how to integrate rela-
tional and probabilistic learning.

Among the best known approaches for statis-
tical relational learning is the learning of prob-

http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_786

1094 Relational Learning

abilistic relational models (PRMs, Džeroski and
Lavraè 2001, Chap. 13). PRMs extend Bayesian
networks to the relational representation used in
relational databases. PRMs model the joint prob-
ability distribution over the non-key attributes in
a relational database schema. Similar to Bayesian
networks, PRMs are � graphical models. Each
attribute corresponds to a node and direct de-
pendencies are modeled by directed edges. Such
edges can connect attributes from different en-
tity types that are (indirectly) related (such a
relationship is called a “slot chain”). Inference
in PRMs occurs by constructing a �Bayesian
network by instantiating the PRM with the data in
the database and performing the inference in the
latter. To handle 1:N relationships in the Bayesian
network, PRMs make use of aggregation, similar
to the propositionalization techniques mentioned
above.

Bayesian logic programs (BLPs) (Kersting
2006) aim at combining the inference power of
Bayesian networks with that of first-order logic
reasoning. Similar to PRMs, the semantics of a
BLP is defined by translating it to a Bayesian
network. Using this network, the probability of
a given interpretation or the probability that a
given query yields a particular answer can be
computed.

The acyclicity requirement of Bayesian
networks carries over to representations such as
PRMs and BLPs. Markov logic networks (MLNs)
(Richardson and Domingos 2006) upgrade
�Markov networks to first-order logic and allow
networks with cycles. MLNs are defined as sets
of weighted first-order logic formulas. These
are viewed as “soft” constraints on logical
interpretations: the fewer formulas a given
interpretation violates, the higher its probability.
The weight determines the contribution of a
given formula: the higher its weight, the greater
the difference in log probability between an
interpretation that satisfies the formula and
one that does not, other things being equal.
The Alchemy system implements structure and
parameter learning for MLNs.

More specific statistical learning techniques
such as Naı̈ve Bayes and Hidden Markov Mod-
els have also been upgraded to the relational

setting. More information about such algorithms
and about statistical relational learning in general
can be found in Getoor and Taskar (2007) and
Kersting (2006).

In probabilistic logic learning, two types of se-
mantics are distinguished (De Raedt and Kersting
2003): the model theoretic semantics and the
proof theoretic semantics. Approaches that are
based on the model theoretic semantics define a
probability distribution over interpretations and
extend probabilistic attribute-value techniques,
such as Bayesian networks and Markov networks,
while proof theoretic semantics approaches de-
fine a probability distribution over proofs and
upgrade, e.g., stochastic context free grammars.

Example 5 Consider the case where each exam-
ple is a sentence in natural language. In this ex-
ample, a model theoretic approach would define a
probability distribution directly over sentences. A
proof theoretic approach would define a probabil-
ity distribution over “proofs,” in this case possible
parse trees of the sentence (each sentence may
have several possible parses). Note that the proof
theoretic view is more general in the sense that
the distribution over sentences can be computed
from the distribution over proofs.

Stochastic logic programs (SLPs) (Muggleton
1996) follow most closely the proof theoretic
view and upgrade stochastic context free gram-
mars to first-order logic. SLPs are logic programs
with probabilities attached to the clauses such
that the probabilities of clauses with the same
head sum to 1.0. The probability of a proof is
then computed as the product of the probabilities
of the clauses that are used in the proof. PRISM
(Sato and Kameya 1997) follows a related ap-
proach where the probabilities are defined on
ground facts.

Like with standard graphical models, learning
algorithms may include both parameter learning
(estimating the probabilities) and structure learn-
ing (learning the program). For most frameworks
mentioned above, such techniques have been or
are being developed.

For a more detailed treatment of statistical re-
lational learning and probabilistic logic learning,
we refer to the entry on statistical relational learn-

http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_515

Relational Learning 1095

R

ing in this volume, and to several reference works
(De Raedt and Kersting 2003; Getoor and Taskar
2007; Kersting 2006; De Raedt et al. 2008).

Relational Reinforcement Learning

Relational reinforcement learning (RRL)
(Džeroski et al. 2001; Tadepalli et al. 2004)
is reinforcement learning upgraded to the
relational setting. Reinforcement learning is
concerned with how an agent should act in a
given environment to maximize its accumulated
reward. In RRL, both the state of the environment
and the actions are represented using a relational
representation, typically in the form of a logic
program.

Much research in RRL focuses on Q-learning,
which represents the knowledge of the agent
by means of a Q-function mapping state–action
pairs to real values. During exploration, the agent
selects in each state the action that is ranked
highest by the Q-function. The Q-function is
typically represented using a relational regression
technique. Several techniques, such as relational
regression trees, relational instance based learn-
ing, and relational kernel based regression have
been considered in this context. Note that the
regression algorithms must be able to learn in-
crementally: each time the agent receives a new
reward, the Q-function must be incrementally
updated for the episode (sequence of state-action
pairs) that led to the reward. Due to the use of
relational regression techniques, the agent is able
to generalize over states: it will perform similar
actions in similar states and therefore scales bet-
ter to large application domains.

More recent topics in RRL include how expert
knowledge can be provided to the agent in the
form of guidance, and how learned knowledge
can be transferred to related domains (“transfer
learning”). More details on these techniques and
more specific information on the topic of rela-
tional reinforcement learning can be found in its
corresponding encyclopedia entry and in the re-
lated entry on � symbolic dynamic programming,
as well as in references Džeroski et al. (2001) and
Tadepalli et al. (2004).

Cross-References

� Inductive Logic Programming
�Multi-relational Data Mining
�Relational Reinforcement Learning

Recommended Reading

Most of the topics covered in this entry have more
detailed entries in this encyclopedia, namely “In-
ductive Logic Programming,” “Graph Mining,”
“Relational Data Mining,” and “Relational Re-
inforcement Learning.” These entries provide a
brief introduction to these more specific topics
and appropriate references for further reading.
Direct relevant references to the literature include
the following. A comprehensive introduction to
ILP can be found in De Raedt’s book (De Raedt
2008) on logical and relational learning, or in the
collection edited by Džeroski and Lavraè (2001)
on relational data mining. Learning from graphs
is covered by Cook and Holder (2007). Džeroski
and Lavraè (2001) is also a good starting point
for reading about multi-relational data mining,
together with research papers on multi-relational
data mining systems, for instance, Yin et al.
(2006), who present a detailed description of the
CrossMine system. Statistical relational learning
in general is covered in the collection edited
by Getoor and Taskar (2007), while De Raedt
and Kersting (2003) and De Raedt et al. (2008)
present overviews of approaches originating in
logic-based learning. An overview of relational
reinforcement learning can be found in Tadepalli
et al. (2004).

Bratko I (2000) Prolog programming for artificial in-
telligence, 3rd edn. Addison-Wesley, Reading

Cook DJ, Holder LB (2007) Mining graph data. Wiley,
Hoboken

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

De Raedt L, Kersting K (2003) Probabilistic logic
learning. SIGKDD Explor 5(1):31–48

De Raedt L, Frasconi P, Kersting K, Muggleton S
(2008) Probabilistic inductive logic programming.
Springer, Berlin

Džeroski S, De Raedt L, Driessens K (2001) Relational
reinforcement learning. Mach Learn 43:7–52

Džeroski S, Lavraè N (eds) (2001) Relational data
mining. Springer, Berlin

http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_726

1096 Relational Regression Tree

Finn P, Muggleton S, Page D, Srinivasan A (1998)
Pharmacophore discovery using the inductive
logic programming system PROGOL. Mach Learn
30:241–270

Getoor L, Taskar B (2007) Introduction to statistical
relational learning. MIT Press, Cambridge

Horváth T, Ramon J, Wrobel S (2006) Frequent sub-
graph mining in outerplanar graphs. In: Proceedings
of the 12th ACM SIGKDD international conference
on knowledge discovery and data mining. ACM,
New York, pp 197–206

Jensen D, Neville J (2002) Linkage and autocorrelation
cause feature selection bias in relational learning.
In: Proceeding of the 19th international conference
on machine learning, University of New South
Wales, Sydney. Morgan Kaufmann, San Francisco,
pp 259–266

Jensen D, Neville J, Gallagher B (2004) Why col-
lective inference improves relational classification.
In: Proceedings of the 10th ACM SIGKDD in-
ternational conference on knowledge discovery
and data mining, Philadelphia. ACM, New York,
pp 593–598

Kersting K (2006) An inductive logic programming
approach to statistical relational learning. IOS Press,
Amsterdam

Krogel M-A, Rawles S, Železný F, Flach P, Lavraè
N, Wrobel S (2003) Comparative evaluation of
approaches to propositionalization. In: Proceedings
of the 13th international conference on induc-
tive logic programming, Szeged. Springer, Berlin,
pp 194–217

Lloyd JW (2003) Logic for learning. Springer, Berlin
Muggleton S (1996) Stochastic logic programs. In: De

Raedt L (ed) Advances in inductive logic program-
ming. IOS Press, Amsterdam, pp 254–264

Richardson M, Domingos P (2006) Markov logic net-
works. Mach Learn 62(1–2):107–136

Sato T, Kameya Y (1997) PRISM: a symbolic-
statistical modeling language. In: Proceedings of the
15th international joint conference on artificial in-
telligence (IJCAI 97), Nagoya. Morgan Kaufmann,
San Francisco, pp 1330–1335

Tadepalli P, Givan R, Driessens K (2004) Relational
reinforcement learning: an overview. In: Proceeding
of the ICML’04 workshop on relational reinforce-
ment learning, Banff, pp 1–9

Washio T, Motoda H (2003) State of the art of graph-
based data mining. SIGKDD Explor 5(1):59–68

Yin X, Han J, Yang J, Yu PS (2006) Efficient classi-
fication across multiple database relations: a Cross-
Mine approach. IEEE Trans Knowl Data Eng 18(6):
770–783

Relational Regression Tree

� First-Order Regression Tree

Relational Reinforcement Learning

Kurt Driessens
Maastricht University, Maastricht, The
Netherlands

Synonyms

Learning in worlds with objects; Reinforcement
learning in structured domains

Definition

Relational reinforcement learning is concerned
with learning behavior or control policies based
on a numerical feedback signal, much like stan-
dard reinforcement learning, in complex domains
where states (and actions) are largely charac-
terized by the presence of objects, their prop-
erties, and the existing relations between those
objects. Relational reinforcement learning uses
approaches similar to those used for standard
reinforcement learning, but extends these with
methods that can abstract over specific object
identities and exploit the structural information
available in the environment.

Motivation and Background

�Reinforcement learning is a very attractive ma-
chine learning framework, as it tackles, in a
sense, the whole artificial intelligence problem at
a small scale: an agent acts in an unknown envi-
ronment and has to learn how to behave optimally
by reinforcement, i.e., through rewards and pun-
ishment. Reinforcement learning has produced
some impressive and promising results. However,
the applicability of reinforcement learning has
been greatly limited by its difficulty in dealing
with large problem spaces and its inability to
generalize the learned knowledge to new but
related problem domains.

http://dx.doi.org/10.1007/978-1-4899-7687-1_314
http://dx.doi.org/10.1007/978-1-4899-7687-1_100258
http://dx.doi.org/10.1007/978-1-4899-7687-1_100404
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Relational Reinforcement Learning 1097

R

Relational
Reinforcement Learning,
Fig. 1 Structure of the
RRL system

While standard reinforcement learning meth-
ods represent the learning environment as a set of
unrelated states or, when using � attribute-value
representations, as a vector space consisting of a
fixed number of independent dimensions, humans
tend to think about their environment in terms
of objects, their properties, and the relations be-
tween them. Examples of objects in everyday
life are chairs, people, streets, trees, etc. This
representation allows people to treat or use most
of the new objects that they encounter correctly,
without requiring training time to learn (again)
how to use them. For example, people are able to
drink their coffee from any cup that will hold it,
even if they have never encountered that specific
cup before, because they already have experience
with drinking their coffee from other cup-type
objects. Standard reinforcement learning agents
do not have this ability. Their state and action rep-
resentations do not allow them to abstract away
from specific object identities and recognize them
as a type of object they are already accustomed to.

Relational reinforcement learning tries to
overcome this problem by representing states
of the learning agent’s environment as sets of
objects, their properties, and the relationships
between them, similar to the approaches used
in � relational learning and � inductive logic
programming. These structural representations
make it possible for the relational reinforcement
learning agent to abstract away from specific
identities of objects and often also from the
amount of objects present, the exact learning
environment, or even the specific task to be
performed.

The term “relational reinforcement learning”
was introduced by Džeroski et al. (1998) when
they first teamed the Q-learning algorithm with
a first-order regression algorithm. From then on,
relational reinforcement learning gained a large
amount of interest.

Structure of the Learning System

In principle, the structure of a relational
reinforcement learning system is very similar to
that of standard reinforcement learning systems
(Fig. 1). At a high level, the learning agent
interacts with an environment by performing
actions that influence that environment, and
the environment provides the learning agent
with a description of its current state and a
numerical feedback of the performance of the
agent. The goal of the agent is to maximize some
cumulative form of this feedback signal. The
major difference between standard reinforcement
learning and relational reinforcement learning
is the representation of the state–action–space.
Relational reinforcement learning works on
�Markov decision processes where states and
actions have been relationally factored, so-called
relational Markov decision processes (RMDPs).

An RMDP can be defined as follows:

Definition 1 (Relational Markov Decision Pro-
cess) Let PS be a set of state-related predicates,
PA a set of action-related predicates, and C a
set of constants in a logic Λ. Let B be a theory
defined in that logic.

An RMDP is defined as < S; A; T; R >,
where S � fs � H PS[C js ˆ Bg represents
the set of states; A � fa � H PA[C ja ˆ Bg
represents the set of actions, in which H X is the
set of facts that can be constructed given the sym-
bols in X ; and T and R represent the transition
probabilities and reward function, respectively:
T W S � A � S ! Œ0; 1	 and R W S ! R.

In less formal language, this means that the
states and actions in an RMDP are represented
using a set of constants C and a set of predicates
PS and PA, respectively, and constrained by a
background theory B. This means that the back-
ground theory B defines which states are possible

http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

1098 Relational Reinforcement Learning

move(BlockA ,BlockB), height(BlockB,HB),height(BlockC,HC), HC > HB

non-optimal optimal

yes no

Relational Reinforcement Learning, Fig. 2 Example state–action pairs in the blocks world

in the domain and which actions can be executed
in which states.

The following example illustrates these con-
cepts. Consider the blocks world depicted in
Fig. 2. To represent this environment in first-order
logic, one could use:

• State-related predicates: PS D fon/2, clear/1g
• Action-related predicate: PA D fmove/2g
• Constants: C D f1,2,3,4,floorg

The set of facts H PS[C would then include, for
example, on.1; 2/, on.4; f loor/, and clear.2/

but also on.3; 3/ and on. f loor; 2/. To constrain
the possible states to those that actually make
sense in a standard, i.e., real-world view of the
blocks world, the theory B can include rules
to make states that include these kinds of facts
impossible. For example, to make sure that a
block cannot be on top of itself, B could include
the following constraint:

false on.X; X/:

One can also include more extensive rules to
define the exact physics of the blocks world that
one is interested in. For example, by including

false on.Y; X/; on.Z; X/; X ¤ f loor;

Y ¤ Z

as part of the theory B, one can exclude states
where two blocks are on top of the same block.
The action space given by H PA[C consists of
facts such as move.3; 2/ and move. f loor; 1/

and can be constrained by rules such as

false move. f loor; X/;

which makes sure that the floor cannot be placed
on top of a block.

The leftmost state–action pair of Fig. 2 can
be fully specified by the following set of facts
(state description on the left, action on the right):

on(2,floor). clear(3).
on(1,2). clear(4).
on(3,1). clear(floor).
on(4,floor). move(3,floor).

One can easily generalize over specific states
and create abstract states (or state–action pairs)
that represent sets of states (or state–action pairs)
by using variables instead of constants and by
listing only those parts of states and actions that
hold for each element of the abstract state (or
state–action pair). For example, the abstract state
“on.1; 2/; on.2; f loor/” represents all states in
which block 1 is on top of block 2, which in
turn is on the floor. The abstract state does not
specify the locations of any other blocks. Of the
three states depicted in Fig. 2, the set of states
represented by the abstract state would include
the left and middle states. Abstract states can also
be represented by using variables when one does
not want to specify the location of any specific
block, but wants to focus on structural aspects of
the states and actions. The abstract state–action
pair “move.X; Y /; on.Y; f loor/” represents all
state–action pairs where a block is moved on top
of another block that is on the floor, for example,
the middle and right state–action pairs of Fig. 2.

Benefits of Relational Reinforcement
Learning
We already stated that the real world is made of
interacting objects or at least that humans often
think about the real world as such. Relational re-
inforcement learning allows this same representa-
tion to be used by reinforcement learning agents,
which in turn leads to more human-interpretable
learning results.

Relational Reinforcement Learning 1099

R

Reward

Environment

State

Action

Examples

Relational
Policy

Learning

Relational

Algorithm
Learning

Relational Reinforcement
Learning Agent

Relational Reinforcement Learning, Fig. 3 Simple relational policy for stacking any number of blocks

As a consequence of the used logical or rela-
tional representation of states and actions, the re-
sults learned by a relational reinforcement learn-
ing agent can be reused more easily when some
of the parameters of the learning task change.
Because relational reinforcement learning algo-
rithms try to solve the problem at hand at an
abstract level, the solutions will often carry over
to different instantiations of that abstract prob-
lem. For example, the resulting policies learned
by the RRL system (Driessens 2004) discussed
below, a very simple example of which is shown
in Fig. 3, often generalize over domains with a
varying number of objects. If only actions which
lead to the optimal leaf are executed, the shown
policy tree will organize any number of blocks
into a single stack.

As another example of this, the relational
approximate policy iteration approach, also dis-
cussed below, is able to learn task-specific control
knowledge from random walks in the environ-
ment. By treating the resulting state of such a
random walk as a goal state and generalizing
over the specifics of that goal (and the rest of
the random walk), relational approximate pol-
icy iteration can learn domain-specific, but goal-
independent, policies. This generalization of the
policy is accomplished by parameterization of

the goal and focusing on the relations between
objects in the goal, states, and actions when
representing the learned policy.

Another practical benefit of relational rein-
forcement learning lies in the field of inductive
transfer. Transfer learning is concerned with the
added benefits of having experience with a re-
lated task when being confronted with a new
one. Because of the structural representation of
learned results, the transfer of knowledge learned
by relational reinforcement learning agents can
be accomplished by recycling those parts of the
results that still hold valid information for the
new task. Depending on the relation between
the two tasks, this can yield substantial benefits
concerning the required training experience.

The use of first-order logic as a represen-
tational language in relational reinforcement
learning also allows the integration of reasoning
methods with traditional reinforcement learning
approaches. One example of this is � symbolic
dynamic programming, which uses logical
regression to compute necessary preconditions
that allow an agent to reach certain goals. This
same integration allows the use of search or
planning knowledge as background information
to extend the normal description of states and
actions.

http://dx.doi.org/10.1007/978-1-4899-7687-1_806

1100 Relational Reinforcement Learning

Example Relational Reinforcement
Learning Approaches

Relational Q-Learning
Relational reinforcement learning was introduced
with the development of the RRL system
(Džeroski et al. 1998). This is a Q-learning
system that employs a relational regression
algorithm to generalize the Q-table used by
standard Q-learning algorithms into a Q-function.
The differences with a standard Q-learning agent
are mostly located inside the learning agent. One
important difference is the agent’s representation
of the current state. In relational reinforcement
learning, this representation contains structural
or relational information about the environment.

Inside the learning agent, the information con-
sisting of encountered states, chosen actions, and
the associated rewards is translated into learning
examples. These examples are then processed by
a relational learning system that produces a rela-
tional Q-function and/or policy as a result. The
relational representation of the Q-function allows
the RRL system to use the structural properties
of states and actions when assigning a Q-value to
them.

Several relational regression approaches have
been developed and applied in this context. While
the original approach used an off-the-shelf re-
lational regression algorithm that processed the
learning examples in batch and had to be restarted
to be able to process newly available learning
experiences, a number of incremental algorithms
have been developed for use in relational rein-
forcement learning since then. These include an
incremental first-order regression tree algorithm,
incremental relational instance-based regression,
kernel-based regression that uses Gaussian pro-
cesses, and graph kernels and algorithms that
include combinations of the above (Driessens
2004).

It is possible to translate the learned Q-func-
tion approximations into a function that directly
represents its policy. Using the values predicted
by the learned Q-function, one can generate
learning examples that represent state–action
pairs and label them as either part of the
learned policy or not. This results in a binary

classification problem that can be handled by
a supervised relational learning algorithm such
as TILDE (Blockeel and De Raedt 1998), as
used to produce first-order decision tree policies
in the original work. This technique is known
as P-learning. It exhibits better generalization
performance across related learning problems
than the Q-learning approach described above.
Other than the aforementioned first-order
decision trees, rule-based learners have also been
applied to this kind of policy learning.

Nonparametric Policy Gradients
Nonparametric policy gradients (Kersting and
Driessens 2008), also a model-free approach,
apply Friedmann’s gradient boosting (Friedman
2001) in an otherwise standard policy gradient
approach for reinforcement learning. To avoid
having to represent policies using a fixed num-
ber of parameters, policies are represented as a
weighted sum of regression models grown in a
stage-wise optimization. (This allows the number
of parameters to grow as the experience of the
learner increases, hence the name nonparamet-
ric.) While this does not make nonparametric
policy gradients a technique specifically designed
for relational reinforcement learning, it allows,
like the relational Q-learning approach described
above, the use of relational regression models and
is not constrained to the attribute-value setting of
standard policy gradients.

The idea behind the approach is that instead
of finding a single, highly accurate policy, it is
easier to find many rough rules of thumb of how
to change the way the agent currently acts. The
learned policy is represented as

�.s; a/ D
eΨ.s;a/P
b eΨ.s;b/

;

where instead of assuming a linear parameteriza-
tion for Ψ as is done in standard policy gradients,
it is assumed that Ψ will be represented by a
linear combination of functions. Specifically, one
starts with some initial function Ψ0, e.g., based on
the zero potential, and iteratively adds corrections
Ψm D Ψ0 C Δ1 C � � � C Δm. In contrast to the
standard gradient approach, Δm here denotes the

Relational Reinforcement Learning 1101

R

so-called functional gradient, which is sampled
during interaction with the environment and then
generalized by an off-the-shelf regression algo-
rithm.

The advantages of policy gradients over value-
function techniques are that they can learn non-
deterministic policies and that convergence of
the learning process can be guaranteed, even
when using function approximation (Sutton et al.
2000). Experimental results show that nonpara-
metric policy gradients have the potential to sig-
nificantly outperform relational Q-learning (Ker-
sting and Driessens 2008).

Relational Approximate Policy Iteration
A different approach, which also directly learns
a policy, is taken in relational approximate policy
iteration (Fern et al. 2006). Like standard policy
iteration (Sutton and Barto 1998), the approach
iteratively improves its policy through interleav-
ing evaluation and improvement steps. In contrast
to standard policy iteration, it uses a policy lan-
guage bias and a generalizing policy function.

Instead of building a value-function approxi-
mation for each policy evaluation step, relational
approximate policy iteration evaluates the current
policy and its closely related neighbors by sam-
pling the state–action–space through a technique
called policy rollout. This technique generates a
set of trajectories from a given state, by executing
every possible action in that state and following
the current policy for a number of steps afterward.
(It is also possible to improve convergence speed
by following the next policy.) These trajectories
and their associated costs result in a number of
learning examples – one for each possible action
in each selected state – that can be used, together
with the policy language bias to generate the next,
improved policy.

Because every possible action in each sam-
pled state needs to be evaluated, this approach
does require a model or a resettable simulator
of the environment. However, relational approx-
imate policy iteration has been shown to work
well for learning domain-specific control knowl-
edge and performs very well on planning compe-
tition problems.

Relational Cross Entropy Policy Search
The most recent addition to direct relational pol-
icy search uses the cross entropy method to eval-
uate, select, expand, and combine those pieces of
a modular policy that lead to high-performance
behavior (Sarjant et al. 2014). The policy pieces
are singular condition-action rules. The rules are
constructed and adapted automatically using a
partial model of the environment inferred from
interactions with that environment. The model
defines the minimal conditions needed to take
an action, the possible specialization conditions
per rule, and a set of simplification rules to re-
move redundant and illegal rule conditions. Rule
construction and specialization follow a prin-
cipled approach toward exploration of the rule
space by beginning with the relative least general
generalization (RLGG) rules and then exploring
incremental specializations of interesting rules.

The cross entropy method (CEM) (Rubinstein
1997) is used to find these interesting rules.
CEM tunes the selection probabilities of the rules
according to the performance of policies that they
participate in. Rules with high selection proba-
bilities also become candidates for specialization,
possibly giving rise to even better rules.

The resulting systems can learn behavior that
is competitive to specialized approaches on com-
plex tasks, while the built-in simplification of
the rules and CEM bias toward compact policies
result in comprehensive and effective relational
policies.

Symbolic Dynamic Programming
In contrast to the previous techniques, � symbolic
dynamic programming (SDP) does not learn a
policy through exploration of the environment.
Instead, it is a model-based approach that
uses knowledge about preconditions and
consequences of actions to compute the fastest
way to reach a given goal. Like other dynamic
programming techniques, SDP starts from the
goal the agent wants to reach and reasons
backward to find the policy that is needed to
reach that goal. In contrast to other dynamic
programming techniques, it does not solve
specific instantiations of the problem domain, but
instead solves the problem at an abstract level,

http://dx.doi.org/10.1007/978-1-4899-7687-1_806

1102 Relational Reinforcement Learning

thereby solving it for all possible instantiations
of the problem at once.

SDP treats the required goal conditions as an
abstract state definition. Because pre- and post-
conditions of actions are known, SDP can com-
pute the necessary conditions that allow actions
to reach the abstract goal state. These conditions
define abstract states from which it is possible to
reach a goal state in one step. Starting from these
abstract states, the same approach can be used to
discover abstract states that allow the goal to be
reached in two steps and so on.

This approach was first proposed by Boutilier
et al. (2001), implemented as a working system
by Kersting et al. (2004), and later improved
upon by Sanner and Boutilier (2005). This last
approach won second place in the probabilistic
programming competition at ICAPS in 2006.

Cross-References

�Hierarchical Reinforcement Learning
� Inductive Logic Programming
�Model-Based Reinforcement Learning
� Policy Search
�Q-Learning
�Reinforcement Learning
�Relational Learning
� Symbolic Dynamic Programming
�Temporal Difference Learning

Further Information

The field of relational reinforcement learning has
given rise to a number of PhD dissertations in the
last few years (Croonenborghs 2009; Driessens
2004; van Otterlo 2008; Sanner 2008). The dis-
sertation of Martijn van Otterlo resulted in a book
(van Otterlo 2009) which provides a recent and
reasonably complete overview of the relational
reinforcement learning research field. Other pub-
lications that present an overview of relational
reinforcement learning research include the pro-
ceedings of the two workshops on representa-
tional issues in (relational) reinforcement learn-
ing at the International Conferences on Machine

Learning in 2004 and 2005 (Driessens et al. 2005;
Tadepalli et al. 2004).

Recommended Reading

Blockeel H, De Raedt L (1998) Top-down induction of
first order logical decision trees. Artif Intell 101(1–
2):285–297

Boutilier C, Reiter R, Price B (2001) Symbolic dy-
namic programming for first-order MDPs. In: Pro-
ceedings of the 17th international joint confer-
ence on artificial intelligence (IJCAI-2001), Seattle,
pp 690–700

Croonenborghs T (2009) Model-assisted approaches
for relational reinforcement learning. Ph.D. thesis,
Department of Compute Science, Katholieke Uni-
versiteit Leuven

Driessens K (2004) Relational reinforcement learn-
ing. Ph.D. thesis, Department of Computer Science,
Katholieke Universiteit Leuven

Driessens K, Fern A, van Otterlo M (eds) (2005)
Proceedings of ICML-2005 workshop on rich rep-
resentation for reinforcement learning, Bonn

Džeroski S, De Raedt L, Blockeel H (1998) Rela-
tional reinforcement learning. In: Proceedings of the
15th international conference on machine learning
(ICML-1998), San Francisco. Morgan Kaufmann,
Madison, pp 136–143

Džeroski S, De Raedt L, Driessens K (2001) Relational
reinforcement learning. Mach Learn 43:7–52

Fern A, Yoon S, Givan R (2006) Approximate policy
iteration with a policy language bias: solving rela-
tional Markov decision processes. J Artif Intell Res
25:85–118

Friedman J (2001) Greedy function approximation: a
gradient boosting machine. Ann Stat 29:1189–1232

Kersting K, Driessens K (2008) Non-parametric pol-
icy gradients: a unified treatment of propositional
and relational domains. In: McAllum A, Roweis S
(eds) Proceedings of the 25th international confer-
ence on machine learning (ICML 2008), Helsinki,
pp 456–463

Kersting K, van Otterlo M, De Raedt L (2004) Bell-
man goes relational. In: Proceedings of the twenty-
first international conference on machine learning
(ICML-2004), Banff, pp 465–472

Rubinstein RY (1997) Optimization of computer sim-
ulation models with rare events. Eur J Oper Res
99(1):89–112

Sanner S (2008) First-order decision-theoretic plan-
ning in structured relational environments. Ph.D.
thesis, Department of Compute Science, University
of Toronto

Sanner S, Boutilier C (2005) Approximate linear pro-
gramming for first-order MDPs. In: Proceedings of
the 21st conference on Uncertainty in AI (UAI),
Edinburgh

http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

Reservoir Computing 1103

R

Sarjant S (2013) Policy search based relational rein-
forcement learning using the cross-entropy method.
Ph.D. thesis, Department of Computer Science, Uni-
versity of Waikato

Sarjant S, Pfahringer B, Driessens K, Smith T (2014)
A Direct Policy-Search Algorithm for Relational
Reinforcement Learning. In: Proceedings of the
25th international conference on inductive logic
programming (ILP 2013), Rio de Janeiro, pp 76–92

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Sutton RS, McAllester D, Singh S, Mansour Y (2000)
Policy gradient methods for reinforcement learning
with function approximation. In: Advances in neural
information processing systems, vol 12. MIT, Cam-
bridge, pp 1057–1063

Tadepalli P, Givan R, Driessens K (eds) (2004) Pro-
ceedings of the ICML-2004 workshop on relational
reinforcement learning, Banff

van Otterlo M (2008) The logic of adaptive learning.
Ph.D. thesis, Centre for Telematics and Information
Technology, University of Twente

van Otterlo M (2009) The logic of adaptive behavior:
knowledge representation and algorithms for adap-
tive sequential decision making under uncertainty
in first-order and relational domains. IOS Press,
Amsterdam

Relational Value Iteration

� Symbolic Dynamic Programming

Relationship Extraction

�Link Prediction

Relevance Feedback

Relevance feedback provides a measure of the
extent to which the results of a search match
the expectations of the user who initiated the
query. Explicit feedback require users to assess
relevance by choosing one out of a number of
choices, or to rank documents to reflect their
perceived degree of relevance. Implicit feedback
is obtained by monitoring user’s behavior such
as time spent browsing a document, amount of
scrolling performed while browsing a document,

number of times a document is visited, etc. Rel-
evance feedback is one the techniques used to
support query reformulation and turn the search
into an iterative and interactive process.

Cross-References

� Search Engines: Applications of ML

Representation Language

�Hypothesis Language

Reservoir Computing

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Echo state network; Liquid state machine

Definition

Reservoir computing is an approach to sequential
processing where recurrency is separated from
the output mapping (Jaeger 2003; Maass et al.
2002). The input sequence activates neurons in
a recurrent neural network (a reservoir, where
activity propagates as in a liquid). The recurrent
network is large, nonlinear, randomly connected,
and fixed. A linear output network receives acti-
vation from the recurrent network and generates
the output of the entire machine. The idea is
that if the recurrent network is large and com-
plex enough, the desired outputs can likely be
learned as linear transformations of its activation.
Moreover, because the output transformation is
linear, it is fast to train. Reservoir computing
has been successful in particular in speech and
language processing and vision and cognitive
neuroscience.

http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_486
http://dx.doi.org/10.1007/978-1-4899-7687-1_750
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_100130
http://dx.doi.org/10.1007/978-1-4899-7687-1_100269

1104 Resubstitution Estimate

Recommended Reading

Jaeger H (2003) Adaptive nonlinear system identifica-
tion with echo state networks. In: Becker S, Thrun
S, Obermayer K (eds) Advances in neural informa-
tion processing systems, vol 15. MIT, Cambridge,
pp 593–600

Maass W, Natschlaeger T, Markram H (2002) Real-
time computing without stable states: a new frame-
work for neural computation based on perturbations.
Neural Comput 14:2531–2560

Resubstitution Estimate

Resubstitution estimates are estimates that are
derived by applying a model to the � training
data from which it was learned. For example,
resubstitution error is the error of a model on the
training data.

Cross-References

�Model Evaluation

Reward

In most Markov decision process applications,
the decision-maker receives a reward each pe-
riod. This reward can depend on the current state,
the action taken, and the next state and is denoted
by rt .s; a; s0/.

Reward Selection

�Reward Shaping

Reward Shaping

Eric Wiewiora
University of California, Sydney, NSW,
Australia

Synonyms

Heuristic rewards; Reward selection

Definition

Reward shaping is a technique inspired by an-
imal training where supplemental rewards are
provided to make a problem easier to learn. There
is usually an obvious natural reward for any
problem. For games, this is usually a win or
loss. For financial problems, the reward is usu-
ally profit. Reward shaping augments the natural
reward signal by adding additional rewards for
making progress toward a good solution.

Motivation and Background

Reward shaping is a method for engineering a
reward function in order to provide more frequent
feedback on appropriate behaviors. It is most
often discussed in the � reinforcement learning
framework. Providing feedback is crucial during
early learning so that promising behaviors are
tried early. This is necessary in large domains,
where reinforcement signals may be few and far
between.

A good example of such a problem is chess.
The objective of chess is to win a match, and
an appropriate reinforcement signal should be
based on this. If an agent were to learn chess
without prior knowledge, it would have to search
for a great deal of time before stumbling onto a
winning strategy. We can speed up this process
by rewarding the agent more frequently. One
possibility is to reward the learner for capturing
enemy pieces, and punish the learner for losing
pieces. This new reward creates a much richer
learning environment, but also runs the risk of
distracting the agent from the true goal (winning
the game).

Another domain where feedback is extremely
important is in robotics and other real-world
applications. In the real world, learning requires
a large amount of interaction time, and may be
quite expensive. Mataric noted that in order to
mitigate “thrashing” (repeatedly trying ineffec-
tive actions) rewards should be supplied as often
as possible (Mataric 1994).

If a problem is inherently described by sparse
rewards, it may be difficult to change the re-

http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_100197
http://dx.doi.org/10.1007/978-1-4899-7687-1_100413
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Reward Shaping 1105

R

ward structure without disrupting progress to the
original goal. The behavior that is optimal with
a richer reward function may be quite different
from the intended behavior, even if relatively
small shaping rewards are added. A classic ex-
ample of this is found in Randlov and Alstrom
(1998). While training an agent to control a bicy-
cle simulation, they rewarded an agent whenever
it moved toward a target destination. In response
to this reward, the agent learned to ride in a tight
circle, receiving reward whenever it moved in the
direction of the goal.

Theory

We assume a reinforcement learning framework.
For every time step t , the learner observes state st ,
takes action at , and receives reward rt . The goal
of reinforcement learning is to find a policy �.s/

that produces actions that optimize some long-
term measurement of reward. We define the value
function for every state as the expected infinite
horizon discounted reward

V.s/ D max
	

E

"
1X

tD0

� t rt js0 D s; at D �.st /

#
;

where � is the discount rate. A reinforcement
learner’s goal is to learn a good estimate of V (s/,
and to use this estimate to choose a good policy.

A natural reward source should be fairly obvi-
ous from the problem at hand. Financial problems
should use net monetary gain or loss as reward.
Games and goal-directed problems should reward
winning the game or reaching the goal. It is usu-
ally advantageous to augment this natural reward
with a shaping reward ft . We define the aug-
mented value function V 0 for the reinforcement
learning problem with shaping rewards

V 0.s/ D max
	 0

E

	 1X
tD0

� t .rt C ft /js0

D s; at D � 0.st /

:

Ideally, the policy that optimizes the augmented
value function will differ much from the previous
optimal policy.

Constructing an appropriate shaping reward
system is inherently a problem-dependent task,
though a line of research aids in the imple-
mentation of these reward signals. Potential-
based shaping provides a formal framework
for translating imperfect knowledge of the
relative value of states and actions into a shaping
reward.

Potential-Based Shaping

Ng et al. proposed a method for adding shaping
rewards in a way that guarantees the optimal
policy maintains its optimality (Ng et al. 1999).
They define a potential function Φ() over the
states. The shaping reward f for transitioning
from state s to s0 is defined as the discounted
change in this state potential:

f .s; s0/ D �Φ.s0/ �Φ.s/:

This potential-based shaping reward is added to
the natural reward for every state transition the
learner experiences. Call the augmented reward
r 0t D rt C f .st , stC1/, and the value function
based on this reward V 0.s/. The potential-based
shaping concept can also be applied to actions
as well as states. See Wiewiora et al. (2003) for
details.

It can be shown that the augmented value
function is closely related to the original:

V 0.s/ D V.s/ �Φ.s/:

An obvious choice for the potential function
is Φ.s/ 	 V.s/, making V 0() close to zero.
This intuition is strengthened by results presented
by Wiewiora (2003). This paper shows that for
most reinforcement learning systems, the poten-
tial function acts as an initial estimate of the
natural value function V ().

1106 Robot Learning

However, even if the potential function used
for shaping is very close to the true natural value
function, learning may still be difficult. Koenig
et al. have shown that initial estimates of the
value function have a large influence on the
efficiency of reinforcement learning (Koenig and
Simmons 1996). With an initial estimate of the
value function set below the optimal value, many
reinforcement learning algorithms could require
learning time exponential in the state and action
space in order to find a highly rewarding state. On
the other hand, in nonrandom environments, an
optimistic initialization the value function creates
learning time that is polynomial in the state-
action space before a goal is found.

Cross-References

�Reinforcement Learning

Recommended Reading

Koenig S, Simmons RG (1996) The effect of rep-
resentation and knowledge on goal directed ex-
ploration with reinforcement-learning algorithms.
Mach Learn 22(1–3):227–250

Mataric MJ (1994) Reward functions for accelerated
learning. In: International conference on machine
learning, New Brunswick. Morgan Kaufmann, San
Francisco, pp 181–189

Ng AY, Harada D, Russell S (1999) Policy invari-
ance under reward transformations: theory and ap-
plication to reward shaping. In: Machine learn-
ing, proceedings of the sixteenth international con-
ference, Bled. Morgan Kaufmann, San Francisco,
pp 278–287

Randlov J, Alstrom P (1998) Learning to drive a bi-
cycle using reinforcement learning and shaping. In:
Proceedings of the fifteenth international conference
on machine learning, Madison. Morgan Kaufmann,
San Francisco

Wiewiora E (2003) Potential-based shaping and Q-
value initialization are equivalent. J Artif Intell Res
19: 205–208

Wiewiora E, Cottrell G, Elkan C (2003) Principled
methods for advising reinforcement learning agents.
In: Machine learning, proceedings of the twen-
tieth international conference, Washington, DC.
AAAI Press, Menlo Park, pp 792–799

Robot Learning

Jan Peters1;2;3, Russ Tedrake4, Nick Roy4, and
Jun Morimoto5

1Max Planck Institute for Biological
Cybernetics, Tübingen, Germany
2Intelligent Autonomous Systems, Computer
Science Department, Technische Universität
Darmstadt, Darmstadt, Hessen, Germany
3Department of Empirical Inference,
Max-Planck Institute for Intelligent Systems,
Tübingen, Germany
4Massachusetts Institute of Technology,
Cambridge, MA, USA
5Advanced Telecommunication Research
Institute International (ATR), Kyoto, Japan

Definition

�Robot learning consists of a multitude of
machine learning approaches, particularly
� reinforcement learning, � inverse reinforce-
ment learning, and � regression methods, that
have been adapted sufficiently to domain so that
they allow learning in complex robot systems
such as helicopters, flapping-wing flight, legged
robots, anthropomorphic arms, and humanoid
robots. While classical artificial intelligence-
based robotics approaches have often attempted
to manually generate a set of rules and models
that allows the robot systems to sense and act in
the real world, � robot learning centers around
the idea that it is unlikely that we can foresee
all interesting real-world situations sufficiently
accurate. Hence, the field of � robot learning
assumes that future robots need to be able to
adapt to the real world, and domain-appropriate
machine learning might offer the most approach
in this direction.

Robot Learning Systems

As learning has found many backdoor entrances
to robotics, this section can only scratch the
surface. However, robot learning has clearly been

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_738
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_738
http://dx.doi.org/10.1007/978-1-4899-7687-1_738

Robot Learning 1107

R

successful in several areas: (i) model learning, (ii)
imitation and apprenticeship learning, and (iii)
reinforcement learning as well as in various other
topics.

Model Learning
Model learning is the machine learning counter-
part to classical system identification (Farrell and
Polycarpou 2006; Schaal et al. 2002). However,
while the classical approaches heavily rely on
the structure of physically based models, speci-
fication of the relevant state variables, and hand-
tuned approximations of unknown nonlinearities,
model learning approaches avoid many of these
labor-intensive steps and the entire process to
be more easily automated. Machine learning and
system identification approaches often assume an
observable state of the system to estimate the
mapping from inputs to outputs of the system.
However, a learning system is often able to learn
this mapping including the statistics needed to
cope with unidentified state variables and can
hence cope with a larger class of systems. Two
types of models are commonly learned, i.e., for-
ward and inverse models.

Forward models predict the behavior of the
system based either on the current state or a
history of preceding observations. They can be
viewed as “learned simulators” that may be used
for optimizing a policy or for predicting future
information. Examples of the application of such
learned simulators range from the early work in
the late 1980s by Atkeson and Schaal in robot
arm-based cart pole swing-ups to Ng’s recent
extensions for stabilizing an inverted helicopter.
Most forward models can directly be learned by
� regression.

Conversely, inverse models attempt to predict
the input to a system in order to achieve a desired
output in the next step, i.e., it uses the model
of the system to directly generate control sig-
nals. In traditional control, these are often called
approximation-based control systems (Farrell and
Polycarpou 2006). Inverse model learning can
be straightforwardly by � regression when the
system dynamics can be inverted uniquely, e.g.,

as in inverse dynamic learning for a fully actuated
system. However, for underactuated or redun-
dantly actuated systems (Tedrake 2009), opera-
tional space control (Peters and Schaal 2008a),
etc., such unique inverses do not exist and addi-
tional optimization is needed.

Imitation and Apprenticeship Learning
A key problem in robotics is to ease the problem
of programming a complex behavior. Traditional
robot programming approaches rely on accurate,
manual modeling of the task and removal of all
uncertainties so that they work well. In contrast
to classical robot programming, learning from
demonstration approaches aims at recovering the
instructions directly from a human demonstra-
tion. Numerous unsolved problems exist in this
context such as discovering the intent of the
teacher or determining the mapping from the
teacher’s kinematics to the robot’s kinematics
(often called the correspondence problem). Two
different approaches are common in this area,
i.e., direct imitation learning and apprenticeship
learning.

In imitation learning (Schaal et al. 2003),
also known as � behavioral cloning, the robot
system directly estimates a policy from a teachers
presentation, and, subsequently, the robot sys-
tem reproduces the task using this policy. A
key advantage of this approach is that it can
often learn a task successfully from few demon-
strations. In areas where human demonstrations
are straightforward to obtain, e.g., for learning
racket sports, manipulation, drumming on an-
thropomorphic systems, direct imitation learning
often proved to be an appropriate approach. Its
major shortcomings are that it cannot explain
why the derived policy is a good one, and it
may struggle with learning from noisy demon-
strations.

Hence, apprenticeship learning (Coates et al.
2009) has been proposed as an alternative where
a reward function is used as explanation of the
teachers’ behavior. Here, the reward function is
chosen under which the teacher appears to act
optimally, and the optimal policy for this reward

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_69

1108 Robot Learning

function is subsequently computed as a solution.
This approach transforms the problem of learning
from demonstrations onto the harder problem
of approximate optimal control or reinforcement
learning; hence it is also known as inverse opti-
mal control or � inverse reinforcement learning.
As a result, it is limited to problems that can be
solved by current reinforcement learning meth-
ods. Additionally, it often has a hard time dealing
with tasks where only few demonstrations with
low variance exist. Hence, inverse reinforcement
learning has been particularly successful in areas
where it is hard for a human to demonstrate the
desired behavior such as for helicopter acrobatics
or in robot locomotion.

Further information on learning by demonstra-
tion may be found in Coates et al. (2009) and
Schaal et al. (2003).

Robot Reinforcement Learning
The ability to self-improve with respect to an
arbitrary reward function, i.e., � reinforcement
learning, is essential for robot systems to become
more autonomous. Here, the system learns about
its policy by interacting with its environment
and receiving scores (i.e., rewards or costs) for
the quality of its performance. Unlike supervised
learning approaches used in model learning or
imitation learning, reinforcement learning can
still be considered to be in its infancy. Few off-
the-shelf reinforcement learning methods scale
into the domain of robotics both in terms of
dimensionality and the number of trials needed to
obtain an interesting behavior. Three different but
overlapping styles of reinforcement learning can
be found in robotics, i.e., model-based reinforce-
ment learning, � value function approximation
methods, and direct � policy search.

Model-based reinforcement learning relies
upon a learned forward model used for
simulation-based optimization as discussed
before. While often highly efficient, it frequently
suffers from the fact that learned models are
imperfect, and hence, the optimization method
can be guaranteed to be biased by the errors in the
model. To date, a full Bayesian treatment of the
model uncertainty appears to be a promising way

for alleviating this shortcoming of this otherwise
powerful approach.

Value function approximation methods have
been the core approach used in reinforcement
learning during the 1990s. These techniques rely
upon approximating the expected rewards for
every possible action in every visited state. Sub-
sequently, the controller chooses the actions in
accordance to this value. Such approximation re-
quires a globally consistent value function where
the quality of the policy is determined by the
largest error of the value function at any possible
state. As a result, these methods have been prob-
lematic for anthropomorphic robotics as the high-
dimensional domains often defy learning such
a global construct. However, it has been highly
successful in low-dimensional domains such as
mobile vehicle control and robot soccer, as well
as on well-understood test domains such as cart-
pole systems.

Unlike the previous two approaches, policy
search attempts to directly learn the optimal pol-
icy from experience without solving intermediary
learning problems. Policies often have signifi-
cantly fewer parameters than models or value
functions. For example, for balancing a ball on
a plate (where the plate is mounted on a robot
end effector) optimally with respect to a quadratic
reward function, the number of policy parameters
grows linearly in the number state dimensions,
while it grows quadratically for both model and
value function for this analytically tractable prob-
lem (in general cases, the number of parameters
of value functions grows exponentially in the
number of states which is known as the “curse
of dimensionality”). This insight has given rise
to policy search methods, particularly, � policy
gradient methods and probabilistic approaches
to policy search such as the reward-weighted
regression or PoWER. To date, application results
of direct policy search approaches range from
gait optimization in locomotion to various mo-
tor learning examples (e.g., Kendama, T-Ball, or
throwing darts).

Further information on reinforcement learning
for robotics may be found in Tedrake et al.
(2004), Peters and Schaal (2008b), and Ried-
miller et al. (2009).

http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_646

ROC Analysis 1109

R

Application Domains

The possible application domains for robot learn-
ing have not been fully explored, one could even
aggressively state that we have barely started to
bring learning into robotics. Nevertheless, robot
learning has been successful in several applica-
tion domains.

For accurate execution of desired trajectories,
model learning has scaled to learning the full
inverse dynamics for a humanoid robot in real
time more accurately than achievable with physi-
cal models. Current work focusses mainly on im-
proving the concurrent execution of tasks as well
as control of redundant or underactuated systems.

Various approaches have been successful
in task learning. Learning by demonstration
approaches is moving increasingly toward
industrial grade solutions where fast training
of complex tasks becomes possible. Skills
ranging from motor toys, e.g., basic movements,
paddling a ball, etc., to complex tasks such as
cooking a complete meal, basic table tennis
strokes, helicopter acrobatics, or foot placement
in locomotion have been learned from human
teachers. Reinforcement learning has yielded
better gaits in locomotion, jumping behaviors
for legged robots, perching with fixed wing
flight robots, forehands in table tennis, as well
as various applications to learning of motor toys.

Cross-References

�Behavioral Cloning
� Inverse Reinforcement Learning
� Policy Search
�Reinforcement Learning
�Value Function Approximation

Recommended Reading

Coates A, Abbeel P, Ng AY (2009) Apprenticeship
learning for helicopter control. Commun ACM
52(7):97–105

Farrell JA, Polycarpou MM (2006) Adaptive approx-
imation based control. Adaptive and learning sys-
tems for signal processing, communications and
control series. Wiley, Hoboken

Peters J, Schaal S (2008a) Learning to control in
operational space. Int J Robot Res 27:197–212

Peters J, Schaal S (2008b) Reinforcement learning
of motor skills with policy gradients. Neural Netw
21(4):682–697

Riedmiller M, Gabel T, Hafner R, Lange S (2009) Re-
inforcement learning for robot soccer. Auton Robot
27(1):55–73

Schaal S, Atkeson CG, Vijayakumar S (2002) Scalable
techniques from nonparameteric statistics for real-
time robot learning. Appl Intell 17(1):49–60

Schaal S, Ijspeert A, Billard A (2003) Computational
approaches to motor learning by imitation. Philos
Trans R Soc Lond: Ser B Biol Sci 358(1431):
537–547

Tedrake R (2009) Underactuated robotics: learning,
planning, and control for efficient and agile ma-
chines. Course notes for MIT 6.832, MIT 32-380,
Cambridge

Tedrake R, Zhang TW, Seung HS (2004) Stochastic
policy gradient reinforcement learning on a simple
3d biped. In: Proceedings of the IEEE interna-
tional conference on intelligent robots and systems
(IROS), Sendai, pp 2849–2854

ROC Analysis

Peter A. Flach
Department of Computer Science, University of
Bristol, Bristol, UK

Synonyms

Receiver operating characteristic analysis

Definition

ROC analysis investigates and employs the rela-
tionship between � sensitivity and � specificity
of a binary classifier. Sensitivity or � true pos-
itive rate measures the proportion of positives
correctly classified; specificity or � true negative
rate measures the proportion of negatives cor-
rectly classified. Conventionally, the true positive
rate tpr is plotted against the � false positive
rate fpr, which is one minus true negative rate.
If a classifier outputs a score proportional to
its belief that an instance belongs to the posi-
tive class, decreasing the � decision threshold –
above which an instance is deemed to belong
to the positive class – will increase both true

http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100396
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://dx.doi.org/10.1007/978-1-4899-7687-1_853
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_203

1110 ROC Analysis

0
0

10

20

30

40

50

T
P

 R
at

e 60

70

80

90

100

10 20 30 40 50

FP Rate

60 70 80 90 100

Class Score
+ 0.98
+ 0.93
+ 0.87
+ 0.84
– 0.79
+ 0.73
+ 0.67
– 0.62
+ 0.57
– 0.54
– 0.48
+ 0.43
– 0.37
+ 0.34
– 0.28
– 0.24
+ 0.18
– 0.12
– 0.09
– 0.03

ROC Analysis, Fig. 1 The table on the left gives the
scores assigned by a classifier to 10 positive and 10
negative examples. Each threshold on the classifier’s score
results in particular true and false positive rates, e.g.,
thresholding the score at 0:5 results in three misclassified
positives (tpr D 0:7) and three misclassified negatives

(fpr D 0:3); thresholding at 0:65 yields tpr D 0:6 and
fpr D 0:1. Considering all possible thresholds gives the
ROC curve on the right; this curve can also be constructed
without explicit reference to scores, by going down the
examples sorted on decreasing score and making a step up
(to the right) if the example is positive (negative)

and false positive rates. Varying the decision
threshold from its maximal to its minimal value
results in a piecewise linear curve from .0; 0/ to
.1; 1/, such that each segment has a nonnegative
slope (Fig. 1). This ROC curve is the main tool
used in ROC analysis. It can be used to address
a range of problems, including: (1) determining
a decision threshold that minimizes � error rate
or misclassification cost under given class and
cost distributions; (2) identifying regions where
one classifier outperforms another; (3) identify-
ing regions where a classifier performs worse
than chance; (4) obtaining calibrated estimates of
the class posterior.

Motivation and Background

ROC analysis has its origins in signal detection
theory (Egan 1975). In its simplest form, a de-
tection problem involves determining the value

of a binary signal contaminated with random
noise. In the absence of any other information,
the most sensible decision threshold would be
halfway between the two signal values. If the
noise distribution is zero centered and symmetric,
sensitivity and specificity at this threshold have
the same expected value, which means that the
corresponding operating point on the ROC curve
is located at the intersection with the descending
diagonal tpr C fpr D 1. However, we may wish
to choose different operating points, for instance,
because false negatives and false positives have
different costs. In that case, we need to estimate
the noise distribution.

A slight reformulation of the signal detec-
tion scenario clarifies its relevance in a machine
learning setting. Instead of superimposing ran-
dom noise on a deterministic signal, we can
view the resulting noisy signal as coming from a
�mixture distribution consisting of two compo-

http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_100304

ROC Analysis 1111

R

–4 –3 –2 –1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Score

 R
el

at
iv

e
F

re
qu

en
cy

, P
ro

ba
bi

lit
y

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate
T

P
 r

at
e

Raw scores ROC curve
Histogram ROC curve
Theoretical ROC curve

ROC Analysis, Fig. 2 (left) Artificial classifier “scores”
for two classes were obtained by sampling 25 points each
from two �Gaussian distributions with mean 0 and 2 and
unit variance. The figure shows the raw scores on the
x-axis and normalized histograms obtained by uniform

five-bin discretization (right) The jagged ROC curve was
obtained by thresholding the raw scores as before. The
histogram gives rise to a smoothed ROC curve with only
five segments. The dotted line is the theoretical curve
obtained from the true Gaussian distributions

nent distributions with different means. The de-
tection problem is now to decide, given a received
value, from which component distribution it was
drawn. This is essentially what happens in a
binary � classification scenario, where the scores
assigned by a trained classifier follow a mixture
distribution with one component for each class.
The random variations in the data are translated
by the classifier into random variations in the
scores, and the classifier’s performance depends
on how well the per-class score distributions
are separated. Figure 2 illustrates this for both
discrete and continuous distributions. In practice,
empirical ROC curves and distributions obtained
from a test set are discrete because of the finite
resolution supplied by the test set. This resolution
is further reduced if the classifier only assigns
a limited number of different scores, as is the
case with � decision trees; the histogram example
illustrates this.

Solutions

For convenience, we will assume henceforth that
score distributions are discrete and that deci-
sion thresholds always fall between actual scores

(the results easily generalize to continuous dis-
tributions using probability density functions).
There is a useful duality between thresholds and
scores: decision thresholds correspond to op-
erating points connecting two segments in the
ROC curve, and actual scores correspond to seg-
ments of the ROC curve connecting two oper-
ating points. Let f .sjC/ and f .sj�/ denote the
relative frequency of positive (negative) examples
from a test set being assigned score s. (Note
that s itself may be an estimate of the likelihood
p.xjC/ of observing a positive example with
feature vector x. We will return to this later.)

Properties of ROC Curves
The first property of note is that the true (false)
positive rate achieved at a certain decision thresh-
old t is the proportion of the positive (negative)
score distribution to the right of the threshold;
that is, tpr.t/ D

P
s>t f .sjC/ and fpr.t/ DP

s>t f .sj�/. In Fig. 2, setting the threshold at 1
using the discretized scores gives a true positive
rate of 0:72 and a false positive rate of 0:08, as
can be seen by summing the bars of the histogram
to the right of the threshold. Although the ROC

http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

1112 ROC Analysis

curve does not display thresholds or scores, this
allows us to reconstruct the range of thresholds
yielding a particular operating point from the
score distributions.

If we connect two distinct operating points on
an ROC curve by a straight line, the slope of
that line segment is equal to the ratio of positives
to negatives in the corresponding score interval;
that is,

slope.t1; t2/ D
tpr.t2/ � tpr.t1/

fpr.t2/ � fpr.t1/

D

P
t1<s<t2

f .sjC/P
t1<s<t2

f .sj�/

Choosing the score interval small enough to cover
a single segment of the ROC curve corresponding
to score s, it follows that the segment has slope
f .sjC/=f .sj�/. This can be verified in Fig. 2, e.g.,
the top-right segment of the smoothed curve has
slope 0 because the leftmost bin of the histogram
contains only negative examples. For continuous
distributions, the slope of the ROC curve at any
operating point is equal to the ratio of probability
densities at that score.

It can happen that slope.t1; t2/ < slope.t1; t3/ <

slope.t2; t3/ for t1 < t2 < t3, which means
that the ROC curve has a “dent” or concavity.
This is inevitable when using raw classifier
scores (unless the positives and negatives are
perfectly separated), but can also be observed
in the smoothed curve in the example: the
rightmost bin of the histogram has a positive-
to-negative ratio of 5, while the next bin has
a ratio of 13. Consequently, the two leftmost
segments of the ROC curve display a slight
concavity. What this means is that performance
can be improved by combining those two bins,
leading to one large segment with slope 9. In
other words, ROC curve concavities demonstrate
locally suboptimal behavior of a classifier. An
extreme case of suboptimal behavior occurs if
the entire curve is concave or at least below the
ascending diagonal: in that case, performance
can simply be improved by assigning all test
instances the same score, resulting in an ROC

curve that follows the ascending diagonal. A
convex ROC curve is one without concavities.

The AUC Statistic
The most important statistic associated with ROC
curves is the area under (ROC) curve or AUC.
Since the curve is located in the unit square, we
have 0 � AUC � 1. AUC D 1 is achieved
if the classifier scores every positive higher than
every negative; AUC D 0 is achieved if every
negative is scored higher than every positive.
AUC D 1=2 is obtained in a range of different
scenarios, including: (i) the classifier assigns the
same score to all test examples, whether positive
or negative, and thus the ROC curve is the ascend-
ing diagonal; (ii) the per-class score distributions
are similar, which results in an ROC curve close
(but not identical) to the ascending diagonal; and
(iii) the classifier gives half of a particular class
the highest scores and the other half the lowest
scores. Notice that, although a classifier with
AUC close to one half is often said to perform
randomly, there is nothing random in the third
classifier: rather, its excellent performance on
some of the examples is counterbalanced by its
very poor performance on some others (Some-
times a linear rescaling 2 �AUC�1 called the Gini
coefficient is preferred, which has a related use in
the assessment of income or wealth distributions
using Lorenz curves: a Gini coefficient close to 0
means that income is approximately evenly dis-
tributed. Notice that this Gini coefficient is often
called the Gini index, but should not be confused
with the impurity measure used in � decision tree
learning).

AUC has a very useful statistical interpreta-
tion: it is the expectation that a (uniformly) ran-
domly drawn positive receives a higher score than
a randomly drawn negative. It is a normalized
version of the Wilcoxon-Mann-Whitney sum of
ranks test, which tests the null hypothesis that two
samples of ordinal measurements are drawn from
a single distribution. The “sum of ranks” epithet
refers to one method to compute this statistic,
which is to assign each test example an integer
rank according to decreasing score (the highest-
scoring example gets rank 1, the next gets rank
2, etc.); sum up the ranks of the n� negatives,

http://dx.doi.org/10.1007/978-1-4899-7687-1_66

ROC Analysis 1113

R

which we want to be high; and subtract
Pn�

iD1 i D

n�.n� C 1/=2 to achieve 0 if all negatives are
ranked first. The AUC statistic is then obtained
by normalizing by the number of pairs of one
positive and one negative, nCn�. There are sev-
eral other ways to calculate AUC, for instance,
we can calculate, for each negative, how many
positives precede it, which basically is a column-
wise calculation and yields an alternative view
of AUC as the expected true positive rate if the
operating point is chosen just before a randomly
drawn negative.

Identifying Optimal Points and the ROC
Convex Hull
In order to select an operating point on an ROC
curve, we first need to specify the objective func-
tion we aim to optimize. In the simplest case, this
will be � accuracy, the proportion of correctly
predicted examples. Denoting the proportion of
positives by pos, we can express accuracy as a
weighted average of the true positive and true

negative rates pos � tpr C .1 � pos/.1 � fpr/. It
follows that points with the same accuracy lie on
a straight line with slope a D .1 � pos/=pos;
these parallel lines are the isometrics for accuracy
(Peter 2003). In order to find the optimal operat-
ing point for a given class distribution, we can
start with an accuracy isometric through .0; 1/

and slide it down until it touches the ROC curve
in one or more points (Fig. 3 (left)). In the case
of a single point, this uniquely determines the
operating point and thus the threshold. If there are
several points in common between the accuracy
isometric and the ROC curve, we can make an
arbitrary choice or interpolate stochastically. We
can read off the achieved accuracy by intersecting
the accuracy isometric with the descending diag-
onal, on which tpr D 1 � fpr, and therefore the
true positive rate at the intersection point is equal
to the accuracy associated with the isometric.

We can generalize this approach to any ob-
jective function that is a linear combination of
true and false positive rates. For instance, let
predicting class i for an instance of class j

0
0

10

20

30

40

50

T
P

 R
at

e 60

70

80

90

100

10 20 30 40 50

FP Rate

60 70 80 90 100

A

B

0
0

10

20

30

40

50

T
P

 R
at

e 60

70

80

90

100

10 20 30 40 50

FP Rate

60 70 80 90 100

ROC Analysis, Fig. 3 (left) The slope of accuracy iso-
metrics reflects the class ratio. Isometric A has slope 1/2:
this corresponds to having twice as many positives as
negatives, meaning that an increase in true positive rate
of x is worth a 2x increase in false positive rate. This
selects two optimal points on the ROC curve. Isometric
B corresponds to a uniform class distribution and selects
optimal points which make fewer positive predictions. In

either case, the achieved accuracy can be read off on the
y-axis after intersecting the isometric with the descending
diagonal (slightly higher for points selected by A). (right)
The convex hull selects those points on an ROC curve
which are optimal under some class distribution. The slope
of each segment of the convex hull gives the class ratio
under which the two end points of the segment yield equal
accuracy. All points under the convex hull are non-optimal

http://dx.doi.org/10.1007/978-1-4899-7687-1_3

1114 ROC Analysis

incur cost cost.i jj /, so, for instance, the cost
of a false positive is cost.Cj�/ (profits for cor-
rect predictions are modeled as negative costs,
e.g., cost.CjC/ < 0). Cost isometrics then have
slope

cost.Cj�/ � cost.�j�/

cost.�jC/ � cost.CjC/

Nonuniform class distributions are simply taken
into account by multiplying the class and cost
ratio, giving a single skew ratio expressing the
relative importance of negatives compared to pos-
itives.

This procedure of selecting an optimal point
on an ROC curve can be generalized to select
among points lying on more than one curve
or even an arbitrary set of points (e.g., points
representing different categorical classifiers). In
such scenarios, it is likely that certain points are
never selected for any skew ratio; such points
are said to be dominated. For instance, points
on a concave region of an ROC curve are dom-
inated. The nondominated points are optimal for
a given closed interval of skew ratios and can
be joined to form the convex hull of the given
ROC curve or set of ROC points (Fig. 3 (right));
in multi-objective optimization, this concept is
called the Pareto front. This notion of the ROC
convex hull (sometimes abbreviated to ROCCH)
is extremely useful in a range of situations. For
instance, if an ROC curve displays concavities,
the convex hull represents a discretization of the
scores which achieves higher AUC. Alternatively,
the convex hull of a set of categorical classifiers
can be interpreted as a hybrid classifier that can
reach any point on the convex hull by stochastic
interpolation between two neighboring classifiers
(Foster and Tom 2001).

Obtaining Calibrated Estimates of the
Class Posterior
Recall that each segment of an ROC curve has
slope slope.s/ D f .sjC/=f .sj�/, where s is the
score associated with the segment, and f .sjC/

and f .sj�/ are the relative frequencies of posi-
tives and negatives assigned score s. Now con-
sider the function

cal.s/ D
pos � f .sjC/

pos � f .sjC/ C .1 � pos/ � f .sj�/

D
slope.s/

slope.s/C a

with a D .1 � pos/=pos. The calibration map
s 7! cal.s/ adjusts the classifier’s scores to
reflect the empirical probabilities observed in the
test set. If the ROC curve is convex, slope.s/

and cal.s/ are monotonically nonincreasing with
decreasing s, and thus replacing the scores s with
cal.s/ does not change the ROC curve (other than
merging neighboring segments with different
scores but the same slope into a single segment).

Consider � decision trees as a concrete exam-
ple. Once we have trained (and possibly pruned) a
tree, we can obtain a score in each leaf l by taking
the proportion of positive training examples in
that leaf: score.l/ D p.Cjl/=.p.Cjl/Cp.�jl//.
Each leaf of the tree then gives rise to a different
segment of the ROC curve, which, by the nature
of how the scores were calculated, will be con-
vex. Furthermore, we have that cal.score.l// D

score.l/, which means that the tree produces pos-
terior probabilities that are perfectly calibrated
with respect to the training set. If we anticipate
changes in class distribution, we may choose to
calibrate with a different a. For example, if we
use a D 1, the calibrated scores cal.score.l// are
adjusted for a uniform prior.

If the ROC curve is not convex, the mapping
s 7! cal.s/ is not monotonic; while the scores
cal.s/ would lead to improved performance on
the data from which the ROC curve was de-
rived, this is very unlikely to generalize to other
data and thus leads to � overfitting. This is why,
in practice, a less drastic calibration procedure
involving the convex hull is applied (Tom and
Alexandru 2007). Let s1 and s2 be the scores
associated with the start and end segments of
a concavity, i.e., s1 > s2 and slope.s1/ <

slope.s2/. Let slope.s1s2/ denote the slope of
the line segment of the convex hull that re-
pairs this concavity, which implies slope.s1/ <

slope.s1s2/ < slope.s2/. The calibration map
will then map any score in the interval Œs1; s2	 to
slope.s1s2/=.slope.s1s2/C 1/ (Fig. 4).

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

ROC Analysis 1115

R

++-+--+-+--+--- ++++-

+ + + +

+ + -
+ -

+ + - - -+ - -
- - -

0 .2 .4 .6 .8 1

1

.8

.6

.4

.2

0

Original scores

C
al

ib
ra

te
d

sc
or

es

ROC Analysis, Fig. 4 The piecewise constant calibration
map derived from the convex hull in Fig. 3. The original
score distributions are indicated at the top of the figure,
and the calibrated distributions are on the right. We can
clearly see the combined effect of binning the scores and
redistributing them over the interval Œ0; 1�

This ROC-based calibration procedure, which
is also known as isotonic regression (Barbara
and Charles 2002), not only produces calibrated
probability estimates but also improves AUC.
This is in contrast with other calibration pro-
cedures such as logistic calibration which do
not bin the scores and therefore do not change
the ROC curve. ROC-based calibration can be
shown to achieve the lowest Brier score (Glenn
1950), which measures the mean squared error
in the probability estimates as compared with the
ideal probabilities (1 for a positive and 0 for a
negative), among all probability estimators that
do not reverse pairwise rankings. On the other
hand, being a nonparametric method, it typically
requires more data than parametric methods in
order to estimate the bin boundaries reliably. See
�Classifier Calibration for further details.

Future Directions

ROC analysis in its original form is restricted
to binary � classification, and its extension to
more than two classes gives rise to many open
problems. c-class ROC analysis requires c.c�1/

dimensions, in order to distinguish each possi-
ble misclassification type. Srinivasan proved that
basic concepts such as the ROC polytope and
its linearly interpolated convex hull generalize
to the c-class case (Ashwin 1999). In theory,
the volume under the ROC polytope can be em-
ployed for assessing the quality of a multi-class
classifier (César et al. 2003), but this volume
is hard to compute as – unlike the two-class
case, where the segments of an ROC curve can
simply be enumerated in O.n log n/ time by
sorting the n examples on their score (Tom 2006;
Peter 2004) – there is no simple way to enu-
merate the ROC polytope. Mossman considers
the special case of three-class ROC analysis,
where for each class the two possible misclas-
sifications are treated equally (a so-called one-
versus-rest scenario) (Douglas 1999). Hand and
Till propose the average of all one-versus-rest
AUCs as an approximation of the area under
the ROC polytope (David and Robert 2001).
Various algorithms for minimizing a classifier’s
misclassification costs by reweighting the classes
are considered in Nicolas and Peter (2003) and
Chris et al. (2008).

Other research directions include the explicit
visualization of misclassification costs (Chris and
Robert 2006) and using ROC analysis to study
the behavior of machine learning algorithms and
the relations between machine learning metrics
(Johannes and Peter 2005).

Cross-References

�Accuracy
�Classification
�Classifier Calibration
�Confusion Matrix
�Cost-Sensitive Learning
�Error Rate
� False Negative
� False Positive
�Gaussian Distribution
� Posterior Probability
� Precision
� Prior Probability
�Recall

http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_299
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_702

1116 ROC Convex Hull

� Sensitivity
� Specificity
�True Negative
�True Positive

Recommended Reading

Bourke C, Deng K, Scott S, Schapire R, Vinodchan-
dran NV (2008) On reoptimizing multi-class classi-
fiers. Mach Learn 71(2–3):219–242

Brier G (1950) Verification of forecasts expressed in
terms of probabilities. Mon Weather Rev 78:1–3

Drummond C, Holte R (2006) Cost curves: an im-
proved method for visualizing classifier perfor-
mance. Mach Learn 65(1):95–130

Egan J (1975) Signal detection theory and ROC analy-
sis. Series in cognitition and perception. Academic
Press, New York

Fawcett T (2006) An introduction to ROC analysis.
Patt Recognit Lett 27(8):861–874

Fawcett T, Niculescu-Mizil A (2007) PAV and the ROC
convex hull. Mach Learn 68(1):97–106

Ferri C, Hernández-Orallo J, Salido M (2003) Volume
under the ROC surface for multi-class problems. In:
Proceedings of the fourteenth European conference
on machine learning, Cavtat, pp 108–120

Flach P (2003) The geometry of ROC space: under-
standing machine learning metrics through ROC
isometrics. In: Proceedings of the twentieth inter-
national conference on machine learning (ICML
2003), Washington, DC, pp 194–201

Flach P (2004) The many faces of ROC analysis
in machine learning, July 2004. ICML-04 Tu-
torial. Notes available from http://www.cs.bris.ac.
uk/�flach/ICML04tutorial/index.html

Fuernkranz J, Flach P (2005) ROC ’n’ Rule learning
– towards a better understanding of covering algo-
rithms. Mach Learn 58(1):39–77

Hand D, Till R (2001) A simple generalization of
the area under the ROC curve to multiple class
classification problems. Mach Learn 45(2):171–186

Lachiche N, Flach P (2003) Improving accuracy
and cost of two-class and multi-class probabilistic
classifiers using ROC curves. In: Proceedings of
the twentieth international conference on machine
learning (ICML’03), Washington, DC, pp 416–423

Mossman D (1999) Three-way ROCs. Med Decis Mak
19:78–89

Provost F, Fawcett T (2001) Robust classification
for imprecise environments. Mach Learn 42(3):
203–231

Srinivasan A (1999) Note on the location of optimal
classifiers in n-dimensional ROC space. Technical
report PRG-TR-2-99, Oxford University Computing
Laboratory, Oxford

Zadrozny B, Elkan C (2002) Transforming classi-
fier scores into accurate multiclass probability es-

timates. In: Proceedings of the 8th ACM SIGKDD
international conference on Knowledge discovery
and data mining, Edmonton. ACM, pp 694–699

ROC Convex Hull

The convex hull of an �ROC curve is a ge-
ometric construction that selects the points on
the curve that are optimal under some class and
cost distribution. It is analogous to the Pareto
front in multiobjective optimization. See �ROC
Analysis.

ROC Curve

The ROC curve is a plot depicting the trade-off
between the � true positive rate and the � false
positive rate for a classifier under varying deci-
sion thresholds. See �ROC Analysis.

Rotation Forests

Rotation Forests is an � ensemble learning tech-
nique. It is similar to the �Random Forests
approach to building decision tree ensembles. In
the first step, the original feature set is split ran-
domly into K disjoint subsets. Next, � principal
components analysis is used to extract n principal
component dimensions from each of the K sub-
sets. These are then pooled, and the original data
projected linearly into this new feature space.
A tree is then built from this data in the usual
manner. This process is repeated to create an
ensemble of trees, each time with a different
random split of the original feature set.

As the tree learning algorithm builds the clas-
sification regions using hyperplanes parallel to
the feature axes, a small rotation of the axes
may lead to a very different tree. The effect of
rotating the axes is that classification regions of
high accuracy can be constructed with far fewer
trees than in �Bagging and �Adaboost.

http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_853
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://www.cs.bris.ac.uk/~flach/ICML04tutorial/index.html
http://www.cs.bris.ac.uk/~flach/ICML04tutorial/index.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_735
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_100492
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_917

Rule Learning 1117

R

RSM

�Random Subspace Method

Rule Learning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Informally, rule learning denotes all algo-
rithms that learn or discover patterns in
data, which are formulated in the form
of a � rule. These can be predictive (e.g.,
� classification rules) or descriptive rules (e.g.,
� association rules or � supervised descriptive
rule induction). Consequently, the learning
algorithms typically differ in the type of
search they use for finding these rules in
the search space. Exhaustive search is more
common in descriptive rule mining, whereas
heuristic search using a variety of quality
criteria is more commonly used in predictive
rule learning. An overview of the field can be
found in Fürnkranz et al. (2012).

Learning Individual Rules

Conceptually, rule learning may be viewed as a
search in the space of possible � rules. The first
algorithms, such as the candidate elimination al-
gorithm, aimed at identifying the � version space
of all complete and consistent rules (Mitchell
1982). �Association rule discovery algorithms
look for all rules that satisfy certain constraints,
typically all rules with a minimum coverage and
a minimum support. Most flexible are algorithms
that use heuristic search for optimizing given
quality criteria. Such algorithms are also often
used in � supervised descriptive rule induction.

procedure FINDBESTRULE(Examples,BestRule)

Input: Examples, a set of positive and negative examples
for a class c.

InitRuleD INITIALIZERULE(Examples)
InitValD EVALUATERULE(InitRule)
BestRuleD <InitVal,InitRule>
RulesD fBestRuleg
while Rules¤ ; do

CandidatesD SELECTCANDIDATES(Rules,
Examples)
RulesD Rules n Candidates
for Candidate 2 Candidates do

RefinementsD REFINERULE(Candidate,
Examples)
for Refinement 2 Refinements do

EvaluationDEVALUATERULE(Refinement,
Examples)
if STOPPINGCRITERION(Refinement,

Examples)
then next Refinement

NewRuleD <Evaluation,Refinement>
RulesD INSERTSORT(NewRule, Rules)
if NewRule > BestRule
thenBestRuleD NewRule

endfor
endfor
RulesD FILTERRULES(Rules, Examples)

endwhile

Output: BestRule

FINDBESTRULE is a prototypical algorithm
that searches for a rule which optimizes a given
quality criterion defined in EVALUATERULE. The
value of this heuristic function is the higher the
more positive and the less negative examples are
covered by the candidate rule. FINDBESTRULE

maintains Rules, a sorted list of candidate rules,
which is initialized by the procedure INITIAL-
IZERULE. New rules will be inserted in appropri-
ate places (INSERTSORT), so that Rules will al-
ways be sorted in decreasing order of the heuristic
evaluations of the rules. At each cycle, SELECT-
CANDIDATES selects a subset of these candidate
rules, which are then refined using the refine-
ment operator REFINERULE. Each refinement is
evaluated and inserted into the sorted Rules list
unless the STOPPINGCRITERION prevents this.
If the evaluation of the NewRule is better than
the best rule found previously, BestRule is set to
NewRule. FILTERRULES selects the subset of the

http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_877
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_808

1118 Rule Learning

ordered rule list that will be used in subsequent
iterations. When all candidate rules have been
processed, the best rule will be returned.

Different choices of these functions allow
the definition of different biases for the
separate-and-conquer learner. The search
bias is defined by the choice of a search
strategy (INITIALIZERULE and REFINERULE),
a search algorithm (SELECTCANDIDATES

and FILTERRULES), and a search heuristic
(EVALUATERULE). The refinement operator
REFINERULE constitutes the language bias of
the algorithm. An overfitting avoidance bias can
be implemented via some STOPPINGCRITERION

and/or in a post-processing phase.
For example, INITIALIZERULE and RE-

FINERULE may be defined so that they realize
a top-down (general-to-specific), a bottom-up
(specific-to-general), or a bidirectional search.
Exhaustive breadth-first, depth-first, or best-first
searches can be realized by appropriate choices
of EVALUATERULE and no filtering or candidate
selection. FILTERRULES can, e.g., be used to
realize a hill-climbing or � beam search by
maintaining only the best or the BeamWidth best
rules. Evolutionary algorithms and stochastic
local search can also be easily realized.

The most common algorithm for finding the
best rule is a top-down hill-climbing algorithm.
It basically constructs a rule by consecutively
adding conditions to the rule body so that a
given quality criterion is greedily optimized. This
constitutes a simple greedy hill-climbing algo-
rithm for finding a local optimum in the hypoth-
esis space defined by the feature set. INITIAL-
IZERULE will thus return the most general rule,
the rule with the body ftrueg, and REFINERULE

will return all possible extensions of the rule by a
single condition. FILTERRULES will only let the
best refinement pass for the next iteration, so that
SELECTCANDIDATES will always have only one
choice. The search heuristic, the StoppingCrite-
rion, and the post-processing are discussed in the
next sections.

Rule Learning Heuristics
The goal of rule learning is to find a rule or a
� rule set that is as complete and consistent as

possible. Thus, each rule should cover as many
positive examples and as few negative examples
as possible. A few important ones are (assume
that p out of P positive examples and n out of
N negative examples are covered by the rule):

Laplace estimate (Lap D pC1
pCnC2) computes the

fraction of positive examples in all covered
examples, where each class is initialized with
one virtual example in order to penalize rules
with low coverage.

m-Estimate (m D pCm �P=.PCN /
pCnCm

) is a gener-
alization of the Laplace estimate which uses
m examples for initialization, which are dis-
tributed according to the class distribution in
the training set (Cestnik 1990).

Information gain (ig D p � .log2
p

pCn
�

log2
p0

p0Cn0

/, where p0 and n0 are the number
of positive and negative examples covered by
the rule’s predecessor) is Quinlan’s (1990)
adaptation of the information gain heuristic
used for decision tree learning. The main
difference is that this only focuses on a
single branch (a rule), whereas the decision
tree version tries to optimize all branches
simultaneously.

correlation and �2 (corrD p.N�n/�.P�p/n
p

PN.pCn/.P�pCN�n/
)

computes the four-field correlation of cov-
ered/uncovered positive/negative examples.
It is equivalent to a �2 statistic (�2 D

.P CN / corr2).

An exhaustive overview and theoretical com-
parison of various search heuristics in coverage
space, a variant of ROC space can be found in
Fürnkranz and Flach (2005).

Overfitting Avoidance
It is trivial to find a rule set that is complete and
consistent on the training data. To achieve this,
one only needs to convert each positive example
into a rule. Each of these rules is consistent
(provided the data set is not inconsistent), and
collectively they cover the entire example set
(completeness). However, this is clearly a bad
case of � overfitting because the theory will not
generalize to new positive examples.

http://dx.doi.org/10.1007/978-1-4899-7687-1_68
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

Rule Learning 1119

R

Overfitting is to some extent handled by
the search heuristics described above, but most
algorithms use additional � pruning techniques.
One can discriminate between pre-pruning
techniques, where a separate criterion is used
to filter out unpromising rules. For example,
CN2 computes the likelihood ratio statistic lrs
D 2 � .p log p

ep
C n log n

en
/, where ep D .p C

n/ P
PCN

and en D .pC n/ N
PCN

D .pC n/� ep

are the number of positive and negative examples
one could expect if the p C n examples covered
by the rule were distributed in the same way as
the P C N examples in the full data set. This
statistic follows a �2 distribution, which allows
to filter out rules for which the distribution of the
covered examples is not statistically significantly
different from the distribution of examples in
the full data set. Other pre-pruning criteria
are simple thresholds that define a minimum
acceptable value for the search heuristic or
FOIL’s �minimum description length criterion
that relates the length of a rule to the number of
examples it covers.

However, it can be shown experimentally that
CN2 or FOIL still has a tendency to overfit the
data. Instead, state-of-the-art algorithms post-
prune a rule right after it has been learned.
For this purpose, one-third of the training data
are reserved for pruning. After a rule has been
learned, its accuracy is greedily simplified on the
pruning set. Simplifications can be the deletion of
the last condition, a final sequence of conditions,
or an arbitrary condition of the rule. If the
simplification does not decrease the accuracy of
the rule on the pruning set, it will be performed.
This so-called incremental reduced error pruning
algorithm (Fürnkranz and Widmer 1994) is used
in the rule learning algorithm RIPPER.

A survey and experimental comparison of
pruning techniques for rule learning can be found
in Fürnkranz (1997).

Learning Rule Sets

In many cases, rule learning is used for solving
a � classification problem via the induction of
a � rule set or a � decision list. In these cases,

individual rules are learned as above but then
combined to form a theory that is able to classify
all examples. The principal approach is the so-
called � covering or � separate-and-conquer al-
gorithm, which learns one rule at a time, succes-
sively removing the covered examples. Individual
algorithms within this framework differ primarily
in the way they learn single rules.

An obvious generalization of covering is to not
entirely remove covered examples but to reduce
their example �weights, thus decreasing their
importance in subsequent iterations (see, e.g., the
SLIPPER algorithm (Cohen and Singer 1999)).

Rules can also be learned by alternative strate-
gies. There have been numerous proposals, and
we can only mention the most influential. Each
path from the root to a leaf of a � decision tree
corresponds to a rule and so rules can be learned
by first learning a decision tree and then post-
processing it (see, e.g., the C4.5RULES algo-
rithm, (Quinlan 1993)). It is also possible to use
the �Apriori algorithm for an exhaustive search
for classification rules and to use a subsequent
covering algorithm to combine the rules into
a rule set (see, e.g., the CBA algorithm (Liu
et al. 1998)). RISE (Domingos 1996) combines
bottom-up generalization with � nearest neighbor
algorithms to learn a theory via “conquering
without separating.”

Well-Known Rule Learning
Algorithms

AQ can be considered as the original cover-
ing algorithm. Its original version was conceived
by Ryszard Michalski in the 1960s (Michalski
1969), and numerous versions and variants of the
algorithm appeared subsequently in the literature.
AQ uses a top-down beam search for finding the
best rule. It does not search all possible special-
izations of a rule but only considers refinements
that cover a particular example, the so-called seed
example. This idea is basically the same as the
use of a � bottom clause in � inductive logic
programming.

CN2 (Clark and Niblett 1989; Clark and
Boswell 1991) employs a beam search guided

http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

1120 Rule Learning

by the Laplace or m-estimates, and the
abovementioned likelihood ratio significance
test to fight overfitting. It can operate in two
modes, one for learning � rule sets (by modeling
each class independently) and one for learning
� decision lists.

FOIL (Quinlan 1990) was the first relational
learning algorithm that received attention beyond
the field of � inductive logic programming. It
learns a concept with the covering loop and
learns individual concepts with a top-down re-
finement operator, guided by information gain.
The main difference to previous systems is that
FOIL allowed the use of first-order background
knowledge. Instead of only being able to use
tests on single attributes, FOIL could employ
tests that compute relations between multiple
attributes and could also introduce new variables
in the body of a rule.

RIPPER was the first rule learning system that
effectively countered the overfitting problem via
incremental reduced error pruning, as described
above. It also added a post-processing phase for
optimizing a rule set in the context of other rules.
The key idea is to remove one rule out of a
previously learned rule set and try to relearn it not
only in the context of previous rules (as would be
the case in the regular covering rule) but also in
the context of subsequent rules. RIPPER is still
state of the art in inductive rule learning. A freely
accessible re-implementation can be found in the
WEKA machine learning library under the name
of JRIP.

OPUS (Webb 1995) was the first rule learning
algorithm to demonstrate the feasibility of a full
exhaustive search through all possible rule bodies
for finding a rule that maximizes a given quality
criterion (or heuristic function). The key idea is
the use of ordered search that prevents that a
rule is generated multiple times. This means that
even though there are lŠ different orders of the
conditions of a rule of length l , only one of them
can be taken by the learner for finding this rule.
In addition, OPUS uses several techniques that
prune significant parts of the search space, so that
this search method becomes feasible. Follow-up
work has shown that this technique is also an effi-
cient alternative for � association rule discovery,

provided that the database to mine fits into the
memory of the learning system.

CBA was one of the first and best-known
algorithms that employed association rule learn-
ing algorithms for learning predictive rules (Liu
et al. 1998). In its simplest version, the algorithm
selects the final rule sets by sorting all class
association rules according to confidence and
incrementally adding rules to the final set until
all examples are covered or the quality of the rule
set decreases.

Cross-References

�Association Rule
�Classification Rule
�Covering Algorithm
�Decision List
�Decision Lists and Decision Trees
�Rule Set
� Supervised Descriptive Rule Induction

Recommended Reading

Cestnik B (1990) Estimating probabilities: a crucial
task in machine learning. In: Aiello L (ed) Proceed-
ings of the 9th European conference on artificial in-
telligence (ECAI-90). Pitman, Stockholm, pp 147–
150

Clark P, Boswell R (1991) Rule induction with CN2:
some recent improvements. In: Proceedings of the
5th European working session on learning (EWSL-
91). Springer, Porto, pp 151–163

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3(4):261–283

Cohen WW, Singer Y (1999) A simple, fast, and
effective rule learner. In: Proceedings of the 16th na-
tional conference on artificial intelligence (AAAI-
99). AAAI/MIT Press, Menlo Park, pp 335–342

Domingos P (1996) Unifying instance-based and rule-
based induction. Mach Learn 24:141–168

Fürnkranz J (1997) Pruning algorithms for rule learn-
ing. Mach Learn 27(2):139–171. http://www.ke.
informatik.tu-darmstadt.de/ juffi/publications/mlj97.
pdf

Fürnkranz J, Flach PA (2005) ROC ‘n’ rule
learning – towards a better understanding of
covering algorithms. Mach Learn 58(1):39–77.
doi:10.1007/s10994-005-5011-x. http://www.cs.
bris.ac.uk/�flach/papers/furnkranz-flach-mlj.pdf

http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/mlj97.pdf
http://www.cs.bris.ac.uk/~flach/papers/furnkranz-flach-mlj.pdf
http://www.cs.bris.ac.uk/~flach/papers/furnkranz-flach-mlj.pdf

Rule Set 1121

R

Fürnkranz J, Widmer G (1994) Incremental reduced
error pruning. In: Cohen WW, Hirsh H (eds) Pro-
ceedings of the 11th international conference on ma-
chine learning (ML-94). Morgan Kaufmann, New
Brunswick, pp 70–77. http://www.ke.informatik.tu-
darmstadt.de/�juffi/publications/ml-94.ps.gz

Fürnkranz J, Gamberger D, Lavrač N (2012) Foun-
dations of rule learning. Springer. doi:10.1007/978-
3-540-75197-7. ISBN 978-3-540-75196-0. http://
www.springer.com/978-3-540-75196-0

Liu B, Hsu W, Ma Y (1998) Integrating classification
and association rule mining. In: Agrawal R, Stolorz
P, Piatetsky-Shapiro G (eds) Proceedings of the 4th
international conference on knowledge discovery
and data mining (KDD-98), New York, pp 80–86

Michalski RS (1996) On the quasi-minimal solution
of the covering problem. In: Proceedings of the 5th
international symposium on information process-
ing (FCIP-69), vol A3 (Switching circuits), Bled,
pp 125–128

Mitchell TM (1982) Generalization as search. Artif
Intell 18(2):203–226

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Mateo

Webb GI (1995) OPUS: an efficient admissible algo-
rithm for unordered search. J Artif Intell Res 5:
431–465

Rule Set

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

A rule set is a collection of individual
� classification rules that collectively form
a classifier. In contrast to a � decision list, the
rules in the set do not have an inherent order,
and all rules in the set have to be tried for
deriving a prediction for an example.

Discussion

This may cause two types of problems that have
to be resolved with additional algorithms:

Multiple rules fire: More than one rule
can fire on a single example, and these
rules can make contradicting predictions.
This type of conflict is typically resolved
by preferring rules that cover a higher
fraction of training examples of their class
(typically estimated with Laplace correction,
see � rule learning). This is equivalent to
converting the rule set into a decision list
that is ordered according to this evaluation
heuristic. More elaborate tie-breaking
schemes, such as using a Naive Bayes
algorithm, or inducing a separate rule set
for handling these conflicts (double induction
(Lindgren and Boström 2004)), have also been
tried.

No rule fires: It may also occur that no rule fires
for a given example. Such cases are typically
handled via a so-called default rule, which
typically predicts the majority class. Again, a
more complex algorithm, such as trying to find
the closest rule (rule stretching (Eineborg and
Boström 2001)), has been proposed.

A rule set that only contains rules for a single
class, as is the result of � concept learning prob-
lems, typically contains an implicit default rule
for the other class (very much like a Prolog pro-
gram). If all rules are conjunctive, such rule sets
may be interpreted as a definition in disjunctive
normal form for this class.

Cross-References

�Classification Rule
�Decision List
�Disjunctive Normal Form
�Rule Learning

Recommended Reading

Eineborg M, Boström H (2001) Classifying uncovered
examples by rule stretching. In: Rouveirol C, Sebag
M (eds) Proceedings of the eleventh international
conference on inductive logic programming (ILP-
01), Strasbourg. Springer, pp 41–50

Lindgren T, Boström H (2004) Resolving rule conflicts
with double induction. Intell Data Anal 8(5): 457–
468

http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz
http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz
http://www.springer.com/978-3-540-75196-0
http://www.springer.com/978-3-540-75196-0
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_223
http://dx.doi.org/10.1007/978-1-4899-7687-1_744

S

Sample Complexity

�Generalization Bounds

Samuel’s Checkers Player

Definition

Samuel’s Checkers Player is the first machine
learning system that received public recognition.
It pioneered many important ideas in game play-
ing and machine learning. The two main papers
describing his research (Samuel 1959, 1967) be-
came landmark papers in Artificial Intelligence.
In one game, the resulting program was able to
beat one of America’s best players of the time.

Description of the Learning System

Samuel’s checkers player featured a wide vari-
ety of learning techniques. First, his checkers
player remembered positions that it frequently
encountered during play. This simple form of
rote learning allowed it to save time, and to
search deeper in subsequent games whenever a
stored position was encountered on the board
or in some line of calculation. Next, it featured
the first successful application of what is now
known as �Reinforcement Learning for tuning
the weights of its evaluation function. The pro-

gram trained itself by playing against a stable
copy of itself. After each move, the weights of the
evaluation function were adjusted in a way that
moved the evaluation of the root position after
a quiescence search closer to the evaluation of
the root position after searching several moves
deep. This technique is a variant of what is
nowadays known as Temporal-Difference Learn-
ing and commonly used in successful game-
playing programs. Samuel’s program not only
tuned the weights of the evaluation but also em-
ployed on-line �Feature Selection for construct-
ing the evaluation function with the terms that
seem to be the most significant for evaluating the
current board situation. �Feature Construction
was recognized as the key problem that still
needs to be solved. Later, Samuel changed his
evaluation function from a linear combination
of terms into a structure that closely resembled
a 3-layer �Neural Network. This structure was
trained with �Preference Learning from several
thousand positions from master games.

Cross-References

�Machine Learning and Game Playing

Recommended Reading

Samuel AL (1959) Some studies in machine learning
using the game of checkers. IBM J Res Develop
3(3):211–229

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_328
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_509

1124 Saturation

Samuel AL (1967) Some studies in machine learning
using the game of checkers. II – recent progress.
IBM J Res Develop 11(6):601–617

Saturation

�Bottom Clause

SDP

� Symbolic Dynamic Programming

SDRI

� Supervised Descriptive Rule Induction

Search Engines: Applications of ML

Eric Martin
University of New South Wales, Sydney, NSW,
Australia

Abstract

The general structure of a search engine is
described. An overview of those information
retrieval methods that are relevant to web
search in that they take the existence of hy-
perlinks between documents into account, is
provided. A suggested classification of web
queries as either navigational, transactional, or
informational has been suggested. More gen-
erally, a good understanding of users’ needs
and practice allows for query rewriting or for
redirection to domain-specific databases.

Definition

Search engines provide users with Internet
resources—links to websites, documents, text
snippets, images, videos, . . . —in response to
queries. They use techniques that are part of

the field of information retrieval and rely on
statistical and pattern matching methods. Search
engines have to take into account many key
aspects and requirements of this specific instance
of the information retrieval problem. First is the
fact that they have to be able to process hundreds
of millions of searches a day and answer queries
in a matter of milliseconds. Second is the fact
that the resources on the World Wide Web
are constantly updated, with information being
continuously added, removed, or changed—the
overall contents changing by up to 8 % a week—
in a pool consisting of billions of documents.
Third is the fact that users will express possibly
semantically complex queries in a language with
limited expressive power and often not make
use or proper use of available syntactic features
of that language—for instance, the Boolean or
operator occurs in less than 3 % of queries.

Motivation and Background

Web searching is technically initiated by sending
a query to a search engine, but the whole search
process starts earlier, in the mind of the person
who conducts the search. To be successful, the
process needs to provide users with words, text
snippets, images, or movies that fulfill the users’
quest for information. So even though a search
is technically the implementation of a procedure
that maps a query to some digital material, it
spans a larger spectrum of activities, from a
psychological trigger to a psychological reward.
For a given set of digital material that, if pro-
vided, would be deemed perfectly satisfactory by
a number of users looking for the same informa-
tion, different users will issue different queries.
That might be because they have varying skills
at conveying what they are after in the form
of a few words. That might be because their
understanding of the technology prompts them
to formulate what they are after in a form that,
rightly or wrongly, they consider appropriate for
a computing device to process. That might be
for a number of different reasons that all point
to the fact that the quality of the search is not
determined by its adequacy to the query, but

http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_808

Search Engines: Applications of ML 1125

S

by its adequacy to the psychological trigger that
produced the query. This makes web searching
an especially challenging and exciting area in the
field of � information retrieval.

In Andrei (2002), it is suggested that web
queries can be classified in three classes.

• Navigational queries expect the search
to return a particular URL. For instance,
http://www.cityrail.info is probably the
expected result to the query Cityrail for a
Sydneysider.

• Transactional queries expect the search
to return links to sites that offer further
interaction, for example, for online shopping
or to download music. For instance, http://
www.magickeys.com/books/, where books for
young children are available for download,
is probably a good result to the query
children stories.

• Informational queries expect the search
to reveal a piece of information that is the
correct answer to a question. This piece of
information can be immediately provided
in the page where theresults of the search

are displayed, as, for instance, Bern for the
query capital of switzerland. Or it
can be provided in the pages accessible from
the first links returned by the search, as for
instance, Italy that is easily found in the
web page accessed from the first link returned
in response to the query football world
champion 1982.

Answering an informational query with the in-
formation itself, rather than with links to docu-
ments where the information is to be found, is
one of the most difficult challenges that search
engine developers have addressed. Some argue
that the final goal is to deliver the best possible
content that a user would like to have in a given
moment and that instead of pulling information,
information be pushed to the user depending on
the context (Ricardo and Prabhakar 2010).

Structure of the Learning System

The general structure of a search engine can be
illustrated as follows:

User

Parsing Postfilering

Repository Matching Postprocessing

Ranking

Qu
er
y

Documents

Results

A � string matching algorithm is applied to the
parsed query issued by the user and to an indexed
representation of a set of documents, resulting in
a ranked subset of the latter. This ranked set of
documents can be subjected to a postprocessing
procedure whose aim is to improve the results by
either refining the query or by analyzing further
the documents, possibly over many iterations,

until the results stabilize and can be returned to
the user, following a postfiltering procedure to
display the information appropriately.

Retrieval Methods
What distinguishes search engines from other
information retrieval applications is the existence
of hyperlinks between documents. All techniques

http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://www.cityrail.info
http://www.magickeys.com/books/
http://www.magickeys.com/books/
http://dx.doi.org/10.1007/978-1-4899-7687-1_791

1126 Search Engines: Applications of ML

developed in the field of information retrieval
are potentially relevant for extracting information
from the web, but will benefit from a proper
analysis of the cross-reference structure. That is,
to measure the degree of relevance of a document
to a given query, one can take advantage of a prior
ranking of all documents independent of that
query or any other, following a sophisticated ver-
sion of the PageRank (Lawrence et al. 1999) link
analysis algorithm. One of the simplest versions
of the algorithm recursively defines the PageRank
PR.T / of a page T which pages T1, . . . , Tn point
to, among the c1, . . . , cn pages T1, . . . , Tn point
to, respectively, as

1 � d

N
C d.T1=c1 C � � � C Tn=cn/

where N is the total number of pages and d , a
damping factor, represents the probability that a
user decides to follow a link rather than randomly
visit another page; normalizing the solution so
that the PageRanks of all pages add up to 1,
PR.T / then represents the probability that a user
visits T by clicking on a link.

Boolean retrieval is one of the simplest meth-
ods to retrieve a set of documents that match
exactly a query expressed as a Boolean combi-
nation of keywords. The match is facilitated by
using an inverted file indexing structure which
associates every possible keyword with links to
the documents in which it occurs (Justin and
Alistair 2006). If extra information is kept on the
occurrences of keywords in documents (number
of occurrences, part of the document in which
they occur, font size and font type used for their
display, etc.), then the results can also be ranked.
But best match models, as opposed to exact match
models, are better suited to producing ranked
results. The vector space model is one of the
earliest and most studied models of this kind.
It represents documents and queries as vectors
over a space each of whose dimensions represents
a possible keyword and measures the similarity
between the vectors Eq and Ed that record for each
keyword whether it occurs at least once in query
and document, respectively, as the cosine of the
angle formed by Eq and Ed , namely,

Eq: Ed

kEqk:k Edk
;

that is all the most closer to 1 that query and
document have more in common. The term-
frequency-inverse-document-frequency (tf-idf)
model refines the encoding given by Ed by
replacing a value of 1 in the i th dimension,
indicating the existence of an occurrence of the
i th keyword in Ed , with

c1: log

�
N

c2

�

where c1 is the number of occurrences of the
i th keyword in the document, N is the total
number of documents, and c2 is the number of
documents in the whole collection that contains
at least one occurrence of the i th keyword; so
more weight is given to keywords that occur
more and that occur “almost exclusively” in the
document under consideration. One of the most
obvious issues with this approach is that the
number of dimensions is huge and the vectors
are sparse. Another important issue is that set
of vectors determined by the set of keywords is
not orthogonal and not even linearly independent,
because two given keywords can be synonyms
(sick and ill), not semantically related (garlic and
manifold), or more or less semantically related
(wheel and tire).

The extended vector space model (Wong et al.
1987) addresses this issue assuming that the sim-
ilarity between two keywords is captured by the
symmetric difference between the set of doc-
uments that contain a keyword and the set of
documents that contain the other, ranging from
identical sets (similar keywords) to disjoint sets
(unrelated keywords). Let D1, . . . , DN 0 be an
enumeration of the quotient relation over the
set of all documents such that two documents
are equivalent if they contain precisely the same
keywords (so N 0 is at most equal to N , the num-
ber of documents in the whole collection). Con-
ceive an N 0-dimensional vector space S which
D1, . . . , DN 0 is a basis of. Associate the i th
keyword with the vector Evi of S defined as

1q
w2

1C���Cw2
N 0

.w1; : : : ;wN 0/ where for all nonzero

Search Engines: Applications of ML 1127

S

k � N 0, wk is the number of occurrences of the
i th keyword in all documents that belong to class
Dk . Then associate a document with the vector Ed
of S defined as ˛1 Ev1 C � � � C ˛N 00 EvN 00 where N 00

is the number of keywords, and for all nonzero
k � N 00, ˛k is the number of occurrences of
the i th keyword in that document, and associate
a query with the vector Eq of S defined as ˇ1 Ev1 C

� � � CˇN 00 EvN 00 where for all nonzero k � N 00, ˇk
is equal to 1 if the i th keyword occurs in the query
and to 0 otherwise. The similarity between Eq and
Ed is then measured as described for the simple
vector space method.

The topic-based vector space model (Jörg and
Dominik 2003) also replaces the original vector
space with a different vector space of a different
dimension, addressing the issue of nonorthogo-
nality between keywords, thanks to fundamen-
tal topics, assumed to be pairwise independent,
using ontologies; the fundamental topics then
provide the vector basis which a given keyword is
a linear combination of. So the topic-based vector
space model conceives the meaning of words as
the semantic relationships that emerge from the
common use of a language by the members of
a given community, whereas the extended vector
space model conceives the meaning of words as
the syntactic relationship of term co-occurrence
with respect to the repository of documents being
processed.

Probabilistic retrieval frameworks aim at es-
timating the probability that a given document
is relevant to a given query. Given a keyword
w, denote by pCw the probability that w occurs
in a document relevant to w, and denote by p�w
the probability that w occurs in a document not
relevant to w. Many probabilistic retrieval frame-
works then define the relevance of a document
to a query as follows, where w1, . . . , wn are the
keywords that occur both in the query and in the
document:

nX
iD1

log

pCwi

.1 � p�wi
/

p�wi
.1 � pCwi

/

!
:

This quantity increases all the more that the
document contains more words more likely to

occur in relevant documents and more words less
likely to occur in irrelevant documents. Different
frameworks suggest different ways to evaluate
the values of pCwi

and p�wi
. For instance, pi

is sometimes assumed to be constant and p�wi

defined as ni=N where N is the total number
of documents and ni the number of documents
in which wi occurs, capturing the fact that a
document containing a keyword appearing in few
other documents is likely to be relevant to that
keyword, in which case the previous formula can
be rewritten

c �

nX
iD1

log

�
N � ni

ni

�
:

for some constant c. More sophisticated methods
have been developed to better estimate the prob-
abilities, such as the Okapi weighting document
score (Stephen et al. 1999) which defines the
relevance of a document to a query as

nX
iD1

log

�
N � ni C 0:5

ni C 0:5

�
:

.k1 C 1/ci�
k1.1 � b/C b lˇ

�
C ci

:
.k3 C 1/di
k3 C di

where the notation is as above, with the addition
of ci to denote the number of occurrences of
wi in the document, di to denote the number of
occurrences of wi in the query, l to denote the
number of bytes in the document, ˇ to denote the
average number of bytes in a document, and b,
k1, and k3 to denote constants.

Query Classification
The development of effective methods of infor-
mation retrieval from web resources requires a
good understanding of users’ needs and prac-
tice. In Karen (2007a), the following questions
are identified as being especially relevant toward
gaining such an understanding:

What characterizes the queries that end users
submit to online IR systems? What search features
do people use? What features would enable
them to improve on the retrievals they have

1128 Search Engines: Applications of ML

in hand? What features are hardly ever used?
What do end users do in response to the systems
retrievals?

This paper indicates that many of the basic fea-
tures of information retrieval systems are poorly
used. For instance, less than 15 %, 3 %, and 2 %
of queries make use of the and, or, and not
Boolean operators, respectively, and less than
15 % of queries of enclosing quotes; the wrong
syntax is often used, resulting in incorrect use
of advanced search features in one third of the
cases; less than 10 % of queries take advantage
of � relevance feedback. Based on those findings,
the second part (Karen 2007b) of the article
suggests two-dozen new research questions for
researchers in information retrieval while noting
that about 70 % of users are satisfied with their
search experience.

Evaluating search satisfaction has received
lots of attention. In Steve et al. (2005), both
explicit and implicit measures of satisfaction
are collected. Explicit measures are obtained
by prompting the user to evaluate a search
result as satisfying, partially satisfying, or not
satisfying and similarly to evaluate satisfaction
gained from a whole search session. Implicit
measures are obtained by recording mouse and
keyboard actions, time spent on a page, scrolling
actions and durations, number of visits to a
page, position of page in results list, number
of queries submitted, number of results visited,
etc. A Bayesian model can be used to infer
the relationships between explicit and implicit
measures of satisfaction. This paper reports
on two �Bayesian networks that were built to
predict satisfaction for individual page visits and
satisfaction for entire search sessions—w.r.t. the
feedback obtained from both kinds of prompts—
with evidence that a combination of well-chosen
implicit satisfaction measures can be a good
predictor of explicit satisfaction. Referring to the
categorization of web queries in Andrei (2002)
as user goals, it is proposed in Uichin et al.
(2005) to build click distributions by sorting
results to a query following the numbers of clicks
they received from all users and suggested that
highly skewed distributions should correspond

to navigational queries, while flat distributions
should correspond to informational queries. The
same kind of considerations are also applied
to anchor-link distributions, the anchor-link
distribution of a query being defined as the
function that maps a URL to the number of times
that URL is the destination of an anchor that has
the same text as the query.

Finer techniques of query classification are
proposed in Steven et al. (2007), where a rule-
based automatic classifier is produced from selec-
tional preferences. A query consisting of at least
two keywords is split into a head x and a tail
y and then converted into a forward pair .x; u/
and a backward pair .u; y/ where u represents
a category, that is, a generic term that refers to
a list of semantically related words in a the-
saurus. For instance, the query “interest rate” can
(only) be split into .interest; rate/ and converted
to the forward pair .interest; personal finance/
where “personal finance” denotes the list consist-
ing of the terms “banks,” “rates,” “savings,” etc;
so the first keyword—“interest”–provides context
for the second one. Given a large query log, the
maximum likelihood estimate (MLE) of P.u=x/,
the probability that a query decomposed as .x; ´/
is such that ´ belongs to category u, is defined as
the quotient between the number of queries in the
log that have .x; u/ as a forward pair and the num-
ber of queries in the log that can be decomposed
as .x; ´/. This allows one to write a forward rule
of the form “x Y classified as u with weight
p” where p is the MLE of P.u=x/, provided
that the selectional preference strength of x be
above some given threshold. The rule can then
be applied to incoming queries, such as “interest
only loan” by matching a final or initial segment
of the query—depending on whether forward
or backward rules are under consideration—and
suggest possible classifications; with the run-
ning example, “interest only loan” would then
be classified as “personal finance with weight
p” if a forward rule of the form “interest Y
classified as personal finance with weight p” had
been discovered. Such a classification can then
be used to rewrite the query or to send it to an
appropriate database backend if many domain-
specific databases are available.

http://dx.doi.org/10.1007/978-1-4899-7687-1_724
http://dx.doi.org/10.1007/978-1-4899-7687-1_927

Self-Organizing Maps 1129

S

Cross-References

�Bayesian Methods
�Classification
�Covariance Matrix
�Rule Learning
�Text Mining

Recommended Reading

Baeza-Yates R, Raghavan P (2010) Next Generation
Web Search. In: Ceri S, Brambilla M (eds) Next
generation Web search, Springer Verlag, Berlin,
Heidelberg, pp 11–23

Becker J, Kuropka D (2003) Topic-based vector space
model. In: Abramowicz W, Klein G (eds) Proceed-
ings of the 6th international conference on busi-
ness information systems, Colorado Springs, pp 7–
12

Beitzel SM, Jensen EC, Lewis DD, Chowdhury A,
Frieder O (2007) Automatic classification of web
queries using very large unlabeled query logs. ACM
Trans Inf Syst 25(2) Article 9, pp 1–29

Broder A (2002) A taxonomy of web search. SIGIR
Forum 36(2):3–10

Fox S, Karnawat K, Mydland M, Dumais S, White
T (2005) Evaluating implicit measures to im-
prove web search. ACM Trans Inf Syst 23(2):147–
168

Lee U, Liu Z, Cho J (2005) Automatic identifica-
tion of user goals in web search. In: WWW’05:
proceedings of the 14th international confer-
ence on World Wide Web, Chiba, pp 391–
400

Markev K (2007a) Twenty-five years of end-user
searching, part 1: research findings. J Am Soc Inf
Sci Technol 58(8):1071–1081

Markev K (2007b) Twenty-five years of end-user
searching, part 2: future research directions. J Am
Soc Inf Sci Technol 58(8):1123–1130

Page L, Brin S, Motwani R, Winograd T (1999) The
pagerank citation ranking: bringing order to the
web. Technical report, Stanford University

Robertson SE, Walker S, Beaulieu M (1999) Okapi
at TREC–7: automatic ad hoc, filtering, VLC and
filtering tracks. In: Voorhees E, Harman D (eds) Pro-
ceedings of the Seventh Text REtrieval Conference,
pp 253—264

Wong SKM, Ziarko W, Raghavan VV, Wong PCN
(1987) On modeling of information retrieval con-
cepts in vector spaces. ACM Trans Database Syst
12(2):299–321

Zobel J, Moffat A (2006) Inverted files for text search
engines. ACM Comput Surv 38(2)2:1–55

Selection of Algorithms, Ranking
Learning Methods

�Metalearning

Self-Adaptive Systems

�Metalearning

Self-Organizing Feature Maps

� Self-Organizing Maps

Self-Organizing Maps

Samuel Kaski
Helsinki University of Technology, Helsinki,
Finland

Synonyms

Kohonen maps; Self-organizing feature maps;
SOM

Definition
Self-organizing map (SOM), or Kohonen Map,
is a computational data analysis method which
produces nonlinear mappings of data to lower di-
mensions. Alternatively, the SOM can be viewed
as a � clustering algorithm which produces a
set of clusters organized on a regular grid. The
roots of SOM are in neural computation (see
� neural networks); it has been used as an abstract
model for the formation of ordered maps of brain
functions, such as sensory feature maps. Several
variants have been proposed, ranging from dy-
namic models to Bayesian variants. The SOM has
been used widely as an engineering tool for data
analysis, process monitoring, and information vi-
sualization, in numerous application areas.

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_57
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_100238
http://dx.doi.org/10.1007/978-1-4899-7687-1_100421
http://dx.doi.org/10.1007/978-1-4899-7687-1_100432
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_586

1130 Self-Organizing Maps

Motivation and Background

The SOM (Kohonen 1982, 2001) was originally
introduced in the context of modeling of how
the spatial organization of brain functions forms.
Formation of feature detectors selective to certain
sensory inputs, such as orientation-selective
visual neurons, had earlier been modeled by
� competitive learning in neural networks, and
some models of how the feature detectors become
spatially ordered had been published (von der
Malsburg 1973). The SOM introduced an adapta-
tion kernel or neighborhood function that governs
the adaptation in such networks; while in plain
competitive learning only the winning neuron
that best matches the inputs adapts, in SOM
all neurons within a local neighborhood of the
winner learn. The neighborhood is determined
by the neighborhood function. The SOM is an
algorithm for computing such ordered mappings.

While some of the motivation of the SOM
comes from neural computation, its main uses
have been as a practical data analysis method.
The SOM can be viewed as a topographic
vector quantizer, a nonlinear projection method,
or a clustering method. In particular, it is a
clustering-type algorithm that orders the clusters.
Alternatively, it is a nonlinear projection-type
algorithm that clusters, or more specifically
quantizes, the data.

The SOM was very popular in the 1990s and
still is; it is intuitively relatively easily under-
standable, yet hard to analyze thoroughly. It con-
nects many research traditions and works well in

practice. An impressive set of variants have been
published over the years, of which probabilistic
variants (e.g., Bishop et al. (1998) and Heskes
(2001)) are perhaps closest to the current main-
stream machine learning. While there currently
are excellent alternative choices for many of the
specific tasks SOMs have been applied for over
the years, even the basic SOM algorithm is still
viable as a versatile engineering tool in data-
analysis tasks.

Structure of Learning System

The SOM consists of a regular grid of nodes
(Fig. 1). A model of data has been attached
to each node. For vector-valued data x D

Œx1; : : : ; xd �
T , the models are vectors in the

same space; the model at the i th node is
mi D Œmi1; : : : ; mid]. The models define a
mapping from the grid to the data space. The
coordinates on the grid are uniquely determined
by the index i of a node, and the model mi gives
the location in the data space. The whole grid
becomes mapped into an “elastic net” in the data
space. While being a mapping from the grid to
the input space, the SOM defines a projection
from the input space to the discrete grid locations
as well; each data point is projected to the node
having the closest model.

The original online SOM algorithm updates
the model vectors toward the current input vector
at time t ,

mi .t C 1/ D mi .t/C hci .t/.x.t/ �mi .t//:

i mi

ecapsataDdirgMOS

Self-Organizing Maps, Fig. 1 A schematic diagram
showing how the SOM grid of units (circles on the
left, neighbors connected with lines) corresponds to an

“elastic net” in the data space. The mapping from the grid
locations, determined by the indices i , to the data space is
given by the model vectors mi attached to the units i

http://dx.doi.org/10.1007/978-1-4899-7687-1_146

Self-Organizing Maps 1131

S

Here c is the index of the unit having the closest
model vector to x(t /, and hci .t/ is the neighbor-
hood function or adaptation kernel. The kernel is
a decreasing function of the distance between the
units i and c on the grid; it forces neighboring
units to adapt toward similar input samples. The
height and width of h are decreasing functions of
time t . In an iteration over time and over the dif-
ferent inputs, the model vectors become ordered
and specialize to represent different regions of the
input space.

The online version of �K-means clustering is
a special case of the SOM learning rule, where
only the closest model vector is adapted. That
is, the neighborhood function is hci .t/ D ˛.t/

for i D c and hci D 0 otherwise. Here ˛.t/ is
the adaptation coefficient, a decreasing scalar. In
short, K-means and SOM use the prototypes in
the same way, but in SOM the prototypes have an
inherent order that stems from fixing them onto
a grid and updating the prototypes to represent
both the data mapped to themselves and to their
neighbors.

A neural interpretation of the SOM adapta-
tion process is that the nodes are feature de-
tector neurons or processing modules that in a
� competitive learning process become special-
ized to represent different kinds of inputs. The
neighborhood function is a plasticity kernel that
forces neighboring neurons to adapt at the same
time. The kernel transforms the discrete set of
feature detectors into feature maps analogous to
ordered brain maps of sensor inputs, and more
generally to maps of more abstract properties of
the input data.

A third interpretation of the SOM is as a vector
quantizer. The task of a vector quantizer is to
encode inputs with indexes of prototypes, often
called codebook vectors, such that a distortion
measure is minimized. If there is noise that may
change the indexes, the distribution of the noise
should be used as the neighborhood function,
and then the distortion becomes minimized by
a variant of SOM (Luttrell 1994). In summary,
the SOM can be viewed as an algorithm for
producing codebooks ordered on a grid.

While it has turned out to be hard to rig-
orously analyze the properties of the SOM al-

gorithm (Fort 2006), its fixed points may be
informative. In a fixed point the models must
fulfill

mi D

P
x hc.x/;ixP

x hc.x;i/
;

that is, each model vector is in the centroid of data
projected to it and its neighbors. The definition of
a principal curve (Hastie et al. 2001), a nonlinear
generalization of principal components (see
� Principal Component Analysis), essentially
is that the curve goes through the centroid of
data projected to it. Hence, one interpretation of
the SOM is a discretized, smoothed, nonlinear
generalization of principal components. In
short, SOMs aim to describe the variation
in the data nonlinearly with their discrete
grids.

Finally, a popular prototype-based classifier,
� learning vector quantization (LVQ) (Kohonen
2001), can be loosely interpreted as a variant of
SOMs, although it does not have the neighbor-
hood function and hence, the prototypes do not
have an order.

Programs and Data

The SOM has been implemented in several
commercial packages and as freeware. Two
examples, SOM PAK written in C and Matlab
SOM Toolbox (http://www.cis.hut.fi/research/
software) came from Kohonen’s group.

Applications

The SOM can be used as a nonlinear dimension-
ality reduction method, by projecting each data
vector into the grid location having the closest
model vector. An image of the grid can be used
for information visualization. Since all grid loca-
tions are clusters, the SOM display actually visu-
alizes an ordered set of clusters, or a quantized
image of the principal manifold in data. More
specifically, the SOM units can be thought of as

http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_146
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_464
http://www.cis.hut.fi/research/software
http://www.cis.hut.fi/research/software

1132 Semantic Annotation Of Text Using Open Semantic Resources

subclusters, and data clusters may form larger
areas on the SOM grid.

SOM-based visualizations can be used for
illustrating the proximity relationships of data
vectors, such as documents in the WEBSOM doc-
ument maps (Kohonen et al. 2000), or monitoring
the change of a system such as an industrial pro-
cess or the utterances of a speaker, as a trajectory
on the SOM display. More applications can be
found in a collected bibliography (the latest one
is Pöllä et al. 2009).

Cross-References

�ART
�Competitive Learning
�Dimensionality Reduction
�Hebbian Learning
�K-means Clustering
�Learning Vector Quantization

Recommended Reading

Bishop CM, Svensén M, Williams CKI (1998) GTM:
the generative topographic mapping. Neural Com-
put 10:215–234

Fort JC (2006) SOM’s mathematics. Neural Netw 19:
812–816

Hastie T, Tibshirani R, Friedman J (2001) The ele-
ments of statistical learning. Springer, New York

Heskes T (2001) Self-organizing maps, vector quanti-
zation, and mixture modeling. IEEE Trans Neural
Netw 12:1299–1305

Kohonen T (1982) Self-organized formation of topo-
logically correct feature maps. Biol Cybern 43:59–
69

Kohonen T (2001) Self-organizing maps, 3rd edn.
Springer, Berlin

Kohonen T, Kaski S, Lagus K, Salojärvi J, Honkela J,
Paatero V et al (2000) Self organization of a massive
document collection. IEEE Trans Neural Netw 11:
574–585

Luttrell SP (1994) A Bayesian analysis of self-
organizing maps. Neural Comput 6:767–794

Pöllä M, Honkela T, Kohonen T (2009) Bibliography
of self-organizing map (SOM) papers: 2002–2005
addendum. Report TKK-ICS-R23, Helsinki Univer-
sity of Technology, Department of Information and
Computer Science, Espoo

von der Malsburg C (1973) Self-organization of orien-
tation sensitive cells in the striate cortex. Kybernetik
14:85–100

Semantic Annotation of Text Using
Open Semantic Resources

Stefano Pacifico1, Janez Starc1, Janez Brank1,
Luka Bradesko1, and Marko Grobelnik2

1Jožef Stefan Insitute, Ljubljana, Slovenia
2Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia

Abstract

In this article, we present the topic of se-
mantic annotation of text using open semantic
resources. We present an introduction to the
concept and its history, provide basic notions
around semantic annotations and open seman-
tic resources, in particular illustrating com-
monly used open semantic resources repos-
itories such as Wikipedia, Wordnet, or DB-
Pedia. Further, we discuss the issues around
creating open semantic resources, both from
the annotation perspective, and from the for-
mat perspective. Finally, we introduce two
well-known semantic annotation tasks, entity
linking (or named entity disambiguation), and
semantic parsing, with corresponding sample
implementations, explaining in particular how
they work and how make use of open semantic
resources.

Synonyms

Synopsis: Text annotation is the association of
metadata to fragments of text. When the associ-
ated metadata provides a model for interpreting
the fragment of text, we talk about semantic
annotation of text. A common case is the use
of knowledge extracted from thesauri, or ontolo-
gies to provide the machine with structure and
inference mechanisms for the meaning of the text
under consideration (Völkel et al. 2006).

The spreading of the Semantic Web (Berners-
Lee et al. 2001) and Linked Open Data (http://
linkeddata.org/) movements led to the adoption of
open data sets having well defined for semantic

http://dx.doi.org/10.1007/978-1-4899-7687-1_100509
http://dx.doi.org/10.1007/978-1-4899-7687-1_146
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_360
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_464
http://linkeddata.org/
http://linkeddata.org/

Semantic Annotation Of Text Using Open Semantic Resources 1133

S

annotations. Examples include disambiguation
of word senses using knowledge bases or the
analysis of the actions and roles described in a
fragment of text.

Introduction

Semantic annotations are used to improve the
quality of several applications including text clas-
sification, question answering, machine reading,
and understanding. They are used in a variety of
domains including, media, genomics marketing,
and social policies. (Uren et al. 2006).

Using open semantic resources for semantic
annotation has become common in the state-
of-the-art semantic annotation systems. Open
semantic resources provide an accessible
framework for people and applications to
link structured semantic information to text,
effectively allowing ideas like the Semantic Web
to come alive, offering an exponentially large
set of annotated documents (Völkel et al. 2006).
An exemplar is Wikipedia, which provides a
large corpus of semi-structured text associated
with concepts and entities, wide multilingual
coverage, and a large network of internal links
providing both structure and a dictionary of sur-
face forms for the linked concepts and entities. At
the same time, Wikipedia offers limited breadth
in specific domains and an uneven distribution
of quality and thoroughness throughout concepts
and languages (Bradesko et al. 2015).

Background Knowledge

In this section, we present examples of different
types of open semantic resources. Further, we
show some of the problems typically encountered
when obtaining annotated corpora and finally
problems associated with the representation of
annotations.

The most used repositories of open semantic
resources fall in two categories, lexical databases
and knowledge bases. Lexical databases are
repositories of words and metadata associated
with them. Knowledge bases, instead, are
organized collections of structured data and

their relationships. Examples of lexical databases
include WordNet and FrameNet (https://framenet.
icsi.berkeley.edu/fndrupal/about).

WordNet is a lexical database where words
are related through synonymy and are grouped
into synsets, sets of terms having the same mean-
ing. Synsets are related by hyperonimy (ISA re-
lationship), meronimy (part-whole relationship),
and antinomy (opposite relationship), among the
others (Fellbaum 2005).

FrameNet is a lexical database that is both
human and machine readable, containing more
than 10,000 word senses, and more than 170,000
manually annotated sentences provide a unique
training data set for semantic role labeling
(Gildea and Jurafsky 2002). FrameNet is based
on the frame semantics theory (Baker et al. 1998)
in which meaning is conveyed with a semantic
frame structure that includes the type of an event,
the participants, and their roles and relations.
For example, the frame apply heat is used in the
context of cooking and contains frame elements
(FEs): cook, food, heating instrument, and
container. Words such as fry, bake, and boil, are
called lexical units (LUs) of the apply heat frame
and are used to detect if the sentence should be
interpreted in the context of the specified frame.

Knowledge bases, instead, constitute part of
the critical infrastructure of a knowledge sys-
tem. Knowledge bases are traditionally studied
in knowledge representation and reasoning that,
according to Brachman et al., is “the area of
artificial Intelligence (AI) concerned with how
knowledge can be represented symbolically and
manipulated in an automated way by reason-
ing programs” (Brachman and Levesque 2004).
Notable open knowledge bases used in semantic
annotation systems include DBPedia, YAGO, and
Wikidata. DBPedia is a large-scale, multilingual
knowledge base created by extracting structured
data from Wikipedia editions in 111 languages.
The DBPedia project maps Wikipedia infoboxes
from 27 different language editions to a single
shared ontology consisting of 320 classes and
1,650 properties. DBPedia has more than 27
million links to other open data repositories via
the owl::sameas relation, including common
sense ontologies and government data (Lehmann

https://framenet.icsi.berkeley.edu/fndrupal/about
https://framenet.icsi.berkeley.edu/fndrupal/about

1134 Semantic Annotation Of Text Using Open Semantic Resources

et al. 2015). YAGO is another ontology auto-
matically built from Wikipedia, with links to
Geonames (http://geonames.org) and WordNet.
Among other things, it features spatial and tem-
poral knowledge and inference, and as in the
case of DBpedia, it covers different languages
(Mahdisoltani et al. 2015).

The other knowledge base mentioned,
Wikidata, was created as the knowledge
base of Wikipedia. Later, it absorbed the
popular collaborative knowledge base Freebase
(Bollacker et al. 2008). Wikidata is the central
data management platform of Wikipedia. The
data are highly interlinked and connected to
many other data sets, and, since 2014, RDF
exports that connect Wikidata to the Linked Data
Web are available (Erxleben et al. 2014). Other
open knowledge bases worth mentioning include
BabelNet (http://babelnet.org) and OpenCyc
(http://opencyc.org).

While knowledge bases provide the resources
for systems to perform semantic annotations, cor-
pora annotated with those resources are neces-
sary to train evaluate the performance of sys-
tems. Manually annotated corpora are difficult
and expensive to build, as exemplified by the
CLEF corpus (Roberts et al. 2007), a set of struc-
tured and unstructured annotated health records.
Examples of corpora annotations with open se-
mantic resources include the data sets released
for the shared tasks of the Conference on Natural
Language Learning (CoNLL) (Surdeanu et al.
2008; Hajič et al. 2009) as the treebanks made
available for semantic parsing or named entities
and semantic role labeling. As mentioned before,
Wikipedia, together with its derivative knowledge
bases, constitutes one of the largest manually
annotated corpora, albeit the ever-evolving and
with varying degrees of quality and consistency
in the annotations.

Finally, we want to touch on the choice of the
representation for semantic annotations. First,
we should distinguish between format (i.e., how
to represent, e.g., XML) and model (i.e., what
to represent, e.g., RDF). Annotations formats
and models vary by syntax style (e.g., markup
vs declarative language), expressive power, or
computational complexity. Notably, RDF, the Re-

source Description Framework (http://www.w3.
org/TR/1999/REC-rdf-syntax-19990222/), and
RDF Schema, a data-modeling oriented extension
of RDF, provide the mechanics of the popular
triple representation: subject, predicate, and
object. After the introduction of RDF, other
logical representations such as OWL (W3C
2009), Description Logics (Baader et al. 2010)
and Schema.org (http://schema.org/docs/about.
html) followed, with the aim of implementing
the Semantic Web vision. Formalisms, like the
Knowledge Interchange Format (http://www.ksl.
stanford.edu/knowledge-sharing/kif/), propose
higher-level constructs at the price of a more
complex and verbose language, while others, like
the Knowledge Annotation Format (Bosma et al.
2009), aim to address nesting and integration of
different annotation sources.

Structure of Learning Systems

Common types of semantic annotations include,
but are not limited to, the disambiguation of
terms (words or phrases) and to the parsing of
sentences from a semantic point of view. We
will focus on these two in the remainder of this
section.

The task of disambiguating the meaning of
fragments of text can range from generic word-
sense disambiguation (Navigli 2009), in which
the system is given the task of assigning a unique
sense to a word or expression from a specific
set of canonical senses to more specialized prob-
lems, such as the one commonly known as wik-
ification, the task of linking words or expres-
sion to a Wikipedia entry (Mihalcea and Csomai
2007; Cucerzan 2007; Milne and Witten 2008),
or named-entity disambiguation, that is, word-
sense disambiguation applied to entities bearing
a proper name (e.g., people, organizations, or
locations) (Hoffart et al. 2011; Nguyen et al.
2014; Mendes et al. 2011).

Examples of features used by algorithms for
disambiguation problems include prior proba-
bility, the probability that a given surface form
refers to a specific sense or entity, calculated
from annotated training data sets; similarity, in

http://geonames.org
http://babelnet.org
http://opencyc.org
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://schema.org/docs/about.html
http://schema.org/docs/about.html
http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://www.ksl.stanford.edu/knowledge-sharing/kif/

Semantic Annotation Of Text Using Open Semantic Resources 1135

S

which segment of texts are compared with gloss
overlap or other similarity measures (Lesk 1986;
Banerjee and Pedersen 2002); co-occurrence, the
learned probability that a pair of senses or entities
appear together in a document; and coherence a
calculated measure of relatedness between senses
or entities (e.g., number of incoming links shared
by two Wikipedia entries or gloss overlap of
the description of two entities). These features
can be directly used in classification algorithms
like support vector machines or combined to
create different features. For examples, related-
ness graphs between mentions and senses can be
created, using features like the ones mentioned, to
calculate the weights of the graph. In that spirit,
recent state-of-the-art solutions apply algorithms
similar to page rank to such graphs. As a result,
the annotations with the highest ranking form
a reasonably coherent set of annotations (Per-
shina et al. 2015). Other unsupervised approaches
include identifying senses of n-grams based on
contextual windows of text around the candidate
n-gram (Navigli 2009).

Disambiguation algorithms typically follow
three stages: (1) finding the fragments of text
that require disambiguation, (2) producing a list
of candidate senses, and (3) choosing the target
sense for the disambiguation. Implementations
vary in how they tackle these steps. For exam-
ple, named-entity recognition algorithms can be
run on the text to identify the surface forms of
named entities requiring disambiguation, as in
Hoffart et al. (2011), while wikification algo-
rithms rely on either user selection or by auto-
matically selecting n-grams that appear as anchor
links in Wikipedia with a probability higher than
a given threshold (Cucerzan 2007; Milne and
Witten 2008). Candidates are selected by reverse
lookup in dictionaries built from annotated ex-
amples or using lexical similarity functions such
locality-sensitive hashing to address wrong or al-
ternative spellings (e.g., traveling vs travelling).

The other common semantic annotation task is
semantic parsing. Semantic parsing is the process
of mapping fragments of text into a representa-
tion that reflects their meaning. It can also be seen
as the reverse of language generation. Repre-
sentation languages range from more expressive,

such as first-order logic and lambda calculus, to
more simple database query languages designed
specifically for a small domain, like Geoquery
(Zelle and Mooney 1996).

Parsing is usually divided into assigning
meaning representations to lexical units and
composing these representations into a single
one. In some cases, syntactic parsing is
performed on the input text, and the results are
used to derive the semantics from the syntax
tree (Poon and Domingos 2009). Other methods
perform syntactic and semantic parsing together
using formalisms like combinatory categorial
grammars (CCG) (Zettlemoyer and Collins 2009)
or different variations of context-free grammars
(CFG)(Wong and Mooney 2006).

Early semantic parsers were mostly hand-
crafted (Warren 1981). It turned out that
developing training corpora is not more difficult
than manually designing robust semantic parsers.
With the availability of training corpora and
improved hardware, learning approaches started
to emerge. These approaches automatically learn
from sets of sentence meaning representation
pairs. Usually, an expectation-maximization-
like algorithm is used to train a model, which
selects the most likely representation for a given
sentence.

Training corpora are usually expensive to de-
velop and limited to a particular domain. This
led to the development of methods that are large
scale, domain independent, and to the use of other
forms of supervision. The level of supervision
ranges from unsupervised methods (Poon and
Domingos 2009), which bootstrap from a small
set of training pairs, to weakly supervised meth-
ods (Cai and Yates 2013), which use knowledge
from a target knowledge base, like Freebase, to
methods that learn from question answer pairs
(Berant et al. 2013). Lately, methods that use
neural models to model the semantics have been
developed (Bordes et al. 2012). The evaluation of
semantic parsing can be performed by manually
inspecting the generated meaning representations
or in a question answer setting, where questions
are mapped to database queries. The queries are
then executed to obtain a set of answers, which
are compared to the golden set of answers.

1136 Semantic Annotation Of Text Using Open Semantic Resources

Notable systems for semantic annotations
include AIDA, a system developed by the Max
Planck Institute for named-entity disambiguation,
able to link named entities contained in text
to entities in the YAGO2 ontology; DBPedia
Spotlight (https://github.com/dbpedia-spotlight/
dbpedia-spotlight/wiki), a system from Free
University of Berlin for extracting entities from
text and linking them to the DBpedia ontology;
and Babelfy (http://babelfy.org).

Recommended Reading

• Johannes Hoffart, Mohamed Amir Yosef,
Ilaria Bordino, Hagen F”urstenau Manfred
Pinkal, Marc Spaniol, Bilyana Taneva,
Stefan Thater, and Gerhard Weikum. Robust
Disambiguation of Named Entities in Text.
In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language
Processing, EMNLP 2011, Edinburgh,
Scotland, pages 782–792, 2011.

• David Milne and Ian H. Witten. Learning
to link with wikipedia. In Proceedings of
the 17th ACM Conference on Information
and Knowledge Management, pages 509–518.
ACM, 2008.

• Roberto Navigli. Word sense disambiguation:
A survey. ACM Comput. Surv., 41(2):10:1–
10:69, February 2009.

• Luke S Zettlemoyer and Michael Collins.
Learning context-dependent mappings from
sentences to logical form. In Proceedings of
the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint
Conference on Natural Language Processing
of the AFNLP: Volume 2, pages 976–984.
Association for Computational Linguistics,
2009.

Baader F, Calvanese D, McGuiness DL, Nardi D,
Patel-Schneieder PF (2010) The description logic
handbook: theory, implementation, and applica-
tions. Cambridge University Press, Cambridge

Baker CF, Fillmore CJ, Lowe JB (1998) The Berkeley
framenet project. In: Proceedings of the 17th in-
ternational conference on computational linguistics.
Association for computational linguistics, Montreal,
vol 1, pp 86–90

Banerjee S, Pedersen T (2002) An adapted lesk algo-
rithm for word sense disambiguation using wordnet.

In: Proceedings of computational linguistics and
intelligent text processing,third international confer-
ence, CICLing 2002, Mexico City, pp 136–145

Berant J, Chou A, Frostig R, Liang P (2013) Semantic
parsing on freebase from question-answer pairs. In:
EMNLP, Seattle, pp 1533–1544

Berners-Lee T, Hendler J, Lassila O (2001) The seman-
tic web. Sci Am 284:34–43

Bollacker K, Evans C, Paritosh P, Sturge T, Taylor
J (2008) Freebase: a collaboratively created graph
database for structuring human knowledge. In: Pro-
ceedings of the 2008 ACM SIGMOD international
conference on management of data, SIGMOD’08.
ACM, New York, pp 1247–1250

Bordes A, Glorot X, Weston J, Bengio Y (2012) Joint
learning of words and meaning representations for
open-text semantic parsing. In: International con-
ference on artificial intelligence and statistics, La
Palma, pp 127–135

Bosma W, Vossen P, Soroa A, Rigau G, Tesconi M,
Marchetti A, Monachini M, Aliprandi C (2009)
KAF: a generic semantic annotation format. In:
Proceedings of the GL2009 workshop on semantic
annotation, Pisa

Brachman RJ, Levesque HJ (2004) Knowledge rep-
resentation and reasoning. The Morgan Kaufmann
series in artificial intelligence series. Morgan Kauf-
mann, Burlington

Bradesko L, Starc J, Pacifico S (2015) Isaac bloomberg
meets Michael bloomberg: better entity disam-
biguation for the news. In: Proceedings of the
24th international conference on World Wide Web
companion WWW, companion volume, Florence,
pp 631–635

Cai Q, Yates A (2013) Large-scale semantic parsing via
schema matching and lexicon extension. In: ACL
(1), Sofia. Citeseer, pp 423–433

Cucerzan S (2007) Large-scale named entity disam-
biguation based on wikipedia data. In: Proceeding
of the 2007 joint conference on EMNLP and CNLL,
Prague, pp 708–716

Erxleben F, Günther M, Krötzsch M, Mendez J, Vran-
decic J (2014) Introducing Wikidata to the linked
data web. In: The semantic web – ISWC 2014
– Proceedings of 13th international semantic web
conference part I, Riva del Garda, pp 50–65

Fellbaum C (2005) Wordnet and wordnets. In: Brown
K (ed) Encyclopedia of language and linguistics.
Oxford, Elsevier, pp 665–670

Gildea D, Jurafsky D (2002) Automatic labeling of
semantic roles. Comput Linguist 28:245–288

Hajič J, Ciaramita M, Johansson R, Kawahara D, Martı́
M, Màrquez L, Meyers A, Nivre J, Padó S, Štěpánek
J et al (2009) The conll-2009 shared task: syntactic
and semantic dependencies in multiple languages.
In: Proceedings of the thirteenth conference on com-
putational natural language learning: shared task.
Association for computational linguistics, Strouds-
burg, pp 1–18

Hoffart J, Yosef MA, Bordino I, Fürstenau H, Pinkal
M, Spaniol M, Taneva B, Thater S, Weikum G

https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
http://babelfy.org

Semi-naive Bayesian Learning 1137

S

(2011) Robust disambiguation of named entities in
text. In: Proceedings of the 2011 conference on
empirical methods in natural language processing,
EMNLP 2011, Edinburgh, pp 782–792

Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas
D, Mendes PN, Hellmann S, Morsey M, van Kleef
P, Auer S, Bizer C (2015) DBpedia – a large-
scale, multilingual knowledge base extracted from
wikipedia. Semant Web J 6(2):167–195

Lesk M (1986) Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In: ACM special in-
terest group for design of communication, Chicago,
pp 24–26

Mahdisoltani F, Biega J, Suchanek F (2015) YAGO3:
a knowledge base from multilingual Wikipedias. In:
Proceeding of 7th biennial conference on innovative
data systems research (CIDR 2015), Asilomar

Mendes PN, Jakob M, Garcia-Silva A, Bizer C (2011)
Dbpedia spotlight: shedding light on the web of
documents. In: Proceedings of the 7th international
conference on semantic systems (I-semantics), Graz

Mihalcea R, Csomai A (2007) Wikify!: linking docu-
ments to encyclopedic knowledge. In: Proceedings
of the sixteenth ACM conference on information
and knowledge management, CIKM’07. ACM, New
York, pp 233–242

Milne D, Witten IH (2008) Learning to link with
wikipedia. In: Proceedings of the 17th ACM confer-
ence on information and knowledge management.
ACM, Napa Valley, pp 509–518

Navigli R (2009) Word sense disambiguation: a survey.
ACM Comput Surv 41(2):10:1–10:69

Nguyen DB, Hoffart J, Theobald M, Weikum G
(2014) AIDA-light: high-throughput named-entity
disambiguation. In: Linked data on the web at
WWW2014, Seoul

W3C OWL Working Group (2009) OWL 2 web on-
tology language: document overview. W3C Recom-
mendation, 27 October 2009. Available at http://
www.w3.org/TR/owl2-overview/

Pershina M, He Y, Grishman R (2015) Personalized
page rank for named entity disambiguation. In:
Proceedings of the 2015 conference of the North
American chapter of the association for compu-
tational linguistics: human language technologies.
Association for computational linguistics, Denver,
pp 238–243

Poon H, Domingos P (2009) Unsupervised semantic
parsing. In: Proceedings of the 2009 conference on
empirical methods in natural language processing,
vol 1. Association for computational linguistics,
Singapore, pp 1–10

Roberts A, Gaizauskas R, Hepple M, Davis N,
Demetriou G, Guo Y, Kola JS, Roberts I, Setzer A,
Tapuria A et al (2007) The clef corpus: semantic
annotation of clinical text. In: AMIA annual sym-
posium proceedings. American Medical Informatics
Association, Chicago, vol 2007, p 625

Surdeanu M, Johansson R, Meyers A, Màrquez L,
Nivre J (2008) The conll-2008 shared task on joint

parsing of syntactic and semantic dependencies. In:
Proceedings of the twelfth conference on compu-
tational natural language learning. Association for
computational linguistics, Manchester, pp 159–177

Uren V, Cimiano P, Iria J, Handschuh S, Vargas-Vera
M, Motta E, Ciravegna F (2006) Semantic annota-
tion for knowledge management: requirements and
a survey of the state of the art. Web Semant sci serv
Agents World Wide Web 4(1):14–28

Völkel M, Krötzsch M, Vrandečić D, Haller H, Studer
R (2006) Semantic wikipedia. In: Proceedings of the
15th international conference on World Wide Web,
WWW 2006, Edinburgh

Warren DHD (1981) Efficient processing of interactive
relational data base queries expressed in logic. In:
Proceedings of the seventh international conference
on very large data bases, vol 7. VLDB Endowment,
Cannes, pp 272–281

Wong YW, Mooney RJ (2006) Learning for seman-
tic parsing with statistical machine translation. In:
Proceedings of the main conference on human lan-
guage technology conference of the North American
chapter of the association of computational linguis-
tics. Association for computational linguistics, New
York, pp 439–446

Zelle JM, Mooney RJ (1996) Learning to parse
database queries using inductive logic program-
ming. In: Proceedings of the national conference on
artificial intelligence, Portland, pp 1050–1055

Zettlemoyer LS, Collins M (2009) Learning context-
dependent mappings from sentences to logical form.
In: Proceedings of the joint conference of the 47th
annual meeting of the ACL and the 4th international
joint conference on natural language processing of
the AFNLP, vol 2. Association for Computational
Linguistics, Stroudsburg, pp 976–984

Semantic Mapping

�Text Visualization

Semi-naive Bayesian Learning

Fei Zheng1 and Geoffrey I. Webb2

1Faculty of Information Technology, Monash
University, Clayton, Melbourne, VIC, Australia
2Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

Semi-naive Bayesian learning refers to a field of
� Supervised Classification that seeks to enhance
the classification and conditional probability esti-

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1007/978-1-4899-7687-1_837
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

1138 Semi-naive Bayesian Learning

mation accuracy of � naive Bayes by relaxing its
attribute independence assumption.

Motivation and Background

The assumption underlying � naive Bayes is that
attributes are independent of each other, given
the class. This is an unrealistic assumption for
many applications. Violations of this assumption
can render naive Bayes’ classification subopti-
mal. There have been many attempts to improve
the classification accuracy and probability esti-
mation of naive Bayes by relaxing the attribute
independence assumption while at the same time
retaining much of its simplicity and efficiency.

Taxonomy of Semi-naive Bayesian
Techniques

Semi-naive Bayesian methods can be roughly
subdivided into five high-level strategies for re-
laxing the independence assumption.

• The first strategy forms an attribute subset by
deleting attributes to remove harmful inter-
dependencies and applies conventional naive
Bayes to this attribute subset.

• The second strategy modifies naive Bayes by
adding explicit interdependencies between at-
tributes.

• The third strategy accommodates violations
of the attribute independence assumption by
applying naive Bayes to a subset of training
set. Note that the second and third strategies
are not mutually exclusive.

• The fourth strategy performs adjustments to
the output of naive Bayes without altering its
direct operation.

• The fifth strategy introduces hidden variables
to naive Bayes.

Methods that Apply Naive Bayes to a
Subset of Attributes

Due to the attribute independence assumption,
the accuracy of naive Bayes is often degraded

by the presence of strongly correlated attributes.
Irrelevant attributes may also degrade the accu-
racy of naive Bayes, in effect increasing variance
without decreasing bias. Hence, it is useful to
remove both strongly correlated and irrelevant
attributes.

Backward sequential elimination (Kittler
1986) is an effective wrapper technique to select
an attribute subset and has been profitably applied
to naive Bayes. It begins with the complete
attribute set and iteratively removes successive
attributes. On each iteration, naive Bayes is
applied to every subset of attributes that can
be formed by removing one further attribute.
The attribute whose deletion most improves
training set accuracy is then removed, and the
process repeated. It terminates the process when
subsequent attribute deletion does not improve
training set accuracy. Conventional naive Bayes
is then applied to the resulting attribute subset.

One extreme type of interdependencies be-
tween attributes results in a value of one being a
generalization of a value of the other. For exam-
ple, GenderD female is a generalization of Preg-
nantD yes. Subsumption resolution (SR) (Zheng
et al. 2012) identifies at classification time pairs
of attribute values such that one appears to sub-
sume (be a generalization of) the other and delete
the generalization. It uses the criterion jTxi j D
jTxi ;xj

j � u to infer that attribute value xj is a
generalization of attribute value xi , where jTxi

j

is the number of training cases with value xi ,
jTxi

; xj j is the number of training cases with
both values, and u is a user-specified minimum
frequency. When SR is applied to naive Bayes,
the resulting classifier acts as naive Bayes except
that it deletes generalization attribute-values at
classification time if a specialization is detected.

Methods that Alter Naive Bayes by
Allowing Interdependencies Between
Attributes

Interdependencies between attributes can be ad-
dressed directly by allowing an attribute to de-
pend on other non-class attributes. Sahami (1996)
introduces the terminology of the ´-dependence

http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_581

Semi-naive Bayesian Learning 1139

S

Y

X1 X2 Xi Xi+1 Xn

Y

X1 X2 Xi Xi+1 Xn
Xiq+1 Xiq+2 Xin

XiqXi2Xi1

Ya b c

Semi-naive Bayesian Learning, Fig. 1 Bayesian Network. (a) one-dependence classifier, (b) SuperParent one-
dependence classifier and (c) ´-dependence classifier .´ � 0/

Bayesian classifier, in which each attribute de-
pends upon the class and at most ´ other at-
tributes. Figure 1 depicts methods in this group
from the �Bayesian Network perspective.

In Fig. 1a, each attribute depends on the
class and at most one another attribute. �Tree
Augmented Naive Bayes (TAN) (Friedman
et al. 1997) is a representative one-dependence
classifier. It efficiently finds a directed spanning
tree by maximizing the log-likelihood and
employs this tree to perform classification.
SuperParent TAN (Keogh and Pazzani 1999)
is an effective variant of TAN.

A SuperParent one-dependence classifier
(Fig. 1b) is a special case of one-dependence
classifiers, in which an attribute called the
SuperParent (X1 in this graph), is selected as
the parent of all the other attributes. �Averaged
One-Dependence Estimators (AODE) (Webb
et al. 2005) selects a restricted class of
one-dependence classifiers and aggregates
the predictions of all qualified classifiers
within this class. Maximum a posteriori linear
mixture of generative distributions (MAPLMG)
(Cerquides and Mántaras 2005) extends AODE
by assigning a weight to each one-dependence
classifier.

Two ´-dependence classifiers .´ � 0/ are
NBTree (Kohavi 1996) and lazy Bayesian
rules (LBR) (Zheng and Webb 2000), both
of which may add any number of non-class-
parents for an attribute. In Fig. 1c, attributes in
fXiqC1 ; : : : ; Xing depend on all the attributes in
fXi1 ; : : : ; Xiq g. The main difference between
these two methods is that NBTree builds a
single tree for all training instances while LBR
generates a Bayesian rule for each test instance.

Methods that Apply Naive Bayes to a
Subset of the Training Set

Another effective approach to accommodating vi-
olations of the conditional independence assump-
tion is to apply naive Bayes to a subset of the
training set, as it is possible that the assumption,
although violated in the whole training set, may
hold or approximately hold in a subset of the
training set. NBTree and LBR use a local naive
Bayes to classify an instance and can also be
classified into this group. Locally weighted naive
Bayes (LWNB) (Frank et al. 2003) applies naive
Bayes to a neighborhood of the test instance, in
which each instance is assigned a weight decreas-
ing linearly with the Euclidean distance to the test
instance. The number of instances in the subset is
determined by a user-specified parameter. Only
those instances whose weights are greater than
zero are used for classification.

Methods that Calibrate Naive Bayes’
Probability Estimates

Methods in this group make adjustments to the
distortion in estimated posterior probabilities
resulting from violations of independence
assumption. Isotonic regression (IR) (Zadrozny
and Elkan 2002) is a nonparametric calibration
method which produces a monotonically
increasing transformation of the probability
outcome of naive Bayes. It uses a pair-adjacent
violators algorithm (Ayer et al. 1955) to perform
calibration. To classify a test instance, IR
first finds the interval in which the estimated
posterior probability fits and predicts the

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_850
http://dx.doi.org/10.1007/978-1-4899-7687-1_48

1140 Semi-naive Bayesian Learning

isotonic regression estimate of this interval as
the calibrated posterior probability. Adjusted
probability naive Bayesian classification (Webb
and Pazzani 1998) makes adjustments to class
probabilities, using a simple hill-climbing
search to find adjustments that maximize
the � leave-one-out cross validation accuracy
estimate. Starting with the conditional attribute-
value frequency table generated by naive Bayes,
iterative Bayes (Gama 2003) iteratively updates
the frequency table by cycling through all training
instances.

Methods that Introduce Hidden
Variables to Naive Bayes

Creating hidden variables or joining attributes
is another effective approach to relaxing the at-
tribute independence assumption. Backward se-
quential elimination and joining (BSEJ) (Pazzani
1996) extends BSE by creating new Cartesian
product attributes. It considers joining each pair
of attributes and creates new Cartesian product at-
tributes if the action improves leave-one-out cross
validation accuracy. It deletes original attributes
and also new Cartesian product attributes during
a hill-climbing search. This process of joining
or deleting is repeated until there is no further
accuracy improvement. Hierarchical naive Bayes
(Zhang et al. 2004) uses conditional mutual infor-
mation as a criterion to create a hidden variable
whose value set is initialized to the Cartesian
product over all the value sets of its children.
Values of a hidden variable are then collapsed
by maximizing conditional log-likelihood via the
�minimum description length principle (Rissa-
nen 1978).

Selection Between Semi-naive
Bayesian Methods

No algorithm is universally optimal in terms of
generalization accuracy. General recommenda-
tions for selection between semi-naive Bayesian
methods is provided based on � bias-variance
tradeoff together with characteristics of the appli-
cation to which they are applied.

Error can be decomposed into bias and vari-
ance (see � bias variance decomposition). Bias
measures how closely a learner is able to ap-
proximate the decision surfaces for a domain and
variance measures the sensitivity of a learner to
random variations in the training data. Unfor-
tunately, we cannot, in general, minimize bias
and variance simultaneously. There is a bias-
variance tradeoff such that bias typically de-
creases when variance increases and vice versa.
Data set size usually interacts with bias and
variance and in turn affects error. Since differ-
ences between samples are expected to decrease
with increasing sample size, differences between
models formed from those samples are expected
to decrease and hence variance is expected to
decrease. Therefore, the bias proportion of er-
ror may be higher on large data sets than on
small data sets and the variance proportion of
error may be higher on small data sets than on
large data sets. Consequently, low bias algorithms
may have advantage in error on large data sets
and low variance algorithms may have advantage
in error on small data sets (Brain and Webb
2002).

Zheng and Webb (2005) compare eight semi-
naive Bayesian methods with naive Bayes. These
methods are BSE, FSS, TAN, SP-TAN, AODE,
NBTree, LBR, and BSEJ. NBTree, SP-TAN, and
BSEJ have relatively high training time com-
plexity, while LBR has high classification time
complexity. BSEJ has very high space complex-
ity. NBTree and BSEJ have very low bias and
high variance. Naive Bayes and AODE have
very low variance. AODE has a significant ad-
vantage in error over other semi-naive Bayesian
algorithms tested, with the exceptions of LBR
and SP-TAN. It achieves a lower error for more
data sets than LBR and SP-TAN without SP-
TAN’s high training time complexity and LBR’s
high test time complexity. Subsequent researches
(Cerquides and Mántaras 2005; Zheng and Webb
2006) show that MAPLMG and SR can in prac-
tice significantly improve both classification ac-
curacy and the precision of conditional proba-
bility estimates of AODE. However, MAPLMG
imposes very high training time overheads on
AODE, while SR imposes no extra training time

http://dx.doi.org/10.1007/978-1-4899-7687-1_469
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_28
http://dx.doi.org/10.1007/978-1-4899-7687-1_74

Semi-naive Bayesian Learning 1141

S

overheads and only modest test time overheads
on AODE.

Within the prevailing computational complex-
ity constraints, we suggest using the lowest bias
semi-naive Bayesian method for large training
data and lowest variance semi-naive Bayesian
method for small training data. An appropriate
tradeoff between bias and variance should be
sought for intermediate size training data. For
extremely small data, naive Bayes may be
superior and for large data NBTree and BSEJ
may be more appealing options if their compu-
tational complexity satisfies the computational
constraints of the application context. AODE
achieves very low variance, relatively low bias
and low training time and space complexity.
MAPLMG and SR further enhance AODE by
substantially reducing bias and error and im-
proving probability prediction with modest time
complexity. Consequently, they may prove com-
petitive over a considerable range of classification
tasks. Furthermore, MAPLMG may excel if the
primary consideration is attaining the highest
possible classification accuracy and SR may have
an advantage if one wishes efficient classification.

Cross-References

�Averaged One-Dependence Estimators
�Bayesian Network
�Naı̈ve Bayes

Recommended Reading

Ayer M, Brunk HD, Ewing GM, Reid WT, Silverman E
(1955) An empirical distribution function for sam-
pling with incomplete information. Ann Math Stat
26(4):641–647

Brain D, Webb GI (2002) The need for low bias
algorithms in classification learning from large data
sets. In: Proceedings of the sixteenth European con-
ference on principles of data mining and knowledge
discovery. Springer, Berlin, pp 62–73

Cerquides J, Mántaras RLD (2005) Robust Bayesian
linear classifier ensembles. In: Proceedings of the
sixteenth European conference on machine learning,
Porto, pp 70–81

Frank E, Hall M, Pfahringer B (2003) Locally
weighted naive Bayes. In: Proceedings of the nine-
teenth conference on uncertainty in artificial intel-

ligence, Acapulco. Morgan Kaufmann, San Fran-
cisco, pp 249–256

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian
network classifiers. Mach Learn 29(2):131–163

Gama J (2003) Iterative bayes. Theor Comput Sci
292(2):417–430

Keogh EJ, Pazzani MJ (1999) Learning augmented
Bayesian classifiers: a comparison of distribution-
based and classification-based approaches. In: Pro-
ceedings of the international workshop on arti-
ficial intelligence and statistics, Fort Lauderdale,
pp 225–230

Kittler J (1986) Feature selection and extraction. In:
Young TY, Fu KS (eds) Handbook of pattern
recognition and image processing. Academic Press,
New York

Kohavi R (1996) Scaling up the accuracy of naive-
Bayes classifiers: a decisiontree hybrid. In: Pro-
ceedings of the second international conference on
knowledge discovery and data mining, Portland,
pp 202–207

Pazzani MJ (1996) Constructive induction of Cartesian
product attributes. In: ISIS: information. statistics
and induction in science, Melbourne. World Scien-
tific, Singapore, pp 66–77

Rissanen J (1978) Modeling by shortest data descrip-
tion. Automatica 14:465–471

Sahami M (1996) Learning limited dependence
Bayesian classifiers. In: Proceedings of the second
international conference on knowledge discovery in
databases. AAAI Press, Menlo Park, pp 334–338

Webb GI, Pazzani MJ (1998) Adjusted probability
naive Bayesian induction. In: Proceedings of the
eleventh Australian joint conference on artificial
intelligence, Sydney. Springer, Berlin, pp 285–295

Webb GI, Boughton J, Wang Z (2005) Not so
naive Bayes: aggregating onedependence estima-
tors. Mach Learn 58(1):5–24

Webb GI, Boughton J, Zheng F, Ting KM, Salem H
(2012) Learning by extrapolation from marginal to
full-multivariate probability distributions: Decreas-
ingly naive Bayesian classification. Mach Learn
86(2):233–272

Zadrozny B, Elkan C (2002) Transforming classi-
fier scores into accurate multiclass probability es-
timates. In: Proceedings of the eighth international
conference on knowledge discovery and data min-
ing, Edmonton. ACM Press, New York, pp 694–699

Zhang NL, Nielsen TD, Jensen FV (2004) Latent vari-
able discovery in classification models. Artif Intell
Med 30(3):283–299

Zheng Z, Webb GI (2000) Lazy learning of Bayesian
rules. Mach Learn 41(1):53–84

Zheng F, Webb GI (2005) A comparative study of
semi-naive Bayes methods in classification learning.
In: Proceedings of the fourth australasian data min-
ing conference, Sydney, pp 141–156

Zheng F, Webb GI (2006) Efficient lazy elimination for
averaged-one dependence estimators. In: Proceed-
ings of the twenty-third international conference on

http://dx.doi.org/10.1007/978-1-4899-7687-1_48
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_581

1142 Semi-supervised Learning

machine learning. ACM Press, New York, pp 1113–
1120

Zheng F, Webb GI, Suraweera P, Zhu L (2012)
Subsumption Resolution: An Efficient and Effec-
tive Technique for Semi-Naive Bayesian Learning.
Mach Learn 87(1):93–125

Semi-supervised Learning

Xiaojin Zhu
University of Wisconsin-Madison, Madison,
WI, USA

Synonyms

Co-training; Learning from labeled and unlabeled
data; Transductive learning

Definition

Semi-supervised learning uses both labeled
and unlabeled data to perform an otherwise
� supervised learning or � unsupervised learning
task.

In the former case, there is a distinction
between inductive semi-supervised learning
and transductive learning. In inductive semi-
supervised learning, the learner has both labeled

training data f.xi ; yi /gliD1
i id
� p.x; y/ and

unlabeled training data fxiglCu
iDlC1

i id
� p.x/, and

learns a predictor f W X 7! Y; f 2 F , where
F is the hypothesis space. Here x 2 X is an
input instance, y 2 Y its target label (discrete for
� classification or continuous for � regression),
p(x, y/ the unknown joint distribution and p(x)
its marginal, and typically l � u. The goal is
to learn a predictor that predicts future test data
better than the predictor learned from the labeled
training data alone. In transductive learning, the
setting is the same except that one is solely
interested in the predictions on the unlabeled
training data fxiglCu

iDlC1, without any intention to
generalize to future test data.

In the latter case, an unsupervised learning
task is enhanced by labeled data. For example, in
semi-supervised clustering (a.k.a. � constrained

clustering) one may have a few must-links (two
instances must be in the same cluster) and cannot-
links (two instances cannot be in the same cluster)
in addition to the unlabeled instances to be
clustered; in semi-supervised � dimensionality
reduction one might have the target low-
dimensional coordinates on a few instances.

This entry will focus on the former case of
learning a predictor.

Motivation and Background

Semi-supervised learning is initially motivated
by its practical value in learning faster, better,
and cheaper. In many real world applications,
it is relatively easy to acquire a large amount
of unlabeled data fxg. For example, documents
can be crawled from the Web, images can be
obtained from surveillance cameras, and speech
can be collected from broadcast. However, their
corresponding labels fyg for the prediction task,
such as sentiment orientation, intrusion detec-
tion, and phonetic transcript, often requires slow
human annotation and expensive laboratory ex-
periments. This labeling bottleneck results in a
scarce of labeled data and a surplus of unlabeled
data. Therefore, being able to utilize the surplus
unlabeled data is desirable.

Recently, semi-supervised learning also finds
applications in cognitive psychology as a com-
putational model for human learning. In human
categorization and concept forming, the environ-
ment provides unsupervised data (e.g., a child
watching surrounding objects by herself) in ad-
dition to labeled data from a teacher (e.g., Dad
points to an object and says “bird!”). There is
evidence that human beings can combine labeled
and unlabeled data to facilitate learning.

The history of semi-supervised learning goes
back to at least the 1970s, when self-training,
transduction, and Gaussian mixtures with the
expectation-maximization (EM) algorithm first
emerged. It enjoyed an explosion of interest since
the 1990s, with the development of new algo-
rithms like co-training and transductive support
vector machines, new applications in natural lan-
guage processing and computer vision, and new

http://dx.doi.org/10.1007/978-1-4899-7687-1_100094
http://dx.doi.org/10.1007/978-1-4899-7687-1_100253
http://dx.doi.org/10.1007/978-1-4899-7687-1_100486
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_163
http://dx.doi.org/10.1007/978-1-4899-7687-1_71

Semi-supervised Learning 1143

S

theoretical analyses. More discussions can be
found in section 1.1.3 in Chapelle et al. (2006).

Theory

Unlabeled data fxiglCu
iDlC1 by itself does not carry

any information on the mapping X 7! Y . How
can it help us learn a better predictor f W X 7!
Y? Balcan and Blum pointed out in 2009 that the
key lies in an implicit ordering of f 2 F induced
by the unlabeled data. Informally, if the implicit
ordering happens to rank the target predictor f �

near the top, then one needs less labeled data to
learn f �. This idea will be formalized later on
using PAC learning bounds. In other contexts, the
implicit ordering is interpreted as a prior over F
or as a regularizer.

A semi-supervised learning method must ad-
dress two questions: what implicit ordering is
induced by the unlabeled data, and how to al-
gorithmically find a predictor near the top of
this implicit ordering and fits the labeled data
well. Many semi-supervised learning methods
have been proposed, with different answers to
these two questions (Abney 2007; Chapelle et al.
2006; Seeger 2001; Zhu and Goldberg 2009). It is
impossible to enumerate all methods in this entry.
Instead, we present a few representative methods.

Generative Models
This semi-supervised learning method assumes
the form of joint probability p.x; y j �/ D
p.y j �/p.x j y; �/. For example, the class
prior distribution p.y j �) can be a multinomial
over Y , while the class conditional distribution
p.x j y; �/ can be a multivariate Gaussian in X
(Castelli and Cover 1995; Nigam et al. 2000). We
use � 2 ‚ to denote the parameters of the joint
probability. Each � corresponds to a predictor f�
via Bayes rule:

f� .x/ 	 argmaxyp.yjx; �/

D argmaxy
p.x; yj�/P
y0 p.x; y0j�/

:

Therefore, F D ff� W � 2 �g.
What is the implicit ordering of f� induced

by unlabeled training data fxiglCu
iDlC1? It is the

large to small ordering of log likelihood of � on
unlabeled data:

logp
�
fxig

lCu
iDlC1

ˇ̌
ˇ��D

lCuX
iDlC1

log

0
@X
y2Y

p.xi ; yj�/

1
A:

The top ranked f� is the one whose � (or rather
the generative model with parameters �) best
fits the unlabeled data. Therefore, this method
assumes that the form of the joint probability is
correct for the task.

To identify the f� that both fits the labeled
data well and ranks high, one maximizes the log
likelihood of � on both labeled and unlabeled
data:

argmax� logp.fxi ; yigliD1j�/

C � logp.fxiglCu
iDlC1j�/;

where � is a balancing weight. This is a non-
concave problem. A local maximum can be found
with the EM algorithm, or other numerical opti-
mization methods. (See also, � generative learn-
ing.)

Semi-supervised Support Vector Machines
This semi-supervised learning method assumes
that the decision boundary f .x/ D 0 is situated in
a low-density region (in terms of unlabeled data)
between the two classes y 2 f�1; 1g (Joachims
1999; Vapnik 1998). Consider the following hat
loss function on an unlabeled instance x:

max.1 � jf .x/j; 0/;

which is positive when �1 < f .x/ < 1, and zero
outside. The hat loss thus measures the violation
in (unlabeled) large margin separation between
f and x. Averaging over all unlabeled training
instances, it induces an implicit ordering from
small to large over f 2 F :

1

u

lCuX
iDlC1

max.1 � jf .x/j; 0/:

The top ranked f is one whose decision bound-
ary avoids most unlabeled instances by a large
margin.

http://dx.doi.org/10.1007/978-1-4899-7687-1_333

1144 Semi-supervised Learning

To find the f that both fits the labeled data
well and ranks high, one typically minimizes the
following objective:

argminf
1

l

lX
iD1

max.1 � yi .xi /; 0/

C�1kf k
2 C �2

1

u

lCuX
iDlC1

max.1 � jf .x/j; 0/;

which is a combination of the objective for su-
pervised support vector machines, and the av-
erage hat loss. Algorithmically, the optimization
problem is difficult because the hat loss is non-
convex. Existing solutions include semi-definite
programming relaxation, deterministic annealing,
continuation method, concave-convex procedure
(CCCP), stochastic gradient descent, and Branch
and Bound. (See also � support vector machines.)

Graph-Based Models
This semi-supervised learning method assumes
that there is a graph G D fV;Eg such that
the vertices V are the labeled and unlabeled
training instances, and the undirected edges E
connect instances i , j with weight wij (Blum
and Chawla 2001; Zhu et al. 2003; Belkin et al.
2006). The graph is sometimes assumed to be a
random instantiation of an underlying manifold
structure that supports p(x). Typically, wij re-
flects the proximity of xi , xj . For example, the
Gaussian edge weight function defines wij D
exp.�kxi � xj k2=�2/. As another example, the
kNN edge weight function defines wij D 1
if xi is within the k nearest neighbors of xj
or vice versa, and wij D 0 otherwise. Other
commonly used edge weight functions include "-
radius neighbors, b-matching, and combinations
of the above.

Large wij implies a preference for the predic-
tions f .xi / and f .xj / to be the same. This can be
formalized by the graph energy of a function f :

lCuX
i;jD1

wij .f .xi / � f .xj //2:

The graph energy induces an implicit ordering of
f 2 F from small to large. The top ranked func-

tion is the smoothest with respect to the graph
(in fact, it is any constant function). The graph
energy can be equivalently expressed using the
so-called unnormalized graph Laplacian matrix.
Variants including the normalized Laplacian and
the powers of these matrices.

To find the f that both fits the labeled data
well and ranks high (i.e., being smooth on the
graph or manifold), one typically minimizes the
following objective:

argminf
1

l

lX
iD1

c.f .xi /; yi /C �1kf k
2

C�2

lCuX
i;jD1

wij .f .xi / � f .xj //2;

where c.f (x), y/ is a convex loss function such
as the hinge loss or the squared loss. This is
a convex optimization problem with efficient
solvers.

Co-training and Multiview Models
This semi-supervised learning method assumes
that there are multiple, different learners trained
on the same labeled data, and these learners
agree on the unlabeled data. A classic algorithm
is co-training (Blum and Mitchell 1998). Take
the example of web page classification, where
each web page x is represented by two subsets
of features, or “views” x D hx.1/; x.2/i. For
instance, x.1/ can represent the words on the page
itself, and x.2/ the words on the hyperlinks (on
other web pages) pointing to this page. The co-
training algorithm trains two predictors: f .1/ on
x.1/ (ignoring the x.2/ portion of the feature)
and f .2/ on x.2/, both initially from the labeled
data. If f .1/ confidently predicts the label of an
unlabeled instance x, then the instance-label pair
(x, f .1/(x)) is added to f .2/’s labeled training
data, and vice versa. Note this promotes f .1/

and f .2/ to predict the same on x. This repeats
so that each view teaches the other. Multiview
models generalize co-training by utilizing more
than two predictors, and relaxing the requirement
of having separate views (Sindhwani et al. 2005).

http://dx.doi.org/10.1007/978-1-4899-7687-1_810

Semi-supervised Learning 1145

S

In either case, the final prediction is obtained
from a (confidence weighted) average or vote
among the predictors.

To define the implicit ordering on the hy-
pothesis space, we need a slight extension. In
general, let there be m predictors f .1/, . . . , f .m/.
Now let a hypothesis be an m-tuple of predictors
hf .1/; : : : ; f .m/i. The disagreement of a tuple on
the unlabeled data can be defined as

lCuX
iDlC1

mX
u;vD1

c.f .u/.x1/; f
.v/.xi //;

where c() is a loss function. Typical choices of
c() are the 0–1 loss for classification, and the
squared loss for regression. Then the disagree-
ment induces an implicit ordering on tuples from
small to large.

It is important for these m predictors to be of
diverse types, and have different � inductive bi-
ases. In general, each predictor f .u/, u D 1 : : : m
may be evaluated by its individual loss function
c.u/ and regularizer �.u

/
. To find a hypothesis

(i.e., m predictors) that fits the labeled data well
and ranks high, one can minimize the following
objective:

argmin
hf .1/;:::f .m/i

mX
uD1

1

l

lX
iD1

c.u/.f .u/.xi /; yi /C �1�
.u/.f .u//

!

C�2

lCuX
iDlC1

mX
u;vD1

c.f .u/.xi /; f .v/.xi //:

Multiview learning typically optimizes this ob-
jective directly. When the loss functions and
regularizers are convex, numerical solution is
relatively easy to obtain. In the special cases
when the loss functions are the squared loss, and
the regularizers are squared `2 norms, there is a
closed form solution. On the other hand, the co-
training algorithm, as presented earlier, optimizes
the objective indirectly with the iterative proce-
dure. One advantage of co-training is that the
algorithm is a wrapper method, in that it can use
any “blackbox” learners f .1/ and f .2/ without
the need to modify the learners.

A PAC Bound for Semi-supervised
Learning
Previously, we presented several semi-supervised
learning methods, each induces an implicit or-
dering on the hypothesis space using the unla-
beled training data, and each attempts to find
a hypothesis that fit the labeled training data
well as well as rank high in that implicit order-
ing. We now present a theoretical justification
on why this is a good idea. In particular, we

present a uniform convergence bound by Balcan
and Blum (Theorem 11 in Balcan and Blum
2009). Alternative theoretical analyses on semi-
supervised learning can be found by following
the recommended reading.

First, we introduce some notations. Consider
the 0–1 loss for classification. Let c� W X 7!

f0; 1g be the unknown target function, which may
not be in F . Let err .f / D Ex�pŒf .x/ ¤
c�.x/� be the true error rate of a hypothesis f ,
and cerr.f / D 1

l

Pl
iD1 f .xi / ¤ c�.xi / be the

empirical error rate of f on the labeled training
sample. To characterize the implicit ordering, we
defined an “unlabeled error rate” errunl .f / D 1�
Ex�pŒ�.f; x/�, where the compatibility function
X W F � X 7! Œ0; 1� measures how “compatible”
f is to an unlabeled instance x. As an example,
in semi-supervised support vector machines, if x
is far away from the decision boundary produced
by f , then �.f , x) is large; but if x is close
to the decision boundary, �.f , x) is small. In
this example, a large errunl .f / then means that
the decision boundary of f cuts through dense
unlabeled data regions, and thus f is undesirable
for semi-supervised learning. In contrast, a small

http://dx.doi.org/10.1007/978-1-4899-7687-1_390

1146 Semi-supervised Learning

errunl .f / means that the decision boundary of
f lies in a low density gap, which is more
desirable. In theory, the implicit ordering on f 2
F is to sort errunl .f / from small to large. In
practice, we use the empirical unlabeled error rate
cerrunl.f / D 1 � 1

u

PlCu
iDlC1 X .f; xi /.

Our goal is to show that if an f 2 F “fits
the labeled data well and ranks high,” then f is
almost as good as the best hypothesis in F . Let
t 2 Œ0; 1�: We first consider the best hypothesis
f �t in the subset of F that consists of hypotheses
whose unlabeled error rate is no worse than t W
f �t D argminf 0F ;errunl.f 0/�terr.f 0/. Obviously,
t D 1 gives the best hypothesis in the whole
F . However, the nature of the guarantee has the
form err.f / � err(ft�) + EstimationError(t /Cc,
where the EstimationError term increases with t .
Thus, with t = 1 the bound can be loose. On the
other hand, if t is close to 0, EstimationError(t /
is small, but err(ft�) can be much worse than
err(f �tD1). The bound will account for the opti-
mal t .

We introduce a few more definitions. Let
F.f / D ff 0 2 F W cerrunl .f

0/ � cerrunl .f /g

be the subset of F with empirical error
no worse than that of f . As a complexity
measure, let ŒF.f /� be the number of different
partitions of the first l unlabeled instances
xlC1 : : : x2l , using f 2 F.f /. Finally, let

O	.f / D
q

24
l

log.8ŒF.f /�/. Then we have the

following agnostic bound (meaning that c� may
not be in F , and cerrunl.f / may not be zero for
any f 2 F):

Theorem 1 Given l labeled instances and suf-
ficient unlabeled instances, with probability at
least 1 – ı, the function

f D argminf 02Fcerr.f 0/C O	.f 0/

satisfies the guarantee that

err.f / � min
t
.err.f �t //C 5

r
log.8=ı/

l
:

If a function f fits the labeled data well, it has
a small cerr.f /. If it ranks high, then F.f / will
be a small set, consequently O	.f / is small. The

argmin operator identifies the best such function
during training. The bound account for the mini-
mum of all possible t tradeoffs. Therefore, we see
that the “lucky” case is when the implicit ordering
is good such that f �tD1, the best hypothesis in F ,
is near the top of the ranking. This is when semi-
supervised learning is expected to perform well.
Balcan and Blum also give results addressing the
key issue of how much unlabeled data is needed
for cerrunl.f / and errunl.f / to be close for all
f 2 F .

Applications

Because the type of semi-supervised learning
discussed in this entry has the same goal of
creating a predictor as supervised learning, it
is applicable to essentially any problems where
supervised learning can be applied. For example,
semi-supervised learning has been applied
to natural language processing (word sense
disambiguation (Yarowsky 1995), document
categorization, named entity classification,
sentiment analysis, machine translation),
computer vision (object recognition, image
segmentation), bioinformatics (protein function
prediction), and cognitive psychology. Follow the
recommended reading for individual papers.

Future Directions

There are several directions to further enhance the
value semi-supervised learning. First, we need
guarantees that it will outperform supervised
learning. Currently, the practitioner has to
manually choose a particular semi-supervised
learning method, and often manually set learning
parameters. Sometimes, a bad choice that does
not match the task (e.g., modeling each class
with a Gaussian when the data does not have this
distribution) can make semi-supervised learning
worse than supervised learning. Second, we need
methods that benefit from unlabeled when l , the
size of labeled data, is large. It has been widely
observed that the gain over supervised learning
is the largest when l is small, but diminishes as l
increases. Third, we need good ways to combine

Semi-supervised Text Processing 1147

S

semi-supervised learning and � active learning.
In natural learning systems such as humans, we
routinely observe unlabeled input, which often
naturally leads to questions. And finally, we need
methods that can efficiently process massive
unlabeled data, especially in an � online learning
setting.

Cross-References

�Active Learning
�Classification
�Constrained Clustering
�Dimensionality Reduction
�Online Learning
�Regression
� Supervised Learning
�Unsupervised Learning

Recommended Reading

Abney S (2007) Semisupervised learning for computa-
tional linguistics. Chapman & Hall/CRC, Florida

Balcan M-F, Blum A (2009) A discriminative model
for semi-supervised learning. J ACM

Belkin M, Niyogi P, Sindhwani V (2006) Manifold
regularization: a geometric framework for learning
from labeled and unlabeled examples. J Mach Learn
Res 7:2399–2434

Blum A, Chawla S (2001) Learning from labeled and
unlabeled data using graph mincuts. In: Proceedings
of the 18th international conference on machine
learning. Morgan Kaufmann, San Francisco, pp 19–
26

Blum A, Mitchell T (1998) Combining labeled and
unlabeled data with co-training. In: COLT: proceed-
ings of the workshop on computational learning
theory. ACM, New York, pp 92–100

Castelli V, Cover T (1995) The exponential value of
labeled samples. Pattern Recogn Lett 16(1):105–
111

Chapelle O, Zien A, Schölkopf B (eds) (2006) Semi-
supervised learning. MIT Press, Cambridge

Joachims T (1999) Transductive inference for text
classification using support vector machines. In:
Proceedings of the 16th international conference on
machine learning. Morgan Kaufmann, San Fran-
cisco, pp 200–209

Nigam K, McCallum AK, Thrun S, Mitchell T (2000)
Text classification from labeled and unlabeled doc-
uments using EM. Mach Learn 39(2/3):103–134

Seeger M (2001) Learning with labeled and unlabeled
data. Technical report, University of Edinburgh,
Edinburgh

Sindhwani V, Niyogi P, Belkin M (2005) A co-
regularized approach to semi-supervised learning
with multiple views. In: Proceedings of the 22nd
ICML workshop on learning with multiple views,
Bonn

Vapnik V (1998) Statistical learning theory. Wiley,
New York

Yarowsky D (1995) Unsupervised word sense disam-
biguation rivaling supervised methods. In: Proceed-
ings of the 33rd annual meeting of the association
for computational linguistics, Cambridge, pp 189–
196

Zhu X, Ghahramani Z, Lafferty J (2003) Semi-
supervised learning using Gaussian fields and har-
monic functions. In: The 20th international confer-
ence on machine learning (ICML), Washington, DC

Zhu X, Goldberg AB (2009) Synthesis lectures on
artificial intelligence and machine learning. In: In-
troduction to semi-supervised learning. Morgan &
Claypool, San Rafael

Semi-supervised Text Processing

Ion Muslea
Language Weaver, Inc., Marina del Rey, CA,
USA

Synonyms

Learning from labeled and unlabeled data; Trans-
ductive learning

Definition

In contrast to supervised and unsupervised learn-
ers, which use solely labeled or unlabeled exam-
ples, respectively, semi-supervised learning sys-
tems exploit both labeled and unlabeled exam-
ples. In a typical semi-supervised framework, the
system takes as input a (small) training set of
labeled examples and a (larger) working set of
unlabeled examples; the learner’s performance is
evaluated on a test set that consists of unlabeled
examples. Transductive learning is a particular
case of semi-supervised learning in which the
working set and the test set are identical.

Semi-supervised learners use the unlabeled
examples to improve the performance of the sys-
tem that could be learned solely from labeled

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_163
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_100253
http://dx.doi.org/10.1007/978-1-4899-7687-1_100486

1148 Semi-supervised Text Processing

data. Such learners typically exploit – directly
or indirectly – the distribution of the available
unlabeled examples. Text processing is an ideal
application domain for semi-supervised learning
because the abundance of text documents avail-
able on the Web makes it impossible for humans
to label them all. We focus here on two related
types of text processing tasks that were heavily
studied in the semi-supervised framework: text
classification and text �Clustering.

Motivation and Background

In most applications of machine learning, col-
lecting large amounts of labeled examples is an
expensive, tedious, and error-prone process. In
contrast, one may often have cheap or even free
access to large amounts of unlabeled examples.
For example, for text classification, which is the
task of classifying text documents into categories
such as politics, sports, entertainment, etc., one
can easily crawl the Web and download billions
of Web pages; however, manually labeling all
these documents according to the taxonomy of
interest is an extremely expensive task.

The key idea in semi-supervised learning is
to complement a small amount of labeled data
by a large number of unlabeled examples. Un-
der certain conditions, the unlabeled examples
can be mined for knowledge that will allow the
semi-supervised learner to build a system that
performs better than one learned solely from
the labeled data. More precisely, semi-supervised
learners assume that the learning model matches
the structure of the application domain. If this
is the case, the information extracted from the
unlabeled data can be used to guide the search
towards the optimal solution (e.g., by modifying
or re-ranking the learned hypotheses); otherwise,
the unlabeled examples may hurt rather than help
the learning process (Cozman et al. 2003).

For the sake of concision and clarity, we have
had to make several compromises in terms of the
algorithms and the applications presented here.
Given the vastness of the field of text processing,
we have decided to focus only on the two related
tasks of text classification and text clustering.

They are the most studied text processing ap-
plications within the field of machine learning;
furthermore, virtually all the main types of semi-
supervised algorithms were applied to these two
tasks. This decision has two main consequences.
First, we do not consider many other text process-
ing tasks, such as information extraction, natural
language parsing, or base noun–phrase identifi-
cation; for these we refer the interested reader to
Muslea et al. (2006). Second, we discuss and cite
approaches that were applied to text classification
or clustering there is however, alone an excellent
survey by Zhu (2005) covering seminal work on
semi-supervised learning that was not applied to
text processing.

Structure of the Learning System

Generative Models
The early work on semi-supervised text catego-
rization (Nigam et al. 2000) was based primarily
on generative models (see � generative learning).
Such approaches make two major assumptions:
(1) the data is generated by a mixture model,
and (2) there is a correspondence between the
components of the mixture and the classes of
the application domain. Intuitively, if these as-
sumptions hold, the unlabeled examples become
instrumental in identifying the mixture’s compo-
nents, while the labeled examples can be used to
label each individual component.

The iterative approach proposed by Nigam
et al. (2000) is based on The EM Algorithm and
works as follows. First, the labeled examples are
used to learn an initial classifier, which is used to
probabilistically label all unlabeled data; then the
newly labeled examples are added to the training
set. Finally, a new classifier is learned from all
the data, and the entire process is repeated till
convergence is reached (or, alternatively, till the
number of iterations is fixed).

Nigam et al. (2000) noticed that, in practice,
the two above-mentioned assumptions about the
generative model may not hold; in order to deal
with this problem, the authors propose two ex-
tensions of their basic approach. First, they allow
each class to be generated by multiple mixture

http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_333

Semi-supervised Text Processing 1149

S

components. Second, they introduce a weight-
ing factor that adjusts the contribution of the
unlabeled examples; this factor is tuned during
the learning process so that the influence of the
unlabeled examples correlates with the degree in
which the data distribution is consistent with the
mixture model.

The same general framework can also be ap-
plied to the related task of text clustering. In
the clustering framework, the learner is not con-
cerned with the actual label of an example; in-
stead, it tries to find a partitioning of the examples
in clusters that are similar respect to a predefined
objective function. For example, Seeded-KMeans
(Basu et al. 2002) is a semi-supervised text clus-
tering algorithm that uses the few available la-
beled examples to seed the search for the data
clusters. In order to optimize the target objective
function, Seeded-KMeans uses an EM algorithm
on a mixture of Gaussians.

Discriminative Approaches

� Support vector machines (SVMs) (Joachims
1999) are particularly well suited for text
classification because of their ability to deal
with high-dimensional input spaces (each word
in the corpus is a feature) and sparse feature-
value vectors (any given document contains only
a small fraction of the corpus vocabulary). SVMs
are called maximum margin classifiers because
they minimize the empirical classification error
by maximizing the geometric margin between
the domain’s positive and negative examples.
Intuitively, this is equivalent to finding a
discriminative decision boundary that avoids the
high-density regions in the instance space.

Transductive SVMs (Joachims 1999) are de-
signed to find an optimal decision boundary for
a particular test set. More precisely, they have
access to both the (labeled) training set and the
unlabeled test set. Transductive SVMs work by
finding a labeling of the test examples that max-
imizes the margin over all the examples in the
training and the test set. This transductive ap-
proach has shown significant improvements over

the traditional inductive SVMs, especially if the
size of the training set is small.

In contrast to transductive SVMs, semi-
supervised SVMs (S3VM) work in a true semi-
supervised setting in which the test set is not
available to the learner. A major difficulty
in the S3VM framework is the fact that the
resulting optimization problem is not convex,
thus being sensitive to the issue of (non-
optimal) local minima. CS3VMs (Chapelle et al.
2006) alleviate this problem by using a global
optimization technique called continuation. On
binary classification tasks CS3VMs compare
favorably against other S3VM approaches, but
applying it on multiclass domains is still an open
problem.

Multiview Approaches

Multiview learners are a class of algorithms for
domains in which the features can be partitioned
in disjoint subsets (views), each of which is
sufficient to learn the target concept. For exam-
ple, when classifying Web pages, one can use
either the words that appear in the documents or
those that appear in the hyper-links pointing to
them. Co-training (Blum and Mitchell 1998) is
a semi-supervised, multiview learner that, intu-
itively, works by bootstrapping the views from
each other. First, it uses the labeled examples to
learn a classifier in each view. Then it applies
the learned classifiers to the unlabeled data and
detects the examples on which each view makes
the most confident prediction; these examples are
labeled by the respective classifiers and added
to the (labeled) training set of the other view.
The entire process is repeated for a number of
iterations.

Multiview learners rely on two main assump-
tions, namely that the views are compatible and
uncorrelated. The former requires that each ex-
ample is identically labeled by the target concept
in each view; the latter means that given an
example’s label, its description in each view are
independent. In practice, both these assumptions
are likely to be violated; in order to deal with
the first issue, one can use the adaptive view

http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1150 Semi-supervised Text Processing

validation algorithm (Muslea et al. 2002b), which
predicts whether the views are sufficiently com-
patible for multiview learning.

With respect to view correlation Muslea
et al. (2002a) have shown that by interleaving
active and semi-supervised learning, multiview
approaches become robust the view correlation.
A similar idea was previously used in the
generative, single-view framework: McCallum
and Nigam (1998) have shown that by allowing
the algorithm to (smartly) choose which
examples to include in the training set, one can
significantly improve over the performance of
both supervised and semi-supervised learners
that used randomly chosen training sets.

The main limitation of multiview learning is
the requirement that the user identifies at least
two suitable views. In order to cope with this
problem, researchers have proposed algorithms
that work in a way similar to co-training, but ex-
ploit multiple � inductive biases instead of mul-
tiple views. For example, tri-training (Zhou and
Li 2005) uses all domain features to train three
supervised classifiers (e.g., a decision tree, a neu-
ral network, and a Naive Bayes classifier). These
classifiers are then applied to each unlabeled
example; if two of them agree on the example’s
label, they label it accordingly and add it to
the third classifier’s training set. A degenerate
case is represented by self-training, which uses
a single classifier that repeatedly goes through
the unlabeled data and adds to its own training
set, the examples on which its predictions are the
most confident.

Graph-Based Approaches
The work on graph-based, semi-supervised text
learning is based on the idea of representing the
labeled and unlabeled examples as vertices in
a graph. The edges of this graph are weighted
by the pair-wise similarity between the corre-
sponding examples, thus offering a flexible way
to incorporate prior domain knowledge. With the
learning task encoded in this manner, the problem
to be solved becomes one of graph theory, namely
finding a partitioning of the graph that agrees
with the labeled examples. A major challenge for
the graph-based approaches is to find a balanced

partitioning of the graph (e.g., in a degenerate
scenario, one can propose an unbalanced, unde-
sirable partition in which, except for the negative
examples in the training set, all other examples
are labeled as positive).

One possible approach to cope with the issue
on unbalanced partitions is to use randomized
min-cuts (Blum et al. 2004). The algorithm starts
with the original graph and repeatedly adds ran-
dom noise to the weights of the edges. Then, for
each modified graph, it finds a partitioning by
using minimum cuts. Finally, the results from the
various runs aggregated in order to create prob-
abilistic labels for the unlabeled examples. This
approach has the additional benefit of offering
a measure of the confidence in each particular
prediction.

The SGT algorithm (Joachims 2003)
uses spectral methods to perform the graph
partitioning. SGT can be seen as a transductive
version of the k nearest-neighbor classifier;
furthermore Joachims (2003) also show that co-
training emerges as a special case of SGT. In
contrast to transductive SVMs and co-training,
SGT does not require additional heuristics for
avoiding unbalanced graph partitionings (e.g., in
the original co-training algorithm, the examples
that are added to the training set after each
iteration must respect the domain-dependent ratio
of negative-to-positive examples).

LapSVM (Sindhwani et al. 2005) is a graph-
based kernel method that uses a weighted com-
bination a regularizer learned solely from labeled
data and a graph Laplacian obtained from both
the labeled and unlabeled examples. This ap-
proach allows LapSVM to perform a principled
search for a decision boundary that is both con-
sistent with the labeled examples and reflects the
underlying geometry of all available data points.

Approaches that Exploit Background
Knowledge
WHIRL-BG (Zelikovitz and Hirsh 2000) is an
algorithm for classifying short text fragments.
It uses an information integration approach that
combines three different information sources: the
training set, which consists of the labeled exam-
ples; the test set that WHIRL-BG must label;

http://dx.doi.org/10.1007/978-1-4899-7687-1_390

Semi-supervised Text Processing 1151

S

and a secondary corpus that consists longer, re-
lated documents that are not labeled. Intuitively,
WHIRL-BG exploits the secondary corpus as
background knowledge that allows the system
to link a test example to the most similar la-
beled training example. In other words, instead
of trying to measure directly a (unreliable) sim-
ilarity between two short strings (i.e., a test and
a training example), the system searches for a
background document that may include (a large
fraction of) both strings.

HMRF-KMEANS (Basu et al. 2004) unifies
the two main approaches to semi-supervised
text clustering: the constraint-based one and
the adaptive distance one. The former exploits
user-provided background knowledge to find an
appropriate partitioning of the data; for HMRF-
KMEANS, the domain knowledge consists of
must-link or cannot-link constraints, which
specify whether two examples should or should
not have the same label, respectively. The
later uses a small number of labeled examples
to learn a domain-specific distance measure
that is appropriate for the clustering task at
hand. HMRF-KMEANS can use any Bregman
divergence to measure the clustering distortion,
thus supporting a wide variety of learnable
distances.

HMRF-KMEANS exploits the labeled exam-
ples in three main ways. First, it uses the neigh-
borhoods induced from the constraints to initial-
ize the cluster centroids. Second, when assign-
ing examples to clusters, the algorithm tries to
simultaneously minimize both the similarity to
the cluster’s centroid and the number of violated
constraints. Last but not least, during the clus-
tering process, HMRF-KMEANS iteratively re-
estimates the distance measure so that it takes into
account both the background knowledge and the
data variance.

Recommended Reading

Basu S, Banerjee A, Mooney R (2002) Semi-
supervised clustering by seeding. In: Proceedings
of the international conference on machine learning,
Sydney, pp 19–26

Basu S, Bilenko M, Mooney R (2004) A probabilistic
framework for semi-supervised clustering. In: Pro-
ceedings of the ACM SIGKDD international con-
ference on knowledge discovery and data mining,
Seattle, pp 59–68

Blum A, Lafferty J, Rwebangira MR, Reddy R (2004)
Semi-supervised learning using randomized min-
cuts. In: Proceedings of the twenty-first interna-
tional conference on machine learning, Banff, p 13

Blum A, Mitchell T (1998) Combining labeled and un-
labeled data with co-training. In: Proceedings of the
1988 conference on computational learning theory,
pp 92–100

Chapelle O, Chi M, Zien A (2006) A continuation
method for semi-supervised SVMs. In: Proceed-
ings of the 23rd international conference on ma-
chine learning. ACM Press, New York, pp 185–
192

Cozman F, Cohen I, Cirelo M (2003) Semi-supervised
learning of mixture models. In: Proceedings of
the international conference on machine learning,
Washington, DC, pp 99–106

Joachims T (1999) Transductive inference for text
classification using support vector machines. In:
Proceedings of the 16th international conference on
machine learning (ICML-99). Morgan Kaufmann,
San Francisco, pp 200–209

Joachims T (2003) Transductive learning via spectral
graph partitioning. In: Proceedings of the interna-
tional conference on machine learning, Washington,
DC

McCallum A, Nigam K (1998) Employing EM in
pool-based active learning for text classification. In:
Proceedings of the 15th international conference on
machine learning, Madison, pp 359–367

Muslea I, Minton S, Knoblock C (2002a)
ActiveC semi-supervised learningD robust
multi-view learning. In: The 19th international
conference on machine learning (ICML-2002),
Sydney, pp 435–442

Muslea I, Minton S, Knoblock C (2002b) Adaptive
view validation: a first step towards automatic view
detection. In: The 19th international conference on
machine learning (ICML-2002), Sydney, pp 443–
450

Muslea I, Minton S, Knoblock C (2006) Active learn-
ing with multiple views. J Artif Intell Res 27:203–
233

Nigam K, McCallum AK, Thrun S, Mitchell TM
(2000) Text classification from labeled and
unlabeled documents using EM. Mach Learn
39(2/3):103–134

Sindhwani V, Niyogi P, Belkin M (2005) Beyond the
point cloud: from transductive to semi-supervised
learning. In: Proceedings of the 22nd international
conference on machine learning, Bonn, pp 824–831

Zelikovitz S, Hirsh H (2000) Improving short text clas-
sification using unlabeled background knowledge.
In: Proceedings of the 17th international conference
on machine learning, Stanford, pp 1183–1190

1152 Sensitivity

Zhou Z-H, Li M (2005) Tri-training: exploiting unla-
beled data using three classifiers. IEEE Trans Knowl
Data Eng 17(11):1529–1541

Zhu X (2005) Semi-supervised learning literature sur-
vey. Technical report 1530, Department of Com-
puter Sciences, University of Wisconsin, Madison

Sensitivity

Synonyms

Recall; True positive rate

Sensitivity is the fraction of positive examples
predicted correctly by a model. See � Sensitivity
and Specificity, �Precision and Recall.

Sensitivity and Specificity

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Definition

Sensitivity and specificity are two measures used
together in some domains to measure the predic-
tive performance of a classification model or a
diagnostic test. For example, to measure the ef-
fectiveness of a diagnostic test in the medical do-
main, sensitivity measures the fraction of people
with disease (i.e., positive examples) who have a
positive test result; and specificity measures the
fraction of people without disease (i.e., negative
examples) who have a negative test result. They
are defined with reference to a special case of
the � confusion matrix, with two classes, one
designated the positive class and the other the
negative class, as indicated in Table 1.

Sensitivity and Specificity, Table 1 The outcomes of
classification into positive and negative classes

Assigned class

Positive Negative

A
ct

ua
l

cl
as

s Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Sensitivity is sometimes also called true
positive rate. Specificity is sometimes also
called true negative rate. They are defined as
follows:

SensitivityD TP/(TP C FN)
Specificity D TN/(TNC FP)

Instead of two measures, they are sometimes
combined to provide a single measure of predic-
tive performance as follows:

Sensitivity � Specificity

D TP � TN/[(TPC FN) � (TNC FP)]

Note that sensitivity is equivalent to � recall.

Cross-References

�Confusion Matrix

Sentiment Analysis

� Sentiment Analysis and Opinion Mining

Sentiment Analysis and Opinion
Mining

Lei Zhang1 and Bing Liu2

1LinkedIn, San Francisco, CA, USA
2University of Illinois at Chicago, Chicago, IL,
USA

Abstract

With the rapid growth of social media, senti-
ment analysis, also called opinion mining, has
become one of the most active research areas
in natural language processing. Its application
is also widespread, from business services to
political campaigns. This article gives an in-
troduction to this important area and presents
some recent developments.

http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_100492
http://dx.doi.org/10.1007/978-1-4899-7687-1_758
http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_907

Sentiment Analysis and Opinion Mining 1153

S

Synonyms

Opinion extraction; Opinion mining; Sentiment
analysis; Sentiment mining

Definition

Sentiment analysis or opinion mining is the com-
putational study of people’s opinions, sentiments,
appraisals, attitudes, and emotions toward entities
and their aspects expressed in text.

Motivation and Background

Sentiment and opinion and their related con-
cepts, such as evaluation, appraisal, attitude, af-
fect, emotion, and mood, are about people’s sub-
jective beliefs and feelings. They are key influ-
encers of human behaviors. Whenever we need
to make a decision, we often seek out others’
opinions. This is true for both individuals and
organizations.

The development of sentiment analysis co-
incides with the growth of social media (i.e.,
reviews, forum discussions, and blogs) on the
Web. For the first time in human history, we now
possess a huge volume of opinion data recorded
in digital forms. These user-generated contents
(UGC) are full of people’s opinions. Mining use-
ful knowledge from these corpora gives rise to the
task of sentiment analysis. Since the early 2000s,
it has been one of the most active research areas
in natural language processing (NLP) (Pang and
Lee 2008; Liu 2012). The research and applica-
tions have also spread from computer science to
management science and social sciences because
of its importance to business and society as a
whole. Sentiment analysis techniques have been
widely applied in practice, from business services
to political campaigns.

Structure of the Task

In a nutshell, the task of sentiment analysis is
to mine people’s opinions and emotions from

text. The term opinion is used as a concept
represented with a quadruple (s, g, h, t /

covering four components (Liu 2012): sentiment
orientation s, sentiment target g opinion holder
h, and time t . Sentiment is the underlying feeling,
attitude, evaluation, or emotion associated with
an opinion. Sentiment orientation can be positive,
negative, or neutral. Sentiment target, also
known as the opinion target, is an entity or an
aspect of the entity that the sentiment has been
expressed upon. Opinion holder is an individual
or organization that holds an opinion. Time is
when the opinion is expressed. We will discuss
emotion specifically later.

We use the following camera review as an
example (an ID number is associated with each
sentence for easy reference):

Posted by John Smith
Date: September 10, 2011
(1) I bought a Canon G12 camera six months

ago. (2) I simply love it. (3) The picture quality
is amazing. (4) The battery life is also long.
(5) However, my wife thinks it is too heavy for her.

Given the review, the task of sentiment analy-
sis aims to extract the following opinion quadru-
ples from sentences 2, 3, 4, and 5, respectively:

(positive, Canon G12 camera, author, 2011/09/10)
(positive, picture quality of Canon G12 camera

author, 2011/09/10)
(positive, battery life of Canon G12 camera,

author, 2011/09/10)
(negative, weight of Canon G12 camera, author’s

wife, 2011/09/10)

The opinion target can be an entity (Canon G12
camera) or an aspect of the entity (picture quality,
battery life, and weight of the Canon G12 cam-
era). An aspect can be explicit (e.g., battery life)
or implicit (e.g., weight is indicated by heavy)
(Hu and Liu 2004).

In many applications, it is useful to decom-
pose opinion target to entity and aspect for more
fine-grained analysis. Then, the above quadruples
become the following quintuples, where GEN-
ERAL represents the entity itself (Liu 2012):

(positive, Canon G12 camera, GENERAL,
author, 2011/09/10)

http://dx.doi.org/10.1007/978-1-4899-7687-1_100510
http://dx.doi.org/10.1007/978-1-4899-7687-1_100511
http://dx.doi.org/10.1007/978-1-4899-7687-1_100512
http://dx.doi.org/10.1007/978-1-4899-7687-1_100513

1154 Sentiment Analysis and Opinion Mining

(positive, Canon G12 camera picture quality,
author, 2011/09/10)

(positive, Canon G12 camera, battery life,
author, 2011/09/10)

(negative, Canon G12 camera, weight, author’s
wife, 2011/09/10)

An opinion from a single opinion holder is
usually not actionable in an opinion mining ap-
plication. The user often needs opinions from
a large number of opinion holders, which leads
to opinion summary. A summary of opinions is
normally constructed based on positive and neg-
ative sentiments about opinion targets, which is
called aspect-based opinion summary (or feature-
based opinion summary) (Hu and Liu 2004).
Figure 1 shows an opinion summary generated
from product reviews of Apple iPad by Google
products. Generally, opinion summary needs to
be quantitative, which is reflected by the pro-
portions or the numbers of positive and negative
opinions for each sentiment target or aspect.

Sentiment Analysis Methods

Researchers have studied sentiment analysis at
three main levels of granularities: document, sen-
tence, and aspect levels.

Document Sentiment Classification

Document sentiment classification classifies an
opinion document (e.g., a product review) as
expressing a positive or negative sentiment. It

does not study or extract any information within
the document. The task is also known as the
document-level sentiment classification.

Document sentiment classification is com-
monly formulated as a supervised learning
problem with two classes (positive and negative)
or rating scores (e.g., 1–5 stars). Standard
supervised learning methods such naı̈ve Bayesian
classification and support vector machines
(SVM) can be applied for classification
directly. Pang et al. (2002) first adopted those
classification methods to classify movie reviews
into two classes. Since this work, numerous other
works have been reported. Like most supervised
learning approaches, the main task of these works
is to engineer a set of effective features. See Liu
(2012) for an overview of this line of research.

There are also unsupervised approaches to
document sentiment classification, which are
mainly based on sentiment words and language
patterns. It is quite clear that sentiment words
(also called opinion words) that indicate positive
or negative sentiments (e.g., good and nice are
positive sentiment words, and horrible and bad
are negative sentiment words) play an important
role in sentiment classification (Turney 2002;
Hu and Liu 2004; Kim and Hovy 2004). Turney
(2002) proposed an unsupervised approach based
on syntactic opinion patterns and Web search.
Taboada et al. (2011) adapted a lexicon-based
approach for document sentiment classification.
It basically uses a set of sentiment words
and phrases with appropriate scores and an
aggregation scheme to aggregate the scores of

Reviews
Summary - Based on 1,668 reviews

1 2 3 4 stars

What people are saying
ease of use
value
battery
size
picture/video
design/style
graphics

5 stars

''Fun and easy to use''.
''Great product at a great price''.
''use for email, skype,great battery life''.
''This pad is light weight and very durable''.
''Crisp clear and fast''.
''Fast and stylish tablet''.
''The graphics are great''.

Sentiment Analysis and Opinion Mining, Fig. 1 Opinion summary for iPad from Google products

Sentiment Analysis and Opinion Mining 1155

S

the sentiment words appeared in a document
to perform the classification. The lexicon-based
approach was originally proposed for aspect-
level and sentence-level sentiment classification
(Hu and Liu 2004; Kim and Hovy 2004).

Researchers found that supervised sentiment
classification is domain-sensitive, that is, a
classifier trained using opinion documents from
one domain performs poorly when it is applied
or tested on opinion documents from another
domain. The reason is that words used in
different domains for expressing opinions can be
different. Furthermore, the same word may mean
positive in one domain but negative in another
domain. Domain adaptation or transfer learning
techniques have been employed to address the
problem (Blitzer et al. 2007; Pan et al. 2010; Liu
2012).

Another interesting topic is cross-language
sentiment classification, which focuses on using
the extensive resources and tools available in
English and automated translation to help build
sentiment classifiers in other languages with few
resources or tools (Wan 2009; Mihalcea et al.
2007). Existing research proposed three main
strategies: (1) translate test documents in the
target language into the source language and
classify them using a source language classifier,
(2) translate a source language training corpus
into the target language and build a classifier in
the target language, and (3) translate a sentiment
lexicon in the source language to the target lan-
guage and build a lexicon-based classifier in the
target language.

Sentence Sentiment Classification

Sentence sentiment classification is similar to
document sentiment classification as sentences
can be regarded as short documents. However,
sentence classification is usually harder because
the information contained in a typical sentence
is much less than that contained in a typical
document. Furthermore, sentence sentiment clas-
sification needs to consider the neutral class (or
no opinion) because there are many factual sen-
tences that express no positive or negative opin-

ion in an opinion document. Document classifica-
tion normally does not consider the neutral class.

Document sentiment classification techniques
can be naturally applied for sentence senti-
ment classification. Some sentence-specific
approaches have also been proposed, e.g.,
hierarchical sequence learning model (McDonald
et al. 2007) and deep learning methods (Socher
et al. 2013). In addition, researchers found that
different types of sentences may need different
kinds of classification methods, e.g., conditional
sentences and integrative sentences (Liu 2012).

For example, a conditional sentence describes
implications or hypothetical situations and their
consequences. Such a sentence typically contains
two clauses that are dependent on each other: the
condition clause and the consequent clause. Their
relationship has significant impact on whether the
sentence expresses a positive or negative senti-
ment (Narayanan et al. 2009). For example, the
sentence If someone makes a reliable car, I will
buy it expresses no sentiment toward any particu-
lar car, although it contains the positive sentiment
word reliable. In Narayanan et al. (2009), super-
vised learning was used to deal with the problem
using a set of linguistic features, e.g., sentiment
words or phrases and their locations, part-of-
speech tags of sentiment words, tense patterns,
and conditional connectives.

Another type of difficult sentences is the sar-
casm sentences. Sarcasm is a sophisticated form
of speech act in which the speakers or the writers
say or write the opposite of what they mean.
In the context of sentiment analysis, it means
that when one says something positive, one ac-
tually means negative, and vice versa. Sarcastic
sentences are very difficult to deal with because
commonsense knowledge and discourse analysis
are often required to recognize them (Tsur et al.
2010; Riloff et al. 2013).

At the sentence level, another popular research
problem is to identify subjectivity and objective
sentences. Subjective expressions express
opinions, appraisals, evaluations, allegations,
desires, beliefs, suspicions, speculations, or
stances (Wiebe et al. 2004). Some of these
concepts indicate positive or negative sentiments.
Some of them do not, e.g., I want to buy a

1156 Sentiment Analysis and Opinion Mining

camera that can take good photos which is
a subjective sentence but does not express a
positive or negative sentiment about anything.
Objective sentences state facts. However, we
should note that objective sentences can imply
positive or negative sentiments of their authors
because there are desirable facts and undesirable
facts (Zhang and Liu 2011). For example, the
sentence I bought the mattress a week ago and a
valley has formed in the middle states a fact, but
the fact is undesirable. It thus implies a negative
opinion about the quality of the mattress.

Aspect Sentiment Classification

Aspect-level classification classifies or deter-
mines sentiment on individual targets, which
both the document-level and the sentence-level
classification do not do because no sentiment
target is involved at these two coarse levels of
analysis. However, in applications, one often
needs to know opinion targets. Without targets,
any positive or negative sentiment is of limited
use. For example, the sentence trying out Chrome
because Firebox works poorly expresses a
negative sentiment. But if we do not know that
the negative sentiment is toward Firefox, not
Chrome, the sentiment is of little use and can
even be misleading. Many sentences also have
mixed sentiments, e.g., The performance of the
car is great but the price is too high. Aspect senti-
ment classification should find the opinion on the
performance aspect of the car to be positive and
the opinion on the price aspect of the car to be
negative. In short, aspect sentiment classification
determines sentiments expressed on entities and
aspects of entities, which gives more useful infor-
mation than document or sentence classification.

Although supervised learning can be applied,
the kinds of features used for document and
sentence sentiment classification are no longer
sufficient or appropriate. The key reason is that
those features do not consider (or are indepen-
dent of) opinion targets and are thus unable to
determine to which target an opinion refers. To
remedy this problem, opinion target needs to be
considered in learning. Two kinds of approaches

have been proposed. The first one is to generate a
set of features that are dependent on each opinion
target in the sentence, e.g., weighing features
based on their distances to a target. The second
approach is to check the application scope of each
sentiment expression to determine whether it cov-
ers the target in the sentence. For example, in
the sentence Apple is doing very well in this bad
economy, the sentiment word bad’s application
scope covers only economy, not Apple. Current
supervised learning methods mainly use the first
approach but also have a flavor of the second
approach (Jiang et al. 2011).

The lexicon-based approach can be employed
as well. It computes the sentiment orientation
on a target in a sentence by using a sentiment
aggregation function that takes into account the
distances of the sentiment expressions (senti-
ment words or phrases) and the opinion target
in the sentence and/or by exploiting syntactic re-
lationships of sentiment expressions and opinion
targets to find the application scope of each sen-
timent expression. At the high level, the lexicon-
based approach works as follows: it uses (1) a
lexicon of sentiment expressions including sen-
timent words, phrases, idioms, and composition
rules, (2) a set of rules for handling different
language constructs (e.g., sentiment shifters and
but-clauses) and different types of sentences, and
(3) a sentiment aggregation function or a set of
sentiment and target relationships derived from
the parse tree to determine the sentiment orien-
tation on each target (Ding et al. 2008; Liu 2012).

Comparative Sentences

Unlike a regular opinion sentence, a comparative
sentence expresses a relation based on similarities
or differences of more than one entity. In English,
comparisons are usually conveyed using the com-
parative or superlative forms of adjectives or ad-
verbs, e.g., The picture quality of Canon cameras
is better than that of Sony cameras. To mine
comparative opinions, aspect sentiment analysis
is necessary because it does not make much sense
to classify a comparative sentence as expressing
a positive, negative, or neutral sentiment. See

Sentiment Analysis and Opinion Mining 1157

S

Jindal and Liu (2006) and Liu (2015) for more
details.

Supervised Learning vs.
Lexicon-Based Approach

The key advantage of supervised learning for sen-
timent classification is that it can automatically
learn from all kinds of features for classification
through optimization. Most of these features are
difficult to use by a lexicon-based method. How-
ever, supervised learning depends on the training
data, which needs to be manually labeled for each
domain. A shortcoming of the approach is that a
supervised classifier trained from the labeled data
in one domain often does not work in another
domain. Thus, for each domain, new training data
needs to be labeled, which is time consuming.
Another shortcoming is that it is hard to learn
things that do not occur frequently. The lexicon-
based approach is able to avoid these issues to
some extent and has been shown to perform well
in a large number of applications. Its main ad-
vantage is domain independence, that is, it can be
applied to any domain without manual labeling
of a large amount of training data as required in
the supervised learning approach. The lexicon-
based method is also flexible in the sense that
the system can be easily extended and improved.
If an error occurs, the user simply corrects some
existing rules and/or adds new rules to the sys-
tem’s rule base. However, the lexicon-based ap-
proach also has its disadvantages. It needs heavy
investments in time and effort to build the ini-
tial knowledge base of lexicon, patterns, and
rules. Furthermore, although the lexicon-based
approach is supposed to be domain independent,
some additional work is still needed to take care
of the idiosyncrasies of each domain. The main
issue is that it is quite hard to deal with domain-
dependent or context-dependent sentiment words
and phrases (see below and Liu 2015).

Aspect and Entity Extraction

The task of aspect and entity extraction is to iden-
tify and extract opinion targets (aspect or entity)

from opinion documents. Since aspect extraction
and entity extraction are closely related tasks,
ideas and methods proposed for aspect extrac-
tions can also be shared with the entity extraction
task. Much of the existing research focused on
aspect extraction. Current aspect extraction meth-
ods can be roughly grouped into four categories:
mining frequent noun phrases, utilizing syntactic
relations of sentiment words and their targets, and
applying supervised sequence learning models
and topic modeling. All these approaches are
used in practice.

Finding Frequent Noun Phrases

Since people often use the same words when
they comment on the same product aspects, Hu
and Liu (2004) makes use of this observation to
mine aspects by simply finding frequent nouns
and noun phrases in reviews using frequent item-
set mining (Agrawal and Srikant 1994). Those
more frequent noun phrases are also likely to be
more important aspects because people usually
comment on those more important aspects more
frequently.

Exploiting Syntactic Relations of
Sentiment and Target

It was observed in Hu and Liu (2004) that adjec-
tive sentiment words often modify (or describes)
noun aspects (e.g., great picture). Hu and Liu
(2004) used such relations to identify aspects that
are hard to find by the frequency-based method
above. Zhuang et al. (2006) formulated the idea
based on the dependency grammar and extracted
aspect and sentiment word pairs from movie
reviews using a set of dependency relations. Qiu
et al. (2011) developed the idea further and pro-
posed an algorithm called double propagation
(DP). DP uses a set of manually compiled depen-
dency rules derived from some dependency rela-
tions to identify both aspects and sentiment words
simultaneously through a bootstrapping process.
These methods are all based on the idea that
opinion always has target, and there are often syn-

1158 Sentiment Analysis and Opinion Mining

tactic relations that connect sentiment words and
targets in a sentence. Thus, sentiment words can
be recognized by identified aspects, and aspects
can be identified by known sentiment words.
The extracted sentiment words and aspects are
utilized to identify new sentiment words and new
aspects, which are used again to extract more
sentiment words and aspects. This is the approach
used in the DP method. Recently, this method
was improved with automated rule selection (Liu
et al. 2015) and word alignment from the machine
translation research (Liu et al. 2013).

Applying Supervised Sequence
Learning Models

Sequence learning models such as Hidden
Markov models (HMM) and conditional random
fields (CRF) are widely used in information
extraction. They are thus also used for aspect
extraction. Aspect extraction can be regarded
as a sequence labeling task since entity, aspect,
and opinion expressions are often interdependent
and occur in a sequence in a sentence. Jin and
Ho (2009) utilized lexicalized HMM to extract
product aspects and opinion expressions from
reviews. Different from traditional HMM, they
integrated linguistic features such as part of
speech and lexical patterns into HMM. Jakob
and Gurevych (2010) utilized CRF to extract
opinion aspects from opinion sentences.

Topic Modeling

Topic models such as PLSA (probabilistic latent
semantic analysis) and LDA (latent Dirichlet
allocation) have been popularly used to mine
hidden topics from the document corpora. In the
context of aspect extraction, aspects are basically
topics in topic modeling. Mei et al. (2007)
proposed a model for extracting both aspects
and sentiment words. Titov and McDonald
(2008) pointed out that global topic models such
as PLSA and LDA might not be suitable for
detecting aspects from reviews. To tackle this
problem, they proposed some multigrain topic
models to discover aspects, which models two

distinct types of topics: global topics and local
topics. Lin and He (2009) proposed a joint topic-
sentiment model, which extended LDA by adding
a sentiment layer. It detects sentiment and aspect
simultaneously from the corpus. Further works
along a similar line have been done in Brody and
Elhadad (2010), Wang et al. (2010), Zhao et al.
(2010), and Jo and Oh (2011). Recently, two
new types of models were proposed: knowledge-
based models (Mukherjee and Liu 2012) which
can exploit prior domain knowledge to produce
better results and lifelong topic models (Chen
and Liu 2014) which exploit the big data to
automatically mine prior knowledge to be used
in the modeling process.

Sentiment Lexicon

It is quite clear that sentiment words are instru-
mental for sentiment analysis. Positive sentiment
words are used to express some desired states,
while negative ones are used to express some
undesired states. Examples of positive sentiment
words are beautiful, wonderful, and good. Ex-
amples of negative sentiment words are bad,
poor, and terrible. Apart from individual words,
there are also sentiment phrases and idioms. To
compile a sentiment word list or lexicon, two
approaches have been studied: dictionary-based
approach and corpus-based approach.

Dictionary-Based Approach

This approach is based on bootstrapping using
a small set of seed sentiment words and an on-
line dictionary, e.g., WordNet or thesaurus. The
strategy is to first collect a small set of sentiment
words manually with known orientations and
then to grow this set by searching in the WordNet
or an online thesaurus to find their synonyms
and antonyms. The newly found words are added
to the seed list. The next iteration starts. The
iterative process stops when no more new words
are found (Hu and Liu 2004; Kim and Hovy
2004; Kamps et al. 2004).

Sentiment Analysis and Opinion Mining 1159

S

Corpus-Based Approach

The corpus-based approach relies on syntactic
patterns and also a seed list of sentiment words
to find other sentiment words in a large corpus.
One of the key ideas was proposed in Hatzivas-
siloglou and McKeown (1997). The technique
uses the set of seed sentiment words and a set of
linguistic constraints or conventions on connec-
tives to identify additional sentiment words and
their orientations. One of the constraints is about
the conjunction AND, which says that conjoined
adjectives usually have the same sentiment orien-
tation. For example, if beautiful is known to be
positive, we can infer that spacious is also posi-
tive from the sentence This car is beautiful and
spacious. Rules or constraints are also designed
for other connectives, OR, BUT, EITHER-OR,
and NEITHER-NOR. This constraint is called
sentiment consistency. Kanayama and Nasukawa
(2006) and Ding et al. (2008) expanded this
approach to intra-sentential and inter-sentential
sentiment consistency. Ding et al. (2008) further
showed that the same word may indicate positive
sentiment in one sentence context but negative
sentiment in another sentence context. For ex-
ample, in the domain of car reviews, the word
“quiet” expresses opposite sentiments or opinions
in the following two sentences: This car is very
quiet (positive) and The audio system in the car
is very quiet (negative). The authors proposed to
consider both the sentiment word and the aspect
together in determining the sentiment orientation
of the sentiment word. To determine the senti-
ment orientation of the pair, the above sentiment
consistency idea is still used. In a similar vein,
Choi and Cardie (2009) studied the problem of
adapting a general-purpose sentiment lexicon to
a specific domain of application.

Sentiment Analysis of Emotions

Emotions are human feelings. They are similar
and also different from opinions. An opinion
expresses an evaluation or appraisal about
some objects, whereas an emotion expresses a
human inner feeling. Human beings have many

different types of emotions. However, there is
still no agreement among researchers on how
many kinds of emotions there are and what
they are. According to Parrott (2001), humans
have six basic emotions: joy, love, anger, fear,
sadness, and surprise. Existing sentiment
analysis of emotions is focused on classification
of emotion types expressed in sentences.
Both supervised learning and lexicon-based
approaches have been attempted by researchers.

In supervised learning, Alm et al. (2005) clas-
sified the emotional affinity of sentences in the
narrative domain of children’s fairy tales. The
features are not the traditional word n-grams but
fourteen groups of Boolean features about each
sentence and its context in the document. The
classes are only two: neutral and emotional. In
Mohammad (2012), a Twitter data set was anno-
tated with emotion types based on emotion words
or hashtags in Twitter posts. The author then
performed classification of emotions using SVM
with binary features that capture the presence
or absence of unigrams and bigrams. Additional
references can be found in Liu (2015).

In the lexicon-based approach, Yang et al.
(2007) first constructed an emotion lexicon
and then performed emotion classification
at the sentence level using the lexicon. To
construct the emotion lexicon, the proposed
algorithm uses only sentences with a single user-
provided emoticon. For each word, it computes a
collocation (or association) strength of the word
with each emoticon using a measure similar to
pointwise mutual information (PMI). Those top-
scoring words are very likely to indicate different
types of emotions. For emotion classification of
sentences, it experimented with two approaches:
the lexicon-based approach and the supervised
learning approach. For supervised learning, only
the top k emotion words were used as features.

Summary

This article gave a brief introduction to sen-
timent analysis. Interested readers can refer to
Liu (2015) for an in-depth and comprehensive
coverage of the topic. Sentiment analysis is a

1160 Sentiment Analysis and Opinion Mining

highly challenging research problem with almost
unlimited applications. It has been one of the
most active research areas in natural language
processing for many years. Although significant
progresses have been made and numerous in-
dustrial systems have been built, the problem
remains to be very difficult. The accuracy results
in many cases are still unsatisfactory. However,
the practical application needs and technical chal-
lenges will keep the field vibrant and lively for
years to come.

Cross-References

�Opinion Stream Mining

Recommended Reading

Agrawal R, Srikant R (1994) Fast algorithms for min-
ing association rules. In: Proceedings of the interna-
tional conference on very large databases (VLDB-
1994), Santiago de Chile

Alm CO, Roth D, Sproat R (2005) Emotions from text:
machine learning for text-based emotion prediction.
In: Proceedings of conference on human language
technology and empirical methods in natural lan-
guage processing (HLT/EMPNLP-2005), Vancou-
ver

Blitzer J, Dredze M, Pereira F (2007) Biographies, bol-
lywood, boom-boxes and blenders: domain adapta-
tion for sentiment classification. In: Proceedings of
the annual meeting of the association for computa-
tional linguistics (ACL-2007), Prague

Brody S, Elhadad S (2010) An unsupervised aspect-
sentiment model for online reviews. In: Proceedings
of the annual conference of the North American
chapter of the ACL (NAACL-2010), Los Angeles

Chen Z, Liu B (2014) Topic modeling using topics
from many domains, lifelong learning and big data.
In: Proceedings of the international conference on
machine learning (ICML-2014), Beijing

Choi Y, Cardie C (2009) Adapting a polarity lexi-
con using integer linear programming for domain-
specific sentiment classification. In: Proceedings of
conference on empirical methods in natural lan-
guage processing (EMNLP-2009), Singapore

Ding X, Liu B, Yu PS (2008) A holistic lexicon-based
approach to opinion mining. In: Proceedings of the
conference on web search and web data mining
(WSDM-2008), Palo Alto

Hatzivassiloglou V, McKeown K (1997) Predicting the
semantic orientation of adjectives. In: Proceedings

of the annual meeting of the association for compu-
tational linguistics (ACL-1997), Madrid

Hu M, Liu B (2004) Mining and summarizing cus-
tomer reviews. In: Proceedings of ACM SIGKDD
international conference on knowledge discovery
and data mining (KDD-2004), Seattle

Jakob N, Gurevych I (2010) Extracting opinion targets
in a single- and cross-domain setting with condi-
tional random fields. In: Proceedings of the con-
ference on empirical methods in natural language
processing (EMNLP-2010). MIT, Massachusetts

Jiang L, Yu M, Zhou M, Liu X, Zhao T (2011) Target-
dependent twitter sentiment classification. In: Pro-
ceedings of the annual meeting of the association
for computational linguistics (ACL-2011), Portland

Jin W, Ho HH (2009) A novel lexicalized HMM-Based
learning framework for web opinion mining. In:
Proceedings of international conference on machine
learning (ICML-2009), Montreal

Jindal N, Liu B (2006) Mining comparative sentences
and relations. In: Proceedings of national confer-
ence on artificial intelligence (AAAI-2006), Boston

Jo Y, Oh A (2011) Aspect and sentiment unification
model for online review analysis. In: Proceedings of
the conference on web search and web data mining
(WSDM-2011), Hong Kong

Kamps J, Marx M, Mokken RJ, De Rijke M (2004)
Using WordNet to measure semantic orientation of
adjectives. In: Proceedings of international confer-
ence on language resources and evaluation (LREC-
2004), Lisbon

Kanayama H, Nasukawa T (2006) Fully automatic
lexicon expansion for domain-oriented sentiment
analysis. In: Proceedings of conference on empirical
methods in natural language processing (EMNLP-
2006), Sydney

Kim S-M, Hovy E (2004) Determining the sentiment
of opinions. In: Proceedings of international confer-
ence on computational linguistics (COLING-2004),
University of Geneva, Geneva

Li S, Lin C, Song Y, Li Z (2010) Comparable entity
mining from comparative questions. In: Proceedings
of the annual meeting of the association for com-
putational linguistics (ACL-2010), Uppsala Univer-
sity, Uppsala

Lin C, He Y (2009) Joint sentiment/topic model for
sentiment analysis. In: Proceedings of ACM inter-
national conference on information and knowledge
management (CIKM-2009), Hong Kong

Liu B (2012) Sentiment analysis and opinion mining.
Morgan & Claypool, San Rafael

Liu B (2015) Sentiemnt analysis: mining opinions,
sentiments, and emotions. Cambridge University
Press, Cambridge

Liu K, Xu L, Zhao J (2013) Syntactic patterns versus
word alignment: extracting opinion targets from
online reviews. In: Proceedings of the annual meet-
ing of the association for computational linguistics
(ACL-2013), Sofia

http://dx.doi.org/10.1007/978-1-4899-7687-1_905

Separate-and-Conquer Learning 1161

S

Liu Q, Gao Z, Liu B, Zhang Y (2015) Automated rule
selection for aspect extraction in opinion mining.
In: Proceedings of international joint conference on
artificial intelligence (IJCAI-2015), Buenos Aires

McDonald R, Hannan K, Neylon T, Wells M, Reynar
J (2007) Structured models for fine-to-coarse senti-
ment analysis. In: Proceedings of the annual meet-
ing of the association for computational linguistics
(ACL2007), Prague

Mei Q, Ling X, Wondra M, Su H, Zhai C (2007) Topic
sentiment mixture: modeling facets and opinions in
weblogs. In: Proceedings of international confer-
ence on world wide web (WWW-2007), Banff

Mihalcea R, Banea C, Wiebe J (2007) Learning mul-
tilingual subjective language via cross-lingual pro-
jections. In: Proceedings of the annual meeting of
the association for computational linguistics (ACL-
2007), Prague

Mohammad SM (2012) #Emotional tweets. In: Pro-
ceedings of the first joint conference on lexical and
computational semantics, Montreal

Mukherjee A, Liu B (2012) Aspect extraction through
semi-supervised modeling. In: Proceedings of the
annual meeting of association for computational
linguistics (ACL-2012), Jeju Island

Narayanan R, Liu B, Choudhary A (2009) Sentiment
analysis of conditional sentences. In: Proceedings
of conference on empirical methods in natural lan-
guage processing (EMNLP-2009), Singapore

Pan SJ, Ni X, Sun J, Yang Q, Chen Z (2010) Cross-
domain sentiment classification via spectral feature
alignment. In: Proceedings of international confer-
ence on world wide web (WWW-2010), Raleigh

Pang B, Lee L (2008) Opinion mining and sentiment
analysis. Foundations and trends in information re-
trieval. Now Publishers, Hanover, MA

Pang B, Lee L, Vaithyanathan S (2002) Thumbs
up?: sentiment classification using machine learn-
ing techniques. In: Proceedings of conference on
empirical methods in natural language processing
(EMNLP-2002), Philadelphia

Parrott WG (2001) Emotions in social psychology:
essential readings. Psychology Press, Hove

Qiu G, Liu B, Bu J, Chen C (2011) Opinion word ex-
pansion and target extraction through double propa-
gation. Comput Linguist, 37(1):9–27

Riloff E, Qadir A, Surve P, De Silva L, Gilbert N,
Huang R (2013) Sarcasm as contrast between a pos-
itive sentiment and negative situation. In: Proceed-
ings of conference on empirical methods in natural
language processing (EMNLP-2013), Seattle

Socher R, Perelygin A, Wu J, Manning C, Ng A,
Chuang J (2013) Recursive deep models for seman-
tic compositionality over a sentiment treebank. In:
Proceedings of the conference on empirical meth-
ods on natural language processing (EMNLP-2013),
Seattle

Taboada M, Brooke J, Tofiloski M, Voll K, Stede M
(2011) Lexicon-based methods for sentiment analy-
sis. Comput Linguist 37(2):267–307

Titov I, McDonald R (2008) Modeling online reviews
with multi-grain topic models. In: Proceedings of in-
ternational conference on world wide web (WWW-
2008), Beijing

Tsur O, Davidov D, Rappoport A (2010) A great
catchy name: semi-supervised recognition of sar-
castic sentences in online product reviews. In: Pro-
ceedings of the international AAAI conference on
weblogs and social media (ICWSM-2010), Wash-
ington, DC

Turney PD (2002) Thumbs up or thumbs down?: se-
mantic orientation applied to unsupervised classi-
fication of reviews. In: Proceedings of the annual
meeting of the association for computational lin-
guistics (ACL-2002), Philadelphia

Wan X (2009) Co-training for cross-lingual sentiment
classification. In: Proceedings of the annual meeting
of the ACL and the IJCNLP of the AFNLP (ACL-
IJCNLP-2009), Singapore

Wang H, Lu Y, Zhai C (2010) Latent aspect rating
analysis on review text data: a rating regression
approach. In: Proceedings of ACM SIGKDD in-
ternational conference on knowledge discovery and
data mining (KDD-2010), Washington, DC

Wiebe J, Wilson T, Bruce R, Bell M, Martin M
(2004) Learning subjective language. Comput Lin-
guist 30(3):277–308

Yang C, Lin KH-Y, Chen H-H (2007) Building emo-
tion lexicon from weblog corpora. In: Proceedings
of the annual meeting of the ACL on interactive
poster and demonstration sessions, Prague

Zhang L, Liu B (2011) Identifying noun product fea-
tures that imply opinions. In: Proceedings of the
annual meeting of the association for computational
linguistics (ACL-2011), Portland

Zhao W, Jiang J, Yan H, Li X (2010) Jointly modeling
aspects and opinions with a MaxEnt-LDA hybrid.
In: Proceedings of conference on empirical meth-
ods in natural language processing (EMNLP-2010).
MIT, Massachusetts

Zhuang L, Jing F, Zhu X (2006) Movie review mining
and summarization. In: Proceedings of ACM inter-
national conference on information and knowledge
management (CIKM-2006), Arlington

Sentiment Mining

� Sentiment Analysis and Opinion Mining

Separate-and-Conquer Learning

�Covering Algorithm

http://dx.doi.org/10.1007/978-1-4899-7687-1_907
http://dx.doi.org/10.1007/978-1-4899-7687-1_275

1162 Sequence Data

Sequence Data

� Sequential Data

Sequential Data

Synonyms

Sequence Data

Sequential Data refers to any data that contain
elements that are ordered into sequences.
Examples include � time series, DNA sequences
(see � biomedical informatics) and sequences
of user actions. Techniques for learning from
sequential data include �Markov models,
�Conditional Random Fields and � time series
techniques.

Sequential Inductive Transfer

�Cumulative Learning

Sequential Learning

�Online Learning

Set

�Class

Shannon’s Information

If a message announces an event E1 of
probability P.E1/ its information content is
� log2 P.E1/. This is also its length in bits.

Shattering Coefficient

Synonyms

Growth function

Definition

The shattering coefficient SF .n/ is a function that
measures the size of a function class F when
its functions f W X ! R are restricted to
sets of points x D .x1; : : : ; xn/ 2 X n of size
n. Specifically, for each n 2 N the shattering
coefficient is the maximum size of the set of
vectors Fx D f.f .x1/; : : : : ; f .xn// W f 2 Fg

R
n that can be realized for some choice of x 2

X n. That is,

SF .n/ D sup
x2Xn

jFxj:

The shattering coefficient of a hypothesis
class H is used in � generalization bounds as
an analogue to the class’s size in the finite
case.

Sigmoid Calibration

�Classifier Calibration

Similarity Measures

Michail Vlachos
IBM Research, Zurich, Switzerland

Synonyms

Distance; Distance functions; Distance measures;
Distance metrics

http://dx.doi.org/10.1007/978-1-4899-7687-1_754
http://dx.doi.org/10.1007/978-1-4899-7687-1_100424
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_30
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1007/978-1-4899-7687-1_155
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_191
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_100194
http://dx.doi.org/10.1007/978-1-4899-7687-1_328
http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_100115
http://dx.doi.org/10.1007/978-1-4899-7687-1_100116
http://dx.doi.org/10.1007/978-1-4899-7687-1_100117
http://dx.doi.org/10.1007/978-1-4899-7687-1_100118

Similarity Measures 1163

S

Introduction

The term similarity measure refers to a function
that is used for comparing objects of any
type. The objects can be data structures,
database records, or even multimedia objects
(audio, video, etc). Therefore the input of
a similarity measure is two objects, and the
output is, typically, a number between 0 and
1; “zero” meaning that the objects are completely
dissimilar and “one” signifying that the two
objects are identical. Similarity is related to
distance, which is the inverse of similarity, that is,
a similarity of 1 implies a distance of 0 between
two objects.

Background

Similarity measures are typically used for quanti-
fying the affinity between objects in search opera-
tions, in which the user presents an object (query)
and requests other objects “similar” to the given
query. Therefore, a similarity measure is a math-
ematical abstraction for comparing objects and it
assigns a single number that indicates the affinity
between the said pair of objects. The results of the
search are customarily presented to the user in the
order suggested by the similarity value returned.
Objects with higher similarity value are presented
first because they are deemed to be more relevant
to the query posed by the user. For example, when
searching for specific keywords on an internet
search engine, internet pages that are more rele-
vant/similar to the query posed are presented first.
The selection of the proper similarity function
is an important parameter in many applications,
including � instance-based learning, � clustering,
and � anomaly detection.

Most similarity measures attempt to model
(imitate) the human notion of similarity between
objects. If a similarity function resembles very
closely the similarity ranking between objects as
returned by a human, then it is considered suc-
cessful. This, however, is also where the difficulty
lies because in general similarity is something
that is very subjective.

Consider the case where a user poses the
keyword query “crane” at a search engine while
searching for images. The results returned would
contain images of machinery, birds, or even
origami creations. This is because when the
similarity measure used is solely based on textual
information then all such images are indeed
proper answers to the query. If one were also
interested in the semantics of an image, then
perhaps additional features such as texture, color,
or shape could have been used. Therefore, to
define an effective similarity measure, one first
has to extract the proper object features and
then evaluate the similarity using an appropriate
distance function.

Classes of Similarity Functions

There are two major classes of similarity func-
tions: metric and nonmetric functions. For a func-
tion d to be a metric, it has to satisfy all of
the following three properties for any objects
X; Y;Z:

1. d.X; Y / D 0 iff X D Y (identity axiom)
2. d.X; Y / D d.Y;X/ (symmetry axiom)
3. d.X; Y / C d.Y;Z/ � d.X;Z/ (triangle in-

equality)

Metric similarity functions are very widely
used in search operations because they support
the triangle inequality. The triangle inequality can
help prune much of the search space by eliminat-
ing objects from examination that are guaranteed
to be distant to the given query (Agrawal et al.
1993; Zezula 2005). The most frequently used
metric similarity function is the Euclidean dis-
tance. For two objects X and Y that are charac-
terized by set of n features X D .x1; x2; : : : ; xn/

and similarly Y D .y1; y2; : : : ; yn/, the Eu-
clidean distance is defined as

D D

vuut nX
iD1

.xi � yi /2

http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_912

1164 Similarity Measures

Similarity Measures, Fig. 1 Mapping achieved by the
Euclidean distance between time-series data

1. Bat
similar to
batman

2.

similar
to man

3. But, man
is not similar

to bat…

2.
Batman
similar
to man

Similarity Measures, Fig. 2 Nonmetric similarity that
disobeys the triangle inequality

If we represent the objects X and Y as an
ordered sequence of their features, we can visual-
ize the linear mapping achieved by the Euclidean
distance in Fig. 1.

Nonmetric similarity measures resemble more
closely the human notion of similarity by allow-
ing a more flexible matching between the objects
examined, for example, by allowing nonlinear
mappings or even by accommodating occlusion
of points or features. The human visual system
is in general considered to be nonmetric. Non-
metric measures typically disobey the triangle
inequality. For example, consider the following
nonmetric relationship: “Batman” is similar to
“man,” and “bat” is also similar to “batman,” but
this does not imply that “bat” is similar to “man.”
This is illustrated in Fig. 2.

Examples for Time-Series Data

Consider the case of time-series data. Widely
used nonmetric similarity functions are the
warping distance and the longest common
subsequence (LCSS). The warping distance (also
known as dynamic time warping or DTW) has
been used very extensively in the past in voice-
recognition tasks because of its ability to perform
compression or decompression of the features,
allowing flexible nonlinear mappings. In Fig. 3,
we depict the outcome of the measures for time-
series data mentioned above. The Euclidean
distance performs a rigid linear mapping of
points, the DTW can perform nonlinear one-
to-many mappings, and the LCSS constructs a
one-to-one nonlinear mapping.

Recently, similarity metrics based on infor-
mation theory, and in specific, on Kolmogorov
complexity, have been presented (Li 2004; Keogh
2004) and can also be considered as compression-
based measures. A very simple and easily im-
plementable version of a compression-based dis-
tance is

dc.X; Y / D
C.XY /

C.X/C C.Y /

where C.X/ is the compressed size (bytes) of
X given a certain compression algorithm. The
distance will be close to 1 if X and Y are
dissimilar and less than 1 if X and Y are related.
Therefore we exploit the fact that if X and Y
are “similar,” they should compress equally well
(approximately same number of bytes) when con-
sidered either separately or together because the
compression dictionaries will be similar when the
two objects are related. In summary, the choice
of similarity measure is highly dependent on the
application at hand. The practitioner should also
closely consider on which object features the
similarity measure will be applied. Ultimately,
the combination of both feature selection and
similarity measure will define the quality of a
search process.

Similarity Measures 1165

S

Similarity Measures,
Fig. 3 Comparison of
Euclidean, warping, and
longest common
subsequence measures

0

0

20 40 60 80 100 120

Euclidean Matching

20 40 60 80 100 120

Time Warping

0 20 40 60 80 100 120

Longest Common Subsequence

1166 Simple Bayes

Cross-References

�Dimensionality Reduction
� Feature Selection

Recommended Reading

Agrawal R, Faloutsos C, Swami A (1993) Efficient
similarity search in sequence databases. In: Pro-
ceeding of the FODO, Chicago

Keogh E, Lonardi S, Ratanamahatana A (2004) To-
wards parameter-free data mining. In: Proceedings
of the SIGKDD, Seattle

Li M, Chen X, Li X, Ma B, Vitanyi PMB (2004)
The similarity metric. IEEE Trans Inf Theory
50(12):3250–3264

Zezula P, Amato G, Dohnal V, Batko M (2005) Simi-
larity search: the metric space approach. Advances
in database systems. Springer, New York

Simple Bayes

�Naı̈ve Bayes

Simple Recurrent Network

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Elman network; Feedforward recurrent network

Definition

The simple recurrent network is a specific version
of the � backpropagation neural network that
makes it possible to process sequential input and
output (Elman 1990). It is typically a three-layer
network where a copy of the hidden layer activa-
tions is saved and used (in addition to the actual
input) as input to the hidden layer in the next time
step. The previous hidden layer is fully connected
to the hidden layer. Because the network has no
recurrent connections per se (only a copy of the

activation values), the entire network (including
the weights from the previous hidden layer to the
hidden layer) can be trained with the backpropa-
gation algorithm as usual. It can be trained to read
a sequence of inputs into a target output pattern,
to generate a sequence of outputs from a given
input pattern, or to map an input sequence to an
output sequence (as in predicting the next input).
Simple recurrent networks have been particularly
useful in � time series prediction, as well as in
modeling cognitive processes, such as language
understanding and production.

Recommended Reading

Elman JL (1990) Finding structure in time. Cognit Sci
14:179–211

SMT

� Statistical Machine Translation

Solution Concept

A criterion specifying which locations in the
search space are solutions and which are not.
In designing a coevolutionary algorithm, it
is important to consider whether the solution
concept implemented by the algorithm (i.e.,
the set of individuals to which it can con-
verge) corresponds with the intended solution
concept.

Solving Semantic Ambiguity

�Word Sense Disambiguation

SOM

� Self-Organizing Maps

http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_100135
http://dx.doi.org/10.1007/978-1-4899-7687-1_100171
http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_882
http://dx.doi.org/10.1007/978-1-4899-7687-1_746

Speedup Learning 1167

S

Sort

�Class

Spam Detection

�Text Mining for Spam Filtering

Specialization

Specialization is the converse of � generalization.
Thus, if h1 is a generalization of h2 then h2 is a
specialization of h1.

Cross-References

�Generalization
� Induction
�Learning as Search
�Logic of Generality
� Subsumption

Specificity

Synonyms

True negative rate

Specificity is the fraction of negative examples
predicted correctly by a model. See � Sensitivity
and Specificity.

Spectral Clustering

�Graph Clustering
�K-Way Spectral Clustering

Speedup Learning

Alan Fern
Science, Oregon State University, Corvallis, OR,
USA

Definition

Speedup learning is a branch of machine learning
that studies learning mechanisms for speeding up
problem solvers based on problem-solving expe-
rience. The input to a speedup learner typically
consists of observations of prior problem-solving
experience, which may include traces of the prob-
lem solver’s operations and/or solutions to solve
the problems. The output is knowledge that the
problem solver can exploit to find solutions more
quickly than before learning without seriously ef-
fecting the solution quality. The most distinctive
feature of speedup learning, compared with most
branches of machine learning, is that the learned
knowledge does not provide the problem solver
with the ability to solve new problem instances.
Rather, the learned knowledge is intended solely
to facilitate faster solution times compared to the
solver without the knowledge.

Motivation and Background

Much of the work in computer science
and especially artificial intelligence aims at
developing practically efficient problem solvers
for combinatorially hard problem classes such
as automated planning, logical and probabilistic
reasoning, game playing, constraint satisfaction,
and combinatorial optimization. While it
is often straightforward to develop optimal
problem solvers for these problems using brute-
force, exponential-time search procedures, it is
generally much more difficult to develop solvers
that are efficient across a wide range of problem
instances. The main motivation behind speedup
learning is to create adaptive problem solvers
that can learn patterns from problem-solving
experience that can be exploited for efficiency

http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_828
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_800
http://dx.doi.org/10.1007/978-1-4899-7687-1_100491
http://dx.doi.org/10.1007/978-1-4899-7687-1_758
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_433

1168 Speedup Learning

gains. Such adaptive solvers have the potential
to significantly outperform traditional static
solvers by specializing their behavior to the
characteristics of a single problem instance or
to an entire class of related problem instances.
The exact form of knowledge and learning
mechanism is tightly tied to the problem class
and the problem-solver architecture.

Most branches of machine learning, such as
� supervised classification, aim to learn funda-
mentally new problem-solving capabilities that
are not easily programmed by hand even when ig-
noring efficiency issues – for example, learning to
recognize handwritten digits. Speedup learning is
distinct in that it is typically applied in situations
where hand-coding an optimal, but inefficient,
problem solver is straightforward – for example,
solving satisfiability problems. Rather, learning is
aimed exclusively at finding solutions in a more
practical time frame.

Work in speedup learning grew out of various
subfields of artificial intelligence and more gen-
erally computer science. An early example, from
automated planning, involved learning knowl-
edge for speeding up the original STRIPS planner
(Fikes et al. 1972) via the learning of triangle
tables or macros that could later be exploited by
the problem solver. Throughout the 1980s and
early 1990s, there was a great deal of additional
work on speedup learning in the area of auto-
mated planning as overviewed in Minton (1993)
and Zimmerman and Kambhampati (2003).

Another major source of speedup learning
research has originated from the areas of AI
search and constraint satisfaction. Many of the
� intelligent backtracking mechanisms from
these areas, which are critical to perform,
can be viewed as speedup learning techniques
(Kambhampati 1998) where knowledge is
learned, while solving a problem instance that
better informs later search decisions. Such
methods have also come out of the area of
logic programming (Kumar and Lin 1988), where
search efficiency plays a central role.

In addition, various branches of AI have de-
veloped speedup learning approaches based on
learning-improved heuristic evaluation functions.
Samuel’s checker player (Samuel 1959) was one

such early example, where learned evaluation
functions allowed for the performance of deep
game tree search to be approximated by a shal-
lower, less expensive search.

Structure of Learning System

Figure 1 shows a generic diagram of a speedup
learning system. The main components are the
problem solver and the speedup learner. The role
of the problem solver is to receive problem in-
stances from a problem generator and to produce
solutions for those instances. For example, prob-
lem solvers might include constraint-satisfaction
engines, automated planners, or A� search. The
role of the speedup learner is to produce knowl-
edge that the problem solver can use to improve
its solution time. The input to the speedup learner,
which is analyzed in order to produce the knowl-
edge, can include one or more of the following
data sources: (1) the input problem instances, (2)
traces of the problem solver’s decisions while
solving the input problems, and (3) solutions to
solved problems.

Clearly there is a large space of possible
speedup learning systems that result from
different problem solvers, forms of learned
knowledge, learning methods, and intended
mode of applicability. Some of the main
dimensions are described in the following section
in which speedup learning approaches can be
characterized. Examples of typical learners that
span this space are provided, noting that the
examples are far from an exhaustive list.

Dimensions of Speedup Learning

Intra-problem Versus Inter-problem Speedup.
Intra-problem speedup learning is when knowl-
edge is learned during the solution of the current
problem instance and is only applicable to speed-
ing up the solution of the current instance. After
a solution is found, the knowledge is discarded as
it is not applicable for the future instances. Inter-
problem speedup learning is when the learned
knowledge is applicable not only to the prob-
lem(s) it was learned on but also to new problems

http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_411

Speedup Learning 1169

S

Problem SolverProblem
generator Solution

Speedup
Learner

Problem solver
traces

Learned
knowledge

Problem
instance

Speedup Learning, Fig. 1 Schematic diagram of a
speedup learning system. The problem solver receives
problem instances from a problem generator and produces
solutions. The speedup learner can observe the input
problem instances, traces of the problem solver while
solving the problem instances, and sometimes also the

solutions to previously solved problem instances. The
speedup learner outputs knowledge that can be used by
the problem solver to speed up its solution time either on
the current problem instance (intra-problem speedup) or
future related instances (inter-problem speedup)

to be encountered in the future. In this sense, the
learned knowledge can be viewed as a general-
ized knowledge about how to find solutions more
quickly for an entire class of problems.

Typically in the inter-problem learning, the
problem generator produces instances that are re-
lated in some way and, thus, share common struc-
ture that can be learned from the earlier instances
and exploited when solving the later instances.
Rather intra-problem speedup learners treat each
problem instance as completely distinct from the
rest. Also note that inter-problem learners have
the potential to benefit from the analysis of solu-
tions to previous problem instances. Rather, intra-
problem learners are unable to use this source
of information, since once the current problem is
solved, no further learning is warranted.

Types of Learned Knowledge. Most problem
solvers can be viewed as search procedures,
which is the view that will be taken when
characterizing the various forms of learned
knowledge in speedup learning. Four types of
commonly used knowledge are listed below,
noting that this is far from an exhaustive
list. First, pruning constraints are the sets of

constraints on search nodes that signal when
certain branch of the search space can be safely
pruned. Second, macro operators (macros) are
sequences of search operators that are typically
useful when executed in order. Problem solvers
can often utilize macros in order to decrease the
effective solution depth of the search space by
treating macros as additional search operators.
It is important that the decrease in effective
depth is enough to compensate for the increase
in number of operators, which increases the
search complexity. Third, search-control rules
are the sets of rules that typically test the current
problem-solving state and suggest problem-
solving actions such as rejecting, selecting,
or preferring a particular search operator. In
the extreme case, learned search-control rules
can completely remove the need for search.
Fourth, heuristic evaluation functions are used
to measure the quality of a particular search
node. Learning-improved heuristics can result in
better directed search behavior.

Deductive Versus Inductive Learning. �Dedu-
ctive learning refers to a learning process for
which the learned knowledge can be deductively

http://dx.doi.org/10.1007/978-1-4899-7687-1_206

1170 Speedup Learning

proven to be correct. For example, in the case
of learned pruning constraints, a deductive
learning mechanism would provide a guarantee
that the pruning was sound in the sense that
the optimality of the problem solver would be
unaffected. � Inductive learning mechanisms
rather are statistical in nature and typically do not
produce knowledge with associated deductive
guarantees. Rather, inductive methods focus on
finding statistical regularities that are typically
useful, though perhaps not correct in all cases.
For example, an inductive learner may discover
patterns that are strongly correlated to pruning
opportunities, though these patterns may have a
small probability of leading to unsound pruning.

In cases where one must guarantee a sound
and complete problem solver, deductive learning
approaches are always applicable, though their
utility depends on the particular application. In
certain cases, inductively learned knowledge can
also be utilized in a way that does not affect
the correctness of the problem solver. For ex-
ample, inductively learned search-control rules
that assert preferences, rather than prune nodes
from the search, do not lead to incompleteness.
Traditionally, the primary disadvantage of deduc-
tive learning, compared with inductive learning,
is that the inductive methods typically produce
knowledge that generalizes to a wider range of
situations than deductive methods. In addition,
deductive learning methods are often more costly
in terms of learning time as they rely on expen-
sive deductive reasoning mechanisms. Naturally,
a number of speedup learning systems exist that
utilize a combination of inductive and deductive
learning techniques.

Examples of Intra-problem Speedup
Learning
Much of the speedup learning work arising from
research in AI search and constraint satisfaction
falls into the intra-problem paradigm. The most
common forms of learning are deductive and are
based on computing explanations of “search fail-
ures” that occur during the solution of a particular
problem. Here a search failure typically corre-
sponds to a point where the problem solver must
backtrack. By computing and forming such fail-

ure explanations, the problem solver is typically
able to avoid similar types of failures in the future
by detecting that a search path will lead to fail-
ure without fully exploring that path. �Nogood
learning is a very successful, and commonly
used, example of the general failure-explanation
approach (Schiex and Verfaillie 1994). Nogoods
are combinations of variable values that lead to
search failures. By computing and recording no-
goods, it is possible to immediately prune search
states that consider those value combinations.
There are many variations of nogood learning,
with different techniques utilizing different ap-
proaches to analyzing search failures to extract
general nogoods.

Another example of the failure-explanation
approach, which is commonly utilized in satis-
fiability solvers, is � clause learning. The idea
is similar to nogood learning. When a failure
occurs during the systematic search, a proof of
the failure is constructed and analyzed to extract
implied constraints, or clauses, that the solution
must satisfy. These learned clauses are then added
to the set of clauses of the original satisfiability
problem and in later search trigger early pruning
when they, or their consequences, are violated.
Efficient implementations of this idea have led to
huge gains in satisfiability solvers. In addition, it
has been shown theoretically that clause learning
can improve solution times by an exponential
factor (Beame et al. 2004).

Inductive techniques for learning heuristic
evaluation functions have also been investigated
in the intra-problem speedup paradigm. Here
we discuss just two such approaches, where in
both cases the key idea is to observe the problem
solver and extract training examples that can be
used to learn an accurate evaluation function. A
particularly successful example of this approach
is the STAGE system (Boyan and Moore 1998)
for solving combinatorial optimization problems
such as traveling salesman and circuit layout. The
problem-solving architecture used by STAGE is
based on repeated random restarts of a fast hill-
climbing local optimizer, which, when given
an initial configuration of the combinatorial
object, performs a greedy search to a local
minimum configuration. The speedup learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_395
http://dx.doi.org/10.1007/978-1-4899-7687-1_593
http://dx.doi.org/10.1007/978-1-4899-7687-1_117

Speedup Learning 1171

S

mechanism for STAGE is to learn an approximate
function that maps initial configurations to the
performance of the local optimizer when started
at that configuration. Note that on each restart
of the problem solver, the learning component
gets a training example that can be used to
improve the function. The problem solver uses
the learned function in order to select promising
configurations from which to restart, rather
than choosing randomly. In particular, STAGE
attempts to restart from a configuration that
optimizes the learned function, which is the
predicted best starting point for the hill climber.
This overall approach has shown impressive
performance gains in a number of combinatorial
optimization domains.

As a second example of inductive learning
of heuristics in the intra-problem paradigm,
there has been work within the more traditional
problem-solving paradigm of best-first search
(Sarkar et al. 1998). Here the speedup learner
observes the sequence of search nodes traversed
by the problem solver. For any pair of nodes
observed to be on the same search path, the
learner creates a training example in an attempt
to train a heuristic to better predict the distance
between those two nodes. Ideally, this updated
heuristic function better reflects the distance from
nodes in the search queue to the goal node of the
current problem instance and, hence, results in
improved search performance.

Examples of Inter-problem Speedup
Learning
Much of the work on inter-problem speedup
learning came out of AI planning research,
where researchers have long studied learning
approaches for speeding up planners. Speedup in
planning is focused in this chapter, noting that
similar ideas have also been pursued in other
research areas such as constraint satisfaction. For
a collection and survey of work on speedup in
planning, see Minton (1993) and Zimmerman
and Kambhampati (2003). Typically in this work,
one is interested in learning knowledge for an
entire planning domain, which is a collection
of problems that share the same set of actions.
The Blocksworld is a classic example of such a

planning domain. After experiencing and solving
a number of problems from a target domain,
such as the Blocksworld, the learned knowledge
is then used to speed up performance on new
problems from the same domain.

There have been a number of deductive
learning approaches to speed up learning
in planning, which are traditionally cited as
� explanation-based learning (EBL) approaches
(Minton et al. 1989). EBL for AI planning
is strongly related to the failure-explanation
approaches developed for CSPs as characterized
nicely by Kambhampati (1998). There are two
main differences between the inter-problem EBL
work in planning and the intra-problem EBL
approaches for CSPs. First, EBL approaches in
planning produce more general explanations that
are applicable not only in the problem in which
they were learned but also new problems. This is
often made possible by introducing variables in
the place of specific objects into the explanations
derived from a particular problem. This allows
the explanations to apply to contexts in new
problems that share similar structure but involve
different objects. The second difference is that
inter-problem EBL approaches in planning often
produce explanations of successes and not just
of failures. These positive explanations are not
possible in the context of intra-problem speedup
since the intra-problem learner is only interested
in solving a single problem.

Despite the relatively large effort invested in
inter-problem EBL research, the best approaches
typically did not consistently lead to significant
gains and even hurt performance in many cases.
A primary way that EBL can hurt performance is
by learning too many explanations, which results
in the problem solver spending too much time
simply evaluating the explanations at the cost of
reducing the number of search nodes considered.
This problem is commonly referred to as the EBL
utility problem (Minton 1988) as it is difficult to
determine which explanations have high enough
utility to be worth keeping.

In addition to EBL, there has also been work
on inductive mechanisms for acquiring search-
control rules to speed up AI planners. Typically,
statistical learning mechanisms are used to find

http://dx.doi.org/10.1007/978-1-4899-7687-1_96

1172 Speedup Learning for Planning

common patterns that can distinguish between
good and bad search decisions. As one example,
Huang et al. learn action-rejection and selection
rules based on the solutions to planning problems
from a common domain (Huang et al. 2000). The
learned rules were then added as constraints to
the constraint satisfaction engine, which served to
guide the solver to solution plans more quickly.
Another approach, which has been studied at
a theoretical and empirical level, is to learn
heuristic functions to guide a bounded search
process (Xu and Fern 2009), in particular, bread-
first beam search. Results in a number of planning
domains demonstrate significant improvements
over planners that do not incorporate a learning
component. One other class of approach is based
on attempting to learn knowledge that removes
the need for a problem solver altogether, in
particular, to learn a reactive policy for quickly
selecting actions in any given state of the
environment. Such policies can be learned via
statistical techniques by simply trying to learn
an efficient function that maps planning states
to the actions selected by the planner. Despite
its simplicity, this approach has demonstrated
considerable success (Khardon 1999) and has
also been characterized at a theoretical level
(Tadepalli and Natarajan 1996).

Cross-References

�Explanation-Based Learning

Recommended Reading

Beame P, Kautz H, Sabharwal A (2004) Towards
understanding and harnessing the potential of clause
learning. J Artif Intell Res 22:319–351

Boyan JA, Moore AW (1998) Learning evaluation
functions for global optimization and boolean sat-
isfiability. In: National conference on artificial intel-
ligence, Madison. AAAI, Menlo Park, pp 3–10

Fikes R, Hart P, Nilsson N (1972) Learning and execut-
ing generalized robot plans. Artif Intell 3(1–3):251–
288

Huang Y-C, Selman B, Kautz H (2000) Learning
declarative control rules for constraint-based plan-
ning. In: International conference on machine learn-
ing, Stanford. Morgan Kaufmann, San Francisco,
pp 415–422

Kambhampati S (1998) On the relations between intel-
ligent backtracking and failure-driven explanation-
based learning in constraint satisfaction and plan-
ning. Artif Intell 105(1–2):161–208

Khardon R (1999) Learning action strategies for plan-
ning domains. Artif Intell 113(1–2):125–148

Kumar V, Lin Y (1988) A data-dependency based
intelligent backtracking scheme for prolog. J Log
Program 5(2):165–181

Minton S (1988) Quantitative results concerning the
utility of explanation-based learning. In: National
conference on artificial intelligence, St. Paul. Mor-
gan Kaufmann, St. Paul, pp 564–569

Minton S (ed) (1993) Machine learning methods for
planning. Morgan Kaufmann, San Francisco

Minton S, Carbonell J, Knoblock CA, Kuokka DR,
Etzioni O, Gil Y (1989) Explanation-based learning:
a problem solving perspective. Artif Intell 40:63–
118

Samuel A (1959) Some studies in machine learning us-
ing the game of checkers. IBM J Res Dev 3(3):211–
229

Sarkar S, Chakrabarti P, Ghose S (1998) Learning
whiles solving problems in best first search. IEEE
Trans Syst Man Cybern A Syst Hum 28(4):553–541

Schiex T, Verfaillie G (1994) Nogood recording for
static and dynamic constraint satisfaction problems.
Int J Artif Intell Tools 3(2):187–207

Tadepalli P, Natarajan B (1996) A formal framework
for speedup learning from problems and solutions. J
Artif Intell Res 4:445–475

Zimmerman T, Kambhampati S (2003) Learning-
assisted automated planning: looking back, taking
stock, going forward. AI Mag 24(2):73–96

Speedup Learning for Planning

�Explanation-Based Learning for Planning

Spike-Timing-Dependent Plasticity

A biological form of Hebbian learning where the
change of synaptic weights depends on the exact
timing of presynaptic and postsynaptic action
potentials.

Cross-References

�Biological Learning: Synaptic Plasticity, Hebb
Rule and Spike Timing Dependent Plasticity

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_97
http://dx.doi.org/10.1007/978-1-4899-7687-1_80

Statistical Machine Translation 1173

S

Split Tests

�Online Controlled Experiments and A/B Test-
ing

Sponsored Search

�Text Mining for Advertising

Squared Error

�Error Squared

Squared Error Loss

�Mean Squared Error

Stacked Generalization

Synonyms

Stacking

Definition

Stacking is an � ensemble learning technique.
A set of models are constructed from bootstrap
samples of a dataset, then their outputs on a hold-
out dataset are used as input to a “meta”-model.
The set of base models are called level-0, and
the meta-model level-1. The task of the level-1
model is to combine the set of outputs so as to
correctly classify the target, thereby correcting
any mistakes made by the level-0 models.

Recommended Reading

Wolpert DH (1992) Stacked generalization. Neural
Netw 5(2):241–259

Stacking

� Stacked Generalization

Starting Clause

�Bottom Clause

State

In a �Markov decision process, states repre-
sent the possible system configurations facing
the decision-maker at each decision epoch. They
must contain all variable information relevant to
the decision-making process.

Statistical Learning

� Inductive Learning

Statistical Machine Translation

Miles Osborne
University of Edinburgh, Edinburgh, UK

Synonyms

SMT

Definition

Statistical machine translation (SMT) deals with
automatically mapping sentences in one human
language (for example, French) into another hu-
man language (such as English). The first lan-
guage is called the source and the second lan-
guage is called the target. This process can be
thought of as a stochastic process. There are
many SMT variants, depending upon how trans-
lation is modeled. Some approaches are in terms
of a string-to-string mapping, some use trees-

http://dx.doi.org/10.1007/978-1-4899-7687-1_891
http://dx.doi.org/10.1007/978-1-4899-7687-1_826
http://dx.doi.org/10.1007/978-1-4899-7687-1_263
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_100443
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_969
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_395
http://dx.doi.org/10.1007/978-1-4899-7687-1_100430

1174 Statistical Machine Translation

to-strings, and some use tree-to-tree models. All
share in common the central idea that translation
is automatic, with models estimated from parallel
corpora (source-target pairs) and also from mono-
lingual corpora (examples of target sentences).

Motivation and Background

Machine Translation has widespread commer-
cial, military, and political applications. For
example, increasingly, the Web is accessed
by non-English speakers reading non-English
pages. The ability to find relevant information
clearly should not be bounded by our language-
speaking capabilities. Furthermore, we may
not have sufficient linguists in some language
of interest to cope with the sheer volume
of documents that we would like translated.
Enter automatic translation. Machine translation
poses a number of interesting machine learning
challenges: data sets are typically very large,
as are the associated models; the training
material used is often noisy and plagued with
sparse statistics; the search space of possible
translations is sufficiently large that exhaustive
search is not possible. Advances in machine
learning, such as maximum-margin methods,
frequently appear in translation research. SMT
systems are now sufficiently mature that they
can be deployed in production systems. A good
example of this is Google’s online Arabic-
English translation, which is based upon SMT
techniques.

Structure of the Learning System

Modeling
Formally, translation can be described as finding
the most likely target sentence e� for some source
sentence f :

e� D argmaxeP.f je/P.e/

(e conventionally stands for English and f for
French, but any language pairs can be substi-
tuted.)

This approach has three major aspects:

• A translation model (P.f je//, which specifies
the set of possible translations for some target
sentence. The translation model also assigns
probabilities to these translations, represent-
ing their relative correctness.

• A language model (P.e//, which models
the fluency of the proposed target sentence.
This assigns a distribution over strings,
with higher probabilities being assigned to
sentences which are more representative
of natural language. Language models are
usually smoothed n-gram models, typically
conditioning on two (or more) previous words
when predicting the probability of the current
word.

• A search process (the argmax operation),
which is concerned with navigating through
the space of possible target translations. This
is called decoding. Decoding for SMT is
NP-hard, so most approaches use a beam
search.

This is called the Source-Channel approach
to translation (Brown et al. 1994). Most modern
SMT systems instead use a � log-linear model, as
it is more flexible and allows for various aspects
of translation to be balanced together (Och and
Ney 2001):

e� D argmaxe

 X
i

f i.e; f /�i

!

Here, feature functions fi .e; f / capture some
aspect of translation and each feature function
has an associated weight �i . When we have the
two feature functions P.f je/ and P.e/, we have
the Source-Channel model. The weights are scal-
ing factors (balancing the contributions that each
feature function makes) and are optimized with
respect to some � loss function which evaluates
translation quality. Frequently, this is in terms
of the BLEU evaluation metric Papineni et al.
(2001). Typically, the error surface is nonconvex
and the loss function is nondifferentiable, so
search techniques which do not use first-order

http://dx.doi.org/10.1007/978-1-4899-7687-1_100278
http://dx.doi.org/10.1007/978-1-4899-7687-1_500

Statistical Machine Translation 1175

S

derivatives must be employed. It is worth noting
that machine translation evaluation is a complex
problem and that methods such as BLEU are not
without criticism.

SMT systems usually decompose entire
sentences into a sequence of strings called
phrases (Koehn et al. 2003). The modeling
task then becomes one of determining how to
break a source sentence into a sequence of
contiguous phrases and how to specify which
source phrase should be associated with each
target phrase. Figure 1 shows an example
English-French sentence pair. Figure 2 shows
that sentence pair decomposed into phrase-pairs.
Phrase-based systems represented an advance
over previous word-based models, since phrase-
based translation can capture local (within a
phrase) word order. Furthermore, phrase-based

Those people have grown up, lived and worked for many

years in a farming district.

Ces gens ont grandi, vécu et oeuvré des dizaines d’années

dans le domain agricole.

Statistical Machine Translation, Fig. 1 A sentence
pair

evahelpoepesohTtnosnegseC

gens ont grandi people have

grown up

,punworgevah,idnargtno

devil,punworgucév,idnarg

dnadevil,teucév,

dekrowdnadevilérvueoteucév

et oeuvré des dizaines d’ oeuvré and worked many

oeuvré des dizaines d’ années dizaines worked many years

des dizaines d’ années dans many years in

anisraeyelsnadseénna

le domaine agricole a farming districtle

domaine agricole . farming district .

Statistical Machine Translation, Fig. 2 Example
phrase pairs

translation approaches need to make fewer
decisions than word-based models. This means
there are fewer errors to make.

A major aspect of any SMT approach is deal-
ing with phrasal reordering. Typically, the trans-
lation of each source phrase need not follow
the same temporal order in the target sentence.
Simple approaches model the absolute distance a
target phrase can “move” from the originating tar-
get phrase. More sophisticated reordering models
condition this movement upon the aspects of the
phrase pair.

Our description of SMT is in terms of a string-
to-string model. There are numerous other SMT
approaches, for example those which use notions
of syntax (Chiang 2005). These models are now
showing promising results, but are significantly
more complex to describe.

Estimation
The translation model of a SMT system is
estimated using parallel corpora. Because
the search space is so large and that parallel
corpora is not aligned at the word level, the
estimation process is based upon a large-scale
application of Expectation-Maximization, along
with heuristics. This consists of the following
steps:

• Determine how each source word translates to
zero or more target words. The IBM models
are used for this task, which are based upon
the Expectation-Maximization algorithm for
parameter estimation (Brown et al. 1994).

• Repeat this process, but instead determine
how each target word translates to zero or
more source words.

• Harmonize the previous two steps, creating
a set of word alignments for each sentence
pair. This process is designed to use the two
directions as alternative views on how words
should be translated. Figure 3 shows the sen-
tence pair aligned at the word level.

• Heuristically, determine which sequence of
source words translates to a sequence of target
words. This produces a set of phrase-pairs:
a snippet of text in the source sentence and

1176 Statistical Machine Translation

Statistical Machine Translation, Fig. 3 The sentence
pair in Fig. 1 aligned at the word-level

the associated snippet of text in the target
sentence.

• Relative frequency estimators can then be
used to characterize how each source phrase
translates to a given target phrase.

Parallel corpora varies in size tremendously;
for language pairs such as Arabic to English,
we have on the order of ten million sentence
pairs. Most other language pairs (for example,
Finnish to Irish) will have far smaller parallel
corpora available. Parallel corpora exists for all
European languages and for many other pairs,
such as Mandarin to English.

The language model is instead estimated from
monolingual corpora, typically using relative fre-
quency estimates, which are then smoothed. For
languages such as English, typically billion (and
more) words are used. Deploying such large mod-
els can pose significant engineering challenges.
This is because the language model can easily be
so large that it will not fit into the memory of
conventional machines. Also, the language model
can be queried millions of times when trans-
lating sentences, which precludes storing it on
disk.

Programs and Data

All of the code and data necessary to begin work
on SMT is available either as public source, or for
a small payment (in the case of corpora from the
LDC):

• The standard software to estimate word-based
translation models is Giza++: http://www.
fjoch.com/GIZA++.html

• Converting word-based to phrase-based
models and decoding can be achieved using
the Moses decoder and associated sets of
scripts: http://www.statmt.org/jhuws/?n=
Moses.HomePage

• Translation performance can be evaluated us-
ing BLEU: http://www.nist.gov/speech/tests/
mt/resources/scoring.htm

• The SRILM is the standard toolkit for build-
ing and using language models: http://www.
speech.sri.com/projects/srilm/

• Europarl is a set of parallel corpora, dealing
with European languages: http://www.statmt.
org/europarl/

• The Linguistics Data Consortium (LDC)
maintains corpora of various kinds, including
large volumes of monolingual data which can
be used to train language models: http://www.
ldc.upenn.edu/

Recommended Reading

Brown PF, Pietra SD, Pietra VJD, Mercer RL (1994)
The mathematic of statistical machine translation:
parameter estimation. Comput Linguist 19(2):263–
311

Chiang D (2005) A hierarchical phrase-based model
for statistical machine translation. In: Proceedings
of the 43rd annual meeting of the association for
computational linguistics (ACL’05). Association for
Computational Linguistics, Ann Arbor, pp 263–270

Koehn P, Och FJ, Marcu D (2003) Statistical phrase-
based translation. In: NAACL ’03: proceedings of
the 2003 conference of the north american chapter
of the association for computational linguistics on
human language technology. Association for Com-
putational Linguistics, Morristown, pp 48–54

Och FJ, Ney H (2001) Discriminative training and
maximum entropy models for statistical machine
translation. In: ACL ’02: proceedings of the 40th

http://www.fjoch.com/GIZA++.html
http://www.fjoch.com/GIZA++.html
http://www.statmt.org/jhuws/?n=Moses.HomePage
http://www.statmt.org/jhuws/?n=Moses.HomePage
http://www.nist.gov/speech/tests/mt/resources/scoring.htm
http://www.nist.gov/speech/tests/mt/resources/scoring.htm
http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
http://www.statmt.org/europarl/
http://www.statmt.org/europarl/
 http://www.ldc.upenn.edu/
 http://www.ldc.upenn.edu/

Statistical Relational Learning 1177

S

annual meeting on association for computational
linguistics. Association for Computational Linguis-
tics, Morristown, pp 295–302

Papineni K, Roukos S, Ward T, Zhu W-J (2001)
Bleu: a method for automatic evaluation of machine
translation. In: ACL ’02: proceedings of the 40th
annual meeting on association for computational
linguistics. Association for Computational Linguis-
tics, Morristown, pp 311–318

Statistical Natural Language
Processing

�Maximum Entropy Models for Natural Lan-
guage Processing

Statistical Physics of Learning

� Phase Transitions in Machine Learning

Statistical Relational Learning

Luc De Raedt1 and Kristian Kersting2;3

1Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium
2Knowledge Discovery, Fraunhofer IAIS, Sankt
Augustin, Germany
3Technische Universität Dortmund, Dortmund,
Germany

Definition

Statistical relational learning a.k.a. probabilistic
inductive logic programming deals with machine
learning and data mining in relational domains
where observations may be missing, partially
observed, or noisy. In doing so, it addresses one
of the central questions of artificial intelligence –
the integration of probabilistic reasoning with
machine learning and first-order and relational
representations – and deals with all related as-
pects such as reasoning, parameter estimation,
and structure learning.

Motivation and Background

One of the central questions of artificial intel-
ligence is concerned with combining expressive
knowledge representation formalisms such as re-
lational and first-order logic with principled prob-
abilistic and statistical approaches to inference
and learning. While traditionally relational and
logical representations, probabilistic and statisti-
cal reasoning, and machine learning have been
studied independently of one another, statisti-
cal relational learning investigates them jointly,
cf. Fig. 1. A major driving force is the explo-
sive growth in the amount of heterogeneous data
that is being collected in the business and sci-
entific world in domains such as bioinformat-
ics, transportation systems, communication net-
works, social network analysis, citation analy-
sis, and robotics. Characteristic for these do-
mains is that they provide uncertain information
about varying numbers of entities and relation-
ships among the entities, that is, about rela-
tional domains. Traditional machine learning ap-
proaches are able to cope either with uncertainty
or with relational representations but typically not
with both.

Many formalisms and representations have
been developed in statistical relational learning.
For instance, Eisele (1994) has introduced a prob-
abilistic variant of comprehensive unification for-

Statistical
relational
learning

Probabilities

LearningLogic

Statistical Relational Learning, Fig. 1 Statistical rela-
tional learning a.k.a. probabilistic inductive logic pro-
gramming combines probability, logic, and learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_525
http://dx.doi.org/10.1007/978-1-4899-7687-1_642

1178 Statistical Relational Learning

malism (CUF). In a similar manner, Muggle-
ton (1996) and Cussens (1999) have upgraded
stochastic grammars toward stochastic logic pro-
grams. Sato (1995) has introduced probabilis-
tic distributional semantics for logic programs.
Taskar et al. (2002) have upgraded Markov net-
works toward relational Markov networks, and
Richardson and Domingos (2006) toward Markov
logic networks. Neville and Jensen (2004) have
extended dependency networks toward relational
dependency networks. Another research stream
has investigated logical and relational extensions
of Bayesian networks. It includes Poole’s in-
dependent choice logic (Poole 1993), Ngo and
Haddawy’s probabilistic logic programs (Ngo
and Haddawy 1997), Jäger’s relational Bayesian
networks (Jäger 1997), Koller, Getoor, and Pf-
effer’s probabilistic relational models (Getoor
2001; Pfeffer 2000), and Kersting and De Raedt’s
Bayesian logic programs (Kersting and De Raedt
2007).

The benefits of employing logical abstraction
and relations within statistical learning are many-
fold:

1. Relations among entities allow one to
use information about one entity to help
reach conclusions about other, related
entities.

2. Variables, that is, placeholders for entities al-
low one to make abstraction of specific enti-
ties.

3. Unification allows one to share information
among entities. Thus, instead of learning reg-
ularities for each single entity independently,
statistical relational learning aims at finding
general regularities among groups of entities.

4. The learned knowledge is often declarative
and compact, which makes it easier for people
to understand and to validate.

5. In many applications, there is a rich back-
ground theory available, which can efficiently
and elegantly be represented as a set of general
regularities. This is important because back-
ground knowledge may improve the quality
of learning as it focuses the learning on the
relevant patterns, that is, it restricts the search
space.

6. When learning a model from data, relational
and logical abstraction allow one to reuse
experience in that learning about one entity
improves the prediction for other entities; and
this may even generalize to objects that have
never been observed before.

Thus, relational and logical abstraction make
statistical learning more robust and efficient. This
has proven to be beneficial in many fascinating
real-world applications in citation analysis, web
mining, natural language processing, robotics,
bio- and chemo-informatics, electronic games,
and activity recognition.

Theory

Whereas most of the existing works on statistical
relational learning have started from a statistical
and probabilistic learning perspective and ex-
tended probabilistic formalisms with relational
aspects, statistical relational learning can ele-
gantly be introduced by starting from � inductive
logic programming (De Raedt 2008; Muggleton
and De Raedt 1994), which is often also called
multi-relational data mining (MRDM) (Džeroski
and Lavrač 2001). Inductive logic programming
is a research field at the intersection of ma-
chine learning and logic programming. It forms
a formal framework and has introduced practical
algorithms for inductively learning relational de-
scriptions (in the form of logic programs) from
examples and background knowledge. So, the
only difference to statistical relational learning
is that it does not explicitly deal with uncer-
tainty.

Essentially, there are only two changes to ap-
ply to inductive logic programming approaches in
order to arrive at statistical relational learning:

1. � clauses (i.e., logical formulae that can be
interpreted as rules; cf. below) are annotated
with probabilistic information such as condi-
tional probabilities; and

2. the covers relation (which states the conditions
under which a hypothesis considers an exam-
ple as positive) becomes probabilistic.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_116

Statistical Relational Learning 1179

S

A probabilistic covers relation softens the hard
covers relation employed in traditional inductive
logic programming and is defined as the proba-
bility of an example given the hypothesis and the
background theory.

Definition 1 (Probabilistic Covers Relation)
A probabilistic covers relation takes as arguments
an example e, a hypothesis H and possibly the
background theory B, and returns the probability
value P(e jH , B) between 0 and 1 of the example
e given H and B, that is, covers(e, H , B/ =
P(e jH , B).

It specifies the likelihood of the example given
the hypothesis and the background theory. Dif-
ferent choices of the probabilistic covers relation
lead to different statistical relational learning ap-
proaches; this is akin to the learning settings in
inductive logic programming.

Statistical Relational Languages
There is a multitude of different languages and
formalisms for statistical relational learning.
For an overview of these languages we refer
to Getoor and Taskar (2007) and De Raedt et al.
(2008). Here, we choose two formalisms that
are representatives of the two main streams in
statistical relational learning. First, we discuss
Markov logic (Richardson and Domingos
2006), which upgrades Markov network toward
first-order logic, and second, we discuss
ProbLog (De Raedt et al. 2007), which is a
probabilistic Prolog based on Sato’s distribution
semantics (Sato 1995). While Markov logic
is a typical example of knowledge-based
model construction, ProbLog is a probabilistic
programming language.

Case Study: Markov Logic Networks
Markov logic combines first-order logic with
�Markov networks. The idea is to view logical
formulae as soft constraints on the set of
possible worlds, that is, on the interpretations (an
interpretation is a set of facts). If an interpretation
does not satisfy a logical formula, it becomes
less probable, but not necessarily impossible as
in traditional logic. Hence, the more formulae
an interpretation satisfies, the more likely it

becomes. In a Markov logic network, this is
realized by associating a weight to each formula
that reflects how strong the constraint is. More
precisely, a Markov logic network consists of
a set of weighted clauses H D fc1; : : : ; cmg.
(Markov logic networks, in principle, also allow
one to use arbitrary logical formulae, not just
clauses. However, for reasons of simplicity, we
only employ clauses and make some further
simplifications.) The weights wi of the clauses
then specify the strength of the clausal constraint.

Example 1 Consider the following example
(Adapted from Richardson and Domingos 2006).
Friends & Smokers is a small Markov logic
network that computes the probability of a
person having lung cancer on the basis of her
friends smoking. This can be encoded using the
following weighted clauses:

1.5: cancer(P) smoking(P)
1.1: smoking(X) friends(X,Y),

smoking(Y)
1.1: smoking(Y) friends(X,Y),

smoking(X)

The first clause states the soft constraint that
smoking causes cancer. So, interpretations in
which persons that smoke have cancer are more
likely than those where they do not (under
the assumptions that other properties remain
constant). The second and third clauses state that
friends of smokers are typically also smokers.

A Markov logic network together with a Her-
brand domain (in the form of a set of constants
fd1; : : : ; dkg) then induces a grounded Markov
network, which defines a probability distribution
over the possible Herbrand interpretations.

The nodes, that is, the random variables in the
grounded network, are the atoms in the Herbrand
base, that is, the facts of the form p.d 01; : : : ; d

0
n

where p is a predicate or relation and the d 0i are
constants. Furthermore, for every ground instance
ci� of a clause ci in H , there will be an edge
between any pair of atoms a� , b� that occurs in
ci� . The Markov network obtained for the con-
stants anna and bob is shown in Fig. 2. To obtain
a probability distribution over the Herbrand inter-
pretations, we still need to define the potentials.

http://dx.doi.org/10.1007/978-1-4899-7687-1_515

1180 Statistical Relational Learning

Statistical Relational
Learning, Fig. 2 The
Markov network for the
constants ann and bob
(Adapted from Richardson
and Domingos 2006)

fr(a,b)

fr(a,a) smok(a) smok(b) fr(b,b)

can(a)

fr(b,a)

can(b)

The probability distribution over interpretations
I is

P.I / D
1

Z

Y
cWclause

fc.I / (1)

where the fc are defined as

fc.I / D e
nc.I /wc (2)

and nc.I / denotes the number of substitutions
� for which c� is satisfied by I , and Z is a
normalization constant. The definition of a po-
tential as an exponential function of a weighted
feature of a clique is common in Markov net-
works; cf. � graphical models. The reason is that
the resulting probability distribution is easier to
manipulate.

Note that for different (Herbrand) domains,
different Markov networks will be produced.
Therefore, one can view Markov logic networks
as a kind of template for generating Markov
networks, and, hence, Markov logic is based on
knowledge-based model construction. Notice
also that Markov logic networks define a
probability distribution over interpretations,
and nicely separate the qualitative from the
quantitative component.

Case Study: ProbLog
Many formalisms do not explicitly encode a set
of conditional independency assumptions, as in

Bayesian or Markov networks, but rather extend
a (logic) programming language with probabilis-
tic choices. Stochastic logic programs (Cussens
2001; Muggleton 1996) directly upgrade stochas-
tic context-free grammars toward definite clause
logic, whereas Prism (Sato 1995), probabilis-
tic Horn abduction (PHA) (Poole 1993), and
the more recent independent choice logic (ICL)
(Poole 1997) specify probabilities on facts from
which further knowledge can be deduced. As a
simple representative of this stream of work, we
introduce the probabilistic Prolog called ProbLog
(De Raedt et al. 2007).

The key idea underlying Problog is that some
facts f for probabilistic predicates are annotated
with a probability value. This value indicates
the degree of belief, that is the probability, that
any ground instance f � of f is true. It is also
assumed that the f � are marginally independent.
The probabilistic facts are then augmented with a
set of definite clauses defining further predicates
(which should be disjoint from the probabilistic
ones). An example adapted from De Raedt et al.
(2007) is given below.

Example 2 Consider the facts

0.9: edge(a,c)
0.7: edge(c,b)
0.6: edge(d,c)
0.9: edge(d,b)

http://dx.doi.org/10.1007/978-1-4899-7687-1_119

Statistical Relational Learning 1181

S

which specify that with probability 0.9 there is
an edge from a to c. Consider also the following
(simplified) definition of path/2.

path(X,Y)edge(X,Y)
path(X,Y)edge(X,Z), path(Z,Y)

One can now define a probability distribution
on (ground) proofs as follows. The probability of
a ground proof is the product of the probabilities
of the (ground) clauses (here, facts) used in the
proof. For instance, the only proof for the goal
 path(a,b) employs the facts edge(a,c) and
edge(c,b); these facts are marginally independent,
and hence the probability of the proof is 0:9�0:7.
The probabilistic facts used in a single proof are
sometimes called an explanation.

It is now tempting to define the probability of
a ground atom as the sum of the probabilities of
the proofs for that atom. However, this does not
work without additional restrictions, as shown in
the following example.

Example 3 The fact path(d,b) has two explana-
tions:

1. fedge(d,c), edge(c,b)g with probability
0:6 � 0:7 D 0:42, and

2. fedge(d,b)g with probability 0.9.

Summing the probabilities of these explana-
tions gives a value of 1.32, which is clearly
impossible.

The reason for this problem is that the differ-
ent explanations are not mutually exclusive, and
therefore their probabilities may not be summed.
The probability P (path(d,b) = true) is, however,
equal to the probability that a proof succeeds, that
is,

p.path.d,b/ D t rue/ D P Œ(e(d,c) ^ e(c,b))

_ e(d,b)�

which shows that computing the probability of
a derived ground fact reduces to computing the
probability of a boolean formula in disjunctive
normal form (DNF), where all random variables
are marginally independent of one another. Com-

puting the probability of such formulae is an NP-
hard problem, the disjoint-sum problem. Using
the inclusion-exclusion principle from set theory,
one can compute the probability as

p.path(d,b) D t rue/ D P Œ(e(d,c) ^ e(c,b))

_ e(d,b)�

D P (e(d,c) ^ e(c,b))

C P (e(d,b))

� P..e(d,c) ^ e(c,b))

^ e(d,b))

D 0:6 � 0:7C 0:9 � 0:6

� 0:7 � 0:9 D 0:942

There exist more effective ways to compute
the probability of such DNF formulae (De
Raedt et al. 2007), where binary decision
diagrams are employed to represent the DNF
formulae.

The above example shows how the probability
of a specific fact is defined and can be computed.
The distribution at the level of individual facts
(or goals) can easily be generalized to a possible
world semantics, specifying a probability distri-
bution on interpretations. It is formalized in the
distribution semantics of Sato (1995), which is
defined by starting from the set of all probabilis-
tic ground facts F for the given program. For
simplicity, we shall assume that this set is finite,
though Sato’s results also hold for the infinite
case. The distribution semantics then starts from a
probability distributionPF .S/ defined on subsets
S � F :

PF .S/ D
Y
f 2s

P.f /
Y
f 62s

.1 � P.f //: (3)

Each subset S is now interpreted as a set of log-
ical facts and combined with the definite clause
program R that specifies the logical part of the
probabilistic logic program. Any such combina-
tion S [R possesses a unique least Herbrand
model M.S [R/, which corresponds to a pos-
sible world. The probability of such a possible

1182 Statistical Relational Learning

world is then the sum of the probabilities of the
subsets S yielding that possible world, that is,

PW .M/ D
X

s�F WM.S[R/DM

PF .S/ (4)

For instance, in the path example, there are 16
possible worlds, which can be obtained from
the 16 different truth assignments to the facts,
and whose probabilities can be computed using
Eq. (4). As for graphical models, the probability
of any logical formula can be computed from a
possible world semantics (specified here by PW /.

Because computing the probability of a fact
or goal under the distribution semantics is hard,
systems such as Prism (Sato 1995) and PHA
(Poole 1993) impose additional restrictions that
can be used to improve the efficiency of the
inference procedure. The key assumption is that
the explanations for a goal are mutually exclusive,
which overcomes the disjoint-sum problem. If the
different explanations of a goal do not overlap,
then its probability is simply the sum of the
probabilities of its explanations. This directly
follows from the inclusion-exclusion formulae as
under the exclusive-explanation assumption the
conjunctions (or intersections) are empty.

Learning
Essentially, any statistical relational approach can
be viewed as lifting a traditional inductive logic
programming setting by associating probabilistic
information to clauses and by replacing the de-
terministic coverage relation by a probabilistic
one. In contrast to traditional graphical models
such as Bayesian networks or Markov networks,
however, we can also employ “counterexamples”
for learning. Consider a simple kinship domain.
Assume rex is a male person. Consequently, he
cannot be the daughter of any other person,
say ann. Thus, daughter(rex,ann) can be listed
as a negative example although we will never
observe it. “Counterexamples” conflict with the
usual view on learning examples in statistical
learning.

In statistical learning, we seek to find that
hypothesis H�, which is most likely given the
learning examples:

H� D arg max
H
P.H jE/

D arg max
H

P.EjH/ �P.F /

P.E/

with P.E/ > 0:

Thus, examples E in traditional statistical
learning are always observable, that is,
P.E/ > 0. However, in statistical relational
learning, as in inductive logic programming,
we may also employ “counterexamples” such as
daughter(rex,ann), which have probability “0,”
and that actually never can be observed.

Definition 2 (SRL Problem) Given a set E D
Ep [Ei of positive and negative examples Ep
and Ei (with Ep \ Ei D Ø) over some ex-
ample language LE , a probabilistic covers rela-
tion covers(e, H , B/ D P.e jH , B/, a proba-
bilistic logical language LH for hypotheses, and
a background theory B , find a hypothesis H�

in LH such that H� = argmaxH score(E, H ,
B/ and the following constraints hold: 8 ep 2
Ep : covers(ep , H�, B/ > 0 and 8 ei 2

Ei : covers(ei, H�, B/ = 0. The score is
some objective function, usually involving the
probabilistic covers relation of the observed ex-
amples such as the observed likelihood

Q
ep2Ep

covers.ep;H
�; B/ or some penalized variant

thereof.

This learning setting unifies inductive logic
programming and statistical learning in the fol-
lowing sense: using a deterministic covers rela-
tion (either 1 or 0), it yields the classical inductive
logic programming learning problem; sticking to
propositional logic and learning from positive ex-
amples, that is, P.E/ > 0, only yields traditional
statistical learning.

To come up with algorithms solving the SRL
problem, say for density estimation, one typically
distinguishes two subtasks because H D .L; �)
is essentially a logical theory L annotated with
probabilistic parameters �:

1. Parameter estimation where it is assumed that
the underlying logic program L is fixed, and

Statistical Relational Learning 1183

S

the learning task consists of estimating the
parameters � that maximize the likelihood.

2. Structure learning where bothL and � have to
be learned from the data.

In the following paragraphs, we will sketch the
basic parameter estimation and structure learning
techniques, and illustrate them for each setting.

Parameter Estimation
The problem of parameter estimation is con-
cerned with estimating the values of the param-
eters � of a fixed probabilistic program H D

.L; �) that best explains the examples E. So, �
is a set of parameters and can be represented as
a vector. As already indicated above, to measure
the extent to which a model fits the data, one
usually employs the likelihood of the data, that is,
P.EjL, �), though other scores or variants could
be used as well.

When all examples are fully observable, max-
imum likelihood reduces to frequency counting.
In the presence of missing data, however, the
maximum likelihood estimate typically cannot
be written in closed form. It is a numerical op-
timization problem, and all known algorithms
involve nonlinear optimization. The most com-
monly adopted technique for probabilistic logic
learning is the expectation-maximization (EM)
algorithm (Dempster et al. 1977; McLachlan and
Krishnan 1997). EM is based on the observation
that learning would be easy (i.e., correspond
to frequency counting), if the values of all the
random variables would be known. Therefore,
it estimates these values, maximizes the likeli-
hood based on the estimates, and then iterates.
More specifically, EM assumes that the param-
eters have been initialized (e.g., at random) and
then iteratively performs the following two steps
until convergence:

(E-Step) On the basis of the observed data and
the present parameters of the model, it com-
putes a distribution over all possible comple-
tions of each partially observed data case.

(M-Step) Treating each completion as a fully
observed data case weighted by its probability,

it computes the improved parameter values
using (weighted) frequency counting.

The frequencies over the completions are called
the expected counts. Examples for parameter es-
timation of probabilistic relational models can be
found in Getoor and Taskar (2007) and De Raedt
et al. (2008).

Structure Learning
The problem is now to learn both the structure L
and the parameters � of the probabilistic program
H D .L; �) from data. Often, further infor-
mation is given as well. As in inductive logic
programming, the additional knowledge can take
various different forms, including a � language
bias that imposes restrictions on the syntax of L,
and an initial hypothesis (L, �) from which the
learning process can start.

Nearly all (score-based) approaches to struc-
ture learning perform a heuristic search through
the space of possible hypotheses. Typically, hill-
climbing or beam-search is applied until the hy-
pothesis satisfies the logical constraints and the
score(H , E/ is no longer improving. The steps
in the search-space are typically made using re-
finement operators, which make small, syntactic
modifications to the (underlying) logic program.

At this point, it is interesting to observe that
the logical constraints often require that the pos-
itive examples are covered in the logical sense.
For instance, when learning ProbLog programs
from entailment, the observed example clauses
must be entailed by the logic program. Thus, for
a probabilistic program H D .LH , �H / and
a background theory B D .LB , �B/ it holds
that 8ep 2 Ep : P.ejH;B/ > 0 if and only if
covers(e, LH ; LB/ D 1, where LH (respectively
LB/ is the underlying logic program (logical
background theory) and covers(e, LH ; LB/ is
the purely logical covers relation, which is either
0 or 1.

Applications

Applications of statistical relational learning can
be found in many areas such as web search

http://dx.doi.org/10.1007/978-1-4899-7687-1_440

1184 Statistical Relational Learning

and mining, text mining, bioinformatics, natural
language processing, robotics, and social network
analysis, among others. Due to space restrictions,
we will only name a few of these exciting appli-
cations.

For instance, Getoor et al. (2001) have used
statistical relational models to estimate the result
size of complex database queries. Segal et al.
have employed probabilistic relational models to
cluster gene expression data (Segal et al. 2001)
and to discover cellular processes from gene
expression data (Segal et al. 2003). Getoor et al.
have used probabilistic relational models to un-
derstand tuberculosis epidemiology (Getoor et al.
2004). McGovern et al. (2003) have estimated
probabilistic relational trees to discover publica-
tion patterns in high-energy physics. Probabilistic
relational trees have also been used to learn
to rank brokers with respect to the probability
that they would commit a serious violation of
securities regulations in the near future (Neville
et al. 2005). Anguelov et al. (2005) have used
relational Markov networks for segmentation of
3D scan data. Markov networks have also been
used to compactly represent object maps and to
estimate trajectories of people (Limketkai et al.
2005). Kersting et al. have employed relational
hidden Markov models for protein fold recogni-
tion (Kersting et al. 2006). Poon and Domingos
(2008) have shown how to use Markov logic to
perform joint unsupervised coreference resolu-
tion. Xu et al. have used nonparametric relational
models for analyzing social networks (Xu et al.
2010). Kersting and Xu (2009) have used rela-
tional Gaussian processes for learning to rank
search results. Recently, Poon and Domingos
(2009) have shown how to perform unsupervised
semantic parsing using Markov logic networks.

Future Directions

We have provided an overview of the new and
exciting area of statistical relational learning.
It combines principles of probabilistic reason-
ing, logical representation, and statistical learning
into a coherent whole. The techniques of proba-
bilistic logic learning were analyzed starting from

an inductive logic programming perspective by
lifting the coverage relation to a probabilistic one
and annotating the logical formulae. Different
choices of the probabilistic coverage relation lead
to different representational formalisms, two of
which were introduced.

Statistical relational learning is an active area
of research within the machine learning and the
artificial intelligence community. First, there is
the issue of efficient inference and learning. Most
current inference algorithms for statistical rela-
tional models require explicit state enumeration,
which is often impractical: the number of states
grows very quickly with the number of domain
objects and relations. Lifted inference algorithms
seek to avoid explicit state enumeration and di-
rectly work at the level of groups of atoms,
eliminating all the instantiations of a set of atoms
in a single step, in some cases independently
of the number of these instantiations. Despite
various approaches to lifted inference (de Salvo
Braz et al. 2005; Jaimovich et al. 2007; Kersting
et al. 2009; Kisynski and Poole 2009; Milch et al.
2008; Poole 2003; Sen et al. 2008; Singla and
Domingos 2008), it largely remains a challenging
problem. For what concerns learning, advanced
principles of both statistical learning and log-
ical and relational learning can be employed
for learning the parameters and the structure of
probabilistic logics such as statistical predicate
invention (Kok and Domingos 2007) and boost-
ing (Gutmann and Kersting 2006). Recently, peo-
ple started to investigate learning from weighted
examples (see e.g., Chen et al. 2008) and to link
statistical relational learning to support vector
machines (see e.g., Passerini et al. 2006). Second,
there is the issue of closed-world versus open-
world assumption that is, do we know how many
objects there are (see e.g., Milch et al. 2005).
Third, there is interest in dealing with continuous
values within statistical relational learning (see
e.g., Chu et al. 2006; Silva et al. 2007; Wang
and Domingos 2008; Xu et al. 2009). This is
mainly motivated by the fact that most real-world
applications actually contain continuous values.
Nonparametric Bayesian approaches to statistical
relational learning have also been developed (see
e.g., Kemp et al. 2006; Xu et al. 2006; Yu and

Statistical Relational Learning 1185

S

Chu 2007; Yu et al. 2006), to overcome the typ-
ically strong parametric assumptions underlying
current statistical relational learning. People have
also started to investigate relational variants of
classical statistical learning tasks such as matrix
factorizations (see e.g., Singh and Gordon 2008).
Finally, while statistical relational learning ap-
proaches have been used successfully in a number
of applications, they do not yet cope with the
dynamic environments in an effective way.

Cross-References

�Multi-relational Data Mining
�Relational Learning

Recommended Reading

In addition to the references embedded in the
text above, we also recommend De Raedt et al.
(2008), Getoor and Taskar (2007), De Raedt
(2008) and the SRL tutorials at major artificial
intelligence and machine learning conferences.

Anguelov D, Taskar B, Chatalbashev V, Koller D,
Gupta D, Heitz G et al (2005) Discriminative learn-
ing of Markov random fields for segmentation of 3D
scan data. In: Schmid C, Soatto S, Tomasi C (eds)
IEEE computer society international conference on
computer vision and pattern recognition (CVPR-
05), San Diego, vol 2, pp 169–176

Chen J, Muggleton S, Santos J (2008) Learning prob-
abilistic logic models from probabilistic examples.
Mach Learn 73(1):55–85

Chu W, Sindhwani V, Ghahramani Z, Keerthi S (2006)
Relational learning with Gaussian processes. In:
Advances in neural information processing sys-
tems19 (NIPS-2006). MIT Press, Cambridge

Cussens J (1999) Loglinear models for first-order
probabilistic reasoning. In: Blackmond Laskey K,
Prade H (eds) Proceedings of the fifteenth an-
nual conference on uncertainty in artificial intel-
ligence (UAI-99), Stockholm. Morgan Kaufmann,
San Francisco, pp 126–133

Cussens J (2001) Parameter estimation in stochastic
logic programs. Mach Learn J 44(3):245–271

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

De Raedt L, Kimmig A, Toivonen H (2007) Problog:
a probabilistic Prolog and its application in link
discovery. In: Veloso M (ed) Proceedings of the

20th international joint conference on artificial in-
telligence, Hyderabad, pp 2462–2467

De Raedt L, Frasconi P, Kersting K, Muggleton S
(eds) (2008) Probabilistic inductive logic program-
ming. Lecture notes in computer science, vol 4911.
Springer, Berlin/Heidelberg

de Salvo Braz R, Amir E, Roth D (2005) Lifted first
order probabilistic inference. In: Proceedings of
the 19th international joint conference on artificial
intelligence (IJCAI-05), Edinburgh, pp 1319–1325

Dempster A, Laird N, Rubin D (1977) Maximum like-
lihood from incomplete data via the EM algorithm.
J R Stat Soc B 39:1–39

Džeroski S, Lavrač N (eds) (2001) Relational data
mining. Springer, Berlin

Eisele A (1994) Towards probabilistic extensions
of contraint-based grammars. In: Dörne J (ed)
Computational aspects of constraint-based linguis-
tics description-II. Institute for Computational Lin-
guistics (IMS-CL), Stuttgart. DYNA-2 deliverable
R1.2.B

Getoor L (2001) Learning statistical models from rela-
tional data. PhD thesis, Stanford University

Getoor L, Rhee J, Koller D, Small P (2004) Un-
derstanding tuberculosis epidemiology using proba-
bilistic relational models. J Artif Intell Med 30:233–
256

Getoor L, Taskar B (eds)(2007) Introduction to statis-
tical relational learning. The MIT Press, Cambridge

Getoor L, Taskar B, Koller D (2001) Using probabilis-
tic models for selectivity estimation. In: Proceed-
ings of ACM SIGMOD international conference on
management of data, Santa Barbara. ACM Press,
pp 461–472

Gutmann B, Kersting K (2006) TildeCRF: conditional
random fields for logical sequences. In: Fuernkranz
J, Scheffer T, Spiliopoulou M (eds) Proceedings of
the 17th European conference on machine learning
(ECML-2006), Berlin, pp 174–185

Jäger M (1997) Relational Bayesian networks. In:
Laskey K, Prade H (eds) Proceedings of the thir-
teenth conference on uncertainty in artificial intel-
ligence (UAI-97), Stockholm. Morgan Kaufmann,
San Franciso, pp 266–273

Jaimovich A, Meshi O, Friedman N (2007) Template-
based inference in symmetric relational Markov
random fields. In: Proceedings of the conference
on uncertainty in artificial intelligence (UAI-07),
Vancouver, pp 191–199

Kemp C, Tenenbaum J, Griffiths T, Yamada T, Ueda N
(2006) Learning systems of concepts with an infinite
relational model. In: Proceedings of 21st AAAI,
Boston

Kersting K, Ahmadi B, Natarajan S (2009) Count-
ing belief propagation. In: Proceedings of the 25th
conference on uncertainty in artificial intelligence
(UAI-09), Montreal

Kersting K, De Raedt L (2007) Bayesian logic pro-
gramming: theory and tool. In: Getoor L, Taskar B

http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_719

1186 Statistical Relational Learning

(eds) An introduction to statistical relational learn-
ing. MIT Press, Cambridge, pp 291–321

Kersting K, De Raedt L, Raiko T (2006) Logial Hidden
Markov models. J Artif Intell Res (JAIR) 25:425–
456

Kersting K, Xu Z (2009) Learning preferences with
hidden common cause relations. In: Proceedings of
the European conference on machine learning and
principles and practice of knowledge discovery in
databases (ECML PKDD 09). LNAI. Springer, Bled

Kisynski J, Poole D (2009) Lifted aggregation in di-
rected first-order probabilistic models. In: Boutilier
C (ed) Proceedings of the international joint confer-
ence on artificial intelligence (IJCAI-09), Pasadena

Kok S, Domingos P (2007) Statistical predicate inven-
tion. In: Proceedings of the twenty-fourth interna-
tional conference on machine learning (ICML-07),
Corvallis. ACM Press, pp 433–440

Limketkai B, Liao L, Fox D (2005) Relational object
maps for mobile robots. In: Giunchiglia F, Kaelbling
LP (eds) Proceedings of the nineteenth international
joint conference on artificial intelligence (IJCAI-
05), Edinburgh. AAAI Press, pp 1471–1476

McGovern A, Friedland L, Hay M, Gallagher B,
Fast A, Neville J et al (2003) Exploiting relational
structure to understand publication patterns in high-
energy physics. SIGKDD Explor 5(2):165–173

McLachlan G, Krishnan T (1997) The EM algorithm
and extensions. Wiley, New York

Milch B, Marthi B, Russell S, Sontag D, Ong D,
Kolobov A (2005) BLOG: probabilistic models with
unknown objects. In: Giunchiglia F, Kaelbling LP
(eds) Proceedings of the nineteenth international
joint conference on artificial intelligence (IJCAI-
05), Edinburgh. AAAI Press, Edinburgh, pp 1352–
1359

Milch B, Zettlemoyer L, Kersting K, Haimes M, Pack
Kaelbling L (2008) Lifted probabilistic inference
with counting formulas. In: Proceedings of the 23rd
AAAI conference on artificial intelligence (AAAI-
08), Chicago

Muggleton S (1996) Stochastic logic programs. In: De
Raedt L (ed) Advances in inductive logic program-
ming. IOS Press, Amsterdam, pp 254–264

Muggleton S, De Raedt L (1994) Inductive logic pro-
gramming: theory and methods. J Logic Program
19(20):629–679

Neville J, Jensen D (2004) Dependency networks for
relational data. In: Rastogi R, Morik K, Bramer M,
Wu X (eds) Proceedings of the fourth IEEE in-
ternational conference on data mining (ICDM-04),
Brighton. IEEE Computer Society Press, pp 170–
177

Neville J, Simsek Ö, Jensen D, Komoroske J, Palmer
K, Goldberg H (2005) Using relational knowledge
discovery to prevent securities fraud. In: Proceed-
ings of the 11th ACM SIGKDD international con-
ference on knowledge discovery and data mining.
ACM Press, Chicago

Ngo L, Haddawy P (1997) Answering queries from
context-sensitive probabilistic knowledge bases.
Theor Comput Sci 171:147–177

Passerini A, Frasconi P, De Raedt L (2006) Kernels
on prolog proof trees: statistical learning in the ILP
setting. J Mach Learn Res 7:307–342

Pfeffer A (2000) Probabilistic reasoning for complex
systems. PhD thesis, Computer Science Depart-
ment, Stanford University

Poole D (1993) Probabilistic Horn abduction and
Bayesian networks. Artif Intell J 64:81–129

Poole D (1997) The independent choice logic for
modelling multiple agents under uncertainty. Artif
Intell 94(1–2):7–56

Poole D (2003) First-order probabilistic inference. In:
Gottlob G, Walsh T (eds) Proceedings of the eigh-
teenth international joint conference on artificial
intelligence (IJCAI-03), Acapulco. Morgan Kauf-
mann, San Francisco, pp 985–991

Poon H, Domingos P (2008) Joint unsupervised coref-
erence resolution with Markov logic. In: Proceed-
ings of the 2008 conference on empirical methods
in natural language processing (EMNLP), Honolulu

Poon H, Domingos P (2009) Unsupervised semantic
parsing. In: Proceedings of the 2009 conference on
empirical methods in natural language processing
(EMNLP), Singapore

Richardson M, Domingos P (2006) Markov logic net-
works. Mach Learn 62:107–136

Sato T (1995) A statistical learning method for logic
programs with distribution semantics. In: Sterling L
(ed) Proceedings of the twelfth international confer-
ence on logic programming (ICLP-95), Tokyo. MIT
Press, pp 715–729

Segal E, Battle A, Koller D (2003) Decomposing gene
expression into cellular processes. In: Proceedings
of Pacific symposium on biocomputing (PSB), Li-
hue. World Scientific, pp 89–100

Segal E, Taskar B, Gasch A, Friedman N, Koller D
(2001) Rich probabilistic models for gene expres-
sion. Bioinformatics 17(Suppl 1):S243–252 (Pro-
ceedings of ISMB 2001)

Sen P, Deshpande A, Getoor L (2008) Exploiting
shared correlations in probabilistic databases. In:
Proceedings of the international conference on very
large data bases (VLDB-08), Auckland

Silva R, Chu W, Ghahramani Z (2007) Hidden com-
mon cause relations in relational learning. In: Ad-
vances in neural information processing systems20
(NIPS-2007). MIT Press, Cambridge

Singh A, Gordon G (2008) Relational learning via
collective matrix factorization. In: Proceedings of
14th international conference on knowledge discov-
ery and data mining, Las Vegas

Singla P, Domingos P (2008) Lifted first-order belief
propagation. In: Proceedings of the 23rd AAAI
conference on artificial intelligence (AAAI-08),
Chicago, pp 1094–1099

Taskar B, Abbeel P, Koller D (2002) Discriminative
probabilistic models for relational data. In: Dar-

Stochastic Finite Learning 1187

S

wiche A, Friedman N (eds) Proceedings of the
eighteenth conference on uncertainty in artificial
intelligence (UAI-02), Edmonton, pp 485–492

Wang J, Domingos P (2008) Hybrid markov logic
networks. In: Proceedings of the 23rd AAAI confer-
ence on artificial intelligence (AAAI-08), Chicago,
pp 1106–1111

Xu Z, Kersting K, Tresp V (2009) Multi-relational
learning with Gaussian processes. In: Boutilier C
(ed) Proceedings of the international joint confer-
ence on artificial intelligence (IJCAI-09), Pasadena

Xu Z, Tresp V, Rettinger A, Kersting K (2010) So-
cial network mining with nonparametric relational
models. In: Advances in social network mining
and analysis. Lecture notes in computer science,
vol 5498. Springer, Berlin/Heidelberg

Xu Z, Tresp V, Yu K, Kriegel HP (2006) Infinite hidden
relational models. In: Proceedings of 22nd UAI,
Cambridge

Yu K, Chu W (2007) Gaussian process models for
link analysis and transfer learning. In: Advances
in neural information processing systems20 (NIPS-
2007). MIT Press, Cambridge

Yu K, Chu W, Yu S, Tresp V, Xu Z (2006) Stochastic
relational models for discriminative link prediction.
In: Advances in neural information processing sys-
tems (NIPS-2006), vol 19. MIT Press, Cambridge

Stochastic Finite Learning

Thomas Zeugmann
Hokkaido University, Sapporo, Japan

Motivation and Background

Assume that we are given a concept class C and
should design a learner for it. Next, suppose we
already know or could prove C not to be learnable
in the model of �PAC learning. But it can be
shown that C is learnable within Gold’s (1967)
model of � inductive inference or learning in the
limit. Thus, we can design a learner behaving
as follows. When fed any of the data sequences
allowed in this model, it converges in the limit
to a hypothesis correctly describing the target
concept. Nothing more is known. Let M be any
fixed learner. If .dn/n�0 is any data sequence,
then the stage of convergence is the least integer
m such that M.dm/ D M.dn/ for all n � m

provided such an n exists (and infinite, other-

wise). In general, it is undecidable whether or
not the learner has already reached the stage
of convergence, but even if it is decidable for
a particular concept class, it may be practically
infeasible to do so. This uncertainty may not be
tolerable in many applications.

When we tried to overcome this uncertainty,
the idea of stochastic finite learning emerged.
Clearly, in general nothing can be done, since
in Gold’s (1967) model the learner has to learn
from any data sequence. So for every concept
that needs more than one datum to converge, one
can easily construct a sequence where the first
datum is repeated very often and where therefore
the learner does not find the right hypothesis
within the given bound. However, such data se-
quences seem unnatural. Therefore, we looked at
data sequences that are generated with respect
to some probability distribution taken from a
prespecified class of probability distributions and
computed the expected total learning time, i.e.,
the expected time until the learner reaches the
stage of convergence (cf. Erlebach et al. 2001;
Zeugmann 1998). Clearly, one is then also in-
terested in knowing how often the expected total
learning time is exceeded. In general, Markov’s
inequality can be applied to obtain the relevant
tail bounds. However, if the learner is known to
be rearrangement-independent and conservative,
then we always get exponentially shrinking tail
bounds (cf. Rossmanith and Zeugmann 2001). A
learner is said to be rearrangement-independent
if its output depends exclusively on the range and
length of its input (but not on the order) (cf., e.g.,
Lange and Zeugmann (1996) and the references
therein). Furthermore, a learner is conservative,
if it exclusively performs mind changes that can
be justified by an inconsistency of the abandoned
hypothesis with the data received so far (see
Angluin (1980b) for a formal definition).

Combining these ideas results in stochastic fi-
nite learning. A stochastic finite learner is succes-
sively fed data about the target concept. Note that
these data are generated randomly with respect to
one of the probability distributions from the class
of underlying probability distributions. Addition-
ally, the learner takes a confidence parameter ı
as input. But in contrast to learning in the limit,

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_134

1188 Stochastic Finite Learning

the learner itself decides how many examples it
wants to read. Then it computes a hypothesis,
outputs it, and stops. The hypothesis output is
correct for the target with probability at least
1 � ı.

The description given above explains how
it works, but not why it does. Intuitively, the
stochastic finite learner simulates the limit learner
until an upper bound for twice the expected total
number of examples needed until convergence
has been met. Assuming this to be true, by
Markov’s inequality the limit learner has now
converged with probability 1=2. All what is left
is to decrease the probability of failure. This can
be done by using again Markov’s inequality, i.e.,
increasing the sample complexity by a factor of
1=ı results in a confidence of 1 � ı for having
reached the stage of convergence.

Note that the stochastic finite learner has to
calculate an upper bound for the stage of con-
vergence. This is precisely the point where we
need the parameterization of the class D of un-
derlying probability distributions. Then a bit of
prior knowledge must be provided in the form
of suitable upper and/or lower bounds for the
parameters involved. A more serious difficulty is
to incorporate the unknown target concept into
this estimate. This step depends on the concrete
learning problem on hand and requires some
extra effort.

It should also be noted that our approach may
be beneficial even in case that the considered
concept class is PAC learnable.

Definition

Let D be a set of probability distributions on the
learning domain, let C be a concept class, H a
hypothesis space for C, and let ı 2 .0; 1/. The
pair .C;D/ is said to be stochastically finitely
learnable with ı-confidence with respect to H
iff there is a learner M that for every c 2 C
and every D 2 D performs as follows. Given
any random data sequence � for c generated
according toD, M stops after having seen a finite
number of examples and outputs a single hypoth-
esis h 2 H. With probability at least 1 � ı (with

respect to distribution D), h has to be correct,
i.e., c D h.

If stochastic finite learning can be achieved
with ı-confidence for every ı > 0, then we say
that .C;D/ can be learned stochastically finite
with high confidence.

Detail

Note that there are subtle differences between
our model and PAC learning. By its definition,
stochastic finite learning is not completely dis-
tribution independent. A bit of additional knowl-
edge concerning the underlying probability distri-
butions is required. Thus, from that perspective,
stochastic finite learning is weaker than the PAC
model. On the other hand, we do not measure
the quality of the hypothesis with respect to the
underlying probability distribution. Instead, we
require the hypothesis computed to be exactly
correct with high probability. Note that exact
identification with high confidence has been con-
sidered within the PAC paradigm, too (cf., e.g.,
Goldman et al. 1993). Conversely, we also can
easily relax the requirement to learn probably
exactly correct but whenever possible we shall
not do it.

Furthermore, in the uniform PAC model as
introduced in Valiant (1984), the sample com-
plexity depends exclusively on the VC dimen-
sion of the target concept class and the error
and confidence parameters " and ı, respectively.
This model has been generalized by allowing the
sample size to depend on the concept complexity,
too (cf., e.g., Blumer et al. 1989; Haussler et al.
1991). Provided no upper bound for the concept
complexity of the target concept is given, such
PAC learners decide themselves how many exam-
ples they wish to read (cf. Haussler et al. 1991).
This feature is also adopted to our setting of
stochastic finite learning. However, all variants of
efficient �PAC learning we are aware of require
that all hypotheses from the relevant hypothe-
sis space are uniformly polynomially evaluable.
Though this requirement may be necessary in
some cases to achieve (efficient) stochastic finite

http://dx.doi.org/10.1007/978-1-4899-7687-1_631

Stochastic Finite Learning 1189

S

learning, it is not necessary in general as we shall
see below.

In the following, we provide two sample ap-
plications of stochastic finite learning. We always
choose as hypothesis space the concept class C
itself.

Learning Monomials

Let Xn D f0; 1gn be the learning domain, let
Ln D fx1; Nx1; x2; Nx2; : : : ; xn; Nxng (set of literals)
and consider the class Cn of all concepts describ-
able by a conjunction of literals. As usual, we
refer to any conjunction of literals as a monomial.
A monomialm describes a concept c � Xn in the
obvious way: the concept contains exactly those
binary vectors for which the monomial evaluates
to 1. For a monomial m, let #.m/ denote its
length, i.e., the number of literals in it.

The basic ingredient to the stochastic finite
learner is Haussler’s (1987) Wholist algorithm,
and thus the main emphasis is on the resulting
complexity. The Wholist algorithm can also
be used to achieve � PAC learning of the
class Cn, and the resulting sample complexity
is O.1=" � .n C ln.1=ı/// for all "; ı 2 .0; 1�.
Since the Wholist algorithm learns from positive
examples only, it is meaningful to study the
learnability of Cn from positive examples
only. So, the stage of convergence is not
decidable.

Since the Wholist algorithm immediately con-
verges for the empty concept, we exclude it from
our considerations. That is, we consider concepts
c 2 Cn described by a monomial m D

V#.m/
jD1 `ij

such that k D k.m/ D n�#.m/ > 0. A literal not
contained inm is said to be irrelevant. Bit i is said
to be irrelevant for monomial m if neither xi nor
Nxi appears in m. There are 2k positive examples
for c. For the sake of presentation, we assume
these examples to be binomially distributed with
parameter p. So, in a random positive example,
all entries corresponding to irrelevant bits are
selected independently to one another. With some
probability p, this will be a 1, and with probabil-
ity 1�p, this will be a 0. Only distributions where
0 < p < 1 are considered, since otherwise exact

identification is impossible. Now, one can show
that the expected number of examples needed
by the Wholist algorithm until convergence is
bounded by dlog k.m/e C
 C 2, where WD

min
n

1
1�p ;

1
p

o
and
 WD max

n
p

1�p ;
1�p
p

o
.

Let CON denote a random variable for the
stage of convergence. Since the Wholist algo-
rithm is rearrangement-independent and conser-
vative, we can conclude (cf. Rossmanith and
Zeugmann 2001)

Pr.CON > 2 t �EŒCON�/ � 2�t

for all natural numbers t � 1 : (1)

Finally, in order to obtain a stochastic fi-
nite learner, we reasonably assume that prior
knowledge is provided by parameters plow and
pup such that plow � p � pup for the true
parameter p. Binomial distributions fulfilling this
requirement are called .plow; pup/-admissible dis-
tributions. Let DnŒplow; pup� denote the set of
such distributions on Xn. Then one can show Let
0 < plow � pup < 1 and WD minf 1

1�plow
; 1
pup
g.

Then .Cn;DnŒplow; pup�/ is stochastically finitely
learnable with high confidence from positive ex-
amples. To achieve ı-confidence no more than
O
�
log2 1=ı � log n

�
, many examples are neces-

sary.
Therefore, we have achieved an exponential

improvement on the number of examples needed
for learning (compared to the PAC bound dis-
played above), and, in addition, our stochastic
finite learner exactly identifies the target. Note
that this result is due to Reischuk and Zeugmann;
however, we refer the reader to Zeugmann (2006)
for the relevant proofs.

The results obtained for learnability from pos-
itive examples only can be extended mutatis mu-
tandis to the case when the learner is fed positive
and negative examples (cf. Zeugmann (2006) for
details).

Learning Pattern Languages

The pattern languages have been introduced
by Angluin (1980a) and can be informally

http://dx.doi.org/10.1007/978-1-4899-7687-1_631

1190 Stochastic Finite Learning

defined as follows. Let † D f0; 1; : : : g be
any finite alphabet containing at least two
elements. Let X D fx0; x1; : : :g be a countably
infinite set of variables such that † \ X D ;.
Patterns are nonempty strings over † [X , e.g.,
01; 0x0111; 1x0x00x1x2x0 are patterns. The
length of a string s 2 †� and of a pattern
� is denoted by jsj and j�j, respectively. A
pattern � is in canonical form provided that
if k is the number of different variables in �

then the variables occurring in � are precisely
x0; : : : ; xk�1. Moreover, for every j with
0 � j < k � 1, the leftmost occurrence of xj in
� is left to the leftmost occurrence of xjC1. The
examples given above are patterns in canonical
form.

If k is the number of different variables in � ,
then we refer to � as to a k-variable pattern.
For example, x0xx is a one-variable pattern,
and x010x1x0 is a two-variable pattern. If � is
a pattern, then the language generated by � is
the set of all strings that can be obtained from
� by substituting a nonnull element si 2 †�

for each occurrence of the variable symbol xi
in � , for all i � 0. We use L.�/ to denote
the language generated by pattern � . So, 1011,
1001010 belong to L.x0xx/ (by substituting 1
and 10 for x, respectively) and 010110 is an
element of L.x010x1x0/ (by substituting 0 for x0

and 11 for x1). Note that even the class of all one-
variable patterns has infinite �VC dimension (cf.
Mitchell et al. 1999).

Reischuk and Zeugmann (2000) designed
a stochastic finite learner for the class of all
one-variable pattern languages that runs in time
O.j�j log.1=ı// for all meaningful distributions
and learns from positive data only. That is, all
data fed to the learner belong to the target
pattern language. Furthermore, by meaningful
distribution essentially the following is meant.
The expected length of an example should be
finite and the distribution should allow to learn
the target pattern. This is then expressed by
fixing some suitable parameters. It should be
noted that the algorithm is highly practical, and
a modification of it also works for the case that
empty substitutions are allowed. Though this
seems to be a minor modification, it is not. The

learnability results for pattern languages resulting
from a definition that also allows for empty
substitutions considerably differ from the case,
where only nonnull substitutions are admitted
(cf. Reidenbach 2006, 2008).

For the class of all pattern languages, one can
also provide a stochastic finite learner identifying
the whole class from positive data. In order to
arrive at a suitable class of distributions, essen-
tially three requirements are made. The first one
is the same as in the one-variable case, i.e., the
expected length EŒƒ� of a generated string should
be finite. Second, the class of distributions is
restricted to regular product distributions, i.e.,
for all variables the substitutions are identically
distributed.

Third, two parameters ˛ and ˇ are introduced.
The parameter ˛ is the probability that a
string of length 1 is substituted, and ˇ is the
conditional probability that two random strings
that get substituted into � are identical under
the condition that both have length 1. These
two parameters ensure that the target pattern
language is learnable at all. The stochastic finite
learner is then using as a priori knowledge a
lower bound ˛� for ˛ and an upper bound ˇ�

for ˇ. The basic ingredient to this stochastic
finite learner is Lange and Wiehagen’s (1991)
pattern language learning algorithm. Rossmanith
and Zeugmann’s (2001) stochastic finite
learner for the pattern languages runs in time
O
�
.1=˛k�/EŒƒ� log1=ˇ�

.k/ log2.1=ı/
�
, where

k is the number of different variables in the
target pattern. So, with increasing k it becomes
impractical.

Note that the two stochastic finite learners for
the pattern languages can compute the expected
stage of convergence, since the first string seen
provides an upper bound for the length of the
target pattern.

For further information, we refer the reader
to Zeugmann (2006) and the references therein.
More research is needed to explore the potential
of stochastic finite learning. Such investigations
should extend the learnable classes, should study
the incorporation of noise, and should explore
further possible classes of meaningful probability
distributions.

http://dx.doi.org/10.1007/978-1-4899-7687-1_881

Stream Classification 1191

S

Cross-References

� Inductive Inference
� PAC Learning

Recommended Reading

Angluin D (1980a) Finding patterns common to a set
of strings. J Comput Syst Sci 21(1):46–62

Angluin D (1980b) Inductive inference of formal lan-
guages from positive data. Inf Control 45(2):117–
135

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Erlebach T, Rossmanith P, Stadtherr H, Steger A,
Zeugmann T (2001) Learning one-variable pattern
languages very efficiently on average, in paral-
lel, and by asking queries. Theor Comput Sci
261(1):119–156

Gold EM (1967) Language identification in the limit.
Inf Control 10(5):447–474

Haussler D (1987) Bias, version spaces and Valiant’s
learning framework. In: Langley P (ed) Proceedings
of the fourth international workshop on machine
learning. Morgan Kaufmann, San Mateo, pp 324–
336

Haussler D, Kearns M, Littlestone N, Warmuth MK
(1991) Equivalence of models for polynomial learn-
ability. Inf Comput 95(2):129–161

Lange S, Wiehagen R (1991) Polynomial-time infer-
ence of arbitrary pattern languages. New Gener
Comput 8(4):361–370

Lange S, Zeugmann T (1996) Set-driven and
rearrangement-independent learning of recursive
languages. Math Syst Theory 29(6):599–634

Mitchell A, Scheffer T, Sharma A, Stephan F (1999)
The VC-dimension of subclasses of pattern lan-
guages. In: Watanabe O, Yokomori T (eds) Proceed-
ings of the 10th international conference on algo-
rithmic learning theory, ALT ’99, Tokyo, Dec 1999.
Lecture notes in artificial intelligence, vol 1720.
Springer, pp 93–105

Reidenbach D (2006) A non-learnable class of E-
pattern languages. Theor Comput Sci 350(1):91–
102

Reidenbach D (2008) Discontinuities in pattern infer-
ence. Theor Comput Sci 397(1–3):166–193

Reischuk R, Zeugmann T (2000) An average-case
optimal one-variable pattern language learner. J
Comput Syst Sci 60(2):302–335

Rossmanith P, Zeugmann T (2001) Stochastic finite
learning of the pattern languages. Mach Learn
44(1/2): 67–91

Goldman SA, Kearns MJ, Schapire RE (1993) Ex-
act identification of read-once formulas using fixed

points of amplification functions. SIAM J Comput
22(4):705–726

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Zeugmann T (1998) Lange and Wiehagen’s pattern
language learning algorithm: an average-case analy-
sis with respect to its total learning time. Ann Math
Artif Intell 23:117–145

Zeugmann T (2006) From learning in the limit to
stochastic finite learning. Theor Comput Sci
364(1):77–97. Special issue for ALT 2003

Stopping Criteria

� Pre-pruning

Stratified Cross Validation

Stratified Cross Validation is a form of � cross
validation in which the class distribution is kept
as close as possible to being the same across all
folds.

Stream Classification

Jerzy Stefanowski and Dariusz Brzezinski
Institute of Computing Science, Poznan
University of Technology, Poznan, Poland

Abstract

Compared to batch learning from static data,
constructing classifiers from data streams
implies new requirements for algorithms, such
as constraints on memory usage, restricted
processing time, and one scan of incoming
examples. Additionally, streams classifiers
have to adapt to concept drifts. The entry
discusses the following stream classification
issues: data stream specific requirements,
processing schemes, categorization of concept
drifts, classifier evaluation criteria and
procedures, forgetting mechanisms, change
detection methods, main algorithms for

http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_663
http://dx.doi.org/10.1007/978-1-4899-7687-1_190

1192 Stream Classification

supervised learning of single classifiers
and ensembles, open problems, areas of
application.

Definition

Stream classification is a variant of incremental
learning of classifiers that has to satisfy require-
ments specific for massive streams of data: re-
strictive processing time, limited memory, and
one scan of incoming examples. Additionally,
stream classifiers often have to be adaptive, as
they usually act in dynamic, non-stationary en-
vironments where data and target concepts can
change over time. To fulfill these requirements,
new solutions include dedicated data manage-
ment and forgetting mechanisms, concept drift
detectors that monitor the underlying changes
in the stream, effective online single classifiers,
and adaptive ensembles that continuously react to
changes in the stream.

Motivation and Background

In many data-intensive applications, like sensor
networks, traffic control, market analysis, Web
user tracking, and social media, massive volumes
of data are continuously generated in the form of
data streams. A data stream is a potentially un-
bounded, ordered sequence of data items, which
arrive continuously at high speeds. These data
elements can be simple attribute-value pairs like
relational database tuples or more complex struc-
tures such as graphs.

The main characteristics of streams include:

• continuous flow (elements arrive one after
another),

• huge data volumes (possibly of an infinite
length),

• rapid arrival rate (relatively high with respect
to processing power of the system),

• susceptibility to change (data distributions
generating examples may change on the fly).

Due to the above characteristics, learning from
data streams differs from � batch learning, where
data are stored in finite, persistent data reposi-
tories. The main dissimilarities include the se-
quential nature of the data, massive volumes, pro-
cessing speed restrictions, and the fact that data
elements cannot be accessed multiple times as it
is in the case of learning from static repositories.
Moreover, contrary to � online learning, stream
classification does not assume adversarial actions
from the instance generating process, but rather
focuses on computational restrictions.

One of the most widely studied tasks in
data stream mining is � supervised classifica-
tion. Apart from the aforementioned general
difficulties connected with learning from
streams, classification is also often performed
in non-stationary environments, where the data
distribution and target concepts can change
over time. This phenomenon, called � concept
drift, deteriorates the predictive accuracy of
classifiers as the instances they were trained on
differ from the current data. Typical examples of
real-life concept drifts include content changes
in unwanted emails in spam categorization or
evolving customer preferences.

Several researchers imply the following
requirements on algorithms learning classifiers
from streams (Bifet et al. 2010):

1. Process one example at a time and inspect it
only once.

2. Use a limited amount of memory.
3. Be ready to predict at any time.
4. Be able to react to concept drift in case of

evolving data streams.

Typical batch learning algorithms for super-
vised classification are not capable of fulfill-
ing all of the listed data stream requirements.
� Incremental learning is also insufficient, as it
does not meet tight computational demands and
does not tackle concept drift. Therefore, several
new learning algorithms have been introduced.
Surveys on stream classification, such as Ditzler
et al. (2015), Gama (2010), and Kuncheva (2004),
showcase research on using sliding windows to
manage memory and provide a forgetting mech-

http://dx.doi.org/10.1007/978-1-4899-7687-1_58
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_130

Stream Classification 1193

S

anism, sampling techniques, drift detectors, and
new online algorithms.

Structure of the Learning System

Stream classification can be formalized as
follows. Learning instances from a stream S
appear incrementally as a sequence of labeled
� examples fxt ; ytg for t D 1; 2; : : : ; T , where x
is a vector of � attribute values and y is a � class
label .y 2 fK1; : : : ; Klg/. A new example xt

is classified by a classifier C , which predicts
its class label. Here, we consider a completely
supervised framework where after some time the
true class label yt is available and can be used to
update the classifier.

Examples from the data stream can be pro-
vided either online, i.e., instance by instance,
or in portions (blocks). In the first approach,
presented in Fig. 1, algorithms process single
examples appearing one by one in consecutive
moments in time, while in the other approach,
presented in Fig. 2, examples are available only
in larger sets called data blocks (or data chunks)
B1; B2; : : : ; Bn, where n denotes the last element
of the stream up to the current timepoint. Blocks
are usually of equal size and the construction,
evaluation, or updating of classifiers is done when

all examples from a new block are available.
This distinction also refers to the availability of
class labels. For instance, in some problems data
elements are naturally accumulated through some
time and labeled in blocks. However, with class
labels appearing online with single instances,
algorithms have the possibility of reacting to
concept drift much faster than in block-based
environments.

Two basic models of data streams are consid-
ered: stationary, where examples are drawn from
a fixed although unknown probability distribu-
tion, and non-stationary, where data can evolve
over time. As process changes occur in many
real-world problems (Zliobaite et al. 2015), most
stream classification algorithms are capable of
predicting, detecting, and adapting to concept
drifts.

Concept drift can be defined from the perspec-
tive of hidden data contexts, which are unknown
to the learning algorithm. However, in case of
evolving streams, a more probabilistic view on
the matter can be presented (Gama 2010). In each
point in time t , every example is generated by a
source with a joint distribution P t .x; y/ over the
data. Concepts in data are stable if all examples
are generated by the same distribution. If for two
distinct points in time t and tCΔ an x exists such
that P t .x; y/ ¤ P tCΔ.x; y/, then concept drift

X0 X1 X2

...
Xt

Test model on x1 Test model on x2 Test model on xt

Update model with xtUpdate model with x2Update model with x1Train model with x0

Stream Classification, Fig. 1 Online processing

B0 B1

B1

B2

...

Bn

Train model with B0 Update model with B1 Update model with B2 Update model with Bn

Test model on B2
Test model on Bn

Stream Classification, Fig. 2 Block processing

http://dx.doi.org/10.1007/978-1-4899-7687-1_100156
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_940

1194 Stream Classification

occurs. Although different component probabili-
ties of P t .x; y/ may change (Gama et al. 2014),
in case of supervised classification, one is mainly
interested in real drift, i.e., changes in posterior
probabilities of classes P.yjx/.

Usually two basic types of concept drifts are
distinguished: sudden (abrupt) and gradual. The
first type of drift occurs when at a moment
in time t , the source data distribution in S t is
suddenly replaced by a different distribution in
S tC1. Gradual drifts are not so radical and they
are connected with a slower rate of changes that
can be noticed while observing a data stream
for a longer period of time. In some domains,
situations when previous concepts reappear after
some time are separately treated and analyzed as
recurring drifts (Gomes et al. 2014). Moreover,
data streams can contain outliers and � noise,
but these are not considered as concept drifts
and stream classifiers should be robust to these
random changes.

Evaluation

Stream classification requirements make process-
ing time, memory usage, predictive performance,
and the ability to adapt key evaluation criteria.

The time required to process a single instance
and the average memory usage should remain
constant throughout the life of a stream classifier.
That is why training and testing time as well as
model size have to be periodically monitored dur-
ing stream classification. Additionally, processor
time and memory are also considered key costs
when deploying a stream classification system
and are sometimes measured in a single metric
called RAM hours.

The predictive performance of stream classi-
fiers is usually assessed using evaluation mea-
sures known from static supervised classification,
such as � accuracy or � error rate. However, con-
trary to batch learning scenarios, it is assumed
that due to the size and speed of data streams,
repeated runs over the data are not necessary
to estimate these measures on labeled testing
examples. Due to their computational costs, re-
sampling techniques such as � cross-validation

or � bootstrapping are deemed too expensive for
streams. As a result, simpler error-estimation pro-
cedures are used, yet ones that build a picture of
performance over time.

One of such evaluation procedures involves
using a � holdout test set to periodically evaluate
the classifier’s performance. An alternate scheme
of estimating the performance of stream classi-
fiers involves interleaving testing with training.
Each individual example is first used to test
the classifier before it is used for training (see
Fig. 1). This evaluation procedure, often called
test-then-train, has the advantage that it makes
maximum use of the available data. A simi-
lar procedure of interleaving testing with train-
ing can also be performed with blocks of ex-
amples instead of single instances (see Fig. 2).
However, for evolving streams the prequential
evaluation procedure is suggested (Gama 2010).
The term prequential (blend of predictive and
sequential) stems from online learning and is
used in data stream mining literature to denote
algorithms that base their functioning only on the
most recent data rather than the entire stream.
Such a procedure highlights the current rather
than overall performance and, as a result, show-
cases changes in the stream more clearly, which
is especially important for drift detection. All
three of the aforementioned evaluation proce-
dures (holdout, test-then-train, prequential) are
usually used to periodically calculate a selected
metric, e.g., accuracy, and plot its value creating
a line chart depicting classifier performance over
time.

Finally, an important criterion when compar-
ing stream classifiers is their ability to react to
various types of concept changes. Adaptability
can be evaluated by comparing drift reaction
times. This is done by measuring the time be-
tween the start of a drift and the moment when
the tested classifier’s accuracy recovers to a level
from before the drift. More elaborate methods
of assessing the classifier’s ability to adapt in-
clude recovery analysis and controlled permuta-
tions (Krempl et al. 2014). Nevertheless, in order
to calculate reaction times and other adaptability
measures, usually a human expert needs to de-
termine moments when a drift starts and when

http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_369

Stream Classification 1195

S

a classifier recovers from it. Alternately, such
evaluations are carried out with synthetic data
generators.

Algorithms

The simplest categorization of algorithms for
learning stream classifiers makes a distinction
between single classifiers and ensembles. Addi-
tionally, from the perspective of learning from
drifting environments, most of researchers distin-
guish active approaches, which trigger changes
in classifiers when drifts are detected, and pas-
sive approaches, which continuously update the
classifier regardless of whether drifts occur in the
data stream or not (Gama et al. 2014). We discuss
algorithms from the point of view of both of these
taxonomies.

Data Management and Forgetting
Mechanisms
Many approaches to dealing with time-changing
streams involve the use of some sort of data
management or forgetting mechanism. Data man-
agement strategies specify which data is used
for learning, while forgetting strategies specify
how old data are discarded. Both mechanisms are
necessary to meet time and memory requirements
posed by data streams and serve as a way of
reacting to drifts by eliminating those examples
that come from an old concept.

Online classifiers decide if an example will be
included in the learning model on a per-instance
basis. Such an approach promotes gradual adap-
tation to evolving concepts mainly by continu-
ously updating the model with new examples.
As an alternative, several classifiers apply sliding
windows to keep the classifier consistent only
with the most recent data. As sliding windows
encompass a larger set of examples, they can
be used to periodically build classifiers by con-
ventional batch algorithms. From this point of
view, this data management mechanism can be
viewed as a general approach to transforming
batch learners into classifiers for concept-drifting
data streams.

The basic windowing algorithm is straight-
forward. Each example updates the window and
later the classifier is updated by that window. The
key part of this algorithm lies in the definition
of the window, i.e., in the way it models the for-
getting process. In the simplest approach, sliding
windows are of fixed size and include only the
most recent examples from the data stream. With
each new data point, the oldest example that does
not fit in the window is discarded. More complex
approaches vary the window size depending on,
e.g., the indications of a drift detector (Bifet and
Gavaldà 2007).

Sliding windows are also one of the most
popular forgetting mechanisms – examples that
fall outside of the window are instantly excluded
from the model. From this perspective, two basic
types of windows are defined: sequence based,
where the size of a window is characterized by the
number of instances, and timestamp based, where
the size is defined by duration time.

There are two common alternatives to
forgetting using sliding windows: sampling
and fading factors. The first alternative aims
at summarizing the characteristics of the data
stream over a long period of time using a limited
number of examples. One of the best known
data stream sampling algorithms is reservoir
sampling, which keeps a fixed-size sample
of the stream that is updated with randomly
selected instances (Aggarwal 2007). Fading
factors, on the other hand, provide a way of
gradually forgetting examples. This is usually
done with a decay function that assigns a weight
to each example in the entire stream or a large
window. Older examples receive smaller weights
and are gradually treated as less important
by the learner. Popular fading factors include
linear, exponential, polynomial, and chordal
functions.

Drift Detectors
Apart from sliding windows, another group of
techniques that allow to construct a stream clas-
sifier are drift detectors. Their task is to detect
concept drift and alarm a base learner that its
classifier should be rebuilt or updated. For exam-
ple, when a detector signals a sudden change, an

1196 Stream Classification

existing classifier can be discarded and replaced
by a new one trained only on the most recent
data.

Drift detectors are usually implemented us-
ing statistical tests based on sequential analysis,
process control charts, or monitoring differences
between two distributions. Detectors based on
sequential analysis check whether the classifi-
cation error calculated on the most recent in-
stances is significantly different from its value
calculated for range of older instances. Exam-
ples of sequential tests include CUSUM and the
Page-Hinkley test (Gama 2010). Drift detectors
based on control charts take inspiration from
statistical techniques used in quality control dur-
ing product manufacturing. In these approaches,
each prediction a classifier makes is treated as a
Bernoulli trail. Then, the number of classification
errors can be modeled with a Binomial distribu-
tion, which in turn can be tested for significantly
improbable changes. Examples from this group
include algorithms such as DDM, EDDM, and
EWMA (Gama et al. 2014). Finally, several de-
tection methods use two subsets of the stream: a
reference window and a sliding window of the
most recent examples. If the distributions over
these two windows are significantly different, a
change is signaled, suggesting that only examples
from the sliding window should be used to create
a new model.

Single Classifiers
First proposals of stream classifiers concentrated
on processing massive stationary data sets in
constant time per example. Decision trees were
one of the first algorithms to be adapted to meet
these requirements using the Hoeffding bound.
This bound states that with probability 1 � ı,
the true mean of a random variable of range R
will not differ from the estimated mean after n
independent observations by more than:

	 D

r
R2ln.1=ı/

2n
: (1)

Using the Hoeffding bound, Domingos and
Hulten (2000) proposed a classifier called very
fast decision tree (VFDT). This algorithm in-

crementally induces a tree from a massive data
stream, without the need for storing examples
after they have been used to update the tree. Its
key idea is the selection of the split attribute,
which is realized differently than in static trees
(e.g., C4.5). Instead of selecting the best attribute
(in terms of a split evaluation function) after
viewing all the examples, VFDT uses the Hoeffd-
ing bound to calculate the number of examples
necessary to select the right split node with prob-
ability 1 � ı. From the theoretical point of view,
recent studies have shown that other bounds, as
the �McDiarmid inequality, are more suitable
depending on the assumptions made about the
distribution of values of the split evaluation func-
tion.

Many enhancements to the basic VFDT al-
gorithm, often called the Hoeffding tree, have
been proposed. They include methods of limiting
memory usage, the use of alternative bounds
which requires less examples for each split node,
approaches to dealing with numerical attributes,
pruning mechanisms, and the use of sliding win-
dows or drift detectors to adapt the algorithm
to non-stationary settings (Gama 2010). Never-
theless, the VFDT algorithm paved the way for
many other learning algorithms that use the Ho-
effding bound to incrementally process massive
datasets (Ditzler et al. 2015).

Several traditional incremental classifiers
were also adapted to computational and concept
drift requirements. An illustrative example could
be learning neural networks. By abandoning the
epoch protocol and presenting examples in a
single pass, neural networks can be adapted to
changing data streams. Bayesian methods can
also learn incrementally and require constant
memory. To add a forgetting mechanism to
this group of algorithms, sliding windows
are usually employed to “unlearn” the oldest
examples. Similarly, nearest neighbor classifiers
are naturally transformed to incremental versions
with different techniques for selecting the
limited subset of the most “useful” examples
for accurate predictions. Rule-based algorithms
were also adjusted to data stream environments,
in fact, FLORA algorithms developed by Kubat
and Widmer were one of the first classifiers

http://dx.doi.org/10.1007/978-1-4899-7687-1_521

Stream Classification 1197

S

to cope with concept drift (Deckert 2013).
Other algorithms use a structure similar to a
decision tree to create rules and rule-specific drift
detectors to react to changes (Kosina and Gama
2015).

Ensembles
�Ensembles are easily adapted to non-stationary
data streams. Due to their modular construction,
they are capable of incorporating new data el-
ements by introducing a new component into
the ensemble, updating existing component clas-
sifiers, or changing weights in the aggregation
phase. Ensembles are usually categorized into
block-based and online approaches.

Most block-based ensembles periodically
evaluate component classifiers with the newest
data block and substitute the worst ensemble
member with a new (candidate) classifier.
Additionally, practically all proposed approaches
work with fixed-sized blocks. A generic
block-based ensemble scheme is presented in
Algorithm 1.

For each block Bi , the weights of current
component classifiers Cj 2 E are calculated by
a quality measure Q./, which depends on the
particular algorithm. For instance, in Accuracy
Weighted Ensemble (AWE), Q./ is realized as a
version of the mean square error of the compo-
nent classifier Cj calculated on the recent block
Bi , which is compared to the error of a random

Algorithm 1 Generic block-based ensemble
Input: S, data stream of examples partitioned into
blocks of size d ; k, number of ensemble members; Q./,
classifier quality measure;
Output: E , ensemble of k weighted classifiers

1: for all blocks Bi 2 S do
2: build and weight candidate classifier Cc using Bi

andQ./;
3: weight all classifiers Cj in ensemble E using Bi

andQ./;
4: if jEj < k then
5: E E [fCcg;
6: else if 9j WQ.Cc/ > Q.Cj / then
7: replace weakest ensemble member with Cc ;
8: end if
9: end for

classifier on the same block (Wang et al. 2003). In
addition to component re-weighting, a candidate
classifier Cc is built from the recent block Bi
and added to the ensemble if the ensemble’s
size is not exceeded. If the ensemble is full, the
candidate classifier Cc substitutes the weakest
ensemble member. It is worth noting that some al-
gorithms, e.g., Learn++.NSE (Ditzler et al. 2015),
do not limit the number of component classifiers
in order to react to recurring concepts. The label
prediction for new examples is usually based on a
weighted majority vote of component classifiers.
Most block-based ensembles take advantage of
batch learning algorithms as component classi-
fiers. This is not the case for hybrid algorithms,
like the Accuracy Updated Ensemble (Brzezinski
and Stefanowski 2014), which updates classifiers
after processing each block.

The origins of online stationary ensembles
come from research on the Winnow algorithm
and the Weighted Majority Algorithm (Little-
stone and Warmuth 1994), which combine the
predictions of several experts (classifiers) by ma-
jority voting. When the ensemble misclassifies an
instance, the weights of the wrong experts are
decreased by a user-specified coefficient. The Dy-
namic Weighted Majority (DWM) is an extension
of this idea for drifting data streams (Kolter and
Maloof 2007). It uses a set of incremental classi-
fiers, which are generated by the same learning
algorithm. When a new example is available,
the final prediction is obtained as a weighted
vote of all classifiers. The weights of all classi-
fiers that misclassify the example are decreased
in the same way as in the Weighted Majority
Algorithm. However, DWM dynamically creates
and deletes component classifiers in response
to changes in classification performance. If the
ensemble’s overall prediction is incorrect, a new
classifier is added to the ensemble.

Another group of online ensembles includes
generalizations of static ensembles. The most
well known are online versions of � bagging
and � boosting (Oza and Russell 2001). In case
of online bagging, the key idea is to adapt the
� bootstrap sampling step to a streaming setting.
This is done by using single examples multi-
ple times according to the Poisson distribution.

http://dx.doi.org/10.1007/978-1-4899-7687-1_122
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_977

1198 Stream Classification

This proposal of randomly updating training sets
was an inspiration to develop several other ap-
proaches, e.g., leveraging bagging, online boost-
ing, or the DDD ensemble (Ditzler et al. 2015).

Comprehensive reviews of various ensembles
can be found in Ditzler et al. (2015), Gama
(2010), and Kuncheva (2004).

Other Approaches
Although developing classifiers for concept-
drifting streams is in itself a nontrivial task,
some other characteristics of learning problems
can make this task even more difficult. In
most current algorithms, it is assumed that
all information, in particular class labels of
instances, are complete, immediately available,
and received for free (Krempl et al. 2014).
However, these assumptions may not hold true
in some real-world problems, e.g., in fraud
detection or patient health monitoring, where
the labeling of examples is scarce or missing. In
the case of static data, these problems are studied
with � semi-supervised learning. For adapting
such techniques to streams, the availability of
at least some labeled data from the most recent
distribution is required. For instance, Masud
et al. (2008) divide the stream into blocks
containing partly labeled examples and then
propose various approaches to combine learning
ensemble classifiers with semi-supervised
clustering. �Active learning is also often related
to semi-supervised frameworks. However, many
sampling techniques developed for static data
are not well suited for non-stationary streams
(Spiliopoulou and Krempl 2013). A review of
recent active learning strategies is presented
in Žliobaitė et al. (2011).

A particularly challenging problem is learning
classifiers from initially labeled non-stationary
streams, where completely labeled examples are
available for the first period only, followed by un-
labeled data which may be drawn from a different
distribution. Research on this topic is still at an
early stage. Yet another problem is dealing with
delayed information. In the case of verification
latency, the class labels of preceding examples
are not available before the subsequent instance
has to be predicted. Therefore, feedback from

correct predictions cannot be instantly used to
improve the classifier. For a review of approaches
that try to deal with this problem, see Ditzler et al.
(2015).

Dealing with the � class imbalance problem
in non-stationary streams also introduces addi-
tional difficulties. Recent proposals to this prob-
lem pay attention to drifts of the minority class
and specialized evaluation methods (Wang et al.
2015). The problem of class imbalance is also
related to an increasing interest in studying other
types of changes (Gama et al. 2014). Finally,
other research concerns more complex represen-
tations of instances in streams, as graphs, semi-
structured documents, or text messages, as well
as complex target outputs, like multi-labeled or
ordinal classification. Other open issues are dis-
cussed in Ditzler et al. (2015) and Krempl et al.
(2014).

Applications

Applications of stream classification can be orga-
nized into three groups: monitoring and control,
information management, and analytics and diag-
nostics (Zliobaite et al. 2015).

Monitoring and control mostly relates to the
detection of abnormal events. Domains from this
group include sensor networks, telecommunica-
tions, traffic control, and fraud detection. Infor-
mation management encompasses applications
such as product recommendation, crime predic-
tion, personalized search, and customer profiling.
Analytics and diagnostics address domains like
evaluation of creditworthiness, budget planning,
or drug resistance prediction.

Each of the aforementioned groups differs also
in the way stream classification is modeled. Mon-
itoring and control usually involves sequential
data where the task is to detect sudden changes.
Information management is mostly based on rela-
tional data and gradual rather than abrupt changes
are to be expected. Finally, diagnostic applica-
tions often involve recurring concepts. For an in-
depth analysis of different application settings,
see Zliobaite et al. (2015).

http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_110

Stream Mining 1199

S

Cross-References

�Classification
�Concept Drift
� Incremental Learning
�Online Learning

Recommended Reading

Aggarwal CC (ed) (2007) Data streams – models and
algorithms. Volume 31 of Advances in database
systems. Springer, New York

Bifet A, Gavaldà R (2007) Learning from time-
changing data with adaptive windowing. In: Pro-
ceedings of the 7th SIAM international conference
on data mining, Minneapolis, pp 443–448

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010)
MOA: massive online analysis. J Mach Learn Res
11:1601–1604

Brzezinski D, Stefanowski J (2014) Reacting to dif-
ferent types of concept drift: the accuracy updated
ensemble algorithm. IEEE Trans Neural Netw Learn
Syst 25:81–94

Deckert M (2013) Incremental rule-based learners for
handling concept drift: an overview. Found Comput
Decis Sci 38(1):35–65

Ditzler G, Roveri M, Alippi C, Polikar R (2015)
Learning in nonstationary environments: a survey.
IEEE Comput Intell Mag 10(4):12–25

Domingos P, Hulten G (2000) Mining high-speed data
streams. In: Proceedings of the 6th ACM SIGKDD
international conference on knowledge discovery
and data mining, Boston, pp 71–80

Gama J (2010) Knowledge discovery from data
streams. Chapman and Hall/CRC, Boca Raton

Gama J, Žliobaitė I, Bifet A, Pechenizkiy M,
Bouchachia A (2014) A survey on concept drift
adaptation. ACM Comput Surv 46(4):44:1–44:37

Gomes JB, Gaber MM, Sousa PAC, Ruiz EM (2014)
Mining recurring concepts in a dynamic fea-
ture space. IEEE Trans Neural Netw Learn Syst
25(1):95–110

Kolter JZ, Maloof MA (2007) Dynamic weighted ma-
jority: an ensemble method for drifting concepts. J
Mach Learn Res 8:2755–2790

Kosina P, Gama J (2015) Very fast decision rules
for classification in data streams. Data Min Knowl
Discov 29(1):168–202

Krempl G, Žliobaitė I, Brzezinski D, Hüllermeier E,
Last M, Lemaire V, Noack T, Shaker A, Sievi S,
Spiliopoulou M, Stefanowski J (2014) Open chal-
lenges for data stream mining research. SIGKDD
Explor 16(1):1–10

Kuncheva LI (2004) Classifier ensembles for chang-
ing environments. In: Proceedings of 5th inter-
national workshop on multiple classifier systems,

MCS 04, Cagliari. Volume 3077 of Springer LNCS,
pp 1–15

Littlestone N, Warmuth MK (1994) The weighted
majority algorithm. Inf Comput 108(2):212–261

Masud M, Gao J, Khan L, Thuraisingham B (2008) A
practical approach to classify evolving data streams:
training with limited amount of labeled data. In:
Proceedings of the 8th IEEE international confer-
ence on data mining, Pisa, pp 929–934

Oza NC, Russell SJ (2001) Experimental com-
parisons of online and batch versions of bag-
ging and boosting. In: Proceedings of the 7th
ACM SIGKDD international conference on knowl-
edge discovery and data mining, San Francisco,
pp 359–364

Spiliopoulou M, Krempl G (2013) Tutorial mining
multiple threads of streaming data. In: Proceedings
of the Pacific-Asia conference on knowledge dis-
covery and data mining, PAKDD 2013, Gold Coast

Wang H, Fan W, Yu PS, Han J (2003) Mining concept-
drifting data streams using ensemble classifiers. In:
Proceedings of the 9th ACM SIGKDD international
conference on knowledge discovery and data min-
ing, Washington, DC, pp 226–235

Wang S, Minku L, Yao X (2015) Resampling-based en-
semble methods for online class imbalance learning.
IEEE Trans Knowl Data Eng 27(5):1356–1368

Žliobaitė I, Bifet A, Pfahringer B, Holmes G (2011)
Active learning with evolving streaming data. In:
Proceedings of the 2011 European conference
on machine learning and knowledge discovery in
databases, Athens. Volume 6913 of Springer LNCS.
pp 597–612

Zliobaite I, Pechenizkiy M, Gama J (2015) An
overview of concept drift applications. In: Jap-
kowicz N, Stefanowski J (eds) Big data analysis:
new algorithms for a new society. Springer, Cham,
pp 91–114

Stream Mining

A subfield of knowledge discovery called stream
mining addresses the issue of rapidly changing
data. The idea is to be able to deal with the
stream of incoming data quickly enough to be
able to simultaneously update the corresponding
models (e.g., ontologies), as the amount of data
is too large to be stored: new evidence from
the incoming data is incorporated into the model
without storing the data. For instance, modeling
ontology changes and evolution over time using
text mining methods (TextMining for Semantic
Web). The underlying methods are based on the

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_130
http://dx.doi.org/10.1007/978-1-4899-7687-1_618

1200 String Kernel

machine learning methods of �Online Learning,
where the model is built from the initially avail-
able data and updated regularly as more data
become available.

Examples of data streams include computer
network traffic, phone conversations, ATM trans-
actions, web searches, and sensor data.

Cross-References

�Clustering from Data Streams
�Online Learning

String Kernel

A string kernel is a function from any of var-
ious families of kernel functions (see � kernel
methods) that operate over strings and sequences.
The most typical example is as follows. Suppose
that we are dealing with strings over a finite
alphabet †. Given a string a D a1a2 : : : an 2

†�, we say that a substring p D p1p2 : : : pk
occurs in a on positions i1i2 : : : ik iff 1 � i1 <

i2 < : : : < ik � n and aij D pj for all
j D 1; : : : ; k. We define the weight of this
occurrence as �ik�ii�kC1, where � 2 [0, 1] is
a constant chosen in advance; in other words,
an occurrence weighs less if characters of p are
separated by other characters. Let �p.a/ be the
sum of the weights of all occurrences of p in
a, and let �.a/ D .�p.a//p2

P
� be an infinite-

dimensional feature vector consisting of �p.a/
for all possible substrings p 2 †*. It turns
out that the dot product of two such infinite-
length vectors, K.a; a0/ D �.a/T �.a0/, can be
computed in time polynomial in the length of a
and a0, e.g., using dynamic programming. The
function K defined in this way can be used as
a kernel with various kernel methods. See also
� feature construction in text mining.

String Matching Algorithm

A string matching algorithm returns parts of
text matching a given pattern, such as a regular

expression. Such algorithms have countless
applications, from file editing to bioinformatics.
Many algorithms compute deterministic finite
automata, which can be expensive to build, but
are usually efficient to use; they include the
Knuth–Morris–Pratt algorithm and the Boyer–
Moore algorithm, that build the automaton in
time O.m/ and O.m C s/, respectively, where
m is the length of the pattern and s the size of
the alphabet, and match a text of length n in time
O.n/ in the worst case.

Structural Credit Assignment

�Credit Assignment

Structural Risk Minimization

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Structural risk minimization is an inductive
principle used to combat overfitting. It seeks a
tradeoff between model complexity and fitness
of the model on the training data.

Definition

The goal of learning is usually to find a model
which delivers good generalization performance
over an underlying distribution of the data. Con-
sider an input space X and output space Y .
Assume the pairs .X � Y / 2 X � Y are random
variables whose (unknown) joint distribution is

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_41
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_185

Structured Induction 1201

S

PXY . It is our goal to find a predictor f W X 7! Y
which minimizes the expected risk:

P.f .X/ ¤ Y / D E.X;Y /�PXY
Œı.f .X/ ¤ Y /� ;

where ı.´/ D 1 if ´ is true, and 0 otherwise.
In practice we only have n pairs of training

examples .Xi ; Yi / drawn identically and indepen-
dently from PXY . Based on these samples, the
�Empirical Risk can be defined as

1

n

nX
iD1

ı.f .Xi / ¤ Yi /:

Choosing a function f by minimizing the
empirical risk often leads to �Overfitting. To
alleviate this problem, the idea of structural risk
minimization (SRM) is to employ an infinite
sequence of models F1;F2; : : : with increasing
capacity. Here each Fi is a set of functions,
e.g., polynomials with degree 3. We minimize the
empirical risk in each model with a penalty for
the capacity of the model:

fn W D argminf 2Fi ;i2N

1

n

nX
iD1

ı.f .Xi / ¤ Yi /

C capacity.Fi ; n/;

where capacity.Fi ; n/ quantifies the complexity
of model Fi in the context of the given training
set. For example, it equals 2 when Fi is the set of
polynomials with degree 2. In other words, when
trying to reduce the risk on the training set, we
prefer a predictor from a simple model.

Note the penalty is measured on the model
Fi , not the predictor f . This is different from
the regularization framework, e.g., support vector
machines, which penalizes the complexity of the
classifier.

More details about SRM can be found in
Vapnik (1998).

Recommended Reading

Vapnik V (1998) Statistical learning theory. John Wi-
ley, New York

Structure

�Topology of a Neural Network

Structured Data Clustering

�Graph Clustering

Structured Induction

Michael Bain
University of New South Wales, Sydney, NSW,
Australia

Definition

Structured induction is a method of applying
machine learning in which a model for a task
is learned using a representation where some of
the components are themselves the outputs of
learned models for specified sub-tasks. The idea
was inspired by structured programming (Dahl
et al. 1972), in which a complex task is solved
by repeated decomposition into simpler sub-tasks
that can be easily analyzed and implemented. The
approach was first developed by Alen Shapiro
(1987) in the context of constructing expert sys-
tems by � decision tree learning, but in principle
it could be applied using other learning methods.

Motivation and Background
Structured induction is designed to solve complex
learning tasks for which it is difficult a priori to
obtain a set of attributes or features in which it is
possible to represent an accurate approximation
of the target hypothesis reasonably concisely. In
Shapiro’s approach, a hierarchy of � decision
trees is learned, where in each tree of the hi-
erarchy the attributes can have values that are
outputs computed by a lower-level � decision
tree. Shapiro showed in computer chess appli-
cations that structured induction could learn ac-

http://dx.doi.org/10.1007/978-1-4899-7687-1_79
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

1202 Structured Induction

curate models, while significantly reducing their
complexity. Structured induction was first com-
mercialized in the 1980s by a number of com-
panies providing expert systems solutions and
has since seen many applications (Razzak et al.
1984).

A key assumption is that human expertise is
available to define the task structure. Several ap-
proaches have been proposed to address the prob-
lem of learning this structure (under headings
such as � constructive induction, representation
change, � feature construction, and � predicate
invention) although to date, none have received
wide acceptance.

The identification of knowledge acquisition as
the “bottleneck” in knowledge engineering by
Feigenbaum (1977) sparked considerable inter-
est in symbolic machine-learning methods as a
potential solution. Early work on � decision tree
induction around this time was often driven by
problems from computer chess, a challenging
domain by the standards of the time due to
relatively large data sets and the complexity of
the target hypotheses. In a landmark paper on
his ID3 � decision tree learning algorithm, Quin-
lan (1983) reported experiments on learning to
classify positions in a four-piece chess endgame
as winnable (or not) within a certain number of
moves (“lost N -ply”). A set of attributes was
defined as inadequate for a classification task if
two objects belonging to different classes had
identical values for each attribute. He concluded
that “almost all the effort (for a non chess-player,
at least) must be devoted to finding attributes that
are adequate for the classification problem being
tackled”.

The problem is that the effort of developing
the set of attributes becomes disproportionate to
the time taken to do the induction. Quinlan (1983)
reported durations of three weeks and two man-
months, respectively, to define an adequate set
of attributes for the “lost 2-ply” and “lost 3-ply”
experiments. In contrast, the implementation of
ID3 used in that work induced the � decision
trees in 3 s and 34 s, respectively. It is worth
noting that the more complex problem of “lost
4-ply” was abandoned due to the difficulty of
developing an adequate set of attributes.

Although Quinlan’s experiments with ID3
produced exact � classifiers for his chess
problems, the resulting � decision trees were too
large to be comprehensible to domain experts.
This is a serious drawback when machine
learning is used with the goal of installing learned
rules in an expert system, since the system cannot
provide understandable explanations. Shapiro
and Niblett (1982) proposed structured induction
as a solution to this problem, and the method
was developed in Shapiro’s PhD thesis (Shapiro
1987) motivated by expert systems development.

Structure of Learning System

Structured induction is essentially a two-stage
process, comprising a top-down decomposition
of the problem into a solution structure, followed
by a bottom-up series of � classifier learning
steps, one for each of the subproblems. A knowl-
edge engineer and a domain expert are required to
collaborate at each stage, with the latter acting as
a source of examples. The use of machine learn-
ing to avoid the knowledge acquisition bottleneck
is based on the finding that although domain
experts find it difficult to express general and
accurate rules for a problem, they are usually able
to generate tutorial examples in an attribute-value
formalism from which rules can be generalized
automatically. The key insight of structured in-
duction is that the task of specifying an attribute
and its value set can be treated as a subproblem
of the learning task, and solved in the same way.

The approach can be illustrated by a sim-
ple example using the structure shown in Fig. 1.
Suppose the task is to learn a model for some
concept p. Suppose further that the domain expert
proposes three attributes a1, a2, and a3 as ade-
quate for the classification of p. Now the domain
expert consults with the knowledge engineer and
it is decided that while attribute a1 is directly
implementable, the other two are not. An attribute
that is directly implementable by a knowledge en-
gineer is referred to as primitive for the domain.
The other attributes become sub-concepts a2 and
a3, and each in turn is addressed by the domain
expert. In this case, three attributes are proposed

http://dx.doi.org/10.1007/978-1-4899-7687-1_165
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_655
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100249
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055

Structured Induction 1203

S

a1

a21 a22 a23 a31 a32

a2 a3

p

Structured Induction, Fig. 1 A schematic diagram of
a model learned by structured induction (after Shapiro
1987). Concepts to be learned are shown in ovals, and
primitive attributes in boxes. The top-level concept p is

defined in terms of the primitive attribute a1 and two sub-
concepts a2 and a3. Each of the two sub-concepts are
further decomposed into sets of primitive attributes, a21:::3

and a31:::2

as most relevant to the solution of a2, and two for
a3. Since all of these attributes are found to be
primitive, the top-down problem decomposition
stage is therefore complete.

The domain expert, having proposed a set of
primitive attributes for a sub-concept, say a3,
is now required to provide a set of classified
examples defined in terms of values for attributes
a31 and a32. Given these examples, the knowledge
engineer will run a learning algorithm to induce a
� classifier such as a � decision tree. The domain
expert will then inspect the � classifier and can
optionally refine it by supplying further exam-
ples, until they are satisfied that it completely and
correctly defines the sub-concept a3. This process
is repeated in a bottom-up fashion for all sub-
concepts. At every level of the hierarchy, once all
sub-concepts have been defined, they are now di-
rectly executable � classifiers and can be treated
in the same way as primitive attributes and used
for learning. The structured induction solution
is complete once an acceptable � classifier has
been learned for the top-level concept, p in this
example.

Structured Versus Unstructured
Induction

On two chess end-game domains, Shapiro (1987)
showed that structured induction could generate
more compact trees from fewer examples

compared with an unstructured approach. To
quantify this improvement, Shapiro made an
analysis based on Michie’s finite message
information theory (Michie 1982). This showed
that on one of the domains, the information gain
contributed by the structured induction approach
over learning unstructured trees from the same set
of examples was 84 %. Essentially, this is because
the structure devised by the domain expert
in collaboration with the knowledge engineer
provides a context for each of the induction
tasks required. Since within this context only a
subset of the complete attribute set is used to
specify a sub-concept, it suffices to obtain only
sufficient examples to learn a model for that
sub-concept. However, without the benefit of
such contextual restrictions the task of learning
a complete solution can require considerably
more examples. Shapiro’s analysis is an attempt
to quantify the relative increase in information
per example in structured versus unstructured
induction.

Related Work

While induction can bypass the knowledge ac-
quisition bottleneck, in structured induction the
process of acquiring the structure in collabora-
tion with a domain expert can become a new
bottleneck. In an attempt to avoid this, a num-
ber of researchers have attempted to develop

http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_941

1204 Structured Induction

methods whereby the structure, as well as the
sub-concept models can be learned automati-
cally.

Muggleton (1987) introduced � inverse reso-
lution as an approach to learning structured � rule
sets in a system called Duce. As part of this
process, a domain expert is required to provide
names for new sub-concepts or predicates that
are proposed by the learning algorithm. A domain
expert is also required to confirm learned rules.
Both these roles are similar to those required
of the expert in constructive induction, but the
key difference is that the learning algorithm is
now the source of both the structure and the
rules. Duce was applied to one of the chess end-
game domains used in Shapiro’s study (Shapiro
1987) and found a solution that was less compact,
but still accepted as comprehensible by a chess
expert.

The Duce system searches for commonly
occurring subsets of attribute-value pairs within
rules, and uses these to construct new sub-
concept definitions. Many approaches have been
developed using related methods to learn new
sub-concepts in the context of � decision tree or
� rule learning; some examples include Pagallo
and Haussler (1990), Zheng (1995), and Zhang
and Honavar (2003). Gaines (1996) proposed
EDAGs (exception directed acyclic graphs) as
a generalization of both � decision trees and
rules with exceptions, and reported EDAG
representations of chess end-game � classifiers
that were more comprehensible than either rules
or � decision trees. Zupan et al. (1999) developed
a system named HINT designed to learn a model
represented as a concept hierarchy based on
methods of function decomposition. Inverse
resolution as used in Duce has been generalized
to first-order logic representations in the field of
inductive logic programming. In this framework,
the construction of new intermediate concepts
is referred to as � predicate invention, but to
date this remains a largely open problem. More
recently, much of the interest in representation
change has focused on approaches like support
vector machines, where the so-called kernel trick
enables the use of implicit � feature construction
(Shawe-Taylor and Cristianini 2004).

Cross-References

�Classifier Systems
�Constructive Induction
�Decision Tree
� Feature Construction in Text Mining
� Predicate Invention
�Rule Learning

Recommended Reading

Dahl OJ, Dijkstra EW, Hoare CAR (eds) (1972)
Structured programming. Academic Press,
London

Feigenbaum EA (1977) The art of artificial intelli-
gence: themes and case studies of knowledge en-
gineering. In: Reddy R (ed) Proceedings of the
fifth international conference on artificial intelli-
gence (IJCAI’77). William Kaufmann, Los Altos,
pp 1014–1029

Gaines B (1996) Transforming rules and trees into
comprehensible knowledge structures. In: Fayyad
U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R
(eds) Advances in knowledge discovery and data
mining. MIT Press, Cambridge, MA, pp 205–226

Michie D (1982) Measuring the knowledge-
content of expert programs. Bull Inst Math
Appl 18(11/12):216–220

Muggleton S (1987) Duce, an oracle-based approach
to constructive induction. In: IJCAI’87. Morgan
Kaufmann, Los Altos, pp 287–292

Pagallo G, Haussler D (1990) Boolean feature discov-
ery in empirical learning. Mach Learn 5:71–99

Quinlan JR (1983) Learning efficient classification
procedures and their application to chess end games.
In: Michalski R, Carbonnel J, Mitchell T (eds) Ma-
chine learning: an artificial intelligence approach.
Tioga, Palo Alto, pp 464–482

Razzak MA, Hassan T, Pettipher R (1984) Extran-7: a
Fortran-based software package for building expert
systems. In: Bramer MA (ed) Research and devel-
opment in expert systems. Cambridge University
Press, Cambridge, pp 23–30

Shapiro A, Niblett T (1982) Automatic induction of
classification rules for a chess endgame. In: Clarke
MRB (ed) Advances in computer chess, vol 3.
Pergamon Press, Oxford, pp 73–91

Shapiro AD (1987) Structured induction in expert sys-
tems. Turing Institute Press with Addison Wesley,
Wokingham

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge

Zhang J, Honavar V (2003) Learning decision tree
classifiers from attribute value taxonomies and par-
tially specified data. In: ICML-2003: Proceedings of

http://dx.doi.org/10.1007/978-1-4899-7687-1_418
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_655
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_165
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_655
http://dx.doi.org/10.1007/978-1-4899-7687-1_744

Sublinear Clustering 1205

S

the twentieth international conference on machine
learning. AAAI Press, Menlo Park

Zheng Z (1995) Constructing nominal X-of-N at-
tributes. In: Proceedings of the fourteenth Interna-
tional joint conference on artificial intelligence (IJ-
CAI’95). Morgan Kaufmann, Los Altos, pp 1064–
1070

Zupan B, Bohanec M, Demsar J, Bratko I (1999)
Learning by discovering concept hierarchies. Artif
Intell 109:211–242

Subgroup Discovery

Definition

Subgroup discovery (Klösgen 1996; Lavrač et al.
2004) is an area of � supervised descriptive rule
induction. The subgroup discovery task is defined
as given a population of individuals and a prop-
erty of those individuals that we are interested
in, find population subgroups that are statistically
“most interesting,” for example, are as large as
possible and have the most unusual statistical
(distributional) characteristics with respect to the
property of interest.

Recommended Reading

Klösgen W (1996) Explora: a multipattern and multi-
strategy discovery assistant. In: Advances in knowl-
edge discovery and data mining. MIT Press, Cam-
bridge, pp 249–271

Lavrač N, Kavšek B, Flach PA, Todorovski L (2004)
Subgroup discovery with CN2-SD. J Mach Learn
Res 5:153–188

Sublinear Clustering

Artur Czumaj1 and Christian Sohler2

1University of Warwick, Coventry, UK
2University of Paderborn, Paderborn, Germany

Definition

Sublinear clustering describes the process of
clustering a given set of input objects using

only a small subset of the input set, which
is typically selected by a random process. A
solution computed by a sublinear clustering
algorithm is an implicit description of the
clustering (rather than a partition of the input
objects), for example in the form of cluster
centers. Sublinear clustering is usually applied
when the input set is too large to be processed
with standard clustering algorithms.

Motivation and Background

�Clustering is the process of partitioning a set of
objects into subsets of similar objects. In machine
learning, it is, for example, used in unsupervised
learning to fit input data to a density model. In
many modern applications of clustering, the input
sets consist of billions of objects to be clustered.
Typical examples include web search, analysis
of web traffic, and spam detection. Therefore,
even though many relatively efficient clustering
algorithms are known, they are often too slow to
cluster such huge inputs.

Since in some applications it is even not possi-
ble to cluster the entire input set, a new approach
is needed to cope with very large data sets. The
approach used in many different areas of science
and engineering in this context is to sample a
subset of the data and to analyze this sample
instead of the whole data set. This is also the un-
derlying method used in sublinear clustering. The
main challenge and innovation in this area lies in
the qualitative analysis of random sampling (in
the form of approximation guarantees) and the
design of non uniform sampling strategies that
approximate the input set provably better than
uniform random sampling.

Structure of the Learning System

In sublinear clustering a large input set of objects
is to be partitioned into subsets of similar objects.
Usually, this input is a point set P either in
the Euclidean space or in the metric space. The
clustering problem is specified by an objective
function that determines the quality or cost of

http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_943

1206 Sublinear Clustering

every possible clustering. The goal is to find
a clustering of minimum cost/maximum qual-
ity. For example, given a set P of points in
the Euclidean space the objective of � k-means
clustering is to find a set C of k centers that
minimizes

P
p2P .d.p; C //

2, where d.p, C/ de-
notes the distance of p to the nearest center
from C . Since usually the clustering problems
are computationally hard (NP-hard), one typi-
cally considers approximate solutions: instead of
finding a clustering that optimizes the cost of the
solution, one aims at a solution whose cost is
close to the optimal one.

In sublinear algorithms a solution is computed
for a small representative subset of objects, for
example a random sample. The solution is rep-
resented implicitly, for example, in the form of
cluster centers and it can be easily extended to the
whole input point set. The quality of the output
is analyzed with respect to the original point
set. The challenge is to design and analyzefast
(sublinear-time) algorithms that select a subset of
objects that very well represent the entire input,
such that the solution computed for this subset
will also be a good solution for the original point
set. This can be achieved by uniform and non
uniform random sampling and the computation
of core-sets, i.e., small weighted subsets of the
input that approximate the input with respect to a
clustering objective function.

Theory/Solution

Clustering Problems
For any point p and any set Q in a metric space
(X , d/, let d.p, Q/ D minq2Q d.p, q/. A point
setP is weighted if there is a function w assigning
a positive weight to each point in P .

Radius k-Clustering: Given a weighted set P
of points in a metric space (X , d/, find a set C �
P of k centers minimizing maxp2P d.p; C /.

Diameter k-Clustering: Given a weighted set
P of points in a metric space (X , d/, find a
partition of P into k subsets P1, . . . , Pk , such
that maxkiD1 maxp;q2Pi

d.p; q/ is minimized.

k-Median: Given a weighted set P of points
in a metric space (X , d/, find a set C � P

of k centers that minimizes median(P , C/ DP
p2P w.p/ � d.p, C/.

k-Means: Given a weighted set of points P
in a metric space (X , d/, find a set C � P

of k centers that minimizes mean(P , C/ DP
p2P w.p/ � .d.p; C //2.

Random Sampling and Sublinear-Time Algo-
rithms
Random sampling is perhaps the most natural
approach to design sublinear-time algorithms for
clustering. For the input set P , random sampling
algorithm follows the following scheme:

1. Pick a random sample S of points
2. Run an algorithm (possibly an approxi-

mation one) for (given kind of) clustering
for S

3. Return the clustering induced by the so-
lution for S

The running time and the quality of this algo-
rithm depends on the size of the random sample
S and of the running time and the quality of the
algorithm for clustering of S . Because almost all
interesting clustering problems are computation-
ally intractable (NP-hard), usually the second
step of the sampling scheme uses an approxima-
tion algorithm. (An algorithm for a minimization
problem is called a �-approximation if it always
returns a solution whose cost is at most � times
the optimum.)

While random sampling approach gives very
simple algorithms, depending on the clustering
problem at hand, it often finds a clustering of
poor quality and it is usually difficult to analyze.
Indeed, it is easy to see that random sampling
has some serious limitations to obtain clustering
of good quality. Even the standard assumption
that the input is in metric space is not sufficient
to obtain good quality of clustering because of
the small clusters which are “hidden” for random
sampling approach. (If there is a cluster of size
o.jP j=jS j) then with high probability the random
sample set S will contain no point from that

http://dx.doi.org/10.1007/978-1-4899-7687-1_431

Sublinear Clustering 1207

S

cluster.) Therefore, another important parameters
used in the analysis is the diameter of the metric
space , which is D maxp;q2P d.p; q/.

Quality of Uniformly Random Sampling: The
quality of random sampling for three basic clus-
tering problems (k-means, k-median, and min-
sum k-clustering) have been analyzed in Ben-
David (2004), Czumaj and Sohler (2007), and
Mishra et al. (2001). In these papers, generic
methods of analyzing uniform random sampling
have been obtained. These results assume that the
input point sets are in a metric space and are
unweighted (i.e., when the weight function w is
always 1).

Theorem 1 Let 	 > 0 be an approximation
parameter. Suppose that an ˛-approximation al-
gorithm for the k-median problem in a metric
space is used in step (2) of the uniform sampling,
where ˛ � 1 (Ben-David 2004; Czumaj and
Sohler 2007; Mishra et al. 2001). If we choose
S to be of size at least

c˛.K C

	
.˛ C k ln.k˛=	///

for an appropriate constant c, then the uniform
sampling algorithm returns a clustering C �

(of S) such that with probability at least
0.99 the normalized cost of clustering for S
satisfies

median.S; C �/

jS j
�

2.˛ C 0:01/OPT .P /

jP j
C 	;

where OPT(S) = minC median(P,C) is the mini-
mum cost of a solution for k-median for P.

Similar results can be shown for the k-means
problem, and also for min-sum k-clustering (cf.
Czumaj and Sohler 2007). For example, for k-
means, with a sample S of size at least c˛.k C
.2=	/.˛ C k ln.k2˛=	/// , with probability
at least 0. 99 the normalized cost of k-means
clustering for S satisfy

mean.S; C �/

jS j2
�

4.˛ C 0:01OPT .P //

jP j2
C 	;

where OPT(S/ = minC mean(P , C/ is the mini-
mum cost of a solution for k-means for P .

Improvements of these bounds for the case
when the input consists of points in Euclidean
space are also discussed in Mishra et al. (2001)
and Czumaj and Sohler (2007) discuss also. For
example, for k-median, if one takes S of size at
least c˛.kCk ln.=	/=	/ , then with probabil-
ity at least 0.99 the normalized cost of k-median
clustering for S satisfies

median.S; C �/

jS j
�
.˛ C 0:001/OPT .P /

jP j
C 	;

and hence the approximation ratio is better than
that in Theorem 1 by factor of 2.

The results stated in Czumaj and Sohler
(2007) allow to parameterize the constants 0.99
and 0.01 in the claims above.

Property Testing of the Quality of Clustering:
Since most of the clustering problems are com-
putationally quite expensive, in some situations it
might be interesting not to find a clustering (or
its succinct representation), but just to test if the
input set has a good clustering.

Alon et al. (2003) introduced the notion of
approximate testing of good clustering. A point
set P is c-clusterable if it has a clustering of the
cost at most c, that is, OPT(P) � c. To formalize
the notion of having no good clustering, one says
a point set is "-far from .1 C ˇ/c-clusterable, if
more than an "-fraction of the points in P must
be removed (or moved) to make the input set
.1 C ˇ/c-clusterable. With these definitions, the
goal is to design fast algorithms that accept the
input point sets P , which are c-clusterable, and
reject with probability at least 2/3 inputs are "-far
from .1 C ˇ/c-clusterable. If neither holds, then
the algorithms may either accept or reject. The
bounds for the testing algorithms are phrased in
terms of sample complexity, that is, the number
of sampled input points which are considered by
the algorithm (e.g., by using random sampling).

Alon et al. (2003) consider two classical clus-
tering problems in this setting: radius and di-
ameter k-clusterings. If the inputs are drawn
from an arbitrary metric space, then they show

1208 Sublinear Clustering

that to distinguish between input points sets that
are c-clusterable and are "-far from .1 C ˇ/c-
clusterable with ˇ < 1, the sample complex-
ity must be at least �.

p
jP j=	/. However, to

distinguish between inputs that are c-clusterable
and are "-far from 2c-clusterable, the sample
complexity is only O.

p
k=	/.

A more interesting situation is for the input
points drawn from the Euclidean d -dimensional
space. In that case, even a constant-time algo-
rithms are possible.

Theorem 2 For the radius k-clustering, one can
distinguish between points sets in Rd that are
c-clusterable from those "-far from c-clusterable
with the sample complexity QO.dk=	/ (Alon et al.
2003) (The QO -notation ignores logarithms in the
largest occurrence of a variable; QO.f .n// D
O.f .n/ � .logf .n//o.1//.)

Furthermore, for any ˇ > 0, one can
distinguish between points sets in Rd that
are c-clusterable from those "-far from .1 C
ˇ/c-clusterable with the sample complexity
QO.k2=.ˇ2	//.

Theorem 3 For the diameter k-clustering, one
can distinguish between points sets in Rd

that are c-clusterable from those "-far from
.1C ˇ/c-clusterable with the sample complexity
QO.k2d.2=ˇ/2d=	/ (Alon et al. 2003).

Core-Sets: Sublinear Space
Representations with Applications
A core-set is a small weighted set of points S that
provably approximates another point set P with
respect to a given clustering problem (Bǎdoiu
et al. 2002). The precise definition of a core-
set depends on the clustering objective function
and the notion of approximation. For example, a
coreset for the k-median problem can be defined
as follows:

Definition 4 A weighted point set S is called
"-coreset for a point set P for the k-median
problem, if for every set C of k centers, we have
.1�	/ � median .P; C / �median .S; C / � .1C
	/ � median .P; C / (Har-Peled and Mazumdar
2004).

A core-set as defined above is also sometimes
called a strong core-set, because the cost of the
objective function is approximately preserved for
any set of cluster centers. In some cases it can
be helpful to only require a weaker notion of
approximation. For example, for some applica-
tions it is sufficient that the cost is preserved
for a certain discrete set of candidate solutions.
Such a core-set is usually called a weak core-set.
In high-dimensional applications it is sometimes
sufficient that the solution is contained in the
low-dimensional subspace spanned by the core-
set points.

Constructing a Core-Set: There are determin-
istic and randomized constructions for core-sets
of an unweighted set P of n points in the Rd .
Deterministic core-set constructions are usually
based on the movement paradigm. The input
points are moved to a set of few locations such
that the overall movement is at most " times
the cost of an optimal solution. Then the set
of points at the same location are replaced by
a single point whose weight equals the number
of these points. Since for the k-median problem
the cost of any solution changes by at most the
overall movement, this immediately implies that
the constructed weighted set is an "-core-set. For
other similar problems more involved arguments
can be used to prove the core-set property. Based
on the movement paradigm, for k-median a core-
set of size O.k logn=	d / can be constructed
efficiently (Har-Peled and Mazumdar 2004).

Randomized core-set constructions are based
on non uniform sampling. The challenge is to de-
fine a randomized process for which the resulting
weighted point set is with high probability a core-
set. Most randomized coreset constructions first
compute a bi-criteria approximation C 0. Then ev-
ery point is sampled with probability proportional
to its distance to the nearest center of C 0. A
point q is assigned a weight proportional to 1=pq ,
where pq is the probability that p is sampled. For
every fixed set C of k centers, the resulting sam-
ple is an unbiased estimator for median(P , C/.
If the sample set is large enough, it approximates
the cost of every possible set of k centers within a
factor of .1˙	/. The above approach can be used

Subsumption 1209

S

to obtain a weak core-set of size independent of
the size of the input point set and the dimension
of the input space (Feldman et al. 2007). A related
construction has been previously used to obtain a
strong core-set of size QO.k2 � d � logn=	2/. Both
constructions have constant success probability
that can be improved by increasing the size of the
core-set.

Applications Core-sets have been used to obtain
improved approximation algorithms for different
variants of clustering problems. Since the core-
sets are of sublinear size and they can be con-
structed in sublinear time, they can be used to
obtain sublinear-time approximation algorithms
for a number of clustering problems.

Another important application is clustering of
data streams. A data stream is a long sequence of
data that typically does not fit into main memory,
for example, a sequence of packet headers in IP
traffic monitoring. To analyze data streams we
need algorithms that extract information from a
stream without storing all of the observed data.
Therefore, in the data streaming model algo-
rithms are required to use logO

.1/
n bits of mem-

ory. For core-sets, a simple but rather general
technique is known, which turns a given construc-
tion of a strong core-set into a data streaming
algorithm, i.e., an algorithm that processes the
input points sequentially and uses only logO.1/

space (for constant k and) and computes a
(1 C)-approximation for the optimal set of
centers of the k-median clustering (Har-Peled
and Mazumdar 2004). Core-sets can also be used
to improve the running time and stability of
clustering algorithms like the k-means algorithm
(Frahling and Sohler 2006).

Recommended Reading

Alon N, Dar S, Parnas M, Ron D (2003) Testing of
clustering. SIAM J Discret Math 16(3):393–417

Bǎdoiu M, Har-Peled S, Indyk P (2002) Approximate
clustering via core-sets. In: Proceedings of the 34th
annual ACM symposium on theory of computing
(STOC), Montreal, pp 250–257

Ben-David S (2004) A framework for statistical clus-
tering with a constant time approximation algo-

rithms for k-median clustering. In: Proceedings
of the 17th annual conference on learning theory
(COLT), Banff, pp 415–426

Chen K (2006) On k-median clustering in high di-
mensions. In: Proceedings of the 17th annual ACM-
SIAM symposium on discrete algorithms (SODA),
Miami, pp 1177–1185

Czumaj A, Sohler C (2007) Sublinear-time approxima-
tion for clustering via random sampling. Random
Struct Algorithms 30(1–2):226–256

Feldman D, Monemizadeh M, Sohler C (2007) A
PTAS for k-means clustering based on weak core-
sets. In: Proceedings of the 23rd annual ACM
symposium on computational geometry (SoCG),
Gyeongju, pp 11–18

Frahling G, Sohler C (2006) A fast k-means imple-
mentation using coresets. In: Proceedings of the
22nd annual ACM symposium on computational
geometry (SoCG), Sedona, pp 135–143

Har-Peled S, Kushal A (2005) Smaller coresets for k-
median and k-means clustering. In: Proceedings of
the 21st annual ACM symposium on computational
geometry (SoCG), Pisa, pp 126–134

Har-Peled S, Mazumdar S (2004) On coresets for k-
means and k-median clustering. In: Proceedings
of the 36th annual ACM symposium on theory of
computing (STOC), Chicago, pp 291–300

Meyerson A, O’Callaghan L, Plotkin S (2004) A k-
median algorithm with running time independent of
data size. Mach Learn 56(1–3):61–87

Mishra N, Oblinger D, Pitt L (2001) Sublinear time
approximate clustering. In: Proceedings of the 12th
annual ACM-SIAM symposium on discrete algo-
rithms (SODA), Washington, DC, pp 439–447

Subspace Clustering

� Projective Clustering

Subsumption

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Subsumption provides a syntactic notion of gen-
erality. Generality can simply be defined in terms
of the cover of a concept. That is, a concept, C ,
is more general than a concept, C 0, if C covers

http://dx.doi.org/10.1007/978-1-4899-7687-1_676

1210 Supersmoothing

at least as many examples as C 0 (see �Learning
as Search). However, this does not tell us how to
determine, from their syntax, if one sentence in
a concept description language is more general
than another. When we define a subsumption re-
lation for a language, we provide a syntactic ana-
logue of generality (Lavrač and Džeroski 1994).
For example, � -subsumption (Plotkin 1970) is the
basis for constructing generalization lattices in
� inductive logic programming (Shapiro 1981).
See �Generality of Logic for a definition of
� -subsumption. An example of defining a sub-
sumption relation for a domain specific language
is in the LEX program (Mitchell et al. 1983),
where an ordering on mathematical expressions is
given.

Cross-References

�Generalization
� Induction
�Learning as Search
�Logic of Generality

Recommended Reading

Lavrač N, Džeroski S (1994) Inductive logic program-
ming: techniques and applications. Ellis Horwood,
Chichester

Mitchell TM, Utgoff PE, Banerji RB (1983) Learn-
ing by experimentation: acquiring and refining
problem-solving heuristics. In: Michalski RS, Car-
bonell JG, Mitchell TM (eds) Machine learning: an
artificial intelligence approach. Tioga, Palo Alto

Plotkin GD (1970) A note on inductive generalization.
In: Meltzer B, Michie D (eds) Machine intelli-
gence, vol 5. Edinburgh University Press, Edin-
burgh, pp 153–163

Shapiro EY (1981) An algorithm that infers theories
from facts. In: Proceedings of the seventh inter-
national joint conference on artificial intelligence,
Vancouver. Morgan Kaufmann, Los Altos, pp 446–
451

Supersmoothing

�Local Distance Metric Adaptation
�Locally Weighted Regression for Control

Supervised Descriptive Rule
Induction

Petra Kralj Novak1, Nada Lavrač1;2, and
Geoffrey I. Webb3

1Department of Knowledge Technologies, Jožef
Stefan Institute, Ljubljana, Slovenia
2University of Nova Gorica, Nova Gorica,
Slovenia
3Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

SDRI

Definition

Supervised descriptive rule induction (SDRI) is
a machine learning task in which individual pat-
terns in the form of rules (see � classification
rule) intended for interpretation are induced from
data, labeled by a predefined property of interest.
In contrast to standard � supervised rule induc-
tion, which aims at learning a set of rules defin-
ing a classification/prediction model, the goal of
SDRI is to induce individual descriptive patterns.
In this respect, SDRI is similar to � association
rule discovery, but the consequents of the rules
are restricted to a single variable – the property
of interest – and, except for the discrete target
attribute, the data is not necessarily assumed to
be discrete.

Supervised descriptive rule induction assumes
a set of training examples, described by attributes
and their values and a selected attribute of interest
(called the target attribute). Supervised descrip-
tive rule induction induces rules that may each be
interpreted independently of the others. Each rule
is a local model, covering a subset of training ex-
amples, that captures a local relationship between
the target attribute and the other attributes.

Induced descriptive rules are mainly aimed
at human interpretation. More specifically, the
purposes of supervised descriptive rule induction
are to allow the user to gain insights into the data

http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_484
http://dx.doi.org/10.1007/978-1-4899-7687-1_493
http://dx.doi.org/10.1007/978-1-4899-7687-1_100418
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_38

Supervised Descriptive Rule Induction 1211

S

domain and to better understand the phenomena
underlying the data.

Motivation and Background

Symbolic data analysis techniques aim at discov-
ering comprehensible patterns or models in data.
They can be divided into techniques for predic-
tive induction, where models, typically induced
from class-labeled data, are used to predict the
class value of previously unseen examples, and
descriptive induction, where the aim is to find
comprehensible patterns, typically induced from
unlabeled data. Until recently, these techniques
have been investigated by two different research
communities: predictive induction mainly by the
machine learning community and descriptive in-
duction mainly by the data mining community.

Data mining tasks where the goal is to find
comprehensible patterns from labeled data have
been addressed by both the machine learning and
the data mining community independently. The
data mining community, using the � association
rule learning perspective, adapted association
rule learners like �Apriori (Agrawal et al. 1996)
to perform tasks on labeled data, like class asso-
ciation rule learning (Liu et al. 1998; Fürnkranz
et al. 2012), as well as � contrast set mining (Bay
and Pazzani 2001) and � emerging pattern min-
ing (Dong and Li 1999). On the other hand, the
machine learning community, which traditionally
focused on the induction of � rule sets from
labeled data for the purposes of classification,
turned to building individual rules for exploratory
data analysis and interpretation. This is the goal
of the task named � subgroup discovery (Wrobel
1997). These are the main areas of supervised
descriptive rule induction. All deal with finding
comprehensible rules from class-labeled data.
However, the methods used and the interpretation
of the results differ slightly from approach
to approach. Other related approaches include
change mining, mining of closed sets for labeled
data, exception rule mining, bump hunting,
quantitative association rules, and impact rules.
See Kralj Novak et al. (2009) for a more detailed
survey of supervised descriptive rule induction.

Structure of the Learning System

Supervised descriptive rule induction assumes
that there is data with the property of interest de-
fined by the user. Let us illustrate supervised de-
scriptive rule induction using data from Table 1,
a very small artificial sample data set, adapted
from Ross Quinlan (1986), which contains the
results of a survey on 14 individuals, concerning
the approval or disproval of an issue analyzed
in the survey. Each individual is characterized
by four attributes that encode rudimentary infor-
mation about the sociodemographic background.
The last column (Approved) is the designated
property of interest, encoding whether the indi-
vidual approved or disproved the issue. Unlike
predictive induction, where the aim is to find a
predictive model, the goal of supervised descrip-
tive rule induction is to find local patterns in the
form of individual rules describing individuals
that are likely to approve or disprove the issue,
based on the four demographic characteristics.

Figure 1 shows six descriptive rules, found for
the sample data using the Magnum Opus (Webb
1995) rule learning software. These rules were
found using the default settings except that the
critical value for the statistical test was relaxed.
This set of descriptive rules differs from a typical
predictive rule set in several ways. The first rule

Supervised Descriptive Rule Induction, Table 1
A sample database

Education Marital status Sex Has children Approved

Primary Single Male No No

Primary Single Male Yes No

Primary Married Male No Yes

University Divorced Female No Yes

University Married Female Yes Yes

Secondary Single Male No No

University Single Female No Yes

Secondary Divorced Female No Yes

Secondary Single Female Yes Yes

Secondary Married Male Yes Yes

Primary Married Female No Yes

Secondary Divorced Male Yes No

University Divorced Female Yes No

Secondary Divorced Male No Yes

http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_173
http://dx.doi.org/10.1007/978-1-4899-7687-1_250
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_797

1212 Supervised Descriptive Rule Induction

MaritalStatus=single AND Sex=male → Approved=no
Sex=male → Approved=no
Sex=female → Approved=yes
MaritalStatus=married → Approved=yes
MaritalStatus=divorced AND HasChildren=yes → Approved=no
MaritalStatus=single Approved=no

Supervised Descriptive Rule Induction, Fig. 1 Selected descriptive rules, describing individual patterns in the data
of Table 1

is redundant with respect to the second. The first
rule is included as a strong pattern (all three sin-
gle males do not approve), whereas the second is
weaker but more general (four out of seven males
do not approve, which is not highly predictive,
but accounts for four out of all five respondents
who do not approve). Most predictive systems
would include only one of these rules, but either
or both of them may be of interest to someone
trying to understand the data, depending on the
specific application. This particular approach to
descriptive pattern discovery does not attempt
to guess which of the more specific or more
general patterns will be more useful to the end
user. Another difference between predictive and
descriptive rules is that the predictive approach
often includes rules for the sake of completeness,
while some descriptive approaches make no at-
tempt at completeness, as they assess each pattern
on its individual merits.

Exactly which rules will be induced by a
supervised descriptive rule induction algorithm
depends on the task definition, the selected al-
gorithm, as well as the user-defined constraints
concerning minimal rule support, precision, etc.
Different learning approaches and heuristics have
been proposed to induce supervised descriptive
rules.

Applications

Applications of supervised descriptive rule induc-
tion are widely spread. See Kralj Novak et al.
(2009) for a detailed survey.

Subgroup discovery has been used in numer-
ous real-life applications Herrera et al. (2011).
Medical applications include the analysis of coro-

nary heart disease, brain ischemia data analy-
sis, the analysis of cervical cancer, and psychi-
atric emergency, as well as profiling examiners
for sonographic examinations. Spatial subgroup
mining applications include mining of census
data, mining of vegetation data and mining of
demographic data. There are also applications in
marketing, traffic accidents, production control,
election analysis, and social data.

�Contrast set mining has been used with retail
sales data and for designing customized insur-
ance programs. It has also been used in medical
applications to identify patterns in synchrotron x-
ray data that distinguish tissue samples of differ-
ent forms of cancerous tumor and for distinguish-
ing between groups of brain ischemia patients.

�Emerging pattern mining has been mainly
applied to the field of bioinformatics, more
specifically to microarray data analysis. For
example, an interpretable classifier based on
simple rules that is competitive to the state
of the art black-box classifiers on the acute
lymphoblastic leukemia (ALL) microarray data
set was built from emerging patterns. Another
application was about finding groups of genes by
emerging patterns in a ALL/AML data set and
a colon tumor data set. Emerging patterns were
also used together with the unexpected change
approach and the added/perished rule to mine
customer behavior.

Future Directions

A direction for further research is to decompose
SDRI algorithms and preprocessing and eval-
uation methods into basic components and to
reimplement them as connectable web services,

http://dx.doi.org/10.1007/978-1-4899-7687-1_173
http://dx.doi.org/10.1007/978-1-4899-7687-1_250

Supervised Learning 1213

S

which include the definition of interfaces between
SDRI services. For instance, this can include
the adaptation and implementation of subgroup
discovery techniques to solving open problems
in the area of contrast set mining and emerging
patterns. This would allow for the improvement
of algorithms due to the cross-fertilization of
ideas from different SDRI subareas.

Another direction for further research con-
cerns complex data types and the use of back-
ground knowledge. The SDRI attempts in this di-
rection include relational subgroup discovery ap-
proaches like algorithms Midos (Wrobel 2001),
RSD (relational subgroup discovery) (Železný
and Lavrač 2006), and SubgroupMiner (Klösgen
and May 2002), which is designed for spatial
data mining in relational space databases. When
ontologies are used as background knowledge
to define the hypothesis search space and data
are used to constrain and guide the hypothesis
search and evolution, and this is called semantic
subgroup discovery (Vavpetič and Lavrač 2013).

Cross-References

�Apriori Algorithm
�Association Rule
�Classification Rule
�Contrast Set Mining
�Emerging Patterns
�Rule Set
� Subgroup Discovery
� Supervised Learning

Recommended Reading

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. Advances in knowledge discovery and data
mining. AAAI Press, Menlo Park, pp 307–328

Bay SD, Pazzani MJ (2001) Detecting group differ-
ences: mining contrast sets. Data Min Knowl Discov
5(3):213–246

Dong G, Li J (1999) Efficient mining of emerging
patterns: discovering trends and differences. In: Pro-
ceedings of the 5th ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD-99), pp 43–52

Fürnkranz J, Gamberger D, Lavrač N (2012) Founda-
tions of rule learning. Springer, Heidelberg

Herrera F, Carmona C, Gonzlez P, del Jesus M (2011)
An overview on subgroup discovery: foundations
and applications. Knowl Info Syst 29(3):495–525

Klösgen W, May M (2002) Spatial subgroup mining
integrated in an object-relational spatial database.
In: Proceedings of the 6th European conference on
principles and practice of knowledge discovery in
databases (PKDD-02), pp 275–286

Kralj Novak P, Lavrač N, Webb GI (2009) Supervised
descriptive rule discovery: a unifying survey
of contrast set, emerging pattern and subgroup
mining. J Mach Learn Res 10:377–403. http://www.
jmlr.org/papers/volume10/kralj-novak09a/kralj-
novak09a.pdf

Liu B, Hsu W, Ma Y (1998) Integrating classification
and association rule mining. In: Proceedings of the
4th international conference on knowledge discov-
ery and data mining (KDD-98), pp 80–86

Ross Quinlan J (1986) Induction of decision trees.
Mach Learn 1(1):81–106

Vavpetič A, Lavrač N (2013) Semantic subgroup dis-
covery systems and workflows in the SDM-toolkit.
Comput J 56(3):304–320

Webb GI (1995) OPUS: an efficient admissible algo-
rithm for unordered search. J Artif Intell Res 3:431–
465

Wrobel S (1997) An algorithm for multi-relational
discovery of subgroups. In: Proceedings of the 1st
European conference on principles of data mining
and knowledge discovery (PKDD-97), pp 78–87

Wrobel S (2001) Inductive logic programming for
knowledge discovery in databases. In: Džeroski S,
Lavrač N (eds) Relational data mining, chap 4.
Springer, Berlin/New York, pp 74–101

Železný F, Lavrač N (2006) Propositionalization-based
relational subgroup discovery with RSD. Mach
Learn 62:33–63

Supervised Learning

Definition

Supervised learning refers to any machine
learning process that learns a function from an
input type to an output type using data comprising
examples that have both input and output values.
Two typical examples of supervised learning
are � classification learning and � regression.
In these cases, the output types are respectively
categorical (the classes) and numeric. Supervised
learning stands in contrast to � unsupervised
learning, which seeks to learn structure in

http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_173
http://dx.doi.org/10.1007/978-1-4899-7687-1_250
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_797
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://www.jmlr.org/papers/volume10/kralj-novak09a/kralj-novak09a.pdf
http://www.jmlr.org/papers/volume10/kralj-novak09a/kralj-novak09a.pdf
http://www.jmlr.org/papers/volume10/kralj-novak09a/kralj-novak09a.pdf
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_976

1214 Supervised Learning on Text Data

data, and to � reinforcement learning in which
sequential decision-making policies are learned
from reward with no examples of “correct”
behavior.

Cross-References

�Reinforcement Learning
�Unsupervised Learning

Supervised Learning on Text Data

�Document Classification

Support Vector Machines

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Support vector machines (SVMs) are a class of
linear algorithms which can be used for clas-
sification, regression, density estimation, nov-
elty detection, etc. In the simplest case of two-
class classification, SVMs find a hyperplane
that separates the two classes of data with
as wide a margin as possible. This leads to
good generalization accuracy on unseen data
and supports specialized optimization meth-
ods that allow SVM to learn from a large
amount of data.

Motivation and Background

Over the past decade, maximum margin models
especially SVMs have become popular in ma-
chine learning. This technique was developed
in three major steps. First, assuming that the

two classes of training examples can be sepa-
rated by a hyperplane, Vapnik and Lerner pro-
posed in 1963 that the optimal hyperplane is
the one that separates the training examples with
the widest margin. From the 1960s to 1990s,
Vapnik and Chervonenkis developed the Vapnik-
Chervonenkis theory, which justifies the maxi-
mum margin principle from a statistical point of
view. Similar algorithms and optimization tech-
niques were proposed by Mangasarian in (1965).

Second, Boser et al. (1992) incorporated
kernel function into the maximum margin
models, and their formulation is close to the
currently popular form of SVMs. Before that,
Wahba (1990) also discussed the use of kernels.
Kernels allow SVM to implicitly construct the
optimal hyperplane in the feature space, and
the resulting nonlinear model is important for
modeling real data.

Finally, in case the training examples are not
linearly separable, Cortes and Vapnik (1995)
showed that the soft margin can be applied,
allowing some examples to violate the margin
condition.

On the theoretical side, Shawe-Taylor et al.
(1998) gave the first rigorous statistical bound on
the generalization of hard-margin SVMs. Shawe-
Taylor and Cristianini (2000) gave statistical
bounds on the generalization of soft-margin
algorithms and for the regression case.

In reality, SVMs became popular thanks to its
significantly better empirical performance than
the neural networks. By incorporating transform
invariances, the SVMs developed at AT&T
achieved the highest accuracy on the MNIST
benchmark set (a handwritten digit recognition
problem). Joachims (1998) also showed clear
superiority of SVMs on text categorization.
Afterwards, SVMs have been shown effective
in many applications including computer vision,
natural language, bioinformatics, finance, etc.

Theory

SVM has a stronger mathematical basis than
some machine learning methods such as neural
networks and is closely related to some well-

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_75

Support Vector Machines 1215

S

established theories in statistics. As a linear
model, it not only tries to correctly classify the
training data but also maximizes the margin
for better generalization performance. This
formulation leads to a separating hyperplane
that depends only on the (usually small fraction
of) data points that lie on the margin, which
are called support vectors. Hence the whole
algorithm is called support vector machine.
In addition, since real-world data analysis
problems often involve nonlinear dependencies,
SVMs can be easily extended to model such
nonlinearity by means of positive semi-definite
kernels. Moreover, SVMs can be trained via
quadratic programming, which (a) makes
theoretical analysis easier and (b) provides much
convenience in designing efficient solvers that
scale for large datasets. Finally, when applied
to real-world data, SVMs often deliver state-
of-the-art performance in accuracy, flexibility,
robustness, and efficiency.

Optimal Hyperplane for Linearly Separable
Examples
Consider the training set f.xi ; yi /g

n
iD1 where xi 2

R
p is the input feature vector for the i -th example

and yi 2 f1;�1g is its corresponding label
indicating whether the example is positive (yi D
C1) or negative (yi D �1). To begin with,
we assume that the set of positive and negative
examples are linearly separable, i.e., there exists a
function f .x/ D hw; xiCb where w 2 R

p (called
the weight vector) and b 2 R (called bias) such
that

hw; xi i C b > 0 for yi D C1

hw; xi i C b < 0 for yi D �1:

We call hw; xi C b D 0 the decision hyper-
plane, and in fact, there can exist multiple hy-
perplanes that separate the positive and negative
examples; see Fig. 1. However, they are not cre-
ated equal. Associated with each such hyperplane
is a notion called margin, defined as the distance
between the hyperplane and the closest example.
SVM aims to find the particular hyperplane that
maximizes the margin.

Mathematically, it is easy to check that the dis-
tance from a point xi to a hyperplane hw; xiCb D
0 is kwk�1 jhw; xi i C bj. Therefore, SVM seeks
for the optimal w; b of the following optimization
problem:

maximize
w2Rp ; b2R

min
1�i�n

jhw; xi i C bj
kwk

; s:t:

�
hw; xi i C b > 0 if yi D C1
hw; xi i C b < 0 if yi D �1

8i :

It is clear that if .w; b/ is an optimal solution,
then .˛w; ˛b/ is also an optimal solution for
any ˛ > 0. Therefore, to fix the scale, we can

equivalently set the numerator of the objective
min1�i�n jhw; xi i C bj to 1 and minimize the
denominator kwk:

minimize
w2Rp ; b2R

kwk2 ; s:t:

�
hw; xi i C b > 1 if yi D C1
hw; xi i C b < �1 if yi D �1:

8i : (1)

This is a linearly constrained quadratic program,
which can be solved efficiently. Hence, it
becomes the most commonly used (primal)
form of SVM for the linearly separable
case.

Soft Margins
In practice, most, if not all, datasets are not
linearly separable, i.e., no w and b can satisfy
the constraints of the optimization problem (1).
In this case, we will allow some data points

1216 Support Vector Machines

H1

H2

Support Vector Machines, Fig. 1 Example of maxi-
mum margin separator. Both H1 and H2 correctly separate
the examples from the two classes. But H2 has a wider
margin than H1

to violate the margin condition and penalize it
accordingly. Mathematically, notice that the con-

1

1
– (

(

〈 〉

〈 〉

)

)

Support Vector Machines, Fig. 2 Graph of hinge loss

straints in (1) can be equivalently written as
yi .hw; xi i C b/ > 1. Now we introduce a new
set of nonnegative slack variables �i into the
constraints:

yi .hw; xi i C b/ > 1 � �i ;

and incorporate a penalty into the original objec-
tive to derive the soft-margin SVM:

minimize
w;b;�i

� kwk2 C
1

n

nX
iD1

�i s:t: yi .hw; xi i C b/ > 1 � �i ; and �i > 0 8i : (2)

� > 0 is a tradeoff factor. It is important
to note that �i can be written as �i D

max f0; 1 � yi .hw; xi i C b/g, which is called
hinge loss and is depicted in Fig. 2. This way, the
optimization problem can be reformulated into
an unconstrained non-smooth problem:

minimize
w2Rp ; b2R

�

2
kwk2

C
1

n

nX
iD1

max f0; 1 � yi .hw; xi i C b/g : (3)

Notice that max f0; 1 � yi .hw; xi i C b/g is also a
convex upper bound of ı.yi .hw; xi i C b/ > 0/,

where ı.x/ D 1 if x is true and 0 otherwise.
Therefore, the penalty we use is a convex up-
per bound of the average training error. When
the training set is actually separable, the soft-
margin problem (2) automatically recovers the
hard-margin problem (1) when � is sufficiently
large.

Dual Forms and Kernelization
As the constraints in the primal form (2) are not
convenient to handle, people have conventionally
resorted to the dual problem of (2). Following
the standard procedures, one can derive the La-
grangian dual

1

2�

X
i;j

yiyj˛i˛j
˝
xi ; xj

˛
�
X
i

˛i ; s:t: ˛i 2 Œ0; n
�1�; and

X
i

yi˛i D 0 : (4)

Support Vector Machines 1217

S

which is again a quadratic program but with much
simpler constraints: box constraints plus a single
linear equality constraint. To recover the primal
solution w� from the dual solution ˛�i , we have

w� D
nX
iD1

˛�i yixi ;

and the optimal bias b can be determined by using
the duality conditions.

The training examples can be divided into
three categories according to the value of ˛�i . If
˛�i D 0, it means the corresponding training ex-
ample does not affect the decision boundary, and
in fact it lies beyond the margin, i.e., yi .hw; xi iC
b/ > 1. If ˛�i 2 .0; n

�1/, then the training exam-
ple lies on the margin, i.e., yi .hw; xi iCb/D 1. If
˛�i D n

�1, it means the training example violates
the margin, i.e., yi .hw; xi i C b/ < 1. In the
latter two cases where ˛�i > 0, the i -th training
example is called a support vector.

In many applications, most ˛�i in the optimal
solution are 0, which gives a sparse solution. As
the final classifier depends only on those support
vectors, the whole algorithm is named support
vector machines.

From the dual problem (4), a key observation
can be drawn that the feature of the training
examples fxig influences training only via the
inner product

˝
xi ; xj

˛
. Therefore, we can redefine

the feature by mapping xi to a richer feature space
via �.xi / and then compute the inner product
there: k.xi ; xj / WD

˝
�.xi /; �.xj /

˛
. Furthermore,

one can even directly define k without explicitly
specifying �. This allows us to (a) implicitly
use a rich feature space whose dimension can
be infinitely high and (b) apply SVM to non-
Euclidean spaces as long as a kernel k.xi ; xj /
can be defined on it. Examples include strings
and graphs (Haussler 1999), which have been
widely applied in bioinformatics (Schölkopf et al.
2004). Mathematically, the objective (4) can be
kernelized into

1

2�

X
i;j

yiyj˛i˛jk.xi ; xj / �
X
i

˛i ; s:t: ˛i 2 Œ0; n
�1�; and

X
i

yi˛i D 0 : (5)

However, now the w cannot be expressed
just in terms of kernels because w� DPn
iD1 ˛

�
i yi�.xi /. Fortunately, when predicting

on a new example x, we again only require the
inner product and hence use kernel only:

hw�; xi D
nX
iD1

˛�i yi h�.xi /; �.x/i

D

nX
iD1

˛�i yik.xi ; x/ :

Commonly used kernels on R
n include poly-

nomial kernels .1C
˝
xi ; xj

˛
/d , Gaussian RBF ker-

nels exp.��
		xi � xj

		2
/, Laplace RBF kernels

exp.��
		xi � xj

		/, etc. Kernels on strings and
trees are usually based on convolution which re-
quires involved algorithms for efficient evaluation
(Haussler 1999; Borgwardt 2007). More details
can be found in the kernel section.

Optimization Techniques and Toolkits
The main challenge of optimization lies in scaling
for large datasets, i.e., n and p are large. Decom-
position methods based on the dual problem is
the first popularly used method for solving large-
scale SVMs. For example, sequential minimal
optimization (SMO) optimizes two dual vari-
ables ˛i ; ˛j analytically in each iteration (Platt
1999a). An SMO-type implementation is avail-
able in the LibSVM package http://www.csie.
ntu.edu.tw/�cjlin/libsvm. Another popular pack-
age using decomposition methods is the SVM-
light, available at http://svmlight.joachims.org.
Coordinate descent in the dual is also effective
and converges at linear rate. An implementa-
tion can be downloaded from http://www.csie.
ntu.edu.tw/�cjlin/liblinear.

Primal methods are also popular, most of
which are based on formulating the objective

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear

1218 Support Vector Machines

as a non-smooth objective function like (3).
An important type is the subgradient descent
method, which is similar to gradient descent
but uses a subgradient due to the non-smooth
objective. When the dataset is large, one can
further use a random subset of training examples
to efficiently compute the (approximate)
subgradient, and algorithms exist that guarantee
the convergence in probability. This is called
stochastic subgradient descent, and in practice, it
can often quickly find a reasonably good solution.
A package that implements this idea can be found
at http://leon.bottou.org/projects/sgd.

Finally, cutting plane and bundle methods are
also effective (Tsochantaridis et al. 2005; Smola
et al. 2007), and they are especially useful for
generalized SVMs with structured outputs. An
implementation is the bundle method for risk
minimization (BMRM), available for download
at http://users.rsise.anu.edu.au/�chteo/BMRM.
html.

Applications

The above description of SVM focused on binary
class classification. In fact, SVMs, or the ideas of
maximum margin and kernel, have been widely
used in many other learning problems such as
regression, ranking and ordinal regression, den-
sity estimation, novelty detection, quantile re-
gression, etc. Even in classification, SVM has
been extended to the case of multi-class, multi-
label, and structured output (Tsochantaridis et al.
2005; Taskar 2004).

For multi-class classification and structured
output classification where the possible label set
Y can be large, maximum margin machines can
be formulated by introducing a joint feature map
� on pairs of .xi ; y/ (y 2 Y). Letting Δ.yi ; y/

be the discrepancy between the true label yi and
the candidate label y, the primal form can be
written as

minimize
w;�i

�

2
kwk2 C

1

n

nX
iD1

�i ; s:t: hw; �.xi ; yi / � �.xi ; y/i � Δ.yi ; y/ � �i ; 8 i; y;

and the dual form is

minimize
˛i;y

1

2�

X
.i;y/;.i 0;y0/

˛i;y˛i 0;y0

˝
�.xi ; yi / � �.xi ; y/; �.xi 0 ; yi 0/ � �.xi 0 ; y

0/
˛
�
X
i;y

Δ.yi ; y/˛i;y

s:t: ˛i;y � 0; 8 i; yI
X
y

˛i;y D
1

n
; 8i:

Again kernelization is convenient, by simply re-
placing all the inner products h�.xi ; y/; �.xi 0 ; y0/i
with a joint kernel k..xi ; y/; .xi 0 ; y0//. Further
factorization using graphical models is possible;
see (Taskar 2004). Notice when Y D f1;�1g,
setting �.xi ; y/ D y�.xi / recovers the binary
SVM formulation. Effective methods to optimize
the dual objective include SMO, exponentiated
gradient descent, mirror descent, cutting plane,
or bundle methods.

In general, SVMs are not trained to output
the odds of class membership, although the
posterior probability is desired to enable post-
processing. Platt (1999b) proposed training an
SVM and then training the parameters of an
additional sigmoid function to map the SVM
outputs into probabilities. A more principled
approach is the relevance vector machine, which
has an identical functional form to the SVMs
and uses Bayesian inference to obtain sparse
solutions for probabilistic classification.

http://leon.bottou.org/projects/sgd
http://users.rsise.anu.edu.au/~chteo/BMRM.html
http://users.rsise.anu.edu.au/~chteo/BMRM.html

Support Vector Machines 1219

S

As mentioned above, the hinge loss used in
SVM is essentially a convex surrogate of the
misclassification loss, i.e., 1 if the current weight
w misclassifies the training example and 0 oth-
erwise. Minimizing the misclassification loss is
proved NP-hard, so for computational conve-
nience, continuous convex surrogates are used,
including hinge loss, exponential loss, and logis-
tic loss. Their statistical properties are studied by
Jordan et al. (2003). For hinge loss, it has the
significant merit of sparsity in the dual, which
leads to robustness and good generalization per-
formance.

SVMs have been widely applied in real-world
problems. In history, its first practical success
was gained in handwritten digit recognition. By
incorporating transform invariances, the SVMs
developed at AT&T achieved the highest accu-
racy on the MNIST benchmark set. It has also
been very effective in computer vision applica-
tions such as object recognition and detection.
With the special advantage in handling high-
dimensional data, SVMs have witnessed wide
application in bioinformatics such as microarray
processing (Schölkopf et al. 2004) and natural
language processing like named entity recogni-
tion, part-of-speech tagging, parsing, and chunk-
ing (Taskar 2004; Joachims 1998).

Cross-References

�Kernel Methods
�Radial Basis Function Networks

Recommended Reading

A comprehensive treatment of SVMs can be
found in Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004). Some
important recent developments of SVMs for
structured output are collected in Bakir et al.
(2007). As far as applications are concerned,
see Lampert (2009) for computer vision and
Schölkopf et al. (2004) for bioinformatics.
Finally, Vapnik (1998) provides the details on
statistical learning theory.

Bakir G, Hofmann T, Schölkopf B, Smola A, Taskar
B, Vishwanathan SVN (2007) Predicting structured
data. MIT Press, Cambridge

Borgwardt KM (2007) Graph kernels. Ph.D. thesis,
Ludwig-Maximilians-University, Munich

Boser B, Guyon I, Vapnik V (1992) A training algo-
rithm for optimal margin classifiers. In: Haussler
D (ed) Proceedings of annual conference on com-
putational learning theory, Pittsburgh. ACM Press,
pp 144–152

Cortes C, Vapnik V (1995) Support vector networks.
Mach Learn 20(3):273–297

Haussler D (1999) Convolution kernels on discrete
structures. Technical report UCS-CRL-99-10, UC
Santa Cruz

Joachims T (1998) Text categorization with support
vector machines: learning with many relevant fea-
tures. In: Proceedings of the European conference
on machine learning. Springer, Berlin, pp 137–142

Jordan MI, Bartlett PL, McAuliffe JD (2003) Convex-
ity, classification, and risk bounds. Technical report
638, UC Berkeley

Lampert CH (2009) Kernel methods in computer vi-
sion. Found Trends Comput Graph Vis 4(3): 193–
285

Mangasarian OL (1965) Linear and nonlinear separa-
tion of patterns by linear programming. Operations
Research 13:444–452

Platt JC (1999a) Fast training of support vector ma-
chines using sequential minimal optimization. In:
Advances in kernel methods—support vector learn-
ing. MIT Press, pp 185–208

Platt JC (1999b) Probabilities for sv machines. In:
Smola AJ, Bartlett PL, Schölkopf B, Schuurmans
D (eds) Advances in large margin classifiers. MIT
Press, Cambridge, MA, pp 61–74

Schölkopf B, Smola A (2002) Learning with kernels.
MIT Press, Cambridge, MA

Schölkopf B, Tsuda K, Vert J-P (2004) Kernel
methods in computational biology. MIT Press,
Cambridge, MA

Shawe-Taylor J, Bartlett PL, Williamson RC, An-
thony M (1998) Structural risk minimization over
data-dependent hierarchies. IEEE Trans Inf Theory
44(5):1926–1940

Shawe-Taylor J, Cristianini N (2000) Margin distri-
bution and soft margin. In: Smola AJ, Bartlett PL,
Schölkopf B, Schuurmans D (eds) Advances in large
margin classifiers. MIT Press, Cambridge, MA,
pp 349–358

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge, UK

Smola A, Vishwanathan SVN, Le Q (2007) Bundle
methods for machine learning. In: Koller D, Singer
Y (eds) Advances in neural information processing
systems, vol 20. MIT Press, Cambridge MA

Taskar B (2004) Learning structured prediction mod-
els: a large margin approach. Ph.D. thesis, Stanford
University

http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_698

1220 Swarm Intelligence

Tsochantaridis I, Joachims T, Hofmann T, Altun Y
(2005) Large margin methods for structured and
interdependent output variables. J Mach Learn Res
6:1453–1484

Vapnik V (1998) Statistical learning theory. John Wi-
ley, New York

Wahba G (1990) Spline models for observational data.
CBMS-NSF regional conference series in applied
mathematics, vol 59. SIAM, Philadelphia

Swarm Intelligence

Swarm intelligence is the discipline that studies
the collective behavior of systems composed
of many individuals that interact locally with
each other and with their environment and that
rely on forms of decentralized control and self-
organization. Examples of such systems are
colonies of ants and termites, schools of fish,
flocks of birds, herds of land animals, and also
some artifacts, including swarm robotic systems
and some computer programs for tackling
optimization problems such as � ant colony
optimization and � particle swarm optimization.

Symbolic Dynamic Programming

Scott Sanner1 and Kristian Kersting2;3

1Statistical Machine Learning Group, NICTA,
Canberra, ACT, Australia
2Technische Universität Dortmund, Dortmund,
Germany
3Knowledge Discovery, Fraunhofer IAIS, Sankt
Augustin, Germany

Synonyms

Dynamic programming for relational domains;
Relational dynamic programming; Relational
value iteration; SDP

Definition

Symbolic dynamic programming (SDP) is a gen-
eralization of the � dynamic programming tech-

nique for solving �Markov decision processes
(MDPs) that exploits the symbolic structure in
the solution of relational and first-order logical
MDPs through a lifted version of dynamic pro-
gramming.

Motivation and Background

Decision-theoretic planning aims at constructing
a policy for acting in an uncertain environment
that maximizes an agent’s expected utility along
a sequence of steps. For this task, Markov de-
cision processes (MDPs) have become the stan-
dard model. However, classical dynamic pro-
gramming algorithms for solving MDPs require
explicit state and action enumeration, which is of-
ten impractical: the number of states and actions
grows very quickly with the number of domain
objects and relations. In contrast, SDP algorithms
seek to avoid explicit state and action enumer-
ation through the symbolic representation of an
MDP and a corresponding symbolic derivation of
its solution, such as a value function. In essence,
SDP algorithms exploit the symbolic structure of
the MDP representation to construct a minimal
logical partition of the state space required to
make all necessary value distinctions.

Theory and Solution

Consider an agent acting in a simple variant of the
BoxWorld problem. There are several cities such
as London, Paris etc., trucks truck1, truck2 etc.,
and boxes box1, box2 etc. The agent can load a
box onto a truck or unload it and can drive a truck
from one city to another. Only when a particular
box, say box box1, is in a particular city, say
Paris, the agent receives a positive reward. The
agent’s learning task is now to find a policy for
action selection that maximizes its reward over
the long term.

A great variety of techniques for solving such
decision-theoretic planning tasks have been de-
veloped over the last decades. Most of them
assume atomic representations, which essentially

http://dx.doi.org/10.1007/978-1-4899-7687-1_22
http://dx.doi.org/10.1007/978-1-4899-7687-1_630
http://dx.doi.org/10.1007/978-1-4899-7687-1_100127
http://dx.doi.org/10.1007/978-1-4899-7687-1_100406
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410
http://dx.doi.org/10.1007/978-1-4899-7687-1_100417
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Symbolic Dynamic Programming 1221

S

• Domain Object Types (i.e., sorts): Box, Truck, City = {paris, . . .}
• Relations (with parameter sorts):

BoxIn(Box,City) , TruckIn(Truck,City) , BoxOn(Box, Truck)

• Reward: if ∃b.BoxIn(b,paris) else

• Actions (with parameter sorts):

– load(Box : b, Truck : t,City : c) :

* Success Probability: if (BoxIn(b, c) ∧ TruckIn(t, c)) then . else

* Add Effects on Success: {BoxOn(b, t)}
* Delete Effects on Success: {BoxIn(b, c)}

– unload(Box : b, Truck : t,City : c) :

* Success Probability: if (BoxOn(b, t) ∧ TruckIn(t, c)) then . else

* Add Effects on Success: {BoxIn(b, c)}

* Delete Effects on Success: {BoxOn(b, t)}
– drive(Truck : t,City : c,City : c) :

* Success Probability: if (TruckIn(t, c)) then else

* Add Effects on Success: {TruckIn(t, c)}

* Delete Effects on Success: {TruckIn(t, c)}
– noop

* Success Probability:

* Add Effects on Success: ∅
* Delete Effects on Success: ∅

Symbolic Dynamic Programming, Fig. 1 A formal de-
scription of the BoxWorld adapted from Boutilier et al.
(2001). We use a simple STRIPS (Fikes and Nilsson 1971)
add and delete list representation of actions and, as a sim-

ple probabilistic extension in the spirit of PSTRIPS (Kush-
merick et al. 1995), we assign probabilities that an ac-
tion successfully executes conditioned on various state
properties

amounts to enumerating all unique configurations
of trucks, cities, and boxes. It might then be
possible to learn, for example, that taking action
action234 in state state42 is worth 6. 2 and leads
to state state654321. Atomic representations are
simple, and learning can be implemented us-
ing simple lookup tables. These lookup tables,
however, can be intractably large as atomic rep-
resentations easily explode. Furthermore, they
do not easily generalize across different num-
bers of domain objects (We use the term do-
main in the first-order logical sense of an ob-
ject universe. The term should not be confused
with a planning problem such as BOXWORLD or
BLOCKSWORLD.).

In contrast, SDP assumes a relational or first-
order logical representation of an MDP (as given
in Fig. 1) to exploit the existence of domain ob-

jects, relations over these objects, and the ability
to express objectives and action effects using
quantification.

It is then possible to learn that to get box b
to paris, the agent drives a truck to the city of
b, loads box1 on the truck, drives the truck to
Paris, and finally unloads the box box1 in Paris.
This is essentially encoded in the symbolic value
function shown in Fig. 2, which was computed
by discounting rewards t time steps into the
future by 0. 9t . The key features to note here
are the state and action abstraction in the value
and policy representation that are afforded by
the first-order specification and solution of the
problem. That is, this solution does not refer
to any specific set of domain objects, such as
City D f paris, berlin, londong, but rather it
provides a solution for all possible domain ob-

1222 Symbolic Dynamic Programming

if (∃b.BoxIn(b,paris)) then do noop (value = .)

else if (∃b,t.TruckIn(t,paris) ∧ BoxOn(b, t)) then do unload(b, t) (value = .)

else if (∃b,c,t.BoxOn(b, t) ∧ TruckIn(t, c)) then do drive(t, c,paris) (value = .)

else if (∃b,c,t.BoxIn(b, c) ∧ TruckIn(t, c)) then do load(b, t) (value = .)

else if (∃b, c, t, c.BoxIn(b, c) ∧ TruckIn(t, c)) then do drive(t, c, c) (value = .)

else do noop (value = .)

Symbolic Dynamic Programming, Fig. 2 A decision-list representation of the optimal policy and expected dis-
counted reward value for the BoxWorld problem

ject instantiations. And while classical dynamic
programming techniques could never solve these
problems for large domain instantiations (since
they would have to enumerate all states and
actions), a domain-independent SDP solution to
this particular problem is quite simple due to the
power of state and action abstraction.

Background: Markov Decision
Processes (MDPs)

In the MDP (Puterman 1994) model, an agent
is assumed to fully observe the current state and
choose an action to execute from that state. Based
on that state and action, nature then chooses a
next state according to some fixed probability
distribution. In an infinite-horizon MDP, this pro-
cess repeats itself indefinitely. Assuming there is
a reward associated with each state and action, the
goal of the agent is to maximize the expected sum
of discounted rewards received over an infinite
horizon (Although we do not discuss it here,
there are other alternatives to discounting such
as averaging the reward received over an infinite
horizon.). This criterion assumes that a reward
received t steps in the future is discounted by � t ,
where � is a discount factor satisfying 0 � � < 1:
The goal of the agent is to choose its actions
in order to maximize the expected, discounted
future reward in this model.

Formally, a finite state and action MDP is
a tuple: hS;A; T;R i, where S is a finite state
space, A is a finite set of actions, T is a transition
function: T W S � A � S ! [0, 1], where
T .s, a, � / is a probability distribution over S for

any s 2 S and a 2 A, and R is a bounded reward
function R W S � A! R.

As stated earlier, our goal is to find a policy
that maximizes the infinite horizon, discounted
reward criterion: E� Œ

P1
tD0 �

t � rt js0], where rt is
a reward obtained at time t , � is a discount factor
as defined earlier, � is the policy being executed,
and s0 is the initial starting state. Based on this
reward criterion, we define the value function for
a policy � as the following:

V�.s/ D E�

"
1X
tD0

� t � rt js0 D s

#
(1)

Intuitively, the value function for a policy � is the
expected sum of discounted rewards accumulated
while executing that policy when starting from
state s.

For the MDP model discussed here, the
optimal policy can be shown to be stationary
(Puterman 1994). Consequently, we use a
stationary policy representation of the form
� W S ! A, with �.s/ denoting the action to
be executed in state s. An optimal policy �� is
the policy that maximizes the value function for
all states. We denote the optimal value function
over an indefinite horizon as V �.s/ and note that
it satisfies the following equality:

V �.s/ D max
a2A

n
R.s; a/

C �
X
s02s

T .s; a; s0/ �V �.s0/
o

(2)

Bellman’s principle of optimality (Bellman 1957)
establishes the following relationship between

Symbolic Dynamic Programming 1223

S

A1 A1A1
S1 S1

S2 S2

S1

S2

S1

S2
A2

A2

A1

A2

A2

A1

A2

A2

A1

V3 (s1) V2 (s1) V1 (s1) V 0 (s1)

V3 (s2 V) 1 (s2) V 0 (s2)V2 (s2)

Symbolic Dynamic Programming, Fig. 3 A diagram
demonstrating a dynamic programming regression-based
evaluation of the MDP value function. Dashed lines are
used in the expectation computation of the Q-function:

for each action, take the expectation over the values of
possible successor states. Solid lines are used in the max
computation: determine the highest valued action to be
taken in each state

the optimal value function V t .s/ with a finite
horizon of t steps remaining and the optimal
value function V t�1.s/ with a finite horizon of
t � 1 steps remaining:

V t .s/ D max
a2A

n
R.s; a/

C �
X
s02S

T .s; a; s0/ �V t�1.s0/
o

(3)

A dynamic programming approach for comput-
ing the optimal value function over an indefi-
nite horizon is known as value iteration and di-
rectly implements (3) to compute 1 by successive
approximation. As sketched in Fig. 3, we start
with arbitrary V 0.s/ (e.g., 8sV 0.s/ D 0) and
perform the Bellman backup given in (3) for
each state V 1.s/ using the value of V 0.s/. We
repeat this process for each t to compute V t .s/
from the memorized values for V t�1.s/ until we
have computed the intended t -stages-to-go value
function. V t .s/will converge to V �.s/ as t !1
(Puterman 1994).

Often, the Bellman backup is rewritten in two
steps to separate out the action regression and

maximization steps. In this case, we first compute
the t -stages-to-go Q-function for every action and
state:

Qt .s; a/DR.s; a/C � �
X
s02S

T .s; a; s0/ �V t�1.s0/

(4)

Then we maximize over each action to determine
the value of the regressed state:

V t .s/ D max
a2A
fQt .s; a/g (5)

This is clearly equivalent to (3) but is in a form
that we refer to later, since it separates the
algorithm into its two conceptual components:
decision-theoretic regression and maximization.

First-Order Markov Decision Processes
A first-order MDP (FOMDP) can be thought
of as a universal MDP that abstractly defines
the state, action, transition, and reward tuple
hS , A, T , Ri for an infinite number of ground
MDPs. To make this idea more concrete, consider
the BoxWorld problem defined earlier. While

1224 Symbolic Dynamic Programming

we have not yet formalized the details of the
FOMDP representation, it should be clear that the
BoxWorld dynamics hold for any instantiation of
the domain objects: Box, Truck, and City. For
instance, assume that the domain instantiation
consists of two boxes Box D fbox1, box2g, two
trucks Truck = ftruck1, truck2g and two cities
City D fparis, berling. Then the resulting ground
MDP has 12 state-variable atoms (each atom
being true or false in a state), four atoms for
BoxIn such as BoxIn(box1, paris), BoxIn(box2,
paris), . . . , four atoms for TruckIn such as
TruckIn(truck2, paris), . . . and four atoms for
BoxOn such as BoxOn(box2, truck1/, There
are also 24 possible actions (eight for each of
load,unload, and drive) such as load(box1, truck1,
paris), load(box1, truck1, berlin), drive(truck2,
paris, paris), drive(truck2, paris, berlin), etc.,
where the transition function directly follows
from the ground instantions of the corresponding
PSTRIPS operators. The reward function looks
like: if (BoxIn(box1, paris) _ BoxIn(box 2, paris))
10 else 0.

Therefore, to solve an FOMDP, we could
ground it for a specific domain instantiation to
obtain a corresponding ground MDP. Then we
could apply classical MDP solution techniques
to solve this ground MDP. However, the obvious
drawback to this approach is that the number
of state variables and actions in the ground
MDP grow at least linearly as the domain
size increases. And even if the ground MDP
could be represented within memory constraints,
the number of distinct ground states grows
exponentially with the number of state variables,
thus rendering solutions that scale with state size
intractable even for moderately small numbers of
domain objects.

An alternative idea to solving an FOMDP at
the ground level is to solve the FOMDP directly
at the first-order level using symbolic dynamic
programming, thereby obtaining a solution that
applies universally to all possible domain instan-
tiations. While the exact representation and SDP
solution of FOMDPs differ among the variant
formalisms, they all share the same basic first-
order representation of rewards, probabilities, and
values that we outline next. To highlight this, we

introduce a graphical case notation to allow first-
order specifications of the rewards, probabilities,
and values required for FOMDPs:

�1 W t1
case D W W W

�n W tn

Here the 'i are state formulae and the ti are
terms. Often the ti are constants and the 'i
partition state space. To make this concrete, we
represent our BoxWorld FOMDP reward function
as the following rCase statement:

rCase =
9b:BoxIn.b; paris/ W 10
:9b:BoxIn.b; paris/ W 0

Here we see that the first-order formulae in the
case statement divide all possible ground states
into two regions of constant value: when there
exists a box in Paris, a reward of 10 is achieved,
otherwise a reward of 0 is achieved. Likewise, the
value function case that we derive through SDP
can be represented in exactly the same manner.
Indeed, as we will see shortly, case0 = rCase in
the first-order version of value iteration.

To state the FOMDP transition function for
an action, we decompose stochastic “agent” ac-
tions into a collection of deterministic actions,
each corresponding to a possible outcome of the
stochastic action. We then specify a distribu-
tion according to which “nature” may choose a
deterministic action from this set whenever the
stochastic action is executed.

Letting A.Ex/ be a stochastic action with
nature’s choices (i.e., deterministic actions)
n1.Ex/; : : : nk.Ex/, we represent the distribution
over ni .Ex/ given A.Ex/ using the notation
pCase.nj .Ex/; A.Ex//. Continuing our logistics
example, if the success of driving a truck depends
on whether the destination city is paris (perhaps
due to known traffic delays), then we decompose
the stochastic drive action into two deterministic
actions driveS and driveF, respectively denoting
success and failure. Then we can specify a
distribution over nature’s choice deterministic
outcome for this stochastic action:

Symbolic Dynamic Programming 1225

S

pCase.driveS.t; c1; c2//; =
c2 D paris W 0:6

drive.t; c1; c2// c2 ¤ paris W 0:9

pCase.driveF.t; c1; c2//; =
c2 D paris W 0:4

drive.t; c1; c2// c2 ¤ paris W 0:1

Intuitively, to perform an operation on case
statements, we simply perform the corresponding
operation on the intersection of all case partitions
of the operands. Letting each 'i and j denote
generic first-order formula, we can perform the
“cross-sum” ˚ of case statements in the follow-
ing manner:

�1 W 10
�2 W 20

˚
 1 W 1
 2 W 2

D

�1 ^ 1 W 11
�1 ^ 2 W 12
�2 ^ 1 W 21
�2 ^ 2 W 22

Likewise, we can perform� ,˝ , and max opera-
tions by respectively subtracting, multiplying, or
taking the max of partition values (as opposed to
adding them) to obtain the result. Some partitions
resulting from the application of the ˚ , � ,
and ˝ operators may be inconsistent; we simply
discard such partitions (since they can obviously
never correspond to any world state).

We define another operation on case state-
ments max 9Ex that is crucial for SDP. Intuitively,
the meaning of max 9Ex case.Ex/ is a case state-
ment where the maximal value is assigned to
each region of state space where there exists a
satisfying instantiation of Ex. To make these ideas
concrete, following is an exposition of how the
max 9Ex may be explicitly computed:

max 9Ex
 1.Ex/ W 1
 2.Ex/ W 2
 3.Ex/ W 3

D

9Ex 3.Ex/ W 3
:.9Ex 3.Ex// ^ 9Ex 2.Ex/ W 2
:.9Ex 3.Ex// ^ :.9Ex 2.Ex// ^ 9Ex 1.Ex/ W 1

Here we have simply sorted partitions in order of
values and have ensured that the highest value
is assigned to partitions in which there exists a

satisfying instantiation of Ex by rendering lower
value partitions disjoint from their higher-value
antecedents.

Symbolic Dynamic Programming

SDP is a dynamic programming solution to
FOMDPs that produces a logical case description
of the optimal value function. This is achieved
through the operations of first-order decision-
theoretic regression (FODTR) and symbolic
maximization that perform the traditional
dynamic programming Bellman backup at an
abstract level without explicit enumeration of
either the state or action spaces of the FOMDP.
Among many uses, the application of SDP leads
to a domain-independent value iteration solution
to FOMDPs.

Suppose that we are given a value function in
the form case. The FODTR (Boutilier et al. 2001)
of this value function through an action A.Ex/

yields a case statement containing the logical
description of states and values that would give
rise to case after doing action A.Ex/. This is
analogous to classical goal regression, the key
difference being that action A.Ex/ is stochastic.
In MDP terms, the result of FODTR is a case
statement representing a Q-function.

We define the FODTR operator in the follow-
ing manner:

FODTRŒvcase; A.Ex/� D rcase˚

�Œ˚j fpCase.nj .Ex//˝ RegrŒvcase; A.Ex/�g�

(6)

Note that we have not yet defined the regres-
sion operatorRegrŒvcase; A.Ex/�. As it turns out,
the implementation of this operator is specific to
a given FOMDP language and SDP implementa-
tion. We simply remark that the regression of a
formula through an action A.Ex/ is a formula
 0 that holds prior to A.Ex/ being performed iff
 holds after A.Ex/. However, regression is a
deterministic operator and thus FODTR takes the
expectation of the regression over all possible

1226 Symbolic Dynamic Programming

outcomes of a stochastic action according to their
respective probabilities.

It is important to note that the case statement
resulting from FODTR contains free variables
for the action parameters Ex. That is, for any
constant binding Ec of these action parameters
such that Ex D Ec, the case statement specifies
a well-defined logical description of the value
that can be obtained by taking action A.Ec/ and
following a policy so as to obtain the value
given by vf case thereafter. However, what we
really need for symbolic dynamic programming
is a logical description of a Q-function that tells
us the highest value that can be achieved for
any action instantiation. This leads us to the
following qCase.A.Ex// definition of a first-order
Q-function that makes use of the previously de-
fined 9Ex operator:

qCaset .A.Ex//

D max 9Ex:FODTRŒvcaset�1; A.Ex/� (7)

Intuitively, qCaset .A.Ex// is a logical descrip-
tion of the Q-function for action A.Ex/ indicating
the best value that could be achieved by any
instantiation of A.Ex/. And by using the case
representation and action quantification in the
max 9Ex operation, FODTR effectively achieves
both action and state abstraction.

At this point, we can regress the value func-
tion through a single action, but to complete the
dynamic programming step, we need to know
the maximum value that can be achieved by any
action (e.g., in the BoxWorld FOMDP, our pos-
sible action choices are unload(b, t , c/, load(b,
t , c/, and drive(t , c1, c2//. Fortunately, this turns
out to be quite easy. Assuming we have m ac-
tions fA1.Ex1/; : : : ; Am.Exm/g, we can complete
the SDP step in the following manner using the
previously defined max operator:

vcaset D max
a2fA1.Ex1/;:::;Am.Exm/g

qCaset .a/ (8)

While the details of SDP may seem very ab-
stract at the moment, there are several examples
for specific FOMDP languages that implement
SDP as described earlier, for which we provide
references next. Nonetheless, one should note
that the SDP equations given here are exactly
the “lifted” versions of the traditional dynamic
programming solution to MDPs given previously
in (4) and (5). The reader may verify — on a
conceptual level — that applying SDP to the 0-
stages-to-go value function (i.e., case0 = rCase,
given previously) yields the following 1- and
2-stages-to-go value functions in the BoxWorld
domain (: “indicating the conjunction of the
negation of all higher value partitions):

caset D

9b:BoxIn.b; paris/ W 19:0
:“ ^ 9b; t:T ruckIn.t; paris/ ^ BoxOn.b; t/ W 9:0
:00 W 0:0

case2 D

9b:BoxIn.b; paris/ W 27:1
:“ ^ 9b; t:T ruckIn.t; paris/ ^ BoxOn.b; t/ W 17:1
:“ ^ 9b; c:BoxOn.b; t/ ^ T ruckIn.t; c/ W 8:1
:00 W 0:0

After sufficient iterations of SDP, the t -stages-
to-go value function converges, giving the op-

timal value function (and corresponding policy)
from Fig. 2.

Symbolic Dynamic Programming 1227

S

Applications

Variants of SDP have been successfully applied
in decision-theoretic planning domains such as
BLOCKSWORLD, BOXWORLD, ZENOWORLD,
ELEVATORS, DRIVE, PITCHCATCH, and
SCHEDULE. The first-order approximate linear
programming (FOALP) system (Sanner and
Boutilier 2005) was runner-up at the probabilistic
track of the 5th International Planning Competi-
tion (IPC-6). Related techniques have been used
to solve path planning problems within robotics
and instances of real-time strategy games, Tetris,
and Digger.

Future Directions

The original SDP (Boutilier et al. 2001) ap-
proach is a value iteration algorithm for solving
FOMDPs based on Reiter’s situations calculus.
Since then, a variety of exact algorithms have
been introduced to solve MDPs with relational
(RMDP) and first-order (FOMDP) structure (We
use the term relational MDP to refer to mod-
els that allow implicit existential quantification,
and FOMDP for those with explicit existential
and universal quantification.). First-order value
iteration (FOVIA) (Hölldobler and Skvortsova
2004; Karabaev and Skvortsova 2005) and the
relational Bellman algorithm (ReBel) (Kersting
et al. 2004) are value iteration algorithms for
solving RMDPs. In addition, first-order decision
diagrams (FODDs) have been introduced to com-
pactly represent case statements and to permit
efficient application of SDP operations to solve
RMDPs via value iteration (Wang et al. 2007) and
policy iteration (Wang and Khardon 2007). All of
these algorithms have some form of guarantee on
convergence to the ("-)optimal value function or
policy. The expressiveness of FOMDPs has been
extended to support indefinitely factored reward
and transition functions in FOMDPs (Sanner and
Boutilier 2007).

A class of linear-value approximation
algorithms have been introduced to approximate

the value function as a linear combination
of weighted basis functions. FOALP (Sanner
and Boutilier 2005) directly approximates
the FOMDP value function using a linear
program. First-order approximate policy
iteration (FOAPI) (Sanner and Boutilier 2006)
approximately solves for the FOMDP value
function by iterating between policy and value
updates in a policy-iteration style algorithm.
Somewhat weak error bounds can be derived for a
value function approximated via FOALP (Sanner
and Boutilier 2005) while generally stronger
bounds can be derived from the FOAPI
solution (Sanner and Boutilier 2006).

Finally, there are a number of heuristic so-
lutions to FOMDPs and RMDPs. Approximate
policy iteration (Fern et al. 2003) induces rule-
based policies from sampled experience in small-
domain instantiations of RMDPs and generalizes
these policies to larger domains. In a similar vein,
inductive policy selection using first-order regres-
sion (Gretton and Thiebaux 2004) uses the action
regression operator in the situation calculus to
provide the first-order hypothesis space for an
inductive policy learning algorithm. Approximate
linear programming (for RMDPs) (Guestrin et al.
2003) is an approximation technique using linear
program optimization to find a best-fit value func-
tion over a number of sampled RMDP domain
instantiations.

Cross-References

�Dynamic Programming
�Markov Decision Processes

Recommended Reading

Bellman RE (1957) Dynamic programming. Princeton
University Press, Princeton

Boutilier C, Reiter R, Price B (2001) Symbolic
dynamic programming for first-order MDPs. In:
IJCAI-01, Seattle, pp 690–697

http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

1228 Symbolic Regression

Fern A, Yoon S, Givan R (2003) Approximate policy
iteration with a policy language bias. In: NIPS-2003,
Vancouver

Fikes RE, Nilsson NJ (1971) STRIPS: a new approach
to the application of theorem proving to problem
solving. Artif Intell 2:189–208

Gretton C, Thiebaux S (2004) Exploiting first-order
regression in inductive policy selection. In: UAI-04,
Banff, pp 217–225

Guestrin C, Koller D, Gearhart C, Kanodia N (2003)
Generalizing plans to new environments in rela-
tional MDPs. In: IJCAI-03, Acapulco

Hölldobler S, Skvortsova O (2004) A logic-based
approach to dynamic programming. In: AAAI-04
workshop on learning and planning in MDPs, Menlo
Park, pp 31–36

Karabaev E, Skvortsova O (2005) A heuristic search
algorithm for solving first-order MDPs. In: UAI-
2005, Edinburgh, pp 292–299

Kersting K, van Otterlo M, De Raedt L (2004) Bellman
goes relational. In: ICML-04. ACM Press, New
York

Kushmerick N, Hanks S, Weld D (1995) An algorithm
for probabilistic planning. Artif Intell 76:239–286

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley, New
York

Sanner S, Boutilier C (2005) Approximate linear pro-
gramming for first-order MDPs. In: UAI-2005, Ed-
inburgh

Sanner S, Boutilier C (2006) Practical linear evalua-
tion techniques for first-order MDPs. In: UAI-2006,
Boston

Sanner S, Boutilier C (2007) Approximate solu-
tion techniques for factored first-order MDPs. In:
ICAPS-07, Providence, pp 288–295

Wang C, Khardon R (2007) Policy iteration for rela-
tional MDPs. In: UAI, Vancouver

Wang C, Joshi S, Khardon R (2007) First order de-
cision diagrams for relational MDPs. In: IJCAI,
Hyderabad

Symbolic Regression

�Equation Discovery

Symmetrization Lemma

Synonyms

Basic lemma

Definition

Given a distribution P over a sample space Z ,
a finite sample z D .´1; : : : ; ´n/ drawn i.i.d.
from P and a function f W Z ! R we define
the shorthand EPf D EP Œf .´/� and Ezf D
1
n

Pn
i�1 f .´i / to denote the true and empirical

average of f . The symmetrization lemma is an
important result in the learning theory as it allows
the true average EPf found in � generalization
bounds to be replaced by a second empirical aver-
age Ez0f taken over an independent ghost sample
z0 D ´01; : : : ´

0
n drawn i.i.d. from P . Specifically,

the symmetrization lemma states that for any 	 >
0 whenever n	2 � 2

P n

sup
f 2F

jEPf � Ezf j > 	

!

� 2P 2n

sup
f 2F

jEz0f � Ezf j >
	

2

!
: (1)

This means the typically difficult to analyze be-
havior of EPf – which involves the entire sam-
ple space Z – can be replaced by the evaluation
of functions from F over the points in z and z0.

Synaptic Efficacy

�Weight

http://dx.doi.org/10.1007/978-1-4899-7687-1_258
http://dx.doi.org/10.1007/978-1-4899-7687-1_100033
http://dx.doi.org/10.1007/978-1-4899-7687-1_328
http://dx.doi.org/10.1007/978-1-4899-7687-1_886

T

Table Extraction

�Table Extraction from Text Documents

Table Extraction from Text
Documents

James Hodson
AI for Good Foundation,
New York, NY, USA

Abstract

Tables appear in text documents in almost
every form imaginable, from simple lists to
nested, hierarchical, and multidimensional
layouts. They are primarily designed for
human consumption and therefore can
require a wide variety of visual cues and
interpretive capabilities to be fully understood.
This chapter deals with the challenges
machines face when attempting to process and
understand tables, along with state-of-the-art
methods and performance on this task.

Synonyms

Table extraction; Table parsing; Table under-
standing

Definition

The objective of table extraction is to convert
human-focused notation, to a logical, machine-
readable, and machine-understandable form. This
task is closely related to and could be viewed as
a subproblem of document structure extraction. It
is generally considered a higher level natural lan-
guage processing problem, requiring a pipeline of
capabilities to address.

Motivation and Background

Tables appear in text documents in almost every
form imaginable, from simple lists to nested,
hierarchical, and multidimensional layouts. They
are primarily designed for human consumption
and therefore can require a wide variety of visual
cues and interpretive capabilities to be fully un-
derstood. In fact, the assumption of human con-
sumption allows for a breadth of content presen-
tation that is practically limitless. Often, critical
information that is relevant to the interpretation
is assumed, provided in short-hand notation, or
inferred from other aspects of the content or
layout.

Given that the problem of table extraction is
motivated by the presence of electronic docu-
ments, it has only been formally studied since
the early 1990s, as the prevalence of computer-
based document storage, editing, and retrieval
increased (Laurentini et al. 1992; Guthrie et al.
1993). With hundreds of document formats,

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_902
http://dx.doi.org/10.1007/978-1-4899-7687-1_100460
http://dx.doi.org/10.1007/978-1-4899-7687-1_100461
http://dx.doi.org/10.1007/978-1-4899-7687-1_100462

1230 Table Extraction from Text Documents

layout preferences, and established customs for
data interchange, the problem has only become
worse at web-scale, with very few document
originators choosing machine-readable syntax
over visual layouts (i.e., drawing).

This article explores the genesis of the prob-
lem domain, how to formalize and break down
the various tasks involved in building a table
extraction solution, and the methodologies gen-
erally used.

There have been several attempts at formal-
izing the table model and notation. Some of
these were designed independently of automatic
table extraction research (Association of Amer-
ican Publishers 1986) and pertain to the best
practices for tabular data design. Computation-
ally driven table models generally refer to the
widely used Augmented Wang Notation (Wang
1996) which specifies a hierarchical schema for
describing types, classes, and relations among
cells. Common table models are necessary for the
interoperation of different stages of the extraction
pipeline as well as the common evaluation of
different approaches with the same gold standard
reference data (Govindaraju et al. 2013). As in
most machine learning pipelines, it is often con-
venient to isolate component parts for algorithmic
development and testing.

Approaches to evaluation of table extraction
techniques vary widely, and can be looked at from
multiple perspectives document level, table level,
access level, and cell level. Each stage of the
extraction pipeline can be evaluated separately,
or one can look at the overall goal achievement
measures. Vanessa Long (2010) adopts a multi-
level structural evaluation approach which can be
particularly informative.

Recent work is part of a more sparse literature,
with consistently decreased focus since the early
2000s. In spite of this, table extraction is not a
problem that has any broadly adopted solution. It
is a fragmented environment and often viewed as
a practitioner’s problem as part of larger systems.
However, certain industries (e.g., finance) and
the rise of web-scale information extraction have
led to a renewed focus on these technologies in
a research and applied setting (Mitchell et al.
2015).

Structure of the Learning System

We will consider each of the logical steps that
form part of a complete table extraction system.
Hurst (2000) and Fang et al. (2012) both propose
pipelines that allow for the evaluation of discrete
capabilities. Starting from a raw text document,
each subsequent pass adds more and more struc-
ture, getting us closer to the final goal – a dis-
ambiguated relational table object. Approaches at
each stage can consider not only textual features
but also layout and other visual cues. In fact, it is
often the case that table extraction techniques on
text documents will use a variety of methodolo-
gies from the computer vision community.

Table Detection
Given a text document, the objective is to identify
whether or not it contains a table object. It should
be possible to signal when a document contains
multiple such distinct objects and their rough
contiguous location (Kornfeld and Wattecamps
1998). Often, this step is combined with the next
(boundary detection) to perform joint detection
and delineation of tabular areas.

In the case where detection is performed in
isolation, it may be viewed as a binary classifica-
tion, sequence labeling, or clustering task over the
document. Lopresti et al. (2000) approached this
problem from a text density/clustering perspec-
tive over single-columned ASCII text documents,
though more recent efforts in industrial appli-
cations tend to benefit from cascading binary
(SVM) classifiers or random forest approaches.

Table Boundary Identification
Table boundary identification recognizes the
boundaries of detected tables such that they could
be isolated from the surrounding information.
Laurentini et al. (1992) makes use of the
Hough transform to identify connected shapes
and components that represent the margins of
tables. These must be separated from charts,
images, and other visual components, which is
the aim of the table detection step mentioned
above. The identification of table boundaries
can also benefit the table detection task by
providing additional structural features on which

Table Extraction from Text Documents 1231

T

to predicate the distinction from other visual
objects in a document.

Structural Inference
For each recognized table, identify the column
and row structure, such that each cell could be
uniquely identified. In practice, the methods ap-
plied to this task mirror those of table bound-
ary identification. However, there are additional
constraints that often make it worthwhile to con-
sider this step separately. For example, tables are
structurally constrained to maintain linear rela-
tionships among cells – rows and columns must
remain broadly coherent. Furthermore, the task
may be recursive, where tables contain tables,
or other structural items as inserts. It is im-
portant that this step provide the most accurate
microstructure possible. As such, it can often be
beneficial to look at measures of content coher-
ence for merging or splitting neighbors, at the
same time as optimizing overall coherence.

Functional Classification
The logical definition of a table is that of a
set of associated keys and values. Headers, or
groupings of headers, represent keys, which in-
tersect along the axes of a table. The intersects of
these header cells represent the values of interest.
Headers provide the information necessary to
understand the type of data as well as uniquely
pinpoint the location of each value. Functional
classification, therefore, identifies for each cell,
whether it represents a key or a value (Liu 2009).

Functional Interpretation
For each cell representing a value, classify its
type (e.g., weight, location, distance, revenue),
according to its associated headers. In addition,
many tables rely on auxiliary information and
interpretation, such as footnotes or implied co-
herence (e.g., all adjacent cells have the same
property, but do not explicitly define it). These
additional structures need to be identified and
associated with each cell. Furthermore, cell val-
ues should be fully normalized according to the
available information. If a header states that all
values are in $M, all numbers should take this
into account.

Disambiguation
In most cases, the reason for reading and ex-
tracting a table from text is to be able to work
with the information held therein. Comparing
values to prior years’ numbers, reasoning about
them, and filtering all require that the data fit
into some logical representation of the domain of
interest, whether implicitly or explicitly defined.
Disambiguating the values allows them to be
used consistently and stored uniformly for later
querying (Liu 2009; Hurst 2000).

Disambiguation requires some desired final
representation, whether a formal ontology or a
relational database schema. Ideally the represen-
tation would cover the entire universe of interest,
allowing every possible value type to be logically
captured. However, it is often necessary to ac-
count for content that has not been encountered
before.

Generally, disambiguation can be viewed as
a supervised classification problem, whereby
explicit or implicit (latent, structural) features
are mapped probabilistically to available
outcomes, constrained by meta-schemas such
as length, primitive type, and relative position.
Additionally, structural factors (number of
values, etc.) can be used, within an iterative
framework, to further limit the output space. That
is, as more of the table has been disambiguated,
fewer options remain that would be consistent
with the prior results. As such, this can be viewed
as a constrained optimization, where the schema
is sufficiently well defined.

Cross-References

� Semantic Annotation of Text Using Open Se-
mantic Resources

�Entity Resolution

Recommended Reading

Association Of American Publishers (1986) Markup
of tabular material. Technical report. Association of
American Publishers, Manuscript Series

Fang, J, Mitra P, Tang Z, Lee GC (2012) Table
header detection and classification. In: Proceedings
of AAAI, Toronto

http://dx.doi.org/10.1007/978-1-4899-7687-1_903
http://dx.doi.org/10.1007/978-1-4899-7687-1_81

1232 Table Parsing

Göbel M, Hassan T, Oro E, Orsi G (2012) A method-
ology for evaluating algorithms for table under-
standing in PDF documents. In: Proceedings of the
2012 ACM symposium on document engineering,
Atlanta, pp 45–48

Govindaraju V, Zhang C, Ré C (2013) Understanding
tables in context using standard NLP toolkits. In:
Proceedings of the ACL, Sofia

Guthrie J, Weber S, Kimmerly N (1993) Searching
documents: cognitive processes and deficits in un-
derstanding graphs, tables, and illustrations. Con-
temp Educ Psychol 18:186–221

Hurst MF (2000) The interpretation of tables in texts.
Ph.D. thesis, University of Edinburgh, Edinburgh

Kornfeld W, Wattecamps J (1998) Automatically lo-
cating, extracting and analyzing tabular data. In:
SIGIR’98: Proceedings of the 21st annual interna-
tional ACM SIGIR conference, Melbourne, pp 347–
348

Laurentini A, Viada P (1992) Identifying and under-
standing tabular material in compound documents.
In: Proceedings of 11th IAPR international confer-
ence on pattern recognition. Conference B: pattern
recognition methodology and systems, IEEE, The
Hague, vol II, pp 405–409

Liu Y (2009) Tableseer: automatic table extraction,
search, and understanding. Ph.D. thesis, The Penn-
sylvania State University

Long V (2010) An agent-based approach to table
recognition and interpretation. Ph.D. thesis, Mac-
quarie University, Sydney

Lopresti D, Hu J, Kashi R, Wilfong G (2000)
Medium-independent table detection. In: SPIE doc-
ument recognition and retrieval VII, San Jose,
pp 291–302

Mitchell T, Cohen W, Hruschka E, Talukdar P, Bet-
teridge J, Carlson A, Dalvi B, Gardner M, Kisiel
B, Krishnamurthy J, Lao N, Mazaitis K, Mohamed
T, Nakashole N, Platanios E, Ritter A, Samadi M,
Settles B, Wang R, Wijaya D, Gupta A, Chen X,
Saparov A, Greaves M, Welling J (2015) In Pro-
ceedings of the Conference on Artificial Intelligence
(AAAI)

Padmanabhan R, Jandhyala RC, Krishnamoorthy M,
Nagy G, Seth S, Silversmith W (2009) Interactive
conversion of Large web tables. In: Proceedings of
eighth international workshop on graphics recogni-
tion, GREC 2009. City University of La Rochelle,
La Rochelle

Sarawagi S, Chakrabarti S (2014) Open-domain quan-
tity queries on Web tables: annotation, response,
and consensus models. In: Proceedings of ACM
SIGKDD, New York

Shafait F, Smith R (2010) Table detection in het-
erogeneous documents. In: Proceedings of the 9th
IAPR international workshop on document analysis
systems, Boston, pp 65–72

Thompson M (1996) A tables manifesto. In: Proceed-
ings of SGMK Europe, Munich, pp 151–153

Wang X (1996) Tabular abstraction, editing, and for-
matting. Ph.D. thesis, University of Waterloo, Wa-
terloo

Table Parsing

�Table Extraction from Text Documents

Table Understanding

�Table Extraction from Text Documents

Tagging

� POS Tagging

TAN

�Tree Augmented Naive Bayes

Taxicab Norm Distance

�Manhattan Distance

TD-Gammon

Definition

TD-Gammon is a world-champion strength
backgammon program developed by Gerald
Tesauro. Its development relied heavily on
machine learning techniques, in particular on
�Temporal-Difference Learning. Contrary to
successful game programs in domains such
as chess, which can easily out-search their
human opponents but still trail these ability of
estimating the positional merits of the current
board configuration, TD-GAMMON was able to
excel in backgammon for the same reasons that

http://dx.doi.org/10.1007/978-1-4899-7687-1_902
http://dx.doi.org/10.1007/978-1-4899-7687-1_902
http://dx.doi.org/10.1007/978-1-4899-7687-1_643
http://dx.doi.org/10.1007/978-1-4899-7687-1_850
http://dx.doi.org/10.1007/978-1-4899-7687-1_511
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

Temporal Difference Learning 1233

T

humans play well: its grasp of the positional
strengths and weaknesses was excellent. In 1998,
it lost a 100-game competition against the world
champion with only 8 points. Its sometimes
unconventional but very solid evaluation of
certain opening strategies had a strong impact
on the backgammon community and was soon
adapted by professional players.

Description of the Learning System

TD-Gammon is a conventional game-playing
program that uses very shallow search (the first
versions only searched one ply) for determining
its move. Candidate moves are evaluated by a
�Neural Network, which is trained by TD(�), a
well-known algorithm for Temporal-Difference
Learning (Tesauro 1992). This evaluation
function is trained on millions of games that
the program played against itself. At the end
of each game, a reinforcement signal that
indicates whether the game has been lost or
won is passed through all moves of the game.
TD-Gammon developed useful concepts in the
hidden layer of its network. Tesauro (1992)
shows examples for two hidden units of TD-
Gammon that he interpreted as a race-oriented
feature detector and an attack-oriented feature
detector.

TD-Gammon clearly surpassed its prede-
cessors, in particular the Computer Olympiad
champion Neurogammon, which was trained
with �Preference Learning (Tesauro 1989).
In fact, early versions of TD-Gammon, which
only used the raw board information as features,
already learned to play as well as Neurogammon,
which used a sophisticated set of features.
Adding more sophisticated features to the
input representation further improved TD-
Gammon’s playing strength. Over time, TD-
Gammon not only that increase the number
of training games that it played against itself,
but Tesauro also increased the search depth
and changed the network architecture, so
that TD-Gammon eventually reached world-
championship strength (Tesauro 1995).

Cross-References

�Machine Learning and Game Playing

Recommended Reading

Tesauro G (1989) Connectionist learning of
expert preferences by comparison training. In:
Touretzky D (ed) Proceedings of the advances
in neural information processing systems 1
(NIPS-88). Morgan Kaufmann, San Francisco,
pp 99–106

Tesauro G (1992) Practical issues in temporal differ-
ence learning. Mach Learn 8:257–278. http://mlis.
www.wkap.nl/mach/abstracts/absv8p257.htm

Tesauro G (1995) Temporal difference learning and
TD-Gammon. Commun ACM 38(3):58–68. http://
www.research.ibm.com/massdist/tdl.html

TDIDT Strategy

�Divide-and-Conquer Learning

Temporal Credit Assignment

�Credit Assignment

Temporal Data

�Time Series

Temporal Difference Learning

William Uther
NICTA and The University of New South Wales,
Sydney, NSW, Australia

Definition

Temporal Difference Learning, also known as
TD-Learning, is a method for computing the
long term utility of a pattern of behavior from a

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_509
http://mlis.www.wkap.nl/mach/abstracts/absv8p257.htm
http://mlis.www.wkap.nl/mach/abstracts/absv8p257.htm
http://www.research.ibm.com/massdist/tdl.html
http://www.research.ibm.com/massdist/tdl.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_185
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

1234 Temporal Difference Learning

series of intermediate rewards (Sutton 1984,
1988, 1998). It uses differences between suc-
cessive utility estimates as a feedback signal for
learning. The Temporal Differencing approach
to model-free � reinforcement learning was
introduced by, and is often associated with, R.S.
Sutton. It has ties to both the artificial intelligence
and psychological theories of reinforcement
learning as well as � dynamic programming and
operations research from economics (Bellman
1957; Samuel 1959; Watkins 1989; Puterman
1994; Bertsekas 1996).

While TD learning can be formalised using
the theory of �Markov Decision Processes, in
many cases it has been used more as a heuristic
technique and has achieved impressive results
even in situations where the formal theory does
not strictly apply, e.g., Tesauro’s TD-Gammon
(Tesauro 1995) achieved world champion per-
formance in the game of backgammon. These
heuristic results often did not transfer to other
domains, but over time the theory behind TD
learning has expanded to cover large areas of
reinforcement learning.]

Formal Definitions
Consider an agent moving through a world in
discrete time steps, t1; t2; : : :. At each time step,
t , the agent is informed of both the current state
of the world, st 2 S , and its reward, or utility, for
the previous time step, rt�1 2 R.

As the expected long term utility of a pattern
of behavior can change depending upon the state,
the utility is a function of the state, V:S ! R.
V is known as the value function or state-value
function. The phrase “long term utility” can be
formalized in multiple ways.

Undiscounted Sum of Reward
The simplest definition is that long term reward is
the sum of all future rewards.

V.st / D rt C rtC1 C rtC2 C : : :

D

1X

ıD0

rt C ı

Unfortunately, the undiscounted sum of re-
ward is only well defined if this sum converges.
Convergence is usually achieved by the addition
of a constraint that the agent’s experience termi-
nates at some, finite, point in time and all rewards
after that point are zero.

Discounted Sum of Reward
The discounted utility measure discounts rewards
exponentially into the future.

V.st / D rt C �rtC1 C �2rtC2 C : : : � 2 Œ0; 1�

D

1X

ıD0

rtCı

Note that when � D 1 the discounted and
undiscounted regimes are identical. When � < 1,
the discounted reward scheme does not require
that the agent experience terminates at some finite
time for convergence. The discount factor � can
be interpreted as an inflation rate, a probability
of failure for each time step, or simply as a
mathematical trick to achieve convergence.

Average Reward
Rather than consider a sum of rewards, the aver-
age reward measure of utility estimates both the
expected reward per future time step, also known
as the gain, and the current difference from that
long-term average, or bias.

G.st / D lim
n!1

1

n

nX

ıD0

rtCı

B.st / D

1X

ıD0

ŒrtCı �G.stCı/�

A system where any state has a nonzero prob-
ability of being reached from any other state is
known as an ergodic system. For such a system
the gain, G.s/, will have the same value for
all states and the bias, B.s/, serves a similar
purpose to V (s/ above in indicating the relative
worth of different states. While average reward
has a theoretical advantage in that there is no
discount factor to choose, historically average

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Temporal Difference Learning 1235

T

reward has been considered more complex to
use than the discounted reward regimes and so
has been less used in practice. There is a strong
theoretical relationship between average reward
and discounted reward in the limit as the discount
factor approaches one.

Here we focus on discounted reward.

Estimating Discounted Sum of Reward
The temporal differencing estimation procedure
is based on recursive reformulation of the above
definitions. For the discounted case:

V.st / D rt C �rtC1 C �2rtC2 C �3rtC3 C : : :

D rtC�ŒrtC1 C �rtC2C�2rtC3 C ldots�

D rt C �V.stC1/

From the recursive formulation we can see that
the long term utility for one time step is closely
related to the long term utility at the next time
step. If there is already an estimate of the long
term utility at st , V (st /, then we could calculate
a change in that value given a new trajectory as
follows:

Δt D Œrt C �V.stC1/� � V.st /

If we are dealing with a stochastic system,
then we may not want to update V (st / to the new
value in one jump, but rather only move part way
toward the new value:

Δt D ˛.rt C �V.stC1/ � V.st //

where ˛ is a learning rate between 0 and 1.
As an assignment, this update can be written
in a number of equivalent ways, the two most
common being:

V.st / V.st /C ˛.rt C �V.stC1/ � V.st // or;

V .st /! .1 � ˛/V.st /C ˛.rt C �V.stC1//

This update, error, learning or delta rule is the
core of temporal difference learning. It is from
this formulation, which computes a delta based

on the difference in estimated long term utility of
the world at two consecutive time steps, that we
get the term temporal differencing.

Having derived this update rule, we can now
apply it to finding the long term utility of a
particular agent. In the simplest case we will
assume that there are a finite number of Markov
states of the world, and that these can be reliably
detected by the agent at run time. We will store
the function V as an array of real numbers, with
one number for each world state.

After each time step, t , we will use the knowl-
edge of the previous state, st , the instantaneous
reward for the time step, rt , and the resulting
state, stC1, to update the value of the previous
state, V (st /, using the delta rule above:

V.st / V.st /C ˛.rt C �V.stC1/ � V.st //

Eligibility Traces and TD (�/

Basic temporal differencing as represented above
can be quite slow to converge in many situations.
Consider, for example, a simple corridor with a
single reward at the end, and an agent that walks
down the corridor. Assume that the value function
was initialized to a uniform zero value. On each
walk down the corridor, useful information is
only pushed one step back toward the start of the
corridor.

Eligibility traces try to alleviate this problem
by pushing information further back along the
trajectory of the agent with each update to V .
An algorithm incorporating eligibility traces can
be seen as a mixture of “pure” TD, as described
above, and �Monte-Carlo estimation of the long
term utility. In particular, the � parameter to the
TD(�/ family of algorithms specifies where in the
range from pure TD, when � D 0, to pure Monte-
Carlo, when � = 1, a particular algorithm falls.

Eligibility traces are implemented by keeping
a second function of the state space ; � W S ! R.
The " function represents how much an experi-
ence now should affect the value of a state the
agent has previously passed through. When the

http://dx.doi.org/10.1007/978-1-4899-7687-1_952

1236 Temporal Difference Learning

agent performs an update, the values of all states
are changed according to their eligibility.

The standard definition of the eligibility of a
particular state uses an exponential decay over
time, but this is not a strict requirement and
other definitions of eligibility could be used. In
addition, each time a state is visited, its eligibility
increases. Formally, on each time step,

8s2S".s/ ��".s/ and then,

".st / ".st /C 1

This eligibility is used to update all state
values by first calculating the delta for the current
state as above, but then applying it to all states
according to the eligibility values:

ıt D ˛.rt C �V.stC1/ � V.st //

8s2SV.s/ V.s/C ıt ".s/

Convergence

TD value function estimation has been shown
to converge under many conditions, but there
are also well known examples where it does not
converge at all, or does not converge to the correct
long term reward (Tsitsiklis 1997).

In particular, temporal differencing has been
shown to converge to the correct value of the long
term discounted reward if,

• The world is finite.
• The world state representation is Markovian.
• The rewards are bounded.
• The representation of the V function has no

constraints (e.g., a tabular representation with
an entry for each state).

• The learning rate, ˛, is reduced according to
the Robbins-Monro conditions:

P1
tD0 ˛t D

1, and
P1

t
D

0 ˛2
t <1:

Much of the further work in TD learning since
its invention has been in finding algorithms that
provably converge in more general cases.

These convergence results require that a
Markovian representation of state be available
to the agent. There has been research into how
to acquire such a representation from a sequence
of observations. The approach of the Temporal
Differencing community has been to use TD-
Networks (Sutton 2004).

Control of Systems
Temporal Difference Learning is used to estimate
the long term reward of a pattern of behavior.
This estimation of utility can then be used to
improve that behavior, allowing TD to help solve
a reinforcement learning problem. There are two
common ways to achieve this: An Actor-Critic
setup uses value function estimation as one com-
ponent of a larger system, and the Q-learning
and SARSA techniques can be viewed as slight
modifications of the TD method which allow the
extraction of control information more directly
from the value function.

First we will formalise the concept of a pattern
of behavior. In the preceding text it was left de-
liberately vague as TD can be applied to multiple
definitions. Here we will focus on discrete action
spaces.

Assume there is a set of allowed actions for the
agent, A. We define a Markov policy as a function
from world states to actions, � W S ! A. We
also define a stochastic or mixed Markov policy
as a function from world states to probability
distributions over actions, � W S ! A ! Œ0; 1�.
The goal of the control algorithm is to find an
optimal policy: a policy that maximises long term
reward in each state. (When function approxima-
tion is used (see section “Approximation”), this
definition of an optimal policy no longer suffices.
One can then either move to average reward if
the system is ergodic, or give a, possibly implicit,
weighting function specifying the relative impor-
tance of different states.)

Actor-Critic Control Systems
Actor-Critic control is closely related to mixed
policy iteration from Markov Decision Process
theory. There are two parts to an actor-critic
system; the actor holds the current policy for

Temporal Difference Learning 1237

T

the agent, and the critic evaluates the actor and
suggests improvements to the current policy.

There are a number of approaches that fall
under this model. One early approach stores a
preference value for each world state and action
pair, p W S � A ! R. The actor then uses
a stochastic policy based on the Gibbs softmax
function applied to the preferences:

�.s; a/ D
ep.s;a/

P
x2AeP.s;x/

The critic then uses TD to estimate the
long term utility of the current policy, and
also uses the TD update to change the
preference values. When the agent is positively
surprised it increases the preference for an
action, when negatively surprised it decreases
the preference for an action. The size of
the increase or decrease is modulated by a
parameter, ˇ:

p.st ; at / p.st ; at /C ˇıt

Convergence of this algorithm to an optimal
policy is not guaranteed.

A second approach requires the agent to have
an accurate model of its environment. In this
approach the critic uses TD to learn a value
function for the current behavior. The actor uses
model based forward search to choose an action
likely to lead to a state with a high expected long
term utility. This approach is common in two
player, zero sum, alternating move games such as
Chess or Checkers where the forward search is a
deterministic game tree search.

More modern approaches which guarantee
convergence are related to policy gradient
approaches to reinforcement learning (Di 2010).
These store a stochastic policy in addition to the
value function, and then use the TD updates to
estimate the gradient of the long term utility with
respect to that policy. This allows the critic to
adjust the policy in the direction of the negative
gradient with respect to long term value, and thus
improve the policy.

Other Value Functions
The second class of approaches to using TD for
control relies upon extending the value function
to estimate the value of multiple actions. Instead
of V we use a state-action value function, Q W

S � A ! R. The update rule for this function is
minimally modified from the TD update defined
for V above.

Once these state-action value functions have
been estimated, a policy can be selected by
choosing for each state the action that maximizes
the state-action value function, and then adding
some exploration.

In order for this extended value function to
be learned, the agent must explore each action
in each state infinitely often. Traditionally this
has been assured by making the agent select
random actions occasionally, even when the agent
believes that action would be sub-optimal. In
general the choice of when to explore using a
sub-optimal action, the exploration/exploitation
trade-off, is difficult to optimize. More
recent approaches to optimizing the explo-
ration/exploitation trade-off in reinforcement
learning estimate the variance of the value
function to decide where they need to explore
(Auer 2007).

The requirement for exploration leads to two
different value functions that could be estimated.
The agent could estimate the value function of
the pattern of behavior currently being executed,
which includes the exploration. Or, the agent
could estimate the value function of the current
best policy, excluding the exploration currently
in use. These are referred to as on-policy and of
f-policy methods respectively.

Q-Learning is an off-policy update rule:

Q.st ; at / Q.st ; at /C ˛.rt C �V.stC1/

�Q.st ; at //

Where V.stC1/ D max
a2A

Q.stC1; a/

SARSA is an on-policy update rule:

Q.st ; at / Q.st ; at /C ˛.rt C �Q.stC1; atC1/

�Q.st ; at //

1238 Temporal Difference Learning

Then for both:

�.s/ D argmaxa2AQ.s; a/

and some exploration.
As can be seen above, the update rules for

SARSA and Q-learning are very similar – they
only differ in the value used for the resulting
state. Q-learning uses the value of the best action,
whereas SARSA uses the value of the action that
will actually be chosen.

Q-Learning converges to the best policy to use
once you have converged and can stop exploring.
SARSA converges to the best policy to use if you
want to keep exploring as you follow the policy
(Lagoudakis 2003).

Approximation
A major problem with many state based algo-
rithms, including TD learning, is the so-called
� curse of dimensionality. In a factored state
representation, the number of states increases
exponentially with the number of factors. This
explosion of states produces two problems: it can
be difficult to store a function over the state space,
and even if the function can be stored, so much
data is required to learn the function that learning
is impractical.

The standard response to the curse of dimen-
sionality is to apply function approximation to
any function of state. This directly attacks the
representation size, and also allows information
from one state to affect another “similar” state
allowing generalisation and learning.

While the addition of function approxima-
tion can significantly speed up learning, it also
causes difficulty with convergence. Some types
of function approximation will stop TD from
converging at all. The resulting algorithms can
either oscillate forever or approach infinite val-
ues. Other forms of approximation cause TD
to converge to a estimate of long term reward
which is only weakly related to the true long term
reward (Gordon 1995; Boyan and Moore 1995;
Baird 1995).

Most styles of function approximation used in
conjunction with TD learning are parameterized,
and the output is differentiable with respect to

those parameters. Formally we have V W Θ !

S ! R, where Θ is the space of possible
parameter vectors, so that V� .s/ is the value of
V at state s with parameter vector � , and rV� .s/

is the gradient of V with respect to � at s. The TD
update then becomes:

ıt D ˛.rt C �V� .stC1/ � V� .st //

� � C ıtrV� .st /

We describe three styles of approximation:
state abstraction, linear approximation, and
smooth general approximators (e.g., neural
networks).

State abstraction refers to grouping states to-
gether and thereafter using the groups, or ab-
stract states, instead of individual states. This
can significantly reduce the amount of storage
required for the value function as only values for
abstract states need to be stored. It also preserves
convergence results. A slightly more advanced
form of state abstraction is the tile coding or
CMAC (Albus 1981). In this type of function ap-
proximation, the state representation is assumed
to be factored, i.e., each state is represented by a
vector of values rather than a single scalar value.
The CMAC represents the value function as the
sum of separate value functions; one for each
dimension of the state. Those individual dimen-
sions can each have their own state abstraction.
Again, TD has been shown to converge when
used with a CMAC value function representation.

In general, any form of function approxima-
tion that forms a contraction mapping will con-
verge when used with TD (see the entry on
�Markov Decision Processes). Linear interpola-
tion is a contraction mapping, and hence con-
verges. Linear extrapolation is not a contraction
mapping and care needs to be taken when using
general linear functions with TD. It has been
shown that general linear function approximation
used with TD will converge, but only when com-
plete trajectories are followed through the state
space (Tsitsiklis 1997).

It is not uncommon to use various types of
back-propagation neural nets with TD, e.g.,
Tesauro’s TD-gammon. More recently, TD

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Temporal Difference Learning 1239

T

algorithms have been proposed that converge for
arbitrary differentiable function approximators
(Papavassiliou 1999; Maei et al. 2009). These
use more complex update techniques than those
shown above.

Related Differencing Systems
TD learning was originally developed for use
in environments where accurate models were
unavailable. It has a close relationship with the
theory of Markov Decision Processes where an
accurate model is assumed. Using the notation
V (st /ÝV.stC1/ for a TD-style update that moves
the value at V.st / closer to the value at V.stC1/

(including any discounting and intermediate re-
wards), we can now consider many possible up-
dates.

As noted above, one way of applying TD to
control is to use forward search. Forward search
can be implemented using dynamic program-
ming, and the result is closely related to TD.
Let state c.s/ be the best child of state s in the
forward search. We can then consider an update,
V.s/ Ý V.c.s//. If we let l.s/ be the best leaf
in the forward search, we could then consider an
update V.s/ Ý V.l.s//. Neither of these updates
consider the world after an actual state transition,
only simulated state transitions, and so neither is
technically a TD update.

Some work has combined both simulated time
steps and real time steps. The TD-Leaf learning
algorithm for alternative move games uses the
V.l.st // Ý V.l.stC1// update rule (Baxter et al.
1998).

An important issue to consider when using
forward search is whether the state distribution
where learning takes place is different to the state
distribution where the value function is used. In
particular, if updates only occur for states the
agent chooses to visit, but the search is using
estimates for states that the agent is not visiting,
then TD may give poor results. To combat this,
the TreeStrap(˛ � ˇ/ algorithm for alternating
move games updates all nodes in the forward
search tree to be closer to the bound information
provided by their children (Veness et al. 2009).

Biological Links
There are strong relationships between TD learn-
ing and the Rescorla–Wagner model of Pavlo-
vian conditioning. The Rescorla–Wagner model
is one way to formalize the idea that learning
occurs when the co-occurence of two events is
surprising rather than every time a co-occurence
is experienced. The Δt value calculated in the TD
update can be viewed as a measure of surprise.
These findings appear to have a neural substrate
in that dopamine cells react to reward when it is
unexpected and to the predictor when the reward
is expected (Schultz et al. 1997; Sutton 1990).

Cross-References

�Curse of Dimensionality
�Markov Decision Processes
�Markov Chain Monte Carlo
�Reinforcement Learning

Recommended Reading

Albus JS (1981) Brains, behavior, and robotics. BYTE,
Peterborough. ISBN:0070009759

Auer P, Ortner R (2007) Logarithmic online regret
bounds for undiscounted reinforcement learning.
Neural and information processing systems (NIPS),
Vancouver

Baird LC (1995) Residual algorithms: reinforcement
learning with function approximation. In: Prieditis
A, Russell S (eds) Machine learning: proceedings
of the twelfth international conference (ICML95).
Morgan Kaufmann, San Mateo, pp 30–37

Baxter J, Tridgell A, Weaver L (1998) Knight-
Cap: a chess program that learns by combining
TD(lambda) with game-tree search. In: Shavlik JW
(ed.) Proceedings of the fifteenth international con-
ference on machine learning (ICML’98). Morgan
Kaufmann, San Francisco, pp 28–36

Bellman RE (1957) Dynamic programming. Princeton
University Press, Princeton

Bertsekas DP, Tsitsiklis J (1996) Neuro-dynamic pro-
gramming. Athena Scientific, Belmont

Boyan JA, Moore AW (1995) Generalization in rein-
forcement learning: safely approximating the value
function. In: Tesauro G, Touretzky DS, Leen TK
(eds) Advances in neural information processing
systems, vol 7. MIT, Cambridge

Di Castro D, Meir R (2010) A convergent online
single time scale actor critic algorithm. J Mach

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

1240 Test Data

Learn Res 11:367–410. http://jmlr.csail.mit.edu/
papers/v11/dicastro10a.html

Gordon GF (1995) Stable function approximation in
dynamic programming. Technical report CMU-CS-
95-103. School of Computer Science, Carnegie
Mellon University

Lagoudakis MG, Parr R (2003) Least-squares policy
iteration. J Mach Learn Res 4:1107–1149. http://
www.cs.duke.edu/�parr/jmlr03.pdf

Maei HR et al (2009) Convergent temporal-difference
learning with arbitrary smooth function approxi-
mation. Neural and information processing systems
(NIPS), pp 1204–1212. http://books.nips.cc/papers/
files/nips22/NIPS2009 1121.pdf

Mahadevan S (1996) Average reward reinforcement
learning: foundations, algorithms, and empirical
results. Mach Learn 22:159–195. doi:10.1023/A:
1018064306595

Papavassiliou VA, Russell S (1999) Convergence of re-
inforcement learning with general function approx-
imators. International Joint Conference on Artificial
Intelligence, Stockholm

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley series
in probability and mathematical statistics. Applied
probability and statistics section. Wiley, New York

Samuel AL (1959) Some studies in machine learn-
ing using the game of checkers. IBM J Res Dev
3(3):210–229

Schultz W, Dayan P, Read Montague P
(1997) A neural substrate of prediction
and reward. Science 275(5306):1593–1599.
doi:10.1126/science.275.5306.1593

Sutton RS (1984) Temporal credit assignment in re-
inforcement learning. Ph.D. thesis, University of
Massachusetts, Amherst

Sutton RS (1988) Learning to predict by the method
of temporal differences. Mach Learn 3:9–44.
doi:10.1007/BF00115009

Sutton RS, Barto AG (1990) Time-derivative models
of Pavlovian reinforcement. In: Gabriel M, Moore
J (eds) Learning and computational neuroscience:
foundations of adaptive networks. MIT, Cambridge,
pp 497–537

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Sutton R, Tanner B (2004) Temporal difference net-
works. Neural and information processing systems
(NIPS), Vancouver

Tesauro G (1995) Temporal difference learning and
TD-gammon. Commun ACM 38(3):58–67

Tsitsiklis JN, Van Roy B (1997) An analysis of
temporal-difference learning with function approxi-
mation. IEEE Trans Autom Control 42(5):674–690

Veness J et al (2009) Bootstrapping from game tree
search. Neural and information processing systems
(NIPS), Whistler

Watkins CJCH (1989) Learning with delayed rewards.
Ph.D. thesis, Psychology Department, Cambridge
University, Cambridge

Test Data

Synonyms

Evaluation data; Test instances

Definition

Test data are data to which a model is applied
for the purposes of � evaluation. When � holdout
evaluation is performed, test data are also called
out-of-sample data, holdout data, or the holdout
set.

Cross-References

�Test Set

Test Instances

�Test Data

Test Set

Synonyms

Evaluation data; Evaluation set; Test data

Definition

A test set is a � data set containing data that
are used for � evaluation by a learning system.
Where the � training set and the test set contain
disjoint sets of data, the test set is known as a
� holdout set.

Cross-References

�Data Set

http://jmlr.csail.mit.edu/papers/v11/dicastro10a.html
http://jmlr.csail.mit.edu/papers/v11/dicastro10a.html
http://www.cs.duke.edu/~parr/jmlr03.pdf
http://www.cs.duke.edu/~parr/jmlr03.pdf
http://books.nips.cc/papers/files/nips22/NIPS2009_1121.pdf
http://books.nips.cc/papers/files/nips22/NIPS2009_1121.pdf
10.1023/A:1018064306595
10.1023/A:1018064306595
http://dx.doi.org/10.1007/978-1-4899-7687-1_100144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100470
http://dx.doi.org/10.1007/978-1-4899-7687-1_265
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_820
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_100144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100146
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_265
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_370
http://dx.doi.org/10.1007/978-1-4899-7687-1_196

Text Mining 1241

T

Test Time

A learning algorithm is typically applied at two
distinct times. Test time refers to the time when
an algorithm is applying a learned model to make
predictions. �Training time refers to the time
when an algorithm is learning a model from
� training data. �Lazy learning usually blurs the
distinction between these two times, deferring
most learning until test time.

Test-Based Coevolution

Synonyms

Competitive coevolution

Definition

A coevolutionary system constructed to simul-
taneously develop solutions to a problem and
challenging tests for candidate solutions. Here,
individuals represent complete solutions or their
tests. Though not precisely the same as competi-
tive coevolution, there is a significant overlap.

Text Learning

�Text Mining

Text Mining

Dunja Mladenić
Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia

Abstract

Text Mining also referred to as Data Mining on
Text, has emerged at the intersection of several
research areas, some focused on data analytics
and others focused more on handling text data.

This entry provides a definition of Text Mining
and links it to related research areas, most of
them included in this book.

Synonyms

Analysis of text; Data mining on text; Text learn-
ing

Definition

The term text mining is used analogous to
�Data Mining when the data is text. As there
are some data specificities when handling text
compared to handling data from � databases,
text mining has a number of specific methods
and approaches. Some of these are extensions
of data mining and machine learning methods,
while others are rather text specific. Text mining
approaches combine methods from several
related fields, including machine learning,
data mining, � Information Retrieval, natural
language processing, �Statistical Learning, and
� Semantic Web. Basic text mining approaches
are also extended to enable handling of different
natural languages (�Cross-Lingual Text Mining)
and are combined with methods for handling
different data types, such as links and graphs
(�Link Mining and Link Discovery, Graph Min-
ing), images and video (multimedia mining), and
sensor data. Adopting �Stream Mining methods
for text data enables analysis of text streams, such
as news feed or social media texts. Text stream
mining can be also combined with other types of
data streams, such as sensor readings, economic
indicators, and video, where time stamp and loca-
tion of the data can play a crucial role in analytics.

Cross-References

�Cross-Lingual Text Mining
� Feature Construction in Text Mining
� Feature Selection in Text Mining
� Semi-Supervised Text Processing
� Stream Mining

http://dx.doi.org/10.1007/978-1-4899-7687-1_975
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_100074
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_100013
http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_100471
http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_100445
http://dx.doi.org/10.1007/978-1-4899-7687-1_835
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://dx.doi.org/10.1007/978-1-4899-7687-1_789
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_102
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://dx.doi.org/10.1007/978-1-4899-7687-1_789

1242 Text Mining for Advertising

�Text Mining for Advertising
�Text Mining for News and Blogs Analysis
�Text Mining for Spam Filtering
�Text Mining for the Semantic Web
�Text Visualization

Text Mining for Advertising

Massimiliano Ciaramita
Yahoo! Research Barcelona, Barcelona, Spain

Synonyms

Content match; Contextual advertising; Spon-
sored search; Web advertising

Definition

Text mining for advertising is an area of in-
vestigation and application of text mining and
machine learning methods to problems such as
Web advertising; e.g., automatically selecting the
most appropriate ads with respect to a Web page,
or query submitted to a search engine. Formally,
the task can be framed as a ranking or matching
problem where the unit of retrieval, rather than a
Web page, is an advertisement. Most of the time
ads have simple and homogeneous predefined
textual structures, however, formats can vary and
include audio and visual information. Advertising
is a challenging problem due to several factors
such as the economic nature of the transactions
involved, engineering issues concerning scalabil-
ity, and the inherent complexity of modeling the
linguistic and multimedia content of advertise-
ments.

Motivation and Background

The role of advertising in supporting and shaping
the development of the Web has substantially
increased over the past years. According to the
Interactive Advertising Bureau (IAB), Internet

advertising revenues in the USA totaled almost
$8 billion in the first 6 months of 2006, a 36.7 %
increase over the same period in 2005, the last
in a series of consecutive growths. Search, i.e.,
ads placed by Internet companies in Web pages
or in response to specific queries, is the largest
source of revenue, accounting for 40 % of total
revenue (Internet Advertising Bureau 2006). The
most important categories of Web advertising are
keyword match, also known as sponsored search
or paid listing, which places ads in the search
results for specific queries (see Fain and Pedersen
2006 for a brief history of sponsored search), and
content match, also called content-targeted ad-
vertising or contextual advertising, which places
ads in Web pages based on the page content.
Figure 1 shows an example of sponsored search
and ads are listed on the right side of the page.

Currently, most of the focus in Web advertis-
ing involves sponsored search, because matching
based on keywords is a well-understood problem.
Content match has greater potential for content
providers, publishers, and advertisers, because
users spend most of their time on the Web on
content pages as opposed to search engine re-
sult pages. However, content match is a harder
problem than sponsored search. Matching ads
with query terms is to a certain degree straight-
forward, because advertisers themselves choose
the keywords that characterize their ads that are
matched against keywords chosen by users while
searching. In contextual advertising, matching is
determined automatically by the page content,
which complicates the task considerably.

Advertising touches challenging problems
concerning how ads should be analyzed, and
how the accurately and efficiently systems select
the best ads. This area of research is developing
rapidly in information retrieval. How best to
model the structure and components of ads,
and the interaction between the ads and the
contexts in that they appear are open problems.
Information retrieval systems are designed to
capture relevance, which is a basic concept in
advertising as well. Elements of an ad such as
text and images tend to be mutually relevant,
and often (in print media for example) ads are
placed in contexts that match a certain product at

http://dx.doi.org/10.1007/978-1-4899-7687-1_826
http://dx.doi.org/10.1007/978-1-4899-7687-1_833
http://dx.doi.org/10.1007/978-1-4899-7687-1_828
http://dx.doi.org/10.1007/978-1-4899-7687-1_835
http://dx.doi.org/10.1007/978-1-4899-7687-1_837
http://dx.doi.org/10.1007/978-1-4899-7687-1_100081
http://dx.doi.org/10.1007/978-1-4899-7687-1_100084
http://dx.doi.org/10.1007/978-1-4899-7687-1_100440
http://dx.doi.org/10.1007/978-1-4899-7687-1_100502

Text Mining for Advertising 1243

T

Text Mining for Advertising, Fig. 1 Ads ranked next to a search results page for the query “Spain holidays”

a topical level; e.g., an ad for sneakers placed on
a sport news page. However, topical relevance is
only one the basic parameters which determine
a successful advertisement placement. For
example, an ad for sneakers might be appropriate
and effective on a page comparing MP3 players,
because they may share a target audience (e.g.,
joggers) although they arguably refer to different
topics, and it is possible they share no common
vocabulary. Conversely, there may be ads that are
topically similar to a Web page, but cannot be
placed there because they are inappropriate. An
example might be placing ads for a product in the
page of a competitor.

The language of advertising is rich and sophis-
ticated and can rely considerably on complex in-
ferential processes. A picture of a sunset in an ad
for life insurance carries a different implication
than a picture of a sunset in an ad for beer. Layout
and visual content are designed to elicit infer-
ences, possibly hinging on cultural elements; e.g.,
the age, appearance, and gender of people in an
ad affect its meaning. Adequate automatic mod-
eling will likely involve, to a substantial degree,

understanding the language of advertisement and
the inferential processes involved (Vestergaard
and Schroeder 1985). Today this seems beyond
what traditional information retrieval systems are
designed to cope with. In addition, the global
context can be captured only partially by mod-
eling the text alone. As the Web evolves into
an immense infrastructure for social interaction
and multimedia information sharing the need for
modeling structured “content” becomes more and
more crucial. This applies to information retrieval
and specifically to advertising. For this reason,
the problem of content match is of particular in-
terest and opens new problems and opportunities
for interdisciplinary research.

Today, contextual advertising, the most inter-
esting sub-task from a mining perspective, con-
sists mostly in selecting ads from a pool to match
the textual content of a particular Web page. Ads
provide a limited amount of text: typically a few
keywords, a title, and brief description. The ad-
placing system needs to identify relevant ads,
from huge ad inventories, quickly and efficiently
based on this very limited amount of information.

1244 Text Mining for Advertising

Current approaches have focused on augmenting
the representation of the page to increase the
chance of a match (Ribeiro-Neto et al. 2005),
or by using machine learning to find complex
ranking functions (Lacerda et al. 2006), or by
reducing the problem of content match to that
of sponsored search by extracting keywords from
the Web page (Yih et al. 2006). All these ap-
proaches are based on methods that quantify the
similarity between the ad and the target page
on the basis of traditional information retrieval
notions such as cosine similarity and tf.idf fea-
tures. The relevance of an ad for a page depends
on the number of overlapping words, weighted
individually and independently as a function of
their individual distributional properties in the
collection of documents or ads.

Structure of Learning Problem

The typical elements of an advertisement are a
set of keywords, a title, a textual description and
a hyperlink pointing to page, the landing page,
relative to a product or service, etc. In addition,
an ad has an advertiser id and can be part of
a campaign, i.e., a subset of all the ads with
same advertiser id. This latter information can be
used, for example, to impose constraints on the
number of ads to display relative to the campaign
or advertiser. While this is possibly the most
common layout, it is important to realize that
ads structure can vary significantly and include
relevant audio and visual content.

In general, the learning problem for an ad-
placing system can be formalized as a ranking
task. Let A be a set of ads, P the set of possible
pages, and Q the set of possible queries. In
keyword match, the goal is to find a function
F W A�Q; e.g., a function that counts the number
of individual common terms or n-grams of such
terms. In content match, the objective is to find a
function F W A � P ! R. The keyword match
problem is to a certain extent straightforward and
amounts to matching small set of terms defined
manually by both the user and the advertiser. The
content match task shares with the former task
the peculiarities of the units of retrieval (the ads),
but introduces new and interesting issues for text

mining and learning because of the more complex
conditioning environment, the Web page content,
which needs to modeled automatically.

In general terms, an ad can be represented
as a feature vector x D Φ.ai , pj / such that
ai 2 A, pj 2 P , and given a d -dimensional
feature space X � R

d , Φ W A � P ! X .
In the traditional machine learning setting, one
introduces a weight vector ˛ 2 R

d which quanti-
fies each feature’s contribution individually. The
vector’s weights can be learned from manually
edited rankings (Lacerda et al. 2006; Ribeiro-
Neto et al. 2005) or from click-through data as
in search results optimization (Joachims 2002).
In the case of a linear classifier the score of an
ad-target page pair xi would be:

F.xI˛/ D

dX

sD1

˛sxs : (1)

Several methods can be used to learn similar or
related models such as perceptron, SVM, boost-
ing, etc. Constraints on the number of advertisers
or campaigns could be easily implemented as
post-ranking filters on the top of the ranked list
of ads or included in a suitable objective func-
tion.

A basic model for ranking ads can be defined
in the vector space model for information
retrieval, using a ranking function based on
cosine similarity, where ads and target pages
are represented as vectors of terms weighted
by fixed schemes such as tf.idf. If only one
feature is used, the cosine based on tf.idf between
the ad and the page, a standard vector space
model baseline is obtained, which is at the
base of the ad-placing ranking functions variants
proposed by Ribeiro-Neto et al. (2005). Recent
work has shown that machine learning-based
models are considerably more accurate than such
baselines. However, as in document retrieval,
simple feature maps which include mostly
coarse-grained statistical properties of the ad-
page pairs, such as tfidf-based cosine, are the
most desirable for efficiency and bias reasons.
Properties of the different components of the ad
can be used and weighted in different ways, and
soft or hard constraints introduced to model the

Text Mining for Advertising 1245

T

presence of the ads keyword in the Web page.
The design space for ad-place systems is vast
and still little explored. All systems presented
so far in the literature make use of manually
annotated data for training and/or evaluating a
model.

Structure of Learning Systems

Web advertising presents peculiar engineering
and modeling challenges and has motivated re-
search in different areas. Systems need to be
able to deal in real time with huge volumes of
data and transactions involving billions of ads,
pages, and queries. Hence several engineering
constraints need to be taken into account; effi-
ciency and computational costs are crucial factors
in the choice of matching algorithms (The Yahoo!
Research Team 2006). Ad-placing systems might
require new global architecture design; e.g., At-
tardi et al. (2004) proposed an architecture for
information retrieval systems that need to handle
large-scale targeted advertising based on an in-
formation filtering model. The ads that appear on
Web pages or search results pages will ultimately
be determined taking into account the expected
revenues and the price of the ads. Modeling the
microeconomics factors of such processes is a
complex area of investigation in itself (Feng et al.
2005).

Another crucial issue is the evaluation of the
effectiveness of the ad-placing systems. Studies
have emphasized the impact of the quality of
the matching on the success of the ad in terms
of click-through rates (Gallagher et al. 2001;
Sherman and Deighton 2001). Although click-
through rates (CTRs) provide a traditional mea-
sure of effectiveness, it has been found that ads
can be effective even when they do not solicit
any conscious response and that the effectiveness
of the ad is mainly determined by the level of
congruency between the ad and the context in
which it appears (Yoo 2006).

Keyword Extraction Approaches
Since the query-based ranking problem is better
understood than contextual advertising, one way

of approaching the latter would be to represent
the content page as a set of keywords and then
ranking the ads based on the keywords extracted
from the content page. Carrasco et al. (2003) pro-
posed clustering of bi-partite advertiser-keyword
graphs for keyword suggestion and identifying
groups of advertisers. Yih et al. (2006) proposed
a system for keyword extraction from content
pages. The goal is to determine which keywords,
or key phrases, are more relevant in a Web page.
Yih et al. develop a supervised approach to this
task from a corpus of pages where keywords
have been manually identified. They show that a
model learned with � logistic regression outper-
forms traditional vector models based on fixed
tf.idf weights. The most useful features to identify
good keywords efficiently are, in this case, term
frequency and document frequency of the candi-
date keywords, and particularly the frequency of
the candidate keyword in a search engine query
log. Other useful features include the similarity
of the candidate with the page’s URL and the
length, in number of words, of the candidate
keyword. In terms of feature representation thus,
they propose a feature map Φ W A ! Q, which
represent a Web page as a set of keywords. The
accuracy of the best learned system is 30.06 %,
in terms of the top predicted keyword being in
the set of manually generated keywords for a
page, against 13.01 % of the simpler tf.idf based
model. While this approach is simple to apply, it
remains to be seen how accurate it is at identify-
ing good ads for a page. It identifies potentially
useful sources of information in automatically-
generated keywords. An interesting related find-
ing concerning keywords is that longer keywords,
about four words long, lead to increased click-
through rates (OneUpWeb 2005).

The Vocabulary Impedance Problem
Ribeiro-Neto et al. (2005) introduced an
approach to content match which focuses on
the vocabulary mismatch problem. They notice
that there tends to be not enough overlap
in the text of the ad and the target page to
guarantee good accuracy; they call this the
vocabulary impedance problem. To overcome
this limitation they propose to generate an

http://dx.doi.org/10.1007/978-1-4899-7687-1_951

1246 Text Mining for Advertising

augmented representation of the target page by
means of a Bayesian model previously applied
to document retrieval (Ribeiro-Neto and Muntz
1996). The expanded vector representation of
the target page includes a significant number of
additional words which can potentially match
some of the terms in the ad. They find that such
a model improves over a standard vector space
model baseline, evaluated by means of 11-point
average precision on a test bed of 100 Web pages,
from 0.168 to 0.253. One possible shortcoming
of such an approach is that generating the
augmented representation involves crawling a
significant number of additional related pages. It
has also been argued (Yih et al. 2006) that this
model complicates pricing of the ads because the
keywords chosen by the advertisers might not be
present in the content of the matching page.

Learning with Genetic Programming
Lacerda et al. (2006) proposed to use machine
learning to find good ranking functions for con-
textual advertising. They use the same data-set
described in Ribeiro-Neto et al. (2005), but use
part of the data for training a model and part
for evaluation purposes. They use a genetic pro-
gramming algorithm to select a ranking function
which maximizes the average precision on the
training data. The resulting ranking function is
a nonlinear combination of simple components
based on the frequency of ad terms in the target
page, document frequencies, document length,
and size of the collections. Thus, in terms of the
feature representation defined earlier, they choose
a feature map which extracts traditional features
from the ad-page pair, but then apply then genetic
programming methods to select complex nonlin-
ear combinations of such features that maximize
a fitness function based on average precision.
Lacerda et al. (2006) find that the ranking func-
tions selected in this way are considerably more
accurate than the baseline proposed in Ribeiro-
Neto et al. (2005); in particular, the best function
selected by genetic programming achieves an av-
erage precision at position three of 0.508, against
0.314 of the baseline.

Semantic Approaches to Contextual
Advertising
The most common approaches to contextual ad-
vertising are based on matching terms between
the ad and the content page. Broder et al. (2007)
notice that this approach (which they call the
“syntactic—” model), can be improved by adopt-
ing a matching model which additionally takes
into account topical proximity; i.e., a “semantic”
model. In their model the target page and the ad
are classified with respect to a taxonomy of top-
ics. The similarity of ad and target page estimated
by means of the taxonomy provides an additional
factor in the ads ranking function. The taxonomy,
which has been manually built, contains approx-
imately 6,000 nodes, where each node represents
a set of queries. The concatenation of all queries
at each node is used as a meta-document, ads
and target pages are associated with a node in the
taxonomy using a nearest neighbor classifier and
tf. idf weighting. The ultimate score of an ad ai

for a page p is a weighted sum of the taxonomy
similarity score and the similarity of ai and p

based on standard syntactic measures (vector co-
sine). On evaluation, Broder et al. (2007) report
a 25 % improvement for mid-range recalls of the
syntactic-semantic model over the pure syntactic
one.

Cross-References

�Boosting
�Genetic Programming
� Information Retrieval
�Model Space
� Precision
� Support Vector Machines
�TF–IDF

Recommended Reading

Attardi G, Esuli A, Simi M (2004) Best bets, thousands
of queries in search of a client. In: Proceedings of
the 13th international conference on World Wide
Web, alternate track papers & posters. ACM Press,
New York

http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_376
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_100309
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_832

Text Mining for News and Blogs Analysis 1247

T

Broder A, Fontoura M, Josifovski V, Riedel L (2007)
A semantic approach to contextual advertising. In:
Proceedings of the 30th annual international ACM
SIGIR conference on research and development in
information retrieval. ACM Press, New York

Carrasco JJ, Fain D, Lang K, Zhukov L (2003) Cluster-
ing of bipartite advertiser-keyword graph. In: Work-
shop on clustering large datasets, IEEE conference
on data mining. IEEE Computer Society Press, New
York

Fain D, Pedersen J (2006) Sponsored search: a brief
history. In: Proceedings of the 2nd workshop on
sponsored search auctions, Ann Arbor. Web Publi-
cations

Feng J, Bhargava H, Pennock D (2005, forthcoming)
Implementing sponsored search in web search en-
gines: computational evaluation of alternative mech-
anisms. Inf J Comput

Gallagher K, Foster D, Parsons J (2001) The medium
is not the message: advertising effectiveness and
content evaluation in print and on the Web. J Advert
Res 41(4):57–70

Internet Advertising Bureau (IAB) (2006) IAB inter-
net advertising revenue report. http://www.iab.net/
resources/adrevenue/pdf/IAB PwC%202006Q2.pdf

Joachims T (2002) Optimizing search engines using
clickthrough data. In: Proceedings of the ACM
conference on knowledge discovery and data mining
(KDD). ACM Press, New York

Lacerda A, Cristo M, Gonçalves MA, Fan W, Ziviani
N, Ribeiro-Neto B (2006). Learning to advertise. In:
Proceedings of the 29th annual international ACM
SIGIR conference on research and development
in information retrieval. ACM Press, New York,
pp 549–556

OneUpWeb (2005) How keyword length affects con-
version rates. http://www.oneupweb.com/landing/
keywordstudy landing.htm

Ribeiro-Neto B, Cristo M, Golgher PB, de Moura
ES (2005) Impedance coupling in content-targeted
advertising. In: Proceedings of the 28th annual in-
ternational ACM SIGIR conference on research and
development in information retrieval. ACM Press,
New York, pp 496–503

Ribeiro-Neto B, Muntz R (1996) A belief network
model for IR. In: Proceedings of the 19th annual in-
ternational ACM SIGIR conference on research and
development in information retrieval. ACM Press,
New York, pp 253–260

Sherman L, Deighton J (2001) Banner advertising:
measuring effectiveness and optimizing placement.
J Interact Mark 15(2):60–64

The Yahoo! Research Team (2006) Content, metadata,
and behavioral information: directions for Yahoo!
Research. IEEE Data Eng Bull 29(4):10–18

Vestergaard T, Schroeder T (1985) The language of
advertising. Blackwell, Oxford

Yih W, Goodman J, Carvalho VR (2006) Finding
advertising keywords on web pages. In: Proceedings
of the 15th international conference on World Wide
Web. ACM Press, New York, pp 213–222

Yoo CY (2006) Preattentive processing of web adver-
tising. Ph.D. thesis, University of Texas, Austin

Text Mining for News and Blogs
Analysis

Bettina Berendt
KU Leuven, Leuven, Belgium

Abstract

News and blogs are temporally indexed online
texts and play a key role in today’s information
distribution and consumption. News commu-
nicate selected information on current events,
written by professional or citizen journalists;
blogs are updated publications on the Web that
span a much wider range of topics, styles, and
authors. Particularly important in recent years
have been microblogs such as Twitter. The
entry gives an overview of how text mining
(for tasks such as description, classification,
prediction, search, recommendation, or sum-
marization) is applied to analyze the textual
parts of news and blogs, extracting topics,
events, opinions, sentiments, and other aspects
of content. Often, textual analysis is comple-
mented by the analysis of further data such
as the social network of authors and readers.
The properties of news and blogs data struc-
tures and language use require methods for
preprocessing and analyzing that are tailored
to news and (micro)blogs, and the tasks often
profit from an interactive approach in which
the user plays an active role in sensemaking.
The methods are deployed in a wide range of
applications and services.

Definition

News is “the communication of selected infor-
mation on current events,” where the selection is

http://www.iab.net/resources/adrevenue/pdf/IAB_PwC%202006Q2.pdf
http://www.iab.net/resources/adrevenue/pdf/IAB_PwC%202006Q2.pdf
http://www.oneupweb.com/landing/keywordstudy_landing.htm
http://www.oneupweb.com/landing/keywordstudy_landing.htm

1248 Text Mining for News and Blogs Analysis

guided by “newsworthiness” or “what interests
the public.” News are also stories, from which
the reader usually expects answers to the five Ws:
who, what, when, where, and why, to which a
“how” is often added. News-style writing – as
opposed to, for example, commentary writing –
generally strives for objectivity and/or neutral-
ity (the representation of different views on the
event).

In this content-centric sense, news can be writ-
ten/authored and published by professional jour-
nalists and news outlets (such as newspapers or
radio or TV stations) but also by anyone else and
in any other form, often called citizen journalism:
“an alternative and activist form of newsgathering
and reporting that functions outside mainstream
media institutions, often as a response to short-
comings in the professional journalistic field, that
uses similar journalistic practices but is driven by
different objectives and ideals and relies on al-
ternative sources of legitimacy than traditional or
mainstream journalism.” (Radsch 2013, p. 159).
However, news, or mainstream (media) news, is
also often thought of in a source-centric way:
reports authored by professional journalists in
mainstream media institutions, as opposed to re-
porting from citizen journalists (or anyone else)
who generally publish on the Web, in the form of
blogs with a certain form of periodicity.

A blog is a (more or less) frequently updated
publication on the Web, sorted in reverse chrono-
logical order of the constituent blog posts. Blog
content may reflect any interest including journal-
istic, personal, corporate, and many others. Early
blog posts (late 1990s) tended to be published
on content management platforms without length
restrictions; with the success of Twitter and simi-
lar microblogging platforms, much blogging (and
of blog mining) has shifted to short posts (e.g.,
140 characters on Twitter.com and Weibo.cn,
although the latter’s Chinese characters allow
for much more complex messages). Twitter in
particular has attained a major worldwide role in
the fast diffusion of news (or short summaries and
statements, enriched by hyperlinks to more text
and other media), with citizen journalists, main-
stream media themselves, politicians, and others

being the publishers (Kwak et al. 2010). Current
research in blog mining and the remainder of the
present entry reflect this dominance of (a) news or
news-related content and (b) microblog format.
In addition, blog mining overlaps with social-
media mining (Zafarani et al. 2014). In particular,
the social graph of a microblogger allows the
mining analyst to track the blogger’s sources and
readers/“followers” along with the contents.

News and blogs consist of textual and (in
some cases) pictorial content and, when Web-
based, may contain additional content in any
other format (e.g., video, audio) and hyperlinks.
They are indexed by time and structured into
smaller units: news media into articles and blogs
into blog posts. In most news and blogs, textual
content dominates. Therefore, text analysis is
the most often applied form of knowledge dis-
covery. This comprises tasks and methods from
data/text mining, � information retrieval, and re-
lated fields. In accordance with the increasing
convergence of these fields, this entry refers to
all of them as � text mining. The present entry
will illustrate the overlap with/use of these fields
and highlight the specifics that derive from the
domain, including data, tasks, users, and use
cases.

Motivation and Background

News and blogs are today’s most common
sources for learning about current events and
also, in the case of blogs, for uttering opinions
about current events. In addition, they may
deal with topics of more long-term interest.
Both reflect and form societies’, groups’,
and individuals’ views of the world, fast or
even instantaneous with the events triggering
the reporting. However, there are differences
between these two types of media regarding
authoring, content, and form. News is generally
authored by people with journalistic training who
abide by journalistic standards regarding the style
and language of reporting. Topics and ways of
reporting are circumscribed by general societal
consensus and the policies of the news provider.

http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

Text Mining for News and Blogs Analysis 1249

T

In contrast, everybody with Internet access can
start a blog, and there are no restrictions on
content and style (beyond the applicable types of
censorship). Thus, blogs offer end users a wider
range of topics and views on them.

These application characteristics lead to var-
ious linguistic and computational challenges for
text mining analyses of news and blogs:

– Indexing, taxonomic categorization, partial
redundancy, and data streams: News is
indexed by time and by source (news agency
or provider). In a multisource corpus, many
articles published at about the same time (in
the same or in other languages) describe the
same events. Over time, a story may develop
in the articles. Such multiple reporting and
temporal structures are also observed for
popular topics in blogs.

– Language and meaning: News is written in
clear, correct, “objective,” and somewhat
schematized language. Usually, the start of
a news article summarizes the whole article
(feeds are a partial analogue of this in blogs).
Information from external sources such as
press agencies is generally reused rather
than referenced. In sum, news makes fewer
assumptions about the reader’s background
and context knowledge than many other texts.

– Nonstandard language and subjectivity: The
language in blogs ranges from high-quality,
“news-like” language via poor-quality,
restricted-code language with many spelling
and grammatical errors to creative, sometimes
literary, language. A blog may employ high-
quality language but operate outside the
news genre or across journalistic genres
(e.g., combining current-events reporting with
commentary and background information).
Jargon is very common in blogs, and new
linguistic developments are adopted far more
quickly than could be reflected in external
resources such as lexica. Many blog authors
strive not for objectivity but for subjectivity
and emotionality.

– Thematic diversity and new forms of cat-
egorization: News are generally categorized

by topic area (“politics,” “business,” etc.). In
contrast, a blog author may choose to write
about differing, arbitrary topics. When blogs
are labeled, it is usually not with reference
to a stable, taxonomic system, but with an
arbitrary number of tags: free-form, often in-
formal labels chosen by the user.

– Context and its impact on content and mean-
ing: The content of a blog (post) is often
not contained in the text alone. Rather, blog
software supports “Web” and “Social Web”
behavior, and bloggers practice it: multiway
communication rather than broadcasting and
semantics-inducing referencing of both con-
tent and people. Specifically, hyperlinks to
other resources provide not only context but
also content, as do links to and from cited resp.
citing people/sources. The latter evolved from
“blogrolls” resp. “trackback links” in early
blog software to “followees” and “retweet”
links resp. “followers” in platforms such as
Twitter.

Structure of the Learning System

Tasks
From a text mining point of view, tasks can be
grouped by different criteria:

– Basic task and type of result: description,
classification, and prediction (supervised
or unsupervised, includes, for example,
topic identification, tracking, and/or novelty
detection, spam detection), search (ad hoc
or filtering), recommendation (of blogs, blog
posts, or (hash-)tags), and summarization

– Higher-order characterization to be extracted:
especially topic or event, opinion, or sentiment

– Time dimension: nontemporal, temporal
(stream mining), and multiple streams (e.g.,
in different languages; see cross-lingual � text
mining)

– User adaptation: none (no explicit mention
of user issues and/or general audience), cus-
tomizable, and personalized

http://dx.doi.org/10.1007/978-1-4899-7687-1_831

1250 Text Mining for News and Blogs Analysis

Real-world applications increasingly employ
selections or, more often, combinations of these
tasks by their intended users and use cases, in
particular:

– News aggregators allow laypeople and profes-
sional users (e.g., journalists) to see “what’s in
the news” and to compare different sources’
texts on one story. Reflecting the presumption
that news (especially mainstream news –
sources for news aggregators are usually
whitelisted) are mostly objective/neutral,
these aggregators focus on topics and events.
News aggregators are now provided by all
major search engines.

– Social-media monitoring tools allow laypeo-
ple and professional users to track not only
topical mentions of a keyword or named entity
(e.g., person, brand) but also aggregate senti-
ment toward it. The focus on sentiment reflects
the perceptions that even when news-related,
social-media content tends to be subjective
and that studying the blogosphere is therefore
an inexpensive way of doing market research
or public opinion research. The whitelist here
is usually the platforms (e.g., Twitter, Tum-
blr, LiveJournal, Facebook) rather than the
sources themselves, reflecting the huge size
and dynamic structure of the blogosphere/the
Social Web. The landscape of commercial and
free social-media monitoring tools is wide and
changes frequently; up-to-date overviews and
comparisons can easily be found on the Web.

– Emerging application types include text min-
ing not of but for journalistic texts, in partic-
ular natural language generation in domains
with highly schematized event structures and
reporting, such as sports and finance reporting
(e.g., Allen et al. 2010, narrativescience.com)
and social-media monitoring tools for helping
journalists find sources (Diakopoulos et al.
2012).

Some tools have dashboard-style interfaces
and complex data graphics, which may be most
interesting for some professional users. However,
the increasing move especially of casual users

toward mobile devices with small screens has led
to most applications showing original content and
mining output that consists of (especially short)
texts and a small number of (especially numeric)
analytics.

Solution Approaches

Standardization: Tasks, Datasets, and APIs
The development of methods for mining news,
blogs, and social media in general has profited
from standard datasets and standard tasks
and competitions. Prominent examples are the
Reuters-21578 dataset, which is not only a
collection of newswire articles but also the
most classical dataset for text mining in general
(https://archive.ics.uci.edu/ml/datasets/Reuters-2
1578+Text+Categorization+Collection); the
larger and also multilingual RCV1, RCV2, and
TRC2 datasets (http://trec.nist.gov/data/reuters/
reuters.html); the blog datasets provided by
the International Conference on Weblogs and
Social Media (ICWSM, http://www.icwsm.
org); and the SNAP datasets (https://snap.
stanford.edu/data). The Topic Detection and
Tracking (TDT) research program and workshops
(http://www.itl.nist.gov/iad/mig/tests/tdt; Allan
2002) were essential in the formation of news
mining as a research topic. Important tasks
and competitions that are ongoing, and that
also offer important datasets, include the Text
Retrieval Conference (TREC, http://trec.nist.
gov) and the Text Analysis Conference (TAC,
http://www.nist.gov/tac), formerly Document
Understanding Conference (DUC, http://duc.
nist.gov). The history of tracks/tasks over time in
these conferences also illustrates how fields have
matured or become less relevant; for example,
“blog tracks” have been replaced since 2010 by
“microblog tracks,” and “topic detection” has
given way to “event detection.”

Standard datasets are one answer to a central
problem in news, blogs, and social-media mining
in general. Since most platforms are commercial,
they restrict access to their current or archived
editions. Other platforms offer a free API but
make it return a sample whose representativeness
and/or even sampling criteria are not known;

https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
http://trec.nist.gov/data/reuters/reuters.html
http://trec.nist.gov/data/reuters/reuters.html
http://www.icwsm.org
http://www.icwsm.org
https://snap.stanford.edu/data
https://snap.stanford.edu/data
http://www.itl.nist.gov/iad/mig/tests/tdt
http://trec.nist.gov
http://trec.nist.gov
http://www.nist.gov/tac
http://duc.nist.gov
http://duc.nist.gov

Text Mining for News and Blogs Analysis 1251

T

this can affect mining results severely (Morstatter
et al. 2013). In addition, the terms of use present
a challenge for creating reusable datasets (for a
solution approach, see McCreadie et al. 2012).

A further caveat concerns all social-media
mining results: In general, APIs only give access
to “public” posts and not to posts that users have
set to “private” or otherwise limited to a restricted
audience. In addition, having gained access to
an individual’s online communication does not
mean one may use or process it. Thus, privacy
and data protection considerations limit the uses
of social media for research, and they require
careful interpretations of the results: these may
be representative of the public utterances of users,
but not all of their online communication.

The Modeling Phase of Text Mining
Solution approaches are based on general data
mining methods and adapted to the conceptual
specifics of news and blogs and their mining
tasks (see list of tasks above). Methods include
(document) � classification and � clustering and
latent-variable techniques such as (P)LSA or
LDA (cf. � feature construction; specifically for
an overview of topic models, see Blei 2012),
�mixture models, � time series, and � stream
mining methods.

Named-entity recognition (e.g., Atkinson and
Van der Goot 2009; Ritter et al. 2011; Li et al.
2012) is an important part or companion of tasks
such as topic detection or text enrichment (e.g.,
Štajner et al. 2010). Topic tracking and event
threading are used to follow a news story unfold-
ing over time (e.g., Shahaf and Guestrin 2010),
and especially for the purposes of summarization
over time, special attention is paid to bursty
topics or events (term introduced by Kleinberg
2002; see Subašić and Berendt 2013 for further
references and empirical comparison), i.e., those
that are marked by “spikes” in the frequency or
other weight of reporting at certain points in time.

Information extraction can help to extract the
event(s) of a news story. Events involve named
entities (e.g., people and locations), a time, and
a characterization of what the event is about.
Information extraction can leverage background
ontologies (e.g., Kuzey et al. 2014). This cov-

ers the first four of the “five Ws” of a news
story; the “why” and “how” at present remain to
be extracted by human readers from the origi-
nal text (which is therefore generally accessible
from platforms; see remarks on semiautomatic
sensemaking below). Clustering can be useful
for the extraction of events from multilingual
sources (Leban et al. 2014). Regularities in how
reporting (or the world?) evolves have also been
used for predicting events from news (Radinsky
and Horvitz 2013). The brevity of microblogs
combined with the speed and volume of their
streams poses special challenges for event detec-
tion (McCreadie et al. 2013).

Sentiment analysis and opinion mining are
key especially for analyzing blogs and other
social media (see overviews in Feldman 2013;
Pang and Lee 2007; Potts 2013), and they are
evolving toward more sophisticated methods that
take syntactic structure and background knowl-
edge/semantics into account (e.g., Gangemi
et al. 2014). Sentiment analysis and opinion
mining are designed to detect and classify
“subjective” content and as such describes
(some) social-media content well. It can also
be appropriate for “subjective” journalistic
genres such as commentary. However, this
does not mean that news is really – or can
ever be truly – objective. The often subtle and
often subconscious structures, backgrounds, and
convictions that express themselves in how a
news story is told are referred to as media bias
or framing, and text mining has begun to address
them (e.g., Recasens et al. 2013; Pollak et al.
2011; Odijk et al. 2013).

Further classification tasks that are specifically
relevant for news and blogs are generally solved
with features that are characteristic of the domain
and/or can be easily extracted from its data. They
include (a) geolocation (e.g., Hale et al. 2012), (b)
recommendation (e.g., tracking multiple topics
over time in news, personalized to a user whose
interests may change over time was developed
by Pon et al. 2007; an approach for microblogs
was proposed by Ren et al. 2013), and (c) spam
detection and blocking (Kolari et al. 2006; for
a general overview, see Castillo and Davison
2011).

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_552
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_789

1252 Text Mining for News and Blogs Analysis

Text summarization (for an overview, see
Fiori 2014; specifically for microblogs, see
Mackie et al. 2014) is a key technique for
helping users to get an overview of (a) a single
document’s key messages or (b) a multitude
by different documents, often from different
sources that in turn may have copied from
one another. Today, most summarizations are
extractive, either extracting key sentences or
non-sentence structures such as graphs. In real-
world applications, even simpler forms are
still predominant, including the extraction of
single terms based, for example, on frequency
and their display in tag clouds and the use
of the first sentences of news articles that, by
journalistic writing conventions, are designed to
summarize the text. Abstractive summarization
involves the generation of natural language,
which remains a hard problem. Today, it is
used mostly for text genres that are highly
schematized, such that templates can be used
and filled with the entities/constants relevant to
the story at hand (see “Emerging application
types” above).

Texts, or text summaries, can be represented
not only as bags of words, sets of topics or
events but also as graphs in which words and/or
named entities stand in multiple relations to one
another (see Berendt et al. 2014, for examples and
further references). (Shallow) semantic parsing
is often used to extract triples (e.g., subject-
predicate-object statements) (e.g., Štajner et al.
2010; Sudhahar et al. 2015).

Text-based modeling can be enhanced by (e.g.,
social) network structure (e.g., Mei et al. 2008)
(cf. � link mining and link discovery). The anal-
ysis of how the actors in a network influence one
another is important for the domain of news and
social media (Guille et al. 2013). Such analyses
are applied not only to individual text producers
but more often to whole domains. One general
question is how blogs and news, viewed in the
aggregate, refer to and contextualize each other
(e.g., Gamon et al. 2008; Berendt and Trümper
2009; Leskovec et al. 2009).

Specifics of Data Understanding, Data
Cleaning, and Data Preparation
Data cleaning is similar to that of other online
documents; in particular, it requires the provision
or learning of wrappers for removing mark-up
elements. Analysis methods that focus on text
mining usually ignore hypermedia elements such
as photographs and videos or use only their meta-
data.

While news texts employ standard language
and can be handled with general-purpose text-
analysis software, the language of (micro-)blogs
requires specific lexica (e.g., containing the fre-
quently used emoticons), abbreviation expansion
and grammatical rules, and similar techniques
(see “Noah’s ARK” at http://www.ark.cs.cmu.
edu/TweetNLP/ for a suite of tools and refer-
ences), and linguists have found that rather than
being “wrong” and ungrammatical, microblogs
are evolving toward new systems that resemble
spoken language and indicate nuances such as
geographical region (Eisenstein 2015). Like other
social media, they often contain irony and other
indirect uses of language for expressing appreci-
ation or discontent (e.g., Veale and Hao 2010),
and this remains a major stumbling block for the
machine understanding of these texts.

The semi-structured nature of blogs and news
can give valuable cues for understanding. For
example, the format elements “timestamp” and
“number of comments” can be treated as indi-
cators of increased topical relevance and likeli-
hood of being opinionated, respectively (Mishne
2007). A combination of text clustering and tag
analysis can serve to identify topics as well as the
blogs that are on topic and likely to retain this
focus over time (Hayes et al. 2007). Twitter hash-
tags have been used, for example, as indicators of
sentiment (Wang et al. 2011).

Like other online texts, news and blogs make
frequent use of hyperlinks, and the content of
linked materials may be necessary even for
a human reader to understand a post. This is
particularly true for microblogs that are often
mere pointers to a URL, or a URL plus a

http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://www.ark.cs.cmu.edu/TweetNLP/
http://www.ark.cs.cmu.edu/TweetNLP/

Text Mining for News and Blogs Analysis 1253

T

short comment. Many mining methods therefore
enrich the text by, for example, the contents
of referenced URLs (e.g., Abel et al. 2011).
Semantic enrichment can also utilize external
(semi-)structured data; for example, Wikification
can add context information to microblogs by
drawing on Wikipedia or DBPedia (e.g., Cheng
and Roth 2013). All these methods can help to
enrich and to disambiguate meaning.

The Importance of Interactive Tools for
Semi-automatic Sensemaking
Like most of text mining, machine analyses of
news, blogs, and other social media are a first
step in a process of human sensemaking, whether
for news consumers or for news producers. It
is therefore imperative to provide them with in-
terfaces that support further steps. Thus, tools
for news consumers (such as news aggregators)
typically provide links to the original articles.
Tools for news producers show statistics (such
as aggregate opinions of “the crowd” or proper-
ties of one potential source) as an information
for journalists, and topics or events detected in
corpora are generally a starting point for a story,
but not a story in and of themselves. Reading,
understanding, and writing news and blogs can
probably never be totally automated. One reason
for this is that different people read a given text
differently, which is well known in social science
media research but still often neglected in com-
putational research – maybe because it requires
us to question key methodological concepts of
text mining such as “the ground truth.” Interactive
tools for story detection and tracking have been
proposed as an answer to this dilemma (Berendt
et al. 2014), and drag-and-drop story editors are
used to create one’s own new story (storify.com).

In addition, text mining as a method for deal-
ing with large data volumes is often in compe-
tition with or combined with human intelligence
for doing the same. Thus, for example, the con-
tributions from many (often unpaid) volunteers
and interface elements such as voting consti-
tute the “social news aggregator” reddit.com, and

Twitter’s “retweeting” is a major, and human-led,
way in which tweets are fed into, and develop
influence across, multiple sub-networks formed
by the platform’s users. In these human-machine
collaborations, the algorithms employed by a
platform however are not neutral companions, but
shape how users perceive others’ opinions, which
in turn affects their further posting behavior. For
example, Twitter’s “trending topics” algorithm
rewards bursty topics (cf. Wilson 2013). This im-
plies that even a topic contained in many tweets
can, if the interest over time remains stable,
disappear from the trending topics and thereby
from public visibility. The implications of such
algorithmic decisions on user choices and percep-
tions as well as public decisions and policy are a
new research topic that will be relevant not only
for text mining.

Recommended Reading

Abel F, Gao Q, Houben G-J, Tao K (2011) Semantic
enrichment of Twitter posts for user profile con-
struction on the social web. In: Proceedings of
ESWC (2), pp 375–389

Allan J (ed) (2002) Topic detection and tracking: event-
based information organization. Kluwer Academic
Publishers, Norwell

Allen ND, Templon JR, McNally PS, Birnbaum
L, Hammond K (2010) StatsMonkey: a data-
driven sports narrative writer. In: Proceedings of
2010 AAAI fall symposium series. AAAI Press.
http://www.aaai.org/ocs/index.php/FSS/FSS10/pap
er/view/2305

Atkinson M, Van der Goot E (2009) Near real time
information mining in multilingual news. In: Pro-
ceedings of the 18th international conference on
World Wide Web (WWW’09). ACM, New York,
pp 1153–1154

Berendt B, Last M, Subašić I, Verbeke M (2014) New
formats and interfaces for multi-document news
summarization and its evaluation. In: Fiori, pp 231–
255

Berendt B, Trümper D (2009) Semantics-based analy-
sis and navigation of heterogeneous text corpora: the
Porpoise news and blogs engine. In: Ting I-H, Wu
H-J (eds) Web mining applications in e-commerce
and e-services. Springer, Berlin

Blei DM (2012) Probabilistic topic models. Commun
ACM 55(4):77–84

http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/view/2305

1254 Text Mining for News and Blogs Analysis

Castillo C, Davison BD (2011) Adversarial web
search. Found Trends Inf Retr 4(5):377–486.
doi:10.1561/1500000021

Cheng X, Roth D (2013) Relational inference for Wiki-
fication. In: Proceedings of EMNLP 2013, pp 1787–
1796

Diakopoulos N, De Choudhury M, Naaman M (2012)
Finding and assessing social media information
sources in the context of journalism. In: Proceedings
of CHI 2012. ACM, pp 2451–2460

Eisenstein J (2017) Written dialect variation in
online social media. In: Boberg C, Nerbonne
J, Watt D (eds) The handbook of dialectol-
ogy. Wiley-Blackwell, Hoboken. Preprint avail-
able at http://www.cc.gatech.edu/jeisenst/papers/
dialectology-chapter.pdf

Feldman R (2013) Techniques and applications for
sentiment analysis. Commun ACM 56(4):82–89

Fiori A (ed) (2014) Innovative document summariza-
tion techniques: revolutionizing knowledge under-
standing. IGI Global, Hershey

Gamon M, Basu S, Belenko D, Fisher D, Hurst M,
König AC (2008) BLEWS: using blogs to pro-
vide context for news articles. In: Adar E, Hurst
M, Finin T, Glance N, Nicolov N, Tseng B, Sal-
vetti F (eds) Proceedings of the second interna-
tional conference on weblogs and social media
(ICWSM’08), Seattle/Menlo Park. http://www.aaai.
org/Papers/ICWSM/2008/ICWSM08-015.pdf

Gangemi A, Presutti V, Reforgiato Recupero D (2014)
Frame-based detection of opinion holders and top-
ics: a model and a tool. IEEE Comput Intell Mag
9(1):20–30

Guille A, Hacid H, Favre C, Zighed DA (2013) Infor-
mation diffusion in online social networks: a survey.
SIGMOD Rec 42(2):17–28

Hale S, Gaffney D, Graham M (2012) Where in the
world are you? Geolocation and language identi-
fication in Twitter. In: Proceedings of ICWSM’12,
pp 518–521

Hayes C, Avesani P, Bojars U (2007) An analysis of
bloggers, topics and tags for a blog recommender
system. In: Berendt B, Hotho A, Mladeni D, Semer-
aro G (eds) From web to social web: discovering
and deploying user and content profiles. LNAI 4737.
Springer, Berlin

Kleinberg JM (2002) Bursty and hierarchical struc-
ture in streams. In: Proceedings of SIGKDD 2002,
pp 91–101

Kolari P, Java A, Finin T, Oates T, Joshi A (2006)
Detecting spam blogs: a machine learning approach.
In: Proceedings of the 21st national conference on
artificial intelligence. AAAI, Boston

Kuzey E, Vreeken J, Weikum G (2014) A fresh look
on knowledge bases: distilling named events from
news. In: Proceedings of CIKM 2014, pp 1689–
1698

Kwak H, Lee C, Park H, Moon S (2010) What is
Twitter, a social network or a news media? In:
Proceedings of WWW. ACM, pp 591–600

Leban G, Fortuna B, Brank J, Grobelnik M (2014)
Event registry: learning about world events from
news. In: Proceedings of WWW 2014 (companion
volume), pp 107–110

Leskovec J, Backstrom L, Kleinberg J (2009) Meme-
tracking and the dynamics of the news cycle. In:
Elder IV JF, Fogelman-Soulié F, Flach PA, Zaki
MJ (eds) Proceedings of the 15th ACM SIGKDD
international conference on knowledge discovery
and data mining, Paris/New York

Li C, Weng J, He Q, Yao Y, Datta A, Sun A,
Lee B-S (2012) TwiNER: named entity ecogni-
tion in targeted Twitter stream. In: Proceedings
of the 35th international ACM SIGIR conference
on research and development in information re-
trieval (SIGIR’12). ACM, New York, pp 721–730.
doi:10.1145/2348283.2348380

Mackie S, McCreadie R, Macdonald C, Ounis I (2014)
Comparing algorithms for microblog summarisa-
tion. In: Proceedings of CLEF 2014, pp 153–159

McCreadie R, Macdonald C, Ounis I, Osborne M,
Petrovic S (2013) Scalable distributed event detec-
tion for Twitter. In: Proceedings of BigData confer-
ence 2013, pp 543–549

McCreadie R, Soboroff I, Lin J, Macdonald C,
Ounis I, McCullough D (2012) On building a
reusable Twitter corpus. In: Proceedings of the
35th international ACM SIGIR conference on re-
search and development in information retrieval
(SIGIR’12). ACM, New York, pp 1113–1114.
doi:10.1145/2348283.2348495

Mei Q, Cai D, Zhang D, Zhai C (2008) Topic modeling
with network regularization. In: Huai J, Chen R
(eds) Proceeding of the 17th international confer-
ence on world wide web (WWW’08), Beijing/New
York. doi:10.1007/978-0-387-30164-8 827

Mishne G (2007) Using blog properties to improve
retrieval. In: Glance N, Nicolov N, Adar E, Hurst
M, Liberman M, Salvetto F (eds) Proceedings of
the international conference on weblogs and social
media (ICWSM), Boulder. http://www.icwsm.org/
papers/paper25.html

Morstatter F, Pfeffer J, Liu H, Carley KM (2013) Is the
sample good enough? Comparing data from Twit-
ter’s streaming API with Twitter’s firehose. In: Pro-
ceedings of ICWSM 2013. http://www.aaai.org/ocs/
index.php/ICWSM/ICWSM13/paper/view/6071

Odijk D, Burscher B, Vliegenthart R, de Rijke M
(2013) Automatic thematic content analysis: finding
frames in news. In: Social informatics 2013. LNCS
8238. Springer, Berlin, pp 333–345

Pang B, Lee L (2007) Opinion mining and sentiment
analysis. Found Trends Inf Retr 2(1–2):1–135

Pollak S, Coesemans R, Daelemans W, Lavraè N
(2011) Detecting contrast patterns in newspaper
articles by combining discourse analysis and text
mining. Pragmatics 21(4):647–683

Pon RK, Cardenas AF, Buttler D, Critchlow T (2007)
Tracking multiple topics for finding interesting ar-
ticles. In: Berkhin P, Caruana R, Wu X (eds)

http://www.cc.gatech.edu/jeisenst/papers/dialectology-chapter.pdf
http://www.cc.gatech.edu/jeisenst/papers/dialectology-chapter.pdf
http://www.aaai.org/Papers/ICWSM/2008/ICWSM08-015.pdf
http://www.aaai.org/Papers/ICWSM/2008/ICWSM08-015.pdf
http://www.icwsm.org/papers/paper25.html
http://www.icwsm.org/papers/paper25.html
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6071
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/view/6071

Text Mining for Spam Filtering 1255

T

Proceedings of the 13th ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining, San Jose/New York

Potts (2013) Introduction to sentiment analysis.
(slide set). http://www.stanford.edu/class/cs224u/
slides/2013/cs224u-slides-02-26.pdf. Retrieved 15
Feb 2015

Radinsky K, Horvitz E (2013) Mining the web to
predict future events. In: Proceedings of WSDM
2013, pp 255–264

Radsch CC (2013) Digital dissidence & political
change: cyberactivism and citizen journalism in
Egypt. Doctoral Dissertation, School of Interna-
tional Service, American University. Available at
SSRN:http://ssrn.com/abstract=2379913

Recasens M, Danescu-Niculescu-Mizil C, Jurafsky D
(2013) Linguistic models for analyzing and detect-
ing biased language. In: Proceedings of ACL

Ren Z, Liang S, Meij E, de Rijke M (2013) Personal-
ized time-aware tweets summarization. In: Proceed-
ings of the 36th international ACM SIGIR confer-
ence on research and development in information
retrieval (SIGIR’13). ACM, New York, pp 513–522.
doi:10.1145/2484028.2484052

Ritter A, Clark S, Mausam, Etzioni O (2011)
Named entity recognition in tweets: an experimen-
tal study. In: Proceedings of the conference on
empirical methods in natural language processing
(EMNLP’11). Association for Computational Lin-
guistics, Stroudsburg, pp 1524–1534

Shahaf D, Guestrin C (2010) Connecting the dots
between news articles. In: Proceedings of SIGKDD
2010, pp 623–632

Sudhahar S, de Fazio G, Franzosi R, Cristian-
ini N (2015) Network analysis of narrative con-
tent in large corpora. Nat Lang Eng 21(1):
81–112

Štajner T, Rusu D, Dali L, Fortuna B, Mladenic D,
Grobelnik M (2010) A service oriented framework
for natural language text enrichment. Informatica
(Ljublj.) 34(3):307–313

Subašić I, Berendt B (2013) Story graphs: tracking
document set evolution using dynamic graphs. Intell
Data Anal 17(1):125–147

Veale T, Hao Y (2010) Detecting ironic intent in
creative comparisons. In: Coelho H, Studer R,
Wooldridge M (eds) Proceedings of the 2010 con-
ference on ECAI 2010: 19th European conference
on artificial intelligence. IOS Press, Amsterdam,
pp 765–770

Wang X, Wei F, Liu X, Zhou M, Zhang M (2011) Topic
sentiment analysis in Twitter: a graph-based hashtag
sentiment classification approach. In: Berendt B, de
Vries A, Fan W, Macdonald C, Ounis I, Ruthven
I (eds) Proceedings of the 20th ACM international
conference on information and knowledge manage-
ment (CIKM’11). ACM, New York, pp 1031–1040.
doi:10.1145/2063576.2063726

Wilson R (2013) Trending on Twitter: a look at
algorithms behind trending topics. Ignite social

media blog. http://www.ignitesocialmedia.com/tw
itter-marketing/trending-on-twitter-a-look-at-algorit
hms-behind-trending-topics/. Retrieved 15 Feb
2015

Zafarani R, Abbasi MA, Liu H (2014) Social me-
dia mining: an introduction. Cambridge University
Press, Cambridge

Text Mining for Spam Filtering

Aleksander KoŁcz
Microsoft One Microsoft Way, Redmond, WA,
USA

Synonyms

Commercial Email Filtering; Junk email filtering;
Spam detection; Unsolicited commercial email
filtering

Definition

Spam filtering is the process of detecting un-
solicited commercial email (UCE) messages on
behalf of an individual recipient or a group of
recipients. Machine learning applied to this prob-
lem is used to create discriminating models based
on labeled and unlabeled examples of spam and
nonspam. Such models can serve populations of
users (e.g., departments, corporations, ISP cus-
tomers) or they can be personalized to reflect the
judgments of an individual. An important aspect
of spam detection is the way in which textual
information contained in email is extracted and
used for the purpose of discrimination.

Motivation and Background

Spam has become the bane of existence for both
Internet users and entities providing email ser-
vices. Time is lost when sifting through un-
wanted messages and important emails may be
lost through omission or accidental deletion. Ac-
cording to various statistics, spam constitutes the

http://www.stanford.edu/class/cs224u/slides/2013/cs224u-slides-02-26.pdf
http://www.stanford.edu/class/cs224u/slides/2013/cs224u-slides-02-26.pdf
http://ssrn.com/abstract=2379913
http://www.ignitesocialmedia.com/twitter-marketing/trending-on-twitter-a-look-at-algorithms-behind-trending-topics/
http://dx.doi.org/10.1007/978-1-4899-7687-1_100070
http://dx.doi.org/10.1007/978-1-4899-7687-1_100230
http://dx.doi.org/10.1007/978-1-4899-7687-1_100434
http://dx.doi.org/10.1007/978-1-4899-7687-1_100498

1256 Text Mining for Spam Filtering

majority of emails sent today and a large portion
of emails actually delivered. This translates to
large costs related to bandwidth and storage use.
Spam detection systems help to alleviate these
issues, but they may introduce problems of their
own, such as more complex user interfaces, de-
layed message delivery, and accidental filtering
of legitimate messages. It is not clear if any one
approach to fighting spam can lead to its com-
plete eradication and a multitude of approaches
have been proposed and implemented. Among
existing techniques are those relying on the use
of supervised and unsupervised machine learning
techniques, which aim to derive a model dif-
ferentiating spam from legitimate content using
textual and nontextual attributes. These methods
have become an important component of the an-
tispam arsenal and draw from the body of related
research such as text classification, fraud detec-
tion and cost-sensitive learning. The text mining
component of these techniques is of particular
prominence given that email messages are pri-
marily composed of text. Application of machine
learning and data mining to the spam domain is
challenging, however, due, among others, to the
adversarial nature of the problem (Dalvi et al.
2004; Fawcett 2003).

Structure of the Learning System

Overview
A machine-learning approach to spam filtering
relies on the acquisition of a learning sample of
email data, which is then used to induce a classi-
fication or scoring model, followed by tuning and
setup to satisfy the desired operating conditions.
Domain knowledge may be injected at various
stages into the induction process. For example,
it is common to a priori specific features that are
known be highly correlated with the spam label,
e.g., certain patterns contained in email headers
or certain words or phrases. Depending on the
application environment, messages classified as
spam are prevented from being delivered (e.g.,
are blocked or “bounced”), or are delivered with a
mechanism to alert users to their likely spam na-
ture. Filter deployment is followed by continuous

evaluation of its performance, often accompanied
by the collection of error feedback from its users.

Data Acquisition
A spam filtering system relies on the presence of
labeled training data, which are used to induce
a model of what constitutes spam and what is
legitimate email. Spam detection represents a
two-class problem, although it may sometimes be
desired to introduce special handling of messages
for which a confident decision, either way,
cannot be made. Depending on the application
environment, the training data may represent
emails received by one individual or a group
of users. Ideally, the data should correspond to
a uniform sample acquired over some period
of time preceding filter deployment. Typical
problems with data collection revolve around
privacy issues, whereby users are unwilling to
donate emails of personal or sensitive nature.
Additionally, lab- eling mistakes are common
where legitimate emails may be erroneously
marked as spam or vice versa. Also, since for
certain types of emails, the spam/legitimate
distinction is personal, one may find that the
same message content is labeled in a conflicting
manner by different users (or even by the same
user at different times). Therefore, data cleaning
and conflict resolution techniques may need to
be deployed, especially when building filters that
serve a large and diverse user population.

Due to privacy concerns, few large publicly
email corpora exist. The ones created for the
TREC Spam Track (TREC data is available
from: http://plg.uwaterloo.ca/ gvcormac/treccor
pus/). stand out in terms of size and availability
of published comparative results.

Content Encoding and Deobfuscation

Spam has been evolving in many ways over the
course of time. Some changes reflect the shift
in content advertised in such messages (e.g.,
from pornography and pharmaceuticals to stock
schemes and phish). Others reflect the formatting
of content. While early spam was sent in the
form of plain text, it subsequently evolved into

http://plg.uwaterloo.ca/~gvcormac/treccorpus/

Text Mining for Spam Filtering 1257

T

more complex HTML, with deliberate attempts to
make extraction of meaningful textual features as
difficult as possible. Typically, obfuscation (a list
of obfuscation techniques is maintained at http://
www.jgc.org/tsc.html) aims at

(a) Altering the text extracted from the message
for words visible to the user (e.g., by break-
ing up the characters in message source by
HTML tags, encoding the characters in vari-
ous ways, using character look-alikes, wrap-
ping the display of text using script code
executed by the message viewer). This tactic
is used to hide the message “payload.”

(b) Adding content that is not visible to the
user (e.g., using the background color
or zero-width font to render certain
characters/words). This tactic typically
attempts to add “legitimate content.”

(c) Purposeful misspelling of words known to be
fairly incriminating (e.g., Viagra as V1agr@),
in a way that allows the email recipient to still
understand the spammer’s message.

The line of detection countermeasures aiming at
preventing effective content extraction continues
in the form of image spam, where the payload
message is encoded in the form of an image that
is easily legible to a human but poses challenges
to an automatic content extraction system. To the
extent that rich and multimedia content gets sent
out by legitimate users in increasing proportions,
spammers are likely to use the complexity of
these media to obfuscate their messages even fur-
ther. The very fact that obfuscation is attempted,
however, provides an opportunity for machine
learning techniques to use obfuscation presence
as a feature. Thus, even if payload content cannot
be faithfully decoded, the very presence of elab-
orate encoding may help in identifying spam.

Feature Extraction and Selection

An email message represents a semistructured
document, commonly following the rfc822
standard (www.faqs.org/rfcs/rfc822.html). Its
header consists of fields indicative of formatting,

authorship, and delivery information, while its
body contains the actual content being sent.
There can be little correctness enforcement of
the header fields and spamming techniques often
rely on spoofing and forging of the header data,
although this may provide evidence of tempering.
Many early approaches to detect spam depended
predominantly on hand-crafted rules identifying
inconsistencies and peculiarities of spam email
headers. Manually or automatically generated
header features continue to be relevant even when
other features (e.g., message text) are considered.

Given that an email message tends to be
primarily text, features traditionally useful in
text categorization have also been found useful
in spam detection. These include individual
words, phrases, character n-grams, and other
textual components (Siefkes et al. 2004). Natural
language processing (NLP) techniques such as
stemming, stop-word removal, and case folding
are also sometimes applied to normalize the
features further. Text extraction is often nontrivial
due to the application of content obfuscation
techniques. For example, standard lexical feature
extractors may need to be strengthened to
correctly identify word boundaries (e.g., in cases
where groups of characters within a word are
separated by zero-width HTML tags).

Extraction of features from nontextual attach-
ments (e.g., images, audio, and video) is also
possible but tends to be more computationally
demanding. Other types of features capture the
way a message if formatted, encoded in HTML,
composed of multiple parts, etc.

Although nontextual features have different
properties than text, it is common practice to
combine them with textual features and present
a single unified representation to the classifier.
Indeed, some approaches make no distinction
between text and formatting even during the
process of feature extraction, and apply pattern
discovery techniques to identifying complex
features automatically (Rigoutsos and Huynh
2004). The advantage of such techniques is that
they do not require rich domain knowledge and
can discover new useful patterns. Due to the large
space of possible patterns they can potentially be
computationally expensive. However, even the

http://www.jgc.org/tsc.html
http://www.jgc.org/tsc.html
www.faqs.org/rfcs/rfc822.html

1258 Text Mining for Spam Filtering

seemingly simplistic treatment of an email
message as a plain-text document with “words”
delimited by white space often leads to very good
results.

Even though typical text documents are al-
ready very sparse, the problem is even more
pronounced for the email medium due to fre-
quent misspelling and deliberate randomization
performed by spammers. Insisting on using all
such variations may lead to overfitting for some
classifiers, and it leads to large filter memory
footprints that are undesirable from an opera-
tional standpoint. However, due to the constantly
changing distribution of content, it may be dan-
gerous to rely on very few features. Traditional
approaches to feature selection based on mea-
sures such as Information Gain have been re-
ported as successful in the spam filtering domain,
but even simple rudimentary attribute selection
based on removing very rare and/or very frequent
features tends to work well.

There are a number of entities that can be
extracted from message text and that tend to be of
relevance in spam detection. Among others, there
are telephone numbers and URLs. In commercial
email and in spam, these provide a means of
ordering products and services and thus, offer
important information for vendor and campaign
tracking. Detection of signature and mailing ad-
dress blocks can also be of interest, even if only
to indicate their presence or absence.

Learning Algorithms

A variety of learning algorithms have been ap-
plied in the spam filtering domain. These range
from linear classifiers such as Naive Bayes (Met-
sis et al. 2006), logistic regression (Goodman
and Yih 2006), or linear support vector ma-
chines (Drucker et al. 1999; Kołcz and Alspector
2001; Sculley and Wachman 2007) to nonlinear
ones such as boosted decision trees (Carreras
and Màrquez 2001). Language modeling and sta-
tistical compression techniques have also been
found quite effective (Bratko et al. 2006). In
general, due to the high dimensionality of the
feature space, the classifier chosen should be able

to handle tens of thousand, or more, attributes
without overfitting the training data.

It is usually required that the learned model
provides a scoring function, such that for email
message x score(x/ 2 R, with higher score
values corresponding to higher probability of the
message being spam. The score function can also
be calibrated to represent the posterior probabil-
ity P spam jx 2 0, 1, although accurate calibra-
tion is difficult due to constantly changing class
and content distributions. The scoring function is
used to establish a decision rule:

score.x/ � th! spam

where the choice of the decision threshold th is
driven by the minimization of the expected cost.
In the linear case, the scoring function takes the
form

score.x/ D w � x C b

where w is the weight vectors, and x is a vector
representation of the message. Sometimes scores
are normalized with a monotonic function, e.g.,
to give an estimate of the probability of x being
spam.

Linear classifiers tend to provide sufficiently
high accuracy, which is also consistent with other
application domains involving the text medium.
In particular, many variants of the relatively sim-
ple Naive Bayes classifier have been found suc-
cessful in detecting spam, and Naive Bayes often
provides a baseline for systems employing more
complex classification algorithms (Metsis et al.
2006).

One Model Versus Multiple Models
It often pays off to combine different types of
classifiers (even different linear ones) in a se-
quential or parallel fashion to benefit from the
fact that different classifiers may provide an ad-
vantage in different regions of the feature space.
Stacking via � linear regression has been reported
to be effective for this purpose (Sakkis et al. 2001;
Segal et al. 2004). One can generally distinguish
between cases where all classifiers are induced
over the same data and cases where several dif-
ferent datasets are used. In the former case, the

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Text Mining for Spam Filtering 1259

T

combination process exploits the biases of dif-
ferent learning algorithms. In the latter case, one
can consider building a multitude of detectors,
each targeting a different subclass of spam (e.g.,
phish, pharmaceutical spam, “Nigerian” scams,
etc.). Datasets can also be defined on a temporal
basis, so that different classifiers have shorter or
longer memory spans. Other criteria of providing
different datasets are also possible (e.g., based on
the language of the message).

Additional levels of complexity in the classi-
fier combination process can be introduced by
considering alternative feature representations for
each dataset. For example, a single data collection
and a single learning method can be used to
create several different classifiers, based upon
alternative representations of the same data (e.g.,
using just the header features or just the message
text features).

The method of classifier combination will
necessarily depend on their performance and
intended area of applications. The combination
regimes can range from simple logical-
OR through linear combinations to complex
nonlinear rules, either derived automatically to
maximize the desired performance or specified
manually with the guidance of expert domain
knowledge.

Off-Line Adaptation Versus Online
Adaptation
A spam filtering system can be configured to re-
ceive instant feedback from its users, informing it
whenever certain messages get misdelivered (this
necessarily does not include cases where misclas-
sified legitimate messages are simply blocked).
In the case of online filters, the feedback in-
formation may be immediately used to update
the filtering profile. This allows a filter to adjust
to the changing distribution of email content
and to detection countermeasures employed by
spammers. Not all classifiers are easily amenable
to the online learning update, although online
versions of well-known learners such as logistic
regression (Goodman and Yih 2006) and linear
SVMs (Sculley and Wachman 2007) have been
proposed. The distinguishing factor is the amount
of the original training data that needs to be

retained in addition to the model itself to perform
future updates. In this respect, Naive Bayes is
particularly attractive since it does not require any
of the original data for adaptation, with the model
itself providing all the necessary information.

One issue with the user feedback signal, how-
ever, is its bias toward current errors of the classi-
fier, which for learners depending on the training
data being an unbiased sample drawn from the
underlying distribution may lead to overcompen-
sation rather than an improvement in filtering ac-
curacy. As an alternative, unbiased feedback can
be obtained by either selectively querying users
about the nature of uniformly sampled messages
or by deriving the labels implicitly.

In the case where off-line adaptation is in use,
the feedback data is collected and saved for later
use, whereby the filtering models are retrained
periodically or only as needed using the data
collected. The advantage of off-line adaptation
is that it offers more flexibility in terms of the
learning algorithm and its optimization. In par-
ticular, model retraining can take advantage of
a larger quantity of data, and does not have to
be constrained to be an extension of the current
version of the model. As a result, it is, e.g.,
possible to redefine the features from one version
of the spam filter to the next. One disadvantage is
that model updates are likely to be performed less
frequently and may be lagging behind the most
recent spam trends.

User-Specific Versus User-Independent
Spam Detection
What constitutes a spam message tends to be
personal, at least for some types of spam. Various
commercial messages, such as promotions and
advertisements, e.g., may be distributed in a so-
licited or unsolicited manner, and sometimes only
the end recipient may be able to judge which. In
that sense, user-specific spam detection has the
potential of being most accurate, since a user’s
own judgments are used to drive the training
process. Since the nonspam content received by
any particular user is likely to be more narrowly
distributed when compared a larger user pop-
ulation, this makes the discrimination problem
much simpler. Additionally, in the adversarial

1260 Text Mining for Spam Filtering

context, a spammer should find it more difficult to
measure the success of penetrating personalized
filter defenses, which makes it more difficult to
craft a campaign that reaches sufficiently many
mail inboxes to be profitable.

One potential disadvantage of such solutions
is the need for acquiring labeled data on a user
by user basis, which may be challenging. For
some users historical data may not yet exist (or
has already been destroyed), for others even if
such data exist, labeling may seem too much
of a burden for the users. Aside from the data
collection issues, personal spam filtering faces
maintainability issues, as the filter is inherently
controlled by its user. This may result in less-
than-perfect performance, e.g., if the user misdi-
rects filter training.

From the perspective of institutions and email
service providers, it is often more attractive to
maintain just one set of spam filters that service a
larger user population. This makes them simpler
to operate and maintain, but their accuracy may
depend on the context of any particular user. The
advantage of centralized filtering when serving
large user populations is that global trends can be
more readily spotted and any particular user may
be automatically protected against spam, affect-
ing other users. Also, the domain knowledge of
the spam-filtering analysts can be readily injected
into the filtering pipeline.

To the extent that a service provider maintains
personal filters for its population of users, there
are potential large system costs to account for,
so that a complete cost-benefit analysis needs to
be performed to assess the suitability of such as
solution as opposed to a user-independent filter-
ing complex. More details on the nature of such
trade-offs can be found in Kołcz et al. (2006).

Clustering and Volumetric Techniques
Content clustering can serve as an important data
understanding technique in spam filtering. For
example, large clusters can justify the use of spe-
cialized classifiers and/or the use of cost-sensitive
approaches in classifier learning and evaluation
(e.g., where different costs are assigned to dif-
ferent groups of content within each class (Kołcz
and Alspector 2001).

Both spam and legitimate commercial emails
are often sent in large campaigns, where the same
or highly similar content is sent to a large number
of recipients, sometimes over prolonged periods
of time. Detection of email campaigns can there-
fore play an important role in spam filtering.
Since individual messages of a campaign are
highly similar to one another, this can be consid-
ered a variant of near-replica document detection
(Kołcz 2005). It can also be seen as relying on
identification of highly localized spikes in the
content density distribution. As found in Yoshida
et al. (2004), density distribution approaches can
be highly effective, which is especially attractive
given that they do not require the explicitly la-
beled training data. Tracking of spam campaigns
may be made difficult due to content random-
ization, and some research has been directed at
making the detection methods robust in the pres-
ence such countermeasures (Kołcz 2005; Kołcz
and Chowdhury 2007).

Misclassification Costs and Filter
Evaluation
An important aspect of spam filtering is that the
costs of misclassifying spam as legitimate email
are not the same as the costs of making the
opposite mistake. It is thus commonly assumed
that the costs of a false positive mistake (i.e., a
legitimate email being misclassified as spam) are
much higher than the cost of mistaking spam for
legitimate email. Given the prevalence of spam �

and the false-spam (FS) and false-legitimate (FL)
rates of the classifier, the misclassification cost c

can be expressed as

c D CFS � .1 � �/ � FSC CFL �� � FL

where CFS and CFL are the costs of making a
false-spam and false-legitimate mistake, respec-
tively (there is no penalty for making the correct
decision). Since actual values of CFS and CFL

are difficult to quantify, one typically sees them
combined in the form of a ratio, � D CFS=CFL,
and the overall cost can be expressed as relative
to the cost of a false-legitimate misclassification
e.g.,

crel D � � .1 � �/ � FSC � �FL

Text Mining for Spam Filtering 1261

T

Practical choices of � tend to range from 1 to
1,000. Nonuniform misclassification costs can be
used during the process of model induction or in
postprocessing when setting up the operating pa-
rameters of a spam filter, e.g., using the receiver
operating characteristic (ROC) analysis.

Since the costs and cost ratios are sometimes
hard to define, some approaches to evaluation
favor direct values of the false-spam and false-
legitimate error rates. This captures the intuitive
requirement that an effective spam filter should
provide high detection rate at a close-to-zero
false-spam rate. Alternatively, threshold indepen-
dent metrics such as the area under the ROC
(AUC) can be used (Bratko et al. 2006; Cormack
and Lynam 2006), although other measures have
also been proposed (Sakkis et al. 2001).

Adaptation to Countermeasures
Spam filtering is an inherently adversarial task,
where any solution deployed on a large scale is
likely to be met with a response on the part of
the spammers. To that extent that the success of
a spam filter can be pinpointed to any particular
component (e.g., the type of features used), that
prominent component is likely to be attacked
directly and may become a victim of its own
success. For example, the use of word features
in spam filtering encourages countermeasures in
the form of deliberate misspellings, word frag-
mentation, and “invisible ink” in HTML docu-
ments. Also, since some words are considered by
a model inherently more legitimate than others,
“word stuffing” has been used to inject large
blocks of potentially legitimate vocabulary into
an otherwise spammy message in the hope that
this information outweighs the evidence provided
by the spam content (Lowd and Meek 2005).

Some authors have attempted to put the
adversarial nature of spam filtering in the formal
context of game theory (Dalvi et al. 2004). One
difficulty of drawing broad conclusion based
on such analyses is the breadth of the potential
attack/defense front, of which only small sections
have been successfully captured in the game-
theory formalism. The research on countering the
countermeasures points at using multiple diverse
filtering components, normalization of features

to keep them invariant to irrelevant alterations.
A key point is that frequent filter retraining is
likely to help in keeping up with the shifts in
content distribution, both natural and due to
countermeasures.

Future Directions

Reputation Systems and Social Networks
There has been a growing interest in developing
reputation systems capturing the trustworthiness
of a sender with respect to a particular user or
group of users. To this end however, the identity
of the sender needs to be reliably verified, which
poses challenges and presents a target for poten-
tial abuses of such systems. Nevertheless, repu-
tation systems are likely to grow in importance,
since they are intuitive from the user perspec-
tive in capturing the communication relationships
between users. Sender reputation can be hard
or soft. In the hard variant, the recipient always
accepts or declines messages from a given sender.
In the soft variant, the reputation reflects the level
of trustworthiness of the sender in the context
of the given recipient. When sender identities re-
solve to individual email addresses, the reputation
system can be learned via analysis of a large
social network that documents who exchanges
email with whom. The sender identities can also
be broader however, e.g., assigning reputation
to a particular mail server or all mail servers
responsible for handling the outbound traffic for
a particular domain. On the recipient side, reputa-
tion can also be understood globally to represent
the trustworthiness of the sender with respect to
all recipients hosted by the system. Many open
questions remain with regard to computing and
maintaining reputations as well as using them
effectively to improve spam detection. In the
context of text mining, one such question is the
extent to which email content analysis can be
used to aid the process of reputation assessment.

Cross-References

�Cost-Sensitive Learning
�Document Categorization

http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_100120

1262 Text Mining for the Semantic Web

�Linear Separability
�Logistic Regression
�Naı̈ve Bayes
� Support Vector Machines

Recommended Reading

Bratko A, Cormack GV, Filipic B, Lynam TR, Zupan B
(2006) Spam filtering using statistical data compres-
sion models. J Mach Learn Res 7:2673–2698

Carreras X, Màrquez L (2001) Boosting trees for anti-
spam email filtering. In: Proceedings of RANLP-01,
the 4th international conference on recent advances
in natural language processing. ACM, New York

Cormack GV, Lynam TR (2006) On-line supervised
spam filter evaluation. ACM Trans Inf Syst 25(3):11

Dalvi N, Domingos P, Sanghai MS, Verma D (2004)
Adversarial classification. In: Proceedings of the
tenth international conference on knowledge discov-
ery and data mining, vol 1. ACM, New York, pp 99–
108

Drucker H, Wu D, Vapnik VN (1999) Support vector
machines for spam categorization. IEEE Trans Neu-
ral Netw 5(10):1048–1054

Fawcett T (2003) In vivo’ spam filtering: a challenge
problem for data mining. KDD Explor 5(2):140–
148

Goodman J, Yih W (2006) Online discriminative spam
filter training. In: Proceedings of the third confer-
ence on email and anti-spam (CEAS-2006), Moun-
tain View

Kołcz A (2005) Local sparsity control for naive bayes
with extreme misclassification costs. In: Proceed-
ings of the eleventh ACM SIGKDD international
conference on knowledge discovery and data min-
ing. ACM, New York

Kołcz A, Alspector J (2001) SVM-based filtering of
e-mail spam with content-specific misclassification
costs. In: TextDM’2001 (IEEE ICDM-2001 work-
shop on text mining), San Jose

Kołcz A, Bond M, Sargent J (2006) The challenges of
service-side personalized spam filtering: scalability
and beyond. In: Proceedings of the first interna-
tional conference on scalable information systems
(INFOSCALE). ACM, New York

Kołcz AM, Chowdhury A (2007) Hardening finger-
printing by context. In: Proceedings of the fourth
international conference on email and anti-spam,
Mountain View

Lowd D, Meek C (2005) Good word attacks on sta-
tistical spam filters. In: Proceedings of the second
conference on email and anti-spam (CEAS-2005),
Mountain View

Metsis V, Androutsopoulos I, Paliouras G (2006) Spam
filtering with naive bayes – which naive bayes? In:
Proceedings of the third conference on email and
anti-spam (CEAS-2006), Mountain View

Rigoutsos I, Huynh T (2004) Chung-Kwei: a pattern-
discovery-based system for the automatic identifi-
cation of unsolicited e-mail messages (SPAM). In:
Proceedings of the first conference on email and
anti-spam (CEAS-2004), Mountain View

Sahami M, Dumais S, Heckerman D, Horvitz E (1998)
A Bayesian approach to filtering junk email. In:
AAAI workshop on learning for text categorization,
Madison. AAAI technical report WS-98-05

Sakkis G, Androutsopoulos I, Paliouras G, Karkaletsis
V, Spyropoulos CD, Stamatopoulos P (2001) Stack-
ing classifiers for anti-spam filtering of e-mail. In:
Lee L, Harman D (eds) Proceedings of empirical
methods in natural language processing (EMNLP
2001), pp 44–50. http://www.cs.cornell.edu/home/
llee/emnlp/proceeding.html

Sculley D, Wachman G (2007) Relaxed online support
vector machines for spam filtering. In: Proceedings
of the 30th annual international ACM SIGIR con-
ference on research and development in information
retrieval. ACM, New York

Segal R, Crawford J, Kephart J, Leiba B (2004)
SpamGuru: an enterprise anti-spam filtering system.
In: Proceedings of the first conference on email and
anti-spam (CEAS-2004), Mountain View

Siefkes C, Assis F, Chhabra S, Yerazunis W (2004)
Combining winnow and orthogonal sparse bigrams
for incremental spam filtering. In: Proceedings of
the European conference on principle and practice
of knowledge discovery in databases. Springer, New
York

Yoshida K, Adachi F, Washio T, Motoda H, Homma T,
Nakashima A et al (2004) Densitiy-based spam de-
tection. In: Proceedings of the tenth ACM SIGKDD
international conference on knowledge discovery
and data mining. ACM, New York, pp 486–493

Text Mining for the Semantic Web

Marko Grobelnik1, Dunja Mladenić1, and
Michael Witbrock2

1Artificial Intelligence Laboratory, Jožef Stefan
Insitute, Ljubljana, Slovenia
2Cycorp Inc, Austin, TX, USA

Definition

�Text Mining methods allow for the incorpora-
tion of textual data within applications of seman-
tic technologies on the Web. Application of these
techniques is appropriate when some of the data
needed for a Semantic Web use scenario are in

http://dx.doi.org/10.1007/978-1-4899-7687-1_478
http://dx.doi.org/10.1007/978-1-4899-7687-1_951
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://www.cs.cornell.edu/home/llee/emnlp/proceeding.html
http://www.cs.cornell.edu/home/llee/emnlp/proceeding.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

Text Mining for the Semantic Web 1263

T

textual form. The techniques range from simple
processing of text to reducing vocabulary size,
through applying shallow � natural language pro-
cessing to constructing new semantic features or
applying information retrieval to selecting rele-
vant texts for analysis, through complex methods
involving integrated visualization of semantic in-
formation, semantic search, semiautomatic ontol-
ogy construction, and large-scale reasoning.

Motivation and Background

Semantic Web applications usually involve deep
structured knowledge integrated by means of
some kind of ontology. Text mining methods,
on the other hand, support the discovery
of structure in data and effectively support
semantic technologies on data-driven tasks
such as (semi)automatic � ontology acquisition,
extension, and mapping. Fully automatic text
mining approaches are not always the most
appropriate for combination with Semantic Web
content, because often it is too difficult or too
costly to fully integrate the available background
domain knowledge into a suitable representation.
For such cases, semiautomatic methods, such as
�Active Learning and � Semi-supervised Text
Processing (see � Semi-supervised Learning),
can be applied to make use of small pieces of
human knowledge to provide guidance toward
the desired ontology or other models. Application
of these semiautomated techniques can reduce
the amount of human effort required to produce
training data by an order of magnitude while
preserving the quality of results.

To date, Semantic Web applications have typi-
cally been associated with data, such as text doc-
uments, and corresponding metadata that have
been designed to be relatively easily manage-
able by humans. Humans are, for example, very
good at reading and understanding text and ta-
bles. General semantic technologies, on the other
hand, aim more broadly at handling data modali-
ties including multimedia, signals from emplaced
or remote sensors, and the structure and con-
tent of communication and transportation graphs
and networks. In handling such multimodal data,

much of which is not readily comprehensible
by unaugmented humans, there must be signifi-
cant emphasis on fully or semiautomatic meth-
ods offered by knowledge discovery technologies
whose application is not limited to a specific data
representation (Grobelnik and Mladenic 2005).

Data and the corresponding semantic struc-
tures change over time, and semantic technolo-
gies also aim at adapting the ontologies that
model the data accordingly. For most such sce-
narios, extensive human involvement in build-
ing models and adapting them according to the
data is too costly, too inaccurate, and too slow.
� Stream mining (Gaber et al. 2005) techniques
(Data Streams: Clustering) allow text mining of
dynamic data (e.g., notably in handling a stream
of news or of public commentary).

Ontology is a fundamental method for orga-
nizing knowledge in a structured way and is
applied, along with formalized reasoning, in ar-
eas from philosophy to scientific discovery to
knowledge management and the Semantic Web.
In computer science, an ontology generally refers
to a graph or network structure consisting of a set
of concepts (vertices in a graph), a set of relation-
ships connecting those concepts (directed edges
in a graph), and, possibly, a set of distinguished
instance concepts assigned to particular class
concepts (data records assigned to vertices in a
graph). Although much useful knowledge can be
represented by the ground binary relations most
conveniently encoded as graphs, more complex
relationships involving more than two entities
are needed, and the graph metaphor is more
remote. In many cases, knowledge is structured
in one of these ways to allow for automated in-
ference based on a logical formalism such as the
� predicate calculus (Barwise and Etchemendy
2002); for these applications, an ontology of-
ten further comprises a set of rules or produces
new knowledge within the representation from
existing knowledge. An ontology containing both
instance data and rules for its application is often
referred to as a knowledge base (KB) (e.g., Lenat
1995).

Machine learning practitioners refer to the
task of automatically constructing these ontolo-
gies as � ontology learning. From this point of

http://dx.doi.org/10.1007/978-1-4899-7687-1_525
http://dx.doi.org/10.1007/978-1-4899-7687-1_959
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_789
http://dx.doi.org/10.1007/978-1-4899-7687-1_100369
http://dx.doi.org/10.1007/978-1-4899-7687-1_959

1264 Text Mining for the Semantic Web

view, an ontology is seen as a class of mod-
els – somewhat more complex than most used
in machine learning – which need to be ex-
pressed in some �Hypothesis Language. This
definition of ontology learning (from Grobel-
nik and Mladenic 2005) enables a decomposi-
tion into several machine learning tasks, includ-
ing � learning concepts, identifying relationships
between existing concepts, populating an exist-
ing ontology/structure with instances, identifying
change in dynamic ontologies, and inducing rules
over concepts, background knowledge, and in-
stances.

Following this scheme, text mining methods
have been applied to extending existing ontolo-
gies based on Web documents, learning semantic
relations from text based on collocations, semiau-
tomatic data-driven ontology construction based
on � document clustering and classification, ex-
tracting semantic graphs from text, transforming
text into �RDF triples (a commonly used Se-
mantic Web data representation), and mapping
triplets to semantic classes using several kinds of
lexical and ontological background knowledge.
Text mining is also intensively used in the effort
to produce a Semantic Web for annotation of
text with concepts from ontology. For instance,
a text document is split into sentences, each sen-
tence is represented as a word vector, sentences
are clustered, and each cluster is labeled by the
most characteristic words from its sentences and
mapped upon the concepts of a general ontol-
ogy. Several approaches that integrate ontology
management, knowledge discovery, and human
language technologies are described in Davies
et al. (2009).

Extending the text mining paradigm, efforts
are aimed at giving machines an approxima-
tion of the full human ability to acquire knowl-
edge from text. Some of the systems (Curtis
et al. 2009; Mitchell 2005; Rusu 2014) actively
use background knowledge in the extraction pro-
cess for disambiguation or knowledge structur-
ing. Machine reading aims at full text under-
standing by integrating knowledge-based con-
struction and use into syntactically sophisticated
natural � language analysis, leading to systems
that autonomously improve their ability to extract

further knowledge from text (e.g., Curtis et al.
2009; Etzioni et al. 2007; Mitchell 2005; Starc
and Fortuna 2012; Starc and Mladenic 2013).

Biomedical Text Mining

Because of the development and widespread
use of high-quality biomedical knowledge
bases, such as the Gene Ontology (Ashburner
et al. 2000), Cell Ontology (Bard et al. 2005),
and Linked Neuron Data (Zeng et al. 2015),
and the overwhelming volume of the relevant
literature (24 million biomedicine citations in
PubMed), biomedical knowledge extraction is
subject to a great deal of research. Relevant
shared evaluation tasks include BioCreative
(Hirschman et al. 2005) and BioNLP (Cohen
et al. 2014). Although much of the work on
biological fact extraction still relies on supervised
training with closely annotated training data,
with the risk of over-constraining the mapping
of semantics to particular text substrings,
volume of high-quality Semantic Web fact bases
has enabled more natural training methods,
such as distant supervision (Augenstein et al.
2014).

Cross-References

�Active Learning
�Classification
�Clustering
� Semi-supervised Learning
� Semi-supervised Text Processing
�Text Mining
�Text Visualization

Recommended Reading

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H,
Cherry JM, Davis AP, Dolinski K, Dwight SS,
Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE,
Ringwald M, Rubin GM, Sherlock G (2000) Gene
ontology: tool for the unification of biology. Nat
Genet 25(1):25–29

Augenstein I, Maynard D, Ciravegna F (2014) Relation
extraction from the web using distant supervision.

http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_100391
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_837

Text Visualization 1265

T

In: Janowicz K et al (eds) EKAW 2014. LNAI 8876.
Springer, pp 26–41

Bard J, Rhee SY, Ashburner M (2005) An ontology for
cell types. Genome Biol 6(2):R21

Barwise J, Etchemendy J (2002) Language proof and
logic. Center for the study of language and informa-
tion. ISBN:157586374X

Buitelaar P, Cimiano P, Magnini B (2005) Ontology
learning from text: methods, applications and evalu-
ation, frontiers in artificial intelligence and applica-
tions. IOS Press, Amsterdam

Cohen K, Demner-Fushman D, Ananiadou S, Tsujii J-i
(2014) Proceedings of BioNLP 2014, Baltimore.
Association for Computational Linguistics

Curtis J, Baxter D, Wagner P, Cabral J, Schneider
D, Witbrock M (2009) Methods of rule acquisition
in the TextLearner system. In: Proceedings of the
2009 AAAI spring symposium on learning by read-
ing and learning to read. AAAI Press, Palo Alto,
pp 22–28

Davies J, Grobelnik M, Mladenić D (2009) Semantic
knowledge management. Springer, Berlin

Etzioni O, Banko M, Cafarella MJ (2007) Machine
reading. In: Proceedings of the 2007 AAAI spring
symposium on machine reading

Gaber MM, Zaslavsky A, Krishnaswamy S (2005)
Mining data streams: a review. ACM SIGMOD Rec
34(1):18–26. ISSN:0163-580

Grobelnik M, Mladenic D (2005) Automated knowl-
edge discovery in advanced knowledge manage-
ment. J Knowl Manag 9:132–149

Hirschman L, Yeh A, Blaschke C, Valencia A (2005)
Overview of BioCreAtIvE: critical assessment of
information extraction for biology. BMC Bioinform
6(Suppl 1):S1

Lenat DB (1995) Cyc: a large-scale investment
in knowledge infrastructure. Commun ACM
38(11):33–38

Mitchell T (2005) Reading the web: a breakthrough
goal for AI. Celebrating twenty-five years of AAAI:
notes from the AAAI-05 and IAAI-05 conferences.
AI Mag 26(3):12–16

Rusu D (2014) Text annotation using background
knowledge. Doctoral Dissertation, Jozef Stefan In-
ternational Postgraduate School, Ljubljana

Starc J, Fortuna B (2012) Identifying good patterns
for relation extraction. In: Proceedings of the 15th
international multiconference information society –
IS 2012. Institut Jožef Stefan, Ljubljana, pp 205–
208

Starc J, Mladenic D (2013) Semi-automatic con-
struction of pattern rules for translation of nat-
ural language into semantic representation. In:
Proceedings of the 5th Jožef Stefan Interna-
tional Postgraduate School Students Conference,
Jožefa Stefana International Postgraduate School,
pp 199–208

Zeng Y, Wang D, Zhang T Linked brain data. Web
http://www.linked-neuron-data.org/. Retrieved 11
Jan 2015

Text Spatialization

�Text Visualization

Text Visualization

John Risch1, Shawn Bohn1, Steve Poteet2,
Anne Kao2, Lesley Quach2, and Jason Wu2

1Pacific Northwest National Laboratory,
Richland, WA, USA
2Boeing Phantom Works, Seattle, WA, USA

Synonyms

Semantic mapping; Text spatialization; Topic
mapping

Definition

The term text visualization describes a class of
knowledge discovery techniques that use inter-
active graphical representations of textual data
to enable knowledge discovery via recruitment
of human visual pattern recognition and spatial
reasoning capabilities. It is a subclass of infor-
mation visualization, which more generally en-
compasses visualization of nonphysically based
(or “abstract”) data of all types. Text visualization
is distinguished by its focus on the unstructured
(or free text) component of information. While
the term “text visualization” has been used to de-
scribe a variety of graphical methods for deriving
knowledge from text, it is most closely associated
with techniques for depicting the semantic char-
acteristics of large document collections. Text
visualization systems commonly employ unsu-
pervised machine learning techniques as part of
broader strategies for organizing and graphically
representing such collections.

Motivation and Background

The Internet enables universal access to vast
quantities of information, most of which (despite

http://www.linked-neuron-data.org/
http://dx.doi.org/10.1007/978-1-4899-7687-1_837
http://dx.doi.org/10.1007/978-1-4899-7687-1_100422
http://dx.doi.org/10.1007/978-1-4899-7687-1_100472
http://dx.doi.org/10.1007/978-1-4899-7687-1_100475

1266 Text Visualization

admirable efforts Berners-Lee et al. 2001) ex-
ists in the form of unstructured and unorganized
text. Advancements in search technology make
it possible to retrieve large quantities of this
information with reasonable precision; however,
only a tiny fraction of the information available
on any given topic can be effectively exploited.

Text visualization technologies, as forms of
computer-supported knowledge discovery, aim to
improve our ability to understand and utilize the
wealth of text-based information available to us.
While the term “text visualization” has been used
to describe a variety of techniques for graphi-
cally depicting the characteristics of free-text data
(Havre et al. 2002; Small 1996), it is most closely
associated with the so-called semantic clustering
or semantic mapping techniques (Chalmers and
Chitson 1992; Kohonen et al. 2000; Lin et al.
1991; Wise et al. 1995). These methods attempt
to generate summary representations of docu-
ment collections that convey information about
their general topical content and similarity struc-
ture, facilitating general domain understanding
and analytical reasoning processes.

Text visualization methods are generally based
on vector space models of text collections (Salton
1989), which are commonly used in informa-
tion retrieval, clustering, and categorization. Such
models represent the text content of individual
documents in the form of vectors of frequencies
of the terms (text features) they contain. A docu-
ment collection is therefore represented as a col-
lection of vectors. Because the number of unique
terms present in a document collection generally
is in the range of tens of thousands, a dimen-
sionality reduction method such as singular value
decomposition (SVD) (Deerwester et al. 1990) or
other matrix decomposition method (Kao et al.
2008; Booker et al. 1999) is typically used to
eliminate noise terms and reduce the length of
the document vectors to a tractable size (e.g., 50–
250 dimensions). Some systems attempt to first
identify discriminating features in the text and
then use mutual probabilities to specify the vector
space (York et al. 1995).

To enable visualization, the dimensions must
be further reduced to two or three. The goal

is a graphical representation that employs a
“spatial proximity means conceptual similarity”
metaphor where topically similar text documents
are represented as nearby points in the display.
Various regions of the semantic map are
subsequently labeled with descriptive terms
that convey the primary concepts described
by nearby documents. The text visualization
can thus serve as a kind of graphical “table of
contents” depicting the conceptual similarity
structure of the collection.

Text visualization systems therefore typically
implement four key functional components,
namely,

1. A tokenization component that characterizes
the lexical content of text units via extraction,
normalization, and selection of key terms

2. A vector space modeling component that gen-
erates a computationally tractable vector space
representation of a collection of text units

3. A spatialization component that uses the vec-
tor space model to generate a 2D or 3D spatial
configuration that places the points represent-
ing conceptually similar text units in near
spatial proximity

4. A labeling component that assigns charac-
teristic text labels to various regions of the
semantic map

Although machine learning techniques can be
used in several of these steps, their primary usage
is in the spatialization stage. An unsupervised
learning algorithm is typically used to find mean-
ingful low-dimensional structures hidden in high-
dimensional document feature spaces.

Structure of Learning System

Spatialization is a term generically used in
� information visualization to describe the
process of generating a spatial representation of
inherently nonspatial information. In the context
of text visualization, this term generally refers to
the application of a nonlinear dimensionality re-
duction algorithm to a collection of text vectors in

http://dx.doi.org/10.1007/978-1-4899-7687-1_837

Text Visualization 1267

T

order to generate a visually interpretable two- or
three-dimensional representation of the similarity
structure of the collection. The goal is the cre-
ation of a semantic similarity map that positions
graphical features representing text units (e.g.,
documents) conceptually similar to one another
near one another in the visualization display.
These maps may be further abstracted to produce
more general summary representations of text
collections that do not explicitly depict the indi-
vidual text units themselves (Wise et al. 1995).

A key assumption in text visualization is that
text units which express similar concepts will
employ similar word patterns and that the exis-
tence of these word correlations creates coher-
ent structures in high-dimensional text feature
spaces. A further assumption is that text fea-
ture spaces are nonlinear but that their struc-
tural characteristics can be approximated by a
smoothly varying low-dimensional manifold. The
text spatialization problem thus becomes one of
finding an embedding of the feature vectors in
a two- or three-dimensional manifold that best
approximates this structure. Because the intrinsic
dimensionality of the data is invariably much
larger than two (or three), significant distortion
is unavoidable. However, because the goal of
text visualization is not necessarily the develop-
ment of an accurate representation of interdoc-
ument similarities, but rather the depiction of
broad (and ambiguously defined) semantic rela-
tionships, this distortion is generally considered
acceptable.

Text vector spatialization therefore involves
the fitting of a model into a collection of observa-
tions. Most text visualization systems developed
to date have employed some type of unsupervised
learning algorithm for this purpose. In general,
the desired characteristics of an algorithm used
for text spatialization include that it (1) preserves
global properties of the input space, (2) pre-
serves the pairwise input distances to the great-
est extent possible, (3) supports out-of-sample
extension (i.e., the incremental addition of new
documents), and (4) has low computational and
memory complexity. Computational and memory
costs are key considerations, as a primary goal

of text visualization is the management and inter-
pretation of extremely large quantities of textual
information.

A leading approach is to iteratively adapt the
nodes of a fixed topology mesh to the high-
dimensional feature space via adaptive refine-
ment. This is the basis of the well-known Koho-
nen feature mapping algorithm, more commonly
referred to as the � self-organizing map (SOM)
(Kohonen 1997). In a competitive learning pro-
cess, text vectors are presented one at a time to
a (typically triangular) grid, the nodes of which
have been randomly initialized to points in the
term space. The Euclidean distance to each node
is computed, and the node closest to the sam-
ple is identified. The position of the winning
node, along with those of its topologically nearest
neighbors, is incrementally adjusted toward the
sample vector. The magnitude of the adjustments
is gradually decreased over time. The process is
generally repeated using every vector in the set
for many hundreds or thousands of cycles until
the mesh converges on a solution. At the con-
clusion, the samples are assigned to their nearest
nodes, and the results are presented as a uniform
grid. In the final step, the nodes of the grid are
labeled with summary terms which describe the
key concepts associated with the text units that
have been assigned to them.

Although self-organizing maps can be
considered primarily a clustering technique,
the grid itself theoretically preserves the
topological properties of the input feature space.
As a consequence, samples that are nearest
neighbors in the feature space generally end
up in topologically adjacent nodes. However,
while SOMs are topology-preserving, they
are not distance-preserving. Vectors that are
spatially distant in the input space may be
presented as proximal in the output, which
may be semantically undesirable. SOMs have
a number of attractive characteristics, including
straightforward out-of-sample extension and
low computational and memory complexity.
Examples of the use of SOMs in text visualization
applications can be found in Lin et al. (1991),
Kaski et al. (1998), and Kohonen et al. (2000).

http://dx.doi.org/10.1007/978-1-4899-7687-1_746

1268 Text Visualization

Often, it is considered desirable to attempt to
preserve the distances among the samples in the
input space to the greatest extent possible in the
output. The rationale is that the spatial proxim-
ities of the text vectors capture important and
meaningful characteristics of the associated text
units: spatial “nearness” corresponds to concep-
tual “nearness.” As a consequence, many text vi-
sualization systems employ distance-preserving
dimensionality reduction algorithms. By far, the
most commonly used among these is the class
of algorithms known as multidimensional scaling
(MDS) algorithms.

Multidimensional scaling is “a term used to
describe any procedure which starts with the
‘distances’ between a set of points (or individuals
or objects) and finds a configuration of the points,
preferably in a smaller number of dimensions,
usually 2 or 3” (Chatfield and Collins 1980,
quoted in Chalmers and Chitson 1992). There are
two main subclasses of MDS algorithms. Metric
(quantitative, also known as classical) MDS al-
gorithms attempt to preserve the pairwise input
distances to the greatest extent possible in the
output configuration, while nonmetric (qualita-
tive) techniques attempt only to preserve the rank
order of the distances. Metric techniques are most
commonly employed in text visualization.

Metric MDS maps the points in the input space
to the output space while maintaining the pair-
wise distances among the points to the greatest
extent possible. The quality of the mapping is
expressed in a stress function which is minimized
using any of a variety of optimization methods,
e.g., via eigen decomposition of a pairwise dis-
similarity matrix, or using iterative techniques
such as generalized Newton–Raphson, simulated
annealing, or genetic algorithms. A simple exam-
ple of a stress function is the raw stress function
(Kruskal 1964) defined by

�.Y / D
X

ij

.jjxi � xj jj � jjyi � yj jj/
2

in which jjxi � xj jj is the Euclidean distance
between points xi and xj in the high-dimensional
space and jjyi � yj jj is the distance between

the corresponding points in the output space.
A variety of alternative stress functions have
been proposed (Cox and Cox 2001). In addition
to its distance-preserving characteristics, MDS
has the added advantage of preserving the global
properties of the input space. A major disadvan-
tage of MDS, however, is its high computational
complexity, which is approximately O(kN2/,
where N is the number of data points and k is
the dimensionality of the embedding. Although
computationally expensive, MDS can be used
practically on data sets of up to several hundred
documents in size. Another disadvantage is that
out-of-core extension requires reprocessing of
the full data set if an optimization method which
computes the output coordinates all at once is
used.

The popularity of MDS methods has led to
the development of a range of strategies for
improving on its computational efficiency to
enable scaling of the technique to text collections
of larger size. One approach is to use either
cluster centroids or a randomly sampled subset
of input vectors as surrogates for the full set. The
surrogates are down-projected independently
using MDS, and then the remainder of the
data is projected relative to this “framework”
using a less expensive algorithm, e.g., distance-
based triangulation. This is the basis for the
anchored least stress algorithm used in the
SPIRE text visualization system (York et al.
1995), as well as the more recently developed
Landmark MDS (de Silva and Tenenbaum 2003)
algorithm.

While self-organizing maps and multidimen-
sional scaling techniques have received the most
attention to date, a number of other machine
learning techniques have also been used for
text spatialization. The Starlight system (Risch
et al. 1999) uses stochastic proximity embedding
(Agrafiotis 2003), a high-speed nonlinear
manifold learning algorithm. Other approaches
have employed methods based on graph layout
techniques (Fabrikant 2001). Generally speaking,
any of a number of techniques for performing
dimensionality reduction in a correlated system
of measurements (classified under the rubric of

Text Visualization 1269

T

factor analysis in statistics) may be employed for
this purpose.

Machine learning algorithms can also be used
in text visualization for tasks other than text
vector spatialization. For example, generation of
descriptive labels for semantic maps requires par-
titioning of the text units into related sets. Typ-
ically, a partitioning-type � clustering algorithm
such as K-means is used for this purpose (see
� Partitional Clustering), either as an element
of the spatialization strategy (see York et al.
1995) or as a postspatialization step. The labeling
process itself may also employ machine learn-
ing algorithms. For instance, the TRUST system
(Booker et al. 1999; Kao et al. 2008) employed
by Starlight generates meaningful labels for doc-
ument clusters using a kind of � unsupervised
learning. By projecting a cluster centroid de-
fined in the reduced dimensional representation
(e.g., 50–250 dimensions) back into the full-
term space, terms related to the content of the
documents in the cluster are identified and used as
summary terms. Machine learning techniques can
also be applied indirectly during the tokenization
phase of text visualization. For example, informa-
tion extraction systems commonly employ rule
sets that have been generated by a supervised
learning algorithm (Mooney and Bunescu 2006).
Such systems may be used to identify tokens
that are most characteristic of the overall topic
of a text unit or are otherwise of interest (e.g.,
the names of people or places). In this way, the
dimensionality of the input space can be drasti-
cally reduced, accelerating downstream process-
ing while simultaneously improving the quality
of the resulting visualizations.

Applications

Sammon
The first text visualization system based on a text
vector space model was likely a prototype devel-
oped in the 1960s by John Sammon’s “nonlinear
mapping,” or NLM, algorithm (today referred to
as organizing text data). The configuration de-
picted here is the result of applying Sammon’s

Text Visualization, Fig. 1 Text Visualisation on a CRT
display using a light pen

algorithm to a collection of 188 documents rep-
resented as 17-dimensional vectors determined
according to document relevance to 1,125 key-
words and phrases. Among other interesting and
prescient ideas, Sammon describes techniques for
interacting with text visualizations depicted on a
“CRT display” using a light pen (Fig. 1).

Lin
Lin’s 1991 prototype (Lin et al. 1991) was one of
the first to demonstrate the use of self-organizing
maps for organizing text documents. Lin formed
a 25-dimensional vector space model of a 140-
document collection using 25 key index terms ex-
tracted from the text. The document vectors were
used to train a 140-node feature map, generating
the result shown here (the fact that the number of
nodes matches the number of documents is coin-
cidental). Lin was also among the first to assign
text labels to various regions of the resulting map
to improve the interpretability and utility of the
resulting product (Fig. 2).

BEAD
The BEAD system (Chalmers and Chitson
1992) was a text visualization prototype

http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_637
http://dx.doi.org/10.1007/978-1-4899-7687-1_976

1270 Text Visualization

4

network application online
search

2 1 6

6

3

3

322

2

2

Iibrar

retreval

Intelligent

3

knowledge
others

29 2

2

4

2

2

1

4

1

1

machine learning

natural

process

language

expert

system

4

6

1

1

research

2 3 3

2

2

2 2

3 21 1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1 1

cliation
database

Text Visualization, Fig. 2 Labelled self-organising maps

developed during the early 1990s at Rank Xerox
EuroPARC. BEAD employed a vector space
model constructed using document keywords and
a hybrid MDS algorithm based on an optimized
form of simulated annealing. Although it did not
include a region labeling component, BEAD did
support highlighting of visualization features in
response to query operations, a now standard
text visualization system feature. The BEAD
project also pioneered a number of now common
interaction techniques and was among the first
to explore 3D representations of document
collections (Fig. 3).

IN-SPIRE
IN-SPIRE (formerly SPIRE, Spatial Paradigm
for Information Retrieval and Exploration) (Wise
et al. 1995) was originally developed in 1995 at
Pacific Northwest National Laboratory (PNNL).
Over the years, IN-SPIRE has evolved from using
MDS to anchored least stress to a hybrid clus-
tering/PCA projection scheme. The SPIRE/IN-

SPIRE system introduced several new concepts,
including the use of a 3D “landscape” abstrac-
tion (called a ThemeView) for depicting the gen-
eral characteristics of large text collections. A
recently developed parallelized version of the
software is capable of generating visualizations
of document collections containing millions of
items (Fig. 4).

WEBSOM
WEBSOM (Kaski et al. 1998) was another early
application of Kohonen self-organizing maps to
text data. Early versions of WEBSOM used an
independent SOM to generate reduced dimen-
sionality text vectors which were then mapped
with a second SOM for visualization purposes.
More recent SOM-based text visualization ex-
periments have employed vectors constructed via
random projections of weighted word histograms
(Kohonen et al. 2000). SOMs have been used to
generate semantic maps containing millions of
documents (Fig. 5).

Text Visualization 1271

T

Text Visualization, Fig. 3
3D representation of
document collections

Text Visualization, Fig. 4
Large scale 3D
representation of document
collections

Starlight
Starlight (Risch et al. 1999) is a general-purpose
information visualization system developed at
PNNL that includes a text visualization compo-
nent. Starlight’s text visualization system uses
the Boeing Text Representation Using Subspace
Transformation (TRUST) text engine for vector
space modeling and text summarization. Text
vectors generated by TRUST are clustered, and
the cluster centroids are down-projected to 2D
and 3D using a nonlinear manifold learning

algorithm. Individual document vectors asso-
ciated with each cluster are likewise projected
within a local coordinate system established
at the projected coordinates of their associated
cluster centroid, and TRUST is used to generate
topical labels for each cluster. Starlight is
unique in that it couples text visualization
with a range of other information visualization
techniques (such as link displays) to depict
multiple aspects of information simultaneously
(Fig. 6).

1272 Text Visualization

Text Visualization, Fig. 5
Semantic map generated
by self-organising maps
(SOMs)

Text Visualization, Fig. 6 Starlight link display of multiple aspects of information

Text Visualization 1273

T

Cross-References

�Data Preprocessing
�Dimensionality Reduction
�Document Classification
�Evolutionary Feature Selection and Construc-

tion
� Self-Organizing Maps
�Text Visualization

Recommended Reading

Agrafiotis DK (2003) Stochastic proximity embedding.
J Comput Chem 24(10):1215–1221

Berners-Lee T, Hendler J, Lassila O (2001) The seman-
tic web. Sci Am 284(5):34–43

Booker A, Condliff M, Greaves M, Holt FB, Kao A,
Pierce DJ et al (1999) Visualizing text data sets.
Comput Sci Eng 1(4):26–35

Chalmers M, Chitson P (1992) Bead: explorations in
information visualization. In: SIGIR ’92: proceed-
ings of the 15th annual international ACM SIGIR
conference on research and development in infor-
mation retrieval, Copenhagen. ACM, New York,
pp 330–337

Chatfield C, Collins A (1980) Introduction to multi-
variate analysis. Chapman & Hall, London

Cox MF, Cox MAA (2001) Multidimensional scaling.
Chapman & Hall, London

Crouch D (1986) The visual display of information in
an information retrieval environment. In: Proceed-
ings of the ACM SIGIR conference on research and
development in information retrieval, Pisa. ACM,
New York, pp 58–67

Deerwester S, Dumais S, Furnas G, Landauer T, Harsh-
man R (1990) Indexing by latent semantic analysis.
J Am Soc Inf Sci 41(6):391–407

de Silva V, Tenenbaum JB (2003) Global versus
local methods in nonlinear dimensionality reduc-
tion. In: Becker S, Thrun S, Obermayer K (eds)
Proceedings of the NIPS, Vancouver, vol 15,
pp 721–728

Doyle L (1961) Semantic roadmaps for literature
searchers. J Assoc Comput Mach 8(4):367–391

Fabrikant SI (2001) Visualizing region and scale in
information spaces. In: Proceedings of the 20th
international cartographic conference, ICC 2001,
Beijing, pp 2522–2529

Havre S, Hetzler E, Whitney P, Nowell L (2002) The-
meRiver: visualizing thematic changes in large doc-
ument collections. IEEE Trans Vis Comput Graph
8(1):9–20

Huang S, Ward M, Rundensteiner E (2003) Explo-
ration of dimensionality reduction for text visu-
alization. Technical report TR-03-14, Department

of Computer Science, Worcester Polytechnic Insti-
tute, Worcester

Kao A, Poteet S, Ferng W, Wu J, Quach L (2008)
Latent semantic indexing and beyond, to appear. In:
Song M, Wu YF (eds) Handbook of research on
text and web mining technologies. Idea Group Inc.,
Hershey

Kaski S, Honkela T, Lagus K, Kohonen T (1998)
WEBSOM-self-organizing maps of document col-
lections. Neurocomputing 21:101–117

Kohonen T (1997) Self-organizing maps. Series in
information sciences, vol 30, 2nd edn. Springer,
Heidelberg

Kohonen T, Kaski S, Lagus K, Salojärvi J, Honkela
J, Paatero V et al (2000) Self organization of a
massive document collection. IEEE Trans Neural
Netw 11(3):574–585

Kruskal JB (1964) Multidimensional scaling by opti-
mizing goodness of fit to a nonmetric hypothesis.
Psychometrika 29(1):1–27

Lin X, Soergel D, Marchionini DA (1991) Self-
organizing semantic map for information retrieval.
In: Proceedings of the fourteenth annual inter-
national ACM/SIGIR conference on research and
development in information retrieval, Chicago,
pp 262–269

Mooney RJ, Bunescu R (2006) Mining knowledge
from text using information extraction. In: Kao K,
Poteet S (eds) SIGKDD explorations, pp 3–10

Paulovich FV, Nonato LG, Minghim R (2006)
Visual mapping of text collections through a
fast high precision projection technique. In: Pro-
ceedings of the tenth international conference
on information visualisation (IV’06), London,
pp 282–290

Risch JS, Rex DB, Dowson ST, Walters TB, May
RA, Moon BD (1999) The STARLIGHT informa-
tion visualization system. In: Card S, Mackinlay J,
Shneiderman B (eds) Readings in information visu-
alization: using vision to think. Morgan Kaufmann,
San Francisco, pp 551–560

Salton G (1989) Automatic text processing. Addison-
Wesley, Reading

Sammon JW (1969) A nonlinear mapping for data
structure analysis. IEEE Trans Comput 18(5):401–
409

Small D (1996) Navigating large bodies of text. IBM
Syst J 35(3&4):514–525

Wise JA, Thomas JJ, Pennock K, Lantrip D, Pottier
M, Schur A et al (1995) Visualizing the non-visual:
spatial analysis and interaction with information
from text documents. In: Proceedings of the IEEE
information visualization symposium ’95, Atlanta,
pp 51–58

York J, Bohn S, Pennock K, Lantrip D (1995)
Clustering and dimensionality reduction in SPIRE.
In: Proceedings, symposium on advanced infor-
mation processing and analysis, AIPA95, Tysons
Corner

http://dx.doi.org/10.1007/978-1-4899-7687-1_100100
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_75
http://dx.doi.org/10.1007/978-1-4899-7687-1_90
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_837

1274 TF–IDF

TF–IDF

TF–IDF (term frequency–inverse document fre-
quency) is a term weighting scheme commonly
used to represent textual documents as vectors
(for purposes of classification, clustering, visual-
ization, retrieval, etc.). Let T D ft1; : : : ; tng be
the set of all terms occurring in the document
corpus under consideration. Then a document
di is represented by a n-dimensional real-valued
vector xi D .xi1 ; : : : ; xin/ with one component
for each possible term from T .

The weight xij corresponding to term tj
in document di is usually a product of three
parts: one which depends on the presence or
frequency of tj in di , one which depends on
tj ’s presence in the corpus as a whole, and a
normalization part which depends on dj . The
most common TF–IDF weighting is defined
by xij D TFi � IDFj � .

P
j .TFij IDFj /2/�1=2,

where TFij is the term frequency (i.e., number
of occurrences) of tj in di , and IDFj is the
IDF of tj , defined as log(N /DFj), where N

is the number of documents in the corpus and
DFj is the document frequency of tj (i.e., the
number of documents in which tj occurs). The
normalization part ensures that the vector has a
Euclidean length of 1.

Several variations on this weighting scheme
are also known. Possible alternatives for TFij in-
clude min f1; TFij g (to obtain binary vectors) and
.1CTFij = maxj TFij /=2 (to normalize TF within
the document). Possible alternatives for IDFj in-
clude 1 (to obtain plain TF vectors instead of TF–
IDF vectors) and log (

P
i

P
k TFik=

P
i TFij /.

The normalization part can be omitted altogether
or modified to use some other norm than the
Euclidean one.

Threshold Phenomena in Learning

� Phase Transitions in Machine Learning

Time Sequence

�Time Series

Time Series

Eamonn Keogh
University of California-Riverside, Riverside,
CA, USA

Synonyms

Temporal data; Time sequence; Trajectory data

Definition

A Time Series is a sequence T D .t1; t2; : : : ; tn/

which is an ordered set of n real-valued num-
bers. The ordering is typically temporal; however,
other kinds of data such as color distributions
(Hafner et al. 1995), shapes (Ueno et al. 2006),
and spectrographs also have a well-defined order-
ing and can be fruitfully considered “time series”
for the purposes of machine learning algorithms.

Motivation and Background

The special structure of time series produces
unique challenges for machine learning
researchers.

It is often the case that each individual time
series object has a very high dimensionality.
Whereas classic algorithms often assume a
relatively low dimensionality (for example,
a few dozen measurements such as “height,
weight, blood sugar,” etc.), time series learning
algorithms must be able to deal with dimension-
alities in hundreds or thousands. The problems
created by high-dimensional data are more than
mere computation time considerations; the very
meaning of normally intuitive terms, such as
“similar to” and “cluster forming,” become

http://dx.doi.org/10.1007/978-1-4899-7687-1_642
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_100468
http://dx.doi.org/10.1007/978-1-4899-7687-1_100474
http://dx.doi.org/10.1007/978-1-4899-7687-1_100484

Topic Modeling 1275

T

unclear in high-dimensional space. The reason
for this is that as dimensionality increases, all
objects become essentially equidistant to each
other and thus classification and clustering lose
their meaning. This surprising result is known as
the � curse of dimensionality and has been the
subject of extensive research. The key insight that
allows meaningful time series machine learning
is that although the actual dimensionality may
be high, the intrinsic dimensionality is typically
much lower. For this reason, virtually all time
series data mining algorithms avoid operating on
the original “raw” data; instead, they consider
some higher level representation or abstraction
of the data. Such algorithms are known as
� dimensionality reduction algorithms. There
are many general dimensionality reduction
algorithms, such as singular value decomposition
and random projections, in addition to many
reduction algorithms specifically designed
for time series, including piecewise liner
approximations, Fourier transforms, wavelets,
and symbol approximations (Ding et al. 2008).

In addition to the high dimensionality of in-
dividual time series objects, many time series
datasets have very high numerosity, resulting in
a large volume of data. One implication of high
numerosity combined with the high dimension-
ality of this is that the entire dataset may not fit
in main memory. This requires an efficient disk-
aware learning algorithm or a careful sampling
approach.

A final consideration due to the special nature
of time series is the fact that individual datapoints
are typically highly correlated with their neigh-
bors (a phenomenon known as autocorrelation).
Indeed, it is this correlation that makes most
time series excellent candidates for dimensional-
ity reduction. However, for learning algorithms
that assume the independence of features (i.e.,
�Naive Bayes), this lack of independence must
be countered or mitigated in some way.

While virtually every machine learning
method has been used to classify time series,
the current state-of-the-art method is the nearest
neighbor algorithm (Ueno et al. 2006) with a

suitable distance measure (Ding et al. 2008). This
simple method outperforms neutral networks and
Bayesian classifiers.

The major database (SIGMOD, VLDB,
PODS) and data mining (SIGKDD, ICDM,
SDM) conferences typically feature several time
series machine learning/data mining papers each
year. In addition, because of the ubiquity of
time series, several other communities have
active subgroups that conduct research on time
series; for example, the SIGGRAPH conference
typically has papers on learning or indexing or
motion capture time series, and most medical
conferences have tracks devoted to medical
time series, such as electrocardiograms and
electroencephalograms.

The UCR Time Series Archive has several
dozen time series datasets which are widely used
to test classification and clustering algorithms,
and the UCI Data Mining archive has several
additional datasets.

Recommended Reading

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh
EA (2008) Querying and mining of time series
data: experimental comparison of representations
and distance measures. In: Proceeding of the VLDB,
Auckland. VLDB endowment

Hafner J, Sawhney H, Equitz W, Flickner M, Niblack
W (1995) Efficient color histogram indexing for
quadratic form distance functions. IEEE Trans Pat-
tern Anal Mach Intell 17(7):729–736

Ueno K, Xi X, Keogh E, Lee D (2006) Anytime
classification using the nearest neighbor algorithm
with applications to stream mining. In: Proceedings
of IEEE international conference on data mining
(ICDM), Hong Kong

Topic Mapping

�Text Visualization

Topic Modeling

�Topic Models for NLP Applications

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_837
http://dx.doi.org/10.1007/978-1-4899-7687-1_906

1276 Topic Models for NLP Applications

Topic Models for NLP Applications

Zhiyuan Chen and Bing Liu
University of Illinois at Chicago, Chicago, IL,
USA

Abstract

Topic modeling is a machine learning tech-
nique for discovering semantic topics from
a document collection. It typically assumes
that a document is a multinomial distribution
over latent topics, and a topic is a multi-
nomial distribution over words. By captur-
ing the co-occurrence statistics of words in
the documents, it uncovers these distributions
which indicate important semantic relation-
ships. Topic modeling has been widely studied
in machine learning, text mining, and natural
language processing (NLP). This chapter gives
an introduction to topic modeling. It covers
both the fundamental techniques and some of
its important applications in NLP.

Synonyms

Topic modeling

Definition

Given a collection of documents, how to discover
semantic topics from the documents is an im-
portant yet challenging task. It is infeasible to
ask human beings to manually read and identify
the topics in every available document. This calls
for an automated approach to extracting topics.
Topic models are statistical machine learning
methods that aim to discover a set of latent
semantic topics from a document collection or
corpus. A topic model is usually represented in a
directed graphical model where topics and words
are modeled as random variables. In a classic
topic model, a document is modeled as an admix-
ture of latent topics, while a topic is regarded as
a probability distribution over words. The words

are assumed to be generated conditioned on the
topics, while topics are assumed to be sampled
from a predefined distribution. Topic models are
based on “higher-order co-occurrence,” i.e., how
often words co-occur in different contexts. They
usually perform well with a large number of
documents which provide reliable co-occurrence
statistics.

Motivation and Background

Discovering semantic topics from text corpora is
beneficial to many applications in natural lan-
guage processing. Due to the wide variety, high
volume, and dynamic nature of topics, manual
topic identification is clearly not scalable. To
address it, topic models, such as latent Dirichlet
allocation (LDA) (Blei et al. 2003) and prob-
abilistic latent semantic analysis (pLSA) (Hof-
mann 1999), have been proposed to automatically
discover latent topics from text corpora. In gen-
eral, topic models assume that each document is
a multinomial distribution over topics, while each
semantic topic is a multinomial distribution over
words. The two types of resulting distributions
in topic models are document-topic distributions
and topic-word distributions, respectively. The
intuition is that certain words are more or less
likely to be present given the topics of a doc-
ument. For example, “sport” and “player” will
appear more often in documents about sports, and
“rain” and “cloud” will appear more frequently in
documents about weather.

Structure of the Learning System

Topic modeling represents a class of statisti-
cal methods that can automatically extract the-
matic information from unstructured text docu-
ments. Topic models usually assume a generative
process to describe how words are generated
in documents. We use the most popular topic
model, LDA (latent Dirichlet allocation) (Blei
et al. 2003), as an example to explain. We denote
the number of documents by M and the number
of topics by T . Each document m 2 f1; : : : ; M g

http://dx.doi.org/10.1007/978-1-4899-7687-1_100476

Topic Models for NLP Applications 1277

T

contains Nm words. The vocabulary in the corpus
is denoted by f1; : : : ; V g. The generative process
of LDA is given as follows:

1. For each topic t 2 f1; : : : ; T g

(i) Draw a per topic distribution over words,
't � Dir.ˇ/

2. For each document m 2 f1; : : : ; M g

(i) Draw a topic distribution, �m � Dir.˛/

(ii) For each word position n in document m,
where n 2 f1; : : : ; Nmg

(a) Draw a topic ´m;n �M ul t.�m/

(b) Emit word wm;n �M ul t.'´m;n
/

Here, ˛ and ˇ are called Dirichlet priors rep-
resenting hyperparameters. Dir./ denotes the
Dirichlet distribution and M ul t./ indicates the
multinomial distribution. Note that Dirichlet dis-
tribution is the conjugate prior of the multinomial
distribution which simplifies the model inference
derivation. � is the document-topic distribution
and ' is the topic-word distribution.

Inference and Parameter Estimation

The posterior inference of the LDA model is
intractable and cannot be solved by exact infer-
ence. Common approximate inference techniques
include collapsed Gibbs sampling (Griffiths and
Steyvers 2004), variational methods (Blei et al.
2003), and expectation propagation (Minka and
Lafferty 2002). Collapsed Gibbs sampling is the
most popular inference approach due to its sim-
plicity.

Gibbs sampling is a special case of
Metropolis-Hastings algorithm which is a
MCMC (Markov chain Monte Carlo) technique.
It is usually used to generate samples from a
joint probability of many random variables to
approximate the marginal distribution. Gibbs
sampling is especially useful when it is hard to
sample from the joint distribution directly due to
its complexity, but sampling from the conditional
distribution of the random variables is easy. It
is an iterative process that starts with a random
initialization of the Markov chain’s state. In each
iteration, the value of each random variable is

updated by drawing a sample from its conditional
distribution based on the current state of all other
random variables and the data.

The conditional distribution of assigning topic
t to a word wi in the collapsed Gibbs sampler for
LDA is stated as below:

P.´i D t j´�i ; w; ˛; ˇ/ /
n�i

m;t C ˛
PT

t 0D1.n�i
m;t 0
C ˛/

�
n�i

t;wi
C ˇ

PV
v0D1.n�i

t;v0
C ˇ/

(1)

where ´�i are the topic assignments excluding
the current topic assignment of wi . w denotes all
the words in the documents. n�i is the count that
excludes the current word. nm;t is the number of
times that topic t appears in document m, and nt;w

is the number of occurrences of word w under
topic t . Equation 1 is quite intuitive: the first ratio
expresses the probability of topic t in document
m, and the second ratio implies the probability of
word w under topic t . Since this information is
sufficient to compute the conditional distribution,
Gibbs sampling can be implemented efficiently
by caching and updating these counts only.

The estimation of document-topic distribution
� and topic-word distribution ' is straightforward
given the samples of Gibbs sampling as below:

�m;t D
nm;t C ˛

PT
t 0D1.nm;t 0 C ˛/

(2)

't;w D
nt;w C ˇ

PV
v0D1.nt;v0 C ˇ/

(3)

Nonparametric Topic Models

Classic topic models such as LDA and pLSA
generally require the number of topics to be
specified by the user before running the actual
models. In practice, this number is usually set
empirically by conducting some initial exper-
iments, which may not guarantee the optimal
parameters for the model. Nonparametric topic

1278 Topic Models for NLP Applications

models automatically learn the appropriate num-
ber of topics from the data itself without manual
setting for the number of topics. The hierarchical
Dirichlet process mixture model (Teh et al. 2006)
is the first nonparametric topic model. It intro-
duces the Dirichlet process into topic models to
automatically estimate the number of topics. The
intuition is that there is a set of infinite groups
in the data where each observation is generated
independently given a group. This is the same as
LDA as there is a set of topics where each word is
sampled given a topic except that LDA fixes the
number of topics, while the hierarchical Dirichlet
process mixture model assumes that there are in-
finite topics. For the inference of the hierarchical
Dirichlet process mixture model, Gibbs sampling
is also used. More details can be found in Teh
et al. (2006).

Knowledge-Based Topic Models

Most of the traditional topic models are fully
unsupervised. However, researchers have shown
that fully unsupervised topic models often
produce incoherent topics because the objective
functions of topic models do not always correlate
well with human judgments (Chang et al.
2009). To address this issue, several knowledge-
based topic models (KBTM), also called semi-
supervised topic models, have been proposed and
used in NLP applications.

DF-LDA (Andrzejewski et al. 2009) is the first
KBTM which incorporates prior knowledge in
the forms of must-links and cannot-links where
a must-link states that two words should belong
to the same topic and a cannot-link states that
two words should not be in the same topic. In
a similar but more generic vein, must-sets and
cannot-sets are used in MC-LDA (Chen et al.
2013). Mukherjee and Liu (2012) proposed a
model that allows the human user to provide
some seed words in some topics. Interactive topic
models were also proposed to allow the user
to interact with the model during its inference
process (Hu et al. 2011). In Blei and McAuliffe
(2010), document class labels were considered
in a supervised setting. However, these works in

KBTM require the user to be involved to provide
the knowledge or guidance for a superior model
performance. As we know, expert knowledge can
be hard to obtain. To address it, lifelong topic
modeling (LTM) (Chen and Liu 2014) was pro-
posed to automatically mine the prior knowledge
from past domains and leverage the knowledge
to help discover topics of higher quality in a new
domain.

Applications in NLP

Since topic models are primarily designed for
analysis of text documents, there are numerous
applications in almost every subarea of NLP. It
is difficult to describe them all. Here we discuss
only a few subareas to give a flavor of the types
of NLP applications.

Part-of-speech (POS) tagging is one of core
NLP tasks. The task is to specify a particular part
of speech to a given word based on the definition
and context of that word. For example, in a
sentence “Bob enjoys reading books,” the word
enjoys is marked up with POS tag VBZ, indicating
that this word is a verb with third-person singular
present. The challenge is that some words may
have multiple POS tags, e.g., the word move can
be a verb or a noun. In such cases, the context of
the given word is usually required to decide the
correct POS tag.

Topic models have been widely applied in
the task of POS tagging. Griffiths et al. (2004)
proposed a topic model that can model both the
semantic and syntactic information for part-of-
speech tagging. Their motivation is that a word in
a sentence can have one of the two roles: serving a
syntactic function or providing a semantic mean-
ing (Griffiths et al. 2004). Syntactic words usu-
ally have short-range dependencies, i.e., spanning
several words without going beyond the scope
of a sentence. In contrast, semantic words tend
to have long-range dependencies: some sentences
within a document are likely to share similar
words and express similar contexts. Based on it,
a hidden Markov model (HMM) was used inside
the generative model to decide whether a word
belongs to the syntactic class or the semantic

Topic Models for NLP Applications 1279

T

class. Obtaining such information is helpful in
determining POS tags. For example, knowing
that a word “control” in a text corpus belongs to
the syntactic class makes it more likely to be a
verb than a noun. Toutanova and Johnson (2008)
further added a sparse prior to topic models on
the distribution over tags for each word. They
also explicitly modeled ambiguity classes, i.e.,
the set of part-of-speech tags that a word can be
associated with. In their model, each word type is
assigned with a set of possible parts of speech,
and each token of this word type is associated
with a part-of-speech tag.

Word sense disambiguation (WSD) is another
important NLP area where topic models have
been popularly applied. Its objective is to identify
the sense or meaning of an ambiguous word in
its context. For example, the word light in “the
light of the sun” refers to the meaning “some-
thing that makes things visible,” while light in
“The box is light to carry” indicates the sense
“of little weight.” A dictionary, e.g., WordNet
(https://wordnet.princeton.edu/), is usually used
to help provide word senses. Boyd-Graber et al.
(2007) proposed a model called LDAWN (LDA
with WordNet) model to distinguish word senses.
In WordNet, a word sense is represented by a
synset (short for synonym sets). For example, in
the above examples, the synset flight, luminanceg
is associated with the sense of “something that
makes things visible.” LDAWN models the synset
path, i.e., a path from one synset to another
synset, as a hidden variable. It assumes that words
under the same topic are likely to share the
same meaning as well as their synset path. The
posterior inference of LDAWN was conducted
using Gibbs sampling to infer the synset path,
i.e., the sense, of a word. The key advantage of
LDAWN is that it does not need labeled data to
disambiguate a corpus. It simultaneously decom-
poses a corpus into topics with words grouping
into their word senses.

Sentiment analysis (or opinion mining) is per-
haps one of the biggest application areas of topic
models in NLP. The goal of sentiment analysis
is to extract subjective information such as opin-
ions, evaluations, appraisals, and emotions from
text. Liu (2012) gave a comprehensive survey

of the sentiment analysis and opinion mining
research. Topic models have been widely applied
in aspect-based sentiment analysis, which is a
fine-grained analysis of opinions, to infer aspects
and opinion words. Aspects in the sentiment
analysis context are entity features on which
opinions have been expressed. For example, in a
review sentence, “The picture looks great,” about
a camera, the aspect is “picture” and the opinion
word is “great.” Mei et al. (2007) proposed the
topic-sentiment mixture (TSM) model to reveal
the latent topics and their associated sentiments
in a Weblog collection. They also designed a
special HMM structure in the topic model to de-
tect topic life cycles and sentiment dynamics. A
semi-supervised topic model was proposed in Lu
and Zhai (2008) to integrate opinions expressed
in well-written expert reviews and opinions ex-
pressed by the general public in sources such as
weblogs to generate an aligned and integrated
opinion summary. Titov and McDonald (2008)
proposed a topic model to distinguish global
aspects and local aspects. In their model, global
aspects correspond to global properties of ob-
jects, e.g., the brand of a product type, while local
aspects are the aspects of an object or entity that
tend to be rated or evaluated by users.

More recently, Lin and He (2009) proposed
the joint sentiment/topic (JST) model that jointly
models topics (aspects) and sentiments. Rather
than having only one set of latent topic vari-
ables as in LDA, JST adds another set of hidden
sentiment variables. The advantage of JST is
that it is able to model both aspects and sen-
timents in a fully unsupervised fashion without
the need of supervised information such as la-
bels. Based on JST, Jo and Oh (2011) made
an assumption that one sentence represents only
one aspect, i.e., all the words in a sentence are
generated from one aspect. However, these mod-
els do not actually separate aspects and opin-
ion words in their results. The maximum en-
tropy model was integrated into a topic model
by Zhao et al. (2010) to explicitly separate opin-
ions from aspects. Chen et al. (2014) proposed
the AKL (automated knowledge LDA) model that
learns prior knowledge from reviews of other
products/domains and applies such knowledge to

https://wordnet.princeton.edu/

1280 Topic Models for NLP Applications

mine more coherent aspects. The knowledge base
is represented by a set of clusters, where each
cluster consists of words that are semantically
correlated.

Some other NLP applications of topic models
include machine translation (Eidelman et al.
2012), summarization (Haghighi and Vander-
wende 2009), tagging (Krestel et al. 2009),
multi-language topic synchronization (Petterson
et al. 2010), topical keyphrase extraction (Zhao
et al. 2011), relation extraction between named
entities (Yao et al. 2011), entity linking (Han
and Sun 2012), and document retrieval (Wei and
Croft 2006).

Cross-References

�Bayesian Network
�Graphical Models
�Unsupervised Learning

Recommended Reading

Andrzejewski D, Zhu X, Craven M (2009) Incor-
porating domain knowledge into topic modeling
via Dirichlet Forest priors. In: ICML, Montreal,
pp 25–32

Blei DM, McAuliffe JD (2010) Supervised topic mod-
els. In: NIPS, Whistler, pp 121–128

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet
allocation. J Mach Learn Res 3:993–1022

Boyd-Graber JL, Blei DM, Zhu X (2007) A topic
model for word sense disambiguation. In: EMNLP-
CoNLL, Prague, pp 1024–1033

Chang J, Boyd-Graber J, Chong W, Gerrish S, Blei DM
(2009) Reading tea leaves: how humans interpret
topic models. In: NIPS, Whistler, pp 288–296

Chen Z, Liu B (2014) Topic modeling using topics
from many domains, lifelong learning and big data.
In: ICML, Beijing, pp 703–711

Chen Z, Mukherjee A, Liu B, Hsu M, Castellanos M,
Ghosh R (2013) Exploiting domain knowledge in
aspect extraction. In: EMNLP, Seattle, pp 1655–
1667

Chen Z, Mukherjee A, Liu B (2014) Aspect extraction
with automated prior knowledge learning. In: ACL,
Baltimore, pp 347–358

Eidelman V, Boyd-Graber J, Resnik P (2012) Topic
models for dynamic translation model adaptation.
In: ACL, Jeju Island, pp 115–119

Griffiths TL, Steyvers M (2004) Finding scientific
topics. PNAS 101(Suppl):5228–5235

Griffiths TL, Steyvers M, Blei DM, Tenenbaum JB
(2004) Integrating topics and syntax. In: NIPS, Van-
couver, pp 537–544

Haghighi A, Vanderwende L (2009) Exploring con-
tent models for multi-document summarization. In:
ACL, Boulder, pp 362–370

Han X, Sun L (2012) An entity-topic model for entity
linking. In: EMNLP, Jeju Island, pp 105–115

Hofmann T (1999) Probabilistic latent semantic analy-
sis. In: UAI, Stockholm, pp 289–296

Hu Y, Boyd-Graber J, Satinoff B (2011) Interactive
topic modeling. In: ACL, Portland, pp 248–257

Jo Y, Oh AH (2011) Aspect and sentiment unification
model for online review analysis. In: WSDM, Hong
Kong, pp 815–824

Krestel R, Fankhauser P, Nejdl W (2009) Latent dirich-
let allocation for tag recommendation. In: RecSys,
New York, pp 61–68

Lin C, He Y (2009) Joint sentiment/topic model for
sentiment analysis. In: CIKM, Hong Kong, pp 375–
384

Liu B (2012) Sentiment analysis and opinion mining.
Synth Lect Hum Lang Technol 5(1):1–167

Lu Y, Zhai C (2008) Opinion integration through
semi-supervised topic modeling. In: WWW, Bei-
jing, pp 121–130

Mei Q, Ling X, Wondra M, Su H, Zhai C (2007) Topic
sentiment mixture: modeling facets and opinions in
weblogs. In: WWW, Banff, pp 171–180

Minka T, Lafferty J (2002) Expectation-propagation
for the generative aspect model. In: UAI’02, Ed-
monton, pp 352–359

Mukherjee A, Liu B (2012) Aspect extraction through
semi-supervised modeling. In: ACL, Jeju Island,
pp 339–348

Petterson J, Smola A, Caetano T, Buntine W,
Narayanamurthy S (2010) Word features for latent
Dirichlet allocation. In: NIPS, Whistler, pp 1921–
1929

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hi-
erarchical Dirichlet processes. J Am Stat Assoc
101(476): 1–30

Titov I, McDonald R (2008) Modeling online reviews
with multi-grain topic models. In: WWW, Beijing,
pp 111–120

Toutanova K, Johnson M (2008) A Bayesian LDA-
based Model for Semi-Supervised Part-of-speech
Tagging. In: NIPS, Whistler

Wei X, Croft WB (2006) LDA-based document models
for ad-hoc retrieval. In: SIGIR, Seattle, pp 178–185

Yao L, Haghighi A, Riedel S, McCallum A (2011)
Structured relation discovery using generative mod-
els. In: EMNLP, Edinburgh, pp 1456–1466

Zhao WX, Jiang J, He J, Song Y, Achananuparp P, Lim
E-P, Li X (2011) Topical keyphrase extraction from
twitter. In: ACL, Portland, pp 379–388

Zhao WX, Jiang J, Yan H, Li X (2010) Jointly mod-
eling aspects and opinions with a MaxEnt-LDA
hybrid. In: EMNLP, Cambridge, pp 56–65

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_976

Trace-Based Programming 1281

T

Topology

�Topology of a Neural Network

Topology of a Neural Network

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Architecture; Connectivity; Structure; Topology

Definition

Topology of a neural network refers to the way
the neurons are connected, and it is an important
factor in how the network functions and learns.
A common topology in unsupervised learning is
a direct mapping of inputs to a collection of units
that represents categories (e.g., � Self-Organizing
Maps). The most common topology in super-
vised learning is the fully connected, three-layer,
feedforward network (see �Backpropagation and
�Radial Basis Function Networks): All input
values to the network are connected to all neu-
rons in the hidden layer (hidden because they
are not visible in the input or output), the out-
puts of the hidden neurons are connected to all
neurons in the output layer, and the activations
of the output neurons constitute the output of
the whole network. Such networks are popu-
lar partly because they are known theoretically
to be universal function approximators (with,
e.g., a sigmoid or Gaussian nonlinearity in the
hidden layer neurons), although networks with
more layers may be easier to train in practice
(e.g., �Cascade-Correlation). In particular, deep
learning architectures (see �Deep Learning) uti-
lize multiple hidden layers to form a hierar-
chy of gradually more structured representations
that support a supervised task on top. Layered

networks can be extended to processing sequen-
tial input and/or output by saving a copy of the
hidden layer activations and using it as addi-
tional input to the hidden layer in the next time
step (see � Simple Recurrent Network). Fully
recurrent topologies, where each neuron is con-
nected to all other neurons (and possibly to it-
self), can also be used to model time-varying
behavior, although such networks may be unsta-
ble and difficult to train (e.g., with backprop-
agation; but see also �Boltzmann Machines).
Modular topologies, where different parts of the
networks perform distinctly different tasks, can
improve stability and can also be used to model
high-level behavior (e.g., �Echo-State Machines
and �Adaptive Resonance Theory). Whatever
the topology, in most cases, learning involves
modifying the �Weight on the network con-
nections. However, arbitrary network topologies
are possible as well and can be constructed as
part of the learning (e.g., with backpropagation
or �Neuroevolution) to enhance feature selec-
tion, recurrent memory, abstraction, or general-
ization.

Trace-Based Programming

Pierre Flener1 and Ute Schmid2

1Department of Information Technology,
Uppsala University, Uppsala, Sweden
2Faculty of Information Systems and Applied
Computer Science, University of Bamberg,
Bamberg, Germany

Abstract

Trace-based programming is introduced as a
specific approach to inductive programming
where a, typically recursive, program is in-
ferred from a small set of example computa-
tional traces.

Most of the work by this author was done while on
leave of absence in 2006/2007 as a Visiting Faculty
Member and Erasmus Exchange Teacher at Sabancı
University, Turkey.

http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_100019
http://dx.doi.org/10.1007/978-1-4899-7687-1_100079
http://dx.doi.org/10.1007/978-1-4899-7687-1_100451
http://dx.doi.org/10.1007/978-1-4899-7687-1_100477
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_33
http://dx.doi.org/10.1007/978-1-4899-7687-1_909
http://dx.doi.org/10.1007/978-1-4899-7687-1_768
http://dx.doi.org/10.1007/978-1-4899-7687-1_31
http://dx.doi.org/10.1007/978-1-4899-7687-1_781
http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_594

1282 Training Curve

Synonyms

Programming from traces

Definition

Trace-based programming addresses the infer-
ence of a program from a small set of example
computation traces. The induced program is typ-
ically a recursive program. A computation trace
is a non-recursive expression that describes the
transformation of some specific input into the de-
sired output with help of a predefined set of prim-
itive functions. While the construction of traces
is highly dependent on background knowledge or
even on knowledge about the program searched
for, the inductive generalization is based on
syntactical methods of detecting regularities and
dependencies between traces, as proposed in clas-
sical approaches to � inductive programming or
� explanation-based learning. As an alternative to
providing traces by hand simulation, AI planning
techniques or programming by demonstration
can be used.

Cross-References

�Explanation-Based Learning
� Inductive Programming
� Programming by Demonstration

Recommended Reading

Biermann AW (1972) On the inference of Turing
machines from sample computations. Artif Intell
3(3):181–198

Schmid U, Wysotzki F (1998) Induction of recur-
sive program schemes. In: Proceedings of the 10th
European conference on machine learning (ECML
1998). Volume 1398 of lecture notes in artificial
intelligence. Springer, pp 214–225

Schrödl S, Edelkamp S (1999) Inferring flow of control
in program synthesis by example. In: Proceedings
of the 23rd annual German conference on artificial
intelligence (KI 1999). Volume 1701 of lecture
notes in artificial intelligence. Springer, pp 171–182

Shavlik JW (1990) Acquiring recursive and iterative
concepts with explanation-based learning. Mach
Learn 5:39–70

Wysotzki F (1983) Representation and induction of
infinite concepts and recursive action sequences. In:
Proceedings of the 8th international joint confer-
ence on artificial intelligence (IJCAI 1983). Morgan
Kaufmann, pp 409–414

Training Curve

�Learning Curves in Machine Learning

Training Data

Synonyms

Training examples; Training instances

Definition

Training data are data to which a learner is
applied.

Cross-References

�Training Set

Training Examples

�Training Data

Training Instances

�Training Data

Training Set

Synonyms

Training data

http://dx.doi.org/10.1007/978-1-4899-7687-1_100382
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_679
http://dx.doi.org/10.1007/978-1-4899-7687-1_452
http://dx.doi.org/10.1007/978-1-4899-7687-1_100480
http://dx.doi.org/10.1007/978-1-4899-7687-1_100481
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_840

Tree Augmented Naive Bayes 1283

T

Definition

A training set is a � data set containing data
that are used for learning by a learning system.
A training set may be divided further into a
� growing set and a � pruning set.

Cross-References

�Data Set
�Training Data

Training Time

A learning algorithm is typically applied at two
distinct times. Training time refers to the time
when an algorithm is learning a model from
� training data. �Test time refers to the time
when an algorithm is applying a learned model to
make predictions. �Lazy learning usually blurs
the distinction between these two times, deferring
most learning until test time.

Trait

�Attribute

Trajectory Data

�Time Series

Transductive Learning

� Semi-supervised Learning
� Semi-supervised Text Processing

Transfer Learning

� Inductive Transfer

Transfer of Knowledge Across
Domains

� Inductive Transfer

Transition Probabilities

In a �Markov decision process, the transition
probabilities represent the probability of being in
state s0 at time tC1, given you take action a from
state s at time t for all s; a and t .

Tree Augmented Naive Bayes

Fei Zheng1;2 and Geoffrey I. Webb3

1Monash University, Sydney, NSW, Australia
2Monash University, Clayton, Melbourne, VIC,
Australia
3Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

TAN

Definition

Tree augmented � naive Bayes is a � semi-naive
Bayesian Learning method. It relaxes the naive
Bayes attribute independence assumption by em-
ploying a tree structure, in which each attribute
only depends on the class and one other attribute.
A maximum weighted spanning tree that maxi-
mizes the likelihood of the training data is used
to perform classification.

Classification with TAN

Interdependencies between attributes can be
addressed directly by allowing an attribute to

http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_357
http://dx.doi.org/10.1007/978-1-4899-7687-1_682
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_821
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_138
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_100464
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_748

1284 Tree Mining

depend on other non-class attributes. However,
techniques for learning unrestricted Bayesian
networks often fail to deliver lower zero-one loss
than naive Bayes (Friedman et al. 1997). One
possible reason for this is that full �Bayesian
networks are oriented toward optimizing the
likelihood of the training data rather than the
conditional likelihood of the class attribute given
a full set of other attributes. Another possible
reason is that full Bayesian networks have high
variance due to the large number of parameters
estimated. An intermediate alternative technique
is to use a less restrict structure than naive Bayes.
Tree augmented naive Bayes (TAN) (Friedman
et al. 1997) employs a tree structure, allowing
each attribute to depend on the class and at most
one other attribute. Figure 1 shows Bayesian
network representations of the types of model
that NB and TAN respectively create.

Chow (1968) proposed a method that effi-
ciently constructs a maximum weighted span-
ning tree which maximizes the likelihood that
the training data was generated from the tree.
The weight of an edge in the tree is the mutual
information of the two attributes connected by the
edge. TAN extends this method by using condi-
tional mutual information as weights. Since the
selection of root does not affect the log-likelihood

Y

NB

X1 X2 Xi Xi+1 Xn

Y

TAN

X1 X2 Xi Xi+1 Xn

Tree Augmented Naive Bayes, Fig. 1 Bayesian net-
work examples of the forms of model created by NB and
TAN

of the tree, TAN randomly selects a root attribute
and directs all edges away from it. The parent of
each attribute Xi is indicated as �.Xi / and the
parent of the class is ¿. It assumes that attributes
are independent given the class and their parents
and classifies the test instance x D hx1; : : : ; xni

by selecting

argmax
y

OP .Y /
Y

1�i�n

OP .xi jy; �.xi //; (1)

where �.xi / is a value of �.Xi / and y is a class
label.

Due to the relaxed attribute independence as-
sumption, TAN considerably reduces the � bias
of naive Bayes at the cost of an increase in
variance. Empirical results (Friedman et al. 1997)
show that it substantially reduces zero-one loss
of naive Bayes on many data sets and that of
all data sets examined it achieves lower zero-one
loss than naive Bayes more often than not.

Cross-References

�Averaged One-Dependence Estimators
�Bayesian Network
�Naı̈ve Bayes
� Semi-Naive Bayesian Learning

Recommended Reading

Chow CK, Liu CN (1968) Approximating discrete
probability distributions with dependence trees.
IEEE Trans Inf Theory 14:462–467

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian
network classifiers. Mach Learn 29(2):131–163

Tree Mining

Siegfried Nijssen
Katholieke Universiteit Leuven, Leuven,
Belgium

Definition

Tree mining is an instance of constraint-based
pattern mining and studiesthe discovery of tree

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_48
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_748

Tree Mining 1285

T

patterns in data that is represented as a tree
structure or as a set of trees structures. Minimum
frequency is the most studied constraint.

Motivation and Background

Tree mining is motivated by the availability of
many types of data that can be represented as
tree structures. There is a large variety in tree
types, for instance, ordered trees, unordered trees,
rooted trees, unrooted (free) trees, labeled trees,
unlabeled trees, and binary trees; each of these
has its own application areas. An example are
trees in tree banks, which store sentences anno-
tated with parse trees. In such data, it is not only
of interest to find commonly occurring sets of
words (for which frequent itemset miners could
be used), but also to find commonly occurring
parses of these words. Tree miners aim at finding
patterns in this structured information. The pat-
terns can be interesting in their own right, or can
be used as features in classification algorithms.

Structure of Problem

All tree miners share a similar problem setting.
Their input consists of a set of trees and a set of
constraints, usually a minimum frequency con-
straint, and their output consists of all subtrees
that fulfill the constraints.

Tree miners differ in the constraints that they
are able to deal with, and the types of trees that
they operate on. The following types of trees can
be distinguished:

Free trees, which are graphs without cycles, and
no order on the nodes or edges;

Unordered trees, which are free trees in which
one node is chosen to be the root of the tree;

Ordered trees, which are rooted trees in which the
nodes are totally ordered.

For each of these types of tree, we can choose to
have labels on the nodes, or on the edges, or on
both.

The differences between these types of trees
are illustrated in Fig. 1. Every graph in this figure
can be interpreted as a free tree Fi , an unordered
tree Ui , or an ordered tree Ti . When interpreted
as ordered trees, none of the trees are equivalent.
When we interpret them as unordered trees, U1

and U2 are equivalent representations of the same
unordered tree that has B as its root and C and D

as its children. Finally, as free trees, not only F1

and F2 are equivalent, but also F5 and F7.
Intuitively, a free tree requires less specifica-

tion than an ordered tree. The number of possible
free trees is smaller than the number of possible
ordered trees. On the other hand, to test if two
trees are equivalent we need a more elaborate
computation for free trees than for ordered trees.

Assume that we have data represented as (a
set of) trees, then the data mining problem is
to find patterns, represented as trees, that fulfill
constraints based on this data. To express these
constraints, we need a coverage relation that
expresses when one tree can be considered to
occur in another tree. Different coverage relations
can be expressed for free trees, ordered trees, and
unordered trees. We will introduce these relations
through operations that can be used to transform

T U F

T U F T U F T U F

T U F T U F T U F

T U F

Tree Mining, Fig. 1 The leftmost tree is part of the data, the other trees could be patterns in this tree, depending on the
subtree relation that is used

1286 Tree Mining

Tree Mining, Fig. 2
Relations between the trees
of Fig. 1

trees. As an example, consider the operation that
removes a leaf from a tree. We can repeatedly
apply this operation to turn a large tree into a
smaller one. Given two trees A and B , we say
that A occurs in B as

Induced subtree, if A can be obtained from B

by repeatedly removing leaves from B . When
dealing with rooted trees, the root is here also
considered to be a leaf if it has one child;

Root-induced subtree, if A can be obtained from
B by repeatedly removing leaves from B .
When dealing with rooted trees, the root is not
allowed to be removed;

Embedded subtree, if A can be obtained from B

by repeatedly either (1) removing a leaf or (2)
removing an internal node, reconnecting the
children of the removed node with the parent
of the removed node;

Bottom-up subtree, if there is a node v in B such
that if we remove all nodes from B that are not
a descendant of v, we obtain A;

Prefix, if A can be obtained from B by repeatedly
removing the last node from the ordered tree
B;

Leaf set, if A can be obtained from B by selecting
a set of leaves from B , and all their ancestors
in B .

For free trees, only the induced subtree relation
is well-defined. A prefix is only well-defined
for ordered trees, the other relations apply both
to ordered and unordered trees. In the case of
unordered trees, we assume that each operation
maintains the order of the original tree B . The
relations are also illustrated in Fig. 2.

Intuitively, we can speak of occurrences (also
called embeddings by some authors) of a small

Tree Mining 1287

T

tree in a larger tree. Each such occurrence (or
embedding) can be thought of as a function ' that
maps every node in the small tree to a node in the
large tree.

Using an occurrence relation, we can define
frequency measures. Assume given a forest F of
trees, all ordered, unordered, or free. Then the
frequency of a tree A can be defined

Transaction-based, where we count the number
of trees B 2 F such that A is a subtree of B;

Node-based, where we count the number of nodes
v in F such that A is a subtree of the bottom-
up subtree below v.

Node-based frequency is only applicable in
rooted trees, in combination with the root-
induced, bottom-up, prefix, or leaf set subtree
relations.

Given a definition of frequency, constraints on
trees of interest can be expressed:

Minimum frequency, to specify that only trees
with a certain minimum number of occur-
rences are of interest;

Closedness, to specify that a tree is only of
interest if its frequency is different from all its
supertrees;

Maximality, to specify that a tree is only of
interest if none of its supertrees is frequent.

Observe that in all of these constraints, the sub-
tree relation is again important. The subtree re-
lation is not only used to compare patterns with
data, but also patterns among themselves.

The tree mining problem can now be stated
as follows. Given a forest of trees F (ordered,
unordered, or free) and a set of constraints, based
on a subtree relation, the task is to find all trees
that satisfy the given constraints.

Theory/Solution

The tree mining problem is an instance of the
more general problem of constraint-based pat-
tern mining under constraints. For more informa-
tion about the general setting, see the sections

on constraint-based mining, itemset mining, and
graph mining.

All algorithms iterate a process of generating
candidate patterns, and testing if these candidates
satisfy the constraints. Essential is to avoid that
every possible tree is considered as a candi-
date. To this purpose, the algorithms exploit that
many frequency measures are anti-monotonic.
This property states that for two given trees A and
B , where A is a subtree of B , if A is infrequent,
then also B is infrequent, and therefore, we do
not need to consider it as a candidate.

This observation can make it possible to find
all trees that satisfy the constraints, if these re-
quirements are fulfilled:

• We have an algorithm to enumerate candidate
subtrees, which satisfies these properties:
– It should be able to enumerate all trees in

the search space;
– It should avoid that no two equivalent sub-

trees are listed;
– It should only list a tree after at least one of

its subtrees has been listed, to exploit the
anti-monotonicity of the frequency con-
straint;

• We have an algorithm to efficiently compute in
how many database trees a pattern tree occurs.

The algorithmic solutions to these problems de-
pend on the type of tree and the subtree relation.

Encoding and Enumerating Trees
We will first consider how tree miners internally
represent trees. Two types of encodings have been
proposed, both of which are string-based. We will
illustrate these encodings for node-labeled trees,
and start with ordered trees.

The first encoding is based on a preorder
listing of nodes: (1) for a rooted ordered tree T

with a single vertex r , the preorder string of T is
ST;r D lr � 1, where lr is the label for the single
vertex r , and (2) for a rooted ordered tree T with
more than one vertex, assuming the root of T is r

(with label lr / and the children of r are r1,. . . , rK

from left to right, then the preorder string for T is

1288 Tree Mining

ST;r D lrST;rK
�1, where ST ; r1; : : : ; ST ; rk are

the preorder strings for the bottom-up subtrees
below nodes r1; : : : ; rK in T .

The second encoding is based on listing the
depths of the nodes together with their labels in
prefix-order. The depth of a node v is the length
of the path from the root to the node v. The code
for a tree is ST;r D dr ; lr ; ST;r1 : : : ST;rk

, where
dr is the depth of the node r in tree T .

Both encodings are illustrated in Fig. 3.
A search space of trees can be visualized as

in Fig. 4. In this figure, every node corresponds
to the depth encoding of a tree, while the edges

Tree Depth-sequence Preorder string

T6 1A2B2D AB-1D-1

T7 1A2B3C3D ABC-1D-1-1-1

T 1A2B3C3D2E ABC-1D-1-1E-1

T4 1A2D2E AD-1E-1-1

T3 1A2E AE-1-1

T5 1B2A2C2D BA-1C-1D-1-1

T1 1B2C2D BC-1D-1-1

T2 1B2D2C BD-1C-1-1

Tree Mining, Fig. 3 Depth sequences for all the trees
of Fig. 1, sorted in lexicographical order. Tree T2 is the
canonical form of unordered tree U2, as its depth sequence
is the highest among equivalent representations

visualize the partial order defined by the subtree
relation. It can be seen that the number of induced
subtree relations between trees is smaller than the
number of embedded subtree relations.

The task of the enumeration algorithm is to
traverse this search space starting from trees that
contain only one node. Most algorithms perform
the search by building an enumeration tree over
the search space. In this enumeration tree every
pattern should have a single parent. The children
of a pattern in the enumeration tree are called its
extensions or its refinements. An example of an
enumeration tree for the induced subtree relation
is given in Fig. 5.

In the enumeration tree that is given here, the
parent of a tree is its prefix in the depth encoding.
An alternative definition is that the parent of a tree
can be obtained by removing the last node in a
prefix order traversal of the ordered tree. Every
refinement in the enumeration has one additional
node that is connected to the rightmost path of the
parent.

The enumeration problem is more compli-
cated for unordered trees. In this case, the trees
represented by the strings 1A2A2B and 1A2B2A

are equivalent, and we only wish to enumerate
one of these strings. This can be achieved by
defining a total order on all strings that represent
trees, and to define that only the highest (or
lowest) string of a set of equivalent strings should
be considered.

For depth encodings, the ordering is usually
lexicographical, and the highest string is chosen
to be the canonical encoding. In our example,
1A2B2A would be canonical. This code has the
desirable property that every prefix of a canonical
code is also a canonical code. Furthermore it
can be determined in polynomial time which

Tree Mining, Fig. 4
A search space of ordered
trees, where edges denote
subtree relationships

1A 1B

1A2A 1A2B 1B2A 1B2B

1A2A2A

1A2A3A

1A2A2B 1A2A3B1A2B2A

1A2B2B

1A2B3A 1A2B3B

.

Induced/Embedded Subtree
Embedded Subtree only

Tree Mining 1289

T

.

Tree Mining, Fig. 5 Part of an enumeration tree for the search space of Fig. 4

extensions of a canonical code lead to a canonical
code, such that it is not necessary to consider any
code that is not canonical.

Alternative codes have also been proposed,
which are not based on a preorder, depth-first
traversal of a tree, but on a level-wise listing of
the nodes in a tree.

Finally, for free trees we have the additional
problem that we de not have a root for the tree.
Fortunately, it is known that every free tree either
has a uniquely determined center or a uniquely
determined bicenter. This (bi)center can be found
by determining the longest path between two
nodes in a free tree: the node(s) in the middle of
this path are the center of the tree. It can be shown
that if multiple paths have the same maximal
length, they will have the same (bi)center. By
appointing one center to be the root, we obtain
a rooted tree, for which we can compute a code.

To avoid that two codes are listed that repre-
sent equivalent free trees, several solutions have
been proposed. One is based on the idea of first
enumerating paths (thus fixing the center of a
tree), and for each of these paths enumerating
all trees that can be grown around them. Another
solution is based on enumerating all rooted, un-
ordered trees under the constraint that at least
two different children of the root have a bottom-
up subtree of equal, maximal depth. In the first
approach, a preorder depth encoding was used; in
the second approach a level-wise encoding was
used.

Counting Trees
To evaluate the frequency of a tree the subtree
relation between a candidate pattern tree and all

Tree Mining, Table 1 Worst case complexities of the
best known algorithms that determine whether a tree
relation holds between two trees; m is the number of
nodes in the pattern tree, l is the number of leafs in the
pattern tree, n the number of nodes in the database tree

Ordered

Embedding O.nl/

Induced O.nm/

Root-induced O.n/

Leaf-set O.n/

Bottom-up O.n/

Prefix O.m/

Unordered

Embedding NP-complete

Induced O.nm1 1
2 = log m/

Root-induced O.nm1 1
2 = log m/

Leaf-set O.nm1 1
2 = log m/

Bottom-up O.n/

trees in the database has to be computed. For each
of our subtree relations, polynomial algorithms
are known to decide the relation, which are sum-
marized in Table 1.

Even though a subtree testing algorithm and an
algorithm for enumerating trees are sufficient to
compute all frequent subtrees correctly, in prac-
tice fine-tuning is needed to obtain an efficient
method. There are two reasons for this:

• In some databases, the number of candidates
can by far exceed the number of trees that
are actually frequent. One way to reduce the
number of candidates is to only generate a
particular candidate after we have encountered

1290 Tree Mining

at least one occurrence of it in the data (this
is called pattern growth); another way is to
require that a candidate is only generated if at
least two of its subtrees satisfy the constraints
(this is called pattern joining).

• The trees in the search space are very similar
to each other: a parent only differs from its
children by the absence of a single node. If
memory allows, it is desirable to reuse the sub-
tree matching information, instead of starting
the matching from scratch.

A large number of data structures have been
proposed to exploit these observations. We will
illustrate these ideas using the FreqT algorithm,
which mines induced, ordered subtrees, and uses
a depth encoding for the trees.

In FreqT, for a given pattern tree A, a list of
(database tree, database node) pointers is stored.
Every element (B , v/ in this list corresponds to an
occurrence of tree A in tree B in which the last
node (in terms of the preorder) of A is mapped
to node v in database tree B . For a database and
three example trees this is illustrated in Fig. 6.

Every tree in the database is stored as follows.
Every node is given an index, and for every node,
we store the index of its parent, its righthand
sibling, and its first child.

Let us consider how we can compute the oc-
currences of the subtree 1A2B2B from the occur-
rences of the tree 1A2B . The first occurrence of
1A2B is (t1, 2), which means that the B labeled
node can be mapped to node 2 in t1. Using the

arrays that store the database tree, we can then
conclude that node 6, which is the right-hand
sibling of node 2, corresponds to an occurence of
the subtree 1A2B2B . Therefore, we add (t1, 6)
to the occurrence list of 1A2B2B . Similarly, by
scanning the data we find out that the first child of
node 2 corresponds to an occurrence of the subree
1A2B3C , and we add (t1, 3) to the occurrence
list of 1A2B3C .

Overall, using the parent, sibling and child
pointers we can scan every node in the data that
could correspond to a valid expansion of the sub-
tree 1A2B , and update the corresponding lists.
After we have done this for every occurrence of
the subtree, we know the occurrence lists of all
possible extensions.

From an occurrence list we can determine the
frequency of a tree. For instance, the transaction-
based frequency can be computed by counting the
number of different database trees occurring in
the list.

As we claimed, this example illustrates two
features that are commonly seen in tree miners:
first, the occurrence list of one tree is used to
compute the occurrence list of another tree, thus
reusing information; second, the candidates are
collected from the data by scanning the nodes that
connect to the occurrence of a tree in the data.
Furthermore, this example illustrates that a care-
ful design of the datastructure that stores the data
can ease the frequency evaluation considerably.

FreqT does not perform pattern joining. The
most well-known example of an algorithm that

Tree Mining, Fig. 6 A
tree database (left) and
three ordered trees with
their occurrence lists
according to the FreqT
algorithm (right). The
datastructure that stores t1
in FreqT is given in the
table (right)

A

B B

DC E

t1

A

B B

DC

E

t2

2

1 1

6

3 4 5

2

3

4

6

5

A

A

B

A

BB

(t1,1)(t2,1)

(t1,2)(t1,6)(t2,2)(t2,6)

(t1,6)(t2,6)

Tree Mining 1291

T

performs tree joining is the embedded TreeMiner
(Zaki 2002). Both the FreqT and the TreeMiner
perform the search depth-first, but also tree min-
ers that use the traditional level-wise approach of
the Apriori algorithm have been proposed. The
FreqT and the TreeMiner have been extended to
unordered trees.

Other Constraints
As the number of frequent subtrees can be very
large, approaches have been studied to reduce
the number of trees returned by the algorithm,
of which closed and maximal trees are the most
popular. To find closed or maximal trees, two
issues need to be addressed:

• How do we make sure that we only output a
tree if it is closed or maximal, that is, how do
we determine that none of its supertrees has
the same support, or is frequent?

• Can we conclude that some parts of the search
space will never contain a closed or maximal
tree, thus making the search more efficient?

Two approaches can be used to address the first
issue:

• All closed patterns can be stored, and every
new pattern can be compared with the stored
set of patterns;

• When we evaluate the frequency of a pattern
in the data, we also (re)evaluate the frequency
of all its possible extensions, and only output
the pattern if its support is different.

The second approach requires less memory, but
in some cases requires more computations.

To prune the search space, a common ap-
proach is to check all occurrences of a tree in the
data. If every occurrence of a tree can be extended
into an occurrence of another tree, the small tree
should not be considered, and the search should
continue with the tree that contains all common
edges and nodes. Contrary to graph mining, it can
be shown that this kind of pruning can safely be
done in most cases.

Applications

Examples of databases to which tree mining al-
gorithms have been applied are

Parse tree analysis: Since the early 1990s
large Treebank datasets have been collected
consisting of sentences and their grammatical
structure. An example is the Penn TreeBank
(Marcus et al. 1993). These databases
contain rooted, ordered trees. To discover
differences in domain languages it is useful
to compare commonly occurring grammatical
constructions in two different sets of parsed
texts, for which tree miners can be used
(Sekine 1998).

Computer network analysis: IP multicast is a
protocol for sending data to multiple receivers.
In an IP multicast session a webserver sends
a packet once; routers copy a packet if
two different routes are required to reach
multiple receivers. During a multicast session
rooted trees are obtained in which the
root is the sender and the leaves are the
receivers. Commonly occurring patterns in the
routing data can be discovered by analyzing
these unordered rooted trees (Chalmers and
Almeroth 2003).

Webserver access log analysis: When users
browse a website, this behavior is reflected in
the access log files of the webserver. Servers
collect information such as the webpage
that was visited, the time of the visit, and
the webpage that was clicked to reach the
webpage. The access logs can be transformed
into a set of ordered trees, each of which
corresponds to a visitor. Nodes in these trees
correspond to webpages; edges are inserted if
a user browses from one webpage to another.
Nodes are ordered in viewing order. A tool
was developed to perform this transformation
in a sensible way (Punin et al. 2002).

Phylogenetic trees: One of the largest tree
databases currently under construction is
the TreeBASE database, which is comprised
of a large number of phylogenetic trees
(Morell 1996). The trees in the TreeBASE
database are submitted by researchers and are

1292 Tree-Based Regression

collected from publications. Originating from
multiple sources, they can disagree on parts
of the phylogenetic tree. To find common
agreements between the trees, tree miners
have been used (Zhang and Wang 2005). The
phylogenetic trees are typically unordered;
labels among siblings are unique.

Hypergraph mining: Hypergraphs are graphs in
which one edge can have more than two end-
points. Those hypergraphs in which no two
nodes share the same label can be transformed
into unordered trees, as follows. First, an ar-
tificial root is inserted. Second, for each edge
of the hypergraph a child node is added to the
root, labeled with the label of the hyperedge.
Finally, the labels of nodes within hyperedges
are added as leaves to the tree. An example of
hypergraph data is bibliographic data: if each
example corresponds to a paper, nodes in the
hypergraph correspond to authors cited by the
paper, and hyperedges connect coauthors of
cited papers.

Multi-relational data mining: Many multi-
relational databases are tree shaped, or
a tree-shaped view can be created. For
instance, a transaction database in which every
transaction is associated with customers and
their information, can be represented as a tree
(Berka 1999).

XML data mining: Several authors have stressed
that tree mining algorithms are most suitable
for mining XML data. XML is a tree–shaped
data format, and tree miners can be helpful
when trying to (re)construct Document Type
Definitions (DTDs) for such documents.

Cross-References

�Constraint-Based Mining
�Graph Mining

Further Reading

The FreqT algorithm was introduced in (Asai
et al. 2002; Wang and Liu 1998; Zaki 2002).

The most popular tree miner is the embedded tree
miner by Zaki (2002). A more detailed overview
of tree miners can be found in Chi et al. (2005).
Most implementations of tree miners are avail-
able on request from their authors.

Recommended Reading

Asai T, Abe K, Kawasoe S, Arimura H, Satamoto H,
Arikawa S (2002) Efficient substructure discovery
from large semi-structured data. In: Proceedings of
the second SIAM international conference on data
mining, Arlington. SIAM, pp 158–174

Berka P (1999) Workshop notes on discovery chal-
lenge PKDD-99 (Technical report). University of
Economics, Prague

Chalmers R, Almeroth K (2003) On the topology of
multicast trees. IEEE/ACM Trans Netw 11:153–
165. IEEE Press/ACM Press

Chi Y, Nijssen S, Muntz RR, Kok JN (2005) Frequent
subtree mining—an overview. In: Fundam Inform
66:161–198. IOS Press

Marcus MP, Santorini B, Marcinkiewicz MA (1993)
Building a large annotated corpus of English: the
Penn Treebank. Comput Linguist 19:313–330. MIT
Press

Morell V (1996) TreeBASE: the roots of phylogeny.
Science 273:569

Punin J, Krishnamoorthy M, Zaki MJ (2002)
LOGML—log markup language for web usage min-
ing. In: WEBKDD 2001—mining web log data
across all customers touch points. Third interna-
tional workshop, San Francisco. Lecture notes in
artificial intelligence, vol 2356. Springer, pp 88–112

Sekine S (1998) Corpus-based parsing and sublan-
guages studies. Ph.D. dissertation. New York Uni-
versity, New York

Wang K, Liu H (1998) Discovering typical structures
of documents: a road map approach. In: Proceedings
of the 21st annual international ACM SIGIR con-
ference on research and development in information
retrieval, Melbourne. ACM Press, pp 146–154

Zaki MJ (2002) Efficiently mining frequent trees in
a forest. In: Proceedings of the 8th international
conference knowledge discovery and data mining
(KDD), Edmonton. ACM Press, pp 71–80

Zhang S, Wang J (2005) Frequent agreement subtree
mining. http://aria.njit.edu/mediadb/fast/

Tree-Based Regression

�Regression Trees

http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://aria.njit.edu/mediadb/fast/
http://dx.doi.org/10.1007/978-1-4899-7687-1_717

Typical Complexity of Learning 1293

T

True Lift Modeling

�Uplift Modeling

True Negative

True negatives are the negative examples that
are correctly classified by a classification model.
See � confusion matrix for a complete range of
related terms.

True Negative Rate

� Specificity

True Positive

True positives are the positive examples that are
correctly classified by a classification model. See

� confusion matrix for a complete range of re-
lated terms.

True Positive Rate

� Sensitivity

Type

�Class

Typical Complexity of Learning

� Phase Transitions in Machine Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_911
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_642

U

Underlying Objective

The term objective used in Evolutionary Multi-
Objective Optimization refers to an indicator of
quality returning an element from an ordered set
of scalar values, such as a real number. For any
test-based coevolutionary problem, a set of un-
derlying objectives exists such that knowledge of
the objective values of an individual is sufficient
to determine the outcomes of all possible tests.
The existence of a set of underlying objectives
is guaranteed, as the set of possible tests itself
satisfies this property.

Unit

�Neuron

Universal Learning Theory

Marcus Hutter
Research School of Computer Science,
Australian National University, Canberra, ACT,
Australia

Abstract

This encyclopedic article gives a mini-
introduction into the theory of universal
learning, founded by Ray Solomonoff in

the 1960s and significantly developed and
extended in the last decade. It explains the
spirit of universal learning, but necessarily
glosses over technical subtleties.

Definition, Motivation, and
Background

Universal (machine) learning is concerned with
the development and study of algorithms that
are able to learn from data in a very large range
of environments with as few assumptions as
possible. The class of environments typically
considered includes all computable stochastic
processes. The investigated learning tasks range
from � inductive inference, sequence prediction,
sequential decisions, to (re)active problems such
as � reinforcement learning (Hutter 2005), but
also include � clustering, � regression, and others
(Li and Vitányi 2008). Despite various � no free
lunch theorems, universal learning is possible by
assuming that the data possess some effective
structure, but without specifying any further
which structure (Lattimore and Hutter 2011).
Learning algorithms that are universal (at least
to some degree) are also necessary for devel-
oping autonomous general intelligent systems,
required, e.g., for exploring other planets, as
opposed to decision support systems which keep
a human in the loop. There is also an intrinsic
interest in striving for generality: Finding new
learning algorithms for every particular (new)
problem is possible but cumbersome and prone

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_595
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_592

1296 Universal Learning Theory

to disagreement or contradiction. A sound
formal general and ideally complete theory of
learning can unify existing approaches, guide the
development of practical learning algorithms, and
last but not least lead to novel and deep insights.

Deterministic Environments

Let t; n 2 N be natural numbers, X � be the set
of finite strings, and X1 be the set of infinite
sequences over some alphabet X of size jX j.
For a string x 2 X � of length `.x/ D n,
we write x1x2 : : : xn with xt 2 X and fur-
ther abbreviate xt Wn WD xt xtC1 : : : xn�1xn and
x<n WD x1 : : : xn�1, and � D x<1 for the empty
string. Consider a countable class of deterministic
hypotheses M D fH1; H2; : : :g. Each hypothesis
H 2 M (also called model) shall describe
an infinite sequence xH

1W1, e.g., like in IQ test
questions “2,4,6,8,. . . .” In online learning, for
t D 1; 2; 3; : : :, we predict xt based on past
observations Px<t , then nature reveals Pxt , and so
on, where the dot above x indicates the true
observation. We assume that the true hypothesis
is in M, i.e., Px1W1 D x

Hm

1W1 for some m 2 N. The
goal is to (“quickly”) identify the unknown Hm

from the observations.

Learning by enumeration works as follows:
Let Mt D fH 2 M W xH

<t D Px<t g be the set of
hypotheses consistent with our observations Px<t

so far. The hypothesis in Mt with smallest index,
say m0

t , is selected and used for predicting xt .
Then Pxt is observed and all H 2 Mt inconsistent
with xt are eliminated, i.e., they are not included
in MtC1. Every prediction error results in the
elimination of at least Hm0

t
, so after at most

m�1 errors, the true hypothesis Hm gets selected
forever, since it never makes an error (Hm 2

Mt 8t). This identification may take arbitrarily
long (in t), but the number of errors on the way
is bounded by m � 1, and the latter is often more
important. As an example for which the bound
is attained, consider Hi with x

Hi

1W1 WD 1f .i/01

8i for any strictly increasing function f , e.g.,
f .i/ D i . But we now show that we can do much
better than this, at least for finite X .

Majority learning. Consider (temporarily in
this paragraph only) a binary alphabet X D f0; 1g

and a finite deterministic hypothesis class
M D fH1; H2; : : : ; HN g. Hm and Mt are as
before, but now we take a majority vote among
the hypotheses in Mt as our prediction of xt .
If the prediction turns out to be wrong, then
at least half (the majority) of the hypotheses
get eliminated from Mt . Hence after at most
log N errors, there is only a single hypothesis,
namely, Hm, left over. So this majority predictor
makes at most log N errors. As an example
where this bound is essentially attained, consider
m D N D 2n � 1 and let x

Hi

1W1 be the digits after
the comma of the binary expansion of .i � 1/=2n

for i D 1; : : : ; N .

Weighted majority for countable classes.
Majority learning can be adapted to denumerable
classes M and general finite alphabet X as
follows: Each hypothesis Hi is assigned a weight
wi > 0 with

P
i wi � 1. Let W WD

P
i WHi 2Mt

wi

be the total weight of the hypotheses in Mt .
Let Ma

t WD fHi 2 Mt W x
Hi
t D ag be

the consistent hypotheses predicting xt D a,
and Wa their weight, and take the weighted
majority prediction xt D arg maxa Wa. Similarly
as above, a prediction error decreases W by a
factor of 1 � 1=jX j, since maxa Wa � W=jX j.
Since wm � W � 1, this algorithm can
at most make log1�1=jX j wm D O.log w�1

m /

prediction errors. If we choose, for instance,
wi D .i C1/�2, the number of errors is O.log m/,
which is an exponential improvement over the
Gold-style learning by enumeration above.

Algorithmic Probability

Algorithmic probability has been founded by
Ray Solomonoff (1964). The so-called universal
probability or a priori probability is the key
quantity for universal learning. Its philosophical
and technical roots are �Ockham’s razor (choose
the simplest model consistent with the data),
Epicurus’ principle of multiple explanations
(keep all explanations consistent with the

http://dx.doi.org/10.1007/978-1-4899-7687-1_100346

Universal Learning Theory 1297

U

data), (Universal) Turing machines (to compute,
quantify, and assign codes to all quantities of
interest), and Kolmogorov complexity (to define
what simplicity/complexity means) (Rathmanner
and Hutter 2011). This section considers
deterministic computable sequences and the
next section the general setup of computable
probability distributions.

(Universal) monotone Turing machines. Since
we consider infinite computable sequences, we
need devices that convert input data streams to
output data streams. For this we define the fol-
lowing variants of a classical deterministic Turing
machine: A monotone Turing machine T is de-
fined as a Turing machine with one unidirectional
input tape, one unidirectional output tape, and
some bidirectional work tapes (Li and Vitányi
2008). The input tape is binary (no blank) and
read only, the output tape is over finite alphabet
X (no blank) and write only, unidirectional tapes
are those where the head can only move from left
to right, work tapes are initially filled with zeros,
and the output tape with some fixed element from
X . We say that monotone Turing machine T

outputs/computes a string starting with x 2 X �

on input p 2 f0; 1g� and write T .p/ D x� if p is
to the left of the input head when the last symbol
of x is output (T reads all of p but no more).
T may continue operation and need not halt.
For a given x, the set of such p forms a prefix
code. Such codes are called minimal programs.
Similarly we write T .p/ D ! if p outputs the
infinite sequence !. A prefix code P is a set
of binary strings such that no element is proper
prefix of another. It satisfies Kraft’s inequality
P

p2P 2�`.p/ � 1.
The table of rules of a Turing machine T

can be prefix encoded in a canonical way as a
binary string, denoted by hT i. Hence, the set of
Turing machines fT1; T2; : : :g can be effectively
enumerated. There are so-called universal Turing
machines that can “simulate” all other Turing
machines. We define a particular one which simu-
lates monotone Turing machine T .q/ if fed with
input hT iq, i.e., U.hT iq/ D T .q/ 8T; q. Note
that for p not of the form hT iq, U.p/ does not

output anything. We call this particular U the
reference universal Turing machine.

Universal weighted majority learning.
T1.�/; T2.�/; : : : constitutes an effective enu-
meration of all finite and infinite computable
sequences, hence so does monotone U.p/ for
p 2 f0; 1g�. As argued below, the class of
computable infinite sequences is conceptually
very interesting. The halting problem implies
that there is no recursive enumeration of all
partial recursive functions with infinite domain;
hence we cannot remove the finite sequences
algorithmically. It is very fortunate that we don’t
have to. Hypothesis Hp is identified with the
sequence U.p/, which may be finite, infinite,
or possibly even empty. The class of considered
hypotheses is M WD fHp W p 2 f0; 1g�g.

The weighted majority algorithm also needs
weights wp for each Hp . Ockham’s razor com-
bined with Epicurus’ principle demand to assign
a high (low) prior weight to a simple (complex)
hypothesis. If complexity is identified with pro-
gram length, then wp should be a decreasing
function of `.p/. It turns out that wp D 2�`.p/ is
the “right” choice, since minimal p form a prefix
code and therefore

P
p wp � 1 as required.

Using Hp for prediction can now fail in two
ways. Hp may make a wrong prediction or no
prediction at all for xt . The true hypothesis Hm

is still assumed to produce an infinite sequence.
The weighted majority algorithm in this setting
makes at most O.log w�1

p / D O.`.p// errors. It
is also plausible that learning `.p/ bits requires
O.`.p// “trials.”

Universal mixture prediction. Solomonoff
(1978) defined the following universal a priori
probability:

M.x/ WD
X

pWU.p/Dx�

2�`.p/ (1)

That is, M.x/ D W is the total weight
of the computable deterministic hypotheses
consistent with x for the universal weight

1298 Universal Learning Theory

choice wp D 2�`.p/. The universal weighted
majority algorithm predicted arg maxa M. Px<t a/.
Instead, one could also make a probability
prediction M.aj Px<t / WD M. Px<t a/=M. Px<t /,
which is the relative weight of hypotheses in
Mt predicting a. The higher the probability
M. Pxt j Px<t / that is assigned to the true next
observation Pxt , the better. Consider the
absolute prediction error j1 � M. Pxt j Px<t /j and
the logarithmic error� log M. Pxt j Px<t /. The
cumulative logarithmic error is bounded by
Pn

tD1 � log M. Pxt j Px<t / D � log M. Px1Wn/ � `.p/

for any program p that prints Px1Wn�. For
instance, p could be chosen as the shortest one
printing Px1W1, which has length Km. Px1W1/ WD

minf`.p/ W U.p/ D Px1W1g. Using 1�´ � � log ´

and letting n ! 1, we get

1X

tD1

j1 � M. Pxt j Px<t /j �

1X

tD1

� log M. Pxt j Px<t / � Km. Px1W1/ (2)

Hence again, the cumulative absolute and loga-
rithmic errors are bounded by the number of bits
required to describe the true environment.

Universal Bayes

The exposition so far has dealt with deterministic
environments only. Data sequences produced by
real-world processes are rarely as clean as IQ
test sequences. They are often noisy. This section
deals with stochastic sequences sampled from
computable probability distributions. The devel-
oped theory can be regarded as an instantiation
of Bayesian learning. Bayes’ theorem allows to
update beliefs in face of new information but
is mute about how to choose the prior and the
model class to begin with. Subjective choices
based on prior knowledge are informal, and tra-
ditional “objective” choices such as Jeffreys prior
are not universal (Rathmanner and Hutter 2011).
Machine learning, the computer science branch
of statistics, develops (fully) automatic inference
and decision algorithms for very large problems.
Naturally, machine learning has (re)discovered

and exploited different principles (Ockham’s and
Epicurus’) for choosing priors, appropriate for
this situation. This leads to an alternative rep-
resentation of universal probability as a mixture
over all lower semi-computable semimeasures
with Kolmogorov complexity based prior as de-
scribed below.

Bayes. Sequences ! D !1W1 2 X1 are now
assumed to be sampled from the “true” prob-
ability measure �, i.e., �.x1Wn/ WD PŒ!1Wn D

x1Wnj�� is the �-probability that ! starts with
x1Wn. Expectations w.r.t. � are denoted by E. In
particular for a function f W X n ! R, we have
EŒf � D EŒf .!1Wn/� D

P
x1Wn

�.x1Wn/f .x1Wn/.
Note that in Bayesian learning, measures, envi-
ronments, and models are the same objects; let
M D f�1; �2; : : :g � fH�1 ; H�2 ; : : :g denote a
countable class of these measures�hypotheses.
Assume that � is unknown but known to be a
member of M, and w� WD PŒH� � is the given
prior belief in H� . Then the Bayes mixture

�.x1Wn/ W D PŒ!1Wn D x1Wn� D
X

�2M
PŒ!1Wn

D x1WnjH� �PŒH� � �
X

�2M
�.x1Wn/w�

(3)

must be our a priori belief in x1Wn, and
PŒH� j!1Wn D x1Wn� D w��.x1Wn/=�.x1Wn/ be
our posterior belief in � by Bayes’ rule.

Universal choice of M. Next we need to
find a universal class of environments MU .
Roughly speaking, Bayes works if M contains
the true environment �. The larger the M,
the less restrictive is this assumption. The
class of all computable distributions, although
only countable, is pretty large from a practical
point of view, since it includes for instance all
of today’s valid physics theories. (Finding a
non-computable physical system would indeed
overturn the generally accepted Church-Turing
thesis.) It is the largest class, relevant from a

Universal Learning Theory 1299

U

computational point of view. Solomonoff (1964,
Eq. (13)) defined and studied the mixture over
this class.

One problem is that this class is not (effec-
tively = recursively) enumerable, since the class
of computable functions is not enumerable due to
the halting problem, nor is it decidable whether a
function is a measure. Hence � is completely in-
computable. Leonid Levin (Li and Vitányi 2008)
had the idea to “slightly” extend the class and in-
clude also lower semi-computable semimeasures.

A function � W X � ! Œ0; 1� is called a
semimeasure iff �.x/ �

P
a2X �.xa/8x 2 X �.

It is a proper probability measure iff equality
holds and �.�/ D 1. �.x/ still denotes the �-
probability that a sequence starts with string x. A
function is called lower semi-computable if it can
be approximated from below. Similarly to that
fact that the class of partial recursive functions
is recursively enumerable, one can show that
the class MU D f�1; �2; : : :g of lower semi-
computable semimeasures is recursively enumer-
able. In some sense MU is the largest class
of environments for which � is in some sense
computable, but even larger classes are possible
(Schmidhuber 2002).

Kolmogorov complexity. Before we can turn
to the prior w� , we need to quantify complex-
ity/simplicity. Intuitively, a string is simple if
it can be described in a few words, such as
“the string of one million ones,” and is complex
if there is no such short description, like for
a random object whose shortest description is
specifying it bit by bit. We are interested in
effective descriptions and hence restrict decoders
to be Turing machines. One can define the prefix
Kolmogorov complexity of string x as the length
` of the shortest halting program p for which U

outputs x:

K.x/ WD min
p

f`.p/ W U.p/ D x haltsg

Simple strings such as 000. . . 0 can be generated
by short programs and, hence, have low Kol-
mogorov complexity, but irregular (e.g., random)
strings are their own shortest description and

hence have high Kolmogorov complexity. For
non-string objects o (such as numbers and func-
tions), one defines K.o/ WD K.hoi/, where hoi 2

X � is some standard code for o. In particular,
K.�i / D K.i/.

To be brief, K is an excellent universal
complexity measure, suitable for quantifying
Ockham’s razor.

The universal prior. We can now quantify a
prior biased toward simple models. First, we
quantify the complexity of an environment � or
hypothesis H� by its Kolmogorov complexity
K.�/. The universal prior should be a decreasing
function in the model’s complexity and of course
sum to (less than) one. Since

P
x 2�K.x/ � 1

by the prefix property and Kraft’s inequality, this
suggests the choice

w� D wU
� WD 2�K.�/ (4)

Since log i � K.�i / � log i C 2 log log i

for “most” i , most �i have prior approximately
reciprocal to their index i as also advocated by
Jeffreys and Rissanen.

Representations. Combining the universal class
MU with the universal prior (4), we arrive at the
universal mixture

�U .x/ WD
X

�2MU

2�K.�/�.x/ (5)

which has remarkable properties. First, it is itself
a lower semi-computable semimeasure, that is,
�U 2 MU , which is very convenient. Note that
for most classes, � 62 M.

Second, �U coincides with M (Wood et al.
2011) and M 2 MU . This means that the
mixture over deterministic computable sequences
is as rich as the mixture over the much larger class
of semi-computable semimeasures. The intuitive
reason is that the probabilistic semimeasures are
in the convex hull of the deterministic ones and
therefore need not be taken extra into account in
the mixture.

1300 Universal Learning Theory

There is another, possibly the simplest, repre-
sentation: One can show that M.x/ is equal to the
probability that U outputs a string starting with x

when provided with uniform random noise on the
program tape. Note that a uniform distribution is
also used in many no free lunch theorems to prove
the impossibility of universal learners, but in our
case, the uniform distribution is piped through
a universal Turing machine, which defeats these
negative implications as we will see in the next
section (Lattimore and Hutter 2011).

Applications

In the stochastic case, identification of the true
hypothesis is problematic. The posterior PŒH jx�

may not concentrate around the true hypothesis
H� if there are other hypotheses H� that are
not asymptotically distinguishable from H�. But
even if model identification (induction in the
narrow sense) fails, predictions, decisions, and
actions can be good, and indeed, for universal
learning, this is generally the case.

Universal sequence prediction. Given a
sequence x1x2 : : : xt�1, we want to predict its
likely continuation xt . We assume that the strings
which have to be continued are drawn from a
computable “true” probability distribution �.
The maximal prior information a prediction
algorithm can possess is the exact knowledge
of �, but often the true distribution is unknown.
Instead, prediction is based on a guess � of �.
Let �.ajx/ WD �.xa/=�.x/ be the predictive �-
probability that the next symbol is a 2 X , given
sequence x 2 X �. Since � 2 MU it is natural to
use �U or M for prediction.

Solomonoff’s (1978, 2005) celebrated result
indeed shows that M converges to �. For general
alphabet it reads

1X

tD1

E
h X

a2X

�
M.aj!<t / � �.aj!<t /

�2
i

� K.�/ In 2 C O.1/ (6)

Analogous bounds hold for �U and for other than
the Euclidian distance, e.g., the Hellinger and the
absolute distance and the relative entropy.

For a sequence a1; a2; : : : of random variables,
P1

tD1 EŒa2
t � � c < 1 implies at ! 0 for

t ! 1 with �-probability 1 (w.p.1). Conver-
gence is rapid in the sense that the probability
that a2

t exceeds " > 0 at more than c="ı times
is bounded by ı. This might loosely be called
the number of errors. Hence Solomonoff’s bound
implies

M.xt j!<t / � �.xt j!<t / �! 0

for any xt rapid w.p.1 for t ! 1 (7)

The number of times M deviates from � by
more than " > 0 is bounded by O.K.�//, i.e.,
is proportional to the complexity of the envi-
ronment, which is again reasonable. A counting
argument shows that O.K.�// errors for most �

are unavoidable. No other choice for w� would
lead to significantly better bounds. Again, in
general it is not possible to determine when these
“errors” occur. Multistep lookahead convergence
M.xt Wnt

j!<t / � �.xt Wnt
j!<t / ! 0 even for

unbounded lookahead nt � t � 0, relevant
for delayed sequence prediction and in reactive
environments, can also be shown.

In summary, M is an excellent sequence pre-
dictor under the only assumption that the ob-
served sequence is drawn from some (unknown)
computable probability distribution. No ergodic-
ity, stationarity, or identifiability or other assump-
tion is required.

Universal sequential decisions. Predictions
usually form the basis for decisions and actions,
which result in some profit or loss. Let `xt yt

2

Œ0; 1� be the received loss for decision yt 2 Y
when xt 2 X turns out to be the true t th symbol
of the sequence. The �-optimal strategy

yΛ�
t .!<t / WD arg min

yt

X

xt

�.xt j!<t /`xt yt
(8)

minimizes the �-expected loss. For instance, if we
can decide among Y D fsunglasses; umbrellag

Universal Learning Theory 1301

U

and it turns out to be X D fsun; raing, and our

personal loss matrix is ` D
�

0:0 0:1
1:0 0:3

�
, then Λ�

takes yΛ�
t Dsunglasses if �.rainj!<t / < 1=8 and

an umbrella otherwise. For X D Y and 0–1 loss
`xy D 0 for x D y and 1 else, Λ� predicts the
most likely symbol yΛ�

t D arg maxa �.aj!<t / as
in section “Deterministic Environments”.

The cumulative �(= true)-expected loss of Λ�

for the first n symbols is

LossΛ�
n W D

nX

tD1

EŒ`!t yΛ�
t .!<t /�

�

nX

tD1

X

x1Wt

�.x1Wt /`xt yΛ�
t .x<t / (9)

If � is known, Λ� obviously results in the best
decisions in the sense of achieving minimal ex-
pected loss among all strategies. For the predictor
ΛM based on M (and similarly �U), one can
show (Hutter 2007)

p
LossΛM

n �
p

LossΛ�
n �

p
2K.�/ In 2 C O.1/

(10)

This implies that LossΛM
n =LossΛ�

n ! 1 for
LossΛ�

n ! 1, or if LossΛ�
1 is finite, then also

LossΛM
1 < 1. This shows that M (via ΛM)

performs also excellent from a decision-theoretic
perspective, i.e., suffers loss only slightly larger
than the optimal Λ� strategy.

One can also show that ΛM is Pareto opti-
mal (admissible) in the sense that every other
predictor with smaller loss than ΛM in some
environment � 2 MU must be worse in another
environment.

Universal classification and regression. The
goal of classification and regression is to infer
the functional relationship f W Y ! X from
data f.y1; x1/; : : : ; .yn; xn/g. In a predictive
online setting, one wants to “directly” infer xt

from yt given .y<t ; x<t / for t D 1; 2; 3; : : :.
The universal induction framework has to be
extended by regarding y1W1 as independent
side information presented in the form of

an oracle or extra tape information or extra
parameter. The construction has to ensure that
x1Wn only depends on y1Wn but is (functionally or
statistically) independent of ynC1W1.

First, we augment a monotone Turing machine
with an extra input tape containing y1W1. The
Turing machine is called chronological if it does
not read beyond y1Wn before x1Wn has been writ-
ten. Second, semimeasures � D �; �; M; �U are
extended to �.x1Wnjy1W1/, i.e., one semimeasure
�. � jy1W1/ for each y1W1 (no distribution over y

is assumed, despite the suggestive j). Any such
semimeasure must be chronological in the sense
that �.x1Wnjy1W1/ is independent of yt for t>n;
hence we can write �.x1Wnjy1Wn/. In classifica-
tion and regression, � is typically (condition-
ally) i.i.d., i.e., �.x1Wnjy1Wn/ D

Qn
tD1 �.xt jyt /,

which is chronological, but note that the Bayes
mixture � is not i.i.d. One can show that the
class of lower semi-computable chronological
semimeasures Mj

U D f�1. � j � /; �2. � j � /; : : :g is
effectively enumerable.

The generalized universal a priori semimea-
sure also has two equivalent definitions:

M.x1Wnjy1Wn/ WD
X

pWU.p;y1Wn/Dx1Wn

2�`.p/

D
X

�2M
2�K.�/�.x1Wnjy1Wn/ (11)

which is again in Mj
U . In case of jYj D 1, this

reduces to (1) and (5). The bounds (6) and (10)
and others continue to hold, now for all indi-
vidual y’s, i.e., M predicts asymptotically xt

from yt and .y<t ; x<t / for any y, provided x is
sampled from a computable probability measure
�. � jy1W1/. Convergence is rapid if � is not too
complex.

Universal reinforcement learning. The gener-
alized universal a priori semimeasure (11) can be
used to construct a universal reinforcement learn-
ing agent, called AIXI. In reinforcement learning,
an agent interacts with an environment in cycles
t D 1; 2; : : : ; n. In cycle t , the agent chooses an
action yt (e.g., a limb movement) based on past

1302 Universal Learning Theory

perceptions x<t and past actions y<t . Thereafter,
the agent perceives xt � ot rt , which consists of
a (regular) observation ot (e.g., a camera image)
and a real-valued reward rt . The reward may be
scarce (e.g., just +1 (�1) for winning (losing)
a chess game and 0 at all other times), internal
(e.g., a robot’s battery level), external (provided
by a teacher), or universal (Orseau et al. 2013).
Then the next cycle t C 1 starts. The goal of
the agent is to maximize its expected reward
over its lifetime n. Probabilistic planning deals
with the situation in which the environmental
probability distribution �.x1Wnjy1Wn/ is known.
Reinforcement learning deals with the case of
unknown �. In universal reinforcement learning,
the unknown � is replaced by M similarly to
the prediction, decision, and classification cases
above. The universally optimal action in cycle t

is Hutter (2005, 2012)

yt W D arg max
yt

X

xt

: : : max
yn

X

xn

Œrt C : : : C rn�M.x1Wnjy1Wn/ (12)

The expectations (Σ) and maximizations (max)
over future x and y are interleaved in chronolog-
ical order to form an expectimax tree similarly
to minimax decision trees in extensive zero-sum
games such as chess. Optimality and universality
results similar to the prediction case exist.

Approximations and practical applications.
Since K and M are only semi-computable,
they have to be approximated in practice. For
instance, � log M.x/ D K.x/ C O.log `.x//,
and K.x/ can and has been approximated by off-
the-shelf compressors such as Lempel-Ziv and
successfully applied to a plethora of clustering
problems (Cilibrasi and Vitányi 2005). The
approximations upper-bound K.x/ and, e.g., for
Lempel-Ziv converge to K.x/ if x is sampled
from a context tree source. The �minimum
message length principle also attempts to
approximate K.x/ for stochastic x. The context
tree weighting algorithm considers a relatively

large subclass of MU that can be summed over
efficiently. This can and has been combined with
Monte Carlo sampling to efficiently approximate
AIXI (12) (Veness et al. 2011). The time-bounded
versions of K and M , namely, Levin complexity
Kt and the speed prior S , have also been applied
to various learning tasks (Gaglio 2007).

Other applications. Continuously parameter-
ized model classes are very common in statistics.
Bayesians usually assume a prior density over
some parameter � 2 Rd , which works fine
for many problems, but has its problems. Even
for continuous classes M, one can assign a
(proper) universal prior (not density) wU

�
WD

2�K.�/ > 0 for computable � (and ��) and 0 for
uncomputable ones. This effectively reduces M
to a discrete class f�� 2 M W wU

�
> 0g � MU

which is typically dense in M. There are
various fundamental philosophical and statistical
problems and paradoxes around (Bayesian)
induction, which nicely disappear in the universal
framework. For instance, universal induction has
no zero and no improper p(oste)rior problem, i.e.,
can confirm universally quantified hypotheses, is
reparametrization and representation invariant,
and avoids the old evidence and updating
problem, in contrast to most classical continuous
prior densities. It even performs well in
incomputable environments, actually better than
latter (Rathmanner and Hutter 2011).

Discussion and Future Directions

Universal learning is designed to work for a wide
range of problems without any a priori knowl-
edge. In practice we often have extra information
about the problem at hand, which could and
should be used to guide the forecasting. One
can incorporate it by explicating all our prior
knowledge ´ and place it on an extra input tape
of our universal Turing machine U or prefix our
observation sequence x by ´ and use M.´x/ for
prediction.

Another concern is the dependence of K and
M on U . The good news is that a change of U

http://dx.doi.org/10.1007/978-1-4899-7687-1_547

Universal Learning Theory 1303

U

changes K.x/ only within an additive and M.x/

within a multiplicative constant independent of
x. This makes the theory practically immune to
any “reasonable” choice of U for large data sets
x, but predictions for short sequences (shorter
than typical compiler lengths) can be arbitrary.
One solution is to take into account our (whole)
scientific prior knowledge ´ (Hutter 2006), and
predicting the now long string ´x leads to good
(less sensitive to “reasonable” U) predictions.
This is a kind of grand transfer learning scheme.
It is unclear whether a more elegant theoretical
solution is possible.

Finally, the incomputability of K and M

prevents a direct implementation of Solomonoff
induction. Most fundamental theories have to
be approximated for practical use, sometimes
systematically such as polynomial time approx-
imation algorithms or numerical integration,
and sometimes heuristically like in many AI
search problems or in non-convex optimization
problems. Universal machine learning is similar,
except that its core quantities are only semi-
computable. This makes them often hard, but as
described in the previous section, not impossible,
to approximate.

In any case, universal induction can serve as
a “gold standard” which practitioners can aim
at. Solomonoff’s theory considers the class of
all computable (stochastic) models, and a uni-
versal prior inspired by Ockham and Epicurus,
quantified by Kolmogorov complexity. This led
to a universal theory of induction, prediction, and
decisions and, by including Bellman, to universal
actions in reactive environments. Future progress
on the issues above (incorporating prior knowl-
edge, getting rid of the compiler constants, and
finding better approximations) will lead to new
insights and will continually increase the number
of applications.

Cross-References

�Bayes’ Rule
�Bayesian Methods
�Bayesian Reinforcement Learning
�Classification

� Inductive Inference
�Loss
�Minimum Message Length
�Online Learning
� Prior Probability
�Classification
�Time Series

Optional Cross-References
�Data Set
�Discriminative Learning
�Hypothesis Space
� Induction
�Margin
�Minimum Description Length Principle
�Reinforcement Learning

Recommended Reading

Cilibrasi R, Vitányi PMB (2005) Clustering by com-
pression. IEEE Trans Inf Theory 51(4):1523–1545

Gaglio M (2007) Universal search. Scholarpedia
2(11):2575

Hutter M (2005) Universal Artificial Intelligence:
Sequential Decisions Based on Algorithmic Proba-
bility. Springer, Berlin

Hutter M (2006) Human knowledge compression
prize. Open ended, http://prize.hutter1.net/

Hutter M (2007) On universal prediction and Bayesian
confirmation. Theor Comput Sci 384(1):33–48

Hutter M (2012) One decade of universal artificial
intelligence. In: Wang P, Goertzel B (eds) Theoret-
ical Foundations of Artificial General Intelligence.
Atlantis Press, Amsterdam, pp 67–88

Lattimore T, Hutter M (2011) No free lunch versus Oc-
cam’s razor in supervised learning. In: Proceedings
of the Solomonoff 85th memorial conference, Mel-
bourne. Volume 7070 of LNAI. Springer, pp 223–
235

Li M, Vitányi PMB (2008) An Introduction to Kol-
mogorov Complexity and Its Applications, 3rd edn.
Springer, Berlin

Orseau L, Lattimore T, Hutter M (2013) Univer-
sal knowledge-seeking agents for stochastic en-
vironments. In: Proceedings of the 24th inter-
national conference on algorithmic learning the-
ory (ALT’13), Singapore. Volume 8139 of LNAI.
Springer, pp 158–172

Rathmanner S, Hutter M (2011) A philosophical
treatise of universal induction. Entropy 13(6):1076–
1136

Schmidhuber J (2002) Hierarchies of generalized Kol-
mogorov complexities and nonenumerable universal
measures computable in the limit. Int J Found
Comput Sci 13(4):587–612

http://dx.doi.org/10.1007/978-1-4899-7687-1_21
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_499
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_196
http://dx.doi.org/10.1007/978-1-4899-7687-1_222
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_507
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://prize.hutter1.net/

1304 Unknown Attribute Values

Solomonoff RJ (1964) A formal theory of inductive
inference: Parts 1 and 2. Inf Control 7:1–22 and
224–254

Solomonoff RJ (1978) Complexity-based induction
systems: comparisons and convergence theorems.
IEEE Trans Inf Theory IT-24:422–432

Veness J, Ng KS, Hutter M, Uther W, Silver D (2011)
A Monte-Carlo AIXI approximation. J Artif Intell
Res 40:95–142

Wood I, Sunehag P, Hutter M (2011) (Non-
)equivalence of universal priors. In: Proceed-
ings of the Solomonoff 85th memorial confer-
ence, Melbourne. Volume 7070 of LNAI. Springer,
pp 417–425

Unknown Attribute Values

�Missing Attribute Values

Unknown Values

�Missing Attribute Values

Unlabeled Data

Unlabeled data are data for which there are
no target values. Unlabeled data are used in
� unsupervised learning. They stand in contrast
to labeled data that have target values and are
used in � supervised learning.

Unsolicited Commercial Email
Filtering

�Text Mining for Spam Filtering

Unstable Learner

An unstable learner produces large differences in
generalization patterns when small changes are
made to its initial conditions. The obvious initial
condition is the set of training data used – for

an unstable learner, sampling a slightly different
training set produces a large difference in test-
ing behavior. Some models can be unstable in
additional ways, for example � neural networks
are unstable with respect to the initial weights.
In general this is an undesirable property – high
sensitivity to training conditions is also known
as high variance, which results in higher overall
mean squared error. The flexibility enabled by
being sensitive to data can thus be a blessing or
a curse. Unstable learners can however be used
to an advantage in � ensemble learning methods,
where large variance is “averaged out” across
multiple learners.

Examples of unstable learners are: neural net-
works (assuming gradient descent learning), and
� decision trees. Examples of stable learners are
� support vector machines, K-nearest neighbor
classifiers, and � decision stumps. It should of
course be recognized that there is a continuum
between “stable” and “unstable,” and the opinion
of whether something is “sensitive” to initial
conditions is somewhat of a subjective one. See
also � bias-variance decomposition for a more
formal interpretation of this concept.

Unsupervised Learning

Unsupervised learning refers to any machine
learning process that seeks to learn structure
in the absence of either an identified output
(cf. � supervised learning) or feedback (cf.
� reinforcement learning). Three typical exam-
ples of unsupervised learning are � clustering,
� association rules, and � self-organizing maps.

Uplift Modeling

Szymon Jaroszewicz
Institute of Computer Science, Polish Academy
of Sciences, Warsaw, Poland

Abstract

Uplift modeling is a machine learning tech-
nique which aims at predicting, on the level of

http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_828
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_285
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_746

Uplift Modeling 1305

U

individuals, the gain from performing a given
action with respect to refraining from taking
it. Examples include medical treatments and
direct marketing campaigns where the rate
of spontaneous recovery and the background
purchase rate need to be taken into account
to assess the true gains from taking an action.
Uplift modeling addresses this problem by
using two training sets: the treatment dataset
containing data on objects on which the action
has been taken and the control dataset con-
taining data on objects left untreated. A model
is then built which predicts the difference
between outcomes after treatment and without
it conditional on available predictor variables.

An obvious approach to uplift modeling is
to build two separate models on both training
sets and subtract their predictions. In many
cases, better results can be obtained with mod-
els which predict the difference in outcomes
directly. A popular class of uplift models are
decision trees with splitting criteria favoring
tests which promote differences between treat-
ment and control groups. Ensemble methods
have proven to be particularly useful in up-
lift modeling, often leading to significant in-
creases in performance over the base learn-
ers. Linear models, such as logistic regression
and support vector machines, have also been
adapted to this setting.

Dedicated methods, such as uplift or qini
curves, are necessary for evaluating uplift
models. Application of the methodology to
survival data and scenarios with more than
one possible action have also been considered.

Synonyms

Differential prediction; Net lift modeling; True
lift modeling

Definition

Uplift modeling is a machine learning technique
which aims at predicting, on the level of indi-
viduals, the gain from performing a given action

such as a medical treatment or a direct marketing
campaign. The learning task is to predict the
difference between the outcome after applying
the action to an individual and the outcome had
the individual not been subjected to the action.
The difficulty lies in the fact that the effects of
the action cannot be reversed, so only one of
those outcomes can be observed. Solving this
task requires the use two training sets: the ex-
perimental or treatment group containing data
on objects on which the action has been taken
and the control group containing data on objects
on which the action has not been taken. When
the assignment to control and treatment groups
is random, an uplift model assumes a causal
interpretation and allows for selecting individuals
to whom the action should be applied to achieve
real benefits, for example, customers who will
buy a product after a campaign but would not
have bought it otherwise or patients who will
recover after the treatment but will not be harmed
by its side effects and would not have recovered
spontaneously.

Introduction

Consider an application of a machine learning
model to select customers for a direct marketing
campaign. Typically, a small pilot campaign is
conducted, and its results are used as training
data to build the model. This approach, although
frequently used in practice, is not correct. There
are in fact four groups of customers:

1. Customers who bought because of the cam-
paign, that is, bought after receiving the offer
but would not have bought otherwise

2. Customers who bought the product but would
have bought it even without the campaign

3. Customers who did not buy the product and
the campaign had no effect

4. Customers who were originally going to buy
the product but were put off by the campaign

Only customers in the first group should become
targets of the marketing action. Targeting the
two following groups only generates unnecessary

http://dx.doi.org/10.1007/978-1-4899-7687-1_100111
http://dx.doi.org/10.1007/978-1-4899-7687-1_100326
http://dx.doi.org/10.1007/978-1-4899-7687-1_100490

1306 Uplift Modeling

costs and targeting the fourth group is outright
harmful. The existence of the fourth group may
seem counterintuitive, but is a well-known phe-
nomenon in marketing. Similar groups can be
identified in case of medical therapies: we only
want to treat patients who recover after receiving
the treatment and would not have recovered spon-
taneously. The fourth group in the above list cor-
responds to patients who would have recovered
without the treatment but were, instead, harmed
by its side effects.

The proper way to address the problem of
selecting targets is to take into consideration the
outcomes both after taking the action and after
refraining from it. A typical approach is to use
an additional—control—training set containing
outcomes for individuals who where put aside
and not subjected to the action. The other dataset,
with outcomes for individuals subjected to the
action is called the experimental or treatment
training set.

The goal of uplift modeling is to build a model
which predicts the difference between outcomes
after taking the action and after refraining from
taking it, based on the two training sets. For ex-
ample, in case of a binary target variable Y , with
the outcome Y D 1 interpreted as success, the
quantity predicted by an uplift model typically
is the difference between success probabilities in
the two groups:

P.Y D1jx; action applied/�P.Y D1jx; control/;
(1)

where x is a feature vector describing the object
for which prediction is being made. This quantity
is referred to as net gain, true gain, or uplift.
Analogues for regression problems and modifi-
cations involving costs also exist (Holland 1986;
Hansotia and Rukstales 2002).

The main algorithmic difficulty lies in the
fact that for each individual only one of those
outcomes is known, never both. This problem
is called fundamental problem of causal infer-
ence (Holland 1986). As a result the predicted
target value is not known at the level of individual
data records, which has implications for the de-
sign of learning algorithms as well as for model
quality assessment.

Structure of the Learning System

Uplift modeling works on two training sets: treat-
ment and control, so uplift learning algorithms
need to take into account the additional control
dataset. Below we describe several types of uplift
learners, most of which originate from corre-
sponding classification algorithms.

The Two-Model Approach
An obvious approach to uplift modeling is the
two-model approach. Separate probabilistic clas-
sifiers are built on the treatment and control
datasets, and their predictions are subtracted to
obtain an estimate of the net gain given in Eq. 1.

A clear advantage of the two-model approach
is its intuitive clarity and simplicity. However, in
many cases, its performance can be poor because
both models try to predict the value of the tar-
get variable in the two training sets instead of
focusing on the (usually quite small) differences
in behavior between the two groups. An intuitive
example is given in Radcliffe and Surry (2011)
where an artificial dataset is constructed with one
variable strongly influencing the outcome in both
groups and a second variable weakly influencing
the outcome in the treatment group only. A model
based on two separate decision trees was then
built on the data. Both trees split only based
on the first variable, leading to a useless uplift
model. A single decision tree built to directly
predict the net gain would select tests based on
the second variable, at least in the upper levels of
the tree, leading to a much better performance.

Most research on uplift modeling has therefore
concentrated on building models predicting the
net gain directly.

Uplift Decision Trees
Decision trees were, historically, the first learning
algorithms adapted the problem of uplift model-
ing. The term “uplift” first appeared in a machine
learning context in Radcliffe and Surry (1999),
where differential response trees were described,
albeit with little technical detail given. A de-
tailed description was later provided in Radcliffe
and Surry (2011). The algorithm uses a special
splitting criterion designed to pick tests which

Uplift Modeling 1307

U

promote differences between success rates in the
treatment and control groups. The criterion works
by first constructing a linear model with an in-
teraction term between the split outcome and the
group to which data records belong (treatment or
control). The coefficient estimate for this interac-
tion term corresponds to the estimated difference
between treatment and control group behavior on
both sides of the split, and the quality of the split
is measured by the p-value of a statistical test for
this coefficient.

Uplift decision trees based on informa-
tion theoretical criteria have been proposed
in Rzepakowski and Jaroszewicz (2010, 2012).
The difference in class distributions in the
treatment and control groups is measured using
a statistical divergence measure such as the
Kullback-Leibler divergence. Splits are then
selected which result in the highest increase of the
divergence. The authors show that the proposed
criteria possess several desirable properties such
as not selecting tests independent from the
outcome variable or reducing to standard decision
tree criteria when the control group is absent.
A dedicated pruning method is also provided.
An advantage of this approach is that it is able
to handle target variables with more than two
outcomes.

Ensemble Methods
In classical machine learning, one way to im-
prove performance of decision trees is to combine
them into ensembles. This often results in signifi-
cant increases in accuracy over the base learners.
Ensemble methods have also been successfully
applied in uplift modeling.

The first mention of the use of uplift bag-
ging ensembles can be found in Radcliffe and
Surry (2011) but little detail is given. Guelman
et al. (2012) devised an uplift random forest by
using additional randomization in the decision
tree test selection based on the criterion given
in Rzepakowski and Jaroszewicz (2012).

In Sołtys et al. (2015) a thorough experimental
analysis of bagging and random forests in up-
lift modeling was conducted showing that those
methods often dramatically improve the perfor-
mance of base learners; moreover, the effect is

more significant than for classification. Some the-
oretical justification has been offered: frequently,
the class variable in both groups is strongly influ-
enced by predictor variables, but the differences
between the treatment and control groups are
quite small. Modeling this small differences is
difficult and leads to uplift trees with highly
randomized structure and, as a consequence, to
highly diverse ensembles.

Regression Methods
Linear regression techniques are a very important
tool of predictive analytics, so there have been
several attempts to apply them to uplift model-
ing. Many approaches are in fact variations on
the two-model solution. For example, in medical
applications, a model with interactions between
predictors and the action indicator is often used:

y D ˛0x C ˇ0xA;

where A is an indicator variable taking the value
of 1 if the action has been applied to a given
individual and the value of 0 otherwise, x is the
vector of input predictors (including a constant
intercept term), ˛ and ˇ are regression coefficient
vectors, and the prime denotes matrix transpose.
The expression ˇ0x is the predicted net gain.
A similar approach has been presented in Lo
(2002); however, two additional steps of variable
selection are used.

A method based on a class variable
transformation which allows for building a
single uplift regression model has been presented
in Jaśkowski and Jaroszewicz (2012). The idea is
to use a new target variable Z defined as follows:

Z D

�
Y if A D 1;

1 � Y if A D 0:

In other words, the class variable in the con-
trol group is reversed, and both training sets
are concatenated into a single dataset. It can
be shown that modeling the probability of the
event Z D 1 is equivalent to modeling the net
gain given in Eq. 1. The transformation can thus
be used to turn any probabilistic classifier into
an uplift model. The idea has been presented

1308 Uplift Modeling

earlier in Lai et al. (2006), but without a for-
mal justification. In Jaśkowski and Jaroszewicz
(2012) the approach has been used with a logistic
regression model, but the benefits with respect to
an approach based on subtracting predictions of
two separate logistic models are less clear than in
the case of decision trees.

Another technique, called g-estimation, which
has been presented in medical statistics litera-
ture (Robins 1994), can be interpreted as an ear-
lier approach to uplift regression. The technique
is based on selecting a vector of uplift model
coefficients which make the expectations of the
target variable in the treatment and control groups
equal. Asymptotic optimality results are provided
but require correct specification of outcomes in
the control group. Due to lack of publicly avail-
able implementations, the method has not yet
gained significant popularity.

Other Algorithms and Extensions
Several other uplift modeling algorithms
have been proposed. Two variants of uplift
support vector machines have been developed
in Zaniewicz and Jaroszewicz (2013) and Ku-
usisto et al. (2014). The first approach uses
two parallel separating hyperplanes which split
points into three groups with predicted positive,
neutral, and negative impact of the action.
The second approach uses a modified SVM to
directly maximize the area under the uplift curve
(see below). Other methods, such as k-nearest
neighbors and naive Bayesian classifier, have
been adapted to the uplift setting by Kim Larsen
in a series of conference talks (Larsen 2011).

In many applications, uplift modeling needs
to be applied to survival data which involves
censoring. For example, if a patient entered a
medical study a year ago and is still alive, we do
not know her survival time; all we know is that it
is at least one year. The true value has been cen-
sored. Typically, censored data requires special
methods, but in Jaroszewicz and Rzepakowski
(2014) it has been shown that in case of uplift
modeling such data can, under certain assump-
tions, be converted into a problem with a binary
class. Cases for which the observed (possibly
censored) survival time exceeds some threshold

are considered successes. The resulting uplift
model cannot predict the true gain in survival
rate but can make a correct decision whether the
action should or should not be applied to a given
individual.

In real-world applications, more than one ac-
tion is often possible. For example, we may
contact a customer using a text message, regular
mail, or a phone call. The task now is not only
to decide whether a given individual should be
subjected to an action but also to select the
most profitable action to take. The two-model ap-
proach can easily be extended to multiple actions.
In Rzepakowski and Jaroszewicz (2012) direct
extension of uplift decision trees to the multiple
actions scenario is provided.

Evaluation of Uplift Models
Due to the fundamental problem of causal infer-
ence, we can never determine whether the action
was truly beneficial for a given individual; such
assessment can only be made on the level of
groups of individuals. Moreover, two test sets are
now necessary: treatment (test data on objects
subjected to the action) and control (test data on
objects left untreated).

A typical approach scores both test sets using
the uplift model being evaluated and groups the
test cases by deciles of the score. The success
rate in the first decile of the control test set is
subtracted from the success rate in the first decile
of the treatment test set. This way, an estimate of
model performance for individuals whose score
was in the top 10 % is obtained. Analogous esti-
mates are computed for the remaining deciles and
tabulated (Hansotia and Rukstales 2002).

A more convenient approach is to visualize
uplift model’s performance using curves. A start-
ing point is cumulative gains curves (also known
as lift curves) drawn on the treatment and control
training sets. The x-axis of a cumulative gains
curve denotes the percentage of the population
assigned highest scores by a model and the y-axis
the success rate after targeting the given percent-
age of the population. Cumulative gains curves
drawn on the treatment and control test sets are
subtracted to obtain a single curve describing the
performance of an uplift model. Such curves have

Utility Problem 1309

U

been called uplift curves in Rzepakowski and
Jaroszewicz (2012) and incremental gains curves
or qini curves in Radcliffe and Surry (2011). The
curves are a very convenient tool in campaign
planning: the x-axis corresponds to the size of the
campaign, and the y-axis provides an estimate of
the resulting total net gain.

Applications

Uplift modeling is gaining importance primarily
in predictive analytics and direct marketing. Sev-
eral successful applications in the banking and
telecommunication sectors are reported in liter-
ature (Radcliffe and Surry 2011; Siegel and Dav-
enport 2013). Uplift modeling played a crucial
role in Barak Obama’s 2012 presidential cam-
paign (Siegel and Davenport 2013). A potentially
large application area is personalized medicine
where appropriate treatment is selected based on
patient’s individual characteristics.

Cross-References

�Causal Discovery
�Online Controlled Experiments and A/B Test-

ing

Recommended Reading

Guelman L, Guillén M, Pérez-Marı́n AM (2012) Ran-
dom forests for uplift modeling: an insurance cus-
tomer retention case. In: Modeling and simulation in
engineering, economics and management. Lecture
notes in business information processing (LNBIP),
vol 115. Springer, Heidelberg, pp 123–133

Hansotia B, Rukstales B (2002) Incremental value
modeling. J. Interact Mark 16(3):35–46

Holland PW (1986) Statistics and causal inference.
J Am Stat Assoc 81(396):945–960

Jaroszewicz S, Rzepakowski P (2014) Uplift modeling
with survival data. In: ACM SIGKDD workshop on
health informatics (HI-KDD’14), New York

Jaśkowski M, Jaroszewicz S (2012) Uplift modeling
for clinical trial data. In: ICML 2012 workshop on
machine learning for clinical data analysis, Edin-
burgh

Kuusisto F, Santos Costa V, Nassif H, Burnside E, Page
D, Shavlik J (2014) Support vector machines for
differential prediction. In: ECML-PKDD, Nancy

Lai Y-T, Wang K, Ling D, Shi H, Zhang J (2006)
Direct marketing when there are voluntary buyers.
In: Sixth International Conference on Data Mining,
2006 (ICDM’06), IEEE, Los Alamitos, pp 922–927.
http://www.comp.hkbu.edu.hk/iwi06/icdm/

Larsen K (2011) Net lift models: optimizing the impact
of your marketing. In: Predictive analytics world,
workshop presentation, San Francisco

Lo VSY (2002) The true lift model—a novel data
mining approach to response modeling in database
marketing. SIGKDD Explor 4(2):78–86

Radcliffe NJ, Surry PD (1999) Differential response
analysis: modeling true response by isolating the
effect of a single action. In: Proceedings of credit
scoring and credit control VI. Credit Research Cen-
tre, University of Edinburgh Management School

Radcliffe NJ, Surry PD (2011) Real-world uplift mod-
elling with significance-based uplift trees. Portrait
Technical Report TR-2011-1, Stochastic Solutions

Robins J (1994) Correcting for non-compliance in ran-
domized trials using structural nested mean models.
Commun Stat—Theory Methods 23(8):2379–2412

Rzepakowski P, Jaroszewicz S (2010) Decision trees
for uplift modeling. In: Proceedings of the 10th
IEEE international conference on data mining
(ICDM), Sydney, pp 441–450

Rzepakowski P, Jaroszewicz S (2012) Decision trees
for uplift modeling with single and multiple treat-
ments. Knowl Inf Syst 32:303–327

Siegel E, Davenport TH (2013) Predictive analytics:
the power to predict who will click, buy, lie, or die.
Wiley, Hoboken

Sołtys M, Jaroszewicz S, Rzepakowski P (2015) En-
semble methods for uplift modeling. Data Min
Knowl Discov 29(6):1531–1559

Zaniewicz Ł, Jaroszewicz S (2013) Support vector
machines for uplift modeling. In: The first IEEE
ICDM workshop on causal discovery (CD 2013),
Dallas

Utility Problem

�Explanation-Based Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_100049
http://dx.doi.org/10.1007/978-1-4899-7687-1_891
http://www.comp.hkbu.edu.hk/iwi06/icdm/
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

V

Value Function Approximation

Michail G. Lagoudakis
Technical University of Crete, Chania,
Greece

Abstract

The goal in sequential decision making un-
der uncertainty is to find good or optimal
policies for selecting actions in stochastic en-
vironments in order to achieve a long-term
goal; such problems are typically modeled as
Markov decision processes (MDPs). A key
concept in MDPs is the value function, a real-
valued function that summarizes the long-term
goodness of a decision into a single number
and allows the formulation of optimal deci-
sion making as an optimization problem. An
exact representation of value functions in large
real-world problems is infeasible; therefore, a
large body of research has been devoted to
value-function approximation methods, which
sacrifice some representation accuracy for the
sake of scalability. These approaches have de-
livered effective approaches to deriving good
policies in hard decision problems and laid the
foundation for efficient reinforcement learning
algorithms, which learn good policies in un-
known stochastic environments through inter-
action.

Synonyms

Approximate dynamic programming; Cost-to-go
function approximation; Neuro-dynamic pro-
gramming

Definition

Value Function Approximation is a collection
of function approximation representations, tech-
niques, and methods aiming at providing a scal-
able and effective approximation to an exact
value function (a real-valued function indicating
the long-term goodness of making decisions at
any state within a sequential decision problem).

Motivation and Background

Markov Decision Processes
A Markov decision process (MDP) is a 6-tuple
.S;A;P;R; �;D/, where S is the state space of
the process, A is a finite set of actions, P is a
Markovian transition model (P.s0js; a/ denotes
the probability of a transition to state s0 when
taking action a in state s), R is a reward function
(R.s; a/ is the reward for taking action a in
state s), � 2 .0; 1� is the discount factor for
future rewards (a reward received after t steps
is weighted by � t), and D is the initial state
distribution (Puterman 1994). MDPs are discrete-
time processes. The process begins at time t D 0

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_100018
http://dx.doi.org/10.1007/978-1-4899-7687-1_100093
http://dx.doi.org/10.1007/978-1-4899-7687-1_100331

1312 Value Function Approximation

in some state s0 2 S drawn from D. At each time
step t , the decision maker observes the current
state of the process st 2 S and chooses an action
at 2 A. The next state of the process stC1 is
drawn stochastically according to the transition
model P.stC1jst ; at /, and the reward rt at that

time step is determined by the reward function
R.st ; at /. The horizon h is the temporal extent of
each run of the process and is typically infinite.
A complete run of the process over its horizon is
called an episode and consists of a long sequence
of states, actions, and rewards:

s0
a0

�����!
r0

s1
a1

�����!
r1

s2
a2

�����!
r2

s3
a3

�����!
r3

s4 : : : sh�1
ah�1
�����!

rh�1
sh:

The quantity of interest is the expected total
discounted reward from any state s:

E
�
r0 C �r1C�2r2C�3r3C� � � C �hrh

ˇ̌
ˇ s0Ds

�

D E

hX

tD0

� t rt

ˇ̌
ˇ s0 D s

!
;

where the expectation is taken with respect to all
possible trajectories of the process in the state
space under the decisions made and the transition
model, assuming that the process is initialized in
state s. The goal of the decision maker is to make
decisions so that the expected total discounted
reward, when s is drawn from D, is optimized.
(The optimization objective could be maximiza-
tion or minimization depending on the problem.
Here, we adopt a reward maximization viewpoint,
but there are analogous definitions for cost mini-
mization. There are also other popular optimality
measures, such as maximization/minimization of
the average reward/cost per step.)

Policies
A policy dictates how the decision maker chooses
actions in each state. A stationary, deterministic
policy � is a mapping � W S 7! A from states to
actions; �.s/ denotes the action the agent takes in
state s. In this case, there is a single action choice
for each state, and this choice does not change
over time. In contrast, a stationary, stochastic
policy � is a mapping � W S 7! ˝.A/, where
˝.A/ is the set of all probability distributions
over A. Stochastic policies are also called soft, for

they do not commit to a single action per state;
�.ajs/ stands for the probability of choosing
action a in state s under policy � . Each policy �

(deterministic or stochastic) is characterized by
the expected total discounted reward it accumu-
lates during an episode. An optimal policy �� for
an MDP is a policy that maximizes the expected
total discounted reward from any state s 2 S . It
is well known that for every MDP, there exists at
least one, not necessarily unique, optimal policy,
which is stationary and deterministic.

Value Functions
The quality of any policy � can be quantified for-
mally through a value function, which measures
the expected return of the policy under different
process initializations. For any MDP and any
policy � , the state value function V assigns a
numeric value to each state. The value V �.s/ of
a state s under a policy � is the expected return,
when the process starts in state s and the decision
maker follows policy � (all decisions at all steps
are made according to �):

V �.s/DEat �� I st �P I rt �R

1X

tD0

� t rt

ˇ̌
ˇ s0Ds

!
:

Similarly, the state-action value function Q as-
signs a numeric value to each pair .s; a/ of states
and actions. The value Q�.s; a/ of taking action
a in state s under a policy � is the expected return
when the process starts in state s, and the decision
maker takes action a for the first step and follows
policy � thereafter:

Value Function Approximation 1313

V

Q�.s; a/

DEat �� I st �P I rt �R

1X

tD0

� t rt

ˇ̌
ˇs0Ds; a0Da

!
:

The state and the state-action value functions for
a deterministic policy � are related as follows:

V �.s/ D Q�
�
s; �.s/

�
:

For a stochastic policy � this relationship needs
to take into account the probability distribution
over actions:

V �.s/ D
X
a2A

�.ajs/Q�.s; a/:

The state-action value function of a policy �

(either deterministic or stochastic) can also be
expressed in terms of the state value function:

Q�.s; a/ D R.s; a/C �
X
s02S

P.s0js; a/V �.s0/:

The optimal value functions V � D V ��

and
Q� D Q��

are the state and the state-action
value functions of any optimal policy ��. Even
if there are several distinct optimal policies, they
all share the same unique optimal value functions.

Bellman Equations
Given the full MDP model, the state or the state-
action value function of any given policy can be
computed by solving a linear system formed us-
ing the linear Bellman equations. In general, the
linear Bellman equation relates the value of the
function at any point to the values of the function
at several – in fact, all – other points. This is
achieved by separating the first step of an episode
from the rest and using the definition of the value
function recursively in the next step. In particular,
for any deterministic policy � , the linear Bellman
equation for the state value function is

V �.s/DR.s; �.s//C�
X
s02S

P.s0js; �.s//V �.s0/;

whereas for a stochastic policy � , it becomes

V �.s/ D
X
a2A

�.ajs/

�
R.s; a/

C �
X
s02S

P.s0js; a/V �.s0/

�
:

The exact V � values for all states can be found by
solving the .jSj � jSj/ linear system that results
from writing down the linear Bellman equation
for all states.

Similarly, the linear Bellman equation for the
state-action value function given any determinis-
tic policy � is

Q�.s; a/ D R.s; a/

C �
X
s02S

P.s0js; a/Q�
�
s0; �.s0/

�
;

whereas for a stochastic policy � , it becomes

Q�.s; a/ D R.s; a/C �
X
s02S

P.s0js; a/

�
X
a02A

�.a0js0/Q�.s0; a0/:

The exact Q� values for all state-action pairs can
be found by solving the .jSjjAj � jSjjAj/ linear
system that results from writing down the linear
Bellman equation for all state-action pairs.

The unique optimal state or state-action value
function can be computed even for an unknown
optimal policy �� using the nonlinear Bellman
optimality equation, which relates values of the
function at different points while exploiting the
fact that there exists a deterministic optimal pol-
icy that achieves the maximum value at each
point. In particular, the nonlinear Bellman opti-
mality equation for the state value function is

V �.s/ D max
a2A

�
R.s; a/

C �
X
s02S

P.s0js; a/V �.s0/

	
;

1314 Value Function Approximation

whereas for the state-action value function is

Q�.s; a/ DR.s; a/

C �
X
s02S

P.s0js; a/ max
a02A

˚
Q�.s0; a0/

:

The functions V � and Q� can be approximated
arbitrarily closely by the iterative application of
the operator formed by the right-hand side of the
equations above (Bellman optimality operator).
This iteration is a contraction with rate � , so start-
ing with any arbitrary initialization, it eventually
converges to V � or Q�.

Significance of Value Functions
Value functions play a critical role in sequential
decision making because they address two core
problems: policy evaluation and policy improve-
ment. Policy evaluation refers to the problem of
quantifying the quality of any given policy � in
a given MDP. Apparently, computing the value
function V � or Q� using the Bellman equations
provides the solution to this problem. Policy
improvement, on the other hand, refers to the
problem of deriving an improved policy � 0 given
any base policy � , so that � 0 is at least as good
as � and possibly better. The knowledge of V �

or Q� allows for the derivation of an improved
deterministic policy � 0 through a simple one-step
look-ahead maximization procedure:

� 0.s/ D arg max
a2A

�
R.s; a/

C �
X
s02S

P.s0js; a/V �.s0/

	

� 0.s/ D arg max
a2A

˚
Q�.s; a/

:

Note that this maximization does not need the
MDP model when using the state-action value
function. Once policy evaluation and policy im-
provement have been addressed, the derivation
of an optimal policy for any MDP is straight-
forward. One can alternate between policy eval-
uation and policy improvement producing a se-
quence of improving policies until convergence
to an optimal policy; this algorithm is known as

policy iteration. Alternatively, one can iteratively
compute an optimal value function V � or Q�

and extract an optimal policy through a trivial
step of policy improvement on top of V � or Q�;
this algorithm is known as value iteration. In
either case, value functions provide the means to
the end.

The problem of deriving an optimal policy
using the full MDP model is known as planning.
Nevertheless, in many real-world sequential deci-
sion domains, the model is unknown. The prob-
lem of optimal decision making in an unknown
stochastic environment is known as reinforce-
ment learning, because the decision maker relies
on the feedback received through interaction with
the environment to reinforce or discourage past
decisions. More specifically, the learner interacts
with an unknown MDP and typically observes
the state of the process and the immediate re-
ward at every step; however, P and R are not
accessible. At each step of interaction, the learner
observes the current state s, chooses an action
a, and observes the resulting next state s0 and
the reward received r , thus learning is based
on .s; a; r; s0/ samples. The core problems in
reinforcement learning are known as prediction
and control. Prediction refers to the problem of
learning the value function of a given policy �

in an unknown MDP through interaction. Well-
known algorithms for the prediction problem are
Monte Carlo estimation and temporal difference
(TD) learning. Control, on the other hand, refers
to the problem of gradually learning a good
or even optimal policy in an unknown MDP
through interaction. Well-known algorithms for
the control problem are SARSA and Q-learning.
Again, value functions play a critical role in rein-
forcement learning; they are absolutely necessary
for the prediction problem, and the majority of
control approaches are value-function based.

Structure of Learning System

Value-Function Approximation
Most algorithms for planning or learning in
MDPs rely on computing or learning a value
function. However, if the state space of the

Value Function Approximation 1315

V

process is fairly large, the exact (tabular)
representation of a value function becomes
problematic. Not only does memory space
become insufficient very quickly, but also
computing or learning accurately all the distinct
entries of the function requires a tremendous
amount of computation and data. This is
known as the curse of dimensionality: the
exponential growth of the state or action space
as a function of the dimensionality of the state
or action. The urgent need for solutions to
large real-world sequential decision problems
has drawn attention to approximate methods.
These methods use function approximation
techniques for approximating value functions;
therefore, they sacrifice some representational
accuracy in order to make the representation
manageable in practice. Sacrificing accuracy
in the representation of the value function is
acceptable, since the ultimate goal is to find
a good policy and not necessarily an accurate
value function. As a result, value-function
approximation methods cannot guarantee optimal
solutions, but only good solutions. This is not
to say that they are doomed to always finding
suboptimal solutions; if an optimal solution lies
within the space spanned by the value-function
approximation scheme, it is possible that an
optimal solution will be discovered.

Let OV �.sIw/ be an approximation to the state
value function V �.s/ represented by a parametric
approximation architecture with free parameters
w. The key idea of value- function approximation
is that the parameters w can be adjusted appro-
priately so that the approximate values are “close
enough” to the original values,

OV �.sIw/ � V �.s/;

and, therefore, OV � can be used in place of the ex-
act value function V � . Similarly, let OQ�.s; aIw/

be an approximation to the state-action value
function Q�.s; a/. Again, the goal is to adjust the
parameters w so that

OQ�.s; aIw/ � Q�.s; a/;

and, therefore, OQ� can be used in place of the ex-
act value function Q� . Approximations OV � and

OQ� of the optimal value functions V � and Q�

are defined similarly. The characterization “close
enough” (�) accepts a variety of interpretations
in this context, and it does not necessarily refer to
the minimization of some norm. Value-function
approximation should be regarded as a functional
approximation rather than as a pure numerical
approximation, where “functional” refers to the
ability of the approximation to play closely the
functional role of the original value function
within a decision making algorithm.

The benefits of value-function approximation
are obvious. The storage requirements are much
smaller compared to the tabular case, since only
the parameters w need to be stored along with a
compact description of the functional form of the
architecture. In general, for most approximation
architectures, the storage needs are independent
of the size of the state space and/or the size of
the action space. Furthermore, for most approxi-
mation architectures there is no restriction on the
state space to be a finite set; it could be an infinite,
or even a continuous, space. This flexibility nev-
ertheless reveals the need for good generalization
abilities on behalf of the architecture, since the
approximate value function will have to pro-
vide good values over the entire state/state-action
space, using data only from a limited subset of
the space.

The main difficulty associated with value-
function approximation, beyond the loss in
accuracy, is the choice of the projection method,
which is the method of finding appropriate
parameters that maximize the accuracy of the
approximation according to certain criteria and
with respect to the target function. Typically, for
ordinary function approximation, this is accom-
plished using a training set of examples of the
form

˚
s; V �.s/

,
˚
s; V �.s/

,
˚
.s; a/; Q�.s; a/

,

or
˚
.s; a/; Q�.s; a/

that provide the true value

of the target function at certain sample points s or
.s; a/ (supervised learning). Unfortunately, in the
context of sequential decision making, the target
value function is completely unknown. Had it
been possible to compute it easily, value-function
approximation would have been unnecessary. In
fact, it is not possible to analytically compute
the true value of the target value function

1316 Value Function Approximation

even at certain isolated sample points due to
interdependencies between the values at all
points. The implication of this difficulty is that
evaluation and projection to the approximation
architecture must be blended together. This is
usually achieved by trying to find values for
the free parameters so that the approximate
function retains some properties of the original
exact value function. Another implication of
using approximation for value functions is that
all convergence properties of exact planning or
learning algorithms are compromised. Therefore,
significant attention must be paid to the choice of
the approximation architecture and the evaluation
and projection method to minimize the chances
for divergence or oscillations.

Approximation Architectures
There are a variety of architectures available
for value-function approximation: perceptrons,
neural networks, splines, polynomials, radial ba-
sis functions, support vector machines, decision
trees, CMACs, wavelets, etc. These architectures
have diverse representational power and general-
ization abilities, and the most appropriate choice
will heavily depend on the properties of the
decision making problem at hand. The projection
methods associated with these approximation ar-
chitectures are typically designed for a super-
vised learning setting. For successful use in the
context of decision making, combined evaluation
and projection methods are necessary.

A broad categorization of approximation ar-
chitectures distinguishes between nonlinear and
linear architectures. The characterization “non-
linear” or “linear” refers to the way the free
parameters enter into the architecture and not
to the approximation ability of the architecture.
Nonlinear architectures are usually more expres-
sive than the linear ones, due to the complex in-
teractions among their free parameters; however,
tuning their parameters is a much more elaborate
task compared to tuning the parameters of their
linear counterparts. Linear architectures are per-
haps the most popular choice for value-function
approximation; interestingly, most theoretical re-
sults on convergence properties in the context of

value-function approximation are restricted to
linear architectures.

A linear approximation architecture approxi-
mates a function V �.s/ or Q�.s; a/ as a linear
weighted combination of k basis functions (also
called features):

OV �.sIw/ D

kX
j D1

�j .s/wj D �.s/>w

OQ�.s; aIw/ D

kX
j D1

�j .s; a/wj D �.s; a/>w:

The free parameters of the architecture are the
coefficients wj of the combination (also called
weights). The basis functions �j are fixed, but
arbitrary and, in general, nonlinear functions of
s or .s; a/. It is required that the basis functions
�j are linearly independent to ensure that there
are no redundant parameters and that the matrices
involved in the computations are full rank. In
general, k � jSj and k � jSjjAj and the basis
functions �j have small compact descriptions.
As a result, the storage requirements of a linear
approximation architecture are much smaller than
those of the tabular representation of a value
function. There is a large variety of linear approx-
imation architectures, and in fact, many common
schemes for value-function approximation can be
cast as linear architectures.

– Lookup Table. This is the exact tabular rep-
resentation (There is no approximation under
this scheme; it is included only to illustrate
that exact representation belongs in the family
of linear architectures.) suitable for problems
with discrete state variables. Each basis func-
tion is an indicator function whose value is 1
only for a specific discrete input point (state or
state-action) and 0 otherwise. Each parameter
stores one value/entry of the table.

– Discretization. This is a common technique
for turning a continuous space into discrete
using a uniform- or variable-resolution grid.
One indicator basis function is assigned to
each cell of the discretization, and the cor-
responding parameter holds the value of that
cell.

Value Function Approximation 1317

V

– Tile Coding (CMAC). This scheme utilizes
several overlapping discretizations (tilings)
for better accuracy. It generates indicator
basis functions for each cell of each tiling
and concatenates the basis functions for all
tilings. Each parameter corresponds to one
cell in one tiling, but the value at each input
point is computed additively from the values
of all containing cells from all tilings.

– State Aggregation. This is a family of schemes
where “similar” (by some metric) states
are grouped together and are treated as
one state. The similarity metric is usually
formed through dimensionality reduction
techniques for identifying the most significant
dimensions in a high-dimensional input space,
unlike conventional proximity measures in
the same space. There is one indicator basis
function for each group and a single value for
all states in the group.

– Polynomials. This is a generic approximation
scheme suitable for problems with several
(continuous) state variables. Each basis func-
tion is a polynomial term composed of state
variables up to a certain degree.

– Radial Basis Functions (RBFs). This is
another generic approximation scheme
suitable for continuous state variables. Each
basis function is a Gaussian with fixed mean
and variance; the Gaussians are topologically
arranged so that they cover the input space
with some overlap.

– Kernel Methods. Kernels are symmetric func-
tions between two points, and they are used
to represent compactly dot products of feature
vectors in high- or even infinite-dimensional
spaces. The compactness of kernels allows
for approximation schemes that essentially
enjoy the flexibility provided by a huge or
infinite number of basis functions. The basis
functions, in this case, are implicitly defined
through the choice of the kernel.

– Partitioning. This technique is used for con-
structing complex approximators by partition-
ing the state space in several subsets and using
a different approximator in each one of them.
If linear architectures are used in all partitions,
then a set of basis functions for the global

architecture can be constructed by concatenat-
ing the basis functions of the smaller linear
architectures multiplying each subset with an
indicator function for the corresponding parti-
tion.

Linear architectures offer several advantages:
they are easy to implement and use, and their
behavior is fairly transparent, both from an
analysis standpoint and from a debugging and
feature engineering standpoint. It is usually
relatively easy to get some insight into the
reasons for which a particular choice of features
succeeds or fails. This is facilitated by the fact
that the magnitude of each parameter is related to
the importance of the corresponding feature in the
approximation (assuming normalized features).

A nonlinear approximation architecture ap-
proximates a function V �.s/ or Q�.s; a/ using
arbitrary parametric functions of s and .s; a/,
possibly in conjunction with some features �

computed over s and .s; a/. The best-known
representative of this category is the multilayer
feed-forward neural networks, which use one or
more layers of linear combinations followed by
a nonlinear sigmoidal transformation (threshold-
ing). In their simplest form (one layer), neural
networks approximate value functions as

OV �.sIw; �/ D

mX
iD1

�i �

0
@

kX
j D1

�j .s/wj i

1
A

D

mX
iD1

�i �
�
�.s/>wi

�

OQ�.s; aIw; �/ D

mX
iD1

�i �

0
@

kX
j D1

�j .s; a/wj i

1
A

D

mX
iD1

�i �
�
�.s; a/>wi

�
:

Common choices for the differentiable, bounded,
and monotonically increasing function � are the
hyperbolic tangent function �.x/ D tanh.x/ D

.ex � e�x/=.ex C e�x/ and the logistic function
�.x/ D 1=.1C e�x/. The free parameters of the

1318 Value Function Approximation

architecture (also called weights) are the coeffi-
cients wj i of the linear combinations of the inputs
and the coefficients �i of the linear combination
of the sigmoidal transformations for the output.
Notice that the parameters wj i enter nonlinearly
into the approximation.

A key question in all approximation architec-
tures is how features are generated and selected.
The feature generation and selection problem is
an open question that spans most of machine
learning research and admits no easy and general
answer. Prior domain-specific knowledge and ex-
perience can be very helpful in choosing appro-
priate features. Several recent studies also de-
scribe methods for automatically generating fea-
tures targeted for value-function approximation
(Menache et al. 2005; Mahadevan and Maggioni
2007; Parr et al. 2007).

Learning
Learning (or training or parameter estimation) in
value-function approximation refers to parameter
tuning methods that take as input a policy � ,
an approximation architecture for V �=Q� , and
the full MDP model or samples of interaction
with the process and output a set of parameters
w� such that OV �= OQ� is a good approximation
to V �=Q� . Learning also covers methods for
the harder problem of taking an approximation
architecture for V �=Q� and the model or samples
and outputting a set of parameters w� such that
OV �= OQ� is a good approximation to V �=Q�.

The former problem is somewhat easier because
the policy � , unlike an optimal policy ��,
is known, and therefore in the presence of a
simulator of the process, the value function can
be estimated at any isolated point using Monte
Carlo estimation techniques based on repeated
policy rollouts from that point. Each rollout
is an execution of an episode starting from a
state s (or state-action .s; a/) using policy � to
obtain an unbiased estimate of the return of the
policy from s (or .s; a/). In this case, value-
function approximation can be cast as a classic
supervised learning problem; the true value of
V �=Q� is estimated at a subset of points to
form a training set, which can be subsequently

used to train the approximation architecture
using supervised learning techniques. However,
in the absence of a simulator or when seeking
approximations to V �=Q�, evaluation and
projection into the architecture have to be carried
out simultaneously.

The true value function has two key properties:
it satisfies the Bellman equations, and it is the
fixed point of the Bellman operator. Learning
in value-function approximation strives to find
values for the free parameters so that the ap-
proximate function retains at least one of these
properties to the extent this is possible. Learning
methods that focus on satisfying the Bellman
equations attempt to find an approximate function
that minimizes the Bellman residual, the differ-
ence between the left- and the right-hand sides
of the system of Bellman equations. On the other
hand, learning methods that focus on the fixed
point property attempt to find an approximate
function that exhibits a fixed point behavior under
the combined application of the Bellman operator
and projection onto the space spanned by the
basis functions. Experimental evidence suggests
that it is really hard to satisfy both properties
under approximation, and therefore these two
approaches differ significantly in their solutions.
The majority of existing learning methods fo-
cus on fixed point approximation, which exper-
imentally has been shown to exhibit more stable
behavior and delivers better policies. There are
also proposals for combining the benefits of both
approaches into a hybrid method (Johns et al.
2009).

The most widely used learning approach is
based on gradient descent and is applicable to any
approximation architecture that is differentiable
with respect to its parameters. Any stochastic
approximation learning method for tabular repre-
sentations of value functions can be extended to
approximate representations. For example, given
any sample .s; a; r; s0/ of interaction with the
process, the temporal difference (TD) learning
update rule

V �.s/ V �.s/C ˛
�
r C �V �.s0/ � V �.s/

�

Value Function Approximation 1319

V

for tabular representations, where ˛ 2 .0; 1� is
the learning rate, becomes

w� w� C ˛
�
r C � OV �.s0Iw�/

� OV �.sIw�/
�
rw� OV �.sIw�/

under an approximation scheme OV � . Similarly,
the SARSA update rule

Q�.s; a/ Q�.s; a/

C ˛
�
r C �Q�.s0; �.s0// �Q�.s; a/

�

for tabular representations becomes

w� w� C ˛
�
r C � OQ�.s0; �.s0/Iw�/

� OQ�.s; aIw�/
�
rw� OQ�.s; aIw�/

under an approximation scheme OQ� . Finally, the
Q-learning update rule

Q�.s; a/ Q�.s; a/

C ˛
�
r C � max

a02A

˚
Q�.s0; a0/

�Q�.s; a/

�

for tabular representations under an approxima-
tion scheme OQ� becomes

w� w� C ˛
�
r C � max

a02A

˚
OQ�.s0; a0Iw�/

� OQ�.s; aIw�/
�
rw�

OQ�.s; aIw�/ :

These rules are applicable to any approximation
architecture, linear or nonlinear. However, when
using linear architectures they can be greatly
simplified, because the gradient with respect to
a parameter wj is simply the corresponding basis
function �j , for j D 1; 2; : : : ; k.

TD: w�
j w�

j C ˛
�
r C ��.s0/>w� � �.s/>w�

�
�j .s/

SARSA: w�
j w�

j C ˛
�
r C ��.s0; �.s0//>w� � �.s; a/>w�

�
�j .s; a/

Q-learning: w�
j w�

j C ˛
�
r C � max

a02A

˚
�.s0; a0/>w�

� �.s; a/>w�

�
�j .s; a/

More sophisticated learning approaches rely on
retaining the desired value-function property
in a batch manner by processing several
samples collectively. A variety of least-squares
techniques have been proposed for linear
architectures giving rise to several least-
squares reinforcement learning methods, such
as least-squares temporal difference (LSTD)
learning (Bradtke and Barto 1996), least-squares
policy evaluation (LSPE) (Nedić and Bertsekas
2003), hybrid least-squares approximation
(Johns et al. 2009), and least-squares policy
iteration (LSPI) (Lagoudakis and Parr 2003).
The parameters of a linear architecture can
also be estimated using Linear Programming
(de Farias and Van Roy 2003). Specialized

learning algorithms have been proposed when
using a kernel-based approximation architecture,
based either on Gaussian process TD (GPTD)
(Engel et al. 2003), Gaussian process SARSA
(GPSARSA) (Engel et al. 2005), kernelized
LSTD (KLSTD) and LSPI (KLSPI) (Xu et al.
2007), support vector regression (Bethke et al.
2008), or Gaussian process regression (Ras-
mussen and Kuss 2004; Bethke and How 2009).
A unified view of kernelized value-function
approximation is offered by Taylor and Parr
(2009). On the other hand, boot-strapping – the
updating of a value estimate based on other value
estimates – is the main learning approach behind
batch methods for nonlinear architectures, such
as fitted Q-iteration (FQI) (Ernst et al. 2005).

1320 Value Function Approximation

Examples

Very close approximations of the state value
function of optimal policies in two well-known
problems are presented to illustrate the diffi-
culty of value-function approximation. To obtain
these close approximations, a fine discretization
of the two-dimensional state space into a uni-
form grid of 250 � 250 was used for represen-
tation. The state-action value function Q was
initially computed using approximate policy it-
eration (a sparse-matrix version of LSPI) with
a set of indicator basis functions over the state
grid and all actions and 500 .s; a; r; s0/ samples
for each one of the 187;500 discrete cells .s; a/,
until convergence to a near-optimal policy; the
state value function V was extracted from the Q

values.

Inverted Pendulum
The inverted pendulum problem is to balance a
pendulum of unknown length and mass at the
upright position by applying forces to the cart
it is attached to (Fig. 1, left). Three actions are
allowed: left force LF (�50 Newtons), right force
RF (C50 Newtons), or no force NF (0 Newtons).
All three actions are noisy; Gaussian noise with
� D 0 and �2 D 10 is added to the chosen action.
The state space of the problem is continuous and
consists of the vertical angle � and the angular
velocity P� of the pendulum. The transitions are

governed by the nonlinear dynamics of the sys-
tem and depend on the current state and the
current (noisy) control u:

R�D
g sin.�/�˛ml. P�/2 sin.2�/=2�˛ cos.�/u

4l=3 � ˛ml cos2.�/
;

where g is the gravity constant (g D 9:8 m=s2),
m is the mass of the pendulum (default: m D

2:0 kg), M is the mass of the cart (default: M D

8:0 kg), l is the length of the pendulum (default:
l D 0:5 m), and ˛ D 1=.mCM/. The simulation
step is 0:1 s, thus the control input is given at
a rate of 10 Hz, at the beginning of each time
step, and is kept constant during any time step.
A reward of 0 is given as long as the angle of the
pendulum does not exceed �=2 in absolute value
(the pendulum is above the horizontal line). An
angle greater than �=2 in absolute value signals
the end of the episode and a reward (penalty)
of �1. The discount factor of the process is 0:95.

Figure 1 shows a close approximation to the
state value function V � of an optimal policy
for the inverted pendulum domain over the two-
dimensional state space .�; P�/. The value func-
tion indicates that states which potentially offer
high return are clustered within a zone where
� and P� have different signs and therefore the
gravity force can be counteracted. Notice the
nonlinearity of the function and the difficult ap-
proximation problem it presents.

theta

d(
th
et
a)

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
0

–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
–0.8
–0.9

ϑ

–1
–1 –0.5

0.5 1 1.5 –6–4
–2 0 2 4 6

d(theta)
0

theta

–1.5

v*

Value Function Approximation, Fig. 1 Inverted pendulum: state value function of an optimal policy (3D and 2D)
(Courtesy of Ioannis Rexakis)

Value Function Approximation 1321

V

x

d(
x)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.04

−0.06

−0.02

0

0.02

0.04

0.06

−60

−50

−40

−30

−20

−10

0

10
0

–10Goal
–20
–30v*

–40
–50
–60
–70
0.1

0.05
0

d(x)
–0.05

–0.1 –1.5
–0.5 0

x

0.5
1

–1

Value Function Approximation, Fig. 2 Mountain car: state value function of an optimal policy (3D and 2D)
(Courtesy of Ioannis Rexakis)

Mountain Car
The mountain car problem is to drive an
underpowered car from the bottom of a valley
between two mountains to the top of the
mountain on the right (Fig. 2, left). The car
is not powerful enough to climb any of the
hills directly from the bottom of the valley
even at full throttle; it must build some energy
by climbing first to the left (moving away
from the goal) and then to the right. Three
actions are allowed: forward throttle FT (C1),
reverse throttle RT (�1), or no throttle NT
(0). All three actions are noisy; Gaussian noise
with � D 0 and �2 D 0:2 is added to the
chosen action. The state space of the problem is
continuous and consists of the position x and the
velocity Px of the car along the horizontal axis.
The transitions are governed by the nonlinear
dynamics of the system and depend on the
current state .x.t/; Px.t// and the current (noisy)
control u.t/:

x.t C 1/ D BOUNDx Œx.t/C Px.t C 1/�

Px.t C 1/ D BOUND Px Œ Px.t/

C0:001u.t/�0:0025 cos.3x.t//� ;

where BOUNDx is a function that keeps x within
Œ�1:2; 0:5�, while BOUND Px keeps Px within
Œ�0:07; 0:07�. If the car hits the bounds of the

position x, the velocity Px is set to zero. A
penalty of �1 is given at each step as long as
the position of the car is below the right bound
(0:5). As soon as the car position hits the right
bound of the position, it has reached the goal;
the episode ends successfully and a reward of
0 is given. The discount factor of the process is
0:99.

Figure 2 shows a close approximation to
the state value function V � of an optimal
policy for the mountain car domain over
the two-dimensional state space .x; Px/. The
value function indicates that in order to gain
high return, the car has to follow a spiral
in the state space that goes through states
with progressively higher value. In practice,
this means that the car has to move back
and forth between the two mountains until
sufficient energy is built to escape from the
valley. Again, notice the high nonlinearity of the
function and the hard approximation problem it
presents.

Notation

The table summarizes the differences in names
and symbols between the common notation
(adopted here) and the alternative notation used
in the literature.

1322 Value Function Approximation

Common notation Alternative notation

Name Symbol Symbol Name

State space S S States

State s, s0 i , j State

Action space A U Controls

Action a u Control

Transition model P.s0js; a/ pij .u/ Transition probabilities

Reward function R g Cost function

Discount factor � ˛ Discount factor

Policy � � Policy

State value function V J Cost-to-go function

State-action value function Q Q Q-factors

Parameters/weights w r Parameters

Learning rate ˛ � Step size

Cross-References

�Curse of Dimensionality
�Dynamic Programming
� Feature Selection
�Gaussian Process Reinforcement Learning
�Least-Squares Reinforcement Learning Meth-

ods
�Q-Learning
�Radial Basis Function Approximation
�Reinforcement Learning
�Relational Value Iteration
�Temporal Difference Learning

Recommended Reading

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic
programming. Athena Scientific, Belmont

Bethke B, How JP (2009) Approximate dynamic pro-
gramming using Bellman residual elimination and
Gaussian process regression. In: Proceedings of the
American control conference, St. Louis, pp 745–750

Bethke B, How JP, Ozdaglar A (2008) Approximate
dynamic programming using support vector regres-
sion. In: Proceedings of the IEEE conference on
decision and control, Cancun, pp 745–750

Bradtke SJ, Barto AG (1996) Linear least-squares
algorithms for temporal difference learning. Mach
Learn 22(1–3):33–57

Buşoniu L, Babuška R, Schutter BD, Ernst D (2010)
Reinforcement learning and dynamic programming
using functions approximators. CRC, Boca Raton

de Farias DP, Van Roy B (2003) The linear program-
ming approach to approximate dynamic program-
ming. Oper Res 51(6):850–865

Engel Y, Mannor S, Meir R (2003) Bayes meets Bell-
man: the Gaussian process approach to temporal
difference learning. In: Proceedings of the inter-
national conference on machine learning (ICML),
Washington, DC, pp 154–161

Engel Y, Mannor S, Meir R (2005) Reinforcement
learning with Gaussian processes. In: Proceedings
of the international conference on machine learning
(ICML), Bonn, pp 201–208

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch
mode reinforcement learning. J Mach Learn Res
6:503–556

Johns J, Petrik M, Mahadevan S (2009) Hybrid least-
squares algorithms for approximate policy evalua-
tion. Mach Learn 76(2–3):243–256

Lagoudakis MG, Parr R (2003) Least-squares policy
iteration. J Mach Learn Res 4:1107–1149

Mahadevan S, Maggioni M (2007) Proto-value func-
tions: a Laplacian framework for learning represen-
tation and control in Markov decision processes.
J Mach Learn Res 8:2169–2231

Menache I, Mannor S, Shimkin N (2005) Basis func-
tion adaptation in temporal difference reinforcement
learning. Ann Oper Res 134(1):215–238

Nedić A, Bertsekas DP (2003) Least-squares policy
evaluation algorithms with linear function approxi-
mation. Discret Event Dyn Syst Theory Appl 13(1–
2):79–110

Parr R, Painter-Wakefield C, Li L, Littman M (2007)
Analyzing feature generation for value-function ap-
proximation. In: Proceedings of the international
conference on machine learning (ICML), Corvallis,
pp 449–456

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley, New
York

Rasmussen CE, Kuss M (2004) Gaussian processes
in reinforcement learning. In: Thrun S, Saul LK,
Scholkopf B (eds) Advances in neural information

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_109
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_100389
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

VC Dimension 1323

V

processing systems (NIPS). MIT Press, Cambridge
pp 751–759

Sutton R, Barto A (1998) Reinforcement learning: an
introduction. MIT, Cambridge

Taylor G, Parr R (2009) Kernelized value function
approximation for reinforcement learning. In: Pro-
ceedings of the international conference on machine
learning (ICML), Toronto, pp 1017–1024

Xu X, Hu D, Lu X (2007) Kernel-based least-squares
policy iteration for reinforcement learning. IEEE
Trans Neural Netw 18(4):973–992

Variance Hint

� Inductive Bias

VC Dimension

Thomas Zeugmann
Hokkaido University, Sapporo, Japan

Motivation and Background

We define an important combinatorial param-
eter that measures the combinatorial complex-
ity of a family of subsets taken from a given
universe (learning domain) X . This parameter
was originally defined by Vapnik and Chervo-
nenkis (1971) and is thus commonly referred to as
Vapnik-Chervonenkis dimension, commonly ab-
breviated as VC dimension. Subsequently, Dud-
ley (1978, 1979) generalized Vapnik and Chervo-
nenkis’ (1971) results. The reader is also referred
to Vapnik’s (2000) book in which he greatly
extends the original ideas. This results in a theory
which is called structural risk minimization.

The importance of the VC dimension for
� PAC learning was discovered by Blumer
et al. (1989) who introduced the notion to
computational learning theory.

As Anthony and Biggs (1992, Page 71) have
put it, “The development of this notion is probably
the most significant contribution that mathemat-
ics has made to Computational Learning The-
ory.”

Recall that we use jS j and }.S/ to denote the
cardinality and the power set of any set S , re-
spectively. We first define the VC dimension and
provide a short explanation of its importance for
� PAC learning. Then we present some examples.

Definition

Let X ¤ ; be any learning domain, let C � }.X/

be any nonempty concept class, and let S � X be
any finite set. We set

ΠC.S/ D fS \ c j c 2 Cg :

1. S is said to be shattered by C iff ΠC.S/ D

}.S/.
2. The VC dimension of C is the cardinality of

the largest finite set S � X that is shattered
by C.

If arbitrary large finite sets S are shattered
by C, then the VC dimension of C is defined to
be infinite.

Notation: By VC.C/ we denote the VC di-
mension of C.

Remarks
As far as � PAC learning is concerned, for a
sample set S , the notion ΠC.S/ has the following
meaning. Essentially, ΠC.S/ collects the set of
all subsets of the sample set S which are made
positive by some concept c 2 C. Consequently,
S\c represents the elements of S that are labeled
as to be positive by the concept c. Hence, ΠC.S/

is the collection of all such subsets taken over all
c 2 C. If every subset of S can be labeled as to
be positive by some concept c 2 C and c does not
make any other element of S positive, then S is
shattered.

If VC.C/ D d then there exists a finite set
S � X such that jS j D d , and S is shattered by
C. Moreover, every set S � X with jS j > d is
not shattered by C.

It is intuitively clear that an infinite VC di-
mension might enormously complicate learning.
On the other hand, it is by no means obvious

http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_631

1324 VC Dimension

that a finite VC dimension may always guaran-
tee the learnability of the corresponding concept
class. However, this is a central theorem of the
� PAC learning theory. Moreover, the value of
the VC dimension is a measure of the sample
complexity. This holds for PAC learning and be-
yond. Further models where this is true comprise
the � online learning models (cf. Haussler et al.
1994; Maass and Turán 1990; Littlestone 1988),
models of � query-based learning (cf. Maass and
Turán 1990), and others.

Examples

First, let C be any finite concept class. Then, since
it requires 2d distinct concepts to shatter a set
of cardinality d , no set of cardinality larger than
log jCj can be shattered. Thus, log jCj is always
an upper bound for the VC dimension of finite
concept classes. Here log denotes the logarithm
to the base 2.

However, if the VC dimension can be deter-
mined, it usually gives a better bound than log jCj.
To see this, let Ln D fx1; Nx1; x2; Nx2; : : : ; xn; Nxng,
n � 1 be a set of literals and let X D f0; 1gn

be the n-dimensional Boolean learning domain.
Furthermore, let Cn � }.X/ be the class of all
concepts describable by a monomial including
the empty monomial (representing f0; 1gn) and
the conjunction of all literals (representing ;).
Then jCnj D 3nC1 and thus VC.C/ 	 n.log 3/C

1. But VC.Cn/ D n for all n � 2 and VC.C1/ D 2
as shown by Natschläger and Schmitt (1996).

Note that the same is true for the class of all con-
cepts describable by monotone monomials, i.e.,
monomials containing only non-negated literals.

Next, we consider the concept class C of all
axis-parallel rectangles. So let X D E

2 be the
two-dimensional Euclidean space and C � }.E2/

be the set of all axis-parallel rectangles, i.e.,
products of intervals on the x-axis with intervals
on the y-axis. Then, it is not hard to see that
VC.C/ D 4.

Clearly, we can shatter the empty set and
sets of cardinality 1, 2, and 3. Now, let S D

fr1; r2; r3; r4g be such that r1; r2; r3; r4 are the
middle points of the sides of some square. Then
it is not hard to see that there are 16 concepts ci ,
1 	 i 	 16, in C such that }.S/ D fS \ci j 1 	
i 	 16g. Hence, VC.C/ � 4.

Next, let S D fr1; r2; r3; r4; r5g be any set of
5 pairwise different points. Let c be the small-
est closed axis-parallel rectangle containing the
points of S . Since c has only four sides, there
must be some point r 2 S , say r5, such that r5 lies
either in the interior of c or r5 lies on some side
of c along with another point of S (cf. Fig. 1).
Suppose S is shattered by C. Then, there has to
be a concept c 2 C such that fr1; r2; r3; r4g D

S \ c. However, by construction we obtain that
fr1; r2; r3; r4g D S \ c implies r5 2 S \ c,
a contradiction. Thus, no set of cardinality 5 is
shattered. Hence, VC.C/ D 4.

The latter result can be easily generalized. Let
X D E

n, and let C be the set of all axis-parallel
parallelepipeds in E

n. Then VC.C/ D 2n.
A further generalization is as follows. Let

X be the real line (one-dimensional Euclidean

VC Dimension, Fig. 1 No
set of cardinality 5 can be
shattered by axis-parallel
rectangles

� �

�� r1

r2r5

r1

r2

r5

xx

yy

r4 r4

r3 r3

∗

∗∗ ∗
∗

∗

∗
∗

∗ ∗

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_694

VC Dimension 1325

V

space), i.e., X D E, and let C be the set of all
unions of at most s (closed or open) intervals for
some fixed constant s � 1. Let S D fxi j 1 	
i 	 2s; xi < xiC1 for all 1 	 i < 2sg. Then
one easily verifies that S is shattered by C. Hence,
VC.C/ � 2s. On the other hand, if S is any set of
2s C 1 pairwise different points with xi < xiC1

for all 1 	 i 	 2s, then no concept in C contains
x1; x3; : : : ; x2sC1 without also containing a point
in x2; x4; : : : ; x2s . Thus, no such S is shattered.
Consequently, we have VC.C/ D 2s.

Furthermore, we can generalize the observa-
tions made above by deriving some rules that
turn out to be very useful to estimate the VC
dimension of more complicated concept classes
provided they can be constructed from simpler
classes.

First, let C1 and C2 be concept classes such that
C1 � C2. Then we clearly have

VC.C1/ 	 VC.C2/ :

Second, let X be any learning domain, let C �
}.X/ and define the complement of C to be C D
fX n c j c 2 Cg. Then we have

VC.C/ D VC.C/ :

Third, consider two concept classes C1 and C2

defined over the same learning domain X . Let
C D C1 [C2 be the union of C1 and C2. Then,

VC.C/ 	 VC.C1/C VC.C2/C 1 :

Fourth, let C be any concept class such that
VC.C/ D d . Consider the Cs union (or intersec-
tion) of at most s concepts from C, where s � 1
is any fixed constant, i.e., Cs D fc j c DS

1�i�s ci ; ci 2 Cg (or Cs D fc j c DT
1�i�s ci ; ci 2 Cg). Then one can show that

VC.Cs/ 	 2ds � log.3s/ :

Numerous further examples can be found in,
e.g., Vapnik and Chervonenkis (1974), Haussler
and Welz (1987), Anthony and Bartlett (1999),
Wenocur and Dudley (1981), Karpinski and

Werther (1994), Karpinski and Macintyre (1995),
Sakurai (1995), and Mitchell et al. (1999).

Applications

Let us return to the notion ΠC.S/ and let us
generalize it a bit as follows. For any natural
number m 2 N and any nonempty concept class
C � }.S/ , we set

ΠC.m/ D maxfjΠC.S/j j S � X; jS j D mg :

We can use the new notion to give an equivalent
definition of the VC dimension of a concept class
C, i.e.,

VC.C/ D maxfd j d 2 N; ΠC.d/ D 2d g :

Looking at ΠC.m/ from the perspective of
learning, we see the following. The argument m

refers to the sample size. ΠC.m/ is describing the
maximum number of ways a sample of size m can
be labeled by concepts taken from C. Hence, the
number ΠC.m/ behaves as a measure of concept
class complexity. What can be said about ΠC.m/?
Suppose d D VC.C/; then m 	 d implies
ΠC.m/ D 2m. On the other hand, m > d

directly implies ΠC.m/ < 2m. Therefore, we
are interested in learning how fast ΠC.m/ really
grows provided m > d . The key ingredient to
obtain the desired information is usually referred
to as Sauer’s Lemma (cf. Sauer 1972). Under the
assumptions made above, it states that

ΠC.m/ 	

dX
iD0

m

i

!
;

where

m

i

!
D 0 if i > m :

Like many important results, Sauer’s Lemma
(cf. Sauer 1972) has several proofs and gener-
alizations have been studied, too. We refer the
reader to Anthony and Biggs (1992), Kearns and
Vazirani (1994), and Gurvits (1997) for a more
detailed exposition.

1326 VC Dimension

Let us first look at the case m 	 d already con-
sidered. For this case Sauer’s Lemma is telling us
that

ΠC.m/ 	

dX
iD0

m

i

!
D 2m;

and thus, we get an exponential bound. The inter-
esting aspect is that in the remaining cases, the
bound is polynomial. For simplifying notation,
we set

Φ.d; m/ D

dX
iD0

m

i

!
:

Using combinatorial arguments and Stirling ap-
proximation, one can show that

1. Φ.0; m/ D
�

m
0

�
D 1 for all m 2 N.

2. Φ.d; 1/ D
�1

0

�
C
�1

1

�
D 2 for all d 2 N, d � 1.

3. Φ.d; m/ D Φ.d; m � 1/CΦ.d � 1; m � 1/

for all d; m 2 N, d � 1; m � 2.
4. Φ.d; m/ 	 md C 1 for all d � 0, m � 0.
5. Φ.d; m/ 	 md for all d � 2, m � 2.
6. Φ.d; m/ 	 . em

d
/d for all m � d � 1.

That is, (4) through (6) provide a bound poly-
nomial in m for ΠC.m/ whenever VC.C/ is finite.
This insight is fundamental for �PAC learning
and other learning models.

Linial et al. (1991) initiated the study of the
complexity problem of computing the VC dimen-
sion of a finite family of concepts defined over a
finite learning domain. Given any finite learning
domain X of cardinality n and any concept class
C � }.X/ of cardinality r , one can represent
the concept class C by an r � n matrix M such
that Mij D 1 iff xj 2 ci . Then each row
of M represents a concept c 2 C and each
column represents a point in X . The discrete
VC dimension decision problem is then, given a
f0; 1g-valued matrix M and an integer d � 1
as input, to decide whether or not VC.C/ 	 d ,
and the discrete VC dimension problem is, given
a f0; 1g-valued matrix M as input, to determine
VC.C/.

Linial et al. (1991) showed that the discrete
VC dimension decision problem to be solvable in
time O.rnd / and that the discrete VC dimension
problem can be solved in time O.rnlog r /. Further
progress was made by Shinohara (1995) who
showed that the discrete VC dimension decision
problem is in the complexity class SATlog2 n and

hard for the complexity class SATCNF
log2 n

, where

P � SATCNF
log2 n

� SATlog2 n � NP (see Shino-
hara (1995) for details). Moreover, Papadimitriou
and Yannakakis (1996) defined a new complexity
class LOGNP and showed the VC dimension
decision problem to be complete for this class.

However, the matrix representation of a con-
cept class may be exponentially larger than a
parameterized representation of it, e.g., the con-
cept class may be generated by a circuit. Rep-
resenting concept classes by circuits, Schaefer
(1999) showed the discrete VC dimension prob-
lem (modified in the canonical way) to be Σ

p
3

complete. For a definition of the complexity class
Σ

p
3 , we refer to Arora and Barak (2009).

Furthermore, we refer the reader to Goldberg
and Jerrum (1995) who succeeded in bounding
the VC dimension of concept classes parameter-
ized by real numbers.

Finally, the notion of the VC dimension can
be generalized to sets of indicator functions and
to sets of real functions (cf. Vapnik 2000, Sec-
tion 3.6). These generalizations play an important
role in statistical learning theory.

Cross-References

�Epsilon Nets
� PAC Learning
� Statistical Machine Translation
� Structural Risk Minimization

Recommended Reading

Anthony M, Bartlett PL (1999) Neural network learn-
ing: theoretical foundations. Cambridge University
Press, Cambridge

Anthony M, Biggs N (1992) Computational learning
theory. Cambridge tracts in theoretical computer
science, Vol 30. Cambridge University Press, Cam-
bridge

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_83
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_799

Version Space 1327

V

Arora S, Barak B (2009) Computational complexity:
A Modern approach. Cambridge University Press,
Cambridge

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Dudley RM (1978) Central limit theorems for empiri-
cal measures. Ann Probab 6(6):899–929

Dudley RM (1979) Corrections to “Central limit
theorems for empirical measures”. Ann Probab
7(5):909–911

Goldberg PW, Jerrum MR (1995) Bounding the
Vapnik-Chervonenkis dimension of concept classes
parameterized by real numbers. Mach Learn 18(2-
3):131–148

Gurvits L (1997) Linear algebraic proofs of VC-
dimension based inequalities. In: Ben-David S
(ed) Proceedings of the third european confer-
ence on computational learning theory, Euro-
COLT ’97, Jerusalem, Israel, March 1997, Lecture
notes in artificial Intelligence, vol 1208. Springer,
pp 238–250

Haussler D, Littlestone N, Warmuth MK (1994) Pre-
dicting f0; 1g functions on randomly drawn points.
Info Comput 115(2):248–292

Haussler D, Welz E (1987) Epsilon nets and simplex
range queries. Discret Comput Geom 2:127–151

Karpinski M, Macintyre A (1995) Polynomial bounds
for VC dimension of sigmoidal neural networks. In:
Proceedings of the 27th annual ACM symposium
on theory of computing, ACM Press, New York,
pp 200–208

Karpinski M, Werther T (1994) VC dimension and
sampling complexity of learning sparse polynomials
and rational functions. In: Hanson SJ, Drastal GA,
Rivest RL (eds) Computational learning theory and
natural learning systems. Constraints and prospects,
vol I, chap. 11. MIT Press, pp 331–354

Kearns MJ, Vazirani UV (1994) An Introduction to
computational learning theory. The MIT Press,
Cambridge, Massachusetts

Linial N, Mansour Y, Rivest RL (1991) Results on
learnability and the Vapnik-Chervonenkis dimen-
sion. Inform Comput 90(1):33–49

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maass W, Turán G (1990) On the complexity of learn-
ing from counterexamples and membership queries.
In: Proceedings of the 31st annual symposium on
foundations of computer science (FOCS 1990), St.
Louis, 22-24 October 1990. IEEE Computer Society
Press, Los Alamitos, pp 203–210

Mitchell A, Scheffer T, Sharma A, Stephan F (1999)
The VC-dimension of subclasses of pattern lan-
guages. In: Watanabe O, Yokomori T (eds) Proceed-
ings of the 10th international conference on algo-
rithmic learning theory, ALT ’99, Tokyo, Dec 1999,
Lecture notes in artificial intelligence, vol 1720.
Springer, pp 93–105.

Natschläger T, Schmitt M (1996) Exact VC-dimension
of Boolean monomials. Infor Process Lett 59(1):
19–20

Papadimitriou CH, Yannakakis M (1996) On limited
nondeterminism and the complexity of the V-C
dimension. J Comput Syst Sci 53(2):161–170

Sakurai A (1995) On the VC-dimension of depth four
threshold circuits and the complexity of Boolean-
valued functions. Theoret Comput Sci 137(1):109–
127

Sauer N (1972) On the density of families of sets. J
Comb Theory (A) 13(1):145–147

Schaefer M (1999) Deciding the Vapnik-Červonenkis
dimension is Σ

p
3 -complete. J Comput Syst Sci

58(1): 177–182
Shinohara A (1995) Complexity of computing Vapnik-

Chervonenkis dimension and some generalized di-
mensions. Theoret Comput Sci 137(1):129–144

Vapnik VN (2000) The nature of statistical learning
theory, 2nd edn. Springer, Berlin

Vapnik VN, Chervonenkis AY (1971) On the uniform
convergence of relative frequencies of events to their
probabilities. Theory Probab Appl 16(2):264–280

Vapnik VN, Chervonenkis AY (1974) Theory of pat-
tern recognition. Nauka, Moskwa (In Russian)

Wenocur RS, Dudley RM (1981) Some special
Vapnik-Chervonenkis classes. Discret Math
33:313–318

Vector Optimization

�Multi-objective Optimization

Version Space

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Definition

Mitchell (1977, 1982) defines the version space
for a learning algorithm as the subset of hypothe-
ses consistent with the training examples. That
is, the � hypothesis language is capable of de-
scribing a large, possibly infinite, number of con-
cepts. When searching for the target concept, we
are only interested in the subset of sentences in
the hypothesis language that are consistent with

http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_372

1328 Viterbi Algorithm

the training examples, where consistent means
that the examples are correctly classified (assum-
ing deterministic concepts and no � noise in the
data). While the version space may be infinite,
it can often be represented in a compact manner
by maintaining only its bounds, the most specific
(�Most Specific Hypothesis) and �most general
hypotheses. Any hypothesis that is more general
than a hypothesis in the most specific bound
and more specific than a hypothesis in the most
general bound is in the version space.

Cross-References

�Learning as Search
�Noise

Recommended Reading

Mitchell TM (1977) Version spaces: a candidate elimi-
nation approach to rule-learning. In: Proceedings of
the fifth international joint conference on artificial
intelligence, Cambridge, pp 305–310

Mitchell TM (1982) Generalization as search. Artif
Intell 18(2):203–226

Viterbi Algorithm

A dynamic programming algorithm for finding
the most likely sequence of hidden states result-
ing in an observed sequence of output events. The
most likely sequence is called the Viterbi path.
The Viterbi algorithm was popularized due to its
usability in Hidden Markov models (HMM).

The Viterbi algorithm was initially proposed
by Andrew Viterbi as an error-correction scheme
for noisy digital communication links. It is now
also commonly used in speech recognition, natu-
ral language processing, and bioinformatics.

Recommended Reading

Viterbi AJ (1967) Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans Inf Theory 3(2):260–269

http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_562
http://dx.doi.org/10.1007/978-1-4899-7687-1_560
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_957

W

Web Advertising

�Text Mining for Advertising

Weight

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Connection strength; Synaptic efficacy

Definition

In a � neural networks, connections between
neurons typically have weights that indicate
how strong the connection is. The neuron
computes by forming a weighted sum of its
input, i.e., the activation of each input neuron
is multiplied by the corresponding connection
weight. Adapting such weights is the most
important way of learning in neural networks.
Connection weights are loosely modeled after
the synaptic efficacies in biological neurons,
where they determine how large a positive or
negative change in the membrane potential each
input spike generates (see �Biological Learning:
Synaptic Plasticity, Hebb Rule and Spike Timing

Dependent Plasticity). In most models, all
connection parameters are abstracted into
a weight: attenuation or interaction of the
potentials and connection delays are usually not
taken into account. The weights are usually real-
valued numbers (�1 : : : 1), although in some
algorithms, intended for VLSI implementation,
the range and precision of these values can be
restricted (or weights eliminated altogether).
Weights in some methods can be restricted
to positive values if the inputs are known
to be positive and the method is based on
comparing the similarity to the weights (as
in e.g., �Self-Organizing Maps, �Adaptive
Resonance Theory, and �Radial Basis Function
Networks). Most learning methods are based
on adjusting the weight values. The weights are
often initialized to small random values, although
if enough is known about the input space and
the task, more systematic initialization can
improve performance significantly. The weights
are then adjusted based on local information
that is available on either side of the connection.
Usually, only small modifications are made in
each learning step to avoid disrupting what the
network already knows, and learning converges
over time to a setting of values that solves the
task.

Within-Sample Evaluation

� In-Sample Evaluation

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_826
http://dx.doi.org/10.1007/978-1-4899-7687-1_100078
http://dx.doi.org/10.1007/978-1-4899-7687-1_100459
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_405

1330 Word Sense Disambiguation

Word Sense Disambiguation

Rada Mihalcea
University of North Texas, Denton, TX, USA

Synonyms

Learning word senses; Solving semantic ambigu-
ity

Definition

Ambiguity is inherent to human language. In
particular, word sense ambiguity is prevalent in
all natural languages, with a large number of
the words in any given language carrying more
than one meaning. For instance, the English noun
plant can mean green plant or factory; similarly
the French word feuille can mean leaf or paper.
The correct sense of an ambiguous word can be
selected based on the context where it occurs,
and correspondingly the problem of word sense
disambiguation is defined as the task of automat-
ically assigning the most appropriate meaning to
a polysemous word within a given context.

Motivation and Background

Word sense disambiguation is considered one of
the most difficult problems in natural language
processing, due to the high semantic ambiguity
that is typically associated with language. It was
first noted as a problem in the context of machine
translation, when Warren Weaver, in his famous
1949 memorandum, pointed out word ambiguity
as one of the problems that needed to be solved
in order to enable automatic translations between
the languages of the world (Weaver 1995). More
than 50 years later, word sense ambiguity is still
regarded as an important and difficult research
problem, and it has been demonstrated to have a
potentially significant impact on several natural
language processing applications.

Applications
In addition to machine translation, the role
of word sense disambiguation has also been
explored in connection to other applications,
such as monolingual information retrieval,
cross-language information retrieval, question
answering, knowledge acquisition, information
extraction, text classification, and others. In
particular, a significant amount of work has
been carried out in areas related to information
retrieval, where the resolution of word ambiguity
has been shown to have an impact on both the
precision of the system (by allowing for matches
only between identical word meanings in the
query and in the documents), as well as the recall
of the system (by performing query expansion
using synonyms of selected word meanings).

Brief History
Over the years, the field of word sense disam-
biguation has undergone steady improvements in
both quality and scope, moving from the rule-
based systems using hand crafted knowledge that
were popular in the 1970s and 1980s, to the
more advanced corpus-based methods used in the
1990s, and to the current hybrid systems that
rely on a mix of knowledge-based and corpus-
based resources, minimizing the need of sense
annotated data and taking advantage of the Web.
The shift from small-scale rule-based systems to
large-scale data-driven methods has also implied
an increase in coverage, with early systems typ-
ically addressing a handful of ambiguous words
for which hand-coded rules were available, while
many of the current systems have the ability
to address all or almost all content words in
unrestricted text.

Methods
Current word sense disambiguation systems are
divided into three main categories:

Knowledge-based: These systems rely mainly
on information drawn from lexical resources,
such as dictionaries or thesauruses. The Lesk
algorithm (Lesk 1986) is one of the most well-
known knowledge-based word sense disambigua-
tion methods. It decides the meaning of a word

http://dx.doi.org/10.1007/978-1-4899-7687-1_100262
http://dx.doi.org/10.1007/978-1-4899-7687-1_100431

Word Sense Disambiguation 1331

W

based on a measure of similarity among the
definitions provided by a dictionary. For instance,
for the phrase pine cone, the algorithm will select
the meaning of kind of evergreen tree for pine,
and fruit of evergreen tree for cone, as these are
the definitions with the highest lexical overlap
among all the possible definitions provided by a
dictionary.

Unsupervised corpus-based: These ap-
proaches typically consist of algorithms for
clustering word sense occurrences in a corpus,
without making explicit reference to a sense
inventory. The clustering can be performed
in a monolingual environment, in which case
different word occurrences are represented by
features derived from their immediate context
(Schutze 1998). Alternatively, a clustering of
word senses can also be performed using cross-
lingual evidence drawn from the translations
observed in a parallel corpus (Ng et al. 2003).
This line of work is often referred to as word
sense discrimination, as the word meanings are
not disambiguated against a sense inventory, but
are discriminated against each other.

Supervised corpus-based: These methods are
the focus of the current chapter, and they consist
primarily of machine learning algorithms applied
on large sense-annotated corpora. Supervised al-
gorithms have been typically applied to one word
at a time, although experiments have also been
carried out for their application to all words in
unrestricted text. While sense-annotated corpora
have usually been constructed by hand, recent
work has also explored various approaches for
the automatic generation of such data, which
has been used successfully in conjunction with
machine learning algorithms.

Structure of the Learning System

Among the various knowledge-based and data-
driven word sense disambiguation methods that
have been proposed to date, supervised systems
have been constantly observed as leading to
the highest performance. In these systems, the
sense disambiguation problem is formulated as a

supervised learning task, where each sense-
tagged occurrence of a particular word is
transformed into a feature vector, which is then
used in an automatic learning process.

Given a target word and a set of examples
where this word occurs, each occurrence being
annotated with the correct sense, a supervised
system will attempt to learn how to automati-
cally annotate occurrences of the given word in
new, previously unseen, contexts. This process is
accomplished in two steps. First, representative
features are extracted from the context of the
ambiguous word; this step is applied to the anno-
tated examples (training) as well as the unlabeled
examples (test). Second, a machine learning al-
gorithm is applied on the feature vectors, and
consequently the most likely sense is assigned to
the test occurrences of the target word.

Features
Research in supervised word sense disambigua-
tion has considered two main types of features to
model occurrences of ambiguous words:

W�1 WC1 P�1 PC1 Gro-
wth

Flo-
wer-
ing

In-
dus-
tri-
al

Staff Sense

Flo-
wering

Helps Adj Verb Y Y N N Green
plant

Indu-
strial

Is Adj Verb N N Y Y Factory

Contextual features, which are extracted from
the immediate vicinity of the ambiguous word.
These features usually consist of the words before
and after the target word (a window size of 3–10
words is typical), their parts of speech, words in
a syntactic dependency with the target word (e.g.,
the subject of the verb, the noun modified by an
adjective), position in the sentence, and the like.
For instance, the adjective green could be one of
the contextual features extracted from the context
the green plant for the ambiguous word plant.

Topical features, which are represented by
the words most frequently co-occurring with a

1332 Word Sense Disambiguation

given meaning of the target word. These words
are usually determined by counting the number
of times each word occurs in the context of a
word meaning, divided by the total number of
occurrences in the context of the word regardless
of its meaning. For instance, the factory meaning
of plant could have topical features such as indus-
trial and work, whereas the green plant meaning
of plant might have features such as animal and
water.

As an example of feature vector construction,
consider the following two contexts provided for
the ambiguous word plant:

The/det growth/noun of/prep a/det seedling/no-
un into/prep a/det flowering/adj plant/noun
helps/verb children/noun investigate/verb the/det
conditions/noun that/prep plants/noun need/verb
for/prep growth/ noun.

The/det operations/noun staff/noun in/prep
an/det industrial/adj plant/noun is/verb typ-
ically/adv measured/verb in/prep asset/noun
utilization/noun.

The following two feature vectors are con-
structed:

Machine Learning
Provided a set of feature vectors representing dif-
ferent occurrences of an ambiguous target word,
the goal of the machine learning system is to learn
how to predict the most likely sense for a new oc-
currence. The word sense disambiguation litera-
ture describes experiments with a large number of
machine learning algorithms, including decision
lists (Yarowsky 2000), instance-based learning
(Ng and Lee 1996), Naı̈ve Bayes and decision
trees (Pedersen 1998), support vector machines
(Lee and Ng 2002), and others. A comparison
of several machine learning algorithms for word
sense disambiguation is provided in Lesk (1986)
and Mooney (1996).

Generation of Sense-Tagged Corpora
One of the main drawbacks associated with the
supervised methods for word sense disambigua-
tion is the cost incurred in the process of build-
ing sense-tagged corpora. Despite their high per-
formance, the applicability of these supervised
systems is limited to those few words for which

sense-tagged data is available, and their accuracy
is strongly connected to the amount of labeled
data available at hand.

Sense annotations have been typically car-
ried out by humans, which resulted in several
publicly available data sets, such as those made
available during the Senseval evaluations (http://
www.senseval.org). However, despite the effort
that went into the construction of these data
sets, their applicability is limited to a handful of
approximately 100 ambiguous words.

To address the sense-tagged data bottleneck
problem, different methods for automatic sense-
tagged data annotation have been proposed in the
past, with various degrees of success. One such
method relies on monosemous relatives extracted
from dictionaries, which can be used to iden-
tify ambiguity-free occurrences in large corpora
(Leacock et al. 1998; Mihalcea 1999). Another
method relies on automatically bootstrapped dis-
ambiguation patterns, which can be used to gen-
erate a large number of sense-tagged examples
(Mihalcea 2002; Yarowsky 1995). The use of
volunteer contributors to create sense-annotated
corpora has also been explored in the Open Mind
Word Expert system (Chklovski and Mihalcea
2002). Finally, in recent work, Wikipedia was
identified as a rich source of word sense annota-
tions, which can be used to build supervised word
sense disambiguation systems (Mihalcea 2007).

Cross-References

� Semi-supervised Text Processing

Recommended Reading

Agirre E, Edmonds P (2006) Word sense disambigua-
tion: algorithms and applications. Springer, Berlin.
http://www.wsdbook.org

Chklovski T, Mihalcea R (2002) Building a sense
tagged corpus with open mind word expert. In: Pro-
ceedings of ACL 2002 workshop on WSD, Philadel-
phia

Leacock C, Chodorow M, Miller GA (1998) Using
corpus statistics and wordnet relations for sense
identification. Comput Linguist 24(1):147–165

http://www.senseval.org
http://www.senseval.org
http://dx.doi.org/10.1007/978-1-4899-7687-1_967
http://www.wsdbook.org

Word Sense Discrimination 1333

W

Lee YK, Ng HT (2002) An empirical evaluation
of knowledge sources and learning algorithms for
word sense disambiguation. In: Proceedings of
EMNLP 2002, Philadelphia

Lesk M (1986) Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In: SIGDOC 1986,
Toronto

Mihalcea R (1999) An automatic method for generat-
ing sense tagged corpora. In: Proceedings of AAAI
1999, Orlando

Mihalcea R (2002) Bootstrapping large sense tagged
corpora. In: Proceedings of LREC 2002, Las Palmas

Mihalcea R (2007) Using wikipedia for automatic
word sense disambiguation. In: Proceedings of
NAACL 2007, Rochester

Mihalcea R, Pedersen T (2005) Advances in word
sense disambiguation. Tutorial presented at IB-
ERAMIA 2004, ACL 2005, AAAI 2005. http://
www.d.umn.edu/�tpederse/WSDTutorial.html

Mooney R (1996) Comparative experiments on disam-
biguating word senses: an illustration of the role
of bias in machine learning. In: Proceedings of
EMNLP, Philadelphia

Ng HT, Lee HB (1996) Integrating multiple knowledge
sources to disambiguate word sense: an examplar-
based approach. In: Proceedings of ACL, Santa
Cruz

Ng HT, Wang B, Chan YS (2003) Exploiting parallel
texts for word sense disambiguation: an empirical
study. In: Proceedings of ACL, Sapporo

Pedersen T (1998) Learning probabilistic models
of word sense disambiguation. Ph.D. dissertation.
Southern Methodist University

Schutze H (1998) Automatic word sense discrimina-
tion. Comput Linguist 24(1):97–123

Weaver W (1995) Translation. In: Locke WN, Booth
AD (eds) Machine translation of languages: four-
teen essays. MIT Press, Cambridge, MA

Yarowsky D (1995) Unsupervised word sense disam-
biguation rivaling supervised methods. In: Proceed-
ings of ACL, Cambridge, MA

Yarowsky D (2000) Hierarchical decision lists for word
sense disambiguation. Comput Hum 34(1–2): 179–
186

Word Sense Discrimination

Word sense discrimination is sometimes used as a
synonym for �word sense disambiguation. Note,
however, that these two terms refer to some-
what different problems, as word sense discrim-
ination implies a distinction between different
word meanings in a corpus (without reference to
a sense inventory), whereas word sense disam-
biguation refers to a sense assignment using a
given sense inventory.

http://www.d.umn.edu/~tpederse/WSDTutorial.html
http://www.d.umn.edu/~tpederse/WSDTutorial.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_882

Z

Zero-One Loss

Zero-one loss is a common � loss function used
with � classification learning. It assigns 0 to loss
for a correct classification and 1 for an incorrect
classification.

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_500
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055

	Preface
	Contributors
	A
	A/B Testing
	Abduction
	Definition
	Motivation and Background
	Structure of the Learning Task
	Abduction in Artificial Intelligence
	Abductive Concept Learning
	Abduction and Induction
	Abduction in Systems Biology

	Cross-References
	Recommended Reading

	Absolute Error Loss
	Accuracy
	Definition
	Cross-References

	ACO
	Actions
	Active Learning
	Definition
	Structure of Learning System
	Related Problems
	Active Learning Scenarios
	Constructive Active Learning
	Pool-Based Active Learning
	Stream-Based Active Learning
	Other Forms of Active Learning

	Common Active Learning Strategies
	Statistical Active Learning
	The Need for Reference Distributions
	A Detailed Example: Statistical Active Learning with LOESS
	Greedy Versus Batch Active Learning
	Cross-References
	Recommended Reading

	Active Learning Theory
	Definition
	Learning from Labeled and Unlabeled Data
	Motivating Examples
	Example: Thresholds on the Line
	Example: Linear Separators in R2
	Example: An Overabundance of Unlabeled Data

	The Sample Complexity of Active Learning
	Generic Results for Separable Data

	Mildly Selective Sampling
	A Bayesian Model
	Other Work

	Conclusion
	Cross-References
	Recommended Reading

	Adaboost
	Adaptive Control Processes
	Adaptive Learning
	Adaptive Real-Time Dynamic Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Backup Operations
	Off-Line Versus On-Line
	Learning A Model
	Summary of Theoretical Results
	Special Cases and Extensions

	Cross-References
	Recommended Reading

	Adaptive Resonance Theory
	Adaptive Resonance Theory
	ART Design Elements
	Stable Fast Learning with Distributed and Winner-Take-All Coding
	Complement Coding: Learning Both Absent Features and Present Features
	Matching, Attention, and Search

	Applications
	The Boston Testbed
	Application 1: Learning from Experience with Self-Supervised ART
	Application 2: Transforming Information into Knowledge Using ART Knowledge Discovery
	Application 3: Correcting Errors by Biasing Attention Using Biased ART
	Future Directions
	New Paradigms for Autonomous Intelligent Systems: Complementary Computing and Laminar Computing
	Complementary Computing in the Design of Perceptual/Cognitive and Spatial/Motor Systems
	Where's Waldo? Unifying Spatial and Object Attention, Learning, Recognition, and Search of Valued Objects and Scenes
	General-Purpose Vision and How It Supports Object Learning, Recognition, and Tracking
	Visual and Spatial Navigation, Cognitive Working Memory, and Planning
	Social Cognition
	Mental Disorders and Homeostatic Plasticity
	Machine Consciousness?

	Recommended Reading

	Adaptive System
	Agent
	Agent-Based Computational Models
	Agent-Based Modeling and Simulation
	Agent-Based Simulation Models
	AIS
	Algorithm Evaluation
	Definition
	Motivation and Background
	Processes and Techniques
	Cross-References
	References

	Analogical Reasoning
	Analysis of Text
	Analytical Learning
	Anomaly Detection
	Introduction
	Point Anomaly Detection
	Extensions to Point Anomaly Detection
	Nature of Input Data
	Type of Anomaly
	Contextual Anomalies
	Collective Anomalies

	Data Labels
	Output of Algorithm

	Anomaly Detection for Complex Data
	Symbolic Sequences
	Time Series
	Graphs and Networks

	Conclusions and Future Directions
	References

	Ant Colony Optimization
	Synonyms
	Definition
	Motivation and Background
	Structure of the Optimization System
	The Ant Colony Optimization Probabilistic Model
	The Ant Colony Optimization Pheromone Update

	Cross-References
	Recommended Reading

	Anytime Algorithm
	AODE
	Apprenticeship Learning
	Approximate DynamicProgramming
	Apriori Algorithm
	Definition
	Cross-References
	Recommended Reading

	AQ
	Architecture
	Area Under Curve
	Synonyms
	Definition

	ARL
	ART
	ARTDP
	Artificial Immune Systems
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Supervised Immune-Inspired Learning
	Unsupervised Immune-Inspired Learning

	Recommended Reading

	Artificial Life
	Artificial Neural Networks
	Cross-References

	Artificial Societies
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Important Aspects
	Modeling Learning
	Examples
	Software Systems

	Applications
	Future Directions, Challenges
	Cross-References
	Recommended Reading

	Assertion
	Assessment of Model Performance
	Association Rule
	Definition
	Cross-References
	Recommended Reading

	Associative Bandit Problem
	Associative Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	The Learning Setting
	Power of Side Information
	Linear Payoff Functions
	PAC Associative Reinforcement Learning

	Recommended Reading

	Attribute
	Synonyms
	Definition
	Motivation and Background
	Future Directions
	Limitations
	Recommended Reading

	Attribute Selection
	Attribute-Value Learning
	AUC
	Authority Control
	Autonomous Helicopter Flight Using Reinforcement Learning
	Definition
	Motivation and Background
	Typical Hardware Setup
	Helicopter State and Controls
	Helicopter Flight as an RL Problem
	Formulation
	Modeling
	Control Problem Solution Methods
	Policy Search
	Differential Dynamic Programming
	Apprenticeship Learning and Inverse RL

	Conclusion
	Cross-References
	Recommended Reading

	Average-Cost Neuro-Dynamic Programming
	Average-Cost Optimization
	Averaged One-Dependence Estimators
	Synonyms
	Definition
	Classification with AODE
	Cross-References
	Recommended Reading

	Average-Payoff Reinforcement Learning
	Average-Reward Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Model-Based Learning
	Model-Free Learning
	Scaling Average-Reward Reinforcement Learning
	Applications
	Convergence Analysis
	Cross-References
	Recommended Reading

	B
	Backprop
	Backpropagation
	Synonyms
	Definition
	Characteristics
	Feed-Forward Networks
	Gradient Descent
	Implementation
	Classification Tasks with BP
	Curve Fitting with BP
	The Autoencoder Architecture
	Prediction with BP
	Cognitive Modeling with BP
	Biological Inspiration and Plausibility
	Shortcomings of BP
	History

	Cross-References
	Recommended Reading

	Bagging
	Bake-Off
	Definition
	Cross-References

	Bandit Problem with Side Information
	Bandit Problem with Side Observations
	Basic Lemma
	Basket Analysis
	Synonyms
	Definition
	Cross-References

	Batch Learning
	Synonyms
	Definition

	Baum-Welch Algorithm
	Bayes Adaptive Markov Decision Processes
	Bayes Net
	Bayes' Rule
	Synonyms
	Definition
	Discussion
	Cross-References

	Bayes' Theorem
	Bayesian Methods
	Definition
	Motivation and Background
	Theory
	Basic Theory
	Justifications
	Bayesian Computation

	Cross-References
	Recommended Reading

	Bayesian Model Averaging
	Bayesian Network
	Synonyms
	Definition
	Cross-References

	Bayesian Nonparametric Models
	Synonyms
	Definition
	Motivation and Background
	Examples
	Theory
	Exchangeability
	Model Representations
	Consistency and Convergence Rates

	Inference
	Examples
	On Bayes Equations and Conjugacy

	Future Directions
	General-Purpose Software Package
	Statistical Properties of Models

	Cross-References
	Recommended Reading

	Bayesian Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Approach
	Model-Based Bayesian Learning

	Belief MDP Equivalence
	Optimal Value Function Parameterization
	Exploration/Exploitation Tradeoff
	Related Work

	Cross-References
	Recommended Reading

	Beam Search
	Cross-References
	Recommended Reading

	Behavioral Cloning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Learning Direct (Situation–Action) Controllers
	Limitations

	Learning Indirect (Goal-Directed) Controllers
	Cross-References
	Recommended Reading

	Belief State Markov Decision Processes
	Bellman Equation
	Bias
	Bias Specification Language
	Definition
	Examples
	Bias Specification Languages in Inductive Logic Programming
	DLAB
	Type-and Mode-Based Biases
	FLIPPER's Bias Specification Language
	Other Approaches

	Further Reading
	Cross-References
	Recommended Reading

	Bias Variance Decomposition
	Definition
	Cross-References
	Recommended Reading

	Bias-Variance Trade-Offs: Novel Applications
	Definition
	Motivation and Background
	Applications
	Monte Carlo Estimation of Integrals Using Importance Sampling
	Monte Carlo Optimization
	Parametric Machine Learning
	PLMCO
	MCO Problem Description
	Solution Methodology
	Log-Concave Densities
	Mixture Models
	Test Problems
	Application of PL Techniques

	Conclusions
	Recommended Reading

	Bias-Variance-Covariance Decomposition
	Bilingual Lexicon Extraction
	Binning
	Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	The Hebb Rule
	Functional Consequences of Hebbian Learning

	Cross-References
	Recommended Reading

	Biomedical Informatics
	Introduction
	Gene Expression Microarrays
	Gene Chips
	Machine Learning for Microarrays
	Single-Nucleotide Polymorphisms
	Mass Spectrometry and Proteomics
	Protein Structures
	Protein–Protein Interactions
	Related Data Types
	High-Throughput Screening Data for Drug Design
	Electronic Medical Records (EMR) and Personalized Medicine
	Conclusion
	Cross-References
	Recommended Reading

	Blog Mining
	Boltzmann Machines
	Definition
	Motivation and Background
	Structure of Learning System
	The Stochastic Dynamics of a Boltzmann Machine
	Learning in Boltzmann Machines Without Hidden Units
	Learning with Hidden Units
	Different Types of Boltzmann Machine
	The Speed of Learning
	Restricted Boltzmann Machines
	Learning Deep Networks by Composing Restricted Boltzmann Machines
	Relationships to Other Models

	Recommended Reading

	Boosting
	Bootstrap Sampling
	Definition
	Recommended Reading

	Bottom Clause
	Synonyms
	Definition
	Cross-References

	Bounded Differences Inequality
	BP
	Breakeven Point

	C
	Candidate-Elimination Algorithm
	Recommended Reading

	Cannot-Link Constraint
	Cascade Correlation
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Algorithm
	Performance
	Variants of Cascade Correlation
	Flat Cascade Correlation
	Sibling–Descendant Cascade–Correlation (SDCC)
	Recurrent Cascade–Correlation (RCC)
	Knowledge-Based Cascade–Correlation (KBCC)
	Software

	Applications
	CC
	SDCC
	KBCC

	Future Directions
	Cross-References
	Recommended Reading

	Cascor
	Case
	Case-Based Learning
	Case-Based Reasoning
	Synonyms
	Theory/Solution
	Knowledge Containers
	Retrieval
	Reuse and Revision
	Retention and Maintenance
	CBR Applications and Tools

	Future Directions
	Cross-References
	Recommended Reading

	Categorical Attribute
	Synonyms

	Categorical Data Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Generic Data Clustering System
	Categorical Data Clustering System

	Cross-References
	Recommended Reading

	Categorization
	Category
	Causal Discovery
	Causality
	Definition
	Motivation and Background
	Structure of the Learning System
	Structure of Causal Inference
	Languages and Assumptions for Causal Inference
	Representing Interventions
	Calculating Distributions Under Interventions
	Learning Causal Structure
	Semiparametric Models
	Confidence Intervals
	Other Languages and Tasks in Causal Learning

	Recommended Reading

	CC
	Certainty Equivalence Principle
	Characteristic
	Citation or Reference Matching (When Applied to Bibliographic Data)
	City Block Distance
	Class
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Class Binarization
	Synonyms
	Methods
	Cross-References
	Recommended Reading

	Class Imbalance Problem
	Definition
	Motivation and Background
	Recommended Reading

	Classification
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Applications
	Future Directions
	Limitations
	Recommended Reading

	Classification Algorithms
	Recommended Reading

	Classification Learning
	Classification Rule
	Method
	Cross-References

	Classification Tree
	Classifier Calibration
	Synonyms
	Motivation and Background
	Solutions
	Optimal Decision Thresholds
	Evaluation Metrics for Calibration
	Calibration Methods

	Future Directions
	Multiclass and Multilabel Calibration
	Calibrating for Different Losses

	Cross-References
	Recommended Reading

	Classifier Systems
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Michigan Classifier Systems
	Knowledge Representation
	Performance Component
	Credit Assignment
	Rule Discovery Component
	Pittsburgh Classifier Systems
	Applications
	Programs and Data
	Cross-References
	Recommended Reading

	Clause
	Cross-References

	Clause Learning
	Click-Through Rate (CTR)
	Clonal Selection
	Closest Point
	Cluster Editing
	Cluster Ensembles
	Cluster Initialization
	Cluster Optimization
	Clustering
	Cross-References

	Clustering Aggregation
	Clustering Ensembles
	Clustering from Data Streams
	Definition
	Main Techniques
	Basic Concepts
	Partitioning Clustering
	Micro-clustering
	Monitoring the Evolution of the Cluster Structure
	Tracking the Evolution of the Cluster Structure

	Recommended Reading

	Clustering of Nonnumerical Data
	Clustering with Advice
	Clustering with Constraints
	Clustering with Qualitative Information
	Clustering with Side Information
	Coevolution
	Coevolutionary Computation
	Coevolutionary Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Multiple Versus Single Population Approaches
	Competition and Cooperation
	Evaluation
	Representation
	Pathologies and Remedies

	Cross-References
	Recommended Reading

	Collaborative Filtering
	Collection
	Collective Classification
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Relational Classification
	Iterative Collective Classification with Neighborhood Labels
	Collective Classification with Graphical Models
	Applications
	Cross-References
	Recommended Reading

	Commercial Email Filtering
	Committee Machines
	Community Detection
	Comparable Corpus
	Comparison Training
	Competitive Coevolution
	Competitive Learning
	Complex Adaptive System
	Complexity in Adaptive Systems
	Synonyms
	Definition
	Motivation and Background
	Theory
	Adaptive System, Environment, and Regularities
	External and Internal Complexity

	Application: Learning
	Recommended Reading

	Complexity of Inductive Inference
	Definition
	Detail
	Mind Changes and Anomalies
	Data and Time Complexity
	Iterative and Memory-Bounded Learning
	Complexity of Final Hypothesis
	Intrinsic Complexity
	Learning Using Oracles
	Recommended Reading

	Compositional Coevolution
	Synonyms
	Definition
	Cross-References

	Computational Complexity of Learning
	Definition
	Detail

	Computational Discovery of Quantitative Laws
	Concept Drift
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Identifying Context Change
	Recent Advances
	Cross-References
	Recommended Reading

	Concept Learning
	Synonyms
	Definition
	Background
	Rules, Relations, and Background Knowledge
	Concept Learning and Noise
	Cross-References
	Recommended Reading

	Conditional Random Field
	Recommended Reading

	Confirmation Theory
	Confusion Matrix
	Definition

	Conjunctive Normal Form
	Recommended Reading

	Connection Strength
	Connections Between Inductive Inference and Machine Learning
	Definition
	Detail
	Multitask or Context-Sensitive Learning
	Special Cases of Inductive Logic Programming
	Learning Drifting Concepts
	Behavioral Cloning
	Learning to Coordinate
	Learning Geometric Clustering
	Insights for Limitations of Science
	Cross-References
	Recommended Reading

	Connectivity
	Consensus Clustering
	Synonyms
	Definition

	Constrained Clustering
	Definition
	Motivation and Background
	Structure of the Learning System
	Programs and Data
	Recommended Reading

	Constraint Classification
	Constraint-Based Mining
	Definition
	Motivation and Background
	Structure of the Learning System
	Constraints
	Monotonic and Anti-Monotonic Constraints
	Succinct Constraints
	Convertible Constraints
	Boundable Constraints
	Borders
	Algorithms

	Cross-References
	Recommended Reading

	Constructive Induction
	Recommended Reading

	Content Match
	Content-Based Filtering
	Synonyms
	Definition

	Content-Based Recommending
	Context-Sensitive Learning
	Contextual Advertising
	Continual Learning
	Synonyms
	Definition
	Cross-References

	Continuous Attribute
	Contrast Set Mining
	Definition
	Recommended Reading

	Cooperative Coevolution
	Co-reference Resolution
	Correlation Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Applications
	Applications of Clustering with Advice
	Recommended Reading

	Correlation-Based Learning
	Cost
	Cross-References

	Cost Function
	Cost-Sensitive Classification
	Cost-Sensitive Learning
	Synonyms
	Definition
	Motivation and Background
	Theory
	Structure of Learning System
	Direct Cost-Sensitive Learning
	Cost-Sensitive Meta-Learning

	Recommended Reading

	Cost-to-Go Function Approximation
	Co-training
	Covariance Matrix
	Definition
	Motivation and Background
	Theory
	Properties
	Correlation Coefficient
	Parameter Estimation
	Conjugate Priors

	Applications
	Correlation and Least Squares Approximation
	Principal Component Analysis
	Gaussian Processes

	Cross-References
	Recommended Reading

	Covering Algorithm
	Synonyms
	Method
	Cross-References
	Recommended Reading

	Credit Assignment
	Synonyms
	Definition
	Motivation
	Structural Credit Assignment
	Temporal Credit Assignment
	Transfer Learning
	Cross-References
	Recommended Reading

	Cross-Language Document Categorization
	Cross-Language Information Retrieval
	Cross-Language Question Answering
	Cross-Lingual Text Mining
	Definition
	Motivation and Background
	Tasks and Methods
	Translation-Based Approaches
	Latent Semantic Approaches
	Cross-Language Semantic Analysis
	Cross-Language Latent Dirichlet Allocation
	Cross-Language Canonical Correlation Analysis
	The Primal Formulation
	Kernel Canonical Correlation Analysis
	Regularization and Partial Least Squares Solution
	Approximate Solutions

	Specific Applications
	Cross-Language Information Retrieval (CLIR)
	Cross-Language Question Answering (CLQA)
	Cross-Language Categorization (CLCat) and Clustering (CLCLu)

	Recommended Reading

	Cross-Validation
	Definition
	Cross-References

	Cumulative Learning
	Synonyms
	Definition
	Related Terminology
	Motivation and Background
	History
	Structure of the Learning System
	Toward a CL Specification
	Classification of CL Systems
	Architecture
	Knowledge
	Learning

	The Research Space
	Future Directions

	Recommended Reading

	Curse of Dimensionality
	Definition
	Background
	Recommended Reading

	D
	Data Augmentation
	Data Cleaning
	Data Cleansing
	Synonyms
	Cross-References

	Data Enrichment
	Synonyms
	Cross-References

	Data Integration
	Data Linkage
	Data Matching
	Data mining on Text
	Data Preparation
	Synonyms
	Motivation and Background
	Processes and Techniques
	Data Profiling: Sourcing, Selecting, and Auditing Appropriate Data
	Data Cleansing
	Data Anomalies
	Data Cleansing Process
	Dealing with Missing Values
	Handling Outliers

	Data Enrichment/Integration
	Data Transformation
	Numeric to Numeric Transformation
	Nominal to Numeric Transformation

	Propositionalization
	Discretization
	Binarization
	Granularity

	Dimensionality Reduction
	Feature Engineering
	Sampling
	Random Sampling
	Cluster Sampling
	Stratified Sampling

	Cross-References
	Recommended Reading

	Data Preprocessing
	Data Scrubbing
	Data Reconciliation
	Data Set
	Data Wrangling
	DBN
	Decision Epoch
	Decision List
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Decision Lists and Decision Trees
	Definition
	Discussion
	See Also
	Recommended Reading

	Decision Rule
	Decision Stump
	Discussion
	Cross-References
	Recommended Reading

	Decision Threshold
	Decision Tree
	Synonyms
	Representation
	Learning Algorithm
	Attribute Selection
	Overfitting Avoidance

	Well-Known Decision-Tree Learning Algorithms
	Cross-References
	Recommended Reading

	Decision Trees for Regression
	Deductive Learning
	Synonyms
	Definition

	Deduplication
	Deduplication or Duplicate Detection (When Applied to One Database Only)
	Deep Belief Nets
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Composing Simple Learning Modules
	The Theoretical Justification of the Learning Procedure
	Deep Belief Nets with Other Types of Variable
	Using Autoencoders as the Learning Module
	Applications of Deep Belief Nets

	Recommended Reading

	Deep Belief Networks
	Deep Learning
	Introduction
	First Deep Learners
	Architectures of Convolutional NNs (CNNs)
	Backpropagation
	Backpropagation for CNNs
	Fundamental Deep Learning Problem and Unsupervised Pre-training of RNNs and FNNs
	Very Deep Learning in Supervised Sequence-Processing RNNs
	Some Tricks to Improve NNs
	Consequences for Neuroscience
	Deep Learning with Spiking Neurons?
	Deep Reinforcement Learning (RL)
	Outlook
	Recommended Reading

	Density Estimation
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Density-Based Clustering
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross-References
	Recommended Reading

	Dependency Directed Backtracking
	Detail
	Diagonal Matrix
	Differential Prediction
	Digraphs
	Synonyms
	Definition

	Dimensionality Reduction
	Synonyms
	Introduction
	Motivation and Background
	Applications: Dimensionality Reduction for Time-Series Data
	Dimensionality Reduction and Lower Bounding

	Cross-References
	Recommended Reading

	Dimensionality Reduction on Text via Feature Selection
	Directed Graphs
	Dirichlet Process
	Definition
	Motivation and Background
	Theory
	Dirichlet Process
	Posterior Distribution
	Predictive Distribution and the Blackwell–MacQueen Urn Scheme
	Clustering, Partitions, and the Chinese Restaurant Process
	Stick-Breaking Construction

	Applications
	Dirichlet Process Mixture Models

	Generalizations and Extensions
	Future Directions
	Cross-References
	Further Reading
	Recommended Reading

	Discrete Attribute
	Discretization
	Synonyms
	Definition
	Motivation and Background
	Taxonomy

	Recommended Reading

	Discriminative Learning
	Definition
	Cross-References

	Disjunctive Normal Form
	Recommended Reading

	Distance
	Distance Functions
	Distance Measures
	Distance Metrics
	Distribution-Free Learning
	Divide-and-Conquer Learning
	Synonyms
	Definition
	Cross-References

	Document Categorization
	Document Classification
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Data Representation
	Classification
	Evaluation Measures
	Cross-References
	Recommended Reading

	Domain Adaptation
	Dual Control
	Duplicate Detection
	Dynamic Bayesian Network
	Dynamic Decision Networks
	Dynamic Programming
	Definition
	Background and Motivation
	Structure of the Learning System
	The Finite-Horizon Setting
	Backward Induction Algorithm

	The Infinite-Horizon Setting
	Solving the Discounted Infinite-Horizon MDP
	Value Iteration
	Policy Iteration
	Solving the Infinite-Horizon Average-Reward MDP
	Policy Iteration

	Continuous-Time Models
	Extensions
	Partially Observed MDPs
	Parameter-Adaptive Dynamic Programming
	Approximate Dynamic Programming

	Cross-References
	Recommended Reading

	Dynamic Programming for Relational Domains
	Dynamic Selection of Bias
	Dynamic Systems

	E
	EBL
	Echo State Network
	ECOC
	Edge Prediction
	Efficient Exploration in Reinforcement Learning
	Synonyms
	Definition
	Motivation
	Efficient Exploration in Markov Decision Processes
	Variations on MDP Learning
	Alternative Settings
	Cross-References
	Recommended Reading

	EFSC
	Eigenvector
	Elman Network
	Embodied Evolutionary Learning
	Emerging Patterns
	Definition
	Recommended Reading

	Empirical Risk Minimization
	Definition
	Recommended Reading

	Ensemble Learning
	Synonyms
	Definition
	Motivation and Background
	Methods and Algorithms
	Methods for Combining a Set of Models
	Algorithms for Learning a Set of Models
	Bagging

	Adaboost
	Mixtures of Experts

	Theoretical Perspectives: Ensemble Diversity
	What Is Diversity?
	Regression Error with a Linear Combination Rule
	Classification Error with a Linear Combination Rule
	Classification Error with a Voting Combination Rule
	Summary

	Conclusions and Current Directions in the Field
	Recommended Reading

	Entailment
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Entity Resolution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Attribute-Based Entity Resolution
	Efficiency
	Probabilistic Models for Pairwise Resolution
	Probabilistic Models for Relational Entity Resolution
	Other Approaches for Relational Entity Resolution
	Applications
	Cross-References
	Recommended Reading

	EP
	Epsilon Cover
	Motivation and Background
	Definition
	Application
	Cross-References
	Recommended Reading

	Epsilon Nets
	Motivation and Background
	Definition
	Remarks

	Example
	Application
	Cross-References
	Recommended Reading

	Equation Discovery
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Approaches and Methods
	Types of Equations

	Applications
	Cross-References
	Recommended Reading

	Error
	Error Correcting Output Codes
	Synonyms
	Definition
	Recommended Reading

	Error Curve
	Error Rate
	Synonyms
	Definition
	Cross-References

	Error Squared
	Synonyms
	Definition

	Error-Correcting Output Codes (ECOC)
	Estimation of Density Level Sets
	Evaluation
	Evaluation Data
	Evaluation of Learning Algorithms
	Synonyms
	Definition
	Motivation and Background
	Processes and Techniques
	Cross-References
	Recommended Reading

	Evaluation of Model Performance
	Evaluation Set
	Event Extraction from Media Texts
	Definition
	Motivation and Background
	Structure of Learning System
	News Collection
	Text Annotation
	Clustering Approach to Event Identification
	Cross Lingual Event Detection
	Extraction of Event Properties

	Cross-References
	Recommended Reading

	Evolution of Agent Behaviors
	Evolution of Robot Control
	Evolutionary Algorithms
	Synonyms
	Definition
	Cross-References

	Evolutionary Clustering
	Synonyms
	Definition
	Motivation and Background
	Objective Functions for Evolutionary Clustering
	Encodings and Operators for Evolutionary Clustering
	Applications for Evolutionary Clustering
	Cross-References
	Recommended Reading

	Evolutionary Computation
	Evolutionary Computation in Economics
	Definition
	Motivation and Background
	Structure of the Evolutionary Computation in Economics
	Cross-References
	Recommended Reading

	Evolutionary Computation in Finance
	Definition
	Motivation and Background
	Financial Forecasting and Algorithmic and Automatic Trading
	Portfolio Optimization
	Financial Markets
	Option Pricing
	Credit Rating, Credit Scoring, and Bankruptcy Prediction
	Filtering Techniques

	Cross-References
	Recommended Reading

	Evolutionary Computational Techniques in Marketing
	Motivation and Background
	Applications
	The Design of New Products
	Targeting Potential Clients
	Advertisement

	Cross-References
	Recommended Reading

	Evolutionary Computing
	Evolutionary Constructive Induction
	Evolutionary Feature Selection
	Evolutionary Feature Selection and Construction
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Evolutionary Feature Synthesis
	Evolutionary Fuzzy Systems
	Definition
	Motivation and Background
	Structure of the Learning System
	Optimization and Learning of the Fuzzy Database
	Optimization and Learning of the Fuzzy Rule Base
	Optimization and Learning of the Complete Knowledge Base
	Final Remarks

	Recommended Reading

	Evolutionary Games
	Definition
	Motivation and Background
	Structure of the Learning System
	Genetic Programming
	Evolving Game-Playing Strategies
	Example: Robocode
	Program Architecture
	Terminal and Function Sets
	Fitness Measure
	Control Parameters and Run Termination
	Results

	Backgammon and Chess: Major Results
	Backgammon
	Chess (Endgames)

	Cross-References
	Recommended Reading

	Evolutionary Grouping
	Evolutionary Kernel Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Assessing Fitness: Model Selection Criteria
	Accuracy on Sample Data
	Measures Derived from Bounds on the Generalization Performance
	Number of Input Variables
	Space and Time Complexity of the Classifier
	Multi-objective Optimization
	Coevolution

	Encoding and Variation Operators
	Gaussian Kernels
	Optimizing Additional Hyperparameters

	Application Example
	Cross-References
	Recommended Reading

	Evolutionary Robotics
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Genetic Encoding
	Fitness Evaluation
	Advantages

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Evolving Neural Networks
	Example
	Example Space
	Example-Based Programming
	Expectation Maximization Clustering
	Synonyms
	Definition
	Extensions
	Softwares
	Recommended Reading

	Expectation Propagation
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Bayesian Machine Learning
	Assumed Density Filtering
	Expectation Propagation
	Computational Aspects
	Convergence Issues
	Generalizations
	Programs and Data

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Experience Curve
	Experience-Based Reasoning
	Explanation
	Explanation-Based Generalization for Planning
	Explanation-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Explanations and Their Generalization
	Evaluation and Hypothesis Selection
	Literature

	Cross-References
	Recommended Reading

	Explanation-Based Learning for Planning
	Synonyms
	Definition
	Dimensions of Variation
	Learning from Success: Explanation-Based Generalization
	Learning from Failure
	Learning Adjustments to Heuristics
	EBL from Incomplete Domain Theories
	EBL to Learn Domain Knowledge
	EBL and Knowledge-Level Learning
	Utility Problem and Its Nonexclusive Relation to EBL
	Current Status
	Additional Reading
	Cross-References
	Recommanded Reading

	F
	F1-Measure
	False Negative
	False Positive
	Feature
	Feature Construction in Text Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Solutions
	Word-Based Features
	Character-Based Features
	Kernel Methods
	Linear Algebra Methods
	Nonlinear Methods
	Miscellaneous

	Cross-References
	Recommended Reading

	Feature Generation in Text Mining
	Feature Projection
	Feature Selection
	Synonyms
	Definition (or Synopsis)
	Motivation and Background
	Structure of the Learning System
	Recent Developments
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Feature Selection in Text Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Recommended Reading

	Feature Subset Selection
	Feature Weighting
	Feedforward Recurrent Network
	Field Scrubbing
	Finite Mixture Model
	First-Order Logic
	Synonyms
	Definition
	Motivation and Background
	Theory
	Syntax
	Semantics
	Proofs
	Programming in Logic

	Cross-References
	Recommended Reading

	First-Order Predicate Calculus
	First-Order Predicate Logic
	First-Order Regression Tree
	Synonyms
	Definition
	Cross-References

	Formal Concept Analysis
	Definition
	Theory
	Motivation and Background
	Cross-References
	Recommended Reading

	Frequent Itemset
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Frequent Pattern
	Definition
	Motivation and Background
	Structure of Problem
	Theory/Solutions
	Condensed Representations: Closed Sets and Nonderivable Sets
	Generalizations of Frequent Patterns

	Programs and Data
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Frequent Set
	Functional Trees
	Fuzzy Sets
	Recommended Reading

	Fuzzy Systems
	Recommended Reading

	G
	Gaussian Distribution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Canonical Form
	Cumulative Distribution Function
	Moments
	Entropy and Kullback-Leibler Divergence
	Properties Under Affine Transform
	Conjugate Priors
	Parameter Estimation
	Distributions Induced by the Gaussian

	Applications
	Central Limit Theorem
	Approximate Gaussian Posterior
	3-σ Rule
	Combination of Random Variables
	Correlations and Independence
	Marginalization, Conditioning, and Agglomeration

	Cross-References
	Recommended Reading

	Gaussian Process
	Synonyms
	Definition
	Motivation and Background
	Theory
	Gaussian Process
	Covariance Functions

	Applications
	Regression
	Likelihood Function and Posterior Distribution
	Predictive Distribution
	Point Prediction

	Classification
	Likelihood Function and Posterior Distribution
	Predictive Distribution
	Point Prediction

	Practical Issues
	Model Selection
	Marginal Likelihood for Regression
	Marginal Likelihood for Classification

	Sparse Approximation

	Current and Future Directions
	Cross-References
	Recommended Reading

	Gaussian Process Reinforcement Learning
	Definition
	Motivation and Background
	Markov Decision Processes
	Reinforcement Learning

	Structure of Learning System
	Gaussian Process Temporal Difference Learning

	Theory
	MRPs with Deterministic Transitions
	General MRPs

	Applications
	Future Directions
	Further Reading
	Recommended Reading

	Gaussian Processes
	Generality and Logic
	Generalization
	Cross-References
	Recommended Reading

	Generalization Bounds
	Synonyms
	Definition
	Motivation and Background
	Details
	Cross-References
	Recommended Reading

	Generalization Performance
	Cross-References

	Generalized Delta Rule
	General-to-Specific Search
	Generative and Discriminative Learning
	Definition
	Motivation and Background
	Recommended Reading

	Generative Learning
	Definition
	Cross-References

	Genetic and Evolutionary Algorithms
	Definitions
	Genetic Operators
	Cross-References

	Genetic Attribute Construction
	Genetic Clustering
	Genetic Feature Selection
	Genetic Grouping
	Genetic Neural Networks
	Genetic Programming
	Genetics-Based Machine Learning
	Gibbs Sampling
	Gini Coefficient
	Gram Matrix
	Grammar Learning
	Grammatical Inference
	Synonyms
	Definition
	Recommended Reading

	Grammatical Tagging
	Graph Clustering
	Synonyms
	Definition
	Motivation and Background
	Graph Clustering as Minimum Cut
	Graph Clustering as Multiway Graph Partitioning
	Graph Clustering with k-Means
	Graph Clustering with the Spectral Method
	Graph Clustering as Quasi-clique Detection
	Graph Clustering as Dense Subgraph Determination
	Clustering Graphs as Objects
	Conclusions and Future Research
	Cross-References
	Recommended Reading

	Graph Kernels
	Definition
	Motivation and Background
	Approaches for Kernels Between Graphs
	Approaches for Kernels on a Graph
	Recommended Reading

	Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Analysis of Real-World Graphs
	Graph Generators

	Applications
	Cross-References
	Recommended Reading

	Graphical Models
	Definition
	Motivation and Background
	Theory
	Directed Graphical Models
	Undirected Graphical Models
	Conversion from Directed to Undirected Graphical Models

	Characterization of Directed and Undirected Graphical Models

	Applications
	Inference Algorithms in Graphical Models
	Belief Propagation
	Maximum a Posteriori (MAP) Estimation
	The Junction Tree Algorithm
	Approximate Inference

	Cross-References
	Recommended Reading

	Graphs
	Definition
	Motivation and Background
	Theory
	Isomorphism
	Classes of Graphs
	Properties of Graphs

	Applications
	Future Directions
	Recommended Reading

	Greedy Search
	Cross-References
	Recommended Reading

	Greedy Search Approach of Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Graph-Based Hierarchical Conceptual Clustering
	Graph-Based Supervised Learning
	Graph Grammar Inference

	Programs and Data
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Group Detection
	Synonyms
	Definition
	Motivation and Background
	Theory Solution
	Approaches
	Local Techniques
	Clustering Techniques
	Centrality-Based Techniques
	Modularity-Based Techniques

	Issues
	Cross-References
	Recommended Reading

	Grouping
	Growing Set
	Definition
	Cross-References

	Growth Function

	H
	Hebb Rule
	Hebbian Learning
	Cross-References

	Heuristic Rewards
	Hidden Markov Models
	Definition
	Motivation and Background
	Structure of the Learning System
	Training and Using Hidden Markov Models
	Applications of Hidden Markov Models
	Programs

	Cross-References
	Recommended Reading

	Hierarchical Reinforcement Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Structure of HRL
	Semi-Markov Decision Problem Formalism
	Approaches to Hierarchical Reinforcement Learning
	Hierarchies of Abstract Machines (HAMs)
	Options

	MAXQ
	Optimality
	Automatic Decomposition

	Cross-References
	Recommended Reading

	Higher-Order Logic
	Definition
	Motivation and Background
	Theory
	Logic
	Knowledge Representation
	Reasoning

	Applications
	Cross-References
	Recommended Reading

	Hold-One-Out Error
	Holdout Data
	Holdout Evaluation
	Definition
	Cross-References

	Holdout Set
	Synonyms
	Definition
	Cross-References

	Hopfield Network
	Synonyms
	Definition
	Recommended Reading

	Hyperparameter Optimization
	Hypothesis Language
	Synonyms
	Definition
	Motivation and Background
	Examples of Hypothesis Languages
	Decision Trees and Rule Sets
	Graphical Models
	Neural Networks
	Instance-Based Learning
	Clustering
	First-Order Logic Versus Propositional Languages

	Further Reading
	Cross-References
	Recommended Reading

	Hypothesis Space
	Synonyms
	Definition
	Motivation and Background
	Theory
	Further Reading
	Cross-References
	Recommended Reading

	I
	Identification
	Identity Uncertainty
	Idiot's Bayes
	Immune Computing
	Immune Network
	Immune-Inspired Computing
	Immunocomputing
	Immunological Computation
	Implication
	Improvement Curve
	Incremental Learning
	Definition
	Motivation and Background
	Theory
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Indirect Reinforcement Learning
	Induction
	Definition
	Theory
	Hume's Problem of Induction
	Induction and Probabilistic Inference
	Popper
	Causality and Hempel's Paradox

	Cross-References
	Recommended Reading

	Induction as Inverted Deduction
	Inductive Bias
	Synonyms
	Definition
	Cross-References

	Inductive Database Approach to Graphmining
	Overview
	Pattern Domain
	Query Language
	Data Structures
	Recommended Reading

	Inductive Inference
	Definition
	Detail
	Explanatory Learning
	Beyond Explanatory Learning
	Consistent and Conservative Learning
	Monotonicity
	Indexed Families
	Cross-References
	Recommended Reading

	Inductive Inference Rules
	Inductive Learning
	Synonyms
	Definition

	Inductive Logic Programming
	Synonyms
	Motivation
	Theory
	A Methodology
	FOIL: An Illustration
	Application
	State-of-the-Art
	Current Trends and Challenges
	Cross-References
	Recommended Reading

	Inductive Process Modeling
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Inductive Program Synthesis
	Inductive Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Evidence and the Oracle
	Program Schemas
	Predicate Invention
	Background Knowledge

	Programs and Data
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Inductive Synthesis
	Inductive Transfer
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Theoretical Work
	Future Directions
	Cross-References
	Recommended Reading

	Inequalities
	Information Retrieval
	In-Sample Evaluation
	Synonyms
	Definition
	Cross-References

	Instance
	Synonyms
	Definition

	Instance Language
	Instance Space
	Synonyms
	Definition

	Instance-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Further Reading
	Recommended Reading

	Instance-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Basic Approach
	Examples of IBRL Algorithms
	Assumptions
	Problems and Drawbacks

	Cross-References
	Recommended Reading

	Intelligent Backtracking
	Synonyms
	Definition

	Intent Recognition
	Internal Model Control
	Synonyms
	Definition

	Interval Scale
	Inverse Entailment
	Definition
	Cross-References

	Inverse Optimal Control
	Inverse Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Preliminaries and Notation
	Characterization of the Inverse RL Solution Set
	Reward Function Ambiguity
	Statistical Efficiency
	Computational Efficiency

	A Generative Approach to Inverse RL

	Apprenticeship Learning: Inverse RL Versus Imitation Learning
	Cross-References
	Recommended Reading

	Inverse Resolution
	Definition
	Cross-References

	Is More General Than
	Is More Specific Than
	Isotonic Calibration
	Item
	Item Space
	Iterative Algorithm
	Iterative Classification
	Iterative Computation

	J
	Junk Email Filtering

	K
	k-Armed Bandit
	Synonyms
	Definition
	Motivation and Background
	Theory
	The Stochastic k-Armed Bandit Problem
	Regret Minimization for the Stochastic k-Armed Bandit Problem
	The Non-stochastic k-Armed Bandit Problem
	The Exploratory k-Armed Bandit Problem
	Cross-References
	Recommended Reading

	Kernel Density Estimation
	Kernel Matrix
	Synonyms
	Definition

	Kernel Methods
	Definition
	Motivation and Background
	Theory
	Reproducing Kernel Hilbert Space
	Properties of psd Kernels
	Example Kernels
	Kernel Function Classes

	Applications
	Supervised Learning
	Unsupervised Learning

	Cross-References
	Recommended Reading

	Kernel Shaping
	Kernel-Based Reinforcement Learning
	Kernels
	Kind
	K-Means Clustering
	Synonyms
	Definition
	Fast Computation for Large-Scale Data
	Software
	Recommended Reading

	K-Medoids Clustering
	Synonyms
	Definition
	Fast Computation for Large Data
	Softwares
	Recommended Reading

	Kohonen Maps
	K-Way Spectral Clustering
	Synonyms
	Definition
	Recommended Reading

	L
	L1-Distance
	Label
	Labeled Data
	Language Bias
	Definition
	Cross-References

	Laplace Estimate
	Laplacian Matrix
	Latent Class Model
	Latent Factor Models and Matrix Factorizations
	Definition

	Lazy Learning
	Definition
	Discussion
	Cross-References
	References

	Learning Algorithm Evaluation
	Learning as Search
	Definition
	Background
	Representation
	Version Spaces and Subsumption
	Noisy Data
	Cross-References
	Recommended Reading

	Learning Bayesian Networks
	Learning Bias
	Learning by Demonstration
	Learning by Imitation
	Learning Classifier Systems
	Learning Control
	Learning Control Rules
	Learning Curves in Machine Learning
	Synonyms
	Definition
	Motivation and Background
	Use of Learning Curves in Machine Learning
	Artificial Neural Networks
	General Machine Learning

	Cross-References
	Recommended Reading

	Learning from Complex Data
	Learning from Labeled and Unlabeled Data
	Learning from Non-Propositional Data
	Learning from Nonvectorial Data
	Learning from Preferences
	Learning from Structured Data
	Synonyms
	Definition
	Motivation and Background
	Main Tasks and Solution Approaches
	Applications
	Cross-References
	Recommended Reading

	Learning Graphical Models
	Synonyms
	Definition
	Motivation and Background
	Theory
	Probability and Causality
	Statistical Equivalence

	Applications
	Constraint Learners
	Metric Learners
	Search and Complexity
	Markov Blanket Discovery
	Knowledge Engineering with Bayesian Networks

	Cross-References
	Recommended Reading

	Learning in Logic
	Learning in Worlds with Objects
	Learning Models of Biological Sequences
	Definition
	Motivation and Background
	Structure of Learning System
	Motifs
	Proteins
	Genes
	RNAs
	Phylogenetic Models

	Programs and Data
	Recommended Reading

	Learning to Learn
	Learning to Rank
	Solution
	Problem Formulation
	Evaluation Measures: DCG and NDCG
	Objective Function of Learning
	Methods
	Ranking SVM and IR SVM
	AdaRank
	LambdaRank and LambdaMART

	Applications
	Recommended Reading

	Learning Using Privileged Information
	Theory/Solution
	SVM+
	Motivation of SVM+

	Relation to Existing Learning Settings
	Applications
	Current and Future Directions
	Cross-References
	Recommended Reading

	Learning Vector Quantization
	Synonyms
	Definition

	Learning with Different Classification Costs
	Learning with Hidden Context
	Learning Word Senses
	Least-Squares Reinforcement Learning Methods
	Definition
	Motivation and Background
	Bellman Residual Minimizing Approximation
	Least-Squares Fixed-Point Approximation

	Structure of Learning System
	Least-Squares Temporal Difference Learning
	Bellman Residual Minimization Learning
	Hybrid Least-Squares Learning
	Least-Squares Policy Evaluation
	Least-Squares Policy Iteration
	Least-Squares Fitted Q-Iteration

	Cross-References
	Recommended Reading

	Leave-One-Out Cross-Validation
	Definition
	Cross-References
	Recommended Reading

	Leave-One-Out Error
	Synonyms
	Definition

	Lessons-Learned Systems
	Lifelong Learning
	Life-Long Learning
	Lift
	Linear Discriminant
	Definition
	Motivation and Background
	Fisher's Discriminant for Two-Category Problem
	Fisher's Discriminant for Multi-category Problem
	Cross-References
	Recommended Reading

	Linear Regression
	Definition
	Motivation and Background
	Theory/Solution
	Least Squares Method
	Geometrical Interpretation of Least Squares Method
	Sequential Learning of Least Squares Method
	Regularized/Penalized Least Squares Method

	Cross-References
	Recommended Reading

	Linear Regression Trees
	Linear Separability
	Cross-References

	Link Analysis
	Link Mining and Link Discovery
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Data Representation
	Link Mining Tasks
	Cross-References
	Recommended Reading

	Link Prediction
	Synonyms
	Definition
	Theory/Solution
	Approaches
	Topology-Based Approaches
	Node Attribute-Based Approaches
	Issues
	Related Problems
	Cross-References
	Recommended Reading

	Link-Based Classification
	Liquid State Machine
	List Washing
	Local Distance Metric Adaptation
	Synonyms
	Definition
	Cross-References

	Local Feature Selection
	Locality Sensitive Hashing Based Clustering
	Recommended Reading

	Locally Weighted Learning
	Locally Weighted Regression for Control
	Synonyms
	Definition
	Motivation and Background
	Background

	Structure of Learning System
	Memory-Based Locally Weighted Regression (LWR)
	Locally Weighted Projection Regression (LWPR)
	A Full Bayesian Treatment of Locally Weighted Regression
	From Global to Local: Local Regression with Coupling Between Local Models

	Applications
	Learning Internal Models with LWPR
	Learning Paired Inverse-Forward Models
	Learning Trajectory Optimizations

	Cross-References
	Programs and Data
	Recommended Reading

	Logic of Generality
	Synonyms
	Definition
	Motivation and Background
	Theory
	Learning from Entailment
	Learning from Interpretations
	An Operational Perspective

	Frameworks for Generality
	Propositional Subsumption
	θ-Subsumption

	Inverse Resolution
	Background Knowledge
	Recommended Reading

	Logic Program
	Cross-References

	Logical Consequence
	Logical Regression Tree
	Logistic Calibration
	Logistic Regression
	Synonyms
	Definition
	Recommended Reading

	Logit Model
	Log-Linear Models
	Long-Term Potentiation of Synapses
	LOO Error
	Loopy Belief Propagation
	Loss
	Synonyms
	Definition

	Loss Function
	Synonyms
	Definition

	Lossy Compression
	LVQ
	LWPR
	LWR

	M
	Machine Learning and Game Playing
	Motivation and Background
	Structure of the Learning System
	Learning of Evaluation Functions
	Learning Search Control
	Monte Carlo Tree Search
	Opening Book Learning
	Pattern Discovery
	Player Modeling
	Commercial Computer Games

	Cross-References
	Recommended Reading

	Machine Learning for IT Security
	Definition
	Motivation and Background
	Structure of Learning System
	Misuse Detection
	Anomaly Detection

	Cross-References
	Recommended Reading

	Manhattan Distance
	Synonyms
	Definition
	Cross-References

	Margin
	Definition
	Cross-References

	Market Basket Analysis
	Markov Chain
	Markov Chain Monte Carlo
	Synonyms
	Definition
	Motivation
	The Algorithm
	The Metropolis Algorithm
	Burn-In and Convergence
	Gibbs Sampling
	Cross-References
	Recommended Reading

	Markov Decision Processes
	Synonyms
	Definition
	Optimality Criteria
	Finite Horizon
	Infinite Horizon Discounted
	Average Reward
	Value Determination
	Bellman Equations
	Linear Programming Solutions
	Bellman Error Minimization
	Control Methods
	Representations

	Greedy Algorithms Versus Search
	Cross-References
	Recommended Reading

	Markov Model
	Markov Net
	Markov Network
	Synonyms
	Definition
	Cross-References

	Markov Process
	Synonyms
	Recommended Reading

	Markov Random Field
	Markovian Decision Rule
	Synonyms
	Definition

	Maxent Models
	Maximally General Hypothesis
	Maximally Specific Hypothesis
	Maximum Entropy Models for Natural Language Processing
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Representing Evidence
	Combining the Evidence
	Relationship to Maximum Likelihood
	Parameter Estimation

	Applications
	Part-of-Speech Tagging
	Model Specification
	Training Data
	Search for Best Sequence

	Other NLP Applications

	Future Directions
	Recommended Reading

	McDiarmid's Inequality
	Synonyms
	Definition

	MCMC
	Mean Absolute Deviation
	Mean Absolute Error
	Synonyms
	Definition
	Cross-References

	Mean Error
	Mean Shift
	Synonyms
	Definition
	Extensions
	Softwares
	Recommended Reading

	Mean Squared Error
	Synonyms
	Definition
	Cross-References

	Measurement Scales
	Definition
	Categorical versus Numeric
	Levels of Measurement Scales
	Summary
	Recommended Reading

	Medicine: Applications of Machine Learning
	Motivation
	Structure of the Problem
	Diversity of Representations
	Medical Tasks
	Diagnosis and Medication
	Prognosis and Quality of Care Assessment
	Verification and Validation
	Intelligent Search in Medical Literature
	Epidemiology and Outbreak Detection

	Cross-References
	Recommended Reading

	Memory-Based
	Memory-Based Learning
	Merge-Purge
	Message
	Meta-combiner
	Metaheuristic
	Metalearning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Metalearning System
	Employing Metaknowledge to Select Machine Learning Algorithms
	Input to and Output from the Metalearning System
	Acquisition of Metaknowledge
	Algorithm Selection and Hyperparameter Optimization
	Applying Metalearning to Workflow Design for KDD
	Cross-References
	Recommended Reading

	Minimum Cuts
	Minimum Description Length Principle
	Philosophy
	Theory
	Universal Data Compression
	Behavior of MDL-Based Learning Methods

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Minimum Message Length
	Definition
	Motivation and Background
	Theory
	Example with Binomial Distribution
	Approximations
	Applications
	Model-Based Clustering or Mixture Models
	Probabilistic Finite-State Machines
	Decision Trees
	Causal Nets ch547-1:bib16,ch547-1:bib17,ch547-1:bib8
	Future Directions
	Definition of Key Terms Used Above
	Cross-References
	Recommended Reading

	Mining a Stream of Opinionated Documents
	Missing Attribute Values
	Synonyms
	Definition
	Strategies for Missing Value Processing
	Missing Value Processing Techniques in Various ML Paradigms
	Recommended Reading

	Missing Values
	Mistake-Bounded Learning
	Mixture Distribution
	Mixture Model
	Synonyms
	Definition
	Motivation and Background

	Estimation
	Choosing the Number of Components
	Types of Component Distributions
	Large Datasets
	Theory
	Applications
	Definition of Key Terms Used Above

	Cross-References
	Recommended Reading

	Mixture Modeling
	Mode Analysis
	Model Assessment
	Model Evaluation
	Synonyms
	Motivation and Background
	Processes and Techniques
	Cross-References
	Recommended Reading

	Model Selection
	Model Space
	Model Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross References
	Recommended Reading

	Model-Based Clustering
	Definition
	Structure of Learning System
	Generative Model
	Learning
	Related Work

	Recommended Reading

	Model-Based Control
	Model-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Theory and Methods
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Modularity Detection
	MOO
	Morphosyntactic Disambiguation
	Most General Hypothesis
	Synonyms
	Definition
	Cross-References

	Most Similar Point
	Most Specific Hypothesis
	Synonyms
	Definition
	Cross-References

	Multi-agent Learning
	Definition
	Background
	Problem Definition
	Recommended Reading

	Multi-agent Learning Algorithms
	Definition
	Some MAL Techniques
	Model-Based Approaches
	Model-Free Approaches
	Regret Minimization Approaches

	Some Typical Results
	Recommended Reading

	Multi-armed Bandit
	Multi-armed Bandit Problem
	MultiBoosting
	Definition
	Algorithm
	Cross-References
	Recommended Reading

	Multi-criteria Optimization
	Multi-Instance Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Problem
	Theory and Methods
	Multiple-Instance Classification
	Multiple-Instance Regression

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Multi-label Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Evaluation Measures
	Label Correlation
	Learning Algorithms

	Theory
	Extensions
	Future Challenges
	Recommended Reading

	Multi-objective Optimization
	Synonyms
	Definition

	Multiple Classifier Systems
	Multiple-Instance Learning
	Definition
	Motivation and Background
	Structure of the Problem
	Theory and Methods
	Multiple-Instance Classification
	Multiple-Instance Regression

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Multi-relational Data Mining
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Multistrategy Ensemble Learning
	Definition
	Cross-References
	Recommended Reading

	Multitask Learning
	Must-Link Constraint

	N
	Naïve Bayes
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Cross-References
	Recommended Reading

	NCL
	NC-Learning
	Nearest Neighbor
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Nearest Neighbor Methods
	Negative Correlation Learning
	Synonyms
	Definition
	Recommended Reading

	Negative Predictive Value
	Net Lift Modeling
	Network Analysis
	Network Clustering
	Networks with Kernel Functions
	Neural Networks
	Cross-References

	Neuro-Dynamic Programming
	Neuroevolution
	Synonyms
	Motivation and Background
	Structure of the Learning System
	Basic Methods
	Extensions

	Applications
	Programs and Data
	Cross-References
	Recommended Reading

	Neuron
	Synonyms
	Definition

	Node
	No-Free-Lunch Theorem
	Further Reading

	Nogood Learning
	Noise
	Nominal Attribute
	Nonparametric Bayesian
	Nonparametric Cluster Analysis
	Non-Parametric Methods
	Nonstandard Criteria in Evolutionary Learning
	Introduction
	Formal Background
	Support Vector Machines
	Ensemble Methods

	Learning Criteria
	Evolutionary Regularization
	Ensemble Learning and Boosting
	Boosting and Large-Scale Learning
	AUC: Area Under the ROC Curve

	Conclusions
	Recommended Reading

	Nonstationary Kernels
	Normal Distribution
	NP-Completeness
	Definition
	Recommended Reading

	Numeric Attribute
	Synonyms
	Definition

	O
	Object
	Object Consolidation
	Object Identification
	Object Matching
	Object Space
	Objective Function
	Observation Language
	Synonyms
	Definition
	Motivation and Background
	Attribute-Value Learning
	Learning from Graphs, Trees, or Sequences
	Relational Learning
	Inductive Logic Programming

	Further Reading
	Cross-References
	Recommended Reading

	Occam's Razor
	Synonyms
	Definition
	Motivation and Background
	Cross-References
	Recommended Reading

	Ockham's Razor
	Offline Learning
	One-Against-All Training
	One-Against-One Training
	1-Norm Distance
	One-Step Reinforcement Learning
	Online Controlled Experiments and A/B Testing
	Synonyms
	Motivation and Background
	Tenet 1: The Organization Wants to Make Data-Driven Decisions and Has Formalized the Overall Evaluation Criterion (OEC)
	Tenet 2: Controlled Experiments Can Be Run and Their Results Are Trustworthy
	Tenet 3: We Are Poor at Assessing the Value of Ideas

	Structure of an Experimentation System
	Elements of an Experimentation System
	Experimentation Architecture Alternatives
	Planning Experiments
	Analysis of Experiments

	Summary
	Recommended Reading

	Online Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Theory/Solution
	The Weighted Majority Algorithm
	Extensions and Modifications of the Weighted Majority Algorithm
	The Perceptron Algorithm
	Online Convex Optimization
	Oblivious Versus Adaptive Instance Sequences

	Recommended Reading

	Ontology Learning
	Opinion Extraction
	Opinion Mining
	Opinion Stream Mining
	Synonyms
	Definition
	Motivation, Main Tasks, and Challenges
	Polarity Learning in an Opinionated Stream
	Workflow
	Fully Supervised Opinion Stream Classification
	Semi-supervised Opinion Stream Classification
	Active Learning for Opinion Stream Classification

	Recent Developments
	Open Problems
	Impact
	Cross-References
	Recommended Reading
	References

	Optimal Learning
	Ordered Rule Set
	Ordinal Attribute
	Out-of-Sample Data
	Out-of-Sample Evaluation
	Definition
	Cross-References

	Overall and Class-Sensitive Frequencies
	Overfitting
	Synonyms
	Definition
	Discussion
	Cross-References

	Overtraining

	P
	PAC Identification
	PAC Learning
	Synonyms
	Motivation and Background
	Definition
	Remarks

	The Finite Case
	The Infinite Case
	Variations
	Weak Learning
	Relations to Other Learning Models
	Cross-References
	Recommended Reading

	PAC-MDP Learning
	Pairwise Classification
	Parallel Corpus
	Part of Speech Tagging
	Partially Observable Markov Decision Processes
	Synonyms
	Definition
	Motivation and Background
	Structure of Model and Solution Algorithms
	POMDP Model
	Policies
	Value Functions
	Solution Algorithms
	Forward Search
	Value Iteration
	Policy Search
	Related Work

	Cross-References
	Recommended Reading

	Particle Swarm Optimization
	The Canonical Particle Swarm
	The Social–Psychological Metaphor
	The Population Topology
	Vmax and Convergence
	Step Size and Consensus
	The Fully Informed Particle Swarm (FIPS)

	Generalizing the Notation
	The Evolving Paradigm
	Binary Particle Swarms
	Alternative Probability Distributions

	Recommended Reading

	Partitional Clustering
	Synonyms
	Definition
	Major Algorithms
	Cross-References
	Recommended Reading

	Passive Learning
	PCA
	PCFG
	Phase Transitions in Machine Learning
	Synonyms
	Definition
	Motivation and Background
	Relational Learning
	Relational Kernels and MIL Problems
	Multi-instance Learning: Background and Kernels
	The MI-SVM PT

	Propositional Learning and Sparse Coding
	Propositional Classification
	Propositional Regression

	Perspectives
	Recommended Reading

	Piecewise Constant Models
	Piecewise Linear Models
	Plan Recognition
	Polarity Learning on a Stream
	Policy Gradient Methods
	Definition
	Structure of the Learning System
	Expected Return
	Gradient Descent in Policy Space
	Finite Difference Gradients
	Likelihood Ratio Gradients

	Cross-References
	Recommended Reading

	Policy Search
	POMDPs
	POS Tagging
	Synonyms
	Definition
	Motivation and Background
	Statistical and Machine Learning Approaches to Tagging
	HMMs
	Transformation-Based Error-Driven Learning (Brill-Tagging)
	Other Supervised Learning Methods
	Cross-References
	Recommended Reading

	Positive Definite
	Positive Predictive Value
	Positive Semidefinite
	Synonyms
	Definition

	Posterior
	Posterior Probability
	Synonyms
	Definition
	Cross-References

	Post-pruning
	Definition
	Cross-References

	Postsynaptic Neuron
	Precision
	Synonyms
	Definition
	Cross-References

	Precision and Recall
	Definition
	Cross-References

	Predicate
	Cross-References

	Predicate Calculus
	Predicate Invention
	Definition
	Cross-References

	Predicate Logic
	Prediction with Expert Advice
	Predictive Software Models
	Predictive Techniques in Software Engineering
	Synonyms
	Introduction
	The Process of Applying ML to SE
	Applications of Predictive Modelsin SE
	Software Size Prediction
	Software Quality Prediction
	Software Cost Prediction
	Software Defect Prediction
	Software Reliability Prediction
	Software Reusability Prediction
	Other Applications

	Future Directions
	Recommended Reading

	Preference Learning
	Synonyms
	Motivation and Background
	Structure of the Learning System
	Learning from Object Preferences
	Learning from Label Preferences
	Other Settings
	Learning Utility Functions
	Learning Preference Relations

	Other Approaches
	Future Directions
	Cross-References
	Recommended Reading

	Pre-pruning
	Synonyms
	Definition
	Cross-References

	Presynaptic Neuron
	Principal Component Analysis
	Synonyms
	Definition

	Prior
	Prior Probability
	Synonyms
	Definition
	Cross-References

	Privacy-Preserving Data Mining
	Privacy-Related Aspects and Techniques
	Synonyms
	Definition
	Motivation and Background
	Theory/Solutions
	Basic Dimensions of Privacy Techniques
	Protecting Centralized Data
	Protecting the Model (Centralized Data)
	Distributed Data
	Evaluation

	Future Directions
	Recommended Reading

	Probabilistic Context-Free Grammars
	Synonyms
	Definition
	Derivation Process
	Probability Distribution
	Parsing Algorithm
	Learning
	Application to Bioinformatics
	Recommended Reading

	Probability Calibration
	Probably Approximately Correct Learning
	Process-Based Modeling
	Program Synthesis from Examples
	Programming by Demonstration
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Programming by Example (PBE)
	Programming by Examples
	Programming from Traces
	Projective Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Distance-Based Projective Clustering
	Density-Based Projective Clustering
	Algorithms
	Applications
	Data Indexing
	Pattern Discovery
	Data Compression
	Image Processing
	Document Processing
	DNA Microarray Analysis

	Principal Component Analysis
	Coresets
	Cross-References
	Recommended Reading

	Prolog
	Cross-References
	Recommended Reading

	Property
	Propositional Logic
	Cross-References

	Propositionalization
	Definition
	Motivation and Background
	Solutions
	Functional Relationship (Many-to-One, One-to-One)
	Nondeterminate Relationship (One-to-Many, Many-to-Many)
	Common Mistakes and Key Rules to Avoid Them
	Further Relationships

	Future Directions
	Cross-References
	Recommended Reading

	Prospective Evaluation
	Cross-References

	Pruning
	Method
	Cross-References

	Pruning Set
	Definition
	Cross-References

	Q
	Q-Learning
	Abstract
	Definition
	Cross-References
	Recommended Reading

	Quadratic Loss
	Qualitative Attribute
	Quality Threshold
	Quality Threshold Clustering
	Synonyms
	Definition
	Softwares
	Recommended Reading

	Quantitative Attribute
	Quantum Machine Learning
	Definition
	Motivation and Background
	Quantum Computing
	The Concept of a Qubit
	Algorithmic Manipulations of Qubits
	Why Is Quantum Computing Different?

	Quantum Machine Learning Algorithms
	Associating Qubits with Bits
	Encoding Information into Amplitudes
	Quantum Eigenvalue Decompositions
	Quantum Probability Distributions

	Optimization and Quantum Annealing

	Experimental Realizations
	Further Reading
	Recommended Reading

	Quasi-Interpolation
	Query-Based Learning
	Definition
	Detail
	Recommended Reading

	R
	Radial Basis Function Approximation
	Radial Basis Function Networks
	Synonyms
	Definition
	Motivation and Background
	Structure of the Network/Learning System
	Applications
	Theory/Solution
	Regularization and Generalizations
	Advantages of the Approach
	Limitations
	Cross-References
	Recommended Reading

	Radial Basis Function Neural Networks
	Random Decision Forests
	Random Forests
	Synonyms
	Definition

	Random Subspace Method
	Synonyms
	Definition

	Random Subspaces
	Randomized Decision Rule
	Randomized Experiments
	Rank Correlation
	Method
	Cross-References
	Recommended Reading

	Ratio Scale
	Real-Time Dynamic Programming
	Recall
	Cross-References

	Receiver Operating Characteristic Analysis
	Recognition
	Recommender Systems
	Definition
	Motivation and Background
	Structure of Learning System
	Collaborative Filtering
	Neighborhood-Based Collaborative Filtering

	Content-Based Recommending
	Hybrid Approaches
	Evaluation Metrics
	Challenges and Limitations

	Recommended Reading

	Record Linkage
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	The Record Linkage Process
	Record Linkage Model of Fellegi and Sunter
	Learning Parameters via the Methods of Fellegi and Sunter

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Recurrent Associative Memory
	Recursive Partitioning
	Reference Reconciliation
	Regression
	Definition
	Motivation and Background
	Theory/Solution
	Fitting
	Regularized/Penalized Fitting
	Bias-Variance Dilemma
	Nonparametric Regression
	Generalized Linear Models
	Other Variants of Regression

	Cross-References
	Recommended Reading

	Regression Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Learning a Regression Tree
	Pruning Regression Trees

	Cross-References
	Recommended Reading

	Regularization
	Definition
	Motivation and Background
	Theory
	An Illustrative Example: Ridge Regression
	Examples of Regularization
	Measuring the Capacity of Model Class

	Applications
	Cross-References
	Recommended Reading

	Regularization Networks
	Reinforcement Learning
	Cross-References
	Recommended Reading

	Reinforcement Learning in Structured Domains
	Relational Data Mining
	Relational Dynamic Programming
	Relational Learning
	Problem Definition
	Learning from Examples with External Relationships
	Learning from Examples with a Complex Internal Structure

	Approaches to Relational Learning
	Inductive Logic Programming
	Learning from Graphs
	Multi-relational Data Mining
	Statistical Relational Learning/Probabilistic Logic Learning

	Relational Reinforcement Learning
	Cross-References
	Recommended Reading

	Relational Regression Tree
	Relational Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Benefits of Relational Reinforcement Learning
	Example Relational Reinforcement Learning Approaches
	Relational Q-Learning
	Nonparametric Policy Gradients
	Relational Approximate Policy Iteration
	Relational Cross Entropy Policy Search
	Symbolic Dynamic Programming

	Cross-References
	Further Information
	Recommended Reading

	Relational Value Iteration
	Relationship Extraction
	Relevance Feedback
	Cross-References

	Representation Language
	Reservoir Computing
	Synonyms
	Definition
	Recommended Reading

	Resubstitution Estimate
	Cross-References

	Reward
	Reward Selection
	Reward Shaping
	Synonyms
	Definition
	Motivation and Background
	Theory
	Potential-Based Shaping
	Cross-References
	Recommended Reading

	Robot Learning
	Definition
	Robot Learning Systems
	Model Learning
	Imitation and Apprenticeship Learning
	Robot Reinforcement Learning

	Application Domains
	Cross-References
	Recommended Reading

	ROC Analysis
	Synonyms
	Definition
	Motivation and Background
	Solutions
	Properties of ROC Curves
	The AUC Statistic
	Identifying Optimal Points and the ROC Convex Hull
	Obtaining Calibrated Estimates of the Class Posterior

	Future Directions
	Cross-References
	Recommended Reading

	ROC Convex Hull
	ROC Curve
	Rotation Forests
	RSM
	Rule Learning
	Learning Individual Rules
	Rule Learning Heuristics
	Overfitting Avoidance

	Learning Rule Sets
	Well-Known Rule Learning Algorithms
	Cross-References
	Recommended Reading

	Rule Set
	Discussion
	Cross-References
	Recommended Reading

	S
	Sample Complexity
	Samuel's Checkers Player
	Definition
	Description of the Learning System
	Cross-References
	Recommended Reading

	Saturation
	SDP
	SDRI
	Search Engines: Applications of ML
	Definition
	Motivation and Background
	Structure of the Learning System
	Retrieval Methods
	Query Classification

	Cross-References
	Recommended Reading

	Selection of Algorithms, Ranking Learning Methods
	Self-Adaptive Systems
	Self-Organizing Feature Maps
	Self-Organizing Maps
	Synonyms
	Definition

	Motivation and Background
	Structure of Learning System
	Programs and Data
	Applications
	Cross-References
	Recommended Reading

	Semantic Annotation of Text Using Open Semantic Resources
	Synonyms
	Introduction
	Background Knowledge
	Structure of Learning Systems
	Recommended Reading

	Semantic Mapping
	Semi-naive Bayesian Learning
	Definition
	Motivation and Background
	Taxonomy of Semi-naive Bayesian Techniques
	Methods that Apply Naive Bayes to a Subset of Attributes
	Methods that Alter Naive Bayes by Allowing Interdependencies Between Attributes
	Methods that Apply Naive Bayes to a Subset of the Training Set
	Methods that Calibrate Naive Bayes' Probability Estimates
	Methods that Introduce Hidden Variables to Naive Bayes
	Selection Between Semi-naive Bayesian Methods
	Cross-References
	Recommended Reading

	Semi-supervised Learning
	Synonyms
	Definition
	Motivation and Background
	Theory
	Generative Models
	Semi-supervised Support Vector Machines
	Graph-Based Models
	Co-training and Multiview Models
	A PAC Bound for Semi-supervised Learning

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Semi-supervised Text Processing
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Generative Models

	Discriminative Approaches
	Multiview Approaches
	Graph-Based Approaches
	Approaches that Exploit Background Knowledge

	Recommended Reading

	Sensitivity
	Synonyms

	Sensitivity and Specificity
	Definition
	Cross-References

	Sentiment Analysis
	Sentiment Analysis and Opinion Mining
	Synonyms
	Definition
	Motivation and Background
	Structure of the Task
	Sentiment Analysis Methods
	Document Sentiment Classification
	Sentence Sentiment Classification
	Aspect Sentiment Classification
	Comparative Sentences
	Supervised Learning vs. Lexicon-Based Approach
	Aspect and Entity Extraction
	Finding Frequent Noun Phrases
	Exploiting Syntactic Relations of Sentiment and Target
	Applying Supervised Sequence Learning Models
	Topic Modeling
	Sentiment Lexicon
	Dictionary-Based Approach
	Corpus-Based Approach
	Sentiment Analysis of Emotions
	Summary
	Cross-References
	Recommended Reading

	Sentiment Mining
	Separate-and-Conquer Learning
	Sequence Data
	Sequential Data
	Synonyms

	Sequential Inductive Transfer
	Sequential Learning
	Set
	Shannon's Information
	Shattering Coefficient
	Synonyms
	Definition

	Sigmoid Calibration
	Similarity Measures
	Synonyms
	Introduction
	Background
	Classes of Similarity Functions
	Examples for Time-Series Data
	Cross-References
	Recommended Reading

	Simple Bayes
	Simple Recurrent Network
	Synonyms
	Definition
	Recommended Reading

	SMT
	Solution Concept
	Solving Semantic Ambiguity
	SOM
	Sort
	Spam Detection
	Specialization
	Cross-References

	Specificity
	Synonyms

	Spectral Clustering
	Speedup Learning
	Definition
	Motivation and Background
	Structure of Learning System
	Dimensions of Speedup Learning
	Examples of Intra-problem Speedup Learning
	Examples of Inter-problem Speedup Learning

	Cross-References
	Recommended Reading

	Speedup Learning for Planning
	Spike-Timing-Dependent Plasticity
	Cross-References

	Split Tests
	Sponsored Search
	Squared Error
	Squared Error Loss
	Stacked Generalization
	Synonyms
	Definition
	Recommended Reading

	Stacking
	Starting Clause
	State
	Statistical Learning
	Statistical Machine Translation
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Modeling
	Estimation

	Programs and Data
	Recommended Reading

	Statistical Natural Language Processing
	Statistical Physics of Learning
	Statistical Relational Learning
	Definition
	Motivation and Background
	Theory
	Statistical Relational Languages
	Case Study: Markov Logic Networks
	Case Study: ProbLog

	Learning
	Parameter Estimation
	Structure Learning

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Stochastic Finite Learning
	Motivation and Background
	Definition
	Detail
	Learning Monomials
	Learning Pattern Languages
	Cross-References
	Recommended Reading

	Stopping Criteria
	Stratified Cross Validation
	Stream Classification
	Definition
	Motivation and Background
	Structure of the Learning System
	Evaluation
	Algorithms
	Data Management and Forgetting Mechanisms
	Drift Detectors
	Single Classifiers
	Ensembles
	Other Approaches

	Applications
	Cross-References
	Recommended Reading

	Stream Mining
	Cross-References

	String Kernel
	String Matching Algorithm
	Structural Credit Assignment
	Structural Risk Minimization
	Definition
	Recommended Reading

	Structure
	Structured Data Clustering
	Structured Induction
	Definition
	Motivation and Background

	Structure of Learning System
	Structured Versus Unstructured Induction
	Related Work
	Cross-References
	Recommended Reading

	Subgroup Discovery
	Definition
	Recommended Reading

	Sublinear Clustering
	Definition
	Motivation and Background
	Structure of the Learning System
	Theory/Solution
	Clustering Problems
	Core-Sets: Sublinear Space Representations with Applications

	Recommended Reading

	Subspace Clustering
	Subsumption
	Cross-References
	Recommended Reading

	Supersmoothing
	Supervised Descriptive Rule Induction
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Supervised Learning
	Definition
	Cross-References

	Supervised Learning on Text Data
	Support Vector Machines
	Motivation and Background
	Theory
	Optimal Hyperplane for Linearly Separable Examples
	Soft Margins
	Dual Forms and Kernelization
	Optimization Techniques and Toolkits

	Applications
	Cross-References
	Recommended Reading

	Swarm Intelligence
	Symbolic Dynamic Programming
	Synonyms
	Definition
	Motivation and Background
	Theory and Solution
	Background: Markov Decision Processes (MDPs)
	First-Order Markov Decision Processes

	Symbolic Dynamic Programming
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Symbolic Regression
	Symmetrization Lemma
	Synonyms
	Definition

	Synaptic Efficacy

	T
	Table Extraction
	Table Extraction from Text Documents
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Table Detection
	Table Boundary Identification
	Structural Inference
	Functional Classification
	Functional Interpretation
	Disambiguation

	Cross-References
	Recommended Reading

	Table Parsing
	Table Understanding
	Tagging
	TAN
	Taxicab Norm Distance
	TD-Gammon
	Definition
	Description of the Learning System
	Cross-References
	Recommended Reading

	TDIDT Strategy
	Temporal Credit Assignment
	Temporal Data
	Temporal Difference Learning
	Definition
	Formal Definitions
	Undiscounted Sum of Reward
	Discounted Sum of Reward
	Average Reward

	Eligibility Traces and TD (λ)
	Convergence
	Control of Systems
	Actor-Critic Control Systems
	Other Value Functions

	Approximation
	Related Differencing Systems
	Biological Links

	Cross-References
	Recommended Reading

	Test Data
	Synonyms
	Definition
	Cross-References

	Test Instances
	Test Set
	Synonyms
	Definition
	Cross-References

	Test Time
	Test-Based Coevolution
	Synonyms
	Definition

	Text Learning
	Text Mining
	Synonyms
	Definition
	Cross-References

	Text Mining for Advertising
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning Problem
	Structure of Learning Systems
	Keyword Extraction Approaches
	The Vocabulary Impedance Problem
	Learning with Genetic Programming
	Semantic Approaches to Contextual Advertising

	Cross-References
	Recommended Reading

	Text Mining for News and Blogs Analysis
	Definition
	Motivation and Background
	Structure of the Learning System
	Tasks
	Solution Approaches
	Standardization: Tasks, Datasets, and APIs
	The Modeling Phase of Text Mining
	Specifics of Data Understanding, Data Cleaning, and Data Preparation
	The Importance of Interactive Tools for Semi-automatic Sensemaking

	Recommended Reading

	Text Mining for Spam Filtering
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Overview
	Data Acquisition

	Content Encoding and Deobfuscation
	Feature Extraction and Selection
	Learning Algorithms
	One Model Versus Multiple Models
	Off-Line Adaptation Versus Online Adaptation
	User-Specific Versus User-Independent Spam Detection
	Clustering and Volumetric Techniques
	Misclassification Costs and Filter Evaluation
	Adaptation to Countermeasures

	Future Directions
	Reputation Systems and Social Networks

	Cross-References
	Recommended Reading

	Text Mining for the Semantic Web
	Definition
	Motivation and Background
	Biomedical Text Mining
	Cross-References
	Recommended Reading

	Text Spatialization
	Text Visualization
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Applications
	Sammon
	Lin
	BEAD
	IN-SPIRE
	WEBSOM
	Starlight

	Cross-References
	Recommended Reading

	TF–IDF
	Threshold Phenomena in Learning
	Time Sequence
	Time Series
	Synonyms
	Definition
	Motivation and Background
	Recommended Reading

	Topic Mapping
	Topic Modeling
	Topic Models for NLP Applications
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Inference and Parameter Estimation
	Nonparametric Topic Models
	Knowledge-Based Topic Models
	Applications in NLP
	Cross-References
	Recommended Reading

	Topology
	Topology of a Neural Network
	Synonyms
	Definition

	Trace-Based Programming
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Training Curve
	Training Data
	Synonyms
	Definition
	Cross-References

	Training Examples
	Training Instances
	Training Set
	Synonyms
	Definition
	Cross-References

	Training Time
	Trait
	Trajectory Data
	Transductive Learning
	Transfer Learning
	Transfer of Knowledge Across Domains
	Transition Probabilities
	Tree Augmented Naive Bayes
	Synonyms
	Definition
	Classification with TAN
	Cross-References
	Recommended Reading

	Tree Mining
	Definition
	Motivation and Background
	Structure of Problem
	Theory/Solution
	Encoding and Enumerating Trees
	Counting Trees
	Other Constraints

	Applications
	Cross-References
	Further Reading
	Recommended Reading

	Tree-Based Regression
	True Lift Modeling
	True Negative
	True Negative Rate
	True Positive
	True Positive Rate
	Type
	Typical Complexity of Learning

	U
	Underlying Objective
	Unit
	Universal Learning Theory
	Definition, Motivation, and Background
	Deterministic Environments
	Algorithmic Probability
	Universal Bayes
	Applications
	Discussion and Future Directions
	Cross-References
	Optional Cross-References

	Recommended Reading

	Unknown Attribute Values
	Unknown Values
	Unlabeled Data
	Unsolicited Commercial Email Filtering
	Unstable Learner
	Unsupervised Learning
	Uplift Modeling
	Synonyms
	Definition
	Introduction
	Structure of the Learning System
	The Two-Model Approach
	Uplift Decision Trees
	Ensemble Methods
	Regression Methods
	Other Algorithms and Extensions
	Evaluation of Uplift Models

	Applications
	Cross-References
	Recommended Reading

	Utility Problem

	V
	Value Function Approximation
	Synonyms
	Definition
	Motivation and Background
	Markov Decision Processes
	Policies
	Value Functions
	Bellman Equations
	Significance of Value Functions

	Structure of Learning System
	Value-Function Approximation
	Approximation Architectures
	Learning

	Examples
	Inverted Pendulum
	Mountain Car

	Notation
	Cross-References
	Recommended Reading

	Variance Hint
	VC Dimension
	Motivation and Background
	Definition
	Remarks

	Examples
	Applications
	Cross-References
	Recommended Reading

	Vector Optimization
	Version Space
	Definition
	Cross-References
	Recommended Reading

	Viterbi Algorithm
	Recommended Reading

	W
	Web Advertising
	Weight
	Synonyms
	Definition

	Within-Sample Evaluation
	Word Sense Disambiguation
	Synonyms
	Definition
	Motivation and Background
	Applications
	Brief History
	Methods

	Structure of the Learning System
	Features
	Machine Learning
	Generation of Sense-Tagged Corpora

	Cross-References
	Recommended Reading

	Word Sense Discrimination

	Z
	Zero-One Loss

